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Rademacher chaos: tail 
estimates versus limit theorems 

Ron Blei and Svante Janson 

A b s t r a c t .  W e  s t u d y  R a d e m a c h e r  chaos  i n d e x e d  by  a s p a r s e  se t  w h i c h  ha s  a f r a c t i o n a l  

c o m b i n a t o r i a l  d i m e n s i o n .  W e  o b t a i n  t a i l  e s t i m a t e s  for f in i t e  s u m s  a n d  a n o r m a l  l i m i t  t h e o r e m  as  

t h e  s ize  t e n d s  to  inf ini ty .  T h e  t a i l s  for f in i te  s u m s  m a y  be  m u c h  l a rge r  t h a n  t h e  t a i l s  of t h e  l imi t .  

1. I n t r o d u c t i o n  a n d  r e su l t s  

A (homogeneous) Rademacher chaos is a random variable of the type 

(1.1) S= ~ a~...i~ril...rid, 
i l<.. .<id 

where d > l ,  ail...id are real or complex numbers and r l .  r2, ... is a sequence of in- 
dependent random variables with the symmetric two-point distribution P ( r i =  1)= 

1 (For example, ri could be the classical Rademacher functions [19], P ( r i = - l ) =  ~. 
defined on [0, 1] (with the usual Lebesgue measure) by r~(x)= l -2b~  when xe[0,  1] 
has the binary expansion 0.bib2..., but it is often more convenient to let ri be de- 
fined on the Cantor group Z~ c. For our purposes, the choice of ri does not matter.) 
Equivalently, S is a linear combination of the \Valsh functions of the type ril  ... r i , .  

We will consider only finite sums (1.1), so there is no problem of convergence, 
and all moments of S are finite. 

We are interested in two related properties of the random variables S: the tail 
behaviour, i.e. the size of the probabilities P(ISI >x)  for large x. and the size of the 

Lq norms IISlIq=(ElSlq)X/N for large q. For convenience, we define s=S/llSII2; thus 
E S = 0  and Var S=EIS21=I. 

Bonami's hypereontractive inequality [4] implies that every S in (1.1) satisfies 

( < ~ <  2\~/2/ (1.2) IlSllq<(q-1)d/2llSll2=(q-1)d/2 la~, ~l / ' q_>2. 
i t  ... id 

or, equivalently, I lS] lq<(q--1)d/2 ,  q > 2 .  (See also [1], [2], [10] and [12].) 
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In  general, this est imate is best  possible, up to a constant  depending on d but  

not  on q. For example, it is easily seen tha t  ai~...ia=l for l<il<...<ia<_n (and 0 
otherwise) yields an S=S~ tha t  after suitable normal izat ion converges, as n -+oc ,  to 

a (Hermite) d-degree polynomial  in a Gaussian r andom variable; see Example  3.2. It  

thus follows tha t  for some c ( d ) > 0  and every q_>2, I]SUq>_c(d)(q-1) d/2 IIS[12 provided 

n is large enough. (See e.g. [10, Chapte r  XIII].)  
In this paper  we s tudy  Rademacher  chaos (1.1) where most  coefficients ai~...id = 

0 so tha t  we really only sum over an indexing set which is combinatorial ly  sparse 

in the sense of [2, Chapters  XII  and XIII].  In this case. Bonami ' s  hypercontrac t ive  

inequali ty (1.2) can be improved, precisely reflecting the sparsi ty of the indexing 

set. 
We first recall some definitions [2, Chap te r  XIII],  which we modify  and adapt  

to our purposes in this paper.  

For F C N  a and a > 0 ,  define 

~F(S)  = max {IFA(A1 x ... x Ad)l:  Aj C N.  IAjl ~< ~. J = 1, ..., m}, 

and 
�9 r ( s )  I F n ( A I  • ... • Ad)l 

d f ( ~ )  = s u p  - -  -- sup 
s > l  S~  A1 ...... 4d ( m a x  ]Ajl) ~ 

',l<j<d 

In [2, Section XIII.4],  the combinatorial  dimension of a set FC_N d is defined 

to  be 

(1.3) dimF=limsup l~ - -sup{a:dF(a)=~c}=inf{a:dF(~)<oc} .  
s--+ oc log s 

In  this paper,  we consider sequences of index sets FNC_[N] d, where I N ] =  

{1, ..., N} ,  and adopt  the definition below. Because we want  to consider only non- 

empty  index sets, we consider sequences s tar t ing  at some index N0_>I; this allows 

for some empty  FN for smaller N tha t  we ignore. 

