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Existence of the spectral
gap for elliptic operators

Feng-Yu Wang(!)

Abstract. Let M be a connected, noncompact, complete Riemannian manifold, consider the
operator L=A+VV for some V€C?(M) with exp[V] integrable with respect to the Riemannian
volume element. This paper studies the existence of the spectral gap of L. As a consequence of the
main result, let ¢ be the distance function from a point o, then the spectral gap exists provided
limg—, 00 sup Le<0 while the spectral gap does not exist if o is a pole and lim, .o inf Lo>0.
Moreover, the elliptic operators on R are also studied.

1. Introduction

Let M be a d- dimensional, connected, noncompact, complete Riemannian man-
ifold, and let M be either M or an unbounded regular closed domain in M.
Next, consider L=A+VV for some VeC>®(M) with Z:= [, exp[V]dr<oco. Let
du=Z""texp[V]dz be defined on M. The spectral gap of the operator L (with
Neumann boundary condition if M #£@) is characterized as

=in M 1 constan
(1.1) A= f{'u(fz)_u(f)z.feC(M)QLQ(,u),f;é st t}.

We say that the spectral gap of L exists if A; >0. From now on, we assume that L
is regular in the sense that C§°(M) is dense in W12(M, du) with the Sobolev norm
I 2y + 1V I r2gw-

According to Wang [12] and Chen-Wang [3], we have A; >0 provided the Ricci
curvature is bounded below and Hessy is uniformly negatively definite out of a com-
pact domain. Actually, the recent work by the author [{14] shows that this condition
implies the logarithmic Sobolev inequality which is stronger than the existence of
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spectral gap. Moreover, [13] proved that the logarithmic Sobolev inequality is equiv-
alent to an exponential integrability of the square of the distance function, which
naturally refers to the negativity of Hessy along the radial direction.

On the other hand, we know that the spectral gap may exist if the distance func-
tion itself is exponential integrable. For instance, let M=[0,00) and L=(d?/dr?)—
c(d/dr), ¢>0, then (see [4, Example 2.8]) A\;=7¢?>0. From this we may guess that
the existence of spectral gap, unlike the logarithmic Sobolev inequality, essentially
depends on the first order radial-direction derivative of V' rather than the second
order derivative. This observation is now supported by Corollary 1.4 in the paper.

Our study is based on the fact that A\;>0 is equivalent to inf ges(—L)>0,
where oess(—L) denotes the essential spectrum of —L (with Neumann boundary
condition if OM #0). To see this, one needs only to show that 0 is an eigenvalue
with multiplicity 1, equivalently, for any f€L?(u) with Lf=0 and v f|sar =0 (where
v denotes the inward unit normal vector field of M when it is nonempty), one has
that f is constant. This is a consequence of a result in Sturm [10].

Next, for fixed o€ M, let o(z) be the Riemannian distance function from o. For
r>0, let Br={zeM:o(z)<r} and Bé=M\B,. By Donnely-Li’s decomposition
theorem (see [5]), one has inf gess(~L)=lim, oo A°(r), where

A(r) =inf{u(|Vf?): f e CH(M), u(f>)=1, f=0on B,}.

Thence, A;>0 is equivalent to A°(r)>0 for large r. More precisely, we have the
following result.

Theorem 1.1. (1) If u(B,)>0, then

A(r)
(1.2) M TS

(2) Let AM(R) be the smallest positive Neumann eigenvalue of —L on Bg. If
AS(r)>0, then

o X ONRBR) (R-1) 2 (R) (1 p(Br)
WD R BRI R 7B 42 (Br)

We now go to estimate the quantity A°(r). For D >0, define

¥(r)= sup Lo(z), C(r)= / ~v(s)ds, r>D.
o(z)=r D41
z¢cut(o)

Here and in what follows, the point z runs over M.
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Theorem 1.2. Suppose that there erists D>0 such that either OM CBp or
ve<0 on OMN(B%\cut(o)). For any ro>D and positive function feC[rg,c0), we
have

—1

(14)  A%(ro) > inf £(2) ( / t exp|—C(r)] dr / ” explC(s)1f(s) ds)

t>rg

Consequently, we have Ay >0 provided there exists a positive feC[D+1,00) such
that

1 t 00

(1.5) swp <o [ exol-Cldr [ explC(s)f(5)ds<x.

