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Introduction. Our present object is to establish the asymptotic properities

of the solutions of a linear differential equation of order =

(A,)

n

L’n(x, )'7 ?/) = Z 1an_k(x’ },) ?/(k) =0

k=0

[1a0 (2, A) 5= 05 yam(, ) == 0],

in so far as the parameter 1 is concerned. The theory will be given for the

complex plane of i; moreover, no restrictions will be made concerning the A-formal
serzes soluttons of (A,). The coefficients in (A;) will be assumed to be indefinitely

ok
t k) (k = o) here and in the sequel denotes —f

1—36122.
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2 W. J. Trjitzinsky.

differentiable in z (¢ <2 <b%) and analytic in A for || = ¢ > 0(X # =), being

representable by convergent series of the form
(1) alx, A) = 2 x) Am—r (integer m).

Here the ;e.(r) are indefinitely differentiable on the closed interval (@, ). More
generally, the coefficients in (A,;) will be allowed to be merely asymptotic in
certain regions to such possibly divergent series. In the latter case the obtained
results will be valid in correspondingly restricted regions of the A-plane. The
interval (a, b) will be taken sufficiently small so that the formal series solutions
will maintain essentially the same characteristic features for all x in the interval.
The main results are formulated in the Fundamental Existence Theorem of § 6.
Applications of this Theorem will be made to non-homogeneous and integro-
differential equations, as well as to some boundary value problems.

The precise notion of asymptotic relationship, employed in this work, is
as follows. Let R be region, extending to infinity, bounded by regular curves
and situated in the A-plane. Let f(x,4) be defined for A in R and a <z < b.
Suppose now that a series (convergent or divergent)

Zs, AP

r=-=Jf

(integers H and p; p=1)

be given, whose coefficients s,(x) are defined, each being bounded for a=x <.
We shall say that f(x, 1) ¢s asymplotic to s(x, i) in A, at A= o0, in the region R
and for x in the interval (a, b) provided for every m (m=1,2,...)

(2) Sl )= 3 slall 7+ fule D1

where fn(x, ) is defined for x in (a,b) and for A in R and
(2a) [frle, )| =fm (@=2=b; 4in R).

Here the numbers fm (m=1,2,...) are independent of x and L. Such an asymp-
totic relationship will be said to be in the »ordinary sewse» or »to infinctely many
terms». Whenever a function f(x, 1) has all the properties stated above, except
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that in (2) the number m cannot be taken greater than m, (a fixed integer), the
asymptotic relationship (2) will be said to hold to m, terms,

(2b) Slae,d) 5s(x,4) (Ain Ry asax<b).

According to this notation,

(2¢) S, ) 5 st 1)

would signify that f{x, i} is asymptotic to s{z, ) in the ordinary sense. For
convenience in place of 7 we shall write ~. Since the fn (m=1,2,...) in (2a)
are independent of x the asymptotic relationships, specified above, will be said
to be wuniform in x for z in the closed interval (a, b).

Let ¢ be a point of the interval (a, ). Suppose f(x, 1) is a function defined
for 2 in R and for all = of («, b) distinct from ¢. Let functions s,(x) (v=0,1,...)
be defined for all = of (a,b) distinet from ¢. If (2), (2a) hold with the
Jm (m=1,2,..) denoting some positive functions of x, defined on (a, b) except
possibly at o = ¢, then we shall write

(3) Sla, A} ~s(x,A) (A in R; 2 in (a,b); o # ¢

{to m, or to infinitely many terms — as the case may be). Such an asymptotic
relationship will be termed non-uniform in z.

The literature in the field under consideration is very extensive. No effort
will be made to give extensive references. Of the contributions of the earlier
writers those, which from the point of view of the present paper are of out-
standing importance, are due to G. D. BIRKHOFEl, J. D. Tamarkwn?, R. E.
Lavcer® and P. NoarLrow.* The first two of these authors assume that the

1 G. D. BIRRHOFF, On the asymplotic character of solufions of certain linear differential
equations, Trans. Am. Math. Soc., vol. 9 (1908), pp. 219—231; also Boundary value and expansion
problems ..., Trans. Am. Math. Soc., vol. 9 (1908), pp. 373—395. G. D. BIRKHOFF and R. E.
LANGER, The boundary problems and developments ..., Proc. Am. Acad. Arts and Sciences, vol. 58
(1923), pp. 51—128. G. D. BIRKHOFF, Quantum mechanics and asymptotic series (an address), Bull.
Am, Math. Soc., vol. 39 (1933), pp. 681—700.

? J. D. TAMARKIN, A work published in 1917 (in Russian), Petrograd. J. D. TAMARKIN,
Some general problems of the theory of ordinary linear differential equations and expansions of an
arbitrary function in series of fundamental functions, Math. Zeitschrift, vol. 27 (1927), pp. I-—54.

! R. E. LANGER, cf. BIRKHOFF and LANGER in a preceding reference. R. E. LANGER, The
asymplolic solutions of ordinary linear differential equations ... (a symposium lecture), Bull. Am.
Math. Soc., vol. 40 (1934), pp. 545—582. Also cf. a series of papers by the same author, con-
cerning some special problems, in volumes 25 (1923), 31 (1929), 32 (1930), 33 (1931), 34 (1932), 36
(1934) of the Trans. Am, Math. Soc.,

* P. NoaruroN, Développements asymptotiques dans les dquations difféventielles lindaires &
parametre variable, Mémoires de 1a Soc, des Sc, de Liege, Troisi¢me Série, Tome IX (1912), 197 pages.
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roots of the characteristic equation of (A,) are distinct for all values of  under
consideration. Under this hypothesis the formal series solutions are, of course,
of a restricted type. In the work of Tamarrin the coefficients of the equation
(or system) are allowed to possess a suitable finite number of derivatives. As
seen from his work, such a lightening of the conditions upon the coefficients
results in the solutions being asymptotic to the formal series to a finite number
of terms only. The results of the present paper could also be suitably extended
so as to apply to equations whose coefficients possess merely a limited number
of derivatives. However, for convenience of demonstration it will be assumed
throughout that the coefficients in (A;) are all indefinitely differentiable with
respect to . The work of TamarxIN contains also a very substantial treatment
of boundary value problems.

An elegant treatment had been given by Birxuorr and Lancer for the
case of a linear system, with coefficients linear in the parameter.

In Noarvron’s work the general case is considered and it is proved that
there always exists a full set of linearly independent formal series solutions.’
On the basis of the latter Noarunon obtains actual solutions, which

1° are asymptotic to the corresponding formal series to a finite number of terms
only. On the other hand,

2° the asymptotic relations are proved only along a fixed ray wn the plane of
the parameter.

Some of the solutions obtained in the present paper will have the fol-
lowing properties.

A. They will be asymptotic to the corresponding formal series to inmfinitely
many terms (that is, in the ordinary sense).

B. The asymptotic relations will be valid in certain regions, extending to
infinity in the complex plane of the parameter.

The distinction between 2° and B will be appreciated in view of the fol-
lowing considerations. Let R be a sector

e, Sangledl < a,; o, <ay; |A|=Ze>o0.

If it is known that along every ray in R a function is asymptotic to a series

! Formal solutions of the type found by NOAILLON were known to exist a number of years
earlier. Of., for instance, L. SCHLESINGER, Uber asymptotische Darstellung der Lisungen . . .,
Math. Annalen, vol. 63 (1907), pp. 277—300 (in particular, p. 282). However, previous to NOAIL-
LON’s work existence of a full set of such solutions had not been proved.
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(say, of the form s(z, A)), ¢t does not necessarily follow that the asymptotic rela-
tionship holds throughout R.

