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Introduction

It is well known that the regularity of minimal submanifolds can be reduced to the
study of minimal cones and hence to compact minimal submanifolds of the sphere. A phe-
nomenon related to regularity was discovered by Bernstein [3] in 1915. The Bernstein
Theorem says that an entire solution to the minimal surface equation in two variables
is a plane. An answer to the extrinsic rigidity question of whether a minimal submanifold
which lies in some neighborhood of a standard sphere must actually be a standard sphere
is of interest in relation to the above topics as well as in its own right.

Efforts to generalize Bernstein’s Theorem were made by many authors. The work of
Simons [16] completed the proof in codimension one up to dimension 7. Bombieri, de
Giorgi and Guisti [4] gave a counterexample in dimension 8. For two-dimensional graphs,
Osserman [14] proved a version of Bernstein’s theorem assuming the normal vectors omit
a neighborhood of the sphere. Simons [16] proved that a minimal cone whose normal planes
lie in a sufficiently small neighborhood is a plane and hence Bernstein’s theorem is true
for a graph whose normals satisfy the same condition. Reilly [15] enlarged the neighbor-
hood. His estimate says that if a cone has the property that the normals satisfy (¥, 4> >
Vm for some fixed k-plane A, then the cone is a plane. For two-dimensional
minimal graphs Barbosa [2] improved the neighborhoods to an open hemisphere. More
specifically, Barbosa showed that a compact minimally immersed sphere in §**2 such that
its normal satisfy (N, 4> >0 for some fixed A4 is totally geodesic. The theorem was also
proved by S. T. Yau [17] for 82 in $* and by Kenmatsu [10] under the stronger assump-
tion of a bound on (N, 4>. Lawson and Osserman [12] constructed a series of examples of

(1) Supported in part by NSF grant MGS 77-18723 A0l.
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minimal graphé which are cones regular away from the origin, thus showing that Barbosa’s
Theorem fails to hold in general dimensions and codimensions and regularity does not hold
for Lipschitz solutions to the minimal surface system. This paper deals with the study of
minimal cones whose normals satisfy conditions of this type. We improve the estimates of
Reilly and we generalize Barbosa’s result.

In the two-dimensional case, the technique is to use a local computation to show
log (W, A is a superharmonic function whenever (¥, 4> >0. In the general case for M*
a compact minimal immersion in S"** we show if (N, A)>>cos”(n/2 V2p) where p=
min(k, n+1), then M is a totally geodesic sphere. The first example of Lawson and Osser-
man occurs in dimension 3, codimension 3. In that example, (N, 4> =1/9. Reilly’s number
is 2/V/7~0.74 and this new estimate is cos? (/2 V/6)~0.51. This estimate improves previous
ones in all dimensions and codimensions. The technique is to use facts about harmonic
maps and information about the Grassmannian. One fact is that the Gauss map of a sub-
manifold of R” with parallel mean curvature is harmonic. The other is that the composition
of a convex function with a harmonic map is subharmonic. The idea is then to determine
the neighborhood of a point in the Grassmannian on which the distance function is convex,
and compare this function with the Gauss map to give a subharmonic function on 3.

I am indebted to my advisor H. Blaine Lawson for his unending support, encourage-
ment and advice. I thank S. Hildebrandt for pointing out an error in an earlier version.

1. Preliminaries

We first establish basic notations.

Let M™ be a Riemannian manifold. We define a submanifold M" of M™ to be an
immersion f: M™M™ of a differentiable manifold M. For any point p in 3, T, M denotes
the tangent space to M at p and X, M the set of locally defined vector fields on M near p.
The metric in the tangent space T, M is denoted by -, *>. With reference to a submanifold
M of M, we may write T, M =T, M + N, M where N, is the normal space to M at p. With
this splitting, X = X+ X¥ where X € T,/ and superscripts 7' and N denote the projection
onto T, M and N, M respectively. The connection V on M can be expressed as

Ve¥ = (V2 Y)'+ (Ve Y)Y
for X and ¥ in X, M. The induced connection V on M is given by
V¥ =(V Y)T
for X and Y in X, M. The curvature tensor & or V on M is

RX, Y)Z =VVyZ-VyV2Z2-YVix. 12
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and the sectional curvature K(X, ¥) for orthonormal X and Y is
K(X,Y)=<(R(X, Y)X, Y.
Note that R=0 for M =R™,
The second fundamental form B on M is a symmetric bilinear form on T, M with

values in N, (M) defined by
By(X,Y)=(VgY)"

The trace of the second fundamental form, tr B,, pointwise defines a normal vector H,,.
H is a smooth normal vector field on M called the mean curvature vector field. H, is given
locally as follows. Let e, ..., €,, ¥y, ..., ¥, be an orthonormal frame on M such that e, ..., ¢,
is a frame on M. For peM,
n
H,=tr B,= 121 (Ve €.