>p+1 f(t) Jpia

We remark that the assumption in Theorem 1.2 holds if either OM is bounded
or o€ M and M is convex. Especially, for the case M =[0,00) and 0=0, we have
C(r)=V{r). By [4, Theorem 2.1|, if f'>0 then

—1

(1.6) AL > %rzxg I/ (t) exp|C(t)] </t°° exp[C(s)]f(s) ds)

Hence, the second assertion in Theorem 1.2 can be regarded as an extension of
[4, Theorem 2.1] to Riemannian manifolds.

Corollary 1.3. Under the assumption of Theorem 1.2 we have A1 >0 if

tzsgpil exp|—C(1)] /too exp[C(s)] ds < co.

Consequently, A1 >0 provided f;oﬂ(’y—i—s)*(?“) dr<oo for some £>0.
Now, it is time to state the result mentioned in the abstract.

Corollary 1.4. (1) Under the assumption of Theorem 1.2, we have A3 >0
provided
lim sup Lo(z)<0.

T p(a)=r
zcut(o)

(2) Suppose that OM is bounded and o is a pole. If

lim inf Lo(z)>0,

700 g(x)=r
then A1 =0.

Remark. (1) The first part of Corollary 1.4 follows from Corollary 1.3 directly.
It was pointed out to the author by the referee that this can also be proved by using
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Cheeger’s inequality (cf. [1]), the argument goes as follows. Define the isoperimetric

constant by
A(QNinterior(M))

() ’
where 2 runs over all bounded open subsets of B} and A denotes the measure on
98 induced by p. Then, one has A°(r)> 1h2.

Next, let v be the inward normal vector field of 9f). Noting that vp<0 on
JdMNOSY, we obtain

h, =inf

A(BQOinterior(M))Z/ l/QdA—/ ngAE/ ngA:—/ Lodp,
a0 8QNOM a0 Q

where L is understood in distribution sense in the case that cut(o)#0. Then, under
the condition we have lim,_, ., A°(r)>0.

(2) The proof of Corollary 1.4(2) is based on the following upper bound estimate
(cf. [9, Proposition 2.13]):

(1.7 A1 < Lsup{e?: p(expleg]) < oo}

This estimate can be proved by taking the test function f,=exp [5% (g/\n)] and then
letting n— o0, referring to the proof of Theorem 3.2 below.

The proofs of the above results are given in the next section, and along the
same line the spectral gap of elliptic operators on R? is studied in Section 3.

2. Proofs

Proof of Theorem 1.1. We prove (1.2) and (1.3) respectively.

(a) The proof of (1.2) is modified from Thomas [10] which studies the upper
bound of the spectral gap for discrete systems.

For any ¢>0, choose f.€C'(M) with f.|g.=0 and such that u(f2)=1 and
|V fe|*) Se+A°(r). Noting that p(fe)=u(felpg) <+/p(Bg), we have that n(f2)—
p(fe)?>p(By), then

VD) e
- /J'(fsz)_,u'(fs)g N /J'(Br)
This proves (1.2) by letting £ 0.

(b) Next, we go to prove (1.3). It suffices to show that for any feC'(M) with

p(f?)=1, p(f)=0 and any R>r,

A(MAR)(Br)(R—7)? = 2A(R)(1-p(Br))

(2.1) WUV I 2 SR R4 A (Y (R 2 (B) 20 Br)
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Let a=p(f?1p,). Noting that u(f)=0, we obtain

a  p(fleg)?

1 (V1) 2 e (F10) =15 ()" = g5 == 5003

a  (1-a)1-p(Br)) _atu(Br)-1
~ w(BR) w(Br)? #(Br)?

1
MR)

where g, =p/u(Bg). This implies

2y o MR)
(2.2) p(VFF) = M(BR)(a+ﬂ(BR) 1)=:g:(a)
Next, define
0, if o(z) <,
hz)={ b if o(z) > R,
g(]:{v)_;r’ otherwise.

Then fh=0 on {z€M:p(x)=r}. By the definition of A(r),

2,2y _ BV (fR)?) 2 2 a
1—a < p(f2h2) < () < ) (N(|Vf| )-I-m).

Therefore,

23 o2 55 (B g =t

By combining (2.2) with (2.3) we obtain

(2.4) p(V I ES mf }maX{gl(é) ,92(8)}-

399

Since g1(¢) is increasing in e while go(€) is decreasing in ¢, the above infimum

is attained at
32°(r) +AMR)(1—p(Br))/1(Br)
A(R)/i(Br)+32(r)+1/(R~7)?