Definition. A sequence FN C_ [N]d  N = No, No + 1, ..., has combinator ia l  dimen- 

sion a if there exist positive constants  C1 and 6'2 such tha t  for all N>>_No, 

dyx (a) <_ C1, 

(i.e. IFNN(A1 • ... • A d ) l < C l ( m a x , < j < d  IAjl)~), aild 

IF~I ~ C 2 N  a �9 

We write dim {FN}=(~.  
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Given a set FC_N a, we define FN=FA[N] d. In the present paper, we de- 

fine dim F = d i m  {FN} when the latter exists (and leave the dimension undefined 
otherwise). 

Remark 1.1. Note tha t  this is a stricter definition than (1.3); there are sets F 
with no dimension in the present sense, but it is easily seen that  when the dimension 
exists in the present sense, it coincides with (1.3). 

If the cardinalities of FN are uniformly bounded, then dim {FN}=0;  otherwise 

l<_dim{FN}<_d (if d im{FN} exists at all). We are mainly interested in the case 
l<dim{FN}<d.  

Let Aa={(il,...,ia):l<_il<...<id<OC} and A~T=AdA[N] a. W~e will in the 
sequel consider only F C A  a and FNCAdN; this is not essential, but restriction to 

ordered sets of indices is convenient when we study sums (1.6). 
It  is proved in [2, Chapter  XIII] that  for every c~E[1, d], there exist sets F C A  a 

of combinatorial dimension c~ (also in the stricter sense used here). Such sets can 
always be constructed by a random procedure; for rational c~>l and d such that  
de  is an integer, it is also possible to use the following deterministic construction. 

Example 1.2. (Minimal fractional Cartesian products [2, Section XIII.1 and 
p. 493].) Fix arbi t rary integers d > 3  and l_<m_<d, and let {$1, ..., Sd} be a cover of 
[d] consisting of m-subsets  of [d], such that  every i E [d] appears  in exactly m elements 

d 
of S1, ... ,Sd; i.e., U j = l  SJ~-[d], IS j l=m,  and for every ic[d], I{j:i~Sj}J=m. 

We employ the following notation: if X is a set, Y=(Yx, .-., Ya)cX e and SC [d], 
then 

7rsy = (y~ : i E S). 

For an integer N>_d "~, let n be the greatest integer such that  n<_N 1/~. Fix a 
one-to-one map p from [n] "~ into IN], and consider 

(1.4) F )  : {(~9(rr& k), ..., p(r~&k)):  k �9 in]d}. 

In order to obtain a subset of A d for the purposes of this paper, we modify this 

set to 

(1.5) FN = {(i1, ..., ia) E A ~ :  (iQz,..., i oa) C F~- for some permutat ion p}. 

We call the sequence { FN } a fractional Cartesian product. 
We further say the the fractional Cartesian product is disconnected if [d] can 

be parti t ioned into two disjoint non-empty subsets T1 and T2 such that  each Sj is 
a subset of either T1 or T2, and connected otherwise. 

The archetypal case is d=3,  m = 2 ,  $1={1,2},  $2={1,3} and $3={2,3}.  This 
gives a connected fractional Cartesian product. 
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Cla im.  dim {FN}=dim {F~} =d/m. 

Pro@ We verify the claim in the archetypal case d=3, m = 2  only. The general 
case is similar; see [2, Corollary XIII.16]. 

Let l < s < N  be an integer, and let A. B and C be arbitrary subsets of [N]. 
Then, 

IF~n(AxB•  = ~ 1A(p(kl,k2))lB(p(kl,ka))lc(~(k2, k3)). 
kl ,k2,kaE[n] 

A three-fold application of the Cauchy Schwarz inequality yields 

iF )  n (A x B x C)J < 1.4 (c2(kl, k2)) 1B (c2(kl, k3))]/2 
k l  ,k2 E [~r~] / k l . k3E [n ]  

x 1c(p(k2, k3))) 
k2,kaE[n] 

< IAIZ/21BI1/21CI1/2, 

which implies k~F ~ (s)_< s a/2 and thus ~Fx (S)<_6s 3/2. In the opposite direction, 

Remark 1.3. Again, the definition differs slightly from [2]; there the fractional 
Cartesian product is defined on an infinite set (n=~c in (1.4)). 

Remark 1.4. Note that the function ~ appears in the definition of a fractional 
Cartesian product only because we let the indices be integers in this paper. We 
might avoid p by changing the notation slightly: for example, for the case d=3, 
rn=2,  we could equivalently write (1.9) below as S~-=}-~i<j<k<_~ ~ rijrikrjk, where 
rij, i < j ,  are independent Rademacher variables. 

