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1. Introduction.

1. The question of the lJower bound or minimum of an algebraic form ¢(z,,. . .,x,,)
for integer values, not all zero, of the variables x,,.. ., z,, is an important one and
has attracted a great deal of attention for many years. The problem is a difficult
one, however, and relatively few results are known.

Confining our attention to the case of forms with real coefficients in the two
variables z, y, the results for the binary quadratic form are classical. If

@z, y) = ax?-Fbry+cy?

is a binary quadratic of discriminant D = b%--4ae, the result is that there exist
integers z, ¢, not both zero, such that

(L) lp(e, )| < kYD,

1
where k& = ;/3 when D < 0 (that is, when the quadratic has complex roots!), and

1
k = — when D > 0 (that is, when the quadratic has real roots). When D = 0 the

5
lowerl/bound is trivially found to be zero. These results are best possible, in the sense
that the inequality (1.1) is no longer true for all forms of the type spemfled if the
constant £ is replaced by a smaller number.
Estimates for the lower bound of a binary cubic form were given many years
ago by ARNDT (1) and HErRMITE (2), but the best possible results were obtained only
recently, by MorpeLL (3). If now

1 By the “roots” of a binary form ¢(z, y) we mean the roots of ¢z, 1) = 0.
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p(x, y) = ax®+bxy-+cxy®+dy?
is a binary cubic with determinant, or negative discriminant,

D = 27a2d?—18abcd — b2 +4ac3 -+ 4db3 |
the result is that

(1.2) lp(z, y)| < kiD[*

for integers x,y == 0,0, where k = 2371 if D > 0 and k = 497 % if D < 0. These
cases correspond to cubics with just one and three real roots respectively. Again
the lower bound is zero if D = 0, when the cubic has a repeated root.

The purpose of this investigation is to provide estimates for the lower bounds
of binary quartic forms. Estimates of this sort have been given by HERMITE (4)
and JuLia (5), but their results are in general very crude. A few best possible results
are known, these being due to Morp®LL (6, 7), DERRY (8) and ManrLER (9). These
results will be mentioned later in the appropriate places. We find here the best
possible results in many cases, including all quartic forms with four distinct complex
roots, and an infinity of (in fact “most’™) forms with four distinct real roots. In all
cases estimates are given which are, with one exception, better than any previously
known.

2. Much light is thrown on these problems by considering them from a rather
more general point of view. Instead of seeking directly the lower bound of ¢(z, y)
for integers z, y, we hlight investigate its lower bound for points z, y of a lattice L
of determinant A defined by

(2.1) x = f+4pn, y= yit+on,

where «, 8, y, ¢ are real numbers, 4 = |xé— fy| == 0, and £, n take all integer values.
Considering all possible lattices, that is all values of «, 8, y, 6, with given A, we are
led to seek a constant k& such that

(2.2) | o, 9)] < (k+e)at

for some point x, y &= 0, 0 of every lattice of determinant A, where n is the degree
of the form ¢(2, y) and ¢ is any positive number.

Now for a given linear transformation (2.1), we may consider the form ¢(a, y),
of discriminant D,, & 0, say, as a form y(&, 7)) in the variables &, 5, with discriminant
D = A" VYD,_. Then the result (2.2) may be expressed in the form: There exist
integers &, 5, not both zero, such that



The Minimum of a Binary Quartic Form (I). 265

D

(2.9 el < o (7
@

where (&, %) is any form of discriminant D obtainable from g(z, y) by a real linear
transformation. Under these circumstances we shall say, for brevity, that (&, n)
and ¢(x, y) are transformable into each other, and we shall refer to ¢(x, ¥) as a standard
form for the class of forms y(&, 7).1 Clearly a standard form is not unique; we may
select any convenient member of the class of forms transformable into each other.

We remark here that if the form (&, 5) possesses another invariant, say I of
index /, so that [ = Alltp, we may, if [, = 0, replace the right hand side of (2.3) by

n

(k+e)(I/I,)2% . In the following we shall content ourselves with stating the results
in one or other form.

In the case of binary quadratics we may take ay or a2—y?2 as standard form
when D > 0, and 2*+y* when D < 0. For binary cubics we might select 343
when D > 0, and ay(x-+y) when D < 0. The facts are necessarily more complex
for a binary quartic, since the possibilities regarding reality and equality of roots
are then more numerous. Further we will find it necessary in some cases to use a
standard form containing a parameter.

Our problem is thus reduced to one in the geometry of numbers, namely to find
a constant k, preferably best possible, such that there exists a point =,y =+ 0,0
of every lattice L of determinant 4, with

(2.4) e, 9] < (k+-e)a%,
where f(x, y) is an appropriate standard form. We consider the region “R defined by

flx, ) <1,

and seek the lower bound 4* of the determinants of lattices admissible with respect
to SR, that is ones with no point other than the origin as an inner point of R . Then
the best possible value of k, say k*, is 1/4*°, and if the lower bound is attained by
some admissible lattice with a point on the boundary of “R we may put ¢ = 0in (2.4).
An admissible lattice with 4 = A* is called a critical lattice, and the corresponding
form y(&, ) a critical form. If we cannot determine A*, but can show that every
lattice of determinant A’ (say) has a point other than the origin in “R, it follows
that k* < 1/47%.

1 Note that a canonical form, in the usual algebraic sense, need not be a standard form; for it may
not be obtainable by a real linear transformation,
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3. Congider a binary quartic
W(&, n) = aEt-4bE¥+60E%> +4dén* +-ent

with real coefficients a, b, ¢, d, e. This form has two irreducible invariants <7 and ?,

of indices 4 and 6 respectively, given by

Y = ae—4bd+3c?
T=|a b c|=ace}2bcd—ad?—eb>—c?.
b ¢ d
¢ d e

The discriminant of the form is
D= J3—2792.

We must examine the nature of the roots of u(¢, 1) = 0, and for this purpose we
need to introduce the further expressions

T =b*—ac, K =2HIT+3aY .

It appears difficult to give an exact reference to the results we need. The question
was dealt with in full detail by ARNDT (10), but he does not employ the invariants
and his notation differs from ours. Burxsip® and PaxTox (11) may also be con-
sulted. For the standard forms, and a general discussion of the algebra of the quartic,
reference may be made to the works of Satmox (12) or Erviorr (13). In giving
standard forms we suppose, as we may for our purpose, that a > 0.

We summarise below the results we need.

& < 0. Two different real roots and two complex roots. Standard form
Xt 6maxy?—y*t .
P> 0. (a) FE >0, K > 0. Four distinct real roots.
(b) Otherwise. Four distinct complex roots. Standard form in each case
xt4-6maiy 4yt .
%) = 0. If J = 0,  has three equal roots and so is of one of the forms a(&é—wn)*,
a(§—wn)*(§—w'y), o £ »’. We need not distinguish between these cases.
If <7 = 0 several cases arise.
(a) K = 0. Then = a(é—on)2(f—w'n)? o+ o
() G >0. o, real
(1) F£ < 0. w,w complex.
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(b) <K < 0. Then y = a(E—on)2(é—w'n)(E—o''n), where o, o', »"" are all
different.
() K >0. o, " real.
Standard form x2(x?—y?).
(1) K <0. o, complex.
Standard form x?(z2-+y?).

II. Quartics with </ > 0 (four complex roots).

4. We consider first the case of forms with four distinct complex roots. We find
the best possible results for this case; later (in § 22) we discuss the results previously
known.

Here we may take the usual canonical form
(4.1) flx, y) = x*-+6may? -+ yt

as the standard form; the parameter m is a function of the invariants 77 and “J . The

invariants I and J and the discriminant D of this standard form are given by
(4.2) [ =143m?, J=m(i—m?), D = (1—9Im2)°.

The nature of the roots being unchanged by a real linear substitution, the roots
of f(t,1) = 0 will be complex and distinct. Now f(t, 1) = 0 gives
(4.3) 12 = —3m-+y(9m2—1),

and so this quantity must be negative and two-valued, or complex. Hence 9m? =+ 1.
If 9m? < 1, #2 is complex, while if 9m? > 1, {2 < 0 if, and only if, m > 0. Thus
m> —3% m= 1}

If we apply the substitution
z=xX—-Y), y=x(X+7Y),
where »* = }(1+3m)™', which is a real substitution for m > —1, we obtain

flx,y) = X6 MX2Y2 Y4,

1—m
where M = Tism’ Now if m > §, we find —§ < M < 1, so it is enough to take
m

1 For given & and &, m in (4.1) may take in general any one of six values; but only two of these
arise from real transformations.
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Although the reduction of a quartic to its canonical form is discussed at length
in the references (12, 13) cited, and elsewhere, it seems impossible to give a reference
to any straightforward method of finding the parameter m.! Hence we give here
a simple method of calculating the m we have distinguished above.

