ON TWO THEOREMS OF F. CARLSON AND S. WIGERT.

BY

G. H. HARDY
New CorLrck, OxrorD.

1. In this short note T have united a number of remarks relating to two
theorems due in part to WiGERT and in part to Carrson.! The theorems belong
to the same region of the theory of functions, and it is natural to consider
them together.

I.

2. I write z=2 + 1y =re*d. Then the first theorem is as follows.?

! The manuscript of the note (then entitied 'On two theorems of Mr. 8. Wigert') was sent
to Prof. Mirrac-LEFFLER in 1917, I was at that time unaware of the existence of Mr. CArLSON'S
dissertation (Sur une classe de séries de Taylor', Uppsala, 1914). This dissertation was given to
me by Prof. Mirrac-LerrrLEr in September 1919; and I found at once that Mr. Carrson had
anticipated not only Mr, Wicerr's theorem of 1916, referred to in § 2, but my own generalisa-
tion of this theorem and indeed the substance of most that I had to say.

The note, however, contains something in substance, and a good deal in presentation,
that is new; and I have therefore agreed to Prof. Mirrac-LerFLEr's suggestion that it should
still appear. Except as regards §§ 1—2, I have left it substantially in its original form.

* Wicerr (Suar un théordme concernant les fonctions entidres’, Arkiv fir Matematik, vol.
11, 1916, no, 22, pp. I~5) proves a theorem which is less general in that (1) the angle is sup-
posed to cover the whole plane and (2) f(2) is supposed to vanish for all positive and negative
integral values of z. Carusox (I. ¢, p. §8) proves a theorem which contains the present theo-
rem as a particular case (but is in fact substantially equivalent to it). His method of proof is
similar to that of the first two proofs given here.

Wieerr (I. ¢) refers to previous and only partially succesful attempts to prove his theo-
rem, and gives a proof based on a theorem of PrracMEN ('Sur une extension d'un théoréme
classique de la théorie des fonctions’, Acta Mathematica, vol. 28, 1904, pp. 351—369). He deduces
a8 a corollary a result relating to the case in which f(z) vanishes only for positive integral

values of z; in this the number = is replaced by the less favourable number 27:. I may add

that a similar result, in which %x is replaced by the still less favourable number 1, was found

independently by Pérya (Uber ganzwertige ganze Funktionen’, Rendiconti del Circolo Matematico
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1f
(1) f(z) is regular at all points inside the angle — o <0 <a, where ¢ > %ﬂ;
(2) 11 (z)1 < Ae*r, where k< w, throughout this angle;
(3) flny=o0 for n=1, 2, 3,...;

then f(z) is identically zero.

3. It seems most natural to deduce this theorem from those proved by
ParacMEN and LiNpsrLor in Part III of their well-known memoir in Vol. 31 of
the Acta Mathematica.® Let us suppose that f(z) is not always zero, and write,
with ParAaeMEN and LiNDELOF,

if
£ (0) =lim sup l_gg_l_[ggmu ,
so that
h) <k, (—e<6<La)
Then k(6) is continuous for —a<f< a.2
Now let
F(z)= NiON
gin 7z’

so that F(z2) also is regular inside the angle of the theorem; and let H(f) be
formed from F(z) as h(f) is from f(z). Then it is obvious that

(1) H(0)=h(®) —=|sin 0| < k— = |sin 8],

except possibly for 6=o.
If =0, z=2x is real. We write

Hx)=u(x) + dv(z), F(z)=U(zx) +:V(2).

Let us suppose that x is not an integer, and that n is the integer nearest to .
Then

di Palermo, vol. 40, 1915, pp. 1~16). It should be added that this result of PoLrs appears
only incidentally as a corollary of theorems of a somewhat different character and of the
highest interest.

1 E, PeracuNy and E. Lixpeidr, ‘Sur une extension d'un principe classique de l'analyse
et sur queiques .propriétés des fonctions monogénes dans le voisinage d'un point singulier’,
Acta Mathematica, vol. 31, 1908, pp. 381—406.

