A NOTE ON DERIVATES AND DIFFERENTIAL COEFFICIENTS.

BY

GRACE CHISHOLM YOUNG

IN GENEVA.

§ 1.

The main theorem obtained in the present note is the following: — Except
at a countable set of points, the lower derivate on either side is not greater than the
upper derivate on the other side; i. e. using an accepted notation which explains
itself?

f— (@) < f* (=),

and also
f+(@) < f~(=).

The primitive fonction f(z) may be any function whatever of the single real
variable z. If f(z) is a continuous function, thi® theorem enables us to assert
that, except at a countable set of points, f(x) has at least one symmetric deri-
vate, that is to say there is at least one sequence of positive, and one sequence
of negative values of %, both with zero as limit, corresponding to each point «,
such that the incrementary ration (f(x+ h)— f(x))/k has the same limit for
the two sequences. I define accordingly the mean symmetric derivate of a con-
tinuous function f(x) to be the trigonometric mean (§ 7) between the greatest and
least symmetric derivate at each point; the mean symmetric derivate of a con-
tinuous function then exists except at most at a couniable set of points; it agrees
with the differential coefficient, wherever this exists, and is finite except at a set of
points of content zero.

*'W. H. Youncg and the present author, »On Derivates and the Theorem of the Mean»,
1908, Quart. Jour. of Pure and Applied Math., § 2, p. 4. ScHEEFFER, who first introduced the
concept of a derivate, used D—f(x), etc. »Allgemeine Untersuchungen tiber Rectification der
Curven», 1834, Acta Math. §, p. 52.
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From the main theorem a number of interesting corollaries are at once
evident.

§ 2.

The theorem from the Theory of Sets of Points on which the following
discussion is based is due to W. H. Youne,! and runs as follows: —

Given a set of .intervals, overlapping in any manner, those points which are
end-points of the intervals, withoul being internal to any of them are countable.

This theorem may be proved in various ways: the following proof is per-
fectly direct, and depends only on CaNTOR’s theorem?® that any set of non-over-
lapping intervals is countable.

Let us divide the set of points in question into two sets, according as the
point under consideration is a left-hand end-point of one of the given intervals,
or not. It will be shown that each of these sets is countable, and therefore the
whole set is countable.

Corresponding to each point P, which is a left-hand end-point of one of
the given intervals, without being internal to any interval of the given set, we
have an interval dp of the given set with P as left-hand end-point. The point
P will not then, by hypothesis, be internal to any of the intervals dg belonging
to a different point @ of the same type, nor will Q be internal to dp. Hence
the two intervals dp and dg cannot overlap; for, if they did, the left-hand end-
point of one would have to be internal to the other. Thus the intervals dp form
a set of non-overlapping intervals, and are therefore countable. The points P
therefore also form a countable set, which is evidently dense nowhere, and con-
tains no point which is a limiting point of the set on the left.

Similarly those points which are right-hand end-points of intervals of the
given set, without being internal to any of the given intervals, form a countable
set, nowhere dense, and containing no point which is a limiting point of the set
on the right. '

Thus the whole set of points in question is countable, dense nowhere and contains
no sub-set which is dense in itself on both sides.

§ 3.
Let e,, e,,... be a monotone descending sequence with zero as limit,
k,, k,, ... a monotone ascending sequence with k as limit, where k may be finite

or + o, and let D, denote the set of overlapping intervals consisting of all those
intervals which have the following three properties: —

* »On overlapping intervalss, 1902, § 5. Proc. L. M. 8, (1) Vol. XXXV, p. 387.
* Math. Ann. Vol. XXII, p. 117, (1832).
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1) the length of the interval is less than e,;
2) when z and x + h are the end-points of the interval,

(@ + k) — f(@)/b > kn;

3) the same inequality holds when x is the left-hand end-point and x + h any
internal point of the inierval.
Now consider a point y at which

f+(y) >k

then, by the definition of the lower right-hand derivate f,(y), we can find an
interval with y as left-hand end-point, satisfying the conditions (1), (2) and (3).
Thus each such point y is a left-hand end-point of the intervals of D,. Hence,
by the theorem stated at the end of § z, there is at mbvst a countable set of
these points y, which are not internal to the intervals of D,.

Since this is true for all values of =, it appears that all but a countable set
of the points y belong to the set of points G internal to all the sets of intervals

D,, Dy, ..., Da,.