It is shown in [2] (e.g., Corollary XIII.29: see Remark 1.9 below) that  if FC_A d 
(finite or infinite), and S is a Rademacher chaos 

(1.6) S = E ai~...iar,~ ... rid, 
( i l  . . . . .  i d ) E F  

then 

(1.7) IISIIq ~ Kdf(a)l/2qO/211Sll2, q2  1. 
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where K < oc depends only on the ambient dimension d. In particular, if dim {FN } < 
d, the exponent in (1.2) can be improved, with d replaced by the combinatorial 
dimension. 

These norm estimates lead to tail estimates by the customary procedure: If 
(1.7) holds and dF(c~)<oc, then for any x > 0  and q_>l, by Markov's inequality, 

P(ISI -> x) ~ x-qEl~l  ~ = x-~ I1~11 q _ (x-~Cq~/2) q, 

where C=KdF(Oe) 1/2. Taking q=(x /C)2 /ae  -1 (if z>_Ce~/2), we obtain 

(1.8) P(IYl >-- x) <_ e -aq/2 = exp(--cx2/~ 

for a constant c>0  depending on d, c~ and dF(a)  only. 

The norm and tail estimates above are in fact sharp, in a sense made precise 
below. (Cf. [2, Corollary XIII.29].) For simplicity, we will consider only the case 
where ai~...id is 0 or 1. Specifically, we consider a sequence of non-empty sets 
F x  c a d  and Rademacher chaos 

(1.9) SN r i l  . . .  r i d .  

( i l  . . . . .  i ~ ) E F . \ -  

Clearly, IISNII2=IFNI1/2, and thus SN=IFxI-1/2SN. 
T h e o r e m  1.5. Suppose d im{FN}=a_>l ,  where FxC_A~. Let SN be given 

by (1.9). Then there exist positive constants Cl, c2, ca and c4 (depending only on 
d, a, Ci, C2 and No above) such that for every q>>_l, 

(1.10) Clq a/2 <_ sup IISxllq c2q a/2, 
N 

and for all x >_ 2, 

(1.11) exp( -cax  2/~) <_ sup P(ISN[ > x) < exp(-c4x2/a) .  
N 

A natural question arises: Is it possible to replace supx in (1.10) and (1.11) by 
limN__~? (See Remark (ii) in [2, p. 524].) In the standard integer-dimensional case 
FN = A  d, the answer is affirmative (by a &fold application of the usual central limit 
theorem). But in many fractional-dimensional cases, the answer is negative: the 
precise relation between tail estimates and combinatorial dimension, as per (1.11), 
is completely wiped out in the limit. We illustrate this in two important  cases. 
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T h e o r e m  1.6. Let FNc_Ad~, N = I  .. . . .  and let S x  be given by (1.9). Suppose 
either (i) d=2  and 1 <dim {FN} <2, or (ii) FN is a connected fractional Cartesian 

product as in Example 1.2. Then S.x d >N(0, 1) with convergence of all moments. 
In particular, if ~ N ( O ,  1), then, for all q>> l, 

lira IISNttq -----tl~llq ~ q l / 2  
N--+~c 

and for all x > 2, 

lim P(ISNI > z) = P(lgl > x) < exp( - 1 _  ~x2). 
N--+oc 

Case (ii) with m = 2  can be translated (using Remark 1.4) into a result for 
random graphs, which is a special case (with p=�89 of [8, Theorem 1]; see also [9] 
and [10, Chapter XI]. 

Theorems 1.5 and 1.6 complement one another in the following (heuristic) 
sense. Let us agree that  tail probabilities of sums of uncorrelated symmetric vari- 
ables provide a gauge of interdependence between the variables: larger tail probabil- 
ities (smaller likelihood of cancellations) conv W higher degree of interdependence, 
and conversely. In this light, Theorem 1.5 provides a precise assessment of inter- 
dependence of the random variables ril . . .  rid, ( i l ,  . . .  ,Q)EFN.  As a counterpoint, 
reflecting increasing sparsity of FN relative to the full product set A~v, Theorem 1.6 
asserts that  FN in the limit, as N--+ ~c, is asymptotically independent. 

Theorems 1.5 and 1.6 show that,  for large q or x, the limits as N--+oc are much 
smaller than the largest values for finite N. If we fix a large q and study II SN W]q as N 
grows, we begin with rather small values (at most tFxl 1/2) that  grow to a maximum 
of the order q~/2 (when N is about q, see Section 2), but then the norms decrease 
again towards a limit of the order ql/2. (We do not know whether the increase and 
decrease are monotone; there might be several local maxima.) A similar story holds 
for P([SN[>X) for a fixed large x. Consequently, the limit results in Theorem 1.6 

are misleading when we consider S?r for finite N. 
A central limit theorem in fact holds generally under a condition of sparsity in 

FN that  is milder than the sparsity implied by non-integer combinatorial dimension. 
The condition is in effect that  FN is not "too close" to a product set. To express 
this precisely we use the following terminology. For jE[N], define 

F;. j  ~- { ( i l ,  ... , id) C I~'N : j E { i l ,  . . - ,  id} }. 