If A is the determinant of the substitution transforming f(x, y) into (&, ¥),
it is known that A%n = z, say, satisfies

423—sz+f] =0.
Further -/ = A%(14-3m?), so A* = -J—3z%. Thus we have

22 22 22
’)’}’Lz = - T e

A4 322 3(1—x2)

322
where 22 = —— satisfies

4x3~3x+}]<%)3: 0.

If we write

3\
44 oS0 — _gj<_> E
(4.4) cos ¢ 7 5

we have ¥ = cos §, where 0 = ¢, }(¢p+27), and so m?® = } cot? (. (This expression
exhibits the six values of m.) Note, however, that we require |m| < %, and also
that then, for a real transformation, the signs of m and :/ must be the same, since
“J = A%m(1—m?). The appropriate value of m is thus given by

1
(4.5) m= — cotg,
V3 3

where ¢ is chosen to satisfy (4.4) and 7 < ¢ < 27.

5. We now define a region “R by |f(z, y)| < 1, and investigate its shape. Since
the roots of f are complex, we have f(x, y) > 0 for real z, y, and so “R is bounded
by the curve ¢ given by f(z,y) = 1. Since

f@y) = f(—z9) = fly. 2),

we see at once that R is symmetrical about the lines ¢ = 0, y = 0, y = +x, and
so also symmetrical about the origin O.

1 An explicit formula for m? is given by FaA pE Bruno (14), but it is in an inconvenient form for
our application.
2 This determines a real ¢, since @ = F*—27F%*> 0.
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If (x,y) is a point on ‘C and we write t = y/z, o® = a*+¥y2, ¢ >0, we have
x*f(1, t) =1 and
1442
02 = e
Vi, 1)

Since f(1,t) &= 0 for real ¢, ¢ is everywhere finite. It is also a single-valued function

of t. It follows that R is a bounded star domain. A brief calculation gives

do :
o— = (1—3m)t(1—2)f = .
dt
Since 1—3m > 0, clearly { = 0 gives a minimum and ¢{ = +1 a maximum value

of o, and we deduce

2 \?
5.1 I <p2< (77) .
(3.1) =0 = 1+3m
The curve ‘G has no double points, so its points of inflection are given by its

intersections with the Hessian

mat-+(1—3m?x2y2+myt = 0,
that is, with the lines
y = i, y= Lk,
where 2 is any root of
mAt+(1—3m2)J2+m = 0 .
If m == 0, this gives
(5.2) 2mi? = 3m2—1-+V{(1—m?)(1—9m?)},

and 2 is real only if —% < m < 0. If m = 0, we have 4 = 0, but the points of inter-
section, e. g. (0, 1), are then points of undulation, not inflections. Thus the region
“R is convex if 0 < m < i, and non-convex if —} < m < 0.

A typical non-convex “A is illustrated in Fig. 1 (for m = —%).

When the region is non-convex, we shall call an arc of ‘¢ lying between two
consecutive points of inflection, and including an intersection with one of the axes,

>

a ‘“‘concave” arc, and the remaining arcs ‘“‘convex’’ arcs.

6. When the region “R is convex, the theory of MINKOWSKI (15) concerning
convex regions symmetrical about the origin may be applied. The problem is thus
reduced to that of finding the parallelogram of minimum area which has one vertex
at O and the other three vertices on ‘¢. This problem was solved for m = 0 by
MorpELL (7), and later for 0 << m < § by DrrrY (8). We now show that the method
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of Minkowski may be generalised to apply to the regions under consideration, even
when they are non-convex.

We require first

Lemma 1. Let P:(x,y) be a point on G with x > 0,0 < ¢ < 1, where t = y/x,
and let s be the slope of the tangent to € at the point P. Then 1/s < t, with equality only
when P 1s the point (1, 0).

For we have

1 dr y  yly*+3ma?) y y(1+3m) (*+y*)

et =— L Y T

8 dy « x(x?4-3my?) w (2?4 3my?)

since x*-+3my? > (1+3m)y? > 0. Equality occurs only if ¥ = 0, and then =z = 1.

We now proceed to prove the fundamental

Lemma 2. A* is the lower bound of the determinants of admissible lattices with

sixz points on €.

It suffices to prove that any admissible lattice may be deformed into another
with six points on €, and with an equal or smaller determinant. Since the region R,
is bounded, admissible lattices certainly exist. Let OABC be a cell of an admissible
lattice with no point on €, and imagine the lattice deformed so that 4 moves along
OA towards O, whilst 4B remains parallel to OC, until a point of the lattice first
appears on 6. Call this point 4’; then by symmetry its image in O also lies on .
Every point of 04’ is in SR, and so OA’ contains no lattice points other than O
and 4’. Hence there is a point B’ such that (4, B’) is a basis of the deformed lattice.
Repeat the above procedure with the point B’ in place of A. In this way we arrive
at an admissible lattice of smaller determinant with four points on €.

We now show that, if no other point of this lattice is on €, we may again
deform it to bring a third pair of points on to G, at the same time reducing its
determinant still further. Let P and @ be two independent! points of the lattice
on 6. Such points exist, since only two lattice points can be collinear with 0. Com-
plete the parallelogram OPRQ); its area S is a multiple of 4, the determinant of the
lattice. We will assume, without further repetition, that the process to be described
below is discontinued as soon as a further point of the lattice appears on €. If either

P or @, say P, lies on a convex are, it may be moved along 6 in such a way that its

L That is, not collinear with O.
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distance from OQ, and so also A4, decreases, until it lies on a concave arc at a point
where the tangent is parallel to OQ. Hence we may suppose that both P and @ lie
on concave arcs, and if P and @ are the points (x4, ¥;), (%,, ¥,) respectively, we may
assume without loss of generality that they lie in the first quadrant, with y;, < a,,
i.e. that 0 <i¢, < 1/t, <1, where {, = y,/x, and ¢, = y,/r,. Now if ¢, < 1ft, we
may decrease 4 by moving P along € until t, = 1/t,. ¥or, if s; is the slope of the
tangent at P, we have s; > 1/¢; > ¢, by Lemma 1, since s; > 0, and so during this
process P moves towards O@. Thus we may suppose hereafter that ¢, = 1/t,, i. e.

T, = Y1, Yy = ;. Then S = 2y, —ayy, = 2]—yi, and

as d
— = 2x1<_xj_?il_> <0,
dy, dy,

by Lemma 1. Further, § = 0 when z, = y;, and it follows that we may reduce 4
steadily to zero by moving P and @ simultaneously, keeping ¢, = 1/t,, i. e. z, = y,.
Now A clearly has a positive lower bound, since “R contains the circle x2|-y2 < 1,
by (5.1), and so the process of deformation must be terminated at some stage by
the appearance of another pair of lattice points on ‘¢. This proves the lemma:
We remark here that the lower bound 4* cannot be attained by a lattice unless
it has six points on €. This follows immediately from the above proof if it is noted

ds
that, by Lemma 1, T < 0 unless y, = 0.
Y1

Our problem is thus reduced to that of finding the lower bound of the determi-
nants of all admissible lattices with six points on ‘6. Since, however, these six points
may in general occupy a variety of different positions in the lattice, we have still to
solve a number, perhaps a large number, of minimum problems. As these problems
are somewhat troublesome, we find it convenient to deal with the question by this
direct method only when the number of minimum problems involved is not more
than two. This will be so if the dimensions of “R are sufficiently small; the range

of values of m that we consider in this way is determined by the following lemma.

Lemma 3. Let P = uAd+vB be a point of a lattice L with a reduced basis!
(4, B). Suppose the points A, B are not inner points of the region R, with m > m, =
—0:259. Then if |u} > 2 or |[v| > 2, P is not a point of “R.