Inasmuch as investigation of the asymptotic properties of the solutions of
(A) is concerned, the present paper has a significance analogous to that which
certain papers by TrisiTzivsgy have in the fields of ordinary linear difference
(with Birkuorr)', g¢-difference® and differential equations® (not containing a
parameter). The three papers, just referred to, together with the work at
hand present a certain aspect of unity. These papers derive their significance
Jrom - the fact that, when a class of analytic functions is at hand, the problem of
central tmportance s to investigate the nature of the functions in the vicinity of
their singular points.

2. Some Preliminary Facts. It is convenient to write the equation (A,)
in the form

(A) L(Q’), }Vy ?/) = Zl A (n—k) dn——k(x, }u)y(k) =0,
k=0
(1) tnetl, A) ~ D tney, o)A~ = e, A (k=o0,...7; xin (a,b).
y=0

Without any loss of generality it will be assumed that a,{x,A)= 1. Moreover,
it will be supposed that the series a.(x, 1) is not formally zero. The involved
integer H will be taken the smallest possible. If H = o, while an—i(x, )=
= au—i(x,4) (E=o0,1,...7), the latter series being convergent, we have an ana-
logue to the Fuchsian Theory. In fact, as H. PorNcar# proved, in this case
there exists a full set of solutions analyti'c in A at A = (provided, of course,
that the initial conditions are of the same character).

The characteristic equation associated with (A) is

(2) E(z; 9= k; i, 0(%)@F = 0.

! G. D. BIRRHOFF and W. J. TRIITZINSKY, Analytic theory of singular difference equations,
Acta mathematica, vol. 60 (1932), pp. 1—89.

® W. J. TRIITZINSKY, Analytic theory of linear q-difference equations, Acta mathematica,
vol. 61 '(1933), pp. 1—38.

' W. J. TRITZINSKY, dAnalylic theory of linear differential equations, Acta mathematica,
vol. 62 (1934), pp. 167—226,



6 W. J. Trjitzinsky.

Let ¢; = gi(x) (¢==1,...n) be its roots. The interval (a, b) will be suitably chosen
so that the following is true for every pair of functions g,(x), g;(x) (¢ 5 7).
Either o;(x) = gj(x) (a =2 = b) or o;/(x) # gj(x) for every x in the interval (a, b).
Moreover, this interval can be so chosen that, as a consequence of NoaiLLow's
work, there exists a full set of formal (in general divergent) series solutions

satisfying
(A*) L#(z, ;) = QAR g4 (x, ) s = o
k=0
and of the form
(3) 5'1',(93', l) = el 4 O'i(x, '1) (?. =1I... n),
where
kp H—1 by —a
(3a) Qilz, )= D\ gial@d &  (the % positive integers),
a=0
(3 b) oilae, ) = Dor (@) A K (G=1,...n).
r=0

Here the functions ¢; .(x), 6;.(z) are all indefinitely differentiable and are finite
in the interval (a, b).

The integer H, in a sense, has a significance in the theory of equations
(A) analogous to that which the rank of a singular point has in the theory of
ordinary linear differential equations without a parameter.

The leading coefficients in the @;(x,A) are connected with the roots of the
characteristic equation by means of the relations

(4) gi,0(x) = () E=1,...2).

When the roots are all distinct (for all 2 in (a, )) the integers % in the formal
series (3), (3a), (3b) are each equal to unity. The corresponding theory has been
developed in the essential particulars by Birkuorr (when H = 1) and by Ta-
MARKIN (when H is any integer). When multiple roots are admitted some of
the %; may exceed unity. If ¢, =g,(x) is a root of multiplicity m there will be
v (1 £v=m) corresponding series s;(x, ) such that, if .k, ,%, ...,k are the assoc-
iated values of the %;, on one hand we shall have

N N
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and, on the other hand, it will be possible to obtain a set of m linearly in-
dependent formal solutions (associated with the root ¢,) by forming all possible
determinations of the mentioned » series. Any series (3) which satisfies (A) has
k; distinet determinations, obtained by letting A describe closed cireuits (1, 2, .. .,
k;— 1 times, say, in the positive sense) around A= . Bach of these determina-
tions will satisfy (A). This is a consequence of the fact that for each circuit
the series an—(x, A) remain unaltered. Accordingly, the series (3) can be grouped
go that the elements within the same group are given by the totality of all
determinations of a certain one series; on the other hand, no particular series
from omne group will be a determination of a series from another group. Aec-
cording as a series (3) contains or does not contain fractional powers of 1 it
will be termed anormal or normal.’

Associated with the equation (A) is the system, which in matrix notation
will be written as

(B) Y(l)(x7 2‘) = Y(x$ 2‘) D(%7 )‘)7 Iv(m> ]') = (?/l',j(xa 2‘)) 2:
where
o, 0, ', 5 —)"Hnan(xa z‘)
I, o, -, P lII(n——l) An—1 (x7 A‘)
D(mvl)= o, 1, -, ’ 'z(di:j(x’ ))
O, Oa T I, —_}’Hal(x!l)

Here (y;,;(x,A)), for instance, denotes a matrix which in the ith row and in
the j-th column contains the element y; ;(x,4) (Z,7=1,...7n). If (y;;(x,2) is a
matrix solution of (B) then

(5) (s, 2)) = (47" ez, 1)

! This definition is analogous to that employed for linear differential and linear difference
equations without a parameter. By analogy to the results of the paper by W. J. TRJITZINSKY,
Laplace integrals and factorial series in the theory of linear differential and linear difference equa-
tions, Trans. Am. Math. Soc., vol. 37 (1935), pp. 80—146, one might expect that the method contained
therein would lead to convergent factorial series developments whenever the series (3), corresponding
to a multiple root of (2), are all normal and have the same exponential factor exp. @;(x). This,
however, is not the case.

(1)

2 YD 2) = (yily (w, 0) = ((% i, 4 (x, l)) .
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and the y;1(x,4) (#=1,...n) will constitute a fundamental set of solutions of
(A). On the other hand, if functions yi(xz,4) (=y:1(x,4) 2=1,...n form a full
set of solutions of (A), the matrix

(6) Y (x, }‘) = (?/i,j (.’L', l)) = (?/ﬁj_”(x, 2’))

will satisfy (B).
In the sequel use will be made of the formula

) )= D yenle ) [ oo, D o, )
=1
which, under appropriate conditions, represents a solution of the non-homogeneous
equation
(8) Lz, 4; y) = 2(, 4).

In (7) the y,1(2,4) (t=1,...n) are elements of a fundamental set of solutions
of (A) and the #,;(x,A) (j=1,...n) are the elements in the nth row of the
inverse of the matrix (47" (x,2)).

Analogous facts can be stated for a system

(© YW (x, )= Y, ) Bz, 4, Y(x )=, 1),
Bla,4) = (bij (, 4), | Blw,A)] # 0 (a=z=b;|A|ze>0),

where the coefficients & ;{z, 1) are of the same type as those in {A). The ele-
ments in the #th row (z=1,2,...%) will constitute a solution of the system.
It is not difficult to relate to (C) a single differential equation of order » and
of type (A). It can be shown that (C) is formally satisfied by a matrix

(9) Sz, &) = (85, (@, )) = (%= " g;, (2, 4),

where the @;(x, 1) and the o; ;(x,A) are expressions of the form of (3a) and (3b),
respectively. Such a matrix can be found so that formally | S(x, A)| does not
vanish. This is of course under the supposition, which we shall make, that the
determinant of the formal matrix, corresponding to B(x, 1), is not zero.

It will be convenient to introduce the definition
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Definition. A series of the form

Z o, (x) 1 * (k a positive integer),

P Z=e—=ify,

whose coefficients are defined on a closed interval (a, B), will be termed a o-series.
In the sequel, whenever we write

(r0) ale, 1) ~ 2 bt g, (2, 1),

P

where the o.(z, ) are o-series and the G,(x,2) are functions defined for the in-
volved values of the variables, the implication will be that

alz, 1) = Dy et d g, (z, 7)

where the functions a.(z,1) satisfy asymptotic relations
(10a) ar(z, A) ~ o.(x, 4).