Further, let F # be the subset of F x  x F.v defined as follows: a pair of d-tuples 

((il,  ..., ia), (Jl, ..., jd)) C F  # if {il, ..., id} N {j, ,  ..., jd} =0  and there are (k~,..., kd) E 
FN and (11 .... , ld ) r  such that  {kt , . . . ,kd,  l~ , . . . , ld}={i l , . . . , id , j~ , - - - , jd}  but 
(kl, ..., kd) does not equal (il, ..., id) or (jl, ... ,jd). (In other words, the 2d indices 
il, ..., id , j l ,  ... ,jd can be partit ioned in at least two ways into elements of FN.) 
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T h e o r e m  1.7. Suppose 

(1.12) 

and 

(1.13) 

Then SN d 

IF;~jl 
lira max - -  0 

N - + ~  j IFNI 

lira IFN~I =0. 
N - ~  IFNI 2 

>N(O, 1), with convergence of all moments. 

We have the following partial converse. (The trivial example F={(1,j):j>_2} 
shows that  (1.12) is not necessary; we do not know whether it is needed at all in 
Theorem 1.7.) 

T h e o r e m  1.8. Suppose that ~o,,r d>N(p,~r2) for some p and a2>0.  Then 
#=0 ,  a 2 = l  and (1.13) holds. 

The proof of Theorem 1.5 is given in Section 2. and the proofs of Theorems 1.6, 
1.7 and 1.8 are given in Section 3. Some simple examples of non-normal limits when 
(1.13) is not satisfied are given also in Section 3. Further remarks and open problems 
are presented in Section 4. 

Remark 1.9. The results in the presem paper use Corollary XIII.29 in [2]. A 
correction to an argument in the proof of that  theorem is included in the preprint 
version of the present paper [3]. The referee has pointed out that  (1.7) also follows 
from [2, Corollary XIII.28] together with the decoupling inequality, see e.g. [18, 
Theorem 3.1.1]. 

2. T h e  p r o o f  o f  T h e o r e m  1.5 

The proof of Theorem 1.5. The upper bounds follow by (1.7) and (1.8) (for x_> 
x0, say; the case 2 < x < x 0  follows by Chebyshev's inequality if c4 is small enough). 

To verify the lower bounds, let CN be the event r l  . . . . .  r N = l ;  thus P ( E N )  = 

2 -N.  On g'N, we have SN=IFNI and thus gN-~-IFNI 1/2. Hence, for every q_>l, 

[]SN[[q • [FN[1/2p(gN)I/q ~_ cN~/22 -x/q. 

To verify the left inequality in (1.10), in the line above choose N=max{N0,  LqJ }. 

Similarly, given x (large enough), let N =  [Cx 2/~] for a constant C>C~ 1/~, 
where C2 is as in the definition above. Then. on gx,  

SN = IFNI 1/2 > CU2 N ~/2 > x, 

and thus 

P(SN > x) > P(EN) = 2 -N > exp(-cax2/~). [] 
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3. Asymptotic normality 

L e m m a  3.1. If d=2, then ,for any a and any finite subsets A and B of N 
such that IAl<_lBI, 

IFn(A • B)I _< 2dr(a)tAI ~ IBI, 

I F n ( B  • A) I _< 2dF(a)tAI '~-11BI. 

Proof. We may assume IA[>I. Partition B into [IBI/IAI] ~<21BI/IAI subsets 
By with IBNI_<IAI. For each j, IFn(A• ~, and similarly 
for IFN(Bj xA)]. The result follows by summing over j .  [] 

Proof of Theorem 1.6. We verifl" the conditions of Theorem 1.7. Let a =  
dim { FN }. 

First consider case (i), i.e., suppose that d=  2 and 1 < a < 2. Then, I F~-jl <_ N= 
~ which verifies (1.12). 

.- 1/(2-a) _ (For example, ~x = Next, choose ex>O such that Cv--+0 and : \~x  --+~" 
N -a for 0 < 6 < 2 - a . )  Let A=Ax={i:tC~.il>_.<\-N }. Then. 

IFNn(A• [N])l+lFNn([N ] • = ~ IL,~. I ~ e~vNlA[, 
l E A  

and thus, by Lemma 3.1, 

<x~NIAI < 4dF,. (a) A (~-IN. 

which implies 

(3.1) lAl <_ ( 4d~(a)  )l/(2-~) =o(N). 