1 Every lattice has at least one reduced basis (4, B), which has the property that the angle 0
between the vectors 04 and OB satisfies 60° < 6 < 120°; see BacHmaNN (16).



272 C. S. Davis.
Let OA = a, OB = b, and let g, be the maximum value of the radius vector

o of ‘€. Then

) 3 2 1\t
= (113m) = (oam) <3
1+ 3m 0-223

Since ¢ >> 1 by (5.1), we have a > 1, b > 1. If |u| = 2,

OP? > u?a?+v22:—uvab = (vb— jua)?+3ua® > $u? > 3 > o ;

and the same result is clearly true if |v| > 2.

If m > m,, it follows from Lemma 3 that a necessary and sufficient condition
for a lattice L with a reduced basis (4, B) to be admissible is that the points w4 +-vB
with |u| <1, |[v| <1, (4, v) & (0, 0) should not be inner points of “R. Further, if
L is admissible and has six points on ‘G, then |u| < 1, |v| << 1 for each of these
points. Now there are just eight points of L with |u| <1, || < 1, excluding the
origin 4 = v = 0. These eight points are the vertices and the mid-points of the
sides of a parallelogram formed by four cells of the lattice which meet at O. Hence
the remaining two points are either

(I) opposite vertices, or

(II) mid-points of opposite sides
of this parallelogram. Correspondingly, the six points of L on € are of the form
P, @, P—@ and their images in O, or P, P4 @, P—@ and their images in O, where
in each case P, @ is a basis (not necessarily reduced) of the lattice. We note, however,
that the points P, ¢, P—@ in the first case must include a reduced basis. We shall
refer to admissible lattices whose points on G are of the two forms mentioned above
as lattices of type I and type II respectively.

Thus our problem, for m > m,, becomes that of finding the lower bound of the
determinants of lattices of type I and type 1I. Although this provides us directly
with the answer to our original problem only when m > m,, we require some of the
results in any case. In consequence, we will not suppose in the following that

m > m, until this is explicitly stated.

7. We now consider a lattice L of determinant A defined by
(7.1 x = oaftpy, y=yiton, 4=xé—py,
and having the points P: («, ), @: (8, 6) and P-—Q = R: (x— B, y—9) on ‘6. Write

(1.2) F@, y) = (&, ) = agt+-4bsoy -t bosiy -+ ddénFent .
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On making the substitution, we find

(1.3) a = ad+6maty |yt

(7.4) b = &3+ y*0+3may(xd-+py) ,

(7.5) ¢ = a2y -m(a20? - 4xfpd+ 27
(7.6) d = xf-y5°+3mpd(xd+By) ,

(7.7) e = B4-6mpP2o2+-61 .

We proceed to deduce a relation between A and the parameter c¢.! We might,
of course, obtain a relation between 4 and some more obvious parameter, e. g. y/x,
but the procedure we follow has the great advantage of yielding simple criteria for
deciding whether or not a given lattice point is a point of R.

The points (£, ) = (1, 0), (0, 1) and (I, —1) lie on 6, and so

(7.8) (1, 0) = 9(0, 1) = p(1, —=1) = 1.
From (7.2) and (7.8) we find ,

(7.9) a=e¢=1,

(7.10) 4(b-+d) = 6¢-1.

From the invariants in (7.2) we have

(7.11) 1A% = ae—4bd+ 3¢,

(7.12) JA% = ace--2bcd—ad?—eb2—c? .
Using (7.9) and (7.10), these become

(7.13) IA* = 1—4bd+3¢?,

(7.14) JA® = 2bd(c+1)+c—c3— 5 (6c41)2 .

Eliminating bd between the last two equations, we derive

(7.15) 803120+ 120+ 7—8(c+1)IA4—16J4% = 0 .
We write 4% = A here, and later use the same notation with suffixes. Then (7.15)
becomes

(7.16) d(A,¢c) =0,

where

(7.17) D(A, ¢) = 8c3—12c2+12¢+T7T—8(c+1)]A2—16J A3 .

1 Qur method is a development of that used by MorDELL (7) for the case m = @ (and so J = 0).

18 — 642138 Acta mathematica. 84
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We suppose now that m > m,, and find conditions for the lattice L to be of
type 1. As noted above, the points P, @ and P—@ = R include a reduced basis
(4, B). Hence a necessary and sufficient condition is that the points u4 +vB with
lul <1, o] <1, (u, v) & (0, 0) should not be inner points of “R. We identify these
points in terms of the basis (P, ). We have

EP4+nQ = (E4+n)Q+ER = (é4+n)P—yR,

so if any two of |£], |n], |49 are > 2 it follows that |u| > 2 or |v] > 2.

If |&] = 3 we have [£+7] > [£]—|y| = 3—n|, so either || > 2 or [£+5] > 2.
Hence |£| << 2, and we may suppose & > 0. Taking £ = 0, 1, 2 in turn, and rejecting
the values (&, n) = (0, 0), (0, +1), (1, 0), (1, —1) which correspond to the origin
and the points on ‘¢, we find that our condition is that the points (£, ) = (1,1),
(1, —2) and (2, —1) must not be inner points of “R. It follows that L is of type I if

(7.18) WL 1) =1, 91, —2) > 1, p(2, —1) > 1.
Using (7.9) and (7.10), these conditions become
(7.19) 6c > —1, 3(c—b) <1, 3(c—d) <1.

We remark that equality signs in (7.19) correspond to those in (7.18) and so occur
only if the corresponding lattice point is on ‘6.

8. We turn our attention now to lattices of type II. Consider then a lattice
with a basis («x, ), (f, 6) and with the points («, y), (x+8, y+96) and («—p8, y—9)
on ‘G. Again make the transformation (7.1) and write f(z, y) = w(&, 1), as before.

Now the points (&, %) = (1, 0), (1, 1) and (1, —1) lie on %, and we deduce
(8.1) a=1bld=0e= —6c.

If the lattice is of type II the point (8, 8), i. e. (£, %) = (0, 1), is not an inner point
of ‘R, and so (0, 1) > 1. This gives the condition

(8. 2) ‘ , 6c < —1.
Following the same procedure as that we adopted previously, we find
(8.3) 1A% = 4b2—6¢-1-3c?,

(8.4) JA® = b2 (4c—1)—6c2—c?
and thence
(8.5) (A, ¢) = 16¢3—3c2- 6c 1 (1—dc)[A2+-4J 43 = 0 .
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9. We are now in a position to solve our minimum problems. We first take the
case — <t m < %, and we will assume, until the contrary is stated, that this relation
is satisfied. We must consider lattices both of type I and of type I1; we commence
with those of type I.

From the symmetry of the region “R, certain lattices of the type investigated
in § 7 will obviously have maximum or minimum values of A. In particular, this
will be so for the lattice, which plainly exists, with the points (x, «), (f, §) and
(—d, —p) on G, where o = f-+6 > 0.

If the determinant of this lattice, say L,, is 4,, we have

Ay = x(6—f) — *— g2 .
Since (x, «) and (B, 8) lie on 6,
(9.1) 2143m)xt = 1, Bt 6mpBrortot — 1.

Now 28 = p+6+8~86 = a—w, where v = §—p8. Also 26 = o4 and 4, = aw.
Then, by (9.1),
(x— )3+ 6m(a®—w2)?+(xtw)t = 16,

1. e, 2(x24-602w% -+ w?) -+ 6m (ot —202w2+w?) = 16,
ie. 2(1+3m)w? +12(1 —m)ae?+2(143m)axt—16 = 0,
which gives

(9.2) 4(143m)2A4¢+12(1 —m)A2—15 = 0 .

Hence, remembering Af > 0, we obtamn

1
(9.3) Ay = A} = (11 3m) {2V[6(6m2+3m~+1)]—3(1—m)} .

Now L, has the points (8, 8), (—0, —p) and (8496, 6+8), i.e. (x, ), on G.
Put

(9.4) x = pé—on, y=05—pn,
and write
(9.5) J(@, y) = wo(&, n) = E44-4bE3n+6co& P +4dén®+nt .

By (7.5), .we have
co = 28202+ m(f2--4526%-F64)
= B mprot-rot—(1—m)(§1—2670+0%)
— 1 (1—m)4?,
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that is
(9.6) co = 1—(1—m)d, .