If H is a parallel section of the normal bundle, i.e. if (V x,H)"=0 for all X;, €T, M, then
we say that M has parallel mean curvature. M is a minimal submanifold if H=0.

For notational convenience, we define Afj=(V,,v,, &, = — <v,, V,,e,>, where ¢, and v,
are as above. With this definition of A§; we have

B,(e;, ¢)) = — g ij(p) va(D).

The hjj are the components of B with respect to the chosen bases, with a sign change.
Note that A = hfj. The minimality condition on M is 3, hfi =0 for a=1, ..., k. We adopt the
notation that roman indices ¢, §, { run from 1 to »n and Greek indices «, 8,9 run from 1 to k.

We will primarily be considering minimal submanifolds of the sphere. S¥** will always
denote the standard unit sphere in R****1. For any n-dimensional submanifold M" of §**,
the cone CM on M is the (n+1)-dimensional submanifold of R**"*! given by CM =
{rz|x€M,0<r<1}. M and CM have many of the same geometric properties. Define an
orthonormal frame on R**"**! by ¢,, ..., €415 V1» - Uy Where ey, ..., €, i8 a frame for M, ¢, ,,
is the position vector for M and v,, ..., v, gives the normal space to CM in R****1, Note
that vy, ..., 4 also gives the normal space to M in S¥** Compare the second fundamental
form B on M as a submanifold of the sphere and B on CM as a submanifold of Euclidean
space:

B(X,e,,) =0 for XeT,CM
B(X,Y)=B,X,Y) forX,YET,M.

Therefore we will not distinguish between the second form on M and on CM. Note that
M is minimal in 8*** if and only if CM is minimal in R**"*2,
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The Laplacian of a function ¢ on M is defined by
AM‘»D:;elei(p_ve;et(p'

It is clear from this definition that if ¢ is extended to be constant on radial lines on CM,
we have Ay =Agyy,.

For simple k-vectors N=uvy A... A0, A =1, A ... Ay, the inner product is defined as
usual by (N, 4> =det({v,, u,)).

We investigate (I, 4), where N is the normal k-plane field on M and A4 is a fixed
simple k-plane. If (N, 4>>0, log(N, A> is well-defined. To compute A log{N, A> on M
or on UM we use the standard fact that
(N, AY AN, 4> — |VKN, A

(N, 4)* )
Since A4 is fixed, A(N, 4>=(AN, A> where AN means Laplacian with respect to the con-
nection on k-vectors induced from the Euclidean connection V. Therefore to compute
Alog(N, A, we must determine (AN, 4 and |V{(N, 4>|2.

AlogdN, 4>=

LreMuma 1.1, For a minimal immersion M in R**" with normal N and a fized k-plane 4

AN, A> = ~|B|YN, A>+ 5 ChERGo A oo AegA oo Ay oo A, A
i
| V<D, A>|2=;(<z RGoi A oo Ay A oo Ay, AD),
o

where e, and e, are in the « and f position respectively and |B|2=7, , (k%)

Proof. Choose an orthonormal basis as above with the additional assumption that
(Vo)™ () =0 and (V,0,)"(p)=0. Since Vo, A ... Av) =0 A.o. AV, 00 A ... A vy, Where

V..v, oceurs in the a position in the wedge product,

AWy A oo A1) =2 Vo Ve (g Ao Ay)
i

= 2 A AVeU Ao AVUBA L A,
f,a+p

+ 20N AV Vv A Ay
fx

=3 A AVU)T A AV ) AL Ay (1.2)
fa%f
+ 20 A AV Ve v) A Ay (1.3)
{,a
+ 20 A AV Vv A LAY (1.4)
{,a

where the terms with v, appear in the « position.
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The following equalities hold for the given choice of frame.
k= <Ve; Vas ej> =hj, —V—e‘ Vo = z hije,
0=, (Vs Vap = 2<ve¢ Vas Ve
for each « so _ o _ B
0= ei<Ve:,'Um Vo) = <Ve; Ve; Vas Vo) + <Ve‘ Yoy Ve; Ve)
= <ve‘ve, Vey Vg + z (hfl)z

les, ¢/1(p) = (Ve )" (P) — (Ve )" () = 0.