The above statement refers also to the case when ~ is replaced by ~.

3. Formal Integration. We shall now solve the formal equation

(1) YW (x, 4) = 2@ A g(z, A),
where

kH—1 kH—a
(1a) Qe ) = 2 qula)d F

(positive integers & and H)

EEY

(1b) olx, 4) = i or () A

and where the coefficients g.(x), o,(x) are indefinitely differentiable and finite
on (a,b). The series (1b) may be divergent. When Q(x, ) = o then a formal
solution of (1) will be

oQ

(2) yla, 2) = ()4

r=0

ERE]

2-—36122. Acta mathematica.  ©7. Imprimé le 19 mars 1936,
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where #/°(x)=g¢,(x) (r=0;1,...). When @(x,A)=20 the function g¢n(x)
(0o=m=FkH-—1) will be not identically zero. It will be assumed that gm(x
is not a constant. Let A, denote a perfect subset of the interval (a, b) such that in A ..

lgw (@) = & >o.

On letting

(3) Yla, ) = & p(x, 1)
it is observed that 7(x, 1) satisfies
(4) Wz, 1) = o(x, 1) — @V (=, )7z, 1).

It will be shown that (4) is formally satisfied by a series

(s) nl, )= @)1
r—=0
In fact, on substituting (5) in (4) we obtain
® o k H—1 (T+a)
(6) 2P @) — o) F=—2n Z g ( an
=0
= — },”2 A _’":f.,(x)
==
where
(7) Zq‘” ) r—al

a=m
Here «, is the smaller one of the numbers AH—1,».! It is noted that
SHlx)=o0 v=o0,1,...m—1),

so that (6) can be written in the form

—_1 r
(8) D A Efeu(@) Za gr( ) =
r=—kH+m r=0

3
! Here and in the sequel Z = o0, whenever § < .

4
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(8a) 9r(@) = forru(x) + 7" (x) — or(w).
The equations

Srrkul{x) =0 (r=—kH+m,...—1)
are satisfied if
(9) no(®) == ;@) = = N —m—1(x) = 0.
On using (9) and (7) it is observed that (8) is equivalent to the set of equations
(10) qu ) rsin—l@) + 1) — @) =0 (r=o0).

a=m

In (10) ¢ is the smaller one of the numbers #H — 1, » + m. Thus, for
r<kH—m—1, we have «'=r +m and, for r >kH—m —1, ¢’ =kH — 1.
Accordingly, in view of (g), relations (10) may be written as follows

r+m

(10a) @ () Dot k1 () = 02 2 @i () Dyt 11—a ()

a=m-+1
(r=o0,1,... kH—m—1),
k H—1

(10 b) q(rrl»)(x) 777'+kH—m(90) == a,(.’L‘ <1> Z Qa ’71+k11—a( )

a=m+1
r=kH—m,kH—m+1,...).
It is seen that equations (10a) determine uniquely functions

0
(I I) nky—m(x) = q‘(‘)’—((xx))’ nkH--m+1(x), «eey No2kH—2m—1.
m

On the other hand, equations (10b) determine in succession functions
(I 1 a,) 7]2kH—2m(90), 172kH—2m+1(x)) R

Functions (11), (11a) are all indefinitely differentiable and finite in ..
We note that if y(x, ) is a solution of

(12) yW(w, 4) = =P g, 2),
then 3{(x, 2) = h{A)y(x, 4) (A(A) a function of A only) satisfies the equation

(13) 50(z, A) = h(A) @ 4 g(z, 4).
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Lemma 1. Given a formal equation (13), where Q(x, ) and o(x, A) are of the
Jorm (1a), (1b), there exists a formal solution 3(x,A)=h(A)y(x,4). Here y(z, 1)
satisfies (1). When Q(x,2)=o0, then y(x, A) s given by (2), the involved coefficients
being indefinitely differentiable and finite on (a,b). When Q(z,2)=o0, y(x, 1) 1s
of the form (3), (5). In this case the involved coefficients satisfy (9), (10a), (10b)
and they are indefinitely differentiable and finite in A, (cf. the statement in italics
Jollowing (2)).

Note. When @(x, ) = o the coefficients, involved in the solution referred
to in the above Lemma, are uniquely defined at every point of (a,d) for which
g (x) does not vanish. They are indefinitely differentiable (that is, possess a
unique derivative} at each such point. In the neighbourhood of a point where
q(i)(x)=0 these coefficients may become infinite. The order of infinitude may
be estimated with the aid of (10a) and (10b).

4. Analytic Integration. Consider the equation
(1) Y, 2) = e?® P a(z, 4)

where Q(x,4), if not identically zero, is the function so denoted in § 3. As a
function of z, let a(x, A) be indefinitely differentiable on (a, b), when A is in a
certain region R extending to infinity. Such a region R (|A| = 4, > o), satis-
fying either one of the two conditions

(1a) REV(x, ) = o (z in (a, b); A in R),
(1b) ROV (x, i) =0 {(x in (a, b); 4 in R),

will be supposed to exist. Moreover, it will be assumed that a(x, 1) is analytic
in A for A in R (when z is in (a, b)) and that

(2) a(w,A) ~ o(x,2) (xind; AinR;, w=kH—m+ 2).

Here o(x,1) is given by (1b; § 3) and 4, is defined in the italicized statement
following (2; § 3). We shall first consider the case when Q(x,2)=o.
According to Lemma 1 (§ 3) the formal equation

(3) sW(z, ) = e?®= 4 g(x, 2)

possesses a formal solution
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(31) sy ) = e 7 CF) 3 o) )5, 2)

r=0

(sr (@) = Nk r—m+r (),

where the coefficients are indefinitely differentiable and finite for = in .. Let
¢t be an integér such that w=t=%tH—m—2. Form the function

_ (kH-—~m) t—1 _r
(4) o, d) = e@a ) F ) Dg(a)h F= @@ (g, 2).

r=Q

An application of the transformation

(s) yla, 4) = tx, 1) + 2(x, 1)
will yield
(6) 20 (x, ) = @@ 4 g(x, 2) — tV(z, A) = 2@ @(x, A).

In view of (2), (4) and (1a; § 3) it follows that

w—1

(7) p(x, 1) = [ w g Za ] -2 () () i

r==0

- (LHZ— 1q§x" () f”qk:f) s = t;

a=m

?“\“.

Here by(z) is defined on 4, and
(7 a) [bu(@)| < b (z in ).

Denoting the product of the two summations in the second member of (7) by
W(xz, A), we have

=

(8) Z,h - ({=t+EkH—m—2)
p==0
where
(8 a) Z Gmrol® Sv—a )
a=0,

Here o, is the greater one of the numbers o,» — ¢+ 1 and ¢, is the smaller
one of the numbers v, tH—m—1. Thus, in particular,
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(8 b) Zqiri’w x) Syl (v=o0,1,...kH—m—1),
k H—m—1
(8¢) Z G o(@) Sv—o()

w=kH—m,kH—m+1,...t— 2).

Accordingly, it is noted that for » <¢—2 the h,(x) are independent of ¢{. With
this fact in view we write (7) in the form

(9) ¢(x1 l) = wl(w) l) + ¢2(my 2‘)7
w=—1 o v+l >
08)  gle)=bo@i F+ D o@i Fe D s punle) i
y={—1 r=i—1

¢

— Z hy(x) A Z,

v={—1

(ob) Palz, 2) = 20[% (@) — s (@) — ho(2)] A *

(52 sr4mlx) = 0 for v <k H —m).