€o =

which solves g1(g)=ga2(¢). Then p(|Vf|)>g1(c0)=g2(e0), which is equal to the

right-hand side of (2.1). O

Proof of Theorem 1.2. For any m>rg, let Q,,=B,,\ B, Since L is regular,

(25) )\C(’r‘o): hm Ao(ﬂm),

- M/ 0o0
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where Ao{€,,,) denotes the smallest eigenvalue of —L on §2,, with a Neumann con-
dition on interior(0M NI, ) and a Dirichlet condition on the remainder of 9%,,.
Let u(>0) be the corresponding eigenfunction. Define

Ft)= / exp|—C(r)] dr / " explC()]f(s)ds, € [ro,m].

T0 T

We claim that there exists ¢(m)>0 such that u(z)<c(m)F(o(x)) on Q,,. Ac-
tually, since {Vu| is bounded on £y, it suffices to show that u=0 on 5:={z€dQ,:
o(x)=ro}. If there exists zo€S such that u(zo)>0, then zg€ interior(dMNS) by
the boundary conditions. This means that v(zo)=V(zo) which contradicts the
assumption that vo(zg)<0.

Next, let ¢:=infy>,, f(t)/F(t), and let z, be the L-diffusion process with re-
flecting boundary on 8B,,. By the assumption and Itd’s formula for o(x;) (see [7]),
we have, before the time 7:={t>0:0(x;)=r¢},

(2.6) do(x¢) =V2dbs+Lo(z,) dt—dL;, g€ Qn,

where b; is a one-dimensional Brownian motion, Lg is taken to be zero on cut(o)
and L. is an increasing process with support contained in {t>0:z;€cut(o)UOB,, }.
Noting that Lo(z:) <v(o(x¢)) for z;¢cut(o), by (2.6) and 1t&’s formula we obtain

dFOQ(ZCt) < \/§FIOQ(.'IJt) dbt—f(.’ﬂt) dt < \/§F/0Q($t) dbt —cFog(xt) dt.
This then implies
E*Fog(zipr) < Fog(z) exp|—ct].
Let 7' =inf{t>0:2,€9Q,,\OM}, we have 7' <7 and u(zsn, ) <u(z:AT). Noting that
EPu(xinr ) =u(z) exp]—Ao(n )], we obtain

u(z) exp[—Ao(Qm)t] < e(m)E*Fop(xyAT) < ¢(m)Fop(x) exp[—ct].

This implies Ao(m)>c for any m>rg. Therefore, X°(ro)>c. O

It was pointed out by the referee that there is an equivalent analysis proof of
Theorem 1.2 (refer to [6, Lemma 1.1]). Let F and u be as above with [, u?=1,
then LFop<—cFog on ), in the distribution sense. Let f=u/Fop, then f is
bounded as was shown in the proof of Theorem 1.2. We have ufvFop<0 on 8Q,,
since vp<0 on OM and u=0 on 09,,\OM. Therefore, by Green’s formula, we
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obtain

M) == [ uudu== [ uL(sFe)du

m

= / [uf LFop+uFopLf+2u(Vf,VFop)| du
12

> [ [eus oot (VF 0, V=20V, VF-alldpt | uFoorflda
Q Is}

m Qm

:C+/ |Vf|2F°QdM+/ [uvu—ufvFop|dA>c.
Qm a

Here, we have used the fact that uvu=0 by the mixed boundary condition.

Proof of Corollary 1.3. The proof of the first assertion is essentially due to [4].
Under the condition we have

/too exp[C(s)] ds < cexp|C(t)], t>D+1,

for some constant ¢>0. This implies (see [4, Lemma 6.1])

/ exples+C(s)]ds < T €
¢

. exp[C(t)+et], e€(0,c7h).