Also in R® o
0= Ve‘ Ve, - Ve, Ve‘ - V[e‘. el
8o at p
V.V, =¥,V
and

<ve‘ve‘7jw e/> = el<ve¢ Vs ej> - (ve‘vm ve; C,)
= el<ve,vau ei> =< ve;ve,vau et>'
With these equalities the above terms may be rewritten

(1.2)= D hGhbv, A .. AggAc. A A .. Ay,
i.4.1

a+f
where ¢, and ¢; appear in the « and § position respectively.

(13)= 3 (Ve‘ve"v,, epn A AN Ay
t e

=2 (Ve Vevmepv Ao Ay Ao Ay
i

=2 > h)v.A... N\eyA ... Ay, =0
o i

(14)=73 (Ve Vel 00 A oo A= — 23 (h§)*v A ... A
fx

4

So
AN=—|BPN+ 3 h&hgv, Aoc. AegA oo A Ao Ay
.11

aff

e, and e, are in the « and § position respectively. Also

AZeA A>|2=; (A AVUL A L A, ADY?

=§ (,Z Velus e (o1 A oo Ay A oo Ay, AD)?

=S (SHKOA A A e Ay DY,

ha

where e, appears in the « position. This gives the desired formulae.

3 —802904 Acta mathematica 145, Imprimé le 5 Décembre 1980

33

C]



34 D. FISCHER-COLBRIE

Remark. The above proof actually gives the same formulae for a minimal immersion
M™ in M**" where 4 is a parallel k-plane field and 3, {RB(e,, ¢,)¢;, v,> =0 on M for each j

and o.

2. Two-dimensional case

The fact that a compact minimal hypersurface of the sphere which has the property
that the normal vectors all lie within some fixed hemisphere is a totally geodesic sphere
was first proved by de Giorgi [8]. We prove a statement for complete parabolic minimal
immersions in the sphere which has as a consequence the result for surfaces analogous to
the above.

We now consider a compact surface M2 minimally immersed in 8**2, the standard
unit sphere in R*"*, We will compute A log{N, 4) in the same setting as in the previous
section. Choose an orthonormal frame e,, e, €3, ¥y, ..., ¥ for R¥*® such that e, A ¢, locally is
the tangent space to M2, ¢, is the unit normal to 8*** and v, A... Av,=N is the normal
k-plane to M in §%*2, all considered as simple vectors in R**3. Let A4 be a fixed k-plane in
R**? represented as a simple k-vector by u A ... Aw,,3. We must consider (N, 4>. For
simplicity, we consider instead the equivalent expression { % N, % A), where % : A*R**3—
A3R**® is the Hodge star operator, % N =e,; Ae;Ae; and % 4 = A* =wu, A uy A ug. Further-
more, by the remarks in the previous section, Ay log (N, 4> =Ay log<(N, A>. Hence to
determine Ay,(N, A> we will compute Ay, ¥ N, % 4>. The following Pliicker identities
hold for G, < ASR**3,

LEMMA 2.1, Let ¢, v, and % A be as above where 1=1,2,3 and «, =1, ..., k. Then

ey NegNeg, ¥ AY vy ANvgheg, ¥ A+ v NeyAey, ¥ AD{eg Avgheg, % A)
+{ey Nvgheg, ¥ A){eaNvy Mgy, ¥ A5 =0.

Proof. Let %A=u;AugAug. Then A=egl %A =(eq uy)usA ug—(eq up)u, Aug-+
(e3-us)u; Au, is also a simple vector. Here | denotes contraction. In fact, say e;-u, =0,
then

(23 ) )
e %A= sty Uy — (€5 % )/\(———— -+ .
AN {(eg- uy) ug— €5+ ) %y (ea"‘h)ul Uy
Furthermore, by the definition of contraction, {e; A e, Aeg, ¥ 4> =(e; Aey, e5] % A>. Hence
it suffices to show that for simple 2-vectors

ey Neg, A (v, A, AD + (v, Aey, ApegAvg, Ay +{ey Nvg, A><eg Ay, Ay =0.
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Let 4 =w, A w,; then evaluating the inner products gives
((ey*wy) (e wa) — (€1 Ws) (€2 w1)) (Vo Wy) (Vg we) — (v, W) (v wy))
+ (v, wy) (61 Wg) — (v wy) (€1 wy)) (€27 1) (V5 W3) — (€9 W) (V- wy))
+((eg wy) (Vg wy) — (€1 wy) (Vg wy)) (62 wy) (Vg Wwa) — (€7 W) (v, w,)) = 0.
This equation gives the desired relation. O

