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I. I n t r o d u c t i o n .  

1. The quest ion of the  lower bound  or min imum of an algebraic form ~ ( X  1 . . . . .  Xm) 
for  integer  values, not  all zero, of the  variables x I . . . . .  x m is an impor t an t  one and 

has a t t r ac t ed  a great  deal of a t t en t ion  for m a n y  years.  The problem is a difficult  

one, however,  and relat ively few results are known. 

Confining our  a t t en t ion  to  the  case of forms with real coefficients in the  two 

variables x, y, the results for the  b inary  quadra t ic  form are classical. If  

~(x, y) : a x 2 ~ b x y ~ - c y  ~ 

is a b inary  quadrat ic  of discr iminant  D z b2--4ac,  the  result  is t h a t  there  exist  

integers x, y, not  bo th  zero, such t h a t  

(1.1) [~(x, Y)I ~-- k~/IDI, 

1 
where k = ~ when D < 0 ( that  is, when the quadrat ic  has complex roots1), and 

1 
]c = ~ when D > 0 ( that  is, when the quadra t ic  has real roots).  When  D = 0 the  

lower bound  is t r ivial ly found to be zero. These results are best  possible, in the sense 

t ha t  the  inequal i ty  (1.1) is no longer t rue  for all forms of the type  specified if the 

constant  k is replaced by  a smaller number .  

Es t imates  for  the  lower bound  of a b inary  cubic form were given m a n y  years  

ago by  ARNDT ( l )  and HERMITE (2) ,  but  the  best  possible results were obta ined  only 

recent ly ,  by  1VIORDELL (3) .  If  now 

1 By the  " roo t s"  of a b inary  form ~(x, y) we m e a n  the  roots  of ~(x, 1) = 0. 
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q~(x, y) = ax3 + b x 2 y + c x y 2  + d y  3 

is a binary cubic with de terminant ,  or negat ive discriminant ,  

D = 27a2d ~ -  18abcd--b2ce+4ac3-4-4db a , 
the  result  is t ha t  

(1.2) I~( z, Y)I ~ t~lDI t 

for integers x, y # 0, 0, where k = 23- t  if D > 0 and k --~ 49 -'~ if D < 0. These 

cases correspond to cubics with just  one and three real roots  respectively.  Again 

the lower bound is zero if D = 0, when the  cubic has a repea ted  root.  

The purpose of this invest igat ion is to provide est imates  for  the lower bounds 

of b inary quart ic  forms. Es t imates  of this sort  have been given by  HEnMITE (4) 

and Jt~LIA (5), bu t  their  results are in general very  crude. A few best possible results 

are known, these being due to  MORDELL (6, 7), DERRY (8) and  MAHLER (9). These 

results will be ment ioned  later  in the appropr ia te  places. We find here the  best  

possible results in many  cases, including all quart ic  forms with four dist inct  complex 

roots,  and an infini ty of (in fact  "mos t " )  forms with four  dis t inct  real roots. In  all 

cases est imates  are given which are, with one exception,  be t t e r  t han  any previously 

known.  

2. Much light is th rown on these problems by  considering them from a ra the r  

more general point  of view. Ins tead  of seeking direct ly  the lower bound of q(x, y) 

for integers x, y, we might  invest igate  its lower bound for points x, y of a lat t ice L 

of de te rminan t  A defined by  

(2.1) x =  ~ + f l ~ ,  y =  ~ + ~ ,  

where ~, fl, y, ~ are real numbers ,  d --  I~d-f l~l  :~ 0, and ~, V take  all integer  values. 

Considering all possible latt ices,  t h a t  is all values of ~, fi, y, b, with given A, we are 

led to seek a constant  k such t h a t  

(2.2) Iq~( x,  Y)I ~ ( k + s )  Alt'~ 

for  some point  x, y 4= O, 0 of every  lat t ice of de te rminan t  A, where n is the  degree 

of the  form ~(x, y) and s is any  posit ive n u t ,  bet.  

Now for a given l inear t rans format ion  (2.1), we m a y c o n s i d e r  the  form ~(x, y), 

of discr iminant  D~ ~: 0, say, as a form ~(~, ~]) in the variables $, ~, with discr iminant  

D ~- A~(~-I)D~. Then  the result  (2.2) m ay  be expressed in the  form:  There  exist  

integers ~, ~, not  bo th  zero, such tha t  
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(2.3) I~~ ~)l ~< (k+e)  \ D ~ /  ' 

where ~o(~, V) is any  form of diser iminant  D obtainable  f rom ~(x, y) by  a real l inear 

t ransformat ion.  Under  these circumstances we shaI1 say, for brevi ty ,  t h a t  ~v(~, r]) 

and 7(x, y) are transformable into each other,  and we shall refer to ~v(x, y) as a standard 

form for the  class of forms ~(~, ri). 1 Clearly a s tandard  form is not  unique;  we m ay  

select any  convenient  member  of the  class of forms t ransformable  into each other.  

We remark  here t ha t  if the form y:(~, V) possesses ano ther  invar iant ,  say I of 

index l, so tha t  I = zlzIe, we may,  if I~ 4= 0, replace the  r ight  hand  side of (2.3) by  
n 

(k+e)(I / I~)2t .  In  the  following we shall content  ourselves with s ta t ing the results 

in one or o ther  form. 

In  the  case of b inary  quadrat ics  we m ay  take  xy or x2--y 2 as s tandard  form 

when D > 0, and x2@y 2 when D < 0. For  b inary  cubies we might  select xa~-y a 

when D > 0, and xy(x4-y) when D < 0. The facts are necessarily more complex 

for a b inary quart ic ,  since the possibilities regarding real i ty and equal i ty  of roots  

are then  more numerous.  Fu r the r  we will f ind it necessary in some cases to use a 

s tandard  form containing a paramete r .  

Our problem is thus  reduced to one in the geomet ry  of numbers ,  namely  to f ind 

a constant  /c, preferably  best possible, such t h a t  there  exists a point  x, y ~-0,  0 

of every  latt ice L of de te rminan t  A, with 

(2.4) If(x, y)] < (lc+~)J 2 , 

where f (x,  y) is an appropr ia te  s t andard  form. We consider the  region ~ defined by  

If( x , Y)t <-- l ,  

and seek the  lower bound  A* of the  de te rminan ts  of lat t ices admissible with respect  

to c)~, t h a t  is ones with no point  o ther  t h a n  the origin as an inner  point  of ~)~. Then  

the  best possible value of/c, say k*, is 1/zl *z, and if the lower bound  is a t t a ined  by  

some admissible lat t ice with a point  on the bounda ry  of ~1~ we m ay  pu t  s = 0 in (2.4). 

An admissible la t t ice  with A = A* is called a critical lat t ice,  and the corresponding 

form ~0(~, ~) a critical form. If  we cannot  de termine  A*, bu t  can show th a t  every  

lat t ice of de te rminan t  A' (say) has a point  o ther  t han  the  origin in ~)~, it  follows 

t ha t  ]c* _< 1/A '~. 

1 Note tha t  a canonical form, in the usual  algebraic sense, need not  be a s tandard  form; for it may  
not  be obtainable by  a real linear t ransformat ion.  
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3. Consider a b inary  quar t ic  

~( ~, ~]) ~-- a~4-~ 4b~3~-~ 6c~2~2 ~ - 4 d ~ 3  ~-e~4 

with real coefficients a, b, c, d, e. This form has two irreducible invar iants  ~ and ~ ,  

of indices 4 and 6 respectively,  given by  

=- a e - - 4 b d  ~- 3c 2 , 

~ =  a b 

b c 

c d 

The discr iminant  of the  form is 

C 

d 

e 

~_ ace ~- 2 b c d - - a d 2 - - e b 2 - - c  3 . 

= ~ 3 - - 2 7 ~ 2 .  

We must  examine the na tu re  of the roots  of ~v(t, 1) --~ 0, and for this purpose we 

need to in t roduce the fu r the r  expressions 

2 ~ 

I t  appears  difficult  to  give an exact  reference to the results we need. The quest ion 

was dealt  with in full detail  by  ARZ~DT (10), bu t  he does not  employ the invar iants  

and his no ta t ion  differs f rom ours. BURNSIDE and PANTON (11) m a y  also be con- 

sulted. For  the  s tandard  forms, and a general discussion of the algebra, of the quart ic ,  

reference may  be made  to the  works of SALMON (12) or ELLIOTT (13). In  giving 

s tandard  forms we suppose, as we m a y  for  our  purpose,  t h a t  a > 0. 

We summarise  below the results we need. 

@<0. 

9 > 0 .  

9 = 0 .  

Two different  real roots and two complex roots.  S tandard  form 

x ~-~ 6 m x 2 y 2 - -  y 4 .  

(a) ~r~ > 0, ~ > 0. Four  dis t inct  real roots.  

(b) Otherwise. Four  dis t inct  complex roots.  S tandard  form in each ease 

x 4_~ 6mx2y2_~ y4 . 

I f  ~ = 0, yJ has three  equal roots  and so is of one of the  forms a(~--~o~) 4, 

a($--~0~)3($--c0'~]), co =~ ~0'. We need not  distinguish between these cases. 

I f  ~ # 0 se~;eral cases arise. 

(a) ~ - -  0. Then  ~ = a(~- -co~)2 (~ - -~ '~ )  2, o~ :~ r 

(i) ~ >  0. to, w' real. 

(ii)  ~/~ < 0. co, ~0' complex.  
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(b) ~ 4= O. Then ~v = a(~--o~y(~--~o'rl)(~--o/qT), where o~, co', ~o" 

different. 

(i) ~ f  > O. o/,  co" real. 

S t anda rd  form x2(x2--y2). 

(ii) ~ < O. ~o', ~ "  complex. 

S tandard  form x2(x2§ 

267 

are all 

II. Quartics with ~ > 0 (four complex  roots).  

4. We consider first the case of forms with four dist inct  complex roots. We find 

the best possible results for this case; later (in w 22) we discuss the results previously 

known. 

Here we may take the usual canonical form 

(4.1) f(x, y) = x ~ 4- 6mx2y 'z ~ y4 

as the s tandard  form ; the parameter  m is a funct ion of the invar iants  ~ and ~ .1 The 

invar iants  I and J and the discr iminant  D of this s t andard  form are given by 

(4.2) I - - l + 3 m  2, J - - m ( 1 - - m " ) ,  D = ( 1 - - 9 m 2 )  ~. 

The na ture  of the roots being unchanged  by a real linear subst i tut ion,  the roots 

of f(t,  1) = 0 will be complex and distinct�9 Now f(t, l) = 0 gives 

(4.3) t 2 = --  3m +~/(9m 2 - 1 )  , 

and so this quan t i ty  must  be negative and two-valued,  or complex. Hence 9m 2 # 1. 

If  9m 2 <  l, t 2 is complex, while if 9m 2 >  1, t 2 <  0 if, and only if, m >  0. Thus 

~ n >  1 �89 - - ~ ,  m ~ =  

I f  we apply  the subst i tu t ion 

x =  z ( X - - Y ) ,  y = :~(X + Y) , 

where z 4 =  �89 -~, which is a real subst i tu t ion for m > --~,  we obta in  

f ( x ,  y) = X ~ + 6 M X 2 Y 2 +  y 4 ,  

1 - - m  
where M --  Now if m > 1 find - - 3  l 1 �9 ~, we < M < ~, so it is enough to take  

1 ~- 3m 

~ < m < ~ .  

