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A sharp weighted L2-estimate for the solution 
to the time-dependent SchrSdinger equation 

BjSrn G. Walther(1) 

A b s t r a c t .  For ~ C R  n, t E R  and f C S ( R  n) define (S2f)(t)^({)=exp(it]{]2)f({). We deter-  
mine the  opt imal  regulari ty so such tha t  

f a  2 2 dx ,~ I1( S f)[x][[L2(R)(l+[xl)b _<CIIfll~(a,~), s>s0, 

holds where C is independent  of f E S ( R  n) or we show tha t  such opt imal  regularity does not  exist. 
This  problem has been t rea ted  earlier, e.g. by Ben-Artz i  and Kla inerman [2], Ka to  and Yaj ima [4], 
Simon [6], Vega [9] and Wang  [11]. 

Our theorems can be generalized to  the  case where the  exp(it[~l 2) is replaced by exp(it]~la), 
a r  

The  proof  uses Parseval 's  formula on R,  or thogonal i ty  arguments  arising from decomposing 
L 2 ( R  ~) using spherical  harmonics  and a uniform es t imate  for Bessel functions. Homogenei ty 
arguments  are used to show tha t  results are sharp wi th  respect  to regularity. 

O. In troduc t ion  

0.1. Let u denote the solution to the free time-dependent Schr6dinger equation 
Axu=iOtu with initial data f .  At least for f E S ( R  n) it is represented by an oscil- 
latory integral with quadratic phase. In this note we are interested in estimating 
the double integral 

/ R / R  dtdx 
,~ iu(x,t)l 2 (l+lx[)b 
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Universit/it ,  Linz. I would like to thank  J im Cooper,  Eva Matougkovs Paul  Mfiller, Charles 
Stegall, Michael Schmuckenschl/iger and Rena t a  Miihlbachler for having created a s t imulat ing 
and friendly a tmosphere  in the  functional  analysis group at Linz. I would also like to thank  
Professor Per  Sj61in for valuable comments  and for encouraging me to carry out the  investigation 
presented here, Professor Krzysztof  Stempak,  Uniwersyte t  Wroctawski, Wroctaw for help regarding 
improvements  of the  presenta t ion  and the  referee for comments  and criticism. 
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from above by inhomogeneous Sobolev space norms. Here b is a real number larger 
than 1. A related estimate has been used by Sjblin [7] to derive an L~ocestimate for 
the maximal function u*(x)=suP0<t<l  ]u(x, t)[. See [10, pp. 487~88]. The method 
in those papers uses interpolation for mixed norm spaces and the continuity of the 
embedding H~/2+~(R)CL~(R),  r  The objective here is different, namely to 
characterize the decay of u expressed by estimates for the above double integral. 
This is a problem of interest independent of estimates for the maximal function u*. 

0.2. S o m e  ea r l i e r  resu l t s .  Let us consider the inequality 

(o.1) R /R dt dx 2 I(Io l%)(x,t)l (l+lxl)  

where C is assumed to be independent of f E S ( R  *~) and a_>0. (The real power of 
the modulus of the time-derivation in the left-hand side can be defined in a proper 
way using the Fourier transform, and the Sobolev space norm on the right-hand 
side is defined in ( lAb) below.) For a = 0  and l < b < 2 ,  Wang [11] has showed that  
(0.1) does not hold. 

It has been argued (see [9, p. 874 line 3 and 4 from below]) that  (0.1) can 
be used in conjunction with the continuity of the embedding H ~ / 2 + ~ ( R ) C L ~ ( R ) ,  
c > 0  to prove that  there is a number C independent of f E S ( R  ~) such that  

• dx C 2 
(0.2) nlu*(x)]2 (1§ b -< HfIIH1/=+~(R")' c>O, 

holds. That  argument uses the inequality 

(0.3) fR fR]([l+lOtla]u)(x,t)]2 dtdx C 2 (l+jx])b IIftlH=( -I/2)+b/=(Rn), 

and b is slightly where C is independent of fES(R '~) ,  a is slightly larger than 
larger than 1. 