ProPOSITION 2.2. Let M be a minimal surface in S¥*2. If (N, A>>0 at a point, then

locally
AlogdN, 4> < —|B|.

In particular, log (N, 4> is superharmonic wherever (N, A>>0.

Proof. Let =N, A)={*N, % 4>.

Let ey, ..., v, be the orthonormal frame defined above. Then e; gives the radial direc-
tion on CM and hfj =<V,,v,, e,y =0 if =3 or j=3. Here V denotes the connection on R**?
and Af; are components of the second fundamental form on CM. Recall when ¢ and j are
1 or 2, the components 2§ for M are the same as for CM. Since

we must determine yAy— | Vy|2. From section 1 we have that

wAw=—‘Blz'lP2+2 Zl ?lhlﬁ2<va¢/\vﬂ/\eas *A>’/’
af;-'lz.k
Vo= ( 3 Hav,NeyAey, % A>+ 12 hiaey A v, A ey, % AD).
{=1,2 a=1,...k x=1,..k%
By Lemma 2.1, we can rewrite pAy to get
Ay —|Vy[P= —|B[*y*+2 Zﬂhi‘l faley Avg A eg, % AD (v, A ey Aeg, % AD
{,a
~2 3 ki ke, Ave Aeg, % Ay {vp Aeg Aeg, % AD
f,a.8
_; (z h?l<”z A € A €, X A))Z_E‘: (z M2<el A Vs A €3, *A>)2

~2 3 hhedv Aeg Aeg, % A) ey Avp A ey, % AD.

taf

The second and last terms cancel and from section 1 we know that three dimensional
minimal cones satisfy >, hfihfh~ — > hhfi so the third term may be rewritten as

2 z hﬁh{’z@a/\ez/\ea» *A><61/\‘Up/\es, *A>
fa B
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Therefore,
Ay —|Vy[ = — | Bf*y* — 3 (S halvaNea ey, % A) =3 hixey Avg Ay, % A))°.
So
Alogy=— IBF—i—zZ (S kv, A ey Aeg, % A —> hile, Avg A eg, % AD)E.
i [ -1

In particular A log < —| B|2. O

A surface M is parabolic if every bounded subharmonic function is constant, We now

have the following theorem.

THEOREM 2.3. If M? is a complete, parabolic, oriented immersed minimal surface in
S**2 such that, for some £>0, (N, A>>¢ on M, then M is a totally geodesic two-sphere.

Proof. We have shown that ¢ =log (N, 4 is a superharmonic function when (N, 4> >0.
Since M is parabolic and (N, 4>>0,log<{N, A} is constant, so Alog(N, A>=0. The
above formula then gives 0 =A log{N, A)< — | B|%. Thus | B|2=0 and M is totally geo-
desic. O

In the case that M is compact it was pointed out by J. Milnor that the condition
(N, 4) >0 implies that M is homeomorphic to 82, hence in the compact case the theorem
gives another proof of Barbosa’s theorem.

In the unorientable case, the following corollary holds.

CoROLLARY 2.4. If M? i3 a non-orientable complete parabolic immersed minimal surface
in 8**2 then for any fixed k-plane A, there is some normal k-plane N such that (N, A> =0.

3. Properties of the Grassmannian

The proof in the general case relies on information about the Grassmannian of k-planes
in (k+n+1)-space in conjunction with some facts about harmonic maps. In this section
we summarize a few properties of the Grassmannian which we will need.

Given a k-plane P we can choose an oriented orthonormal basis e, ..., ¢, for P and an
orthonormal basis vy, ..., v, for the orthogonal complement of P in R**™ The (k+m) x
(k+m) matrix whose columns are ey, ..., &, ¥, ..., ¥,, i8 then an orthogonal matrix O of
determinant +1, that is, an element of the Lie group SO(k+m). The plane P is invariant
under orthogonal change of the basis {e,, ..., e, and of the normal basis {v,, ..., v,,}; it is
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determined up to right multiplication of O by an element of SO(k) x SO(m). Thus G, ,, is
identified with the quotient space

G, n = SOk +m)[SO(k) x SO(m).

