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Existence of the spectral 
gap for elliptic operators 

Feng-Yu Wang(1) 

A b s t r a c t .  Let M be a connected, noncompact, coraplete Riemannian manifold, consider the 
operator L A §  for some VCC2(M) with exp[V] integrable with respect to the Riemannian 
volume element. This paper studies the existence of the spectral gap of L. As a consequence of the 
main result, let 0 be the distance function from a point o, then the spectral gap exists provided 
limo-~oc supL0<0  while the spectral gap does not exist if o is a pole and l i m o ~  infLo_~0. 
Moreover, the elliptic operators o n  p d are Mso studied. 

1. I n t r o d u c t i o n  

Let M be a d-dimensional, connected, noncompact, complete Riemannian man- 
ifold, and let M be either M or an unbounded regular closed domain in M. 
Next, consider L = A + V V  for some VcC~(M) with z:=fMexp[V ] dx<oc. Let 
dp=Z -1 exp[V] dx be defined on M. The spectral gap of the operator L (with 
Neumann boundary condition if OM#O) is characterized as 

(1.1) i n f l  /41Vfl~) :fECI(M)NL2(#), f # c o n s t a n t } .  
A1 = [ p0~-~_~-f)2  

We say that  the spectral gap of L exists if A1 >0. From now on, we assume that  L 
is regular in the sense that  C ~  (M) is dense in WI,2(M, d#) with the Sobolev norm 

II IIL (.)+llV-IlLs(.). 
According to Wang [12] and Chen-Wang [3], we have AI>0 provided the Ricci 

curvature is bounded below and Hessy is uniformly negatively definite out of a com- 
pact domain. Actually, the recent work by the author [14] shows that  this condition 
implies the logarithmic Sobolev inequality which is stronger than the existence of 
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spectral gap. Moreover, [13] proved that  the logarithmic Sobolev inequality is equiv- 
alent to an exponential integrability of the square of the distance function, which 
naturally refers to the negativity of Hessv along the radial direction. 

On the other hand, we know that  the spectral gap may exist if the distance func- 
tion itself is exponential integrable. For instance, let M =  [0, oc) and L=(d2/dr 2) - 
e(d/dr), c>0,  then (see [4, Example 2.8]) A1 = �88 2 >0. From this we may guess that  
the existence of spectral gap, unlike the logarithmic Sobolev inequality, essentially 
depends on the first order radial-direction derivative of V rather than the second 
order derivative. This observation is now supported by Corollary 1.4 in the paper. 

Our study is based on the fact that  AI>0 is equivalent to i n f aes s ( -L)>0 ,  
where aess(-L) denotes the essential spectrum of - L  (with Neumann boundary 
condition if OMr To see this, one needs only to show that  0 is an eigenvalue 
with multiplicity 1, equivalently, for any f ~ L 2 (#) with L f  = 0 and ~floM = 0 (where 
u denotes the inward unit normal vector field of OM when it is nonempty), one has 
that  f is constant. This is a consequence of a result in Sturm [10]. 

Next, for fixed oEgl, let O(x) be the Riemannian distance function from o. For 
r>0 ,  let B~={xEM:o(x)<r} and B~=M\B~. By Donnely-Li 's decomposition 
theorem (see [5]), one has inf a~s~( -L)=l im~_~ A~(r), where 

A~(r) =inf{tt(lvfl 2) : fEcX(M) ,  #(f2)  =1 ,  / = 0  on Br}. 

Thence, A1 >0 is equivalent to A~(r)>0 for large r. 
following result. 

T h e o r e m  1.1. (1) If # ( B r ) > 0 ,  then 

More precisely, we have the 

(1.2) al <_ 

(2) Let A(R) be the smallest positive Neumann eigenvalue of - L  on BR. If 
Ac(r) >0,  then 

(1.3) ,Xx > sup - > 0 .  

We now go to estimate the quantity A~(r). For D >0 ,  define 

?( r ) :  sup Lo(x), c ( ~ ) = /  
O( x) 'r J P +  l 

xr 
7(s) ds, r>D.  