By taking f(r)=exp|r/2c] in (1.4), we prove the first assertion.
Next, if there exists >0 such that ¢; ::fg°+1('y+€)+ds<oo. Let C.(r)=C(r)—
ng (y+e)*(s)ds. Then CL(r)=~(r)—(y+¢e)*"(r)<—e. Therefore,

exp—C ()] / " explC(s)] ds < exp|—C. (1) / " explCL(r) +ea] dr

< exp|—C.(1)] /t " explCL(t) —e(r—t)+e] dr

_ expler] oo
€

Hence, A; >0 by the first assertion. U

Remark. From (1.3) we may derive explicit lower bounds of A;. For instance,
assume that Bpg is convex for any R, let K >0 be such that Ric— Hessy >—K. We
have [3]

(2.7) A(R) > Ln?K (exp[ LK R?] —1) .
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Next, if limy o0 supy(r) <0, let B(r)=inf,>.(—y(s))*, by taking f(t)=exp[38(r)t]
n (1.4), we obtain

()>mfeXp[ K/ ds/ exp[ / (v)dv] du>_1
(2.8)
>mfexp[ ](/ ds/ exp[ ,B(r)(u—s)] du)_lzﬁ(Z)Q.

Here, in the second step, we have assumed that 8(r)>0 so that vy(v)<—g8(r) for
v>7. Then the estimate A°(r)>18(r)? is true for any r since 3(r) is nonnegative.
The explicit lower bound of A; then follows from (1.3), (2.7) and (2.8).

Proof of Corollary 1.4(2). Suppose that &M CBp. Under the polar coordi-
nate at o, we have x=(r,¢) for r=p(z) and £€S% !, the (d—1)-dimensional unit
sphere which is considered as the bundle of unit tangent vectors at o. Under this
coordinate, the Riemannian volume element can be written as de=g(r, §) dr d§ and

=(0/0r)(log g(r,£))|r=p- Suppose that lim, . inf,z)=r Le>0. Then, for any
>0 there exists r1 > D such that

0 e 0
—_ _Z_ >
87" logg(r, 5) Z 2 87"V(r’ )7 T2T1

This implies
g(r,€) 2 g(r1,8) exp[—3e(r—r1) =V (r,&)+V(r1,6)] > cexp|—gzee-V], r>m,

for some constant ¢>0. Therefore

u(expleg]) > / expler+ V(r, €)lg(r,€) dr dg

[D,00)xSd—1

Zc/ exp|ser] dr df = co.
r1,00)x84-1

By (1.7), we have A\;=0. O

Remark. (1) According to the above proof, the function p in Corollary 1.4(2)
can be replaced by the distance from any bounded regular domain such that the
outward-pointing normal exponential map on the boundary induces a diffeomor-
phism. See e.g. Kumura [8] for some discussions on such manifolds.

(2) In general, for any r>D>0, let

2P ={¢eS% ! :expls¢]|[o, is minimal and exp[s€] € M, s€[D,r]}.
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Then =P is nonincreasing in r. Let v=d£ be the standard measure on S%1, the
assumption of Corollary 1.4(2) can be replaced by the assumption that there exists

D >0 such that

2.9 lim v(2P)expler]| =00 for any > 0.
( ;) €xp y

0

3. Spectral gap for elliptic operators on R¢

This section is a continuation of [2] and [4] in which the lower bound estimates
are studied for the spectral gap of elliptic operators on R%.

Consider the operator L:Zijl a;;(x)0,0; ~|—Z;.i=1 b;(x)0;, where 0;=0/0x;,
a(z):=(a;;(z)) is positively definite, a;; € C?(R?) and bi:Z;l:l(ai]'ajV‘Fajaij) for
some VeC?(R?) with Z:= [ exp[V]dz<oo. The specific form of b implies that L is
symmetric with respect to du=2Z"!exp[V]|dz. In the present setting, the spectral

gap of L is described as

31) (e, V)=inf{u((aVf,Vf)): feCIRY), u(f)=0, p(f*)=1}.

Moreover, we assume that L is regular in the sense that C$°(R?) is dense in
Wh2(R?,dp) with the Sobolev norm || - || z2¢ + v/ {(aV-, V) i12()-

Obviously, if a>al for some constant «>0, then A\j(a, V)>aA;(I,V). From
this one may transform the present setting to the manifold case. But this com-
parison only works for the case when a is uniformly positively definite, and it will
lead to some loss if a is very different from I, see e.g. Examples 3.1 and 3.2 below.
Hence, it should be worthy to study L directly as in previous sections.

Define for r>0,

- r(tr(a(z))+{b(z),z)) 1
v(r)= |Il:pr (a(2)7, 2) o

cr)= [ () ds,

afr)= Iiillzfr Tiz(a(x)x, z}.