It is in fact a symmetric space. There is an involutive automorphism ¢ on SO(k 4 m) given

by 6(0) =808~ where
- Ik 0
s=(7 7.)

and I, is the k x k identity matrix. The subgroup SO(k) x 8O(m) coincides with the identity
component of the subgroup of all fixed elements of g, so G ,, is symmetric.

The tangent space g at the identity to SO(k+m) is the space of skew symmetric ma-
trices which we denote [J(k +m). The Riemannian metric on SO(k -+ m) can be described by

<A, By=}tr A'B = —} tr AB.

The tangent space §) to SO(k) x SO(m) is the subspace [J(k) x [J(m) given by matrices

b %)

where U € [J(k), V € [](m). The orthogonal complement to (k) x [J(m) which we denote
by m consists of matrices of the form
& 7o)
X 0

where X is a (m x k)-matrix. g="1+m is the canonical decomposition of the Lie algebra g.

Let z: 8O(k +m)—~ Gy, , be the quotient map. The differential of 7, dx, at the identity
identifies m with the tangent space to Gy ,. This map defines the metric on G, , at the
identity coset and invariance under left multiplication by SO(k-+m) defines the metric on
all of G ,,. The geodesic through the identity coset with initial tangent X €m is the image
under 7 of the one parameter subgroup ¢% for tER.

LEMMA 3.1. The sectional curvatures K of Gy, ,, satisfy 0SK<2. Ifm=1ork=1then
K=1.

Proof. By a standard formula (see e.g. [5, p. 76]) the curvature K(4B) is given by
[i(4, B]||2 for 4, B€m. First apply the Maximal Torus Theorem so that 4 €m has its (m X k)-
submatrix X in diagonal form with entries 4,,...,4,, where p=min (k, m). B€n hassub-
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matrix ¥ with entries y,,. In this notation it suffices to maximize

P

1
K= 2 W2 (hyn— 4 911)2 +(hyy— 4 ?//1)2,

where 3, ,y5=1 and >, AF=1.

This maximization is an exercise in Langrange multipliers which we omit here, If
p>1 one concludes that a maximum occurs when there are two equal non zero 4,’s and
furthermore that this maximum is 2. Hence 0SS K <2. If p=1 then G, , is just the
standard sphere and it is well known that K =1. O

Definitions. Let f be a function defined on Riemannian manifold M. Define Hf(X, Y),
the Hessian of f, to be the quadratic tensor which assigns to vectors X and Y in T',(HM)

the value

Hf(X, Y) = XY[—~(VxY) f

where X and Y are extended as smooth vector fields to a neighborhood of p. It is easy to
see that Hf(X, Y) is independent of the extension of X and Y and that

Hf(X, Y) = H}{(Y, X).

A function f is (strictly) convex if Hf(-, ) is a (strictly) positive definite quadratic form.
Let g,; M —R be the distance function g,(¢) =the distance from p to q. Let y: [0, oo)—~M
be a geodesic with y(0) =p, then g=9(1,) is a cut point of p along y if the set of ¢ such that

ep(p(1)) =t is [0, o).

Lrmma 3.2 (Whitehead). Let B,(p), the ball centered at p € M of radius r, be contained in
some compact set c= M. Let T =infy.{0,(q): ¢ i3 a cut point of p}. Let x denote the supremum
of all sectional curvatures at points of c. If r<3} min{rn/ Vx, 1} then g} is a sirictly convex
function. In fact, there is an ¢ >0 depending on r such that

Hoy(X, X)>e- <X, X}
for all X and Y in T, M and for all g€ B,(p).
Proof. See Cheeger and Ebin [5]. 0O

We are interested in specializing this result to the case of the Grassmann manifold

Gy..n- We first note that G, ,, is simply connected and » =2.