Since po(&, 1) = f(r, y) = f(—y, —x) = yy(n, &), we have b, = d,, and so
(9.7) bo = do = Hbot-dy) = H(6co+1) = 4{T—6(1—m)4,} .

We now require some estimates for the numbers ¢, and A,.

Lemma 4. If —f <m < }, then —1 < ¢, <

(ST

From (9.6) we have (1—m)A, = 1—c¢,, so, using (9.2),

4(14-3m)2A% = 15—12(1—c,) = 3+12¢, .

Thus we have to prove 1 < 2(1+43m)A4,; < 3. If we put m = 303K in (9.3), we find
2(14-3m)4, = V(K?+15)— K = A(K),
say. Then
"K) K <o dm 0
- s _—= = ,
VK 415) 0 dK  3(11K)
so that 1 is a strictly increasing function of m. Finally, when m = —1, K = 7 and

MK) = 1; while when m = }, K = 1 and A(K) = 3. This proves the lemma.

Lemma 5. If —l<m<}, then A, < 1.

With the same notation as in the last lemma, we find

Ay = 3+ EK){/(K*+15)— K} = w(K) ,
say. Then

1

"(K) = —F——— K24-15)—K K2415)—(1+K)},

WK = grayas) V1) — K (K24 15) — (14 K))

and u'(K) = 0 only when K = 7. The first two factors in the expression for u'(K)

are essentially positive, and the last factor, with K = 7-}-¢, is —}e--0(¢?). Hence

K = 7is a maximum. But K = 7 when m = —1, and u(7) = 1; the result follows.
Now from (9.7) and Lemma 4,

Co—by = Co—dy = cp—}(6c+1) = 1c,—} < 0,
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and 6c, > —1. Thus the conditions (7.19) are satisfied by the lattice L,, which is
therefore of type I.

10. We now find the other roots of the cubic @(A,, ¢) = 0 given by putting
A = A, in (7.17). The lattice L, has the points (x, &), (8, ) and (x—pf, x—9), i. e.
(8, B), on ¢. Put

(10.1) x= ol +py, y=af+on,

and write

(10'2) f(x, y) — 1/)1(5,7 7]/) . E’4+461§,377’—f—6615/27],2+4d1§’77’3+7]l4 .
Now if we put

(10.3) =84y, n=-&,

we find

& = &'+ By = (B+0)'+ By’ = B(&'+n')+08 = pt—on,

and similarly y = «£'~+05’ = 66— pn. Thus (10.1) is equivalent to (9.4) and (10.3),
and it follows that
& 7'} = wol&s m) -

Substituting (10.3) in (9.5) and comparing with (10.2), we find

(10.4) by — 1—3by+3co—dy = 148co—4by = 1--3c,—L(6co+1) = 1,
(10.5) 1 = 14co—2by = H{1+2(1—m)A,},
(10.6) dy = 1—by = H{14-6(1—m)A,} .

It follows from the above that @(A,, ¢) = 0 for ¢ = ¢, ¢,. If the third root of
this equation is ¢,, we have, by (7.17),

(10.7) Cotei1tcC, = 5,
giving
€y = §—co—0; = H1+2(1-m)A,} = ¢, .
Thus
(10.8) D(A4, ¢) = 8(c—cy){e—c,)?.

Further, since ¢, < %, (10.7) gives ¢; > } > ¢,.

We will prove that no lattice of type I has a determinant 4 < A, and that
the value A, is attained only by L,, and by its image in the y-axis, say L,. For this,
we first show that we may suppose ¢ > ¢,. For suppose ¢ < ¢,. First, A & A,, since
D(A;, ¢) < 0, by (10.8). Suppose next that 0 < A < A,. From (7.13) and (9.7) we
have
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IA] = 1—dbydy+3c2 = 14-3¢2— L (6c1-1)2 = 2{(k—cp)2+1} .
Since ¢, < 3, %—é > +—co> 0 and so
(b—d)? = (b-}-d)?—4bd = 5(6c+1)2— (14 3¢2) +1A42
= T2 —3{(3—c)?+1} < IA}—3{(} —co)2+1} = 0,

which is impossible.

We may write
D(4, ¢) = (A, 0)+D(A4, ¢)—D(A,, c)
= DAy, )+ D(A, c) —D(Ay, ¢g)+8(c—c [(A]— A7) ,
that is, using (10.8),
(10.9) B(A, ¢) = 8c—cg) {(o—e,)-HI(A2— AY}+B(A, ¢,) .

Now @(4, ¢g) > 0 for 0 < A < A,. For, firstly, &(A,, ¢,) = 0. Then from (7.17) we
find, for ¢ = ¢,

oD

— = —16A{3JA4(c,+1)I};

oA
we show that this is negative. We note I = 1+3m? > 1 and J = m(1—m?). If now
m>0,J >0, so

3JA+F(co+ 1) = ¢cy+1 >0,

Co

1—
by Lemma 4. Also, if —1 <m < 0,.J <0, and A, = 1, by (9.6), so
—m

3JA4-(co+ 1) > 3JA,;-(co+ 1) = 3m(14-m)(1—co)+(14co)d
> (= (@) (I—co)+1+4co = T12(7+17co) >0.

Thus ¢®/0A < 0, and so D(A, ¢y) > D(A,, ¢y) = 0. It follows then from (10.9) that
D(A,c) >0 for ¢ >¢p 0< A< A,

This establishes that A, is the minimum determinant of a lattice of type I.

11. We must now consider lattices of type I1. If m > 0, the region “R is convex
and no such lattices can exist, for they would have three collinear points on the
boundary ‘G, which is impossible. Suppose then —L < m < 0. We have b2 > 0 and,
by (8.2), ¢ < —1. Then, from (8.3), it follows that 742 > —6¢-+3c? > 14-5. But
I=1+43m?< 144, 80 A>1> A, by Lemma 5. That is, there are no lattices
of type II with determinant 4 < A,.
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12. We have proved that A* = A, when —} < m < }, and, further, that the
determinant 4, is attained only for lattices of type I giving ¢ = ¢y, ¢;. We now
consider whether there are any other critical lattices than L,. We require the fol-

lowing lemma.

Lemma 6. For —1 < m < 1, the only transformations of f(x,y) into itself,
that is automorphisms of R , are the reflections in the axes of symmetry and in the origin,
namely, x = +& y = +nand x = -+, y = +&, where all the signs are independent
of each other.

Consider a transformation of the type (7.1) giving
fl@, y) = (&, n) = E46mEn2 4t .
Since the invariants are unchanged, we have
(12.1) A= oad—Py = +1.
Now from (7.5) we find, using (12.1),

m = x?f:4-y202+-m(l+6xpy0) ,
that is,
(12.2) 292024 6mafyd = 0.
Hence

(xf—y0)2--2(1+3m)xfyd = 0,

and so «fyd < 0, since 1+4-3m > 0. Similarly
(xf+718)2—2(1—3m)afyd = 0,

and so xfyd > 0, since 1-—3m > 0. It follows that xfyd == 0, and so at least one
of «, B, v, must be zero.

Suppose, e. g., « = 0. Then, from (12.2), 6 = 0, while, from (12.1), 8y = +1,
and so y %= 0. Hence § = 0 and, by (7.3) and (7.7), y* = f* = 1. Therefore « = 0,
= 41,y = +1,d = 0, where the signs are independent, giving x = +n,y = +§.
The other results arise similarly on assuming f = 0, and this completes the proof
of the lemma. -

We now find all the critical lattices. Given A and ¢, the values of b and d are
determined, except for order, by (7.10) and (7.13). Then, having found one lattice
which gives these values of b, ¢, d, all such lattices will be given by the transforms
of this one by the automorphisms of “£. In our problem we have 4 = A, ¢ = ¢,, ¢,,
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and these conditions are satisfied by the lattice L,. From the symmetry of L., the
only other lattice produced by the automorphisms of <R is its reflection in the
y-axis, L;. k

We have thus proved the following result.

Theorem 1. If —} <m < }, there is a point x,y, other than the origin, of

every lattice L of determinant A, such that
A2
|zt 4-6may® -yt < —,
4,
where A, is given by (9.3). This is the best possible result, the equality sign being required
if, and only if, L is proportional® to one of the lattices L, or L.