On the other hand, if X is any point of the set G, (supposing this set to
be other than a null-set),! and (x, 2 + &) be an interval of the set D, containing
X as internal point, it follows from the property 3), that (z, X) is also an in-
terval of the set D,, and therefore, by the properties 1) and 2),

X—xz<e,, {{(X)—fx)}( X —2x) > k,.

Since this is true for all values of =, this proves that the upper limit of
{{(X)—f{(X—h)}/h as h decreases towards zero as limit, is not less than k;
that is

F(X)>k.

Thus the set of points at which f~> k includes the set @, and therefore
includes all the points at which f; >k, except possibly a countable set of these
latter points.

Hence we have the following result: —

There is at most a countable set of the points at which f4(x) >k, at which we
do not have also f—(x)>k.

1 If flz) is continuous, and there are any points y at all, there are ¢ such, where ¢ is the
potency of the continuum. Thus for suitable values of %, the set G certainly is not a null-set.
W. H. Youxre »Term by term integration of oscillating series» 1909. Proc. L. M. 8. (2) Vol. 8. p. 106.
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Exchanging right and left we have the alternative result.

Similarly we have the following: —

There is at most a couniable set of the points at which f+ <k, at which we do
not also have f_ <k.

Here again we may interchange right and left.

In the first of the above statements k may be finite or + o, in the second
it may be finite or — . When k has one of these infinite values the sign >,
or <, must, of course be taken to be the sign of equality.

§ 4
Now the points at which fi.(xz)>% at which we do not also have f~> %,
may be divided into two classes; 1) the points f, >k, f~ <k, which are among
the points at which f, >k but not f~ >k, and therefore are countable, by the
first of the results of the preceding article, and 2) the points at which f,. >k,
f-=k, which are among the points at which f~ <k, but not f4 <k, and are
therefore countable by the second of the above results, after we have exchanged
left and right. Thus in the statements of the preceding article the sign of equality
may be omitted. For instance, omitting the sign of equality in the first of the
theorems, we have the theorem: —
There is at most a countable set of the points at which [+ >k, at which we
do not also have f—> k.
§ 5.
We can now prove the main theorem: —
Theorem. Except at a countable set of points, the lower derivate on either side
18 less than, or equal to, the upper derivate on the other side; i. e.

f-(#) < f*(z), and also f(z) <[~ (x).

To prove this let G4, ., denote the set of points at which

where k is any integer, positive, negative or zero, and e,, e,,..., ¢,... I8 a
monotone descending sequence of constants with zero as limit. Then, by the
second of the theorems of § 3

Gk, [ Ck, e, + Fk, %)

where Oy, ., is a countable set, and, at every point of Fy .
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Let C denote the set consisting of all the sets Cy ., for all values of the
integers k and r. Then C is a countable set, since it consists of doubly infinite
set of countable sets.

Now let P be any point not belonging to the set C. Then either at P

a) f+(«) has a finite value, or

b) f+(x) has the value + «, or

¢) f*(x) has the value — 0.

Take the first case a), and let

Then there is a perfectly definite succession of values of %, say k,, &, ...,
k,,... such that, for every value of r,

(kr_‘I)ef<pSkrer ............. (4)

so that, the quantities kre, form, as r increases, a monotone descending sequence
with p as limit.

By (3) and (4) the point P belongs to the set G . for all values of r;
and therefore, since P isnot a point of Cy_, ,,, it is a point of Fy .. for all values

of r. Hence, by (2)

[—(P)<kre, . . . . . . ... (5)
for all values of r. ,
But, as we let r increase indefinitely, the right hand side of (5) has the
_ unique limit p, by (4). Hence

Thus, by (3)
[~(PYfHP)Y . . o oo (7)

In case b) the relation (7) is also, of course true.

In case ¢) we have already seen that, except at a countable set of points
(7) holds as an equality (§ 3).

Thus (7) holds for all points P, excepting only a countable set.

Similarly, except at a countable set,

FP)>[P) o o (8)

except at a countable set of points. This proves the theorem.
Acta mathematica. 31. Imprimé le 5 janvier 1914. 19
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§ 6.