LEMMA 3.3. For Gy ,,, v>7 where T is as in Lemma 3.2.
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Proof. A result of Crittenden [7] shows that on a simply connected symmetric space,
the first cut point along a geodesic is a conjugate point. By standard comparison theorem
arguments, the first conjugate point cannot occur before the distance 7 is achieved. There-

fore T =z. O

The rest of this section is devoted to computing the maximum of the inner product
between a fixed k-plane 4 and any other k-plane N on the boundary of the ball B, 5,5(4)
in G, ,. This computation gives a comparison between the intrinsic distance on G ,, and
the “sphere” distance, i.e. the distance on the sphere in A*R**™, The boundary B, z(4) is
given by moving along any geodesic emanating from 4 for time ¢ =z/2 V2. The following
remarks show that we need consider only certain geodesics to maximize {-, +>.

The inner product (N, 4) is the usual one defined by (N, A> =det ({u,, v;>} where
N=viA..Avy, A=y A ... Ay, for u,, v,€ER**™ Computation will be simplified by noting
that the inner product is invariant under isometry. More precisely, if 4 and N are in G, ,,
and P is in SO(k+m) then P acts as an isometry of G, , by left multiplication and the
definition of inner product gives that (N, A>=(PN, PA>.

For simplicity, fix 4 to be the identity coset. The tangent space at 4 is given by

0 —X . .
m={(X 0 ) X is an (m x k)-matrlx}.

By standard facts about G, ,,, one can choose a maximal flat totally geodesic submanifold

T of G, containing 4 having tangent space at A of the form

’ 0 - tX . . . . .
m = {(X 0 ) : X is an (m x k)-matrix with entries ;=0 for z#y}.

By the Maximal Torus Theorem any geodesic y can be translated into a geodesic y’ contain-
ed in J. By the invariance of -, - under isometry, we have {y(x/2 V2), 4> = <y'(n/2l/§), 4>,
Hence in order to maximize (N, 4> on the boundary of B,.z(4), it suffices to maximize
{N, A> over the set

L = {J N Buays(4)}.

On this set the inner product can be explicitly computed.

We compute the geodesics 7(e!X) for X in m’ where X has unit length. In general,
P =min(m, k), but for notational convenience, assume p =k. Let 4,, ..., 4, be the diagonal
entries of X. Then X is of the form



40 D. FISCHER-COLBRIE

(kxk) | —4 0
. 0
0
0 -4,
AI .o O
P 0
0 ... 4
Y {m x m) A
80
A 0 . Ty T
€08 —= —sin——
2/2 “ove
o . 0
7l 7l
0o .. — 0 ... —sin—=
cos > V2 sin 2 /3
eV DX = x . 70y
sin —~ —=
"2l 212
A, 7k,
0 .. sin—~ 0 e —=
sin Vo cos Vo
I 0 0
The image under 7, 7(e™2'®%), is the k-plane having as orthonormal basis the first % columns

of e(nlzyﬁ)it

Let A be the plane spanned by the first k standard coordinate vectors in R**™. The
inner product {z(e™?P%), 4) is
; 7, 7l
(e™DX) A4S =cos ——= ... cO8 —=
<7( ), A) =cos 21/5 2V§
on the boundary of the ball of radius 7/ V.
We want to determine ¥ =maximum of <N, 4) for N €L. Then for N satisfying

(N, Ay>»
we have that p5(XV) is strictly convex.

LeEMMA 3.4. Let A be the fixed point in Gy, , given above. Let N €L; then

NelL

max (N, A) = cos? (2‘751_)) .
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Proof. We must maximize (N, 4) so we must maximize

FAyy coes A )—cos(zl/_) . col s(z—l}}_”é) for E AF=1.

Let

D

F(u, A)= Hcos( 12/2)+,u(1-2}.,2) where =0

i=1

is another variable. Then

7
Fr=—-"Tlcos > _sm —t —2ul,.
: 2V2 ;l] 22 avz
At a critical point (4, ..., 4,) of f
H os————sm i, —2ul,=0
2V2;-1 oz ave T
so for A;==0
wr 2 7hy nl,
——— [leos—F%= =4 ¢ .
4V§,u fI-Il 2V/2 2V
In particular,
(A) =4 oot

_ Ty
4V§,u

for all ¢ with 0 <4,<1. For all critical points of f with nonzero A, it follows that

2y2

7l nl
A cot—~ =4, cot —=.
O Ve oV

Note g(1) =A cot (=4/2)/2) is a decreasing function for 0 <A <1 since

7 7 sin 7 7 )

, Vésm2l/2 Wz 1 V2 Ve
9= . g TA A <0.

sin 2——1/‘_2 sin 275

Since g(4) is a decreasing function,

g(4,) =g(4;) only when 1, =4,.