1 For  g iven  ~ and  ~,  m in (4.1) m a y  t ake  in genera l  a n y  one of six va lues ;  b u t  only two of these  
arise f rom real t r an s fo rma t i ons .  
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Al though the  reduct ion  of a quar t ie  to its canonical  fo rm is discussed a t  length  

in the  references (12, 13) cited, and  elsewhere, it seems impossible  to give a reference 

to any  s t r a igh t fo rward  m e t hod  of f inding the  p a r a m e t e r  m. ~ Hence  we give here 

a s imple m e t h o d  of calculat ing the  m we have  dis t inguished above.  

I f  A is the  d e t e r m i n a n t  of the  subs t i tu t ion  t r ans fo rming  f ( x ,  y)  into V($, ~?), 

i t  is known t h a t  A 2 m -  z, say, satisfies 

4 ~ = - J z + ~  = o .  

F u r t h e r  ~ =- .J4( l@3m2),  so A 4 =  ~) - -3z  2. Thus we have  

Z 2 Z 2 X 2 
m 2 - -  

zj 4 - -  ~Z]__3z 2 - -  3(1__x2 ) , 
3 z  2 

where x 2 =  7 -  satisfies 

I f  we write 

4 x 3 - -  3x  4 - = 0 . 

we have  x = cos 0, where  0 ~ ~,1 �89 and  so m 2 = �89 cot 2 0. (This expression 

exhibi ts  the six values of m.) Note ,  however ,  t h a t  we require [m r < �89 and  also 

t h a t  then,  for  a real  t r ans fo rmat ion ,  the  signs of m and ~X m u s t  be the same,  since 

~ A%n(1--m3). The  app rop r i a t e  va lue  of m is thus  given by  

(4.5) m = ~3  cot , 

where ~ is chosen to  sa t is fy  (4.4) and  x < ~ < 2 m  

5. }Ve now define a region ~j~ by  If(x, Y)I ~< 1, and  inves t iga te  i ts  shape.  Since 

the  roots  of f are complex,  we have  f ( x ,  y )  > 0 for real  x, y, and  so ) ~  is bounded  

by  the  curve (C given by  f ( x ,  y) = l. Since 

f ( x ,  y )  = f ( - - x ,  y)  = f ( y ,  x)  , 

we see a t  once t h a t  ~ is s y m m e t r i c a l  abou t  the  lines x ~ 0, y = 0, y z ~ x ,  and  

so also s y m m e t r i c a l  abou t  the  origin O. 

1 A n  exp l i c i t  f o r m u l a  for  m 2 is g i v e n  b y  Fa)~ DE B~UNO (14), b u t  it  is in a n  i n c o n v e n i e n t  f o r m  for  

ou r  a p p l i c a t i o n .  

2 T h i s  d e t e r m i n e s  a rea l  ~0, s ince ~ ~ ~ 3 - - 2 7 ~ 7 2 >  0. 
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I f  (x ,y)  is a point  on c5 and  we write t = y / x ,  ~ e = x 2 + y 2 ,  Q > O ,  w e  have  

x4f(1, t ) -  1 and  
l @ t  2 

~ 2 _ _  ~ 1 " v f (  , t) 

Since f (1 ,  t) ~ 0 for real  t, ~ is eve rywhere  finite. I t  is also a s ingle-valued funct ion 

of t. I t  follows t h a t  ~ is a bounded  s ta r  domain .  A brief calculat ion gives 

d~ 
~ = (1 - -3m) t (1- - t2 ) f -~  . 

Since 1 - - 3 m >  0, clearly t = 0 gives a m i n i n m m  and t = + 1  a m a x i m u m  value 

of ~, and  we deduce 

(5 .1 )  ~ < 0 2 < . 

The curve (~ has no double points,  so its points  of inflection are given by  its 

intersect ions with the  Hess ian  

t h a t  is, wi th  the  lines 

where 2 is any  root  of 

m x  4 @ (1 - -  3m2)x2y 2 ~ - m y  4 = 0 , 

y =  + 2 x ,  y =  •  

I f  m : /  0, this  gives 

(5.2) 

m ) , 4 @ ( 1 - - 3 m e ) X 2 - ~ m  0 . 

2m2,2 = 3 m 2 - - 1 4 - ~ / { ( 1 - - m 2 ) ( 1 - - 9 m 2 ) } ,  

and 2 is real  only if - - 1  < m < 0. I f  m 0, we have  2 = 0, bu t  the  points  of inter-  

section, e. g. (0, 1), are then  points  of undula t ion ,  not  inflections. Thus  the  region 

is convex  if 0 < m < ~, and  non-convex  if - - 1  < m < 0. 

A typ ica l  non-convex  ~j~ is i l lus t ra ted  in Fig. 1 (for m = - -~ ) .  

When  the  region is non-convex,  we shall  call an  arc of (6' lying be tween  two 

consecut ive points  of inflection, and  including an intersect ion with  one of the  axes, 

a " c o n c a v e "  arc, and  the  remain ing  ares " c o n v e x "  ares. 

6. When  the  region ~ is convex,  the  theo ry  of MI~I~OWSKI (15) concerning 

convex regions s y m m e t r i c a l  abou t  the  origin m a y  be applied.  The p rob lem is thus  

reduced to t h a t  of f inding the  para l le logram of m i n i m u m  area  which has one ve r t ex  

a t  O and the  o ther  three  ver t ices  on c6~. This  p rob lem was solved for  m = 0 b y  

MORDELL (7), and  la ter  for 0 < m _< 1 by  DERRY (8). We now show t h a t  the  m e t h o d  
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of Minkowski  m a y  be generMised to app ly  to the  regions under  considerat ion,  even 

when  they  are non-convex .  

We require  first  

L e m m a  1. Let P:(x ,  y) be a point on ct~ with x > O, 0 < t < 1, where t = y/x,  

and let s be the slope of the tangent to ~ at the point P. Then 1/s <_ t, with equality only 

when P is the point (1, 0). 

Fo r  we have  

1 d x  y y(y2~-3rnx2) y y ( l + 3 m) ( x 2 - ~ y  2) 
- - - t - -  - -  - -  < 0 ,  
s dy x x(x2@3my 2) x x(x2-~3my ~) 

since x2-~-3my 2 >_ ( l~ -3m)y  2 _> 0. Equa l i t y  occurs only if y = 0, and  then  x = 1. 

We now proceed to p rove  the  f u n d a m e n t a l  

L e m m a  2. A* is the lower bound of the determinants of admissible lattices with 

six points on ~ .  

I t  suffices to p rove  t h a t  any  admissible  la t t ice  m a y  be deformed  into ano the r  

wi th  six points  on ~,, and  wi th  an equal  or smal ler  de te rminan t .  Since the  region 

is bounded,  admissible  lat t ices  cer ta inly  exist.  Le t  OABC be a cell of an admissible  

la t t ice  with no point  on ~ ,  and  imagine  the  la t t ice  de fo rmed  so t h a t  A moves  along 

OA towards  0,  whilst  A B  remains  paral lel  to OC, unti l  a poin t  of the  la t t ice  first  

appea r s  on ~(~. Call this  poin t  A';  t hen  by  s y m m e t r y  its image in 0 also lies on ~ .  

E v e r y  point  of OA' is in ~)~, and  so OA' contains no la t t ice  points  o ther  t h a n  0 

and  A'.  Hence  there  is a poin t  B '  such t h a t  (A', B') is a basis of the  deformed lat t ice.  

R e p e a t  the  above  procedure  wi th  the  point  B '  in place of A. I n  this way  we ar r ive  

a t  an admissible la t t ice  of smal ler  d e t e r m i n a n t  wi th  four  points  on c(~. 

We  now show tha t ,  if no o ther  point  of this  la t t ice  is on c(~, we m a y  again  

de fo rm it  to br ing a th i rd  pa i r  of points  on to c6, a t  the  same t ime  reducing its 

d e t e r m i n a n t  still  fur ther .  Le t  P and  Q be two independen t  s points  of the  la t t ice  

on ~ .  Such points  exist,  since only two lat t ice  points  can be eollinear wi th  0.  Com- 

plete the  para l le logram OPRQ; its a rea  S is a mul t ip le  of A, the  d e t e r m i n a n t  of the  

lat t ice.  We will assume,  wi thou t  fu r the r  repet i t ion,  t h a t  tile process to be described 

below is d iscont inued  as soon as a fu r the r  po in t  of the  la t t ice  appears  on ct~. I f  e i ther  

P or Q, say P ,  lies on a convex  are, i t  m a y  be m o v e d  along c(~ in such a way t h a t  its 

1 T h a t  is,  n o t  c o l l i n e a r  w i t h  O. 
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distance f rom OQ, and so also A, decreases, unt i l  i t  lies on a concave arc a t  a point  

where the  t angen t  is parallel  to OQ. Hence  we m ay  suppose t h a t  bo th  P and Q lie 

on concave arcs, and if P and Q are the points (xl,  Yl), (x2, Y2) respectively,  we m ay  

assume wi thout  loss of general i ty  t h a t  t hey  lie in the first  quadrant ,  with yl < x2, 

i . e .  t h a t  0 <_ tl <_ l i t  2 _< 1, where t~ = y l / x i  and t 2 ~ y2/x~. Now if t I < 1/t 2 w e  

may  decrease A by moving P along c(~ unt i l  t I = 1It 2. For,  if sl is the slope of  the  

t angen t  a t  P,  we have s I > 1/t~ > t2 by L e m m a  1, since s~ > 0, and so during this 

process P moves towards  OQ. Thus we m ay  suppose hereaf ter  t h a t  t~ = 1/t2, i. e. 
2 2 x2 = Y~, Y2 ~ x~. Then  S = x l y 2 - - x 2 y  ~ = x ~ - - y  1, and 

d S  / dXl Ylxl ) 
2X 1 | - -  ~ 0 , 

\ d Y l  - -  

by L e m m a  1. Fur the r ,  S ---- 0 when x I z yl ,  and it  follows t h a t  we m ay  reduce A 

steadily to zero by  moving P and Q simultaneously,  keeping t I : l i t  2, i. e. x 2 ~ Yl. 

Now A clearly has a posi t ive lower bound,  since ~ contains the circle x2d-y  2 <_ 1, 

by (5.1), and so the process of deformat ion  must  be t e rmina ted  at  some stage by  

the  appearance  of ano ther  pair  of lat t ice points on cg. This proves the  lemma: 

We remark  here t h a t  the lower bound 3 * cannot  be a t t a ined  by  a lat t ice unless 

it  has six points on ~ .  This follows immedia te ly  f rom the  above proof if it is no ted  

d S  
tha t ,  by  L e m m a  1, ~yy~ < 0 unless Yl z 0. 

Our problem is thus  reduced to tha t  of finding the  lower bound of the  determi-  

nants  of all admissible latt ices with six points on (6'. Since, however,  these six points 

may  in general occupy a var ie ty  of different  positions in the  lattice, we have still to 

solve a number ,  perhaps  a large number ,  of min imum problems. As these problems 

are somewhat  t roublesome,  we f ind it  convenient  to deal with the  quest ion by  this 

direct  me thod  only when the n u m b er  of min imum problems involved  is not  more 

than  two. This will be so if the  dimensions of ~j~ are sufficiently small; the  range 

of values of m tha t  we consider in this way is de te rmined  by  the following lemma. 

