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w i .  

The  main  theorem obta ined  in the  presen t  no te  is t he  following: - -  Except 

at a countable set o/ points, the lower derivate on either side is not greater than the 

upper derivate on the other side; i. e. using an  accep ted  no ta t i on  which explains  

itself 1 

l-(x) <_l + (x), 
and  also 

1+ (x) </-(x). 
T h e  pr imi t ive  fonct ion ](x) m a y  be a n y  func t ion  w h a t ev e r  of the  single real 

var iab le  x. I f  ](x) is a cont inuous  func t ion ,  thi  s t heo rem enables  us to  assert  

tha t ,  excep t  a t  a coun tab le  set  of points ,  /(x) has a t  least  one symmet r i c  deri-  

va te ,  t ha t  is to  say there  is a t  least  one sequence of posi t ive ,  and one sequence 

of nega t ive  values of h, bo th  wi th  zero as limit,  co r responding  to  each po in t  x, 

such t h a t  the  i n c r e m e n t a r y  r a t ion  (/(x + h ) - - / ( x ) ) / h  has the  same l imit  for  

the  two sequences.  I define accord ingly  the mean symmetric derivate o] a con- 

tinuous ]unction f(x) to  be the  t r igonomet r ic  mean  (w 7 ) b e t w e e n  the  g rea t e s t  and  

least  symmet r i c  de r iva t e  a t  each p o i n t ;  the mean symmetric derivate o] a con- 

tinuous ]unction then exists except at most at a countable set o/ points; it agrees 

with the di]]erential coe]]icient, wherever this exists, and is ]inite except at a set o/ 

points o] content zero. 

W. H. YouNG and the present author, *On Derivates and the Theorem of the Meam,, 
I9o8, Quart. Jour. of Pure and Applied Math., w 2, p. 4. SCHEEFFER, who first introduced the 
concept of a derivate, used D-f(x), etc. ~Allgemeine Untersuchungen fiber Rectification der 
Current, I884, Acta Math. 5, P. 52. 



142 Grace Chisholm Young. 

From the main theorem a number of interesting corollaries are at  once 

evident. 

w 
The theorem from the Theory of Sets of Points on which the following 

discussion is based is due to W. H. You~o,  1 and runs as follows: - -  

Given a set o/ ~intervals, overlapping in any manner, those points which are 
end-points o/ the intervals, without bein4] internal to any o/ them are countable. 

This theorem may be proved in various ways; the following proof is per- 

fectly direct, and depends only on CXNTOR'S theorem s that  any set of non-over- 

lapping intervals is countable. 

Let  us divide the set of points in question into two sets, according as the 

point under consideration is a left-hand end-point of one of the given intervals, 

or not. I t  will be shown that  each of these sets is countable, and. therefore the 

whole set is countable. 

Corresponding to each point  P ,  which is a left-hand end-point of one of 

the given intervals, without being internal to any interval of the given set, we 

have an interval dR of the given set with P as left-hand end-point. The point  

P will not  then, by hypothesis, be internal to any of the intervals dQ belonging 

to a different point  Q of the same type,  nor will Q be internal to dp. Hence 

the two intervals dp and d o cannot overlap; for, if they did, the  left-hand end- 

point of one would have to be internal to the other. Thus the intervals dp form 

a set of non-overlapping intervals, and are therefore countable. The points P 

therefore also form a countable set, which is evidently dense nowhere, and con- 

tains no point which is a limiting point  of the set on the left. 

Similarly those points which are right-hand end-points of intervals of the 

given set, without being internal to any of the given intervals, form a countable 

set, nowhere dense, and containing no point  which is a limiting point of the set 
on the right. 