We may take as a critical form, corresponding to the lattice L, or L, the form
(&, ) defined by (10.2) with (10.4), (10.5) and (10.6); all other critical forms,
e. g. po(&, n), are equivalent to this. Writing

A = 4d; = ${14-6(1—m)d,},
(10.5) gives 6c; = A-+1, and so

pul§, ) = EF28nH(A+ 1)+ AdpP 40t
Substituting from (9.3), we find

(12.3) 4= m{3(1—m)\/[6(6m2—{—3m+1)]—4(1——3m)} .
Again, using (9.6) and Lemma 4, we find 2 < 4 < 4, and, further, these bounds
are best possible in the sense that any such value of A corresponds to an m in the
range considered.

Recalling our introductory remarks, and effecting a trifling reduction, Theorem 1
leads immediately to

Theorem 2. Let y(&, 1) be a binary quartic form with real coefficients and <> 0,
and either F€ <0 or K < 0. Further, let 3527 > 39372 if °J < 0, so that m given by
(4.5) satisfies —1 < m < %. Then there exist integers &, n, not both zero, such that

* By a lattico “proportional” to the lattice © = a&+fn, y = p&+ 87, we mean one defined by
x’ = lx, ¥ = ly, where [ is a real non-zero constant.
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4V {6(6m2+-3m+1)}+6(1—m) _,
(& )l < T b .

This is the best possible result, the equality sign being required if, and only if, p(&, n) is

equivalent to a multiple of the form
palE, ) = EF 28 (A D ASP ot

with 2 < A < 4. The value of A as a function of m is given by (12.3).

13. We now investigate the case m < —1. When m < — the lattice L, is no
longer admissible, for the proof of Lemama 4 would then give ¢, < —1, in contradiction
to the conditions (7.19).

We first put the last two inequalities in (7.19) in a different shape, not involving
b and d explicitly. We note that both these inequalities cannot be false, since there

is only one lattice point (and its image) in question. Then if we put
0 = 4{1—-3(c—b)}{1—3(c—d)},
a necessary and sufficient condition for both these inequalities to hold is

. 6>0.
Using (7.10) and (7.13), we find

O = 4{(1—3¢)2+43(b+d)(1—3¢) -+ 9bd}
— 4(1—3¢)2+3(1—3¢)(6c+1)+9(1+3c2—I112)
— 9c%—15¢--16—912 .

Further, we note that ® = 0 only if 3(c—b) = 1 or 3(c—d) = 1, and then the

lattice L has eight points on G. Changing our notation, if need be, we may suppose

these to be the points (x, y), (8, 8), (x+8, y-+9), (x—8, y—9) and their images in O.
If m > m,, we may now put our problem, for lattices of type I, in the following

form. We seek the lower bound, say A, of A corresponding to real lattices, with the

conditions

(13.1) A>0,¢c>—, &Ad,¢)=0,0=>0.

We shall simply omit the provision concerning reality, and later verify that the
solution thus obtained does in fact satisfy it.

Now the expression ®(A, ¢)—D(A, —1) vanishes when ¢ = —1%, and so has a
factor 6c+1. By equating coefficients, we find that the other factor is 5;6. Thus
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we have

21D(A, ¢) —2TD(A, — L) = 4(6¢--1)O
It follows then from (13.1) that A is the lower bound of A > 0 with
B4, —1) < 0.
On putting ¢ = —% in (7.17), we find
—27P(A, —}) = 432JA3+-180112—125 .
Substituting 4 = 85;’ the equation @(A, —}) = 0 becomes
—I12—2J =0,
the roots of which are 2 = m-+1, —2m. It follows that

P4, —§) = O(A—A)A—A)A—4,)

where
C= —16J > 0,
/ 5 ' 5
g = — —>0, dy=—--+—--<0, Ay = ———>0
6(1+m) 6(1—m) 12m
Further,
g, M)
12m(1 4-m)

Since A, > A, > 0> A;, we have @A, —}) < 0 if, and only if, 4 < A, < 0 or
Ay > A > A, > 0.Thus AF = A,, and this value is attained if, and only if, ¢ = —}
or O (4,, ¢) = 0; in each of these cases the corresponding lattices have eight points
on 6. We remark here, for later reference, that the relation m > m, is not used in
deriving the result stated in the last sentence, which is consequently true without
this restriction.

14. We proceed to show that these values of A and ¢ correspond to real lattices
by actually determining the lattices.

Lemma 7. If the points (x, y), (8, 8), (x-B, y+9) and (x—f, y—3) lie on €,
then = +y,0 = Ta.

Make the substitution (7.1) and note that here ¢ = —}, by the remark after
(7.19). Hence b = —d by (7.10), so we have

(14.1) J@, ) = (€ n) = S F by — Epp—abSip
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But y(&, ) = p(—n, £), and so

(@, y) = flad+pn, y&+on) = f(BE—an, 6&—yy) = f(&, ¥') ,

say. The transformation from z,y to 2, ¥’ is an automorphism of =R, and so, by
Lemma 6, must be included in ' = +2, ¥y’ = +y and 2’ = 4y, ¥y = 4z, with
any choice of signs. We easily find that @' = +=, ¥’ = +y; 2’ = 42, ¥ = Fy

’

and 2’ = +y, y = 4+ each imply « = f = y = J = 0, which is impossible.

Finally, the automorphisms x' = 49,4’ = Fx give 8 = +y,d = F«.

Lemma 8. If —1 <m < —L, there exist unique numbers p and q, with p > q > 0,
such that
fp, ) =flo—q. p+q) = 1.

Further, q = 0 only if m = —1.
We have
(14.2) pr4-6mplgi4qt =1,
(P—@)*+6m(p*—q*)’ +(p+q)* = 1,

and so

0 = (p—q)*+6m(p*—¢*)’+(p+q)*—1

= (2-+-6m)(p*+6mp?e?+q*)—12p%*(3m?>+2m—1)—1 |
giving
1
(14.3) p2q2 - 6m+ = 5
12(3m—1)(1+m)

say. If m = —%, K =0 and p = 1, ¢ = 0. Excluding this case, we have K > 0

and, substituting for p? or ¢? from (14.3) in (14.2), we find that p? and ¢* are roots of

S (6mK—1)+K2=0.
This gives
B \ L 3(2~3m)i\,,f’[5(7—3m)(1—3m21
£ = 3{(1—6mK) +V[(1—6mK)?—4K?]} = = 1301 3m) (L bm] .

The values of { are real and distinct, since (7—3m)(1—3m) > 0. Also, 2—3m > 0
and (1—3m)(1+m) > 0, so to show that { > 0 it suffices to prove that

9(2—3m)? > 5(7—3m)(1—3m) ,
i.e. (bm+1)2> 0,

which is true. This proves the lemma.
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We thus have a lattice, say L,, given by

(14.4) €= pé—qn, Y =95+,

which, by Lemma 8, has eight points on ‘¢, namely (p, ¢), (—¢, p), (p—¢, P+9),
(p+q, p—¢q) and their images in 0. The determinant of this lattice is 4 = p2+q?
and, from (14.2) and (14.3), we find

5
(14.5) 4% = (p*+¢?)* = pt+6mp*P4qt+-2(1—3m)p*g? = ————~ =/, .
6(1+m)
The lattice L,, then, satisfies the conditions we found above for a minimum, and all
such lattices will be given by the transforms of L, by the automorphisms of “R. As
before, we find in this way only two distinect lattices, L, and its image in the y-axis,

say L.

15. It remains to show that there are no lattices of type 1I, other than L, and
L,, with A < A,. We have, from (8.5),

YA, e)—P(A, —%) = 16¢3—3¢2+6¢c—+120 —F(6c+1)1A2

1(6c+1)(8c2—Y 12527 12)
= H6e+1)Z,

l

say, and so

(15.1) YA, ¢) = WA, —1)+36cL1)Z .

Now I and A, are both strictly decreasing functions of m for m < 0, and so, since
m> —4,
2I4; < 2($)(3) =17 .

Recalling that, by (8.2), 6¢c+1 < 0 for lattices of type II, we have, if 0 < 4 < 4,,

Z = 8c®—1(6c+1)4-L2—2112

> 842742 > 02745 > 0.