L e m m a  3. Let  P ~ u A  d - v B  be a point  o f  a lattice L wi th  a reduced basis 1 

(A ,  B) .  Suppose  the points  A ,  B are not inner  points  o f  the region ,~flc, wi th  m >_ m o ~-- 

--0.259. T h e n  i f  lu] >_ 2 or lvl > 2, P is  not a poin t  of  ~ .  

1 E v e r y  l a t t i ce  has  a t  leas t  one reduced basis (A, B), which  has  the  p r o p e r t y  t h a t  the  angle  0 

be tween  the  vec tors  OA a nd  OB sat isf ies  60 ~ _< 0 _< 120~ see BAC~MAZUN (16). 



272 C.S. Davis. 

Le t  OA = a, OB = b, and let 9o be the  m a x i m u m  value of the radius vec tor  

9 of (:(~7'. Then  

9(~ = < 3 .  

Since 0 ~ 1 by  (5.1), we have a ~ 1, b ~ 1. If  lul > 2, 

OP 2 > u2a~+v2b2--uvab = (vb--�89 2 ~_ ~u 2 > 3 > 9~; 

and the  same result  is clearly t rue  if Ivl ~ 2. 

If  m >_ m0, i t  follows f rom L e m m a  3 t h a t  a necessary and sufficient condit ion 

for a lat t ice L with a reduced basis (A, B) to be admissible is t h a t  the points uA  + v B  

With ]u I < 1, Ivl _< 1, (u, v) :~ (0, 0) should not  be inner points of ~ .  Fur the r ,  if 

L is admissible and has six points on ~ ,  then  luI _< 1, Ivl < 1 for each of these 

points.  Now there  are just  eight points of L with lul < 1, Ivl ~ 1, excluding the  

origin u = v ---- 0. These eight points are the vert ices and the mid-points  of the  

sides of a paral lelogram formed by  four  cells of the  lat t ice which meet  a t  O. Hence  

the remaining two points are e i ther  

(I) opposite  vertices,  or 

(II) mid-points  of opposite  sides 

of this paral lelogram. Correspondingly,  the  six points of L on ~ are of the  form 

P ,  Q, P - Q  and thei r  images in O, or P, P + Q ,  P - Q  and  thei r  images in O, where 

in each case P,  Q is a basis (not necessarily reduced) of the  lat t ice.  We note,  however,  

t ha t  the points P, Q, P - Q  in the first case must  include a reduced basis. We shall 

refer to  admissible lattices whose points on c6~ are of the two forms ment ioned  above  

as lat t ices of t ype  I and type  I I  respectively.  

Thus our problem,  for m > m0, becomes t h a t  of f inding the  lower bound  of the  

de te rminan ts  of latt ices of t ype  I and t y p e  II .  Al though this provides us di rect ly  

with the  answer to our  original problem only when m >_ m 0, we require some of the  

results in any  case. In  consequence,  we will not  suppose in t h e  following t h a t  

m ~ m 0 unti l  this is explici t ly s ta ted.  

7. We now consider a lat t ice L of de te rminan t  A defined by  

(7.1) x = ~+f l~ ] ,  y = y~+&], A = ~xd--fiy, 

and having the points P :  (~, y), Q: (fl, d) and P - Q  = R: (~--f l ,  y- -d)  o n ( 6  ~. Write  

(7.2) f ( x ,  y )  = ~($,  ~t) ~- a ~ ' + 4 b S a v + 6 c ~ e v e + 4 d ~ t a + e v '  �9 
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On making the  subst i tut ion,  we f ind 

( 7 . 3 )  a = o r  4 , 

(7.4) b : o ~ 3 f l + y s ~ +  3 m ~ x ~ , ( a 6 ~ - f l y )  , 

( 7 . 5 )  c = a2fl~+~262+m(o~262+4o~flyO-~f12y2), 

(7.6) d = o~f13~-~,63~t- -amf lb(~xO~-f ly) ,  

(7.7) e = f14+6mf1252+(34. 

We proceed to deduce a re la t ion between A and the  pa rame te r  c, 1 We might ,  

of course, obta in  a relat ion between A and some more obvious paramete r ,  e. g. y/~, 

but  the  procedure  we follow has the  great  advan tage  of yielding simple criteria for  

deciding whether  or not  a given lat t ice point  is a point  of ~ .  

The points (2, ~) - -  (1, 0), (0, 1) and (1, --1)  lie on ~ ,  a n d  so 

(7.8) V(1, O) = V(0, 1) = F(1, --1)  = 1 . 

F r o m  (7.2) and (7.8) we find 

(7.9) 

(7.10) 

F r o m  

(7.11) 

(7.12) 

Using 

(7.13) 

(7.14) 

a - - e = l ,  

4(b+d)  == 6c-~1 . 

the  invar iants  in (7.2) we have 

I A  4 = a e - - 4 b d + 3 c  2 , 

J A  6 = a c e  ~-  2 b c d - - a d 2 - - e b 2 - - c  3 . 

(7.9) and  (7.10), these become 

I A  4 = 1 - - 4 b d + 3 c  ~ , 

J A  6 = 2 b d ( c +  1) + c - - c  3 - 1 .  ( 6 c +  1) 2 . 

E l iminat ing  bd  between the last two equat ions,  we derive 

(7.15) 8c 3-12c2~ - 1 2 c + 7 - - 8 ( c +  1 ) I A 4 - - 1 6 J A  6 = 0 .  

We write d ~ = A here, and  la ter  use the  same no ta t ion  with suffixes. Then  (7.15) 

becomes 

(7.16) q~(A, c) = 0 ,  

where 

(7.17) ~b(A, c) = 8c 3 - 1 2 c ~  - 12c-~ 7--  8(c-~ 1)IA 2 - 1 6 J A  3 . 

1 Our  m e t h o d  is  a d e v e l o p m e n t  of t h a t  u s e d  b y  MORDELL (7) for  t h e  case  m = 0 ( a n d  so J = 0). 

18 - 642138 Acta mathematica. 84 
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We suppose now tha t  m ~ m 0, and find conditions for the lattice L to be of 

type  I. As noted  above, the points P,  Q and P - Q  = R include a reduced basis 

(A, B). Hence a necessary and  sufficient condition is t ha t  the points u A  q - v B  with 

tu] < l, Iv] G 1, (u, v) # (0, 0) should not  be inner points of ~ .  We ident ify these 

points in terms of the basis (P ,  Q). We have 

~ P + ~ Q  = (~+~])Q+~R = ( ~ + r l ) P - - r l R ,  

so if any  two of _ _ _ !$1, 1~71, I$-~vtl are > 2 it follows t h a t  lul > 2 or lvl > 2. 

If  I$1 ~ 3 we have 15+~1 ~ I$]--Iv]l ~ 3--1~1 , so either I~] ~ 2 or [~+~71 ~ 2. 

Hence ]~1 --~ 2, and we may  suppose ~ _~ 0. Taking ~ --~ 0, 1, 2 in turn,  and rejecting 

the values (~, ~) : (0, 0), (0, +1) ,  (1, 0), (1, --1) which correspond to the origin 

and the points on (~, we find tha t  our condit ion is t ha t  the points (~, ~]) ~ (1,1), 

(1, --2) and (2, --1) must  not  be inner points of . ~ .  I t  follows tha t  L is of type  I if 

(7.18) ~p(1, 1) >_ 1, ~fl(1,--2) >_ 1, F (2 , - -1 )  >_ 1.  

Using (7.9) and (7.10), these conditions become 

(7.19) 6c > --1, 3(c--b) < 1, 3(c--d) < 1 . 

We remark tha t  equal i ty  signs in (7.19) correspond to those in (7.18) and so occur 

only if the corresponding latt ice point is on c~. 

8. We turn  our a t ten t ion  now to 

with a basis (a, y), (fl, 6) and with the 

on (~'. Again make the t ransformat ion  

Now the points ($, r/) = (1, 0), (1, 

(8.1) a - -  1, b~-d  

lattices of type  II .  Consider then  a lattice 

points (a, y), ( a + f l ,  y + d )  and  (a- - f l ,  y - - d )  

(7.1) and write f ( x ,  y ) =  F(~, ~7), as before. 

1) and (1, - - l )  lie on cC, and we deduce 

~ 0 ,  e =  - -6c .  

If  the lattice is of type  I I  the point  (fl, 6), i. e: ($, V) = (0, 1), is not  an inner point 

of .~)~, and so F(0, l) ~ 1. This gives the condition 

( 8 . 2 )  6c < - 1 .  

Following the same procedure as t ha t  we adopted  previously,  we find 

(s.3) 

(8.4) 

and thence 

(8.5) 

I A  4 ~ 4b~- -6c+3c  2 , 

j A 6  : b2(4c _ 1 ) _ 6 c 2  c 3, 

~ ( A ,  c) : 1 6 c a - - 3 c 2 - ~ 6 c ~ - ( l - - 4 c ) I A ~ + 4 J A  3 = 0 .  
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9. We are now in a posit ion to solve our  min imum problems. We first t ake  the  

case --  <~  m < ~, ~ and we will assume, unti l  the  con t ra ry  is s ta ted,  t h a t  this re la t ion 

is satisfied. We must  consider latt ices bo th  of t ype  I and  of t ype  I I ;  we commence 

with those of t ype  I. 

F r o m  the  s y m m e t r y  of the  region oj~, certain lattices of the t y p e  inves t iga ted  

in w 7 will obviously have  m a x i m u m  or min imum values of A. In  part icular ,  this 

will be so for the  latt ice,  which plainly exists, with the  points (a, a), (/3, 6) and 

(--6,  --/3) on ~ ,  where ~ = f l+6  > 0. 

If  the de te rminan t  of this latt ice,  say L~, is A1, we have  

Since (a, a) and (/3, 6) lie on ~ ,  

(9.1) 2(1-~-3m)aa= 1, f14~-6m/325e-~6'= 1 .  

Now 2/3 = /3~-6+/3--6  = a - - e ) ,  where o~ = 6--/3. Also 26 = a + w  and A 1 = ao). 

Then,  by  (9.1),  
( a - -  e)) 4 ~- 6m(a i - -  o~i): ~- (a-~ ~o) a=-- 16,  

2(a4 - t - -692o )2 -~ -w4) -~ -6m(a4 - -2oc2o )2 - t -w4  ) : 16,  

2(l ~- 3m)~4 ~-12(1--m)a2~o2 ~- 2(l ~- 3m)a4--16 = O, 

i~ e .  

i . e .  

which gives 

(9.2) 4( l  + 3m)2A~ + 1 2 ( 1 - - m ) A ~ - - 1 5  = O . 

Hence,  remember ing  A~ > 0, we obta in  

(9 .3)  A~ = A~ - -  
2(1-~3m) 2 

{2~/[6(6m2+3m+ 1) ] - -3 ( I - -m)}  . 

NOW L 1 has the  points (fl, 6), ( - - 6 , - - f l )  and  (/3+6, 6+f l ) ,  i . e .  (a, a), on o(~. 