Thus the whole set o/ points in question is countable, dense nowhere and contains 

no sub-set which is dense in itsel] on both sides. 

w 
Let  e~, e 2 . . . .  be a monotone descending sequence with zero as limit, 

kl, k~ . . . .  a monotone ascending sequence with k as limit, where k may be finite 

or + ao, and let Dn denote the set of overlapping intervals consisting of all those 

intervals which have the following three properties: - -  

1 sOn ove r l app i ng  intervals~,  19o2 , w ~. Prec .  L. M. S., (x) Vol. X X X V ,  p. 387. 
2 Math .  Ann.  Vol. X X I I ,  p. I t7,  (1882). 
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I) the length o[ the interval is le88 than e,,; 

2) when x and x + h are the end-points el the interval, 

(l(x + h)--  l(~))/h > k.; 

3) the same inequality holds when x is the le/t-hand end-point and x + h any 

internal point el the interval. 

Now consider a point  y at  which 

/+ (y) > k 

then, by  the definition of the lower right-hand derivate [+(y), we can find an 

interval with y as left-hand end-point, satisfying the conditions (i), (2) and (3). 

Thus each such point y is a left-hand end-point of the intervals of D~. Hence, 

by the theorem stated at the end of w 2, there is a t  most a countable set of 

these points y, which are not  internal to the intervals of D , .  

Since this is true for all values of n, it appears that  all but  a countable set 

of the points y belong to the set of points G internal to all the sets of intervals 

D1, D2, . . . .  D ,  . . . .  

On the other hand, if X is any point  of the set G, (supposing this set to 

be other than a null-set),x and (x, x + h) be an interval of the set D,, containing 

X as internal point, it follows from the proper ty  3), that  (x, X) is also an in- 
terval of the set D . ,  and therefore, by  the properties i) and 2), 

X--z<e~,  ( / (X)- - /Cx)) / (X--z )>~. .  

Since this is true for all values of n, this proves that  the upper limit of 

{ ] ( X ) - - [ ( X - - h ) ) / h  as h decreases towards  zero as limit, is not  less than k; 
tha t  is 

t - - (x )>k .  

Thus the set of points at  which / - > k  includes the set G, and therefore 

includes all the points at  which [+ > k ,  except possibly a countable set of these 
lat ter  points. 

Hence we have the following result:  

There is at mo,,t a countable set o/ the points at which [+(x) > k, at which we 

do not have also ]-(x)  > k. 

If  f(x) is cont inuous ,  and  t h e r e  are any  po in t s  y a t  all, t he re  are c such, whe re  c is the  
po tency  of the  con t inuum.  Thus  for su i tab le  values  of k, t he  set  G ce r t a in ly  is no t  a nul l -set .  
W. H. YousG *Term by te rm i n t e g r a t i o n  of osci l la t ing series* 19o9. Prec. L. M. S. (2) Vol. 8. p. Io5. 
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Exchanging right and left we have the alternative result. 

Similarly we have the following: 

There is at most a countable set o/ the points at which /+ < k, at which we do 

not also have /_ < k. 

Here again we may interchange right and left. 

In the first of the above statements k may be finite or + ~ ,  in the second 

it may be finite or - - ~ .  When k has one of these infinite values the sign > ,  

or < ,  must, of course be taken to be the sign of equality. 

w  
Now the points at  which /+ (x)>  k at which we do not  also have f - >  k, 

may be divided into two classes; I) the points /+ > k, / - <  k, which are among 

the points at  which / + > k  but  not f " > k ,  and therefore are countable, by  the 

first of the results of the preceding article, and 2) the points at  which /+ > k, 

/ - = k ,  which are among the points at  which / - < k ,  bu t  n o t / + < k ,  and are 

therefore countable by  the second of the above results, after we have exchanged 

left and right. Thus in the statements o/ the preceding article the sign o/ equality 

may be omitted. For instance, omitt ing the sign of equali ty in the first of the 
theorems, we have the theorem: -- 

There is at most a countable set o/ the points at which /+ > k, at which we 

do not also have / - >  k. 

w  

We can now prove the main theorem: - -  

Theorem.  Except at a countable set o/ points, the lower derivate on either side 
is less than, or equal to, the upper derivate on the other side; i. e. 

I-(~:) </+(~), a ~  aZso l+(z) < / - (z ) .  