Again, we find
108¥(A, —3) = 432JA3+1801A1%—125
= 432J(A— AN A—A)(A—A3)
<0,

for 0 < A < A,. Then, from (15.1), we have ¥(A,¢) < 0if 6¢c+1 <0, 0 < 4 < 4,,
with equality only if A = A,, ¢ = —}, which is the required resuit.
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16. It follows now that A* = A, when my, <m < —1%, and so we have the
following result, which we put in the form of a lemma, as we will later prove it

true for the range —% <m << —} and give the complete result as a theorem.

Lemma 9. If my < m < —1, there is a point x, y, other than the origin, of every
lattice L of determinant A, such that

|zt + 6may? 4yt < &(1-+m)A42.

This is the best possible result, the equality sign being required if, and only if, L is
proportional to one of the lattices L, or L.

The critical form, say w,(£, %), corresponding to the transformation (14.4) will
be given by (14.1) with the appropriate value of 6. Substituting in (7.4), we find

b = —(1—3m)pg(p*—q?) .
Hence
(16.1) po§, m) = E—h&n—EnL-héP -+t
where
(16.2) h = —4b = 4(1—3m)pg(p*—q?) = 0.

We determine & by putting h = —4b = 4d, 42 = A, and ¢ = —{ in (7.13), giving

(16.3) 3h2 = 12143—13 .
Thence
ah? — 25(143m?)—39(1 +m)? _ 2(6m—-1)(3m-—T7)
3(1-+m)? 3(1-f-m)? ’
and so
(16.4) h = 3(1_1Hn)\/{2(6m+1)(3m—7)} .

We may now interpret the result given by Lemma 9 in the light of our intro-

ductory remarks, and we again state the conclusion as a lemma.

Lemma 10. Let (&, 1) be any binary quartic form of discriminant <), which is
transformable into the standard form x*+6may?4y* with mg < m < —%. Then there
exist integers &, n, not both zero, such that

(&, 7)) < L(14m)(1—9m2) -+ .

This is the best possible result, the equality sign being required if, and only if, (&, 7)
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is equivalent to a multiple of the form
volf ) = E—hEn—EmPLhént ot

where h ts given by (16.4).

17. To complete the discussion of forms with four distinet complex roots, we
must now consider the lattice-point problem for —1 < m < m,. In this case, the
methods used by MORDELL (6) to deal with a certain type of non-convex region
may be employed to obtain the best possible result. His general theorems cannot
be applied directly to this problem, since his boundary curves have by hypothesis
no real finite points of inflection, but we shall find that the same ideas are successful
here. We shall follow closely the details of Mordell’s presentation.

The result we find is that Lemmas 9 and 10 still hold for the complete range
—3} <m < —4%, and we prove this by showing that, for —} < m < m,, every lattice
of determinant A, has a point, other than the origin, in the region R, and, further,
that this is an inner point except when the lattice is L, or L,.

We first prove some results required later. We suppose, unless the contrary is
stated, that —4 < m < my, = —0-259,

Lemma 11. 1 <p < 3.

Write r = ¢/p and so p*f(1,7) = 1. By Lemma 8, p > ¢>0,i.e. 0 <r < 1, 0
fll,r) = 14+6mri4ort = 14-r3r2+6m) < 14-72(14-6m) < 1,

5 5 81 3
and hence p > 1. Also, p* < (p?+¢?)? = m%< Z<—lg, and so p <§-

Lemma 12. 0 <r < }.

As above, r > 0. Also 7 = K/p* < K, where K = p?%? is given by (14.3). But

K 1 4(6m-+1)—3(3m—1)(1+m) _ (7—3m)(1+43m)
16 48(3m—1)(14-m) T 48(3m—1)(1+m)

H

and the result follows.

Lemma 13. If —} <m < —}, hin (16.4) is a strictly decreasing function of m.
Further, 0 < h < 2, and these are the best possible bounds.
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We have k> 0 by (16.2), the value 0 being attained when ¢ = 0, i. e. when
m = —}. Both I and A, decrease strictly if m < 0, and (16.3) shows that A does

the same. When m = —3§, (16.4) gives 2 = 2 and so £ < 2 for m > —}.

Lemma 14. If —L <m < m,, then h > 14r+r?.

After Lemmas 12 and 13, it is sufficient to prove h(my) > 141 -, = 1-3125.
Putting m = m, = —0-259 in (16.4), we find A(m,) = 1-320... > 1-3125,; this
proves the lemma.

18. We must now examine our geometrical configuration more closely. The
following discussion will be aided by reference to Fig. 1.

The lattice L, has the points (p, q), (p—q, p+9), (—4, p), (—p—9, p—9q) and
their images in O lying on 6. These points define a square “f;, of which the vertices
and the mid-points of the sides all lie on 6. Further, the square f, which is the
image of f, in the y-axis has the same properties. The area of each of these squares
i3 4(p>+q?) = 44,.

We denote by “R, the closed region bounded by the line joining the points

Y
7
G040 2]
(~/7fq,/7«q)/ &3 C\(a q,P+4 :r
_______ -
@.p &dz
-p-4.0-00X AR
N / <\
Wy o}
=)
2 |
AN
R
.
g
.0
py=9= R,
: 0 — LA (4,/0,0) x
/ w~q
/ : il &,
' ”/': A
/ i
§ (B+g,-+)
—_—
=

Fig. 1. The region |r* —2x%%4-y%| < 1.
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(p, ¢) and (p-+gq, —p+q) and by the arc of € between these points'; and by R,
the image of this region in the z-axis. Similarly, define SR, and “R, in terms of the
points (—¢, p) and (p—q, p-+q), and let “R,, and ~R,, be the regions common to
Ry, R, and R, R, respectively. Finally, let “R; be the closed region bounded by
the straight line and the arc of ‘G each joining the points (p, ¢) and (p, —q); and let
“Re be the corresponding region for the points (—g¢, p) and (g, p).

It is convenient for some purposes to transform the variables «, y by the linear
substitution (14.4). Then the equation of ‘¢ is y,(&, #) = 1, while the square &,
becomes the square |£] <1, |4/ < 1. The line joining the points (—g¢q, p) and
(p—q, p+q), the equation of which is py—qx = A,, transforms into 5 = 1. This line
meets ‘¢ in points with & = 0, 11, and so in a fourth point with & = A, by (16.1).
Then plainly the segments of this line with —1 < £< 0 and with 1< & < A4 con-
sist of inner poihts of “R, since, by Lemmas 12 and 14, 2 > 1-4-r-7% > 1; while the
segment 0 < & < 1 lies outside R. 4

We will be concerned later with the parallelogram -# defined by the lines
py—qx = +A,, x = +p. This parallelogram lies between the same parallels as the
square __f, and has an equal base, so its area is also 44,. We show now that its vertices
are inner points of “R, and for this it is sufficient by symmetry to consider the
vertices lying on the line py--gx = 4,, i.e. 5 = 1. The lines z = +p transform
into p§—qy = +p, that is & = +1-+ry, and so the vertices in question are given
by é=414r,#=1.8ince l < 1+4r < l4r+rt<hand —1< —14r< —141 <0,
these points lie on the segments of 7 = 1 shown above to consist of inner points of
R, which is the desired result.

We note here that the region “R contains the square |z| < 1, |y| < 1. For if
[} <1, ly] <1 and, e.g., 2* > y? we have

0 < flz, y) = x*+6mady?ty* = x*-Fy2y?4-6ma?) <at <1,
since 6m < —1; and the same result clearly holds if x2% < 2.

19. We require now some classical results in the geometry of numbers, and we

state them here, without proof, as lemmas.

Lemma 15. Any parallelogram with centre at O and area 44 contains a point
other than O of every lattice of determinant A.

1 Since @ is a closed curve, this description is really ambiguous; we shall always mean the
shorter arc.



The Minimum of a Binary Quartic Form (I). 289

Lemma 16. If P and Q are any points of a lattice of determinant A, then the area
of the triangle OPQ is inA, where n is an integer.

Lemma 17. If a triangle OAB of area }A contains two independent points P
and Q of a lattice of determinant A, then P = A and @ = B, or vice versa.

20. We suppose now that L is any lattice of determinant 4, which has no point
other than O as an inner point of “R. Our result will follow if we show that L is either
L, or L,

Lemma 18. There is a point of L in one of the regions R, “Rs; and also in one
of the regions %4, 9{5-

The parallelogram P defined above is of area 44, and so, by Lemma 15, con-
tains a point of L other than 0. But every point of = is an inner point of “R, except
for those points in the regions R, and <R, and their images in O. This proves the
first part of the lemma, and the second part follows similarly on considering the
image of <P in the y-axis.