It is one of the purposes of this paper to show that (0.3) does not hold for 
any b<2. We refer the reader to Theorems 2.1 and 2.2 below. These theorems are 
characterizations. We use spherical harmonics and uniform estimates for integrals 
of squares of Bessel functions J~/2+k-1 to prove the sufficiency parts. One crucial 
fact for the necessity part is that  there is no number C independent of f0 EL ~ (0, 1) 
such that  

(o.4) /ool(/? ) J~/2_l(r)2rl-b dr gb-2fo(g)dg<CIIfOl[Ll(O,~), logO, 
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holds, where b is any number strictly less than 2. (When n = 2  we cannot allow 
b=2.) 

Our results are contradictory to [9, Theorem 3, p. 874]. In fact (0.4) easily 
provides us with the following counterexample to (0.3) (cf. [11]): Take fo(O)=0 -b/z 
for 0 < 0 < 1  and f0(0)=0 for 0_>1. Set f(~)=l~l-n/2+x/2fo(l~l)l/Z~N(~), where ~N is 
a sequence of non-negative functions in C~ (Rn), supp ~ u  C_ B n tending pointwise to 
the characteristic function of/)'~, the punctured open unit ball of R n, as N tends to 
infinity. Then the right-hand side of (0.3) will be bounded by a number independent 
of N whereas the left-hand side will tend to infinity with N. This counterexample 
does not require that  one analyses the r61e of the regularity 2 (c~-1)+ �89  in the 
right-hand side of (0.3). It is rather the low frequencies of f which completely 
determine the weight ( l+ ]z l )  b. See Theorems 2.1(b) and 2.2(b). 

One may object that  although (0.3) does not hold, its modification 

/ R / R  d t d x c 2  (0.5) I([l+la P]u)(x,t)l 2 

obtained by disregarding the low frequencies holds. Here u is the solution to the 
free time-dependent SchrSdinger equation with initial data fr  ] r162 
and ~ is defined in Section 1.3. However, it is on the whole misleading to consider 
such an inequality. The reason is that  

which is equivalent to IIf~llH-~+~/2(a~), increases with b whereas the norm 

(0.6) /w, fRtu(x,t)]2 dtdx 

decreases with b. (Choose a = 0  in (0.5).) 
What  might be relevant here is to replace (0.6) by 

[u(x' t )12 dt dxlx? 

and to consider initial data  in H-l§ so that  the resulting estimate scales. 

See e.g. Ben-Artzi and Klainerman [2, Theorem l(a), p. 26]. This and related 
matters will, however, be further discussed elsewhere. 

The decomposition f=fe+(f-fr is used in Ben-Artzi and Devinatz [1] to 
handle more general symbols in the representation formula for u. 

Despite the fact that (0.3) does not hold for any b<2, (0.2) holds for all b > l  
and a correct proof of this can be found using Soljanik's theorem [10, Theorem 2.2, 
p. 487]. 
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0.3. T h e  p l a n  of  th i s  c o m m u n i c a t i o n .  In Section 1 we introduce some 

notation, Our theorems are stated in Section 2 and proofs are prepared in Section 3 

where we cite some well-known results and prove a corollary to one of them. Finally 

we prove our theorems in Section 4, 

1. N o t a t i o n  

1.1.  R e p r e s e n t a t i o n  f o r m u l a  for  u, t h e  F o u r i e r  t r a n s f o r m .  For x and 
in R n we let x~=xl ~1-t-... +xn~. If m C L ~ (R'~x R+), if a is a real positive number 

and if f is in the Schwartz class S ( R  '~) we define 

(2 )n t c a .  

If m = l  we will write S&=S ~. Here f is the Fourier transform of f ,  

f(~) = s  e-i~ f(x) dx. 

Note that u(x, t)= (S2f)[x](t). Throughout the present communication we will re- 

strict ourselves to the case a=2. This restriction is not serious as will be clear below 

when we perform a certain change of variables. See (4.3). 