* This follows from the argument of pp. 404—405 of PurAcMEN and LINDELOF'S memoir.
This argument presupposes that the value of A(f) is not always — o, a possibility ex-
cluded by the theorem of p. 38s5.
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r—n
sin w2

z—n
sin wx

U(Il') = u,(gl)’ V(x) = v'.(gz))

where &, and &, are numbers between n and 2. It follows that
| F (x) l < C‘pﬂ H

where C is a constant and ¢, is the maximum of |f(z)] for n—1<z<n + 1.
But

I’(x)=——£— (2) dz

2ns | (z—2x)2 "’

where the contour of integration is the circle |z—z|=1; and so

‘f!(w)'<Aek(a:+l)’ (p,.<Ae"("+2’.
Thus
| F(2)]| < Beke,
where B is a constant.
It follows that H{o)<k. Hence H{8) is continuous for 6=o0, and (1)

holds for all values of § between —o und «. Thus H(8) <o for <6<y and
—y<0<—8, 8 being the positive acute angle whose sine is % , and y the lesser
of « and z —8.

But it is easily proved that this is impossible. Suppose first that « >§1v.

Then H(f) cannot be negative for — a <0 < ¢, since the length of this interval
is greater than n.! There is therefore, inside this interval, an interval in which
H(0) is positive.? This last interval must form part of the interval —8<6<§6;
and its length is therefore less than 7. And this, finally, is impossible.

Secondly, suppose that « mgn. If H(#) is not negative for ——~Z—7z<0< ;—n,
we obtain a contradiction in the same way as before. If H(6) is negative for
—En <6< gn, it must be of the form L cos # + M sin 6.* It is plain that L

must be negative and M zero, and that H(¢) must tend to zero as we approach
an end of the interval, which is not the case.

! PraracMEN and LiNpELoF, I ¢, p. 400,

* Ibid., p. 399.

* Ibid., p. 399.

* Ibid., p. 403.

Acta mathematica. 42. Imprimé le 3 mars 1920. 42
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We have therefore arrived in any case at a contradiction, and the theorem
is proved. It is easy to see, by considering a function of the form e~ sin nz,

that it ceases to be true when « < ;—n

4. I shall now give an alternative proof of the theorem based on entirely
different ideas. This proof is less elementary than the first, but seems to me
to be of some instrinsic interest.

Suppose that w is positive, p a positive integer, o<x <1, and p<i<p + 1.
Then it is clear that, under the conditions of the theorem, we have

Attt x-}:im
7T
— n_. — 2 _—— . 2y w?*
ﬁf(n)( 27172 sin nzf( )w dz 27t 8in n'zf( )w dz’
2—ioo A—i®

the paths of integration being rectilinear.

Let us suppose now that A=yp +2 and that p—o. Then

IHWﬂZ) wis] < fli p+ +zy I

sin 7z cosh Y

dy.

A—i0

-
el <seeV s

where B is a constant; and so

Also

sin Tz

A4t
lfﬁ)—w"dz|<0(we")1’,
where C is another constant. Thus the integral tends to zero if w is sufficiently
small. We have therefore

#+io

@ 0w = el =) + el [ e,

H—f®

for sufficiently small positive values of w. This formula is of course well-known,
and shows that ®@(w) is an analytic function regular for all positive values of w.
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Suppose now that —1<s<o. Then we can choose u and » so that
o0<v<—s<u<1. And we have?!

1 1 utio
-1 — 1 —1 4
(2) fw‘ O (w)dw = znifw' dwfsin 7rzf(z)w"'dz,
0 ° p—iw
T w @ v4io
-1 — _I“ —1 J_.
(3) fw’ D (w)dw = znz’fw dwfsin ”zf(z)w‘dz,
1 1 y—i0

provided only that these integrals are convergent.
The double integral

1 pu+tiw
1
sin 7wz
0 p—tiw

f(z)w'“‘“dwdzl

is convergent, as may be seen at once by comparison with the integral

1
ffwwps—le—(a—k)luldwdy.