The relations (7) and (8) are precisely equivalent to the statement that there
is at least one number which lies both between f_(P) and f—(P), both inclusive,
and also between f.(P) and f+(P), both inclusive. But when f(z) is a continuous
function, its derivates on the right, or on the left, being the limits of the con-
tinuous function (f(z + &) — f(x))/h, when o <%, or when % < o, fill up respectively
a whole closed interval, including, of course, a point as a special case. Thus
we have the following corollary: —

Cor. If f(z) is a continuous fonction, it has at least one symmelric derivate,
except at a countable set of points.

By a symmetric derivate, I mean a limit of (f(z 4+ h) — f(x))/h, which is the
same when % describes a certain sequence of positive quantities with zero as
limit, or a certain sequence of negative quantities with zero as limit, these two
sequences depending on the point z.

§7.

On the other band it is clear that, if P is a point at which a funection,
continuous or not, has a symmetric derivate, then the lower derivate on each
side is less than, or equal to, the upper derivate on the other side; for the lower
derivate on either side is not greater than the symmetric derivate, and the upper
derivate on either side is not less than the symmetric derivate.

If the function is continuous, the symmetric derivates at any point not
belonging to the exceptional countable set fill up a closed interval of values;
for the upper and lower bounds of the symmetric derivates will lie between the
upper and lower derivates both inclusive, on either side, so that every value
between them is a derivate on either side.

Let us define as the mean symmetric derivate the trigonometric mean, as 1
should call it, between the greatest and least symmetric derivates in the case of
a continuous function; that is to say, writing tana for the greatest symmetric
derivate, and tand for the least, the mean symmetric derivate is tan}(a + b).
Then the mean symmetric derivate of a continuous function is one of its deri-
vates both on the right and also on the left, and, by the corollary of the pre-
ceding article, a continuous function has a mean symmetric derivate, except at a
countable set of points,

At a point at which a differential coefficient exists, whether f(z) is or is
not continuous, there is only one symmetric derivate, which is the differential
coefficient itself, and may be considered to be the mean symmetric derivate.
But at a point at which the mean symmetric derivate, as defined above for a
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continuous function, exists, there need not be a differential coefficient. If ac-
cordingly I use the notation f'(x) for the mean symmetric derivate, there will
be no confusion with the usual notation for the differential coefficient.

If the mean symmetric derivate of a continuous function is + «, one or
other of the lower derivates f_(z), or fi(x), must be + «. For the upper
derivate on each side must of course be + oo, hence, if the lower derivates
were both less than a finite quantity tanc, where o < ¢ < } 7, every value greater
than this would be a symmetric derivate, and therefore the mean symmetric
derivate would be not greater than the finite quantity tan}(in +¢). At such
a point accordingly there is, at least on one side, an infinite differential coefficient.
The same is true at a point where the mean symmetric derivate is — .

Now, as we have seen in § 3 when k= + «, the points at which a for-
ward or backward differential coefficient exists and is infinite, without there
being a proper differential coefficient are countable. Also by Lusin’s Theorem,!
the points at which a continuous function has an infinite differential coefficient
form a set of content zero, while, by HAHN’s example? we know that they may
form a perfect set. Thus the mean symmetric derivate of a continuous function
exists except at a countable set of points, and is finite except possibly at a set of
content zero, which may, however, be perfect.

§ 8.
As a special case of the theorem of § 5 we get immediately the following: —
Theorem. If x is a point, not belonging to the exceptional countable set, and
such that at it a forward differential coefficient f 4 (x) exists, this lies between the upper
and lower derivates on the other side, i. e.

f—(@) < fe(@) <1 (2);

stmilarly if at x a backward differential coefficient f_ exists,

f+(2) < f—(x) < f+(2).

Cor. Except at a countable set of points, a function f(x) cannot have a forward
and a backward differential coefficient which are unequal in value, whether finite or
infinite with determinate sign.

In the case when f(x) is a continuous function, this corollary has, with

L N. Lusiv. »Sur un théoréme fondamental du calcul intégrals, 1911, Recueil de la Société
mathématique de Moscou, Vol. XXVIII, 2.
? H. Haux, Mon. f. Math. 16. (1903), p. 317.
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certain possible restrictions, not clearly stated, been given by Beppo LEvi! It
is an immediate consequence that if f(x) has both a forward and a backward
differential coefficient, of value finite or infinite with determinate sign, at every
point of an interval or set S, excepting perhaps at a countable set of points, then
f(x) has a differential coefficient f'(x), of value finite, or infinite with determinate
sign, at every point of 8, excepting only a countable set.