Here and in what follows, the point x runs over M. 
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T h e o r e m  1.2. Suppose that there exists D > 0  such that either OMCBD or 
~<_0 on OMA(B~)\cut(o)) .  For any r 0 > D  and positive function fcV[ro ,  oC), we 
have 

( f t  ~oo )-1 
(1.4) A~(ro) >_ t~fo f ( t )  exp[ -C(r ) ]  dr exp[C(s)]f(s)  ds . 

o 

Consequently, we have ~1>0 provided there exists a positive f EC[D§ I, oc) such 
that 

 >D+I +1 exp[-C(r) ]  dr exp[C(s)]f (s)  ds < o o .  

We remark that  the assumption in Theorem 1.2 holds if either OM is bounded 
or o E M  and M is convex. Especially, for the case M=[0 ,  oo) and o--0, we have 
C(r)=V(r ) .  By [4, Theorem 2.1], if f ' > 0  then 

(1.6) ~1 > inf f ' ( t )  exp[C(t)] exp[C(s)]f(s) ds . 
t_>0 

Hence, the second assertion in Theorem 1.2 can be regarded as an extension of 
[4, Theorem 2.1] to Riemannian manifolds. 

C o r o l l a r y  1.3. Under the assumption of Theorem 1.2 we have A1 >0 if 

sup exp[ C(t)] exp[C(s)] ds < co. t>_D+l 
c>a + 

Consequently, AI>0 provided fD+1(7+r ( r ) d r < o c  for some r  

Now, it is time to state the result mentioned in the abstract. 

C o r o l l a r y  1.4. (1) Under the assumption of Theorem 1.2, we have h i > 0  
provided 

lim sup LQ(x)<O. 
r~oc o(x)-r 

(2) Suppose that OM is bounded and o is a pole. If 

lim inf L t ) (x )>0 ,  
r-~oo 0(z)--r 

then A1--0. 

Remark. (1) The first part of Corollary 1.4 follows from Corollary 1.3 directly. 
It was pointed out to the author by the referee that  this can also be proved by using 



398 Feng-Yu Wang 

Cheeger's inequality (cf. [1]), the argument goes as follows. Define the isoperimetric 
constant by 

h~ = inf A(cg~Ninterior(M)) 

where ~ runs over all bounded open subsets of B~ and A denotes the measure on 
0R induced by p. Then, one has )~r ~h~.l 2 

Next, let u be the inward normal vector field of 0n.  Noting that  zip<0 on 
OMNO~, we obtain 

A(Of~ninterior(M))>-~o ~odA-~anOM~dA>-~o ~odA=-~Lod#, 

where L0 is understood in distribution sense in the case that  cut(o)~0. Then, under 
the condition we have lim~__+oo Ar 

(2) The proof of Corollary 1.4(2) is based on the following upper bound estimate 
(cf. [9, Proposition 2.13]): 

(1.7) Ai _< �88 sup{c2 : #(exp[so]) < oo}. 

This estimate can be proved by taking the test function f~ =exp Is�89 (0An)] and then 
letting n--+oo, referring to the proof of Theorem 3.2 below. 

The proofs of the above results are given in the next section, and along the 
same line the spectral gap of elliptic operators on R d is studied in Section 3. 

2. P roo f s  

Proof of Theorem 1.1. We prove (1.2) and (1.3) respectively. 
(a) The proof of (1.2) is modified from Thomas [10] which studies the upper 

bound of the spectral gap for discrete systems. 
For any c>0, choose f~ECI(M) with f~lB=O and such that  # ( f ~ ) = l  and 

#([~7f~12)<c+AC(r)._ Noting that  #(fc)=#(felB~)<~,_ we have that  #(f~)_2 
#(A) 2 >_#(B.r), then 

This proves (1.2) by letting g~0. 
(b) Next, we go to prove (1.3). It suffices to show that  for any fECI(M) with 