Therefore the only critical point of f(4) with all 4,5=0 occurs when 4, =...=24,=(1 /Vj_o).

41
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If 4,=0 for some ¢ then the same argument as above shows that the remaining 4,’s
are equal. But cos! (7/2V/2l) is an increasing function in I, so the maximum is reached when
all 4,40, hence it is cos” (/2V/2p). O

The results in this section may be summarized by the following statement.

THEOREM 3.5. The function 04 is a smooth strictly convexr function on the set
{NEGy, ,: (N, A)>cos® (n/2l/2_p)}. In fact Ho4(+, -) 2€{-, *> onthe set {N €G,, ,: (N, A>>2}
for any A > cos? ([2 l/2_p), where ¢ is a positive number depending on A.

4. Proof in general dimensions and codimensions

S**? is false for higher dimensions. In this

The above result for minimal surfaces in
section we derive an estimate which improves previous estimates in all dimensions and

codimensions. We prove the following.

TREOREM 4.1. Let M™ be a compact manifold of dimension n minimally immersed in
S**" Let p =min (n+1, k). If there exists a constant k-plane A suchthat (N, A> > cos? (/2 V.‘Z;)
for all normals N, then M is a totally geodesic subsphere.

We begin with some remarks about harmonic maps. Let M and M be smooth oriented
Riemannian manifolds of dimensions m and 7 respectively. Let V and D be connections
on M and M, and let e,, ..., e,, be a local orthonormal tangent frame on M at p. Let f: M~

be a smooth mapping.

Definition. f: M~M is harmonic if ST, (Dyoe(fxer) — f(Ve,e1)) =0 where f, is the dif-
ferential of f.
We need some known facts about harmonic functions.

LemMMma 4.2, If M™o R™* i3 an immersion and n: M —>G@,, ;. is the Gauss map then |
18 harmonic if and only if M has parallel mean curvature.

Proof. See Chern and Goldberg [6]. O
An immediate corollary is the following.

COROLLARY 4.3. Let M"—>8"** be a minimal tmmersion. Let n: M*—~@Q, ,., be the
Gauss map on M given by mapping a point p on M to the k-plane normal to M in S™** at p.
Then 7 is a harmonic map.

We also need the following lemma which is well known and easily checked.
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LeMMA 4.4, Let U and U be open sets in M and M respectively. If h: U~ T is a har-
monic map and f: U—R is a convex function, then foh: U—~R is a subharmonic function.

Now let M be a minimally immersed submanifold of 8*** and M =G, ;. Let k=7
be the Gauss map on M, considered as a submanifold of 8***, into Gy, ;- Let f =05: Gy , ., >R

be the square of the distance from 4 to X in Gy, ..

THEOREM 4.1. If M™ is a compact minimal submanifold of S™* with normal k-plane
field N and if A is a fized k-plane in R"***1 such that

(N, A) > cos® (7/2V2p)

where p=min (n+1, k), then M is a totally geodesic subsphere. If p=1 the result holds for
(N, 4>>0.

Proof. Combining Theorem 3.5, Corollary 4.3 and Lemma 4.4, we have that g5o7 is a
subharmonic function on a compact manifold M and hence constant. But p3(N) is strictly
convex when (N, 4> cos® (m/2V/2p) so by Theorem 3.5, Hpk(-, -)>e(-, ->>0. By (4),
0=Ag%on =311 Hoi(nxes, Nxe,) 80 that 77, =0. Hence 7 must be constant, so N is fixed
and the theorem follows. The same proof works for p=1, |

Remark. The same proofs also show that there is no compact submanifold M" of
R****1 with parallel mean curvature all of whose normals satisfy (N, 4> > cos? (/2)/2p)

for any fixed (k- 1)-plane 4.

5. Applications

In this final section we give some applications of the previous results.

Let Q be a convex open set in R™ Let F: Q—~R""* be a non-parametric immersion,
i.e. let F(x) be of the form F(x)=(z, f(x)) for some f: Q—R*. F is a minimal immersion if f
satisfies the minimal surface system, a system of second order non-linear elliptic partial

differential equations given by

n
7] .
121 a—x,(l/g}g”)=0 forj=1,...,n
< i U.gf.)__
4_72.:1 3:&‘ (V;g ax’ =0

where g,,=0,,+<of/ox!, 6f/ox’), (9¥)=(g,;)™ and g=det (g,,). This system is also defined
in the weak sense for a Lipschitz function. A Lipschitz function f on  is a weak solution

to the minimal surface system if
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n 6(}) _
> (Vgg")55=0

Q i=1

of.\ o
Vagit de) Pe
fn u-g....n( 99 6%’) o’ 0
k

a=1,...,

forj=1,...,n

where ¢ is any C* function with compact support on Q.