In (9b) the coefficients of A * (y=o0,...,¢ —2) are independent of ¢; in view

of (8b), (8¢) and since the s,(x)= nku—m—r(x) satisfy relations (9), (10a), (10b)

of § 3, it follows that these coefficients are all zero. Thus @(z, ) = @, (x, 4).
Let, as is possible, t=w. In consequence of (9a) and (6) we then have

=1
(10) eW(x, 2) = @A 3 (%) gulz, &),
(10a) | 9wlz, )| < gw (x in 4; A in R),
where gu(z,2) is defined and finite in 4, and g, is independent of x and 4.
With (c,d) denoting a closed interval contained in A, (@ <c<d=b) we shall write

X

(11) Zw%lz(x, A= feQ("' A gy A)d e (z in (¢, d)),

v

where y=¢ when (1a) holds and y=4d when (1b) holds. Consider the first case.
We have
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2

(12) Q%M—Q@M=—f@%ﬂﬂv

V=4

so that

RQ(u, d) — Qz, )] = f —RQV(v, 1) dv.

V=1

In view of (1a), the integrand in the last member is equal to or is less than
zero for A in R, provided c=u<=x=d. Accordingly, in the first case

(13) R[Qw, ) — @z, ] <o (c=u=w=d;Ain R).

When (1b) holds, on writing (12) in the form

Q%M—QWM=[@%MMv

v=x

we obtain

U

RO, 2) — Qla, )] = f ROV, Ndv (c=a

V=02

IA
in

u=d).

Since the integrand in the last member is equal to or is less than zero, (1 b) is

seen to imply the inequality

(13a) RQu, 2) — Qx, A =0 (cZ=x=u=d;in R).

In consequence of (11), (10a) and by virtue of (13) or (13a) (as the case
may be) it follows that
&

w—1

2% 2(w,2)e— @] < fem (@, A=l 1| g,y (w, 2) || du ]
v

<wa|duls(d—c)gw (c=x=d; 2in R).
v

Thus
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w—1)

(15) o, 4= et 1 CF) 2y, 1),
lewlx, )| = 20w  (x in (c,d); 4 in R),
the function z,(x, A) being defined for x in (¢, d) and A in R.
By (5), (4) (with t=w) and (15)
wy—1

(16) y(z, 4) = 2B 2 &) [ 2

r=0

sf@ A F A oy, Z)J
(wy=w—kH+m—1=2=1),

where cy,(x, A) is defined for x in (c,d) and 2 in R. Moreover,
(1634) Ic“'l(m) l)' é cwl (w in (C, d)! 2‘ in R)v

here ¢y, is independent of x and . The relations (16), (16a) can be written in
the form

(17) ylx, 4) 5 s{z,4)  (x in (¢, d); 1 in R),

where s(z, 1) is the formal solution of the formal equation (3).

When ¢(x,A)=o0, an analogous solution %(x,A) can be obtained so that
(17) holds with w, replaced by w.

Assume now that R is defined by (1a) and replace (2) by an asymptotic
relationship in the ordinary sense. In view of the preceding the problem (1)
will then possess an infinity of solutions, in general distinet, such that

(18) Yz, 4) % e?@ 4 5(x, 4)
(xin (¢, d); Ain R; t=1,2,...; w; < wy < -).
Bach of the functions
(18a) 2z, ) =z, 2) — (e, A) (t=1,2,...)
will constitute a solution. Since s z(¢,4)=o0 ((=1,2,...), these functions are

independent of ¢ and are seen to represent a single solution, say z(z,1). In
view of (18) and (18a) we have, for = in (¢, d) and for 4 in R,

(19) z(a, 2) ~ e¥® A 5(z, 2) — €442 5(c, 4),
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where the asymptotic relation is to infinitely many terms. For 1 in R and x

in (e, d), by (13)
|eelc a—Qiet| < 1.

If there ewists a positive number & and a region Ry, extending to infinity and
Jorming part of R (B defined by (1 a)), such that

[etled—@ ] ~ o (e+e=x=d; Ain Ry,
then (19) is seen to imply
(20) z(x, A) ~ sz, 4) e+e=x=d; 2in R,).

When R is specified as in (1 b) an analogous result can be obtained.
In view of (5), (6), (10) and (11) a solution y(x, 4), for which (17) had been
stated, can be represented in the form

(21) ylw, ) = tlw, 1) + f (6@t ) g, 2) — £, 2)] e

v

X

= t(y, 4) + feQ("’*)a(u,_l)du
7

where y =c¢ or y = d, as the case may be.

Lemma 2. Consider the equation (1) where a(x,A) ¢s a known function satis-
Sfying (2). Suppose there exists a region R so that either (1 a) or (1 b) holds throughout
the region. Let s(x, 1) be a formal solution of the formal equation (3). Define 4.
as in § 3 and let (¢,d) (a=c<d=1b) be a closed interval contained tn A.. The
equation (1) will then possess a solution y(x, 1), defined for x in (¢, d) and for A
i R and satisfying for these values of the variables the asymptotic relation (17)
(with wy=w—kH + m — 1, when Q(x, A =0, and w,=w, when Qx, )= o;
cf. (16)).

If the asymptotic relationship (2) <s in the ordinary sense and R, exists as
defined <n the <talics preceding (20), then there exists a solution z(x, d) satisfying
in the ordinary sense the asymplotic relation (20). A similar statement can be made
when B s déﬁned by (1b).

3—36122. Acta mathematica. 67.. Imprimé le 19 mars 1936,
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5. Iterations. We shall now consider a system
(©) YWz, )= Y (x4 B(x,2)  (cf. (C) of § 2),

(1) Bz, 1) = (b;,j(z, 4)) 5 (81,5 (%, 4)
(x in (a,b); a<b; A in R).1

In the series

r—v

(1a) Bii(m, A= DB (@) A ¥ (r, & positive integers)
=0

the coefficients are finite and differentiable for x in (a, b); these series may be
divergent for all 1. It will be assumed that formally the determinant |(8; ;(z, A)}|
is not identically zero. The formal system associated with (C),

(Cy) 8W(a, 1) = Sz, 4) (B 5(, 1),
possesses a matrix solution, whose elements are certain possibly divergent series,

(2) 8@, 4) = (s:,5(z, 1)) = (%P g, 5 (, 1)),

e

(2a) 01,5 (@, A) = i Gig:0 () A

Here the @Q(x,4) (=1, ... n) are of the form (32a; § 2).® The coefficients of
various powers of A in (2a) and the Qi(x, 1) are finite and differentiable on (a, b).

Form a matrix

(3) T'(w, &) = (t,j (=, 4)) = (4" Pz 5 (2, 1)),

where the functions 7 ;(x, 1) are obtained from the o;;(x, 1) by deleting in the
latter series the powers of 4,

(3a) x_(t%) w=o0,1,...),

t being a suitable positive integer. If we define E(x,1)= (¢ ;(z, 1) by the

equation

! To start with, w is assumed suitably great. R’ contains at least a region R, to be de-
fined below.

® Throughout, %k is taken as the lowest common multiple of all the involved k,. The
interval (a,b) is taken suitably small.
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(02) -T(l)(x) l) = T(xa '3‘) E(.Z', l))

it is observed that the functions e; ;(x, 1) are expressible as convergent series in
1

powers of A* with coefficients defined for  on (a,b). These series are computed
as elements of 7T (x,4) TW(x,1). In each element ¢ ;(x,4) a certain initial
number ¢; of the involved coefficients is obviously independent of ¢. These co-
efficients are correspondingly the same as those obtained by formally calculating
the elements in the matrix S—'(x, A) S (x, A); that is, in view of (C,), they are

correspondingly the same as the initial g; coefficients of the various powers of
1

A¥ in the series B;;j(z,4). The precise nature of the dependence of ¢; on ¢ is
immaterial for our purposes. Of importance is the evident property lim g, = oo.
t—

Thus, ¢ can be chosen depending on w so that, in view of (1) and in view
of the stated facts, it is possible to assert that
(4) Bz, ) — E(w,)=H(z 1) o0 (o' = o’ (w))
(x in (a,8); 4 in R')

where ¢ (w) can be made arbitrarily great, whenever w can be made to approach
infinity. Accordingly,

o

(5) Hw, i)=& * k1),
| R, (2, )| < R(d) (¢,7=1,...n),

where h(¢) is independent of x and A for z in (g, b) and 4 in R.
The transformation

(6) Y(x7 2‘) = Z(x7 l) T(x7 }')a Z(.Z', }“) = (Zi:j(xv l)),

applied to (C), will result in the system

(7) ZW(w, 2) = Z (z,4) C(x,4), Cla, )= (c;ax, 4)),
where
(7 a) Clw,A)=T(x, ) B(x, ) T (x, A) — TW(x, 1) T*(x, 4).