P u t  

(9.4)  

and write 

(9.5) 

By  (7.5), w e  have 

f (x, y) = ~o( ~, ~) = ~' + 4bo~a~ + 6co$2~e + 4do$~3 + V  ' �9 

C o = 2f1262- t -m(f la~-4f1262- / -64  ) 

: ~ , + 6 m ~ 2 6 ~ + 6 , - ( ] - m ) ( / 3 '  2~26~+64) 

= 1--(1--m)A~ , 
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t h a t  is 

(9.6) c o ~- 1 - - ( I - - r e ) A 1 .  

Since ~o(~, ~) = f ( x ,  y) = f ( - - y ,  - -x )  = YJo(~, ~), we h a v e  b o = do, and  so 

(9.7) bo = do = �89 = ~ ( 6 c o §  ---- ~ { 7 - - 6 ( 1 - - m ) A i }  . 

W e  n o w  requi re  some  e s t ima te s  for  t he  n u m b e r s  c o a n d  AI.  

L e m m a  4. I f  - -~  < m < 1 then --�88 ~ ,  ~ C o ~ 12 . 

F r o m  (9.6) we h a v e  ( 1 - - m ) A  1 ---- 1--co,  so, us ing (9.2), 

4(1-~3m)~A~ = 1 5 - - 1 2 ( 1 - - % )  = 3- [ -12%.  

T h u s  we h a v e  to  p r o v e  1 < 2 ( i - ~ 3 m ) A  1 < 3. I f  we p u t  m - -  

say .  T h e n  
2(1 + 3 m ) A  1 

3 - - K  

3 - ~ 3 K  

: ~ / ( K 2 ~ - 1 5 ) - - K  : ~ ( K ) ,  

K d m  4 
A ' ( K ) - -  ~ / ( K ~ 1 5 )  1 < 0 ,  d K =  3 .1+K.~<()  0 ,  

in (9.3), we f ind 

so t h a t  ~ is a s t r i c t ly  increas ing  f u n c t i o n  of m. F ina l ly ,  w h e n  m = - -~ ,  K : 7 a n d  

X(K) = 1; while  w h e n  m = �89 K = 1 a n d  X(K) = 3. T h i s  p roves  the  l emma .  

L e m m a  5. I f  - -~  < m < 1, then A 1 < 1 . 

W i t h  t he  same  n o t a t i o n  as in t he  las t  l emma,  we f ind  

say.  T h e n  

f f ' ( K )  = 

A~ = I ( l  q -K) (1 / (K~-k  l 5 ) - - K  } = # ( K ) ,  

1 
8//(-K2 q - 15) {/ / (g2 q- 1 5 ) - - K }  {1/(K2 ~ - 15)- - (1  q - g ) } ,  

a n d  # ' ( K )  = 0 on ly  w h e n  K = 7. The  f irs t  two  fac to r s  in t he  express ion  f o r / ~ ' ( K )  

are  essent ia l ly  pos i t ive ,  a n d  t he  las t  fac tor ,  w i th  K = 7-~s,  is - - l sq-O(e2) .  H e n c e  

K = 7 is a m a x i m u m .  B u t  K = 7 w h e n  m - -  ~, and/~(7)  = 1 ; t h e  resu l t  follows. 

N o w  f r o m  (9.7) a n d  L e m m a  4, 

co--bo = co--do = c0--~(6co-t-1) - -  �88 ~ < 0 ,  
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and 6% > --1.  Thus the conditions (7~19) are satisfied by  the lat t ice L~, which is 

therefore  of t ype  I. 

10. We now find the  o ther  roots of the  cubic O(A~, c) = 0 given by  pu t t ing  

A = A~ in (7.17). The lat t ice Lx has the  points (~, c~), (fl, 8) and (c~--fl, c~--5), i. e. 

(8, fl), on <~. P u t  

( l O . 1 )  x = ~ ' , + f l ~ ' ,  y = ~ ' , + @ ' ,  

and write 

(10.2) f ( x ,  y) = ~o~(~', rl' ) = ~'4-{-4b1~'3"el'@6c~'2~]'e@4d~'~"a-]-~}'4. 

Now if we pu t  

(10.3) ~ =  $ ' + ~ ' ,  ~7 = - - ~ ' ,  

we find 

x = ~ ' + f l v '  = ( / ~ + 0 ) ~ ' + f l ~ / = / ~ ( ~ ' , { , ~ ' ) , { , ~ '  = f l ~ - @ ,  

and similarly y = ~ ' + @ '  = d~--fl~. Thus (10.1) is equivalent  to (9A) and (10.3), 

and it  follows t h a t  

W~(~', ~') = ~o(L 7) �9 

Subst i tu t ing  (10.3) in (9.5) and comparing with (10.2), we f ind 

(10.4) b~ = 1 - - 3 b o + 3 c o - - d  o = 1+3Co--4bo = 1+3Co--1(6Co+1) = �89 

(10.5) cl = 1 +Co--2b o = ~{1 ,{,2(1-- m ) A i } ,  

(10.6) d~ = 1--b 0 = l { l + 6 ( 1 - - m ) A ~ } .  

I t  follows f rom the  above t h a t  ~b(A~, c) ---- 0 for c = Co, c~. I f  the  th i rd  root  of 

this equa t ion  is % we have,  by  (7.17), 

(10.7) Co+C1+C 2 = ~ , 

giving 

c 2 -~ ~--Co--C 1 = �88 = e l .  

Thus 

(10.8) q ) ( A 1 ,  c)  = 8 ( C - - C o ) ( c - - c l )  2 . 

Fur ther ,  since c o < �89 (10.7) gives cl > 1 > Co. 

We will prove  t ha t  no lat t ice of t ype  I has a de te rminan t  A < A1, and t h a t  

the  value 31 is a t t a ined  only by  L1, and by  its image in the y-axis, say L'I. For  this, 

we first show tha t  we m a y  suppose c > Co. For  suppose c < co. First ,  A =# A1, since 

q~(A1, c) < 0, by  (10.8). Suppose n ex t  t h a t  0 < A < A,. F ro m  (7.13) and (9.7) we 

have  
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I A ~ =  1--4bodo+3C~o: 1@3c~--• 2 o  1(; = ~{(1--Co)2+l}-  

Since c o <  1, 1 _  c >  1 % >  0 and  so 

(b--d) 2 = (b+d)2--4bd = iG(6c+ l)2--(l  + 3c~)+IA2 

2 3 1 2 = I A 2 - - ~ { ( 1 - - c ) 2 @ l }  < I A l - - ~ { ( g - - C o )  @1} = O, 

which is impossible.  

We  m a y  wri te  

~(A, c) = q)(A~, c)+q)(A, c)--q)(A1, c) 

= q~(A~, c) + ~b(A, Co) - -  q)(A1, Co) + 8(c - -  Co)I(A ~ - -A  2) , 

t h a t  is, using (10.8), 

(10.9) (/)(A, c) =- 8(c--c0) { ( C - - C l ) 2 @ I ( A ~ - - A 2 ) } @ q D ( A ,  Co) . 

Now q~(A, Co) > 0 for  0 < A < A r For,  f irst ly,  q~(A1, co) = 0. Then  f rom (7.17) we 

find, for c ---- Co, 

~A - -  - -  16A {3JA+(%+ 1)I} ; 

we show t h a t  this is negat ive .  We no te  I ---- l + 3 m  2 > 1 and  J = re ( l - -m2) .  I f  now 

m > _ O ,  J > _ O ,  so 

3 J A + ( c o + l ) I  >_ Co+1 > 0 ,  

l - - c ~  by  (9.6), so b y  L e m m a  4. Also, if - -~  < m < 0 ,  J < 0 ,  and  A 1 -  
1- -m 

3JA+(co+ 1)I > 3JAl+(co+ 1)I = 3m(1 + m ) ( 1  - -Co)+(1 +%)I 

> 3(--~-)(~)(1--Co)@1@c o = 1(7@17%) > 0 .  

Thus  ~qS/~A < O, and  so qs(A, Co) > r Co) = 0. I t  follows then  f rom (10.9) t h a t  

q ~ ( A , c ) > O  for  c > c o ,  O < A < A 1 .  

This establ ishes t h a t  /Jl is the  m i n i m u m  d e t e r m i n a n t  of a lat t ice of t y p e  I .  

11. We m u s t  now consider lat t ices  of t y p e  I I .  I f  m > 0, the  region ~ is convex  

and  no such lat t ices  can exist ,  for  t h e y  would h a v e  th ree  collinear points  on the  

b o u n d a r y  (C, which is impossible.  Suppose then  - - ~  < m < 0. We have  b 2 >_ 0 and,  

b y  (8.2), c _< - -~ .  Then,  f rom (8.3), i t  follows t h a t  I A  2 > --6c+3c 2 _> l + ~ .  Bu t  

I =  l + 3 m  2 <  1 + ~ ,  so A >  I > A 1 ,  b y  L e m m a  5. T h a t  is, there  are no lat t ices  

of t y p e  I I  wi th  d e t e r m i n a n t  A _< d l. 



The Minimum of a Binary Quartic Form (I). 279 

12. W e  h a v e  p r o v e d  t h a t  A* = A 1 w h e n  --~- < m < g,1 and ,  fu r the r ,  t h a t  t he  

d e t e r m i n a n t  d 1 is a t t a i n e d  on ly  for  la t t ices  of t y p e  I g iv ing  c = c o, Cl. W e  n o w  

consider  w h e t h e r  the re  are  a n y  o t h e r  cr i t ical  la t t ices  t h a n  L1. W e  requi re  the  fol- 

lowing l emma .  

L e m m a  6. For  _ 1  < m < 1, the only  t rans format ions  of  f ( x ,  y) into itself, 

that is au tomorph i sms  of  ~/( , are the reflections in  the axes of  s y m m e t r y  and in  the origin, 

namely ,  x ~ •  y ~ + ~  and x - -  ~ ] ,  y ~ +_~, where all the s igns are independent  

of  each other. 

Consider  a t r a n s f o r m a t i o n  of the  t y p e  (7.1) g iv ing  

f ( x ,  y) = ~v($, V) = $4-~6m$2~72-~-r/4. 

Since the  i n v a r i a n t s  are  u n c h a n g e d ,  we h a v e  

(12.1) 

N o w  f r o m  (7.5) we find,  us ing (12.1), 

t h a t  is, 

(12.2) 

H e n c e  

o~2 f12-~ y2~2 + 6m~ fly6 - -  O . 

(~f l - -  y6)z + 2(1-}- 3m)~xfly6 = O, 

a nd  so ~xfly6 < 0, since 1 + 3 m  > 0. S imi la r ly  

a nd  so ~fly5 > O, since 1 - - 3 m  > 0. I t  follows t h a t  af17(~ ~ O, a n d  so a t  least  one 

of ~, fl, y, 6 m u s t  be zero.  

Suppose ,  e. g., a = 0. Then ,  f r o m  (12.2), y($ z 0, while,  f r o m  (12.1), fly = •  

a n d  so ~ ~: 0. H e n c e  (~ ~ 0 and ,  b y  (7.3) a n d  (7.7), ~4 = fit z 1. There fo re  a --~ 0, 

fl ~ + 1 ,  y = ~ 1 , 6  = 0, where  t he  signs are  i ndependen t ,  g iv ing  x ~-- ~ ] , y  z + $ .  