To prove this let Gk, er denote the set of points at  which 

l+(~)<ke, . . . . . . . . . . . . . . .  (I) 

where k is any integer, positive, negative or zero, and e 1, e 2 , . . . ,  e~ . . . .  is a 

monotone descending sequence of constants with zero as limit. Then, by  the 
second of the theorems of w 3 

G~, ,~ ~ Ck, ~ + Fk, ~ ,  

where Ck. er is a countable set, and, at  every point of Fk, er 
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/ _ ( z ) < k e ~  . . . . . . . . . . . . . . . .  (2) 

Let O denote the set consisting of all the sets Ok, e, for all values of the 

integers k and r. Then C is a countable set, since it consists of doubly infinite 

set of countable sets. 

Now let P be any point not belonging to the set C. Then either at  P 

a) [+(x) has a finite value, or 

b) /+(x) has the value + co, or 

c) [+(x) has the value - - c o .  

Take the first case a), and let 

/ + ( x )  = p . . . . . . . . . . . . . . . .  ~3) 

Then there is a perfectly definite succession of values of k, say ka, k2 . . . . .  

k ~ , . . ,  such that ,  for every value of r, 

( k , . - - I ) e , . < p < k ~ . e r  . . . . . . . . . . . . .  (4) 

so that,  the quantities k,.e,, form, as r increases, a monotone descending sequence 

with p as limit. 
By  (3) and (4) the point P belongs to the set Gkr, e~ for all values of r; 

and therefore, since P i snot  a point of Ck~, ,,., it is a point of Fk~, er for all values 

of r, Hence, by (2) 

/ _ (P)  < k~e,. . . . . . . . . . . . . . .  (5) 

for all values of r. 
But,  as we let r increase indefinitely, the right hand side of (5) has the 

unique limit p, by  (4). Hence 

I - ( P )  < P . . . . . . . . . . . . . . .  (6) 

Thus, by  (3) 

[ - ( P ) < I + ( P )  . . . . . . . . . . . . . .  (7) 

In case b) the relation (7) is also, of course true. 

In case e) we have already seen that,  except at  a countable set of points 

(7) holds as an equality (w 3). 
Thus (7) holds for all points P~ excepting only a countable set. 

Similarly, except at  a countable set, 

/ - ( P )  >_/+(P) . . . . . . . . . . . . . .  (8) 

except a t  a countable set of points. This proves the theorem. 
Acta mathematlca. 37. Imprim6 le 5 Janvier 1914. 19 
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w 

The relations (7) and (8) are precisely equivalent to the statement that  there 

is at  least one number which lies both between /_(P)  a n d / - ( P ) ,  both inclusive, 

and also between /+(P) and /+(P), both inclusive. But  when/(x)  is a continuous 

function, its derivates on the right, or on the left, being the limits of the con- 

tinuous function (/(x + h ) - / ( x ) ) / h ,  when o < h, or when h < o, fill up respectively 

a whole closed interval, including, of course, a point as a special case. Thus 

we have the following corollary: - -  

Cor. I /  [(x) is a continuous fonction, it has at least one symmetric derivate, 
except at a countable set of points. 

By a symmetric derivate, I mean a limit of (f(x + h)--J(x))/h,  which is the 

same when h describes a certain sequence of positive quantities with zero as 

limit, or a certain sequence of negative quantities with zero as limit, these two 

sequences depending on the point x. 

w 
On the other hand it is clear that,  if P is a point at  which a function, 

continuous or not, has a symmetric derivate, then the lower derivate on each 

side is less than, or equal to, the upper derivate on the other side; for the lower 

derivate on either side is not greater than the symmetric derivate, and the upper 

derivate on either side is not less than the symmetric derivate. 

If the function is continuous, the symmetric derivates at  any point not 

belonging to the exceptional countable set fill up a closed interval of values; 

for the upper and lower bounds of the symmetric derivates will lie between the 

upper and lower derivates both inclusive, on either side, so tha t  every value 

between them is a derivate on either side. 