1.2, S o b o l e v  spaces .  We introduce fractional Sobolev spaces 

} = IIflIH-.(R ) ( 1 + 1 e l 2 ) ' 1 ] ( { ) 1 2  < oo  " 

The embedding property alluded to in Section 0.1 is merely Cauchy-Schwartz'  in- 

equality applied to Fourier's inversion formula 

1 s e~(l+~:)_(1/~+~)(l+~2)~/4+e](~) d~. f(x) = 

1.3. A u x i l i a r y  n o t a t i o n .  By B n and E '~-1 we denote the open unit ball 

and the unit sphere in R n respectively. (The open unit interval B 1 will be denoted 

by B.) The symbol da is used when we integrate with respect to the surface measure 

induced by the Lebesgue measure on R ~. 
In Section 4 we will use auxiliary functions X and ~p such that  XEC~(R)  is 

even, non-negative and equal to 1 on B and 0 outside 2B and D = I - x .  

Nmnbers denoted by C may be different at each occurrence. 
Unless otherwise explicitly stated M1 functions f are supposed to belong to 

S ( R " ) .  
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(2.1) 

2. T h e  t h e o r e m s  

2.1. T h e o r e m .  
(a) I f  5>2, then there is a number C independent of f c S ( R  2) such that 

: ~ 2 dx 2 
II(S~N)[~]IIL~(R) (l+i:~t)b -< CIINIIH 1.(R~) 

(b) Assume that there is a number C independent of f E S ( R  2) such that 

ii(s2f)Ex] 2 dx IIL~(R) (l+lxl)b <--CI]fllL=m~), s u p p f  CB2.  

Then b>2. 

2.2.  T h e o r e m .  Let n>3.  
(a) There is a number C independent of f such that 

/p  ll 2 2 dx 
,, (Smf)[x]llL2(R) (1+1Xl)2 

C 2 - -  ~ I l f l lH 1 /~ (an) .  

(b) Assume that there is a number C independent of f such that 

a dx 2 supp f C B ~. (2.2) n II(S2f)[x]II22(R) (I-FIxl) b -<cllfllL~(a'~)' - 

Then b>_2. 

2.3. R e m a r k .  In the case when r n = l  Theorems 2.1(a) and 2.2(@ have been 
proved earlier by Ben-Artzi and Klainerman [2, Corollary 2, p. 28], Kato and Ya- 
jima [4, (1.5), p. 482] and Simon [6]. 

2.4. Discuss ion.  It is to be observed that  the estimates in Theorems 2.1 
and 2.2 are global in t and global in x with an appropriate weight (whose admissible 
decay is characterized when m 1) and that  the weighted norm of II(S2~f)[ r 
can be controlled not only by Ilfllf/ 1/=(R,0' but also by HfllH 1/2(an) once a careful 
analysis of the low frequencies of the initial data  is carried out. Corresponding 
results hold true for the phase [~-~ IfP (at least when a >  1); the number of derivatives 

1 ( l - a )  in this more general case. in the inhomogeneous Sobolev space norm is 
For the discussion in this paragraph cf. Kenig, Ponce and Vega [5, Section 4, 

Remark (b), p. 56]. 
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3. S o m e  p r e p a r a t i o n  

3.1. In this section we introduce some notation and collect some well-known 
results which will be used in the proof of our theorem. Standard references are 
given. 

3.2. N o t a t i o n .  For integers l we define the Bessel function of order l by 

1 ~0 2~ ei(rsinw_l~ ) dw (3.1) Jz(r) = 

and for real numbers ) , > _ 1  the Bessel function of order ), by 

eirV(l_v2)X 1/2 dr. (3.2) J~(r)= 2~r(),+�89189 1 

Here F is the well-known Gamma function. The Poisson representation (3.2) is 
consistent with (3.1). (See e.g. Stein and Weiss [8, Lemma 3.1, p. 153].) 

3.3. N o t a t i o n .  Throughout  this communication P will denote a solid spheri- 
cal harmonic (cf. [8, pp. 140 141]) of non-negative degree k such that  IIPIIL2(~ 1)---- 
1. 