0 —

Hence the integral (2) is convergent, and may be calculated by inversion of the
order of integration. The same arguments may be applied to the integral (3).
Inverting the order of integration, and combining the results, we obtain

-

hos i v4im
J wl O(w)dw = z [ =_ 1) dz z f =_ 1) dz,
0

2mi | sinmzz+s 27t sinmzz+ 8
u~:ioo Y—t0
or
w0
(4) w 1D (W) dw = — —~—— f(— 8).
8in 7z 8

0

This formula has been proved for —1<s<o. It is equivalent to

! This artifice is due to MeLuiy, from whose work the ideas of the proof are borrowed.
See Hi. Meuiy, "Uber die fundamentale Wichtigkeit des Satzes von Cauchy fir die Theorien
der Gamma und der Hypergeometrischen Funktionen; Acta Socictatis Fennicae, vol. 21, no. 1.
1896, pp. I—I11 (pp. 37 et seq.).
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[+]
¢ ~1 — 2 _ ... =———-—-—7K
(5) fw (ay — a,w + a,w ) dw sl

0

where 0<t<1 and a.,==a(z) is an analytic function of z subject to certain
conditions. In this form the formula was communicated to me some years
ago by Mr S. RAMANUJAN, in ignorance of MELLIN’s work.

So far we have made no assumption as to the values of f(z) for integral
values of 2. It is plain that, if f(n)=o0 for n=1, 2, 3,..., we obtain

fl—¢8)=o (—1<8<0),
so that f(z) is always zero.

II.

5. Suppose that f(z) is an integral function of z such that

(1) [f(z)] < etrroar
for every positive ¢ and all sufficiently large values of r,
(2) [1(@2)|> etr=a7

for every positive ¢ and for a corresponding sequence of values of r whose limit
is infinity. Then, following PrincsuEmM,! I shall call f(z) an integral function
of order 1 and type y. This being so, the second theorem which I wish to
discuss may be stated as follows.

The necessary and sufficient condition that

f(z)=a,+ e,z +a,22+ ---

I
1—2
a(z), of order 1 and type o, which takes the values a,, a,, @, ... forz=1, 2, 3, .

I may insert here a few references to the rather extensive literature connected
with this theorem. The complete theorem is due to WicerT?; but the second half of
it, asserting the sufficiency of the condition, was discovered almost simultaneously,
and by a quite different method, by LE Rov.* Another proof of this part of the

18 that there should be an integral function

should be an integral function of

! A. PrmvesueiM, 'Elementare Theorie der ganzen  transcendenten Funktionen von end-
licher Ordnung’, Mathematische Annalen, vol. 58, 1904, pp. 257—342.

* 8. Wiaerr, ‘Sur les fonctions entidres’, Ufversikt af K. Vet.-Ak. Forhandlingar, Arg. 57,
1900, pp. 100I1—IOII.

* E. 1 Roy, 'Sur les géries divergentes et les fonctions données par un développement
de Taylor, Annales de la Faculté des Sciences de Toulouse, ser. 2, vol. 2, 1900, pp. 317—430 (pp
350—353) ’
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theorem has been given by LINDELGF,! who deduces it, along with many other
important theorems, from the ’formules sommatoires’ of the calculus of residues.
The whole theorem was rediscovered at a slightly later date by FaBER,® whose
proof does not differ in principle from Wicerr’s. It has been further discussed
by PriNasHEIM,® who presents the whole proof in a particularly simple and
elementary form. And, as explained in the footnote to § 1, it is a special case
of much more general theorems to be found in CArLSON’s dissertation.

6. The proof which I give here stands in closest connection with the ideas
of LE Roy. I begin by proving the following lemma.

In order that a(z) should be an integral function of order 1 and type o, il is
necessary and sufficient that a(z) should be of the form

(1) a(z) =z_7lﬁ'{e”"’ (i)du,
¢

where C 48 a simple contour enclosing the origin, and ¢ (5) = @(w) 18 an integral
function of w.

This lemma is extremely easy to prove and very useful, but I do not
remember having seen it stated explicitly. In the first place the condition is
sufficient. For we may replace the contour by a circle whose centre is the

origin and whose radius is ¢, and then

la(z)| =|a(reit)| < eMee,

(s

In the second place the condition is necessary. For if

where M is the maximum of on the circle.

a(z) = ickz"
0

is a function of the required type, then*

! E. LivoeLor, Le calcul des résidus, Paris, 1905, p. 127. See also 'Quelques applications
d’'une formule sommatoire générale’, Acta Societatis Fennicae, vol. 31, no. 3, 1902, pp. 1—46.

? G. Fasrr, Uber die Fortsetzbarkeit gewisser Taylorscher Reihen’, Mathematische Anna-
len, vol. 57, 1903, pp. 369—388.