On replacing 7®W(x, ) and B(x,1) with the aid of (C,) and (4) it follows that

(7 b) Clw,A) = T(x, }) H{x, \) T (z, A).
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Now

(8) Tz, ) = (e~ %™ g 4(x, A)).

Here the functions 7;;(x, A)A~¢ (¢ independent of ¢; 9= o0) have bounded absolute
values for « in (¢, 8) and [A| =4, > 0. By (3),(3) and (8) from (7 b) we then have
() (e, 1) = (@D 27 Ehe(z, 2),

(9a) lh;{j(x, N = ho (z in (a, b); 2 in R,

where o= 0(w) and o(w)— o, whenever w can be indefinitely increased. Here
and in the sequel Qe s(z, 1) = Qalz, 2) — Qslx, 1).

We shall suppose that in the A-plane there exists a region R such that,
for all z in (&, b), either

(10 RQPEH=RQP(, N = =Rz, 2) > R, (&, =
Lz RO, ) (1=c=n)
or
{x1) RV, ) = RQW(x, A= =RV (2, ) < ROV, (z, )= =RV, 7).

If in (10) and (11), for some values of the variables, > or < is replaced by =,
the results obtained below will continue to remain valid.

First it will be assumed that (10) is the case.

With =z in (g,8), let a=x =2, S0, =X - Zaxp1 =xp=2a. Write

vp =2 — Xx—1 (k=1,...m) and choose the x; (=0, 1,...m) so that max. vy—o0,
ag m— o, Let y,,... ¥ be some numbers such that
T = Yr = X% (k=1,...m).

Consider the matrix

(12)  Znlw, )= (25,5.m) = (T + 0, Oy, D) (L + v, C(yg, 1)) -+ (I + vm Clym, A))
(I =1(d;,;), the identity matrix).

By the classical theory of Product-integrals the limiting matrix

(12a) Z (x, l)-«hmZmzcl:f (z,2)dz + I)

m-—-x
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exists and constitutes a matrix solution of (7). It will be found possible to
investigate the asymptotic properties of the elements in the first = rows of
Z(x,1). We have

(13) Zuz, =T+ Qv Clys, 1) + 2 veoi, Cyn, 2) Clym, 1) + -+

k=1 ky<< kg

+ Z /kavkz'“vkso(yknl) O(?/Lz,l) C(ysz‘) + o
ky<ts v e <kg

m

T U Fm O(yh l‘) O(ymy /1) =1+ ZL87 L= (Zz',j:s)-

s=1

On using (9) and on writing ks ;(x,4) in place of A (»,2), the ;.5 are seen to
be of the form

m

(13a) lgo= 2 {(“kx'r Hlodh B (oh B
by - <kg
Z eWi'jhi; 7 (?/k“ 2‘) h"x: 72 (ykza }‘) '“ h"s—l»j (yks’ }')}’
Ty oo Tg—1=1

where
Wf:j = Ql', L (.7/7:” }') + Q"n 3 (ykzn l) + -+ Q"s—g' Tl (yks_.lv 2’)
+ Qrg—ly J (ykg ’ 2‘) .

Regrouping terms,

(1) Wij=Qij(a, ) + [Qii (@, ) — Q1,ilWg, M) + [@ro_y, i (yry A) — @y, i (Y, _y» 4]
vt (@i Wy &) — @ry i (ks V] + [yt Wi 2) — @, o (yrs, A)].
By (10)
(15) RQH(x, ) <o (z in (a,b); 4 in R)

for i=1,2,...7 and j=1,...n. A condition (13) is of the form (1b; § 4).
Thus, in view of (13a; § 4), (15) is seen to imply
(16) Rl ) — @iy, ] =0 G=1,...0;5=1,...7)

for a=y=wu=b and for 2 in R. Since in (14) ¥, <k, < --- <Fks it follows that

agykxgykeé“‘ _S_ykséx (éb)



22 W. J. Trjitzinsky.

Accordingly, - by (16), the real parts of the functions contained in the square
brackets of the second member of (14) are all equal or are less than zero for
i=1,...7 and j=1,...n, provided x is in (a,b) and 4 is in R. Whence it
follows that

(17) RWi ;= RQij(x, )

(t=1,...7;,j=1,...n; z in (a,b); 4 in R).

Thus, by (13), (13a) and (17), it follows that, for s =1, ... 7,

m
(18) l2tjm — 8] = 2lbijsl < et 0]

§=1

Z Z {|vkl...vks||/l|_7~: Z |h,-,,1(yk”/1)...h,s_l,j(yks,lﬂ}.

g=1ky<-.-<kg Ty oo Tgee1=1

Take the subdivisions equal,

OF U =O = =uh = =

Using (9a) from (18) we then obtain, for ¢ < 7, for x in (a,d) and for A in R,

(80)  logm—dlslenssnS 3 () sy

s=lk<---<kg\\ 1

s=1ky<<- .-

1 QN h °\*

n

— w3 X (A
<kg

= L0 st -[__ by, m] i
nle el —1 + I+m|l| (h=(b—a)nhy).

Now
A et
I+£|l| b gn ! ,
m
so that
h _%\m e
f(m,/l)'=(1+w—1|/1| k) < Gl
and

1 ) <12 F ),
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where nf(h) is independent of m and A, but depends on ¢(=o(w)). In view
of (18a) the latter inequality implies that

[

(19) Zijim =04 + L EeQ i 34,5:m
where
(19a) [35,5.m| < f(R)

(=1,...7;j=1,...n; z in (a,b); A in R).

For the limiting functions z; j(x,2) we have, for = in (a,b) and . in R,

(4

(20) 2 (e, A) =15 + AL ke i a 31,5 (2, 4),
35,50z, A)| < f(R) f=1,...7; j=1,...n).

By (6), (20) and (3) we accordingly. have

n

(21) ¥i, il 8) = D 2o, rla, W) b gl A) = (80 + %58

r=1 r=1

o

g
A Fg el A] 4@ D g i, 2) = %D [y (2, 2) + A F o, )

where
(21a) [oms, (e, 1) | = IZ 31,0 (e, &) o, 5, l)l < nf (k)7 = c(w)
r=1
(t=1,...2; j=1,...n; z in {a,b); A in R).*

On taking, as is possible, ¢ = o(w) =t (= t(w)) relations (21) are seen to imply
that, for 1=7 and j=1,...%,

(22) yi, i, A) ~ 81, 5(z, A) (z in (a,d); 4 in R; 6= o(w)).

In the case when there exists a region R, for which (11) holds, we obtain
an analogous result, the correspondih_g Product-integials being taken along the
path extending from & to x.

The following Lemma can be now stated.

"o, <v  (in (a,b) A in R).
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Lemma 3. Suppose a system (C), (1) is given. Let S(x, A) be a corresponding
formal matriz solution (2). Let T (x, )= (t; j(x, A)) be the matriz formed by deleting
in S(x, A) the powers (3a) (t = t(w) a suitably great integer). Define Clx, ) by (7 a).