#(f2)=-1, # ( f ) = 0  and any R>r, 

(2.1) #(IVfl  2) > 2A(R)(R_r)2+AC(r)(R_r)2#(BR)Zr2#(BR). 
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Let a=p(f21BR).  Noting that # ( f )=0 ,  we obtain 

a p(f lB~)  2 
A(R) # B R ( I V f ] 2 ) I  >#BR( f21 ,~ )__#BR( f lBR)  2 __ #(BR) #(BR) 2 

a ( 1 - a ) ( 1 - p ( B R ) )  _ a + # ( B R ) - - I  > - -  
-- , ( B R )  , ( B R )  ~ , ( B R )  ~ ' 

where #BR =t t /# (BR)  �9 This implies 

(2.2) ~(IVfl ~) _> ~(a+It(BR)--l)----: gl(a). 

Next, define 
0, if g(x)_<r, 

h(x) = 1, if g(x) _> R, 
~(x)-r  

R -  r ' otherwise. 

Then fh=O on { x e M : ~ ( x ) = r } .  By the definition of AC(r), 

2 ( 2 a #(IV(fh)l 2) < #( Ivf l  )+ ).  
1 - a  < #( f2h2)  <_ A~(r ) _ ~ ( R - r )  2 

Therefore, 

(2.3) #(]Vf]2) > A ~ ( r ) ( ~  1 ) a  
- 2 -  + ( R - r )  2 =:g2(a). 

By combining (2.2) with (2.3) we obtain 

(2.4) #([V f[2)> inf max{gl(c),g2(c)}. 
ae[0,1] 

Since gl(c) is increasing in ~ while g2(c) is decreasing in c, the above infimum 
is attained at 

1AC(r) + A ( R ) ( 1 - - p ( B R ) ) / p ( B R )  

~o = A ( R ) / p ( B R ) +  �89 + 1 / ( R - r )  ~ 

which solves g l (c ) :g2(g  ). Then #([Vf l )>gl(co)=g2(co) ,  which is equal to the 
right-hand side of (2.1). [] 

Proof of Theorem 1.2. For any re>r0, let ~m=B,~\Bro.  Since L is regular, 

(2.5) ~C(ro) = ~ i m  ~o(am), 
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where i0(f~,~) denotes the smallest eigenvalue of - L  on fire with a Neumann con- 
dition on interior(cgMnOft,~) and a Dirichlet condition on the remainder of 0ft,~. 
Let u (>0)  be the corresponding eigenfunction. Define 

j r  t j r  m = e x p [ - C ( r ) ]  t 
o 

We claim tha t  there exists c ( m ) > 0  such tha t  u(x)Gc(m)F(Q(x)) on f~,~. Ac- 
tually, since IVul is bounded on ~tm, it suffices to show tha t  u = 0  on S:--{xEOftm: 
L)(x)=r0}. If there exists xoES such that  u(x0)>0,  then XoE interioi'(OMClS) by 
the boundary conditions. This means tha t  v(xo)=VQ(xo) which contradicts the 

assumption that  vp(Xo) <0. 
Next, let c:=inft>~o f(t)/F(t), and let xt be the L-diffusion process with re- 

flecting boundary on OB,~. By the assumption and It6 's  formula for C(xt) (see [7]), 

we have, before the t ime m:-{t>O:o(xt)=ro}, 

(2.6) dp(xt) = v/2dbt+LQ(xt) dt-dLt, Xo E 9m, 

where bt is a one-dimensional Brownian motion, LO is taken to be zero on cut(o) 

and Lt is an increasing process with support  contained in {t>_O:xtEcut(o)UOBm}. 
Noting that  Lo(xt)_<7(Q(xt)) for xt ~cut(o),  by (2.6) and It6 's  formula we obtain 

dFoQ(xt) < v~ F'op(xt) dbt- f(xt) dt < v~ F'op(xt) dbt-cFoo(xt) dt. 

This then implies 

EXFop(xtA,) < Fo~(x) exp[-ct] .  