8 A. Prixecsem, 'Uber einige funktionentheoretische Anwendungen der Eulerschen Rei-
hen-Transformation’, Miinchener Sitzungsberichte, 1912, pp. 11—92 (pp. 40—45).

* See, e. g., PriNGsHEIN, I. ¢, D. 38.
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o
]/n!|c,,|——-o;
so that

[+
pw)= Zn!cnw"‘+1
0

is an integral function of w. Thus

® I ecY I I
o , »

C [of

7. We have now to show that f(z) is an integral function of I—_I:—z if and

only if there exists a function of the form (1) which assumes the values a,, a,, . ..
for z=1, 2, ..
In the first place, if such a function exists, we have

I zeY

(1) il(z)=f(Z)—ao=ianz"——— “A—w(i)du,
1

27wt ] 1T —ze¥

if C is a contour enclosing the origin and |ze*|< 1 at all points of C. These
conditions will be satisfied if |2] <1 and C lies entirely to the left of the line
R (u) = log

I
z

The only singularities of the integrand, other than the origin and infinity,
are the various values of log %; and it follows, by a familiar argument due in
principle to Hapamarp,! that the only possible singularities of f,(z) are the
values of zb for which logi is zero or infinite, that is to say the values o, 1,

and oo.

Let us draw a cut in the plane of z from 1 to o, say along the positive
real axis. Then there is a branch f,(z) of f,(z), the so-called ’principal’ branch,
which is one-valued and regular in the cut plane and vanishes at the origin.
If finally we can show that f,(z) is one-valued in the neighbourhood of z=1, it
will follow that f,(z) is the only branch of f,(z), and so that f,(2) is a one-valued

4 J. Hapamarp, 'Essai sur 1'étude des fonctions données par leur développement de Tay-
lor', Journal de mathématiques, ser. 4, vol. 8, 1892, pp. 101—186,
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function with z=1 as its sole finite singularity, that is to say an integral func-

. I
tion of ——.
I—2

Suppose then, to fix our ideas, that z tends to 1 through positive values
less than 1, that C is a circle whose centre is the origin and whose radius is

less than log 5 , and that C' is a concentric circle whose radius is greater than
I
log e Then?
1 ze¥ I
W =50 [ 7w o) 4

b g I ze I
—-(P(l I)+ znz'fx—ze“(p(z_t)du’

og ; 44

where log;I denotes, of course, the value of the logarithm which vanishes for

z=1. It is plain that the last integral representents a function regular for

z=1. As
I
{3
]og;

is one-valued in the neighbourhood of z =1, so also is f,(z). Thus one half of
the theorem is proved.

8. Secondly, let us suppose that f(z) is a function of the type prescribed.
We have

L (1@ g,

(1) Un= 2 7wi | %1

the path of integration being a closed contour surrounding the origin, but
excluding the point z=1. It is evident that, if »>1,® we may deform this
contour into that formed by (1) the right hand balf of the circle

lal=e7,

1 Compare G. H. Harpy, 'A method for determining the behaviour of a function repre-
sented by a power series near a singular point on the circle of convergence’, Proc. London
Math. Soc., ser. 2, vol. 3, 1905, pp. 381—389,

? The argument fails for n =0 unless f(0)=0. Compare WIGERT's paper.
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y being any positive number, and (2) the parts of the imaginary axis which
stretch from the ends of this semicircle to infinity.

Let us now effect the transformation z =e%, u = log %, where that value

of the logarithm is chosen whose imaginary part lies between — 7 and =. The
contour in the z-plane becomes a contour in the u-plane formed by three sides
of an infinite rectangle whose vertices are

S . I . 5 S
+-mt, —ow +>7E, —w0—=wE, —y—=7t
yrort 2 27 772
and we have
1
Ap = —— | e™f(e—*)du
w2 e f(e)du,

the integration being effected along this contour. It is obvious that the contour
may now be deformed into any simple closed contour which encloses the origin
but lies entirely inside the circle |u]|=zn. Finally, f(e—*) is plainly regular
except for u=o0 and u= + 2kni (k=1, 2, 3,...), and is therefore of the form

fe=) = 5) + v,

where @(w) is an integral function of w and Y(u) is a power series whose radius
of convergence is at least 27v. And

which proves the theorem.