By definition, FN # is the set of all ((i,j), (k,l))EF~v xFN, all of which entries 
are distinct, such that  either ({i, k}, { j , / } )EFx  x Fx  or ({i, l}, {j, k})EFN x FN (or 
both), where {i, k}=(i ,  k) when i<k and (k, i) when i>k. We let F#1 be the subset 

of F # where iEA, and F#2 the subset where i~A. 
The number of possible ( i , j ) E F x  with lEA is Ifxn(A• [N])I, and thus, by 

Lemma 3.1 and (3.1), 

(3.2) IFN#11 < IFNn( Ax [N])I IFxl ~ 2dE,. (cOlAl~-12v']Fxl = o(X~JFN l) = o(IFNI2) �9 
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On the other  hand, let F[v*i={k:(i,k)EF~i or (k,i)EF~i}. Thus  I F ~ I = I F ~ I .  
If ((i,j), (k, /))EF # ,  then  either k or 1 is in F{-*, and thus the number  of possible 
(k,1)EFN for a given i~A  is at most,  again by Lemma  3.1, 

IFNA(F~i x[N])I+IFNO([N]xF~iDI < 4dF(a)IF{�88 < . . . .  _ _4df(a)%v ~ - 1  N 

Summing over all possible (i, j )  we find 

(3.3) INN#21 c~-1 ra _<4dF(a)c N _5 IF v l = o ( I f x l 2 ) .  

Combining (3.2) and (3.3), we obtain (1.13) and the result follows in this case. 
In case (ii), we first observe tha t  fixing an index j in FN means tha t  the 

corresponding k in (1.4) is such tha t  r c s ~ k = p - l ( j )  for some i: for each i this means 
tha t  m of the d coordinates of k have given values, so the number  of choices of k is 
at most  dn d-m. Consequently,  I f ~ v j l < _ d n  d . . . .  =o(IFx]), proving (1.12). 

Next,  suppose tha t  

( ( i l , - . - ,  id), (jl, ... ,jd)) E F*,  

and tha t  the d-tuples (il,  ..., ia) and (Jl .... ,jd) are generated by (1.4) and (1.5) by 
some vectors i and j in In] a, respectively. By the definition of F ~ ,  there  exists also 
(kl, ..., ka )EFN,  generated in the same way by', say', kE[n] d, such tha t  {/gl, . ' . ,  /gd}~ 
{il ,- . .  , ia,jl,  ... ,ja} but  (kl,  ... ,ka) does not  equal (il, ... ,ia) or ( j l ,  .-. ,ja). 

Hence, each r @ k ,  l<_u<d, coincides with some r r s i  or 7rs, j, l<#<_d. Define 

0rl = {u E [d]:rrs k = T r s  i for some p}; 

J2 = { u E  [d] :Trs k = T r s . j  for some p}; 

T ~ =  U S . ,  s = l . 2 .  
uE Js 

Then  J1U J~ = [d] and T 1 KIT 2 7g0, because otherwise the fractional Cartesian produc t  
would be disconnected. 

If qET1, then  qES, for some uEJ1, and thus r c s k = r r s  i for some #. In 
part icular,  the qth coordinate  of k is one of the coordinates  of i. Similarly, if qET2, 
then  the qth coordinate  of k is one of the coordinates  of j. 

Because T1NT2r it follows tha t  i and j have at least one coordinate  in com- 
mon (not necessarily in the same position). Consequently,  the number  of possible 
pairs ( i , j )  i s  O(7/2d--1), and 

IF~I = O(~ 2d-1) = O(X ~<d/'>-l) = o(N ~~ = o( INN 12), 

verifying (1.13). [] 
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Proof of Theorem 1.7. All limits in the proof are as N-+oc.  We begin by 
observing that the assumption (1.12) implies 

(3.4) 
N N 

* F *  * * IF~jl 2 _< max I ~'jl ~ If~jl <_ max If;-jl'dlfNI = o(If~,JI2). 
3 3 j = l  j = l  

We use the martingale central limit theorem, as stated in [15, Corollary (2.13)]. 
We let 

FNj = {(i~, ..., id) �9 FN:  i~ = j} C_ F~j ,  

and let 

Then 

X N j =  E r i l " " r i d : r j  E ri~...ria_~. 
(il ,...,id)CFNj (il,...#d)Ef.\'j 

",~r 

SN = E Xxj .  
j = l  

and with ~2Nj = [FN I-t/2XNj, 

N 

j=l 

Evidently, (J~Nj)N=I is a martingale difference sequence for the filtration 9cj= 

5C(r1,... , r j ) ,  and we have E S ~ . = ~ I  E.Y~.j=I. 