Let C=inf{tkO:xt EOft,~\OM}, we have m'_<m and U(XtA<)<_u(xtAT). Noting tha t  

EXu(xtA~,)=u(x) exp[--Ao(~2m)t], we obtain 

exp[-10(a )t] _<  ( )EXFoQ(x,A ) < exp[- t]. 

This implies Ao(m)>_c for any rn>ro. Therefore, IC(ro)>_c. [] 

It  was pointed out by the referee that  there is an equivalent analysis proof of 

Theorem 1.2 (refer to [6, Lemma 1.1]). Let F and u be as above with faro u 2 = l '  
then LFo~<-cFoo on t2m in the distribution sense. Let f=u/FoQ, then f is 
bounded as was shown in the proof of Theorem 1.2. We have ufvFoo<_O on 0ft,~ 
since vO<0 on OM and u = 0  on Oft~\OM. Therefore, by Green's formula, we 
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obtain 

= - ~ [ufLFop+uFooLf+2u(Vf, VFo0)] dr 

f [cuIFoo+(V(IF2og), V I } - 2 u { V I ,  VFo~}] dr+ / [uFoo•f] dA > 
Ja 

m [ '~m 

Here, we have used the fact that  uvu:O by the mixed boundary condition. 

Proof of Corollary 1.3. The proof of the first assertion is essentially due to [4]. 
Under the condition we have 

t ~ exp[C(s)] ds <_ cexp[C(t)], t >_ D + I ,  

for some constant c>0.  This implies (see [4, Lemma 6.1]) 

joo c exp[C(t)+et], E (0, c-1). exp[ s+c(s)] ds < 1-c  C 

By taking f(r)=exp[r/2c] in (1.4), we prove the first assertion. 
Next, if there exists e > 0 such that  cl := fD+l (3'+c) +ds < oc. Let Ce (r) - -C(r)  - 

fD+l (~+c)  + (s) ds. Then C~ ( r )= ' / ( r )  - ( ' /+c)  + (r) < - e .  Therefore, 

exp[-C(t)] exp[C(s)] ds <_ exp[-C~(t)] exp[C~(r)+cl] dr 

<_ exp[-Ce(t)] e x p [ C e ( ~ ) - c ( r - t ) + c l ]  dr 

_ exp[cl] 
- -  % (Xg. 

C 

Hence, Aa>0 by the first assertion. [] 

Remark. From (1.3) we may derive explicit lower bounds of )~1- For instance, 
assume that  BR is convex for any R, let K > 0  be such that  R i e - H e s s v _ > - K .  We 
have [3] 

1 2 1 2 (2.7) A(R) > gTc K(exp[TKR ] - 1 )  -1. 
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Next, if l i m ~  sup 7(r )<0,  let/3(r) =infs_>~(-~(s)) +, by taking f(t)=exp [�89 
in (1.4), we obtain 

~>jexp ~ e x p  J3(r)u+ f ~ dvl du) -1 ~C(r)>-inf [ ~ ] ( / t d s ~  [ z ds ~/(v) 

(2.8) 

> inf exp ds exp -/3(r)(u-s) du = t>r 

Here, in the second step, we have assumed that  /3(r)>0 so that  ~/(v)<-~(r) for 
v>r. Then the estimate A~(r)>~/3(r) 2 is true for any r since/3(r) is nonnegative. 
The explicit lower bound of A1 then follows from (1.3), (2.7) and (2.8). 