A result of Morrey [13] shows that any C! function which satisfies the minimal surface
system is real analytic. In the case n =3, Barbosa stated without proof that a Lipschitz
solution is real analytic. We present the proof here. We use Theorem 2.3 and a regularity
result of Allard [1]. We first establish some definitions and notation.

Let f: Q—>R* be a Lipschitz function on an open bounded convex set Q in R". Let
I'={(z, f(x)) ER"*'} be the graph of f.

We now suppose 0€I" and define the tangent cone of I' at 0. For any r >0, let f,(z) =
(1/r)f(rx). Now f, is directly seen to be a weak solution of the minimal surface system and

moreover

|10~ @) = 7 fr2) — flrg)| <+ M7 —ry| = M|z g, 1)

This shows {f,}, is an equicontinuous family on any compact subset of R*, so the Arzela-
Ascoli Theorem implies there is a convergent subsequence {f,} with lim,_, f, (%) =h(z).
From (5.1) we see that k is a Lipschitz function with constant M. Let C(I", 0) be the graph
of h.

LeMMaA 5.1. The function h is a weak solution of the minimal surface system and C(T, 0)
is a cone, i.e. if x€C(I, 0) and tER then tx€C(T, 0).

Proof. See, for example, Lawson [11]. [

We call C(I, 0) the tangent cone to I' at 0. By translation, for any x€I" one can define
C(T, z), the tangent cone of I at z.
The regularity result we need is given in its full form in Allard [1]. The relevant portion

of our purposes is

Lemma 5.2 (Allard regularity [1]). If the tangent cone at x €T is a linear space, then I’
is a C"* submanifold near z.
Morrey’s theorem on the regularity of C! minimal immersions then gives real analy-

ticity of f at .
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THEOREM 5.3. Let f: Q—>R* be a Lipschitz solution to the minimal surface system,

where € is a domain in R3. Then f is real analytic.

Proof. Let I be the graph of f and C(T', x) the tangent cone at a point .

If C(T', ) is regular except at x, then it is the cone on a minimal two dimensional
sphere S2 in 8**2 centered at z. Let N, be the k-dimensional normal space to 82 in §**2,
Let A be the k-dimensional space orthogonal to the Euclidean 3-space containing S2. Then
since O(T', ) is given by a graph, (N, 4> >0, so Theorem 2.3 implies 8% is a totally geo-
desic subsphere in §¥*2, Hence C(T", #) must be a plane. Using Allard regularity (together
with Morrey’s regularity) we conclude that f is real analytic.

Claim. C(T', x) is regular for y==x, where y€C(I', x).
It follows from Federer [9], p. 456 that

C(C(T, z), y) = line x 2-dimensional cone.

1t is straightforward to show that the two-dimensional cone is minimal and is the graph
of a Lipschitz function. Since the intersection of the graph with the unit sphere is one-
dimensional, it must be a great circle. Therefore C(C(T', z), y) is a plane and hence C(T', x)

is regular away from z. O

As another application of Theorem 2.3, we generalize Bernstein’s Theorem. Bern-
stein’s original theorem states if f: R2—R is an entire solution to the minimal surface
system, then f is linear. This theorem has been generalized to higher codimensions by
Osserman and Chern. One implication of their result is that if f: R2—R¥ is an entire solu-
tion to the minimal surface system having bounded gradient, then f is linear. We gener-

alize this result to three dimensions.

THEOREM 5.4. If f: R¥-—>RF is an entire solution to the minimal surface system, satisfying

Vil <K onR?

for some constant K, then f is linear.

Proof. The idea of the proof is to look at the tangent cone at oo. Thus we define a
sequence f,(z)=(1/r)f(rx). As above, f, has uniformly bounded gradient. Again, there is a

subsequence r,— oo such that
lim f,(z) = h(x).
10

k(z) is a solution to the minimal surface system and the graph is a cone. By the same argu-
ments as above, the cone is a plane. Allard’s regularity estimate then implies the original
graph is a plane, hence f is linear. O
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