Let  us define as the mean symmetric derivate the trigonometric mean, as I 

should call it, between the greatest and least symmetric derivates in the case of 

a continuous function; tha t  is to say, writing t a n s  for the greatest symmetric 

derivate, and tan b for the least, the mean symmetric derivate is tan ~ (a + b). 

Then the mean symmetric derivate of a continuous function is one of its deri- 

ra tes  both on the right and also on the left, and, by the corollary of the pre- 

ceding article, a continuous function has a mean symmetric derivate, except a t  a 

countable set of points. 

At a point at  which a differential coefficient exists, whether [(x) is or is 

not continuous, there is only one symmetric derivate, which is the differential 

coefficient itself, and may be considered to be the mean symmetric derivate. 

But  at  a point at  which the mean symmetric derivate, as defined above for a 
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cont inuous  funct ion,  exists, the re  need no t  be a different ial  coefficient.  I f  ac- 

cordingly I use the  no ta t i on  f (x)  for  the  mean  symmet r i c  der ivate ,  the re  will 

be no  confus ion with the usual no ta t ion  for the  different ial  coefficient.  

I f  the  mean  symmet r i c  de r iva te  of a con t inuous  func t ion  is + oo, one or  

o the r  of the  lower der iva tes  ]_(x), or /+(x), mus t  be + ~ .  F o r  the  upper  

de r iva te  on each side mus t  of course be + o o ,  hence,  if the  lower der iva tes  

were b o t h  less t han  a f ini te  q u a n t i t y  t an  c, where  o < c < { z ,  e v e r y  va lue  grea te r  

t han  this would be a symmet r i c  der iva te ,  and  there fore  the  mean symmet r i c  

de r iva t e  would be no t  grea ter  t h a n  the  f inite q u a n t i t y  tan  12 (~_/g.1 _~ C), At such 
a po in t  accordingly  there  is, a t  least  on one side, an infini te  di f ferent ia l  coefficient .  

The  same is t r ue  a t  a po in t  where  the  mean  symmetr ic  de r iva te  is - -  oo. 

Now, as we have  seen in w 3 when k = + o o ,  the  points  a t  which a for- 

ward  or backward  d i f ferent ia l  coeff ic ient  exists  and  is infinite,  w i thou t  there  

being a p roper  d i f ferent ia l  coeff icient  are countable .  Also b y  LusI~ 'S  Theorem,  1 

the  poin ts  a t  which a con t inuous  func t ion  has an inf ini te  d i f ferent ia l  coeff icient  

fo rm a set of con ten t  zero, while, b y  HAHI~'S example  s we know t h a t  t h e y  m a y  

fo rm a pe r fec t  set. Thus  the mean symmetric derivate o/ a continuous/unction 
exists except at a countable set o/ points, and is finite except possibly at a set o/ 

content zero, which may, however, be perteet. 

w 
As a special case of the  theorem of w 5 we get  immedia te ly  the  f o l l o w i n g : -  

T h e o r e m .  I] x is a point, not belonging to the exceptional countable set, and 
such that at it a ]orward di//erential coefficient f+ (x) exists, this lies between the upper 
and lower derivates on the other side, i. e. 

l - (x)  <_ 1'+ (x) • 1- (x); 

similarly i/ at x a backward diflerenticd coe//icient f _  exists, 

f+ (x) < /'_(x) < 1+ (x). 

Cor. Except at a countable set of points, a /unc t ion / (x )  cannot have a/orward 
and a backward di//erential coefficient which are unequal in value, whether /inite or 

in/inite with determinate sign. 
In  the case when /(x) is a con t inuous  funct ion ,  this corol lary  has, wi th  

1 N. LUSlN. ~Sur un th~or~me fondamental du calcul int~gral~, I9II. Recueil de la Soci6t~ 
math~matique de Moscou, Vol. XXVIII, 2. 