T he  o t h e r  resul ts  arise s imi lar ly  on  a s s u m i n g  fl ~-- 0, a n d  this  comple tes  the  p roof  

of t he  l emma .  

W e  n o w  f ind  all t h e  cr i t ical  la t t ices .  G iven  d a n d  c, t he  va lues  of b a n d  d are  

de t e rmined ,  excep t  fo r  order ,  b y  (7.10) a n d  (7.13). Then ,  h a v i n g  f o u n d  one la t t ice  

which  gives  these  va lues  of b, c, d, all such  la t t ices  will he g iven  b y  the  t r a n s f o r m s  

of this  one  b y  t he  a u t o m o r p h i s m s  of .+1~. I n  ou r  p r o b l e m  we h a v e  d ~ A 1, c = c 0, c 1, 
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and these conditions are satisfied by the lattice L 1. From the symmetry of L~, the 

only other lattice produced by the automorphisms of ~ is its reflection in the  

y-axis, L'  1. 

We have thus proved the following result. 

T h e o r e m  1. I f  --~ < m < 3,1 there is a point x, y, other than the origin, of 

every lattice L of determinant A, such that 

As 
Ix4 ~-6mx~y2~-Y41 ~ A--I ' 

where A 1 is given by (9.3). This is the best possible result, the equality sign being required 

if, and only if, L is proportional 1 to one of the lattices LI or L'  1. 

We may take as a critical form, corresponding to the lattice L~ or L'  1, the form 

YJ~($, 9) defined by (10.2) with (10.4), (10.5) and (10.6); all other critical forms, 

e.g.  ~0(~, ~), are equivalent to this. Writing 

A = 4d~ : �89 

(10.5) gives 6c I ~ A~-l ,  and so 

Substituting from (9.3), we find 

1 
(12.3) A -- ( l + 3 m ) ~ { a ( 1 - - m ) d i 6 ( 6 m ~ + 3 m + 1 ) ] - - 4 ( 1 - a m ) } .  

Again, using (9.6) and Lemma 4, we find 2 < A < 4, and, further, these bounds 

are best possible in the sense that  any such value of A corresponds to an m in the 

range considered. 

Recalling our introductory remarks, and effecting a trifling reduction, Theorem 1 

leads immediately to 

T h e o r e m  2. Let ~f(~, 9) be a binary quartic form with real coefficients and ~ > 0, 

and either . ~  ~_ 0 or ~ ~ O. Further, let 3 5 ~  3 > 393~ 2 i f  ~ < O, so that m given by 

(4.5) satisfies --~ < m < �89 Then there exist integers ~, 9, not both zero, such that 

1 B y  a l a t t i c e  " p r o p o r t i o n a l "  to  t h e  l a t t i c e  x = a $ - b f l v l ,  y = ? ~ + 6 ~ 7 ,  w e  m e a n  one  d e f i n e d  b y  

x" = l x ,  y '  ~ t y ,  w h e r e  1 is a r ea l  n o n - z e r o  c o n s t a n t .  
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1~(~, U)[ ~ 4~/{6(6m2@3m@l)}+6(1--m) ~ �9 
15(1 9m2) 1/3 

This is the best possible result, the equality sign being required if, and only if, ~(~, ~) is 

equivalent to a multiple of the form 

with 2 < A < 4. The value of A as a function of m is given by (12.3). 

13. We now investigate the case m ~ -~-. When m < --{- the lattice L~ is no 

longer admissible, for the proof of L e m m a  4 would then  give c o < --~, in contradiction 

to the conditions (7.19). 

We first put  the last two inequalities in (7.19) in a different shape, not  involving 

b and d explicitly. We note t ha t  both  these inequalities cannot  be false, since there 

is only one lattice point (and its image) in question. Then if we pu t  

O = 4{1--3(c--b)}{1--3(c--d)} ,  

a necessary and sufficient condition for both  these inequalities to hold is 

0 ~ 0 .  

Using (7.10) and (7.13), we find 

0 = 4{(1--3c)2@3(b@d)(1--3c)@9bd} 

= 4(1--3c)24-3(1--3c)(6c+1)+9(1@3c2--IA 2) 

= 9c2- -15c+16--9IA 2 . 

Further ,  we note t ha t  O = 0 only if 3(c--b) I or 3 ( e - - d ) =  1, and  then  the 

lattice L has eight points on (6'. Changing our notat ion,  if need be, we m a y  suppose 

these to be the points (~, y), (fl, ~), (~+fl ,  y@5), (~--fl, y--~) and their  images in O. 

If  m > m0, we m a y  now put  our problem, for lattices of type  I, in the following 

form. We seek the lower bound, say A0*, of A corresponding to real lattices, with the 

conditions 

(13.1) A > 0, c >_ --3, ~b(A, e) = 0, O > 0 .  

We shall simply omit  the provision concerning reali ty,  and  later verify t ha t  the 

solution thus  obta ined does in fact  satisfy it. 

Now the expression qS(A, c)--qS(A, --~) vanishes when c = _ 1 ,  and so has a 

factor  6c@1. By equat ing coefficients, we f ind tha t  the other factor  is 770. Thus 
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we have  
27qi(A, c)--27~b(A, --~-) ~- 4 (6e+  1)O.  

I t  follows then  f rom (13.1) t h a t  A* is the lower bound  of A > 0 wi th  

+(A, --~) _< o. 

On pu t t i ng  c -  - - {  in (7.17), we f ind 

--27~b(A, - -~)  - -  4 3 2 J A a +  180IA z -  125.  

5 
S u b s t i t u t i n g  A - -  - - ,  the  equa t ion  ~b(A,--~)  = 0 becomes 

6z 

z a - I z - 2 J =  O,  

the  roots  of which are z := m ~ l ,  - -2m.  I t  follows t h a t  

where 
qO(A, - -  ~) = C ( A - - A 2 ) ( A - - A ; ) ( A - - , 4 ; ' )  , 

C ~ - - 1 6 J  > 0 ,  

Fu r the r ,  

5 5 5 r I t  

A2 - -  > 0 ,  A ~ - -  < 0 ,  A~ - -  > 0 .  
6(1 + m )  6 ( l - - m )  12m 

A~' 5(1+3m) 
I . , - -A. ,  - > 0 .  

lO.m( 1 +m)  

I t  t t 

Since A~ > A 2 > 0 > ./12, we have  r  - -~)  < 0 if, and  only if, A < A, < 0 or  
I !  

A~ > A > A2 > 0. Thus  A* = Az,  and  this  va lue  is a t t a ined  if, and  only if, c =- --~- 

or O (A> c) - -  0; in each of these  cases the  corresponding la t t ices  have  eight  po in ts  

on C~;. We r e m a r k  here, for  la ter  reference,  t h a t  the  re la t ion  m > m0 is not  used in 

der iv ing  the  resul t  s t a t ed  in the  last  sentence,  which is consequent ly  t rue  w i thou t  

this restr ict ion.  

14. We  proceed to show t h a t  these values  of A and  c correspond to real la t t ices  

by  ac tua l ly  de te rmin ing  the  lat t ices.  

L e m m a  7. I f  the po in t s  (~, y) ,  (fl, 5), (~+f i ,  y + 5 )  a n d  (o~--fl, 7,--6)  lie on  c~, 

then fl = + ~, d = -T- ~. 

Make the  subs t i tu t ion  (7.1) and  note  t h a t  here c = - -~ ,  b y  the  r e m a r k  a f t e r  

(7.19). Hence  b = - - d  b y  (7.10), so we have  

(14.1) f ( x ,  y)  = ~(~, ~) = ~+4b~a, j - -~2~2--4b~?a+~]  4 . 



The Minimum of a Binary Quartic Form (I). 283 

Bu t  ~0(~, ~) = F ( - -~ ,  ~), and  so 

X ! f ( x ,  y) = f ( ~ 4 - f l V ,  y$ +6V)  = f ( f l ~ - - ~ V ,  6~--~}~) = f (  , y ' )  , 

say. The  t r a n s f o r m a t i o n  f rom x, y to x ' ,  y '  is an  a u t o m o r p h i s m  of ~1~, and  so, by  

L e m m a  6, mus t  be included in x '  = ~ x ,  y ' =  + y  and  x ' =  •  y ' =  + x ,  with  

any  choice of signs. We  easily f ind t h a t  x ' =  + x ,  y ' =  + y ;  x ' =  + x ,  y ' =  T -y  

and  x ' =  + y ,  y ' =  + x  each imp ly  a =  f l = y = 6 =  0, which is impossible.  

Final ly ,  the  a u t o m o r p h i s m s  x '  = + y ,  y '  = ~ x  give fl = + ~ ,  d = ~c~ .  

L e m m a  8. I f  - -  ~ < m < --~-, there exis t  un ique  numbers  p and q, wi th  p ~ q > O, 

such that 

f ( p ,  q) = f ( p - - q ,  p + q )  = 1 .  

Fur ther ,  q = 0 only  i f  m = - - ~ .  

We have  

(14.2) 

and  so 

giving 

(14.3) 

p 4 + 6 m p 2 q 2 + q 4 =  1 ,  

( p - - q ) 4 + 6 m ( p 2 - - q 2 ) ~ + ( p + q ) 4 =  1 ,  

0 = ( p - - q ) 4 + 6 m ( p 2 - - q 2 ) 2 + ( p + q ) 4 - -  1 

= ( 2 + 6 m ) ( p 4 + 6 m p 2 q 2 + q 4 )  - 12p2q2(3m2+2m- -  1)--  1 , 

6 m +  1 
p2q2 = = K ,  

12(3m--  1) (1-~m) 

say.  I f  m-------6,1 K = 0  and  p---- 1, q = 0 .  Exc lud ing  this  case, we have  K > 0  

and,  subs t i tu t ing  for  p2 or q2 f rom (14.3) in (14.2), we find t h a t  p4 and  q4 are roots  of 

~ z @ ( 6 m K - - 1 ) ~ @ K 2  = O . 

This gives 

= 12 {( 1 - -  6 m K )  + ~/[( 1 - -  6mK) 2 - -  4K 2] } = 3(2 - -  3m) + y'[5(7 - -  3m) ( 1 - -  3m)] 
12 (1 - - 3 m ) ( l @ m )  

The values  of ~ are real  and  dist inct ,  since ( 7 - - 3 m ) ( 1 - - 3 m )  > O. Also, 2 - - 3 m  > 0 

and  ( 1 - - 3 m ) ( l + m )  > 0, so to  show t h a t  ~ > 0 it  suffices to p rove  t h a t  

9 (2- -3m)  2 > 5 ( 7 - - 3 m ) ( 1 - - 3 m )  , 

i .e.  (6re@l) 2> 0,  

which is t rue.  This p roves  the  l emma,  
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We thus have a lattice, say L2, given by 

(14.4) x = p~- -q~ ,  y = q~-?p~? , 

which, by Lemma 8, has eight points on ((~j, namely (p, q), ( - -q ,  p), (p - -q ,  p-~q) ,  

(p~-q,  p - - q )  and their images in O. The determinant of this lattice is d = p2~_q2 

and, from (14.2) and (14.3), we find 

5 
(14.5) ~j2 = (p2_~q2)2 _ _  p4~_6mp2(t2_~q4~_2(l_3m)p2q2 _ - -  A z .  