Proof of Corollary 1.4(2). Suppose that  OMCBD. Under the polar coordi- 
nate at o, we have x=( r ,  4) for r=Q(x) and 4 � 9  d 1, the (d-1)-dimensional unit 
sphere which is considered as the bundle of unit tangent vectors at o. Under this 
coordinate, the Riemannian volume element can be written as dx=g(r, 4) dr d~ and 
A~=(O/Or)(logg(r, 4))l~=Q. Suppose that  lim~__.~ infQ(~)=~ Lp>O. Then, for any 
c>0 there exists rl  > D  such that  

(9 log g(r, 4) > 
Or 

This implies 

2 ~r V(r'4)' r>rl._ 

g(r,4) >_g(rl,4)exp[-�89 4)+V(rl,~)] > cexp[-�89 r >_ rl, 

for some constant c>0. Therefore 

#(exp[r > / exp[r 4)]g(r, 4) dr de 
J[D ,c~) xs d 1 

>_c/i exp[�89 dr 4= . 
1,Oo) x S  d - 1  

By (1.7), we have AI=0. [] 

Remark. (1) According to the above proof, the function p in Corollary 1.4(2) 
can be replaced by the distance from any bounded regular domain such that  the 
outward-pointing normal exponential map on the boundary induces a diffeomor- 
phism. See e.g. Kumura [8] for some discussions on such manifolds. 

(2) In general, for any r>D>O, let 

--r=D = {4 �9 sd 1: exp[s4][[0,~] is minimal and exp[s4] �9 M, s �9 [D, r]}. 
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Then =D is nonincreasing in r. Let ~=d~ be the standard measure on S d- l ,  the 
assumption of Corollary 1.4(2) can be replaced by the assumption that  there exists 
D > 0 such that  

(2.9) lim ~(E D) exp[er] = oo for any ~ > 0. 
r---coo 

3. S p e c t r a l  gap  for  e l l ip t ic  o p e r a t o r s  o n  R d 

This section is a continuation of [2] and [4] in which the lower bound estimates 
are studied for the spectral gap of elliptic operators on a d. 

L d d +~i=1 0i =O/Oxi, Consider the operator =~i ,3=1 aij(x)OiOj bi(x)Oi, where 
b d a(x) := (aij (x)) is positively definite, a~j �9 C 2 (R d) and i = ~j=l (aijOjV+Oj aij) for 

some VEC2(R d) with Z:=f  exp[V] dx<c~. The specific form of b implies that  L is 
symmetric with respect to dp=Z -1 exp[V] dx. In the present setting, the spectral 
gap of L is described as 

(3.1) ,kl(a,V)=inf{p((aVf, Vf ) ) : fECl(Rd) ,  i f ( f ) = 0 ,  # ( f 2 ) = l } .  

Moreover, we assume that  L is regular in the sense t ha t  C ~ ( R  d) is dense in 

WI '2(R d, dp) with the Sobolev norm I1" IIL2(~)+ II V/( aV" , V. } IIL2(~). 
Obviously, if a>_aI for some constant a > 0 ,  then A1 (a, V)_>aA1 (I, V). From 

this one may transform the present setting to the manifold case. But this com- 
parison only works for the case when a is uniformly positively definite, and it will 
lead to some loss if a is very different from I, see e.g. Examples 3.1 and 3.2 below. 
Hence, it should be worthy to study L directly as in previous sections. 

Define for r>0 ,  

r(tr(a(x)) + (b(x), x)) 
= s u p  

,xl r ( a ( x ) x ,  x l  

c(, ds ,  

r 

The main result in this section is the following. 



404 Feng-Yu Wang 

T h e o r e m  3.1. If there exists a positive f cC[1, oe) such that 

(3.2) sup exp[-C(r)] dr exp[C(~)] d~ < ~ ,  
t>l 

then ~1 >0. 

Proof. For g c C 2 ( R )  and Ixl>0, we have 

Lg(lxl ) = (Ix[ 2 t r ( a (x ) )+  Ixt2(b(x), x ) -  (a(z)x, x))g'(lxl) (a(x)x,x)g"(lxl) 
Ixl 3 Ixl 2 

For positive fcC[1, c~) with 

f l  ~ f(r) dr < oc, 

let 

Then 

g(t) = exp[ -C(r ) ]  dr exp[C(s)] ds. 

Lg(Ixl) ~ - f ( Ix l ) ,  Ixl-> 1. 