Case 1. There exists a region R so that (10) holds. In this case determine
the matriz Z(x, A) = (2:, j(x, A)) by the Product-integral

x

—~

Z(z, 1) =f(0(x, Nda + 1),

a

Case II. There exists a region R such that (10) holds. In this case we
define a matriz Z (z, ) by

Z (, ).)=f(0(x, Mdx + I).

The matrixz Y (x,A)= Z|x, ) T(x, ) will satisfy the system (C). If there
exists a region R such that (10) or (11) holds, we have

(23) Y(x,A) =wY (x,4) T S (2, A) (z in (a,b); 4 in R)

in the first T rows. Here a(w)— o, whenever it is possible to increase w indefinitely.

As the elements in Y (x, 1) depend on w, the above Lemma does not ne-
cessarily imply that if the asymptotic relations (1) are in the ordinary sense
those in (23) would also be in the ordinary sense.

6. The Fundamental Existence Theorem. Consider the equation (A; §2).
Suppose that the asymptotic relations (1; § 2) are valid in the ordinary sense
for x in (a,b) and for A in a region R’ coincident with or containing the region
R, defined below. The interval (g, d) will be assumed such that the formal equa-
tion (A*; & 2) has a full set of formal solutions

(1) si(z, A) = el 4 g;(x, A)
=1,...n; cf. (3a; § 2), (3b; § 2))

of the character specified in § 2.
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Constder all possible differences Qs j(x,A) = @z, A) — Q;(x, 1) which are such
that in the polynomials

kH—a

(2) QW (e, ) = 2 ()2 (m = m, ;)

a=m

the leading coefficients g, (@) = ¢, (2) — gIY), () are not identically zero. Assume

that there exists a closed interval (¢,d) so that for all functions (2)

(za) ¢, @ l=ze>0 (z in (c, d)).

It will be assumed that in the A-plane there exists a region R (extending
to infinity) such that, for all 1 in R and for all x in (¢, d), we have either one
of the following two cases.

Case I.
(3) RQP(x )= =RQW(x,2) > RV, (&, 1) = = RQW(z, 2
> ?RQ%L(%‘, l) == ng)(x, ]“) == ERQ'(tlv)_1+1(x’ z‘): = %Q‘g})(x ]')

IS <n< <t <t =~n).

Case II. [Inequalities (3) with > replaced by <. In connection with these
inequalities a remark is made similar to that following (11; § 3).

Case I will be discussed first.

By Lemma 3 (§ 5) the system (B; § 2), associated with the equation (A),
has 7, solutions,

(@ WD) ==,
such that
(4a) W (w, A) 5 sV (2, 4)

(¢=1,...05J=1,...n; 2 in (¢,d); 4 in R).}

The elements :{x,4) ({=1,...7) will form a linearly independent set of ¢,
solutions of (A). The number w, in (4a) and the numbers in the sequel can be
made arbitrarily great by suitable choice of the matrix 7T'(x, ), used in Lemma 3.

! Lemma 3 continues to hold when the power series factors, involved in the formal solu-
tions, are allowed to contain a finite number of positive powers of AYE To start with, w, will
be supposed to be sufficiently great.

4—36122. Acto mathematica. 67. Imprimé le 19 mars 1936,
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We form the equation

(5)  Le(2,4; )=

(z—1) 1 ly(ﬁ) (x7 Z‘)y ]y(’tl-—l) (x7 2’)7 sy 1Y (x? 2’)
]yll (x7 l)a R lyl (x) Z) (1) (2—1)
1-?/1l (l‘, )“)) lyll (xa ]‘)a s 1?/1(90: 2‘)
(7—1)
l?/, (.’I), }')1 <o 1Yy (w) A‘) -
' : ly,(él) (x) l‘)v 1?/,(,?—1) (x7 ]') 4 e ey 1?/n (CC, l)

= 2 1@e—k(@, A) ¥ = o (1a5(%, 3) = 1).
k=0
By replacing in (5) the ,y;(x, &) (¢=1,...7,) by the series s;(x, A) and the various
derivatives of the ,y(x,4) by the corresponding derivatives of the sz, 1) we

obtain a formal equation

kA
(6) Ly, 4 ) = Daeatle, D =0 (mole, 1) =1).
k=0
The coefficients here are o-series, in general divergent. In view of (4a), there

exists a number v, = v,(w,) =< w, so that
(6a) 1ok (2, A) 3 1@e—i(, A) (k=o,...7)

for z in (¢,d) and A in R. The set of functions (4; 7 = 1) being linearly in-
dependent, every solution of (5) is a linear combination, with coefficients in-
dependent of z, of these functions; accordingly, every solution of (5) is a solu-
tion of (A; § 2). Hence there exists an analytic factorization of (A),

7) L = Lu(x, ; ) = Ly—y, L, (2, 4; 9) = 0,
(7 a) Lo (@, 45 12) = 2\ 1buert(@, 2) #® (@, 1) (Bolz, 2) = 1).
k=0
Since the determinant |(sV—(z, A)}| (¢,j=1,...7,) formally is not identi-

cally zero, by a reasoning analogous to that just employed a formal factoriza-
tion of Lj = o is found,

(8) Lu(z, 4; 1) = Lo, L2, 4; 1y) = o,
(8a) Lo (@, 2; 12) = 2 1Bn—r—t{z, 1) 12 W (2, 4) (8o, ) = 1).

k=0
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Here the coefficients are g-series.! By (8) and in view of the fact that formally
Li(sy+ile, X)) =0 (e=1,...n—1),
it follows that the equation
{9) Loz, 4;2)=0
has a full set of formal solutions

(9 a‘) 1511‘”'(‘%’ 2‘) = L‘?x('gfﬁ‘i(w! )“)) = o +il® 4 1¢71+i(x7 }‘)

(f=1,...n—7)

L

where the ,@,+:{z, 1) are oseries with, possibly, a few positive powers of
present.
Also, in view of the involved asymptotic properties,

(IO) 1bi (x3 }') 7. lﬁi (x7 l)
((=o0,...n—1,; x in (¢,d); A in R).

Here 7, =r;(w;) and lim r,(w,) = . Accordingly, it is observed that the equa-

Wy ~» ®

tion Lyp (2, 4; 2) =0 is of the type to which Lemma 3 can be applied. This
can be effected by associating with this equation a system of order » — 7, and
of the type of (B; § 2). On taking account of (9a) and of (3) it is noted that
Lemma 3 enables determination of the asymptotic properties of those solutions
which correspond to the series (9a)fori=r1,...7,—1t,. We have z,—7, distinet
solutions of Ly (,2) =0, 2esilx,d) ((=1,...7,—7,), such that

(11) YT (2, ) 377 (=, 2)
(t=1,...09—7;j=1,...n—1)

for  in (¢,d) and A in R. Here ¢, can be made arbitrarily great by suitable
choice of T(x,4) in each of the previously involved applications of Lemma 3.
The same refers to the g; involved in the subsequent asymptotic relations. On
taking account of (7) it is observed that besides the 7, solutions (%, 4) (=1, ... ),
previously obtained, the equation (A) has %, —7,; other solutions,

' The ;Bn—r—k(x) are in integral powers of a rational power of 1; the latter power may
be distinet from that involved in the coefficient of Ln. A similar remark holds for subsequent
factorizations.
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(12) Y+, 4) (=1,...755—1),
each satisfying the non-homogeneous equation

(13) Lo (5y) = 12a+ilx, 4) (1=¢=7—1)

This fact is a consequence of the factorization (7).
Now, by (8), (7) of § 2, a solution of (13) is given by

%

(14) 2?/11+i(x7 2’) = Z lyf (x3 l) f IZ’ll'H:(x’ A‘) lgfxﬂ‘(x) l)dx)
r=1
where
(142) (o, sz, 1)) = (=, A gj=1..1).