6(1 ~-m) 

The lattice L2, then, satisfies the conditions we found above for a minimum, and all 

such lattices will be given by the transforms of L2 by the automorphisms of ~ .  As 

before, we find in this way only two distinct lattices, L~ and its image in the y-axis, 

say L~. 

15. I t  remains to show that  there are no lattices of type II, other than L 2 and 
! 

L~, with A < A 2. We have, from (8.5), 

T ( A ,  c)--~[I(A, - -~)  ~- 6c - -  c ~-6~-10 s 

= 1(6c+ 1)(Sc~--~c+~--2IA ~) 
- 1 ( 6 c + 1 ) Z ,  

say, and so 
1 1 (15.1) T ( A ,  c) = T ( A ,  --~)~-~(6c~-l)Z 

Now I and Az are both strictly decreasing functions of m for m < 0, and so, since 
m >  1 

4 5 2 2IA~ < 2(~)(z) = ~0. 

Recalling that,  by (8.2), 6c~-1 < 0 for lattices of type II,  we have, if 0 < A < A2, 

Again, we find 

Z -  _v~r2--3617 ( 6c ~- l )-~ ~4{ - 2 IA2  

- -  36  ~ 36 - - ~  - -  -36 - -  2 ~>  0 �9 

l08~(A, --�88 ~ 432JA3~ - 180IA 2-125 

= 4 3 2 J ( A - - A 2 ) ( A - - A ' ~ ) ( A - - A ' ~ ' )  

< 0 ,  

for 0 < A < A~. Then, from (15.l), we have ~(A, c) < 0 if 6c~-1 < 0, 0 < A < A2, 

with equality only if A =~ A2, c ~ --}, which is the required result. 
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16. I t  follows now t h a t  A* = /I  2 when m 0 _< m _~ --s , '  and  so we have  the  

following result ,  which we pu t  in the  fo rm of a l emma,  as we will la ter  p rove  it 

t rue  for the  range  --�89 < m _< - -~  and  give the  comple te  result  as a theorem.  

L e m m a  9. I f  m o <_ m < --~,  there is a point x, y, other than the origin, of every 

lattice L of determinant ~J, such that 

]x4 ~-6mx2y2 ~-y41 < 56(l~-m)A] 2. 

This  is the best possible result, the equality sign being required if, and only if, L is 
! 

proportional to one of the lattices L2 or L,2. 

The critical form,  say ~v~(~, ~/), corresponding to the  t r an s fo rma t ion  (14.4) will 

be given b y  (14.1) wi th  the  app rop r i a t e  va lue  of b. Subs t i tu t ing  in (7.4), we f ind 

b : - - (1 - -3m)pq(p2- -q  2) . 

Hence  

(16.1) 

where 

(16.2) h = --4b = 4(1--3m)pq(p2--q  2) ~_ O. 

We de te rmine  h by  pu t t i ng  h = - -4b  --~ 4d, A 2 = A 2 and  c = --3- in (7.13), giving 

(16.3) 3 h  2 : 12IA~-- 13.  

Thence  
25(1 ~-3m2)--39(1-}-m) 2 2 (6m-}- 1) ( 3m- -  7) 

3h 2 = _-- 
3(1~-m) 2 3 ( l ~ - m )  2 

and  so 
1 

(16.4) h - -  
3(1 ~-m) 

V{2(6m ~- l) (3m- -  7)}. 

We  m a y  now in te rp re t  the  resul t  g iven by  L e m m a  9 in the  l ight  of our  in t ro-  

duc to ry  remarks ,  and  we again  s t a te  the  conclusion as a l emma.  

L e m m a  10. Let ~(~, ~) be any binary quartic form of diseriminant ~]), which is 

transformable into the standard form x4~-6mx2y2~-y 4 with m 0 < m <_ --~. Then there 

exist integers ~, ~], not both zero, such that 

_ _  2 1 1 I~(8, ~)l < w  ) - ~  . 

This  is the best possible result, the equality sign being required if, and only if, ~0(~, V) 
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is  equivalent to a mul t ip le  of  the f o r m  

Yq(~, ~l) ~- ~4--h~3~--$~'rt2 ~-h$rl~ ~-~ 4 , 

where h is given by (16.4). 

17. To comple te  the  discussion of forms  wi th  four  dis t inct  complex  roots ,  we 

m u s t  now consider the  la t t ice-poin t  p rob lem for  --�89 < m < m 0. i n  th is  case, the  

me thods  used b y  )/[ORDELL (6) to deal  wi th  a cer ta in  t y p e  of non-convex  region 

m a y  be employed  to ob ta in  the  best  possible result .  His  general  theorems  canno t  

be  appl ied  di rect ly  to this p roblem,  since his b o u n d a r y  curves have  b y  hypothes i s  

no real  finite points  of inflection, bu t  we shall  f ind t h a t  the  same ideas are successful 

here. We shall  follow closely the  detai ls  of Mordell 's  p resen ta t ion .  

The  resul t  we find is t h a t  L e m m a s  9 and  10 still hold for  the  comple te  range  

< m ~ - -~ ,  and  we p rove  this by  showing tha t ,  for  --�89 < m < m0, every  la t t ice  

of d e t e r m i n a n t  A s has a point ,  o ther  t h a n  the  origin, in the  region . ~ ,  and,  fur ther ,  
! 

t h a t  this is an  inner  poin t  excep t  when  the  la t t ice  is L 2 or L 2. 

We first  p rove  some resul ts  required  later .  We  suppose,  unless the  con t ra ry  is 

s t a ted ,  t h a t  --�89 < m < m 0 ~ --0-259.  

L e m m a  11. 1 < p <  ~ .  

W r i t e r ~ - - q / p a n d s o p 4 f ( 1 ,  r) ~ 1. B y L e m m a  8, p > q >  0, i . e .  0 < r <  1, so 

f(1,  r) = 1-~6mr2-~r  4 - -  1-~-r2(r2+6m) < 1-~r~(l~-6m) < 1 , 

and  hence p > 1. Also, p 4 <  (p~+q~)2 _ 
5 5 81 3 

< < - -  and  so p < - .  
6(1-~m) 4 16 '  2 

L e m m a  12. 0 < r <  41. 

As above,  r > 0. Also r 2 ~ K / p  4 < K,  where K = p~q2 is g iven b y  (14.3). Bu t  

1 4 ( 6 m + l ) - - 3 ( 3 m - - 1 ) ( 1 4 - m )  (7 - -3m)  (1-~3m) 

K - -  16 - -  4 8 ( 3 m - - 1 ) ( 1 - ~ m )  = 4 8 ( 3 m - - 1 ) ( l ~ - m )  < 0 ,  

and  the  result  follows. 

L e m m a  13. I f  --�89 < m ~ - -~ ,  h in  (16.4) is  a strictly decreasing f unc t ion  o f  m.  

Fur ther ,  0 ~ h < 2, and  these are the best possible bounds. 
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We have  h > 0 b y  (16.2), the  va lue  0 being a t t a ined  when q = 0, i. e. when 

m = - -~ .  Bo th  I and  A2 decrease s t r ic t ly  if m < 0, and  (16.3) shows t h a t  h does 

the  same.  When  m - -  ~, (16.4) gives h = 2 and  so h < 2 for m > --�89 

L e m m a  14. I f  - - � 8 9  then h >  l + r + r  2. 

After  L e m m a s  12 and  13, i t  is sufficient to p rove  h(mo) > 1 1 1 - ~  +1~ = 1.3125. 

Pu t t i ng  m = m 0 ~ - - 0 . 2 5 9  in (16.4), we find h(mo)~-1-320. . .  > 1.3125; this 

p roves  the  lemnm. 

18. We m u s t  now examine  our  geomet r ica l  conf igurat ion more  closely. The  

following discussion will be a ided by  reference to Fig. 1. 

The  la t t ice  L 2 has the  points  (p, q), (p--q, p+q), (--q, p), ( --p--q,  p--q) and  

the i r  images  in 0 lying on ~ .  These  points  define a square  .cS 1, of which the  ver t ices  

and  the  mid-poin t s  of the  sides all lie on ~ .  Fur the r ,  the  square  ~ 2  which is the  

image  of .of 1 in the  y-axis  has the  same  proper t ies .  The  area  of each of these  squares  

is 4(p2~-q ~) = 4A 2. 

We denote  by  ~ 1  the  closed region bounded  by  the  line joining the  points  

Fig. 1. The region Ix4--~x2y2~-y41 <_ 1. 
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(p, q) and (p+q,  - - p + q )  and by the arc of ~t,' between these points1; and by ,~2 

the image of this region in the x-axis. Similarly, define )fl~3 and ,~]{4 in terms of the 

points (--q, p) and (p--q,  p+q) ,  and let :.~)~12 and  ,~)~a4 be the regions common to 

~2~1, ~2~2 and ~ ,  ~]~4 respectively. Finally,  let ~ 5  be the closed region bounded by 

the straight  line and the arc of (~ each joining the points (p, q) and (p, --q) ; and let 

~ 6  be the corresponding region for the points (--q, p) and (q, p). 

I t  is convenient for some purposes to t ransform the variables x, y by the linear 

subst i tu t ion (14.4). Then the equat ion of ~(,: is ~.~(~, ~l) = l, while the square ~]'1 

becomes the square ]$1 ~ l, ]~]l--~ 1. The line joining the points (--q, p) and 

(p--q,  p+q) ,  the equat ion of which is p y - - q x  = ~2, t ransforms into ,~] = 1. This line 

meets (~, in points with ~ = 0, +1 ,  and so in a four th  point  with ~ = h, by  (16.1). 

Then plainly the segments of this line with --1 < ~ < 0 and with 1 < ~ < h con- 

sist of inner points of ~ ,  since, by Lemmas  12 and 14, h > l + r + r  ~ > l ;  while the 

segment 0 < ~ < 1 lies outside . ~ .  

We will be concerned later with the parallelogram 5P defined by the lines 

p y - - q x  = ~ 2 ,  x = +p.  This parallelogram lies between the same parallels as the 

square .~J~ and has an equal base, so its area is also 4A.~. We show now tha t  its vertices 

are inner points of ~)~, and for this it is sufficient by s y mme t r y  to consider the 

vertices lying on the  line py - -qx  = A 2, i . e .  ~ = 1. The lines x = + p  t ransform 

into p~--q~] = ~ p ,  t ha t  is $ = •  and so the vertices in question are given 

by ~ =  ~ l + r ,  ~1-- 1. Since 1 < l + r  < l + r + r  '~ < h and --1 < - - l + r  < - - 1 + ~  < 0, 

these points lie on the segments of *l = 1 shown above to consist of inner points of 

~ i  which is the desired result. 

We note here t ha t  the region ~ contains the square Ix[ ~ 1, [Yl ~-- 1. For  if 

I x] ~ 1, IY] --~ 1 and, e .g . ,  x ~ ~ y~, we have 

0 ~ f ( x ,  y) = x4~-6mx2y2-~y ~ -~ x4-~y2(y2-~6mx 2) ~_ x 4 ~ 1 , 

since 6m < --1;  and the same result clearly holds if x 2 < y~. 