Let g)k(R n) be the linear space of all finite linear combinations of functions of 
the form 

~, ) P(~)fo(l~l)l~l-n/2-k+l/2, 

where foCL2(R+).  (Cf. [8, p. 138].) The space ~ k ( R  n) is a Hilbert subspace of 
L2(R ~) (with the inherited inner product). 

3.4. Theorem.  (IS, Theorem 3.10, p. 158].) Let feS)~(IV9 be given by f(r  
p(~)fo(KI)l~1-7~/2-k+~/2. Then 

(2~)~/2p(x)iklxF(k) fo ~ f(x): fo(o)J.(k)(olxl)o~/2@, y(k) : 2+k-1 

3.5. C o r o l l a r y .  The tempered distribution #p defined by 

has Fourier transform ftp given by 
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3.6. T h e o r e m .  ([8, Lemma 2.18, p. 151].) The complete orthogonal decompo- 
sition 

OO 
L 2 ( R  n) = ( ~  f)k (R n) 

k=0 

holds in the sense that 
(a) each subspace 2)k(R n) is closed; 
(b) f)kl (Rn) is orthogonal to ~k~ (R n) /f kl •k2; 
(c) every f can be written as a sum 

CX3 

f = ~ f k ,  fk e g)k(Rn), 
k=0 

with convergence in L2(Rn). 

3.7. T h e o r e m .  (Asymptotics of Bessel functions, [8, Lemma 3.11, p. 158].) 
I f  A> 1 - ~ ,  then there exists a number C depending on A but independent of r such 
that 

( cos r - ~ -  <_Cr -3/2, r>_l. 

3.8. T h e o r e m .  (Of. H6rmander [3, Theorem 7.1.26, p. 173].) I f f e L 2 ( E  ~-1) 
and if ~ f  i8 the tempered distribution defined by 

then there is a number C independent of f and p such that 

CoIIflIn2(~,~-~) . 

3.9. Corol lary.  The mean value 
~ 

&(r)2~ dr 

is bounded from above by a number independent of Q>O and AE �89 

Proof. Choose f = P  in Theorem 3.8. We get 

p 2  Jo f ~ J , ( k ) [ l x l )  dx l[ I IL2(~,  n 1) IP(x)[ 2 , ,, , ,2  

alxl<_e 

_ 1 j~ I~p(x)I ~dx<c~IIpII~(~_~), 
(2~) ~ i_<o 

where the last equality follows from Corollary 3.5 and where C is independent of Q 
and k by Theorem 3.8. 
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3.10. L e m m a .  Let b>l .  There exists a number C independent of ~>_1 such 
that 

e ~ j.(k)(r)2rl b dr < Coo 1-b. 

Proof. Let L)>I. We have 

d r  _ 7 
Ju(k) (r)2 rb j=0 Yo 

~ 2J+IQ 1 /2J+loju(k)(r)2rd r _< 
j=0 ( 2 J p ) b  2J+lp a0 

2J+1~0 2C ( ~ 2 j ( 1  b)), 

where the number C may be chosen to be independent of k by Corollary 3.9. 

4. P r o o f s  

4.1. In this section we will prove Theorems 2.1 and 2.2. We will start with 
Theorem 2.2. The proof of Theorem 2.1 will then be obtained by a slight modifica- 
tion. 

4.2. P r o o f  of  2.2(a).  Let b=2. Define 
(4.1) 

1 .fR re(x, fl)ei(~+tl~l~)(l+l~12 ) ~/2f(~)d~, t e R .  (S2 f )[x]( t)-  (]4_lxl)b/2 ,~ 

Our theorem follows if we can show that  there is a number C independent of f such 
that  

(4.2) -2 IISJIIL=(Rn+I) <__ CIIfllL=(an)" 
4-2-1. For ~ > 0 we define 

(1+0)- ' /20(n-2)/2 
fix] (L)) = 2(l+lxl)b/2 

(and by f[x](L))=0 for ~_<0). The formula 

// (4.3) (s~,f)[x](t) eitQm(x, pl/2)f[x](~) dQ 

follows by polar coordinates and change of variables in (4.1) and the estimate 

--2 [ISmflIL2(R,~+~) < (27r)1/211mlIL~(R,,xR+)HflIL2(R~+ 1) 
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follows from Parseval 's  formula on R applied to (4.3). Hence, to prove (4.2) (with 
C independent of f )  it is sufficient to prove that  

(4.4) II/I[L'(Rn+I) < CIIIIIL2(R,~), 
where C is independent of f .  