With respect to this last result I may perhaps call attention to the fact
that in HitBErT's proof® of the existence of a set of constants (Eigenwerte)
Ay Ay, ...y An, ... for a quadric in space of an infinite number of dimensions,
corresponding to the principal axes in the case of a quadric in a finite number
of dimensions, a proof ad hoc was given that, in the special case of the functions
there utilised, which have in fact a forward and a backward differential coef-
ficient at every point, the differential coefficient exists except at a countable set.

§ o

The theorem of § 5 permits us also to extend a known theorem? as follows: —

Theorem. If f(x) is a continuous function which is zero at a and at b, then
the points at which both the upper derivates and one of the lower derivates are >0
in (a, b) have the potency c, and the same is true of the points at which both the
lower derivates and one of the upper derivates are <0.

If f(x) is identically zero, the theorem is obviously true. If not f(x)
must assume either a positive or a negative value, and it is clearly only neces-
sary to discuss the former case. Let then p be the upper bound of the values

* Bepro Levi »Ricerche sulle funzioni derivate», 1906. Rend. dei Linmcei, (5), Vol. XV,
p. 437-

Since finishing the present paper in August 1912 the following additional references have
come to my notice. A. RosextrAL, »Ueber die Singularititen der reellen ebenen Kurveno,
Habilitationsschrift, Minchen, July 4th, 1912. 'W. SierpiNski, »Sur I'ensemble des points angu-
laires d'une courbe y = f(x)», Bull. de I'Acad. des Sciences de Cracovie, (A), October 1912, pp.
850—854. The theorem of Sikrrinski and that of RosgxrtHAL, given on p. 28, loc cit. are worded
similarly as follows: — »The set of points at which a curve has an angular point or cusp is at
most countable». The interpretation attached by the two authors to the geometrical concepts
involved is, however, different, and, in consequence the theorem of RosextHAL is more general.
Si1erpINsk1 has in fact reproved Beero Levr's Theorem, without leaving any doubt as to restric-
tions. RosenTHAL works with a general Jordan curve. If we interpret the definition of angular
point given by RosexTHAL on p. s, loc. cit. in the sense in which I understand from him it
was intended, and apply it to the curve y = f(x), where f(x) is a continuous function, we obtain
the corresponding case of the Theorem of § 5, supra.

* D. Hmserr, »Grundziige einer allgemeinen Theorie der linearen Integralgieichungens,
vierte Mitteilung, 1906, Gott. Nachr. p. 168.

® H. Lreescue. Legons sur !'Intégration, p. 72. See also § 5 of »On Derivates and the
Theorem of the Means, loc. cit.
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of f(x), and let P be the first point at which f(x), being continuous, assumes the
value p.

Let k,, kyy... kn,... be the values of f(z) at the exceptional points at
which at least one of the lower derivates is greater than the upper derivate on
the other side. Also let k& be any value in the completely open interval (o, p),
other than one of the exceptional values k,. Then, since f(x) is continuous, and
fla)=0, j(P)=p, there is a point K at which f(z) has the value %, and K is
not one of the exceptional points. If f(z)=k at more than one point of the
interval (a, P), such points form a closed set, and we take the point K to be
the nearest such point to P. Then in the completely open interval (K, P), f{z)
is never equal to %k, but at P it is greater than k, therefore, throughout the
completely open interval (K, P), f(z) is greater than k. Thus, if x is the coor-
dinate of K, and z + % that of a point in (K, P),

et D=f@)

b

and therefore

f+(x) > o0.
Since the point K is not one of the exceptional points, it follows that
f~(@) > o,
moreover, corresponding to each value of k, other than k,, k,,..., ks,... we

get such a point.

Similarly, working on the right, instead of on the left of the point P, we
find a point at which

J~(x)<o,

which is not one of the exceptional points, so that here we have also

f+(x) <o.

This proves the theorem.

§ 0.
Hence also, by the usual method of deducing the Theorem of the Mean
from RorLre’s Theorem, we have the following: —
Theorem. If f(x) s a continuous funciion, and

() —f(a)
—_a ?

m(a, b) = 3
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then the points of the interval (a, b) at which both the upper derivates and one of
the lower dertvates are > m(a, b) have the potency ¢, and so have the points at which
both the lower derivates and one of the upper derivates are < m(a, b).