]2I. HAHN. MOn. f. Math. I6. ( I 9 o 5 )  , p. 317. 
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cer ta in  possible restrictions,  no t  clearly s tated,  been given by  BEPPO LEVI. 1 I t  

is an  immedia te  consequence tha t  if / ( x )  has bo th  a forward  and  a backward  

differential  coefficient, of value finite or infinite with de terminate  sign, a t  every  

point  of an  interval  or  set S, except ing perhaps  a t  a countable  set of points,  then 

/(x) has a differential  coefficient f (x) ,  of value finite, or infinite with de te rmina te  

sign, a t  every  po in t  of S, except ing only  a countab le  set. 

W i t h  respect  to this last  result  I m a y  perhaps  call a t t en t ion  to  the fact  

t h a t  in HILBERT'S proof  ~ of the existence of a set of cons tan ts  (Eigenwerte)  

~t, ~ 2 , - . . ,  )~, . . . .  for a quadr ic  in space of an infinite number  of dimensions,  

corresponding to the  principal  axes in the case of a quadr ic  in a finite n u m b e r  

of dimensions,  a proof  ad hoc was given that ,  in the special case of the funct ions  

there  utilised, which have in fact  a fo rward  and  a backward  differential  coef- 

f icient  a t  every  point ,  the differential  coefficient exists except  a t  a countable  set. 

w  

The theorem of w 5 permi ts  us also to extend a known theorem s as follows: - -  

T h e o r e m .  I /  /(x) is a continuous /unction which is zero at a and at b, then 

the points at which both the upper derivates and one o/ the lower derivates are > 0 

in (a, b) have the potency c, and the same is true o/ the points at which both the 

lower derivates and one el the upper derivates are <_ O. 

I f  /(x) is identically zero, the theorem is obviously  true.  I f  no t  /(x) 

mus t  assume ei ther  a posi t ive or a negat ive  value,  and  it is clearly only neces- 

sa ry  to discuss the former case. Le t  then  p be the upper  bound  of the values 

' B$PPo LEVl ~Ricerche sulle funzioni derivate,, 19o6. Road. dei Lincei, (5), Vol. XV, 
P. 437. 

Since finishing the present paper in August x912 the following additional references have 
come to my notice. A. ROSESTHAL, *Ueber die Singularititten dor reellen ebenen Kurven,, 
Habilitationsschrift, Mtinchen, July 4th, I9x2. W. SI~.RPISSKI, *Sur l'ensemble des points angu- 
laires d'une courbe y----f(x),, Bull. de l'Acad, des Sciences de Cracovie, (A), October 1912, pp. 
85o--854. The theorem of SIF~aPISSKI and that of ROSESTHAL, given on p. 28, loc cit. are worded 
similarly as follows: -- *The set of points at which a curve has an angular point or cusp is at 
most countable~. The interpretation attached by the two authors to the geometrical concepts 
involved is, however, different, and, in consequence the theorem of ROS~XTHAL is more general. 
Si~arI~'sKi has in fact reproved BEPPO LEvfs Theorem, without leaving any doubt as to restric- 
tions. ROSENTHAL works with a general Jordan curve. If we interpret the definition of angular 
point given by ROS~.STHAL on p. 5, loc. cit. in the sense in which I understand from him it 
was intended, and apply it to the curve y ----f(x), where f(x) is a continuous function, we obtain 
the corresponding case of the Theorem of w 5, supra. 

' D. HILBEaT, ,Grundztige einor allgemeinen Theorie der linearen Integralgleichungenp, 
vierte Mitteilung, I9o6, G6tt. Nachr. p. i68. 

B H. LEBESGUE. Ler sur l'Int6gration, p. 72. See also w 5 of *On Derivates and the 
Theorem of the Mean*, loc. cit. 
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o f / (x ) ,  and let P be the first point at which/(x),  being continuous, assumes the 

value p. 