The main result in this section is the following.
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Theorem 3.1. If there exisis a positive f€C[1,00) such that

1 t o) & ‘o
(3.2) ig{)m/l exp[—C(r)] dr/r exp[C’(s)]a(S) ds < o0,

then A1 >0.

Proof. For gcC?(R) and |z|>0, we have

(Iz|? tr(a(z)) +|z[* (b(x), ) — (a(z)z, 2))g'(|l2]) | (a(z)z, z)g"(|z])

Ly(|z]) = FE + EE
For positive f€C[1, 00} with
/1 ~ explC(r)] % dr < oo,
let
o) = /1 ' expl-C(r)] dr / ” exp[C’(s)]é% ds.
Then

Ly(|z|) < —f(l=]), |e|=1.

Therefore, the proof of Theorem 1.2 implies that A°(1)>0 provided (3.2) holds, thus
A >0 O

Remark. Theorem 3.1 remains true also for unbounded regular domains with
bounded boundary. As for the unbounded boundary case, for the estimation of
A¢(r), one has to consider the normal vector field induced by the metric (0;,0;)=
(a™1);4, this will cause difficulty for general a.

For the case M =0, 00), one has y=b/a, a=a. Then, by Theorem 3.1, we have
A1>>0 if there exists a positive f€C[1,00) with f'<0 such that

1 = f(s)
(3.3) sup —- exp|—C(t / exp[C(s)]—— ds < oo.
sup s bl -C(0)] | explC(s)] 5
This is just the condition in [4, Theorem 2.1]. Therefore, Theorem 3.1 is the exact
extension of [4, Theorem 2.1} to high dimensions.
Next, the following examples show that Theorem 3.1 can be better than com-
paring o with a constant matrix.
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Ezample 3.1. Take a(z)=(1+]z|?)*1, b(z)=0, a>1(1+d). Then L is regular.
It is easy to see that V=—alog(1+]|z|?). Noting that a>I, by the comparison
procedure, we may consider the operator L=A—VV. But by (1.7) the spectral
gap of L does not exist since p(exple|z|])=oc for any £>0. Hence the comparison
procedure does not work for this example.

On the other hand, one has a(r)=(1+72)%, v(r)=(d—1)/r, C(r)=r¢"1. Tak-
ing f=+/t we obtain

/1‘ exp[—C(r)] dr /00 exp[C(s)]% ds < 2/1 r3/272% dpr < Af (1)

since 2a>1+d. By Theorem 3.1 we have A; >0.

Example 3.2. Take a(z)=1/(|x|+1), V(z)=~|z|? for |z|>1. Then the compar-
ison procedure does not apply. Now we go to check the condition of Theorem 3.1.
Obviously, a(r)=1/(1+r), (b(z),z)=—r/(1+7r)2—2r2/(1+r). Then

d—1 1 Cl’{’d—l

=T exp[—4r?], r>1,

for some ¢1>0. Take f(r):rl*d exp[—r+4r2], then there exists ¢o >0 such that

1 t o 1 t S 147
m/l exp|—C(r)] dT/T exp[C(s)] f(s) dsSczf—(E/l exp|—r—+4r ]Td_l dr

which goes to %02, as t—o00. Therefore, Theorem 3.1 implies that A; >0.

Finally, we present an upper bound estimate like (1.7).

Theorem 3.2. Let 3(r)=supy,_,(1/r*){a(z)z,z), we have

A1 <isup{52:u<exp [6/0'%l ﬁl(r) dr]) <oo}.
hr) = /0 ' ﬂl(s) ds

If p(expleh(|z|)]) =00, we go to prove that A <1e2. Let f(x)=exp[ie(h(|z|)An)],
n>1. By (3.1), we have

Proof. Let

e2u(f?)
(34) NS ) m()
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Next, for any m>1 choose 7, >0 such that p({h(|z|)>rm})=1/m, we have

11wz} P2 2V p(Liese £) = Vm p(f) —/m exp[3eh(rm)].

Then

(35) 1 < (VI sexpgenrn) ).

Jm

Noting that u(f?)—o00 as n—oo, by combining (3.4) with (3.5), we obtain

2

[
M<——5 m>1.
YSi0-1my ™

Therefore, A; < ;&2 since m is arbitrary. O

Acknowledgement. The author is grateful to the referee whose suggestions im-
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visit to MSRI in Berkeley.
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