From this we have the following corollary: —

Cor. If f(x) is continuous in the interval (@, b) without lines of invariability,
there is an everywhere dense sel of poinis of potency ¢ at which both the upper
derivates and one lower derivate are positive, (not zero), or both the lower derivates
and one upper derivate are negative (not zero).

§ 11.
Hence we have the following theorem: —
Theorem. If, except at a countable set, we know of a function f(x) that
a) the two upper derivales,

or b) the two lower derivates,

or ¢) the two right-hand derivates,

or d) the two left-hand derivates,
never have the same sign, then f{x), if continuous, is a constant.

The cases ¢) and d), when there is no exceptional set, are given in LEBES-
aUE’s Legons sur l'intégration (p. 72), and he deduces (p. 74) the theorem that
a continuous! function is determined, to an additive constant prés, when we
know the finite value of one of its extreme? derivates for every finite value of
the variable. The theorem, as above stated, gives us the shortest proof of a
theorem of SCHEEFFER’s, beginning as LEBESGUE’s proof (loc. cit. p. 78) does,
but ending after the third line, instead of requiring an additional sixteen lines.
It is as follows: —

Theorem. A4 continuous function f(x) ts determined, to anadditive constant
prés, if, except at the points of a countable set, we know that one of its extreme
derivates is finite, and we have its value.

In fact, if possible let there be two such functions f(z) and g(z), and let us
write

F(z) = f(z) —g(x).

Then F(z) has, on the side on which we know one of the extreme derivates
of f(x) and g(x) to be equal, its extreme derivates never of the same sign, except
perhaps at the points of the exceptional set. Thus, by the preceding theorem,
F(x) is a constant, which proves the theorem.

! This word has inadvertently apparently dropped out of the enunciation.
? That is an upper or lower left or right hand derivate.
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Similarly from cases a) and b) of the theorem at the beginning of the pre-
sent article, we have the following new theorem: —

Theorem. If, except at a couniable set at which we may be doubtful, we know
of two continuous functions f(x) and g(x) that on one side the upper derivate of
f(x) is not greater than the lower derivate of g(x), and, if equal, is not infinite,
while on the other side one of the extreme derivates of f(x) is, at each point, not
less than the corresponding derivate of g(x), and, if equal, is not infinite, then the
two functions only differ by a constant.

In symbols we have, taking the first known fact to refer to the left-side,

f{x) —g—(x) <o, (1)

and, by the second known fact, at each point = either

fH(@)—g*(z) >0, (2)
or

f+(x) —g4(x) > 0. (3)

Now, using familiar inequalities, and writing F(2)=f(x) + 2 (x), where
h(x) = —g{x), we have

F~(2) <f~(x) + b~ (2) < f~ (%) — g (=),
so that, except at the doubtful points, by (1),

F=(z)<o, (4)
while
Ft(z) > f+(2) + bs () > f*(x) — g+ (2)
and also
F+(z) > f4(2) + 2* (2) > [+ () — g4+ (),

so that, by (z) and (3), we have, at each point not belonging to the doubtful set,
F+(x)>o. (5)

By (4) and (5) F(x) is a constant, using case a) of the theorem at the beginning
of the present article. This porves the theorem.

This theorem seems to me worthy of notice; we had hitherto, as far as I
am aware, no theorem except SCHREEFFER’s Theorem, which enabled us to identify
from a knowledge of their derivates two continuous funections of a perfectly ge-
neral character, not necessarily of bounded variation, or even belonging to the
more general classes of continuous functions which have recently been studied.



152 Grace Chisholm Young.

§ 12.

From the theorem of § 9 we have immediately certain theorems for the
mean symmetrie derivate, which were known to be true for the differential
coefficient.

Theorem. If f(x) 78 a continuous function which ts zero at a and at b, then
the points at which the mean symmelric derivate f'(x) > o0 in (a, b) have the potency
¢, and the same is true of the points at which f'(x)<o.

Theorem. If f(x) is a continuous function, and

1) —f(@),

m(a, b) = y—

then the points of the interval (a, b) at which the mean symmetric derivate f(x) >m
(@, b) have the potency ¢, and so have the points at which f'(x) <m (a,b).
Theorem. If we know that, except possibly at a countable set the mean sym-
metric derwvate f'(x) = o, then f(x), if condinuous, s a constant.
Theorem. If two continuous functions have the same finile symmetric derivate
except possibly at a countable set of points, then the two functions only differ by a
constand.