On formally computing the elements §; ;(z, ), defined by the relation
(14b) (505, 1) = (s, D) Gi=1,...m),
(14a) and (4) are seen to imply

(15) (i3, B)) (56, 5laz, B)) = (e~ 4= Aoy, 5(a, 2))
(¢,j=1,...7; « in (¢,d); A in R),

where o j(x,2) are series of the same description as the ,@.+:z,4) in (9a) and
¢ can be made as great as desired- by suitable previous applications of Lemma 3.
By (15), (11) and (9a) the integrand displayed in (14) satisfies the relation

(16) il ) §a,r (2, A) Il elat+ir®m D @i, A) G, r (2, ) = €9 A (a, 1)
G=1,...00—%; r==1,...7; x in (¢, d); 4 in R).
By (3)
REW. . (x,4) <o (x in (¢, d); 4 in R);

7+, r

moreover, by definition of the interval (¢, d), the derivative of the highest power
of A in Q4;.(x,4) is distinct from zero throughout (¢,d). Thus, on one hand,
application of Lemma 1 is possible in order to find a formal solution of the

formal equation

(16a) YW (2, 4) = A Dy, 1)
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(the coefficients of the solution are here defined on (¢,d)). On the other hand,
on the basis of the stated fact and in view of the inequality satisfied by
ERQ(;ILl.’T(x, A) (cf. 1b; 8 4), by Lemma 2 (§ 4) it follows that the integrals dis-
played in (14) can be so evaluated that, to a number of terms,

(16b) f~ Qu+ir® Dy (2 2)  (xin (¢, d); 4 in R).

The formal series in the last member of (16b) is a solution of (16a). By
(a44; 7=1), (16b) and (14) we have

(17) WYr+i(y A) 5 %0+1% P 00 14(2, 4) = 980, 44(, 4)

(¢=1,...79—7; = in (¢, d); A in R).

Analogous to the manner in which (5) had been established we now construct
the equation

(18) L, (2?/) = Z 2(112-—k(x, 2) 2?/(k) =0,
k=0
which is satisfied by the ¢, solutions
(Iga) eyz(x,l)=1?/z(x,l) (Z= I,...'[l),
(18 b) oYo,i (X, L) (Z=1,...75—1).

In view of (14) the functions (18a), (18b) are seen to satisfy all the needed dif-
ferentiability conditions. Analogous to (6) we now have a formal equation

(19) L2 (2, 23 ) = ) sttert (0, ) sy® =0
k=0

which is satisfied by 7, distinet formal solutions

(19a) o8 (2, &) == ;8 (xx, A) (=1,...7,),
oSz,+i (X, A) t=1,...79—1).

Moreover, for z in (¢, d) and for 4 in R,

(20) o (2, A) a0 (x, A) (f=1,...1).
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Equation (A) will be analytically factorable as follows

(21) Ln(z, 4; ) = Li—, Ly, (2, 2; 59) = 0,
n—1y

(21a) Ly, (2, 4; 42) = 2 obn—oi(, ) 22 (2, 4)  (3ho(, Ay=r1).
k=0

A formal factorization, similar to (8), (8a), will also take place,

(22) L: (99‘, ]“v 2?/) = Lz—’z LZ (.’E, }‘, 2y) =0,
n—ty

(22 a’) L;—'%(xa )"? 22) = ZI Qﬂn_fe—k(xv A‘) 2Z(k)(x) z‘) (2430(95: l) = I)‘
k=0

Moreover,

(23) obi (i, ) ~ 981 (, 2)

(t=1,...n—1y; x in (¢,d); 2 in R).
The equation Ln—,(x, 4; 42) = 0 will possess n — 7, distinct formal solutions

(24) sdetil@, &) = Le(sq+4(x, 1)) = e®urit® D ygr i(a, 4)

G=1,...n—1),

where the ,p.+:(x, 1) are o-series.
On making use of (3) and applying Lemma (3) to the system (B; § 2),
associated with the equation L,—,(x,4;,2) =0, the latter equation is seen to

possess 73— 17, solutions, y2,,1.(x,2) ({=1,...7,—1,), satisfying relations
(25) 22970 (2, 2) = 3V (ax, 2)
C=1,..0%3—T;j=1,...0—1)

for 2 in (¢,d) and 4 in R. An equation
(26) Ly, (3y) = w25+ (2, 1) (1=is7—1)

has a solution

T2

(26 a‘) st (xa l) = Z oYr (xa 2’) f 2€%,+1 (‘xr 2’) 2@12, 7‘(x1 l) d.’l),

r==1

where
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(26 b) 2+ (2, A) e, (@, A) ) eati,r 8 e 1 i(w, 4)
(t=1,...13—7; r=1,...7,; z in (¢, d); 4 in R).
Here the oPr+il@, A) are o-series.

With the inequality RQW,, (#,4) <o (xin (¢,d); 4 in R) in view, Lemma 2
is seen to be applicable. In (26a) evaluating the integrals according to this

Lemma we get

(27) eti (2, ) o eQati® ) g (o, 1) = ys000 (@, A)

(6=1,...73—17; x in (¢, d); 4 in R).

Thus we have obtained the asymptotic form of 7, solutions of (A), ,y:(x, 1)
t=1,...%), War@d) G=1,...05~1), Wa+rilr,d) E=1,...75—1). All of
these could be denoted by ,y:{z, 4) (t=1,... 7).

Beginning with Iterations (Lemma 3) we follow in succession by v — 1 triple
operations, each consisting of (1°) a Factorization, (2°) Iterations and (3°) Integra-
tions (according to Lemma 2). We thus obtain a full set of solutions, y:(z, A)
(¢=1,...m), satisfying (A) and such that for x in (¢,d) and 2 in R

(28) yile, &) = yi(x, 2) o €D g; (o, A) = s (2, 4)  (E=1,...m).
Moreover,
(28a) Y, &) =~ sV, 1) (j=2,...m).

Such solutions can be constructed so that w has as great a value as desired.
However, these solutions may depend on w and thus we are not in the position
to assert the asymptotic relations (28), (28a) in the ordinary sense (cf. § 1).

Precisely similar conclusions are reached when the region is specified as
in Case II.

Analogous results hold for a system (C) (§ 2).

We shall now obtain solutions possessing asymptotic properties in the
ordinary semse. According to the preceding developments the equation (A) has
an infinity of fundamental sets of solutions,

Tyl(a%l), Ty2(x;l)7"'a r?/n(x,l) (7‘——:1727"')

such that, on writing
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(29) PY (@, 2) = (o (@, 4) = (o, (w, 2) (G j=1,...0),
we have
(20 a) Y d) g S ), Y ) = (5 (, ) ~ ST o, 4)
(r=1,2,...; 0y <ay<--; z in (¢,d); 2 in R)
where
(30) S(x, ) = (%= g; 5 (x, 1)), Sz, 4) = (4" " g ;5(, 1))
(0:,5(x, &), 01 (x, 2) oseries; 5,j=1,...n; | S(x, 4)| # o, formally).
That is,
ap—1 v
(SI) rf/zj(-% l -—-te'r)' [ 2 i, 5 1: k+0'£,’j($,l)},_ar/k],
(314) i, j (@, A) = e 4® “[ Z Gij v kg ol (x, A) l—“r/”],

(31b) | 629 (a, B)], |07 (w, )| <o (r=1,2,...; xin(c,d); Ain R).
Each of the infinitude of matrices
(31¢) oZ (2, )= (i j (2, M) =Y e, 4), Yz, A) (r=1,2,...)

constitutes a matrix solution of the system (B; § 2), associated with (A) [the
2102, ) (1=1,...n) will form a set of solutions of (A)]. Since

(32) wZe, ) =1 (r=1,2,...)

it follows that the matrices ,Z(x,A) are all identical and represent the same
matrix, say, Z(z,A). Thus

(33) Z(x, 4y =,Y e, 4), Y (z,4) r=1,2,...)

and Z(x,1) is independent of ». By (33) and by (31), (31 a),

(34) 205w, ) = Dy B H—0le D gy 1 (, 1),

s=1
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ap—1 a1 ot 0)

(34&) %z,]sx}: Z 20181 6870 )] (—l_,

Y= 0==-M
oy—m
+[( E ),bi,jzs(x,x),
where, in view of (31b),

ap—1

2

r=—m

(v+m

F o, Y3 0006+ 4, D00

s, .5, 2| =

opt m)

+ l—( B Tah (e, A) 0% (e, l)' < b,

(z in (e,d); A in R; r=1,2,...; ¢,J,s=1,...7).