Let kl, /r . . . .  k s , . . ,  be the values of /(x) at  the exceptional points at 

which at least one of the lower derivates is greater than the upper derivatc on 
the  other side. Also let k be any value in the completely open interval (o, p), 

other than one of the exceptional values k,.  Then, since /(x)is continuous, and 

[(a) ~-O, [(P)-~ p, there is a point K at  which /(x) has the value k, and K is 
not one of the exceptional points. If ](x)= k at more than one point of the 

interval (a, P), such points form a closed set, and we take the point K to be 
the nearest such point to P. Then in the completely open interval (K, P), ](x) 
is never equal to k, but  at  P it is greater than k, therefore, throughout the 
completely open interval (K, P), /(x) is greater than k. Thus, if ~ is the coor- 
dinate of K, and x + h that  of a point in (K, P) ,  

and therefore 

t(x+h)--l(x) 
h > o ,  

1+ (x) > o. 

Since the point K is not one of the exceptional points, it follows that  

t - ( x )  > o, 

moreover, corresponding to each value of k, other than kt, k2 . . . . .  k, . . . .  we 
get such a point. 

Similarly, working on the right, instead of on the left of the point P, we 
find a point at which 

t-(x)<o, 

which is not one of the exceptional points, so that  here we have also 

l+(x)_<o. 

This proves the theorem. 

w IO. 

Hence also, by the usual method of deducing the Theorem of the Mean 
from ROLLE'S Theorem, we have the following: 

Theorem.  I/](x) is a continuous/unction, and 

m(a, b)= f(b)--/(a) 
b--a 
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then the points o/ the interval (a, b) at which both the upper derivates and one oif 

the lower derivates are >re(a,  b) have the potency c, and so have the points at which 

both the lower derivates and one o/ the upper derivates are < m (a, b). 

F rom this we have the following corol lary:  - -  

Cor. I /  /(x) is continuous in the interval (a, b) without lines oif invariability, 

there is an everywhere dense set o] points oif potency c at which both the upper 

derivates and one lower derivate are positive, (not zero), or both the lower derivates 

and one upper derivate are negative (not zero). 

w I I .  

Hence  we have the following theorem:  - -  

Theo rem.  If ,  except at a countable set, we know o / a  /unction /(x) that 

a) the two upper derivates, 

or b) the two lower derivates, 

or e) the two right-hand derivates, 

or d) the two le/t-ha•d derivates, 

never have the same sign, then /(x), i/ continuous, is a constant. 

The cases c) and  d), when there is no exceptional  set, are given in LEBES- 

GUE's Lemons sur l ' int4grat ion (p. 72), and  he deduces (p. 74) the theorem t h a t  

a cont inuous 1 funct ion is determined,  to an addi t ive cons tan t  pros, when we 

know tbe finite value of one of its extreme 2 derivates  for every  finite value of 

the variable. The theorem, as above s ta ted,  gives us the  shortes t  proof of a 

theorem of SCHEEFFER'S, beginning as LEB~SGUE'S proof (1OC. cit. p. 78) does, 

bu t  ending af ter  the th i rd  line, instead of requiring an  addi t ional  sixteen lines. 

I t  is as follows: 

Theo rem.  A continuous ]unction /(x) is determined, to anadditive constant 

pros, i], except at the points o] a countable set, we know that one o/ its extreme 

derivates is /inite, and we have its value. 

In  fact,  if possible let there  be two such funct ions ](x) and g(x), and let us 

wri te  

F(x) = l(x)-- g(x). 

Then F(x) has, on the side on which we know one of the ext reme der ivates  

of if(x) and g(x) to be equal, its ext reme derivates  never  of the  same sign, except  

perhaps a t  the  points of the exceptional  set. Thus,  by  the  preceding theorem, 

F(x)  is a constant ,  which proves the  theorem. 

1 This word has inadvertently apparently dropped out of the enunciation. 
That is an upper or lower left or right hand derivate. 
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Similarly from cases a) and b) of the theorem at the beginning of the pre- 

sent article, we have the following new theorem: 

Theorem.  I], except at a countable set at which we may be doubt[ul, we know 
o] two continuous ]unctions ] (x) and g (x) that on one side the upper derivate o/ 
] (x) is not greater than the lower derivate o/ g (x), and, i/ equal, is not in/inite, 
while on the other side one o/ the extreme derivates o/ [(x) is, at each point, not 
less than the corresponding derivate o] g (x), and, i] equal, is not infinite, then the 
two [unctions only di[[er by a constant. 