9. The preceding proof of WicErT’s theorem is of course less elementary
than (for example) PriNesHEIM’s. It seems to me interesting none the less on
account of its almost intuitive character. It has the further advantage of
lending itself very readily to generalisation, as I shall proceed to show.

In the first place, the lemma of § 6 may be at once generalised as follows:

In order that a(z) should be an integral function of order 1 and type y, it is
necessary and sufficient that a(z) should be of the form

a(z)=2—:ﬁ.§/‘e'“q) (—;) du,
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where C is a contour which includes the circle |u|l=y, and @(w) is a funclion
reqular for |w|<; but not for |w| §§)

To prove this we observe that a(z) = 3c,2" will be a function of the type
required if, and only if,

n
lim sup Va!lc,| =1y,

n —— ©

so that the radius of convergence of 3n!c,z" is precisely y. The proof is then
practically the same as that of § 6.
We can now express

fi(2) =1(2) — @y = Y anz"

in the form (1) of § 7. The possible singularities of f,(z) are now o, «, and

the values of z for which <y. The latter values cover the interior of

log g

the curve defined by the equation

(1) log% =7.

We suppose that o<y <z and —n <6<z Then the curve defined by
(1) has the polar equation

(2) (log ;)’=y‘—6’,

and consists of a single loop, enclosing the point r=1, 8 =0, and cutting the
unit circle where 6= 4 y. The function f(z) is regular outside this curve, and
has a branch regular at the origin and at infinity. The curve may be the
boundary of existence of the function: in this case the function is one-valued.
But in other circumstances the function may have other branches of which o
or « are singular points.®

10. I shall now suppose that f(z) is a branch of an analytic function, one-
valued and regular throughout the region exterior to the curve (2), including

! See pp. 337—342 of PrincsHEm's paper in the Mathematische Annalen quoted above.

* The substance of these results is contained in the work of L Roy and Lmwersr. Cf.
Le Roy, L c, and Linoewor, Le caleul des residus, pp. 135—136. A less complete result is
given by PrinesHEIM: see D. 46 of his paper in the Minchener Sitzungsberichte already referred to.

Acta mathematica. 42. Imprimé le 5 mars 1820. 43
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infinity; and T shall show that in these circumstances there is an integral fune-
tion a(z), of oder 1 and type y, which assumes the values a,, a,, @, ... for
z2=1, 2, 3, -

We start from the formula (1) of § 8, and deform the path of integration
into one of the same general character as that used in § 8, but so constructed
as to leave the curve (2) entirely on its right. We may take the contour, for
example, to be formed by part of the circle » =e—%, where J >y, and parts of
the radii == 4 4, where y <1< w.This contour transforms, as in § 8, into a
quasi-rectangular contour, which now lies entirely outside the circles |u]|=1y
and |u + 2kni|=y (k=1,2,...). We thus obtain

an=2—xﬂfe"“f(e"“)du,

where f(e~*) is regular in the region exterior to the circles just referred to. We
can express f(e~%) in the form of a LAURENT’s series

L —1 ®©
2 = 3 e + B (3) + wew,

the first series being convergent for |u|>y and the second for |u|<2a—y;
and plainly

bs I
an=—— | e |-)du
" 2w (p(u) ’

where now the path of integration is any closed contour at all points of which
|ul>y.

We have thus proved the following theorem.

The mecessary and sufficient condition that f(z) = Zan2™ should be a one-valued
branch of an analytic function, regular in the region exterior io the curve

2
(logf) -y —0 (0<y <),

and including infinity, dbut not in any more extensive region of the same character,
ts that there should be an integral function a(z), of order 1 and type y, which assu-
mes the values a,, a,,... for z2=1, 2,...

The function a(z2) is, in virtue of WieERT’s first theorem, unique. It is
plain that the theorem ceases to be true if y>7. The critical curve then is
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no longer a simple loop surrounded by an open infinite region, and there are
infinitely many different functions which have the properties specified.

The proof of the theorem which I have given seems to be that which is
most in conformity with the general ideas of this note. But it can also be
proved by an argument more on the lines of WIGERT’s note and depending
upon the properties of the functions
a\» 1

— 2 Sy — (2%
Yu(z) = 172 + 2722 + 3728 + (zdz i

Chelsea, London, August 1917.