By [15, Corollary (2.13)], to prove Si\" d >~r(0" 1) it suffices to verify the Lin- 
deberg condition 

N 

(3.5) ~E(X~,,~l[IX1~-jl >~] ) -+0  for every c>O.  
j = l  

together with 

(3.6) lira sup E E(J(~TiJ(I~J ) -< 1. 
N ---+ :~c i r j 

Because every moment of SN stays bounded by (1.2), moment convergence will 
follow as well. 
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To prove (3.5) it suffices to show that 

N 

(3.7) E EJ(~vJ -+ 0. 
j = l  

In our case, by (1.2) we note that H2NjlI4~3d/211XNjl]2 , and therefore 

N N N 12 32 d N 
E E X ~ v j < 3  ~ E  - 4 32d tFxj  _ = - -  I F ; ~ j i  , IIXNj[[2 E ] rx l  2 < ~ �9 2 
j = l  j = l  j = l  -- ~ j = l  

which by (3.4) implies (3.7). 
It remains to verify (3.6). For simplicity we first treat the ease d=2,  and will 

later describe the modifications needed in the general case. If d=2,  then 

2 2 E(XNiXxJ )= E E1FN(k'i)lFN(l,i)lFx(m'j)lFx(n'j)rkrlr'~rn" 
k, l ,m,n 

We have, Erkrtrmr~=O unless the indices k, I, m, n coincide in pairs, and obtain 
(overcounting the case when all four indices coincide) 

E(XNiXNj) , .i)lFx(k,i)lF.\'(m,j)lFx(m,J) 
k,m 

+2 E IF,. (k, i)1F_,. (1, i)1F,T (k. j ) I F ,  (l, j ) .  
k,l 

Summing the first term on the right over all i and j ,  we obtain ]FNI 2. Therefore, 
to show (3.6), it suffices to verify that 

(3.8) E E 1FN (k, i)IFN (1, i ) lFx (k, j)1FN (l, j )  = o(IF, v 12). 
i7s k,i 

The sum above equals the number of pairs ((k, i), (l,j))EFx xF~r such that also 
((1, i),(k,j))EFN• The number of such pairs with distinct i, j ,  k, I is at 
most IFNel. Further, the number of pairs ((k, i), (l, j ) ) E F v  x FN where two indices 
are equal to some r is at most I f ; . I  2. Consequently, the sum in (3.8) is at most 

N 

r l§ * 2 IF;>I , 

and (3.8) follows by (1.13) and (3.4). 
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In the case d>2,  we similarly find that EX2iX~.j equals the number of quadru- 
ples I1, I2, I3,/4 of d-tuples in F x  wherein the 4d indices coincide in pairs, and the 
last index is i in I1 and I2, and j in I3 and /4 .  We group such quadruples according 
to the positions of the pairs of coinciding elements (again overcounting in the cases 
with less than 2d distinct indices, when there are several possibilities of pairing). 

To do this precisely, let _Fk={1,...,d} x{k}, k=1 .2 .3 .4 ;  thus, /~1, I2,-T3,-[4 are 
four disjoint copies of {1, ..., d}. We define a patteT'n to be a complete matching in 
IIUI2UfaU/~4, i.e. a partit ion of the 4d points into 2d pairs, which are regarded as 
the edges of a graph. 

For a pat tern 7r, any assignment of indices in {1, ..., N} to the 2d edges defines 
4 d-tuples I1, I2 , /3 ,  I4 in the obvious way. Let TN(Tc) be the number of quadruples 
(I1, I2, Ia,I4)EF 4 generated in this way, i.e.. the number of all assignments such 
that  I lqFx,  I2EFN, I3r and I4EFx. Finally, let II' denote the set of all 
patterns that contain the two edges {(d, 1), (d, 2)} and {(d, 3), (d, 4)}. 

In this framework, we then observe that 

2 2 EXx~X-"J <- Z T_u 
i , j  rr C H '  

We classify the patterns in Ill into three types: a pattern is of type I if all its 
edges are inside -}1 U-T2 or IaU-}4; it is of type II if it is not of type I and there are 
no edges connecting I2 and/~a, and type III otherwise. 

First, consider a pat tern 7r of type I. Since the d-tuples in FN are ordered, 
it follows that  TN(Tr)=0 unless 7r is a pat tern with the edges {(i, 1), (i,2)} and 
{(i,3), (i,4)}, i=1 ,  ..., d. In this case, I1=I2 and I3=I4, which are arbitrary ele- 
ments of FN, and thus TN(1r)=[Fv[ 2. 