Lemma 19. There is a point of L in one of the regions Ry, Ra,.

Suppose this is false. Then, by Lemma 18, there is a point of L in each of the
regions R, R,, and by symmetry also in each of the regions R, “R,. Let us denote
the points of L in R,, Ry, Rs, Ry by 4, B, C, D, in that order. Then all these
points are distinct, for if, for example, 4 = B, then 4 is in “R,,, contrary to hypo-
thesis. Also, plainly no two of the points are collinear with O. Thus we have five
points O, 4, B, C, D of L, and these will be defined in that lattice by pairs of integers.
But a set of integer pairs can have only four different residue pairs modulo 2, and so
two of our five points must have the same residue pair. It follows that the mid-point
of the join of these two is a point of L. We proceed to show that this is impossible.
By symmetry, it is enough to consider the mid-points of the lines 04, AB, AC, AD,
BC; denote these points by 8,7, U, V, W respectively.

The points A and B lie in the triangle with vertices O, (p+¢, —p-+¢) and
(p+9q, p—q), of area p*—q¢? < p*+q? = A,. Hence, by Lemma 16, the area of the
triangle OAB = 14,, and it follows that S and 7' are not points of L.

Again, by Lemma 17, U cannot lie in the triangle with wvertices at O,
(p+q, —p—+q) and (p, q); for the area of this triangle is 14, and it contains the lattice
point 4, so U would lie at (p, ¢) in “R,,, contrary to hypothesis. Similarly, U cannot

19— 642138 Acta mathematica. 84
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lie in the triangle with vertices O, (p—q, p+¢) and (—g¢, p), which contains C. Thus
U must lie in the triangle with vertices O, (p, ¢) and (p—g¢q, p-+¢), and not at a vertex.
Since it is then an inner point of R it cannot be a point of L.

In a similar way we see that V must be a point, other than a vertex, of the
triangle with vertices O, (p, ¢) and (g, p); and W a point, not a vertex, of the triangle

with vertices O, (p-+¢q, p—¢) and (p—q, p+q). It follows that V and W are not
points of L.

This completes the proof of the lemma.

21. We may suppose, to fix our ideas, that the lattice L has a point P’: (z’, ')
in the region “R,,. Our object now is to establish that L then has a point other
than O in the interior of “R, a contradiction, unless P’ is at (p, g) or (p, —¢q) and L
is L, or L,

Lemma 20. There exists a line Q' R’ which is equal and parallel to OP' and whose
end-points @', R’ lie on the arc of G joining the points (—p-+q, p+q) and (p—q, p+q).

By symmetry, it is sufficient to prove this for ' > 0. Take a point R': (,, y,)
coinciding initially with the point (p—gq, p-+¢), and through R’ draw a line R'Q’
equal and parallel to P’O. Then the point @': (z;, y;) plainly lies in the triangle
formed by the lines y = p4-q, py—gxr = 4, and pr+qy = 0. (This is really the
triangle with vertices O, (4,/p, 0), (p, q) reflected in the z-axis and displaced). A
fortiori it lies in the region bounded by the straight line and the arc of G each joining
the points (—p--¢, p+¢) and (p—gq, p+4q). Suppose now that R’ is moved con-
tinuously along the arc of ‘G to the point (0, 1), the line @'R’ remaining parallel to
OP’; during this motion y, varies from p--g to 1. Since y'+y; = y; and ¥ > 0,
we have y; < y,. Hence when R’ is at (0, 1), y; < 1. Now, for every point (z, ) on
the arc of ‘€ concerned, y = 1, and so the point @' has left the interior of the lune.
It follows that @' lies on the arc at some stage of the motion described. This position
of the line 'R’ satisfies all the conditions of the lemma.

Lemma 21. If a line parallel to Q'R’, and nearer to the origin than it, meets G
tn points between Q' and R’', then the length of the intercept so formed is less than Q'R’.

Since R is a star domain, the arc of ‘G joining the points @', R’ lies entirely
within the angle Q'OR’. Hence the intercept by ‘G on a line parallel to Q'R’, and

nearer to O than it, is less than the intercept made by the arms of this angle, which
is less than Q'R’.
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Let OP’ meet G in the point P, and let Q, R correspond to P as @', R’ do to P’.
Further, let A4 be the area of the parallelogram OPRQ.

Lemma 22. 4 > A1,

with equality only when P is at (p, q) or (p, —q).

The coordinates of ¢ and R are clearly continuous functions of the coordinates
of P, and hence so is the value of A. The lattice generated by the points B and
P on € also has the point R—P = @ on ‘€. Hence (§ 7) its determinant A satisfies
®(A, ¢c) = 0, with 4 = A% If A = A,, we have shown in §§ 13, 14 that the lattice
must be L, or L;; that is, 4 = A, when, and only when, P is at (p, q) or (p, —¢).
Hence 4—4, has the same sign for all P in the range. We determine this sign when
P is the point (1, 0) and 4 = A,, say. By symmetry, R is then the point (3, 4,),
and so

Ab46midi4+L—1=0,
giving

Ay = HY (9m?4-15)—3m} .
It remains then to show

HV/(9m2+15)—3m} > —5w,

6(1+m)
i e. 3(14m)y (9m2+15) > 9m(1+m)-+10,
i.e. H1+m)2(9m2+15)—(9m2+9m-+10)2 > 0,
ie. 5(7—3m)(1+3m) > 0,
which is true.
Now let I’ be the line
(21.1) 2y—y'x = A4,,

parallel to OP' and distant 4,/OP’ from it.

Lemma 23. The line I' meets € in points E', @', H', F' in this order, with
E'F" > 20P'.

It is sufficient to show that the intersections of I’ and the lines x = +4,/p
are inner points of K. For then the x-component of E'F’ > 24,[p > 2z, since 4,/p
is the maximum abscissa of the region “R,,. By symmetry, we need consider only

the intersection of ! and xz = 4,/p, say the point (4,/p, Y). We show that the
maximum and minimum values of Y are positive. It is then enough to prove that
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(4,/p, Y) is an inner point of “R for these two values of Y, since, by symmetry, the
line x = A,/p can meet € in at most two points above the z-axis.
We consider first the maximum value of Y. From (21.1) we find

n 1 l 7
y o e (1)

px’ ' p

where t' = y'/x’. Hence, for a fixed value of ', Y is greatest when 2’ is least, that is

when P’ is on ‘G. Again, for given 2’ the greater value of Y arises from ¢’ > 0. Then

ay Az<dy’ p+y’)

dx’  pax’ e ' /]’
Now

dy’ 14 3mt”?

dx'  t(7+3m) e

for 0 <t <q/p=r<1,since 143mt”*>14+3m>0 and t’+3m <r2L3m<f—2 < 0.
Hence dy’/dx’ > a'[y’, by Lemma 1. Since the region “R,, containing P’ lies below
the line py—qx = 0, we have z'/y’ > p/qg = 1/r > 4. Again, since 2’ > 1 and
¥ <gq, (pt+y)r <p+g<2p<3. It follows that dY/da’ > 0, and so Y is a
maximum when x" = p, y" = ¢, that is when I is the line py—qx = 4,. Transforming
to &, n coordinates, this line is = 1, and x = 4,/p becomes p&—qn = A,/p. Thus
for the point of intersection we have

_atdfp  pgtpite
P

¢ = 1+4r-r2.
But by Lemmas 12 and 14, we have 1 < 147472 < k, and so this point is an inner
point of “R.

Next, the value of Y for given ¢’ is least when z’ is greatest; and then, for given
«’, for the negative value of y’. Hence we may suppose P’ lies on the line px—qy=A,,,
and then dy’/dx’ = p/q. Thus dY/da’ > 0, as before, and so the minimum value of ¥
occurs when P’ is the point (p, —¢) and I’ the line py+-gx = A,. It is convenient to
consider, instead of (4,/p, Y), the point (—A,/p, ¥), which will here be the inter-
section of the lines py—qx = A,, x = —A4,/p, that is of y = 1 and p&—qn = —A4,/p.
For this point we find, as above, § = —1+r—72 But —1+4r—12 = —14+r(l—r)> —1
and —1-fr—r? < —1+7r < 0,50 we have —1 < & < 0, and it follows that this point,
too, is an inner point of “R. Clearly Y > 0 for this point, and so also for the maximum
Y. This completes the proof that E'F’ > 20P’.