Therefore, the proof of Theorem 1.2 implies that  At(l) >0 provided (3.2) holds, thus 
AI>O. [] 

Remark. Theorem 3.1 remains true also for unbounded regular domains with 
bounded boundary. As for the unbounded boundary case, for the estimation of 
)~C(r), one has to consider the normal vector field induced by the metric (0~, 0j}= 
(a-1)ij, this will cause difficulty for general a. 

For the case M=[O, ~) ,  one has 7=b/a, c~=a. Then, by Theorem 3.1, we have 
AI>0 if there exists a positive fEC[1, e~) with i f < 0  such that  

(3.3) ~ 1  p f ~  exp[-C(t)] exp[C(s)] ds < ~ .  

This is just the condition in [4, Theorem 2.1]. Therefore, Theorem 3.1 is the exact 
extension of [4, Theorem 2.1] to high dimensions. 

Next, the following examples show that  Theorem 3.1 can be bet ter  than com- 
paring a with a constant matrix. 
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Example 3.1. Take a(x)=(l+]xl~)~I, b(x)=0, c~_>l(l+d). Then L is regular. 
It is easy to see that  V = - a l o g ( l + l x l 2 ) .  Noting that a>_I, by the comparison 
procedure, we may consider the operator L = A - V V .  But by (1.7) the spectral 
gap of/~ does not exist since #(exp[c lx[ ] )=~ for any e>0.  Hence the comparison 
procedure does not work for this example. 

On the other hand, one has a ( r ) = ( l + r 2 )  ~, 7(r) (d-1)/r ,  C(r)=r d-1. Tak- 
ing f =  v~ we obtain 

J1 ~ fff ~ fl ~ exp[-C(r) ]  dr exp[C(s)] ds <_ 2 r 3/'-23 dr <_ 4f(t)  

since 2 a > l + d .  By Theorem 3.1 we have AI>0. 

Example 3.2. Take a(z)=I/( lxl+l) ,  V ( x ) = - l x l  2 for Ixl_>l. Then the compar- 
ison procedure does not apply. Now we go to check the condition of Theorem 3.1. 
Obviously, c~(r)=l/(l+r), (b(x), x ) = - r / ( l + r )  2-2r2/( l+r) .  Then 

7 ( r ) _  d - 1  1 2r, exp[C(r)] -- clfd--1 exp[--4r2], r > 1, 
r l + r  r + l  

for some Cl >0. Take f ( r )=r  1-d exp[ - r+4r2] ,  then there exists c2 >0 such that 

1 / t  f oo 1 fxt o . 2 , 1 + r  " 
f(t) exp[-C(r) ]  dr exp[C(s)]f(s) ds <_ c2ff(~ e x p [ - r + 4 r  j r~_l  ctr 

1 c which goes to g 2, as t--,oo. Therefore, Theorem 3.1 implies that A1 >0. 

Finally, we present an upper bound estimate like (1.7). 

T h e o r e m  3.2. Let /3(r)=suplx] r(1/r2)<a(x)x,x), we have 

/~l~lsup{c2:lA(exp[c/'x].t0 ~ 1  dr]) (oo}. 

Proof. Let 
= L r 1 h(r) v / ~ d s .  

If t z (exp[eh(Ix l ) ] )=o~ ,  we go to prove t h a t / ~ 1 <  1 2 Let f(x)=exp[le(h(Ixl)An)], 
n_>l. By (3.1), we have 

(3.4) /~1 
4(#(f2)  p(f)2)" 
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Next, for any m > l  choose rm>O such that tt({h(Ixl)>_rm})=l/m, we have 

,(l~qxl>~m~f2) 1/2 _> ~ , ( l ( I x l > ~ f )  _> v ~ , ( f ) -  v ~  e~P[�89 

Then  

Y (3.5) , ( s )  ~ < ( @  ~exP[�89 , 

Noting tha t  # ( f 2 ) - + c ~  as n - - + ~ ,  by combining (3.4) with (3.5), we obta in  

g2 
AI_< m > l .  

4 0 - 1 / m ) '  

Therefore, AI_< �88 2 since m is arbitrary.  []  
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