19. We require now some classical results in the geometry of numbers,  and we 

state  them here, wi thout  proof, as lemmas.  

L e m m a  15. A n y  parallelogram with centre at 0 and area 4A contains a "point 

other than 0 of every lattice of determinant A. 

1 Since ~ is a closed curve, this description is really ambiguous ;  we shall a lways mean  the 
shor ter  arc. 
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L e m m a  16. I f  P and Q are any points of a lattice of determinant z], then the area 

of the triangle OPQ is �89 where n is an integer. 

L e m m a  17. I f  a triangle OAB of area �89 contains two independent points P 

and Q of a lattice of determinant 4,  then P = A and Q = B, or vice versa. 

20. We suppose now that  L is any lattice of determinant 43 which has no point 

other than 0 as an inner point of o)~. Our result will follow if we show that  L is either 
f 

L 2 or L 2. 

L e m m a  18. There is a point of L in one of the regions .~3, .~fL5 ; and also in one 

of the regions .c)~4, ~flts. 

The parallelogram ~ defined above is of area 4zl 2 and so, by Lemma 15, con- 

tains a point of L other than O. But  every point of ~P is an inner point of ~ ,  except 

for those points in the regions ~ 3  and G~]~ 5 and their images in O. This proves the 

first part  of the lemma, and the second part  follows similarly on considering the 

image of ~ in the y-axis. 

L e m m a  19. There is a point of L in one of the regions ~12' ~t34" 
Suppose this is false. Then, by Lemma 18, there is a point of L in each of the 

regions ~ a ,  ~ 4 ,  and by symmetry also in each of the regions ~ 1 ,  ~)~2. Let us denote 

the points of L in ~ 1 ,  ~ 2 ,  ,c))ta, ~ 4  by A, B, C, D, in that  order. Then all these 

points are distinct, for if, for example, A --~ B, then A is in ~12, contrary to hypo- 

thesis. Also, plainly no two of the points are collinear with O. Thus we have five 

points O, A, B, C, D of L, and these will be defined in that  lattice by pairs of integers. 

But  a set of integer pairs can have only four different residue pairs modulo 2, and so 

two of our five points must have the same residue pair. I t  follows that  the mid-point 

of the join of these two is a point of L. We proceed to show that  this is impossible. 

By symmetry,  it is enough to consider the mid-points of the lines OA, AB,  AC, AD,  

BC; denote these points by S, T, U, V, W respectively. 

The points A and B lie in the triangle with vertices O, (p+q, --p~-q) and 

(p+q, p--q),  of area p~_q2 < p2+q2 ~ A2. Hence, by Lemma 16, the area of the 

triangle OAB ~ �89 and it follows that  S and T are not points of L. 

Again, by Lemma 17, U cannot lie in the triangle with vertices at O, 

(p+q, --p~-q) and (p, q) ; for the area of this triangle is �89 2 and it contains the lattice 

point A, so U would lie at (p, q) in ~12, contrary to hypothesis. Similarly, U cannot 

19 -- 642138 Acta mathematica. 84 
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lie in the triangle with vertices O, (p--q, p~-q) and (--q, p), which contains C. Thus 

U must lie in the triangle with vertices O, (p, q) and (p--q, p~q) ,  and not at a vertex. 

Since it is then an inner point of ~ it cannot be a point of L. 

In a similar way we see that  V must be a point, other than a vertex, Of the 

triangle with vertices O, (p, q) and (q, p) ; and W a poin t ,no t  a vertex, of the triangle 

with vertices O, (p~-q, p--q) and (p--q, p-~q). I t  follows tha t  V and W are not 

points of L. 

This completes the proof of the lemma. 

21. We may suppose, to fix our ideas, that  the lattice L has a point P': (x', y') 

in the region ~12. Our object now is to establish tha t  L then has a point other 

than 0 in the interior of ~ ,  a contradiction, unless P '  is at (p, q) or (p, --q) and L 
! 

is L 2 or L 2. 

L e m m a  20. There exists a line Q'R ~ which is equal and parallel to OP' and whose 

end-points Q', R' lie on the arc of ~ joining the points ( - - p~q ,  p~-q) and (p--q, p~-q). 
! ! 

By symmetry,  it is sufficient to prove this for y' ~ 0. Take a point R': (x~, y~) 

coinciding initially with the point (p--q, p~-q), and through R' draw a line _R'Q ' 
! ! 

equal and parallel to P'O. Then the point Q': (x~, Yl) plainly lies in the triangle 

formed by the lines y ~ p-~q, py--qx ~ A 2 and px ~-qy ~ O. (This is really the 

triangle with vertices O, (A2/p, 0), (p, q) reflected in the x-axis and displaced). A 

fortiori it lies in the region bounded by the straight line and the arc of ~ each joining 

the points (--p-~q, p~-q) and (p--q, p~-q). Suppose now that  R' is moved con- 

tinuously along the arc of ~ to the point (0, 1), the line Q'_R' remaining parallel to 
, , , , y, _ OP'; during this motion Y2 varies from p~-q to 1. Since y ~-y~ ~- y~ and ~ 0, 

P ! 

we have Yl ~ Y'~. Hence when R ~ is at (0, 1), Yl ~ 1. Now, for every point (x, y) on 

the arc of (6 concerned, y _~ 1, and so the point Q' has left the interior of the lune. 

I t  follows tha t  Q' lies on the arc at some stage of the motion described. This position 

of the line Q'R ~ satisfies all the conditions of the lemma. 

L e m m a  21. I f  a line parallel to Q'R', and nearer to the origin than it, meets c(~ 

in points between Q' and R', then the length of the intercept so formed is less than Q'R'. 

Since ~ is a star domain, the arc of ~ joining the points Q', R' lies entirely 

within the angle Q'OR'. Hence the intercept by ~ on a line parallel to Q'R', and 

nearer to 0 than it, is less than the intercept made by the arms of this angle, which 

is less than Q'I~'. 
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Let  OP' meet ~ in the point  P,  and let Q, R correspond to P as Q', R'  do to P ' .  

Fur ther ,  let A be the area of the parallelogram OPRQ. 

L e m m a  22. A ~ A2, 

with equality only when P is at (p, q) or ( p , - - q ) .  

The coordinates of Q and R are clearly continuous functions of the coordinates 

of P,  and  hence so is the value of A. The lat t ice generated by the points R and 

P on ~ also has the point  R - - P  ~-- Q on ~ .  Hence (w 7) its de te rminant  A satisfies 

qS(A, c) = 0, with A = ~]s. If  A = d 2, we have shown in w167 13, 14 tha t  the latt ice 
! 

must  be L 2 or Ls; t ha t  is, A = A s when, and only when, P is at  (p, q) or (p, --q). 

Hence A--A2 has the same sign for all P in the range. We determine this sign when 

P is the point (1, 0) and  A -~ Ao, say. By  symmet ry ,  R is then  the point  (�89 A0), 

and so 

giving 

I t  remains then  to show 

io eo  

i .e .  

i . e .  

which is true. 

Now let l' be the  line 

(21.1) 

4 1 2 1 Ao-l-6m~Ao@r~-- I = O, 

A~ = �88 15)-- 3m}. 

5 
{ (gmS+ 1 5 ) -  3m} > ' 

3(l~-m)~/(9me-]-15) > 9 m ( l + m ) ~ - 1 0  , 

9(l + m ) 2 ( 9 m 2 + 1 5 ) - - ( 9 m ~ 9 m ~  lO) 2 > O, 

5(7--3m)(l~-3m) > 0 ,  

x ' y - - y ' x  = A 2 , 

parallel to OP' and dis tant  As~OF from it. 

L e m m a  23. The line l' meets ~ in  points E' ,  G', H' ,  F '  in this order, with 

E ' F '  > 20P ' .  

I t  is sufficient to show tha t  the intersections of l' and  the lines x = +A2/p  

are inner points of ~ .  For  then  the x-component  of E ' F '  > 2A2/p > 2x', since A2/p 

is the max imum abscissa of the region ~12.  By  symmet ry ,  we need consider only 

the intersection of l' and x : A2/p, say the point  (A2/p, Y).  We show t h a t  the 

max imum and min imum values of Y are positive. I t  is then  enough to prove tha t  
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(A2/P, Y)  is an  inner  poin t  of ~ for  these two values  of Y, since, by  s y m m e t r y ,  the  

line x = A2/p can mee t  c~ in a t  mos t  two points  above  the  x-axis.  

We consider f irst  the  m a x i m u m  value  of Y. F r o m  (21.1) we find 

~ g x  ~ ~ 

where t' = y ' /x ' .  Hence,  for  a f ixed value  of t ' ,  Y is g rea tes t  when x'  is least, t h a t  is 

when P '  is on (6". Again, for g iven x'  the  grea te r  va lue  of Y arises f rom t' > 0. Then  

dx '  p x ' \ d x  x v J " 

Now 
dy ' 1 Jr 3rot '2 

- -  > 0 ,  
dx'  t ' ( t ' ~ - 3 m )  

for 0 < t' < q / p = r <  �88 since l-f-3mt'2 > l ~ - 3 m >  0 and  t'~-~-3m < r2~-3m<~6--~  < O. 

XVt v Hence  dy ' /dx '  > / y ,  b y  L e m m a  1. Since the  region ~ 1 2  containing P '  lies below 

the  line p y - - q x  = O, we have  x ' / y ' > _  p/q = 1/r > 4. Again,  since x ' > _  1 and  

y ' <  q, ( p - ~ y ' ) / x ' <  p~-q  < 2p < 3. I t  follows t h a t  d Y / d x ' >  O, and  so Y is a 

m a x i m u m  when  x '  = p, y '  = q, t h a t  is when l' is the  line p y - - q x  = ~ .  T rans fo rming  

to  ~, ~ coordinates,  this  line is ~ =  1, and  x = A2/p becomes  p~- -q~  = d~/p. Thus  

for  the  po in t  of in tersect ion we have  

q~_A2/p pq~_p2~_q2 
- -  __ 1-~r-~r  2 " 

P P 

But  by  L e m m a s  12 and  14, we have  1 < l ~ - r ~ - r  2 < h, and  so this poin t  is an  inner  

po in t  of ~ .  

Nex t ,  the  va lue  of Y for  g iven t' is least  when  x '  is g rea tes t ;  and  then,  for g iven 

x' ,  for the  nega t ive  va lue  of y ' .  Hence  we m a y  suppose  P '  lies on the  line p x - - q y : A 2 ,  

and  then  dy ' /dx '  z p/q. Thus  d Y / d x '  > 0, as before,  and  so the  m i n i m u m  va lue  of Y 

occurs when P '  is the  poin t  (p, --q) and  l' the  line p y - ~ q x  ~ ~ .  I t  is convenient  to  

consider, ins tead  of (A2/P, Y), the  po in t  ( - -A2/P,  Y) ,  which will here be the  inter-  

section of the  lines p y - - q x  z ~2, x ~-- - -A2/p ,  t h a t  is of ~ ~-- 1 and  p~--q~] ~- --/12/p. 