In symbols we have, taking the first known fact to refer to the left-side, 

] - ( x ) - - g _ ( x ) < o ,  (~) 

and, by the second known fact., at  each point x either 

o r  

/+ (x) - -  g+ (x) > o, 

[+ (x) - -  g+ (x) > o. 

Now, using familiar inequalities, and writing 

h (x) = - -  g (x), we have 

lv-(x) </-(x) +h-(x)</-(x)--g_(x), 

so that,  except at  the doubtful  points, by  (i), 

F-(x)<o, 
while 

and also 

F+ (x) > / +  (x) + h+ (x) > ]+ (x) - -  g+ (x) 

F+ (x) > / +  (x) + h+ (x) > / +  (x) - -  g+ (x), 

F (x) = ] (x) + h (x), 

(2) 

(3) 

where 

(4) 

By (4) and (5) F(x) is a constant,  using case a) of the theorem at the beginning 

of the present article. This porves the theorem. 

This theorem seems to me wor thy  of notice; we had hitherto, as far as I 

am aware, no theorem except SCHEE•FER'S Theorem, which enabled us to identify 

from a knowledge of their derivates two continuous functions of a perfectly ge- 

neral character, not  necessarily of bounded variation, or even belonging to the 

more general classes of continuous functions which have recently been studied. 

F+(x)_> o. (5) 

so that,  by (2) and (3), we have, at  each point not belonging to the doubtful  set, 
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w i2.  

F r o m  the theorem of w 9 we have  immedia te ly  cer ta in  theorems for  the  

mean  symmet r ie  der iva te ,  which were known to be t rue  for the different ia l  

coefficient.  

T h e o r e m .  I f  /(x) is a continuous /unction which is zero at a and at b, then 
the points at which the mean symmetric derivate f (x)  > o in (a, b) have the potency 

c, and the same is true o/ the points at which f (x) < o. 
T h e o r e m .  I /  /(x) is a continuous function, and 

m (a, b) ] (b) - -  f (a) 
b - - a  

then the points of the interval (a, b) at which the mean symmetric derivate f (x)  > m 

(a, b) have the potency c, and so have the points at which f (x) < m (a, b). 
T h e o r e m .  I f  we know that, except possibly at a countable set the mean sym- 

metric derivate f ( z ) =  o, then f (x), if continuous, is a constant. 

T h e o r e m .  I] two continuous functions have the same finite symmetric derivats 
except possibly at a countable set o/ points, then the two /unctions only di][er by a 
constant. 

w I3. 

I t  has been a l ready  men t ioned  tha t ,  excep t  a t  a countab le  set  of points ,  

the mean  symmetr ic  der iva te  is on ly  infini te  where  the  func t ion  possesses a 

different ia l  coefficient  which is infini te  wi th  de t e rmina te  sign. Combining this  

fac t  with W. H. YOUNG'S extens ion  of LEBESGUE'S theorem,  x which s ta tes  tha t ,  i /  

[ (x) denotes one of the derivates, extreme or intermediate, of a continuous ]unction F (x), 
and ](x) is + ~ at most at a countable set o/ points, then q, and only if, ](x) is 
summable over the set of points S where it is positive, F(x) is a ]unction of bounded 

variation, and, in fact a lower semi-integral, ! whose positive variation i s / [ ( x )  dx ,  
t /  s 

we have  the  following theo rem:  

I] F(x)  is a continuous ]unction, having at most at a countable set of points 
a di[[erential coefficient which is + co, then i], and only if, the mean symmetric de- 

rivate F ( x )  is summable over the set of points S where it is positive, F (x) is a 

t ,On Derivatos and their Primitive Functions,, 1912, Prec. L. M. S. 
A lower semi-integral is the sum of a Lebesgue integral and a monotone decreasing 

function. See W. H. YousQ, *On Semi-integrals and Oscillating Successions of Functions% 19IO, 
Prec. L. M. S., (2), Vol. 9, P. 294. 
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/unction o/ bounded variation, and indeed a lower semi-integral, and its positive 

is ~ F ' ( x )  dx.  variation 
Y 
S 

A similar theorem holds changing + ~ into - - ~  and positive into negative. 