§ 13.

It has been aiready mentioned that, except at a countable set of points,
the mean symmetric derivate is only infinite where the function possesses a
differential coefficient which is infinite with determinate sign. Combining this
fact with W. H. Youna’s extension of LEBESGUE’s theorem,! which states that, ¢f
f(x) denotes one of the derivates, extreme or intermediate, of a continuous function F(x),
and f(z) 18 + o at most al a countable set of points, then if, and only if, f(x) is
summable over the set of points S where it is positive, F(z) is a function of bounded

variation, and, in fact a lower semi-integral,® whose positive variation s f f(x)dz,
K]

we have the following theorem: —

If F(z) i8 a continuous function, having at most at a countable set of points
a differential coefficient which is + oo, then if, and only if, the mean symmetric de-
rivate F'(z) is summable over the set of points S where it is positive, F(x) is a

! «On Derivates and their Primitive Functions», 1912, Proc. I.. M. S.

* A lower semi-integral is the sum of a Lebesgue integral and a monotone decreasing
function. See W. H. Youxg, «On Semi-integrals and Oscillating Successions of Functionss, 1910,
Proc. L. M. 8, (2), Vol. 9, p. 294.
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function of bounded variation, and indeed a lower semi-integral, and its positive

variation is f F(x)dz.
5

A similar theorem holds changing + into —c and positive into negative.
Combining these we have the following:

If F(x) is a continuous function, having at most at a countable set of points
a differential coefficient which is infinite with determinate sign, then if, and only
if, the mean symmetric derivate F'(x) is summable, F (x) is the Lebesque tintegral
of any one of its derivates.

Hence: —

If F(z) is a continuous function of bounded wvariation, but not a Lebesgue
integral, it has a differential coefficient which is infinite with determinaie sign at a
more than countable set of points.

§ 14.

The exceptional set which has furnished the keynote of the present paper,
has not been shown to have any particularities beyond that of being countable.
That the set may be any countable set whatever is evident by the principle of
the Condensation of Singularities. If we consider the class of functions for which
the exceptional set is dense nowhere, we can give further results. Thus, for
instance, it follows from the Theorem of the Mean for Derivates! that, ¢f (a, b)
ts an interval free of points of the exceptional set, there is a point x in the com-
pletely open interval (a, b) at which there is one and only one symmetric derivate,
and its value ts m(a, b) ={f(b) — f(a)}/(b —a); the function f(x) is here of course

! The theorem states that <«if f(x) is continuous throughout the closed interval (a, b), and the
tncrementary ratio m(a, b) is finite, then there is a point x, (@ <x <b), at which one of the upper
derivates is not greater tham m (a, b) while the other lower derivate is not less than m (g, b), that is

ST@<m@ b < f (),

or
@) <ma,b) < f(x).>

See «On Derivates and the Theorem of the Mean», loc. cit., p. 10.

The proof of this theorem only depends on the continuity of f(x) in so far that f(x) and
J{x)—ax.m(a,b) have to be such functions of x that they assume all values between their upper
and lower bounds. Hence it follows that the result stated in the text for continuous functions
holds for functions of a more general nature. In particular it follows that if f(x) is a finite
differential coefficient throughout (a, b), and the exceptional countable set is absent, there is a point of
the completely open interval (a, b) at which one and only one symmetric derivate of f(x) exists and il
is equal to m(a, b).

Acta mathematica. 37. Imprimé le 24 février 1914 20
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supposed to be continuous. Hence the usual properties of the differential coeffi-
cient of a continuous function, deduced from the Theorem of the Mean, may be
carried over to the mean symmetric derivate in such an interval. In particular
the mean symmetric derivate will be one of the limits of its values on the right
and on the left.

§ 1s.

I have only to add that, in the present paper, I have not considered
functions other than general ones and continuous ones. But corresponding re-
sults hold to those given in W. H. Young’s paper on «Term-by-term integration
of Oscillating Series».! Thus, for instance we have the following theorem: —

Theorem. If f(x) is upper semi-continuous on the right, and lower sems-
continuous on the left, throughout the interval (a, b), and is zero at the end-poinis,
then the points at which both the upper derivaies and one of the lower derivates are
>0, have the potency c.

! loc. eit., pp. 104—~107.