4.2.2. If fjE(~kjC3S)(Rn), kaCk2, we have 

L [rx'](o)L[r.~'](~) d~(~') =o 

for all r>O and all o>O. In fact 

f> L[rx'l(0)L[rx'](0) d~(x') 
1 

(1+0) -~0  '~-u 
- - 4 ( l + r ) b  ~r~ z (~,~ eioz/2r'x'~'fl(Ol/2~')dcr(~ ' ) 

• l e-iel/2rx'" f2(o1/2~') d~ ) d~(x')" 

Each of the inner integrals in the right-hand side will by Corollary 3.5 produce 
a linear combination of products of spherical harmonics of degree kj t imes cer- 
tain functions of (r, 0). Because of the assumption kl 7~k2 the spherical harmonics 
(or rather  the surface spherical harmonies) will be orthogonal in L2(~n-1), which 

proves our assertion. 

4.2.3. We have the orthogonality relation 

(j~,J~)L~(R,~+z)=O, f j e ~ k j ( R n ) ,  kick2. 
In fact 

~,~_~ (fl [rx'], fa[rx'])L~-(R) da(x') = ~o~176 if1 [rx'](o)f2 [rx'](o)do-(x')de=0, 

where we have applied the orthogonality assertion in Section 4.2.2 in the last equal- 
ity. Integrating from 0 to oc with respect to the measure r~-ldr now proves our 
assertion. 

4.2.4. 

(4.5) 

For any element(2) 

f:~' > ~ P(r162 n/2-k+l/2, f0EC0(R+), 
(fo ,P) 

(2) Recall the notation in Section 3.3. The summations in (4.5) and (4.6) are performed over 
finite sets. 
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in g)k(R n) we can assume that the surface spherical harmonics P]x~-I are or- 
thogonal in L2(E n-l)  and hence, by polar coordinates, that the terms in (4.5) are 
orthogonal in 2)k(R'~). Then the terms of f will be orthogonal in L2(R'~+I), since 
the terms of x~-*f[rz](0) restricted to E ~-1 will be orthogonal in L2(E n-l)  for 
fixed (r, O). (Cf. Sections 4.2.2 and 4.2.3.) Also t 

(4.6) 2 IIfLtL~(Rn) = ~  2 IIf011L2(m). 
fo 

4.2,5. It is a consequence of orthogonality (see Section 4.2.3 and Theorem 3.6) 
that it is sufficient to prove the estimate (4.4) for fEY)k(R~)NS(Rn), where the 
number C has to be independent of f and k. In turn, it is a consequence of 
orthogonality (see Section 4.2.4) that it is sufficient to prove the estimate (4.4) for 

f:~, , P(4)fo(l~l)l~l ~/2-k+~/2, foCCo(R+), 

where the number C has to be independent of f and k. Straightforward computa- 
tions using change of variables, Corollary 3.5 and polar coordinates show that for 

such f 

(4.7) IlfllL:(an+~) (22)~ /0 ~0 ~ - + ~ 7  (l+r)b" 

Hence it is sufficient to prove the estimate 

/o Jo 1o /o ~ fo(e)r drdo _ J~ k 'r'2f~ 2r drdo 
J'(~)(~r)2(l+~)~ (1+~)~ ()~J i1%-~T~) ~ (~+~)~ 

~_ CtifoItL~(a+), 

where f0 >_0 and C is independent of fo c C0 (R+) and k. This estimate will be proved 
by replacing f0(Q) by X(2~)fo(p) (in Section 4.2.6) and ~(2p)fo(p) (in Section 4.2.7). 