Combining these we have the following: 

I /  F (x) is a continuous /unction, having at most at a countable set o/ points 
a di/]erential coe//icient which is infinite with determinate sign, then i], and only 
i/, the mean symmetric derivate Fr(x) is summable, F(x)  is the Lebesgue integral 

el any one el its derivates. 
Hence : - -  

1/ F(x) is a continuous /unction o/ bounded variation, but not a L'ebesgue 
integral, it has a di//erential coe//icient which is in/inite with determinate sign at a 
more than countable set o/ points. 

w I 4 .  

The exceptional set which has furnished the keynote  of the present paper, 

has not been shown to have any particularities beyond that  of being countable. 

That  the set may  be any countable set whatever is evident by the principle of 

the Condensation of Singularities. If we consider the class of functions for which 

the exceptional set is dense nowhere, we can give further  results. Thus, for 

instance, it follows from the Theorem of the Mean for Derivates 1 that,  i/ (a, b) 
is an interval /tee o/ points o/ the exceptional set, there is a point x in the com- 
pletely open interval (a, b) at which there is one and only one symmetric derivate, 
and its value is m(a,  b ) = U ( b ) - - / ( a ) } / ( b - - a ) ;  the /unction /(x) is here o/ course 

T he  t h e o r e m  states" t h a t  r  f ( x )  is continuous throughout the closed interval (a, b), and the 
incrementary ratio m (a, b) is finite, then there is a point x, (a < x < b), at which one of  the upper 
derivates is not greater than m (a, b) while the other lower derivate is not less than m (a, b), that is 

f ' ~ ( x ) ~ m ( a ,  b)__< f _ ( x ) ,  
or 

f - ( x )  <_ m(a,b)  <__f+(x).* 

See ~On Der iva tes  and  the  T h e o r e m  of t he  Mean,,, loc. cit., p. io. 
T he  proof  of t h i s  t h e o r e m  only  depends  on the  c o n t i n u i t y  of f ( x )  in  so far  t h a t  f ( x ) a n d  

f ( x )  - -  x .  m (a, b) h a v e  to be such  func t i ons  of x t h a t  t h e y  assume all va lues  b e t w e e n  t h e i r  uppe r  
and  lower  bounds .  Hence  i t  fol lows t h a t  the  r e su l t  s t a t ed  in t h e  t ex t  for  con t inuous  func t ions  
ho lds  for  f unc t i ons  of a more  genera l  na tu re .  In  pa r t i cu la r  i t  fe l lows t h a t  i f f ( x )  is a finite 
differential coefficient throughout (a, b), and the exceptional countable set is absent, there is a point of  
the completely open interval (a, b) at which one and only one symmetric derivate o f  f ( x )  exists and it 
is equal to m (a, b). 

A e t a  ma$hemat iea .  37. Imprim~ le 24 fdvrier 1914. ~0 
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sup,posed to be continuous. Hence the usual properties of the differential coeffi- 

cient of a continuous function, deduced from the Theorem of the Mean, may  be 

carried over to the mean symmetric derivate in such an interval. In particular 

the mean symmetric derivate will be one of the limits of its values on the right 

and on the left. 

w 15. 

I have only to add that,  in the present  paper, I have not  considered 

functions other than general ones and continuous ones. But  corresponding re- 

suits hold to those given in W. H. You~a ' s  paper on <~Term-by-term integration 

of Oscillating Series~>. I Thus, for instance we have the following theorem: 

Theorem.  I1 ](x) is upper semi-continuous on the right, and lower semi- 

continuous on the left, throughout the interval (a, b), and is zero at the end-points, 

then the points at which both the upper derivates and one o~ the lower derivates are 

> o, have the potency c. 

' loc. cit., pp. Io4--m 7. 