The Minimum of a Binary Quartic Form (I). 293

Since the line I’ meets x = 0 in a point with y = A,jx" > A,/(A3/p) = p > 1,
and so outside <R, it follows from the above that I’ meets G in two other points,
say G', H', and that the segment G'H’, except for the endpoints, lies outside .

Let the elements I, G, H correspond to the point P as the dashed elements do
to P’.

Lemma 24. G'H' < OP',
with equality only when P’ is at (p, q) or (p, —q).

It is clear that G’H’ = OP' when P’ is at (p, q) or (p, —¢q). Suppose then that
P’ is not either of these points. The line QR is distant 4/OP from the line OP’ and,
by Lemma 22, we have 4/OP > A4,/OP > A,/OP’. Then, using Lemma 21, OP" > OP
= QR > GH > G'H’, the required result.

Lemma 25. Every lattice L of determinant A,, other than Ly or Ly, has a point
other than O in the interior of the region “R.

This will follow if we show that the lattice L, which by definition has no point
other than O in the interior of “R, can only be L, or Lj.

Now the lattice L, which contains the point P’, will have lattice points on the
line I’ distributed at intervals equal to OP’. The intercept E'F’' will contain in its
interior at least two points of L, since E'F’ > 20P’, by Lemma 23. If L is not L,
or L;, Lemma 24 gives @ H' < OP’, and so both these points cannot lie in the inter-
cept G"H’. Thus at least one of these lattice points is an inner point of SR, contrary
to the definition of L, and the result follows.

Lemma 26. The lattices L, and L, have no point except O in the interior of R..

It is sufficient by symmetry to prove this for the lattice L,. This is equivalent
to showing that u,(&, 1) = 1 for all integers &, # except & = 5 = 0. Then we have

Yo(&, 1) == E4—h&y—E22 L héyP ot
= {28 — P 260+ (2— 1) én(E—p?)
= (2—&—n+(2—h)én(E2—7?)
>

(&2 —&n—n?)’
1,

%
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if &n(&2—x?) = 0, since 2—A > 0 by Lemma 13. If &(£2—x?) < 0, we have
vo(§, ) = &=+t —hén(E—n?)
2 54_527]2_}_7]4
=1,
since & > 0 by Lemma 13,
We have now completed the proof that Lemma 9 is valid for the extended
range, and we state the result formally as

Theorem 3. If —} <m < —1, there is a point x, y, other than the origin, of
every lattice L of determinant A, such that

|xt4-6maty? -yt < &(1+m)A?.
This ts the best possible result, the equality sign being required if, and only if, L is

proportional to one of the lattices L, or L.

As before, this at once yields

Theorem 4. Let y(&, ) be a binary quartic form with real coefficients and <) > 0,
and either FE <0 or K < 0. Further, let ? < 0, 352973 < 393?2, so that m given by
(4.5) satisfies —% < m < —%. Then there exist integers £, n, not both zero, such that

6(1+m) .,

(& )| < 5(1_9ma)"

This is the best possible result, the equality sign being required if, and only if, w(&, n)
18 equivalent to a multiple of the form

po(&, ) = E4—RhEY—E22 L héEP 404,

with 0 << h < 2. The value of h as a function of m is given by (16.4).

22. We add here a note on the results previously known for quartics with four
distinct complex roots. We have remarked already that the best possible lattice
constant for the corresponding region “R was given in the case m = 0 by MORDELL (7)
and for 0 <m < } by DERRY (8); in these cases the region is convex. In neither
work 1s the arithmetical consequence explicitly stated.

The result given by Juria (5) is essentially that a quartic form

W&, 7)) = a(é—Byn) (E—Bin)(E—Bam) E—Ban)
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where B, B, are different complex numbers and B;, f, their conjugates, is equivalent
to one whose first coefficient A, satisfies

[ Aol < lal(B1—B2) (Bi—5) -
In order to compare this with our result we must put it in the same shapc. Let
flx, y) = xt+6maty®+y* be the standard form with |m| < } which gives +y(&, %)
by means of a transformation of determinant 4. Now the expression a(8,— f,)(8;— )
is an irrational invariant of y of index 2. For the standard form its value is |8, — 8,]2=
4/8,12 = 4, so we have

|al(B1—Ba) (Br—By) = 442

It follows that Julia’s result is equivalent to the statement that every lattice of
determinant 4 has a point, other than O, in the region

@, ) < 447
This is the result we would obtain immediately by noting that the region R contains
the circle z24y? < 1, and it is naturally a very crude estimate for the general
quartic form of the type considered.

Reference might appropriately be made here to a paper by MAHLER (17). In
this he finds an asymptotic expression for a quantity M. (J) as J - co. In our
notation M (J) = k*(m)(1—9m?)~%, and J — oo is equivalent to m — } if ¢ = +1
and m — —1% if ¢ = —1. His results can thus be deduced immediately from our
values of k*(m). It may be noted that the limits of M (J)/J% he gives are in fact
those appropriate for the limit regions (that is, really those dealt with later in
Theorem 6), namely 5 Vi

He states further (without proof) that M. (J) > 1(432)s, and suggests that the
exact lower bound may be attained for J = 1. A little calculation® shows that the
exact lower bound is attained for m = —0-:063... (J = 1is m = 0) and its value
is 1-034..., about twice the above estimate.

I wish to express my gratitude to Professor L. J. Mordell for suggesting this
problem to me and for his advice in removing obscurities from the original manuscript.
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APPENDIX I

We might, of course, have taken as standard form for a quartic with four distinct

complex roots the canonical form with m > %. If this is done, some of the details

are

rather lighter (for example, in Lemmas 4 and 5 we really made a transformation

to this case). It is perhaps worth remarking that the results given in Theorems 1

and 2 then take a slightly simpler shape, although Theorems 3 and 4 remain unaltered.

We

state below the result corresponding to Theorem 2.
We define the new value of m by

3\
cos g = —?(?—7) , O<gp<um,
1
(4.5") m = — cot ¥ .

Our result then becomes
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Theorem 2'. Let (&, n) be a binary quartic form with real coefficients and
P> 0, and either FE <0 or K < 0. Further, let 3527% > 39372 if °f < 0, so that m
given by (4.5') satisfies 1 < m < I. Then there exist integers &, 5, not both zero, such that

4{y/(9m2+15)+ 3m} e

<
Y= S ey

This is the best possible result, the equality sign being required if, and only if, p(&, n)
15 equivalent to a multiple of the form

pil&, m) = EF 28 (A4 1)EmR A& 0t
with 2 < A < 4. The value of A as a function of ‘m is given by

A = H1—-9m2+3my/ (9m2+15)} .

APPENDIX II.

Since the calculation of the minimum of k*(m)(1—9m?2)-% (§ 22) is rather tedious,
we give the details here. We make the substitution

_ 3-K
- 343K’

m

and write

E*(m)(1—9m?) -+ = C(K) .
Then we find (cf. Theorem 2')
O(K) = Cy(K) — £V(K*415)+ K (K> —1)F

for 1 < K < 7; and

O(K) = Cy(K) = 3(K+3)(K2—1)7%,
for K > 7.

Differentiating, we have

CYK) = 2(K2—1)-${3(K*—1)—2K}

(K2—1)-${(K—}e—
>0, for K > 7.

L V(EH15) K

VK 15) {3(K2—1)—2KY(K2+15)},
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and so C(K) = 0 if, and only if,

3(K?*—1) = 2KV/(K?-15)
i. e. 5K+—178K2{9 =0,
i.e. 5K? — 394-6y/41 .
Since K > 1 we must take the upper sign, and we find K2 = 15:4837..., so
K = 3-9349... and m = —0-0631.... We see without calculation that this is

a minimum, since C(K) - oo as K > 1 and C,(K) - co as K -» co,
For this value of K we have
4 2Ky(K24-15)-+2K?
15 2K(K:—1)
2(56K2—3)

15K (K2 — 1)1
— 1-0344. .. .

CI(K) =