~.2.6. Estimate for X(2p)fo(Q). We shall derive the estimate 

(4.8) J~(k) (r)2x(2e)fo(O)P b-2r (p§ ~-- C X(2O)fo(P) d0, 

where C may be chosen to be independent of f0EC~(R+) and k. Recall that b=2. 
We have 
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Here we split the integration with respect to r into two pieces and use the Poisson 
representation (3.2) for 0 < r < l  and Lemma 3.10 (with 0 = I )  for r_>l to conclude 
that  the inner integral in the right hand side is bounded from above by a number 
C independent of k. We have proved (4.8). 

4.2.7. Estimate for r  We shall derive the estimate 

(4.9) J .(k)(r)2~(20)f0(0)0 b 2-2Sr (0+r)~ < C e(20)f0(0)  do, 

where C may be chosen to be independent of foGC~(R+)  and k. Recall that  b=2 
1 We have and that  s = - ~ .  

&(~)(r)2r176176176 (0+r)b 

Here we use O to split the integration with respect to r into two pieces and use 
Corollary 3.9 for O<_r<_o and Lemma 3.10 for r>_o to conclude that  the inner 
integral in the right-hand side is bounded from above by a number C independent 
of k. We have proved (4.9). 

4.3. R e m a r k .  The technique used in Section 4.2.1 (one-dimensional change of 
variable, Parseval's formula on R) has been used before. See e.g. Kenig, Ponce and 
Vega [5, p. 57]. In this context it is also appropriate to draw the reader's attention 
to the discussion in Section 2.4. 

4.4. P r o o f  o f  2 .2 (b) .  We have the estimate 

&(0) (0r)2~(0)/o(0)r (l+r)b 

/0 (I ) _ O X(O)fo(O) do >2 -~ a~(o)(Or)2(Or) 1 ~d(or) b-: 
>1 

/o (L ) = 2  b j.(o)(r)2rl bdr Ob-2X(O)fo(o)do. 

Now assume that  the estimate (2.2) holds with a number C independent of f .  It 
follows from the discussion in Section 4.2.5 that  we then have the inequality 

(4.10) 9Io~Z (Lc'~ J~(o)(r)2rl-b dr)ob 2x(O)fo(o) do~_C,,xfo,,Ll(R+) , 

where C is independent of f0EC0(R+). From this statement it is clear that  we 
cannot allow b< 2. 
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4.5. P r o o f  o f  2 .1 (a ) .  We repeat  the proof of Theorem 2.2(a); the estimate 
for X(2p)fo(p) has to be carried out in a slightly different way when n = 2  and b>2. 

4.5.1. Est imate  for X(2Q)f0(p). We shall derive the estimate 

Ju(k) (or)2x(20)fo(O) r (l_~_f.) b -< C X(2L))f0(0) do, 

where C may be chosen to be independent of f0 and k. Cf. (4.8). Here we split 
the integration with respect to r into two pieces and use the Poisson representation 

(3.2) for 0 < r < l .  For the remaining part  we estimate as follows, 

J'(a) (Or)2X(20)f~162 ( l + r ) b  

<-- fo~ if~>l/2&(er)2(Or)~-bd(e~))ob-~x(20)fo(~)do 
/?(/? ) = Jk(r)2r 1-b dr ob-2x(20)fo(O) do 

/2 
I oo 

-< fo~176 f Jk(r)2rl-bdr)ob-2x(2P)fo(o)do. 

Here we have used the Poisson representation (3.2) in the last inequality. The 
number C may be chosen to be independent of k. Recall tha t  b>2. By Lemma 3.10 
with 0=  1 the expression in the parentheses can be est imated from above by CO 2 b 

for some number C independent of 0_<1 and k. 

~i.5.2. Est imate  for ~(2co)fo(p). We replace b=2 in Section 4.2.7 by b>2 and 
check the estimates in that  paragraph. 

4.6. P r o o f  o f  2 .1 (b ) .  We repeat  the proof of 2.2(b) and observe that  there 
is no number C independent of f0 EC0(R+) such that  the inequality 

) Jo(r)2r -1dr X(O)fo(O) do <- CllxfollLl(R+) 

holds. Cf. (4.10). This means that  we cannot allow b-2. We cannot allow any 
smaller b either. 
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