Because the set of patterns is finite, it suffices to show that T..~r 2) 
for every pattern 7c of type II or III. 

If 7r is of type II, then I1 a n d / 4  together de termine/2  and /3 .  As in the case 
d=2,  the number of allowed pairs (I1, h )  with distinct indices is at most If~l, and 

the number of pairs (I1, I4) with at least one common index is at most ~rN1 IfTvrl. 2. 
Therefore TN(TC)=o(IFNI 2) by (1.13) and (3.4). 

Finally, suppose that  7r is of type III. Let f r=hU/~2  and ~ = h u h ,  and call 
these the left and right sides of the pattern. We further say that the points (i, k)C/~r 
and (i, k + 2 ) E ] n  are the mirror images of one another. Suppose that  there are r 
edges between /~L and /*n; call these r edges crossing, and order them (in some 
way). Let tL(kx, ..., k~) be the number of ways to assign indices to the edges inside 
]L such that,  with hi, ..., k,- assigned to the crossing edges, I1, I2EF~.r Similarly, 
let tnN(kl, ..., k~) be the corresponding number of ways to assign indices in ]R such 
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that /3, I4 E FN. Then, 

N 

kl ,...,k..=l 

tL~(kl, ... ,kr)tl~r(kl,... ,kr). 

Further, let rr' be the pattern obtained by taking the edges inside IL  in  7r together 
with their mirror images in/~R, and the edges connecting each remaining point to its 
mirror image. Define 9r '~ similarly, starting with the edges inside/~R in 9r. Note that 
both rr' and rd ~ are patterns of type II. Then, by the Cauchy-Schwarz inequality, 

N 

TN(rC) = ~ tL(k l ,  ..., l%)t~T(kl, ..., kr) 
kl,. . . ,k~=l 

~ Q ~k tL(lgl,...,kr,2)l/2( ~k. )1/2 
4 ( < ,  . .  ,k~) ~ 

kl 1 kl,., , ,-=1 =TN(Tr')I/2TN(Tr")I/2 
= o(IFNI) 2 , 

where the final estimate holds because rd and rd' are of type II. 
This completes the proof of (3.6) and thus of the theorem. [] 

Proof of Theorem 1.8. If SN converges in distribution, then (1.2) implies that 
all moments converge (as remarked in the proof of Theorem 1.7). In particular, 
# = l i m N ~  ESN=0  and ~=limN-+:~ E S ~ = I ;  further, 

(3.9) ES 4 -+ E{ 4 = 3. 

Similarly, as in the proof above, E S  4 equals the number of quadruples (I1,/2,/3, I4) 
of d-tuples in FN such that  the 4d indices in them coincide in pairs. To estimate 
this number from above, we note that  the number of possibilities that  I1, /2, /3, /4 
can coincide in two different pairs is 3lFvl(IFxl-1), and that  each element in F~ # 
contributes (at least) one more to the count. Hence. 

(3.1o) INN 2E~4~'N = E S  4 _> 31F~TI2-- 31F~'l + I r ~  I . � 9  . 

Obviously, IFNI-+o~ ifSN d>N(0, 1). Hence, (3.9) and (3.10)imply (1.13). [] 

We end this section with some counterexamples where the set FN is close to a 
produc~ set and asymptotic normality does not hold. 
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Ezample 3.2. Take FN=A~T with d_>2. It is easily seen that  (1.13) does not 

hold, so asymptot ic  normality fails by Theorem 1.8. Actually, it is easy to see that  
in this case, SN converges to a Hermite polynomial of degree d in a standard normal 

variable [20]; see also [10, Section XI.1] and [2, Theorem X.26]. 
In particular, with d=2.  this example shows that  Theorem 1.6(i) does not 

extend to dim {FN}=2.  

Ezample 3.3. Fix an integer l_>l, and for N > l  let F~\- be the product set 

{ 1 , . . . , l } x { / + l , . . . , N } .  
S t N Clearly, N = ~ i = i  r i  ~ j = / + l  rj and it follows from the central limit theorem 

that  
,~,\. d>y~ ,  

where Y and ~ are independent, ~ N ( 0 ,  1) and Y=1-1/2 ~zi= 1 r~. 
Hence, if 1=1, the limit is normal, but not if 1>2. For example, if 1=2, the 

1 (The limit can be regarded as a mixture of limit variable is 0 with probability ~. 
normal distributions with different variances.) 

In particular, this example shows that  Theorem 1.6(i) does not extend to 

dim { F N } = I .  