For  this po in t  we find, as above,  ~ ~ - -  1 ~ - r - - r  2. But  - -  1 ~ - r - - r  2 ~-- - -  1 ~ r ( 1  - - r )  > - -  1 

and  - - l ~ - r - - r 2 <  - - l ~ - r  < 0, so we have  - -1  < ~ < 0, and  it  follows t h a t  this  point ,  

too, is an inner  poin t  of ~ .  Clearly Y > 0 for  this point ,  and  so also for the  m a x i m u m  

Y. This comple tes  the  proof  t h a t  E ' F '  > 2 0 P ' .  
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Since the line l' meets  x = 0 in a point  with y -=-- A2/x' >_ A2/(z12/p) --~ p > 1, 

and so outside ~P~, it  follows f rom the  above t h a t  l' meets  ~ in two other  points,  

say G', H ' ,  and  t ha t  the  segment G'H', except  for the  endpoints ,  lies outside ~Pu. 

Le t  the  elements  l, G, H correspond to the  point  P as the  dashed elements  do 

to P ' .  

L e m m a  24. G'H' ~_ OP' ,  

with equality only when P' is at (p, q) or ( p , - - q ) .  

I t  is clear t ha t  G'H' ~- OP' when P '  is a t  (p, q) or (p, --q).  Suppose then  tha t  

P '  is not  e i ther  of these points.  The line QR is d is tant  ~ lOP f rom the  line OP' and,  

by  L e m m a  22, we have  A/OP > A2/OP ~_ ~2/OP'. Then,  using L e m m a  21, OP' ~ OP 

z QR > GH ~_ G'H', the  required result.  

! 

L e m m a  25. Every lattice L of determinant ~2, other than L 2 or L 2, has a point 

other than 0 in the interior of the region (~)~. 

This will follow if we show th a t  the lat t ice L, which by  defini t ion has no point  

o ther  t han  0 in the inter ior  of .6]~, can only be L 2 or L'~. 

Now the lat t ice L, which contains the point  P ' ,  will have  latt ice points on the 

line l' d is t r ibuted at  intervals  equal  to OP'. The in tercept  E'F'  will contain in its 

inter ior  at  least two points of L, since E'F'  > 20P', by L e m m a  23. If  L is not  L 2 
! 

or L2, L e m m a  24 gives G'H' < OP', and so bo th  these points  cannot  lie in the  inter-  

cept G'H'. Thus at  least one of these lat t ice points is an inner point  of ~ ,  con t ra ry  

to  the  definit ion of L, and the  result  follows. 

L e m m a  26. The lattices L 2 and L~ have no point except 0 in the interior of ~ .  

I t  is sufficient by  s y m m e t r y  to prove this for the  lat t ice L 2. This is equivalent  

to showing t ha t  F2(~, ~) ~-- I for  all integers 2, ~ except  ~ = V ---- 0. Then  we have 

~2(~,  ~) = ~4--h~3~--~2~j2+h@3§ 4 

4 3 2 2 3 4 2 2 

= (~z- -@--V~)~+(2- -h)@(~--V ~) 

> 1 ,  
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if $~($2_~2) ~ 0, since 2--h > 0 by Lemma I3. If ~($2_~2) < 0, we have 

~ 1 ,  

since h ~ 0 by Lemma 13. 

We have now completed the proof that  Lemma 9 is valid for the extended 

range, and we state the result formally as 

T h e o r e m  3. I f  --�89 < m ~ --�88 there is a point x, y, other than the origin, of 

every lattice L of determinant A, such that 

]x4+6mx~y2-~y41 ~ ~(1-~m)A 2 

This is the best possible result, the equality sign being required if, and only if, L is 
# 

proportional to one of the lattices L~ or L 2. 

As before, this at once yields 

T h e o r e m  4. Let y)(~, ~) be a binary quartic form with real coefficients and ~) > O, 

and either ~ ~ 0 or ~(~ ~_ O. Further, let ~ < 0, 3529 3 _~ 39a~ 2, so that m given by 

(4.5) satisfies --�89 < m ~ --~. Then there exist integers ~, ~, not both zero, such that 

lYJ(~, ~)] < 6 ( l~ -m) i , a~ l  " 
- -  5 ( 1 _ 9 m  2) / 

This is the best possible result, the equality sign being required if, and only if, y~($, V) 

is equivalent to a multiple of the form 

with 0 ~ h < 2. The value of h as a function of m is given by (16.4). 

22. We add here a note on the results previously known for quarries with four 

distinct complex roots. We have remarked already that  the best possible lattice 

constant for the corresponding region ~ was given in tile case m = 0 by MORDELL (7) 
and for 0 ~ m _~ ] by DERRu (8); in these cases the region is convex. In neither 

work is the arithmetical consequence explicitly stated. 

The result given by JULIA (5) is essentially tha t  a quartic form 

Y~($, ~]) ~- a($--fll~)(~--fll~)(~--fl2~)(--f12~) 
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! ! . 

where ill, f12 are different  complex numbers  and ill, fl~ the i r  conjugates,  is equivalent  

to one whose first coefficient A 0 satisfies 

IA01 < ~/~l( th-&)(t~ ' l - t~ '~)  �9 

In  order  to compare  this with our  result  we must  pu t  it  in the  same shape. Le t  

f (x ,  y) = xdff-6mx2y2q-y 4 be the  s t andard  form with Ira[ < �89 which gives •  7) 

by  means  of a t r ans format ion  of de t e rminan t  A. Now the  expression a(fl l--  f12)(fl'~-- fl'2) 

is an i r ra t ional  invar ian t  of yJ of index 2. For  the  s t andard  form its value is [fl~--f1212: 

4[fllt2 --~ 4, so we have  

la[(fll--fl2) (fl~--fl'2) ---- 4A2 . 

I t  follows t ha t  Jul ia 's  result  is equivalent  to the  s t a t emen t  t h a t  every  lat t ice of 

de te rminan t  A has a point ,  o ther  t h an  O, in the  region 

If(x, y)[ < ~ .  

This is the result  we would obta in  immedia te ly  by  not ing t h a t  the region ~ contains 

the circle x2q-y ~ ~ l ,  and  it  is na tura l ly  a ve ry  crude es t imate  for  the  general  

quart ic  form of the type  considered. 

Reference might  appropr ia te ly  be made  here to a paper  by  MAHLER (17). In  

this he finds an a sympto t i c  expression for a quan t i ty  M~(J) as J - +  oo. In  our  

no ta t ion  M~(J) = k*(m)(1 ~ ' - - 9 m  )-.L and J -+ oo is equivalent  to m -+ ~ if s ~ ~-1 

and m - >  --�89 if e ~ - -1 .  His results can thus  be deduced immedia te ly  f rom our  

values of k*(m). I t  m a y  be no ted  t h a t  the  limits of Me(J) /J~  he gives are in fac t  

those appropr ia te  for  the  limit regions ( that  is, really those deal t  wi th  la ter  in 

Theorem 6), namely  ~/~-, ~/~. 
- -  1 1 He states  fu r the r  (without  proof) t h a t  M s ( J  ) ~ v(432)~, and suggests t h a t  the 

exact  lower bound  m a y  be a t t a ined  for J ---- 1. A li t t le calculat ion ~ shows t h a t  the  

exact  lower bound  is a t t a ined  for m ---- - - 0 . 0 6 3 . . .  ( J  --~ 1 is m ~ 0) and its value 

is 1.034 . . . .  about  twice the  above  est imate.  

I wish to express my  gra t i tude  to  Professor L. J .  Mordell for  suggesting this 

problem to me and for his advice in removing obscurities f rom the  original manuscr ipt .  
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A P P E N D I X  I. 

We might, of course, hav~ taken as standard form for a quartic with four distinct 

complex roots the canonical form with m > �89 If this is done, some of the details 

are rather  lighter (for example, in Lemmas 4 and 5 we really made a transformation 

to this case). I t  is perhaps worth remarking that  the results given in Theorems 1 

and 2 then take a slightly simpler shape, although Theorems 3 and 4 remain unaltered. 

We state below the result corresponding to Theorem 2. 

We define the new value of m by 

(4.5') 

O u r  r e su l t  t h e n  b e c o m e s  

c o s ~ = - - ~ \ 9 /  ' 0 < 9 < ~ ,  

m ~ ~ -  co t  - . 
V3 3 
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T h e o r e m  2'. Let ~f($, ~]) be a binary quartic form with real coefficients and 

~1~ > O, and either ~)~ ~ 0 or ~ "  ~_ O. Further, let 352~ a > 393~72 i f  (~ < 0, so that m 

given by (4.5') satisfies 1 < m < ~. Then there exist integers ~, ~, not both zero, such that 

4(~/(9m2~- 15)q -3m} ~ , ,~  

lyJ($,  ~])[ _~ 1 5 ( 9 m 2  1)~/:~ �9 

This is the best possible result, the equality sign being required if, and only if, ~(~, ~t) 

is equivalent to a multiple of the form 

with 2 < A < 4. The value of A as a function of "m is given by 

A -= � 89247  

A P P E N D I X  I I .  

Since the calculation of the minimum of k*(m)(1--9m2)-~ (w 22) is ra ther  tedious, 

we give the details here. We make  the subs t i tu t ion  

and write 

3 - - K  
XV~  - -  

3-~-3K ' 

k*(m)(1--9m2)-~ = C ( K ) .  

Then we f ind (ef. Theorem 2') 

C(K) = CI(K) = ~ { ~ ( K 2 q - 1 5 ) q - K } ( K 2 - - 1 ) - ~ ,  

for 1 < K  ~ 7; and 

C(K) = C2(K) : ~(Kq-3) (K 2 1)-~, 
for K ~ 7. 

Differentiating, we have 

Again, 

C~(K) = ~5(K 2 - 1 ) - ~ { 3 ( K  2 -  l ) - - 2K}  

_ ~(K2--1)-~{(K-- �89 ~ 

> 0, for K ~ 7 .  

~ / (K~-  15) ~-K 
C'I(K ) = ~(K2- -1 ) -~  1/(K2_~_15) { 3 ( K 2 - 1 ) - 2 K f ( K 2 q - 1 5 ) } '  
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a n d  so C~(K) - -  0 if ,  a n d  o n l y  if,  

i .  e .  

i . e .  

S i n c e  K >  1 we  m u s t  

C. S. Davis.  

3 ( K ~ - - l )  = 2 K ~ / ( K 2 - ~ 1 5 )  , 

5 K 4 - - 7 8 K ~ - 9  = 0 ,  

5 K  2 __~ 3 9 + 6 ~ / 4 1  . 

t a k e  t h e  u p p e r  s ign ,  a n d  w e  f i n d  K S =  1 5 . 4 8 3 7 . . . ,  so 

K = 3 . 9 3 4 9 . . .  a n d  m = - - 0 - 0 6 3 1  . . . .  W e  see  w i t h o u t  c a l c u l a t i o n  t h a t  t h i s  is 

a m i n i m u m ,  s i n c e  C I ( K )  -~ ~ as  K -~ 1 a n d  C2(K ) -> oo as  K -+ ~ .  

F o r  t h i s  v a l u e  of  K w e  h a v e  

C I ( K )  =- 
4 2 K I / ( K ~ - 1 5 ) ~ - 2 K  ~ 

15 2 K ( K  2 -  l )  1/~ 

2 ( 5 K 2 - - 3 )  

1 5 K ( K  2 - 1 )  1/3 

= 1 . 0 3 4 4  . . . .  