Ezample 3.4. Consider a disco~mected fractional Cartesian product. For exam- 
ple, take d=6,  m = 2  and let $1, ... ,$6 be the sets {1,2}, {1,3}, {2,3}, {4,5}, {4,6} 
and {5, 6}. It  is easily seen that  (1.13) does not hold. so asymptot ic  normality fails 

by Theorem 1.8. 
This case is related to the case of disconnected G or H,  respectively, in [8, 

Theorem 1] or [9, Theorem 1]. We expect that.  as in those results, S x  converges to 

a polynomial in normal variables, but we have not checked the details. 

4. Further  r e m a r k s  and o p e n  p r o b l e m s  

Remark 4.1. I t  would be interesting to know more about  [[sNl[q and of 

P ( I S N f > x )  as functions of N. For example, how fast is the transition from the 

maxima in Theorem 1.5 to the limits in Theorem 1.6 as N grows? 

Remark 4.2. We considered for simplicity only ai l . . . id=l in Theorems 1.5 

and 1.6. The upper bounds in (1.7) and (1.8) are given for arbi trary ail...ie, and. 
in particular, ail...id=dCl, but the proof of the lower bounds uses the fact that  all 
coefficients have the same sign. In general, there will be cancellations among the 
terms in (1.6), for any values of r l ,  ..., r x ,  and it seems likely that  the lower bounds 

in Theorem 1.5 do not extend to general ail...id. What  is the correct result? Give 

an extension of Theorem 1.5 to arbi trary clii...i d. 
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Certainly, the central limit theorems 1.6 and 1.7 extend to sums (1.6) with 
suitable conditions on ail ..~d, but we have not worked out the details of such ex- 
tensions. 

See also [7] and [16] for some related bounds. 

Remark 4.3. Note that  if S is given by (1.6) and dF(a)<~c, then 

IlSll~ _ cll{ail...~}llz~o/(o§ 

where the exponent 2ct/(c~+l) is the best possible; see [2, Section XIII.7]. This 
generalizes a result for F = A  d (i.e. sums (1.1), with c~=d) proved by Litttewood [14] 
for d=2  and for general d by [5] and [11]. It would be interesting to obtain lower 

bounds for the probability P(S>_cll{ai~...ie }11~2o/(o+1~). 
Remark 4.4. The proofs above show that the tail estimates in Theorem 1.5 

hold for the upper tails P ( S N > x )  as well. If d is odd, we obtain the same re- 
sults for P(SN <--x)  by symmetry, but  if d is even this fails. It seems likely that 
suPN P(SN <--x)  is smaller than exp(-cx 2/~) for even d. for example for d=2.  How 
small is it? 

We can also replace the Rademaeher system by other orthogonal systems. (See 
e.g. [12, Chapter 6] for a general background.) 

Remark 4.5. If we replace the Rademacher variables ri by Steinhaus functions 
Xi, i.e. independent complex random variables that  are uniformly distributed on 
the unit circle, then Theorem 1.5 still holds. 

Indeed, (1.7) is still valid [2, Corollary XIII.29], and thus (1.8) holds by the 
same proof, so the upper bounds in Theorem 1.5 hold. For the lower bounds, we 
use the same proof as above, now taking gx  = {Re ~(k_> 1. k=  1, ..., N}.  

For tile upper bound in (1.7), we can alternatively introduce a Rademacher 
system {r~} independent of {)~}, replace X~ by X~ r~, which has the same distribution, 
and use the Rademaeher version above conditioning on {Xi}. This standard trick 
works for all independent identically distributed sequences of bounded symmetric 
random variables. 

Are the central limit theorems 1.6 and 1.7 true for the Steinhaus system too. 
now with complex Gaussian limits? (We believe so. but we have not checked the 
details.) 

Remark 4.6. Let us instead consider a Gaussian chaos, obtained by replacing 
r~ by independent Gaussian variables ~i ~N(0 ,  1). 

The hypercontractive inequality (1.2) holds in this case too [17[ (see also [1], 
[10] and [12]) but the combinatorial dimension version (1.7) fails in the Gaussian 
case, as is seen by taking F to be a set with a single element. 
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Hence T h e o r e m  1.5 is not  t rue  in the  Gauss i an  case. W h a t  is t rue?  The re  is 

no p rob lem wi th  the  lower bounds  in T h e o r e m  1.5: the  p roof  in Sect ion 2 works if 

we take  g N = { ~ > l ,  i = I , . . . , N } .  

We believe t h a t  Theo rems  1.6 and 1.7 hold for the  Gauss i an  case too.  bu t  we 

have not  checked the  deta i ls .  

The  e s t ima tes  in [6] and  [13] for d = 2  might  be useful. 

Remark 4.7. Are  the  resul ts  t rue  if we replace  rk by a l acuna ry  sequence 

exp(2vrink~), where  inf nk+l/nk > 1? 
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