Here b, is independent of z and A. Whence (34a) is seen to imply the rela-
tionship

(34b) 31]8(% ;l')a_mazj sxl Zﬁzj.sv ¥

p=—p

= Z Z i 5:4(€) 0s j . o{X) A=+ (xin (¢, d); 4 in R).

Y= =N

In the first and in the last member, above, » does not enter; moreover, e, can
be indefinitely increased. Accordingly,

(35) 3l':j18(xv }') ~ Sza‘:s(% ]“) (.%' in (07 d)) 4 in R)

In the sense that the elements of Z(x,1) are of the form (34), while the asym-
ptotic relations (35) hold for the involved functions, we may write

n

(36 200 1)~ ( D e 1=, (s, )

s=1

(z in (e, d); A in R).

When z = ¢ the formal matrix in the second member of (3b) reduces to I and
the symbol ~ is replaced by =. A similar result is obtained for the solution
Z(x, )=, Y 1d, MY (z,3) r=1,2,...).
When R is specified as in Case I we have inequalities, valid for A in R,
5—36122. Acta mathematica. 67. Tmprimé le 20 mars 1936,
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(H1) 9’1‘ [Q& 1(93, )‘) - Q-‘?, 1 (C, )")] = fm Q.(st)l (M7 2‘) du <o

e<z=d; szm +1),

(Hy) R [Qs,n(x, 1) — Qs,n(d, 4)] = f?RQ‘sf)n (u, \)du < o
d
ex<d; s <11).
On the other hand, in the Case II
(H,) R [Qen(, ) — Qun (e, A)] = j R QL (u, 1) du < o

e<z=d; s < 1),

(H,) R (O 1(z, 2) — Qs 1(d, 2) = fﬁRQﬁ‘,’l (u, 2) du < 0
d
esx<d; sz +1).

There may exist a subregion R, of R, which extends to infinity and throughout
which one of the following four sets of inequalities holds, for all positive ¢ and for
some fixed positive e,

(@) |eds, 1@ 8= 16 0| < |A|=9h(0) (s=7,+1; c+e=z=d),
(G) | 9en® D= n@ D] < |A[~h(0) (s=T0r; c=2=d—04),
(Gy) | Qe =@ nle, D) < |A]Rh(0) (s Tm; c+e=x=d),
(Gy) e, 10 A=Q 1A | < |A}2h(0) (s=7+1; c=x=d—e¢).

Here h{o) is defined and finite for every finite ¢(> 0). The inequalities (G4)
correspond to the cases (H;) (i =1,...4), respectively. When R, exists its bound-
aries have at infinity the limiting directions of the corresponding boundaries of E.
On the other hand, when the limiting directions of the boundaries of R are distinct
existence of a region R, is assured.

Consider the solution Z(x,1), satisfying (36). The properties of Z(z, 1)
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may be investigated further if, as will be supposed to be the case, a region E,
satisfying (G,) exists. We write

(37) 2i,4(@, 4) = ebn A= @le Dy, (g, 2),

(37 a) 3,5 (@, ) = s (o, A) + 145 (2, 2),

(37b) 77z,] Z(’)z ' s

(37¢) vz )= 2 6% 100100 g, 5 (2, 4),
s=7,+1

y (35) and (37b)

(38) N, j (@, ) ~ 38 i {x, ) = Z(’ﬁwv L= 2321 s, 4)

V=
(¢,j==1,...%m; x in (¢,d); 4 in R).
Since, by (35),

/!,
'5l,.7(x7'1)l<3l'llk
(¢,j=1,...n; z in (¢,d); A in R)

on taking account of (G,) from (37¢) we obtain

(38a) i@, )~ 0
((,j=1,...0; c+te<x=d; A in R,).

Thus, in view of (38), (38a) and (37a) we have (3;,;(z, 4)~(35j(x ). Ac-
cordingly, we shall write

(39) 2, ) ~ (e =658 (1, 7)
(c+e=x=<d; 2in R,).

The solution Y,(w,2) = (d;;e%®#) Z (2, 1) will have the property
(40) Yi(@, 4) ~ (4@ 858, 4)  (c+esz=d;Lin Ry

When R exists as defined in Case I and R, is specified by (G;) a matrix solu-
tion Y,(x, 4) may be constructed so that

(40a) Yolw, A) ~ (e%@: D3k (2, 2)) (e=x=d—e; 2in R).
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When R is characterised as in Case II, solutions Y,(x,4), Y,(z, 4) exist such
that, depending on whether R, is specified by (Gg) or by (G,), we have either

(40Db) Yilx,A) ~ (e @32 (2,2) (c+e=x=d; Ain R)
or
(40¢) Yilw,2) ~ (¢ul=N3f5(2,4) (eSz=d—s¢ 4in R).

In (40), (40a), (40b), (40¢) the formal series 3 ;(x,A) are o-series. The construc-
tion of Y,(x, ), Y,(x, 4), Y, (x, 4) is along lines similar to those employed in the
construction of Y,(x, A).

Precisely analogous results will hold for a system (C) (§ 2).

The results obtained above will be summed in the following Theorem,
stated as relating to a differential system (C) (§ 2).

Fundamental Existence Theorem. Let (¢,d) (¢ < d) be an interval as speci-
fied in the italics in commection with (2) and (2a). Assume that there exists a region
R, as specified in Case I or in Case I1I (above). The following can be stated con-
cerning solutions of the system (C) (§ 2), whose coefficients satisfy the stated asym-
ptotic relations in the ordinary sense (that is, to infinitely many terms) for x in (c, d)
and for A in R (at least).

I. There exists an infinity of matrixz solutions ,Y (x, ) (r=1, 2, ...) such that

(41) Y (@, 4) 5 8w, ) = (%D gy, (a, 2)
(6, j=1,...n;, ¢c=x=d;Ain R, r=1,2,...).
Here a; <a,<- (lima,=0o). The asymptotic relations (41) are uniform in x.

S(x,A) 2s a formal matriz solution of the formal differential system corresponding
to (C). Formally |S(x, )| # o.

IT. The matrix solution Z(xz,4)=,Y"(c,A),Y (x,4) ¢s <ndependent of r
(r=1,2,...) and it satisfies the asymptotic relation (36) in the ordinary sense for
x in (c,d) and for A in R. The matrixz solution ,Y(d,A), Y (x, ) will be also in-
dependent of v (r=1,2,...) and 4t will have properties analogous to those of Z(x,4).

II1. If there exists a subregion R, of R, as defined in the italics in connec-
tion with (G), (G,), (G) and (G,), we shall have at least one matrix solution which
is of the form of one of the following matrices

Yl(.%',l), Y2(x7 2’)7 Ys(x:'l)a Y4(xil’)
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Accordingly, this solution satlisfies in the ordinary and uniform sense ome of the
asymptotic relationships (40), (404), (40b), (40¢).

Note. The determinant of a formal matrix occurring in (40), (40a), (40b),
(40¢) may formally be equal to zero even though the determinant of the cor-
responding actual matrix solution will be, of course, distinet from zero. It is
also to be noted that inasmush as the coefficients of the system (or single equa-
tion of order =) are amalytic in 1 (A £ o) the same will be true of the solutions
(when the initial conditions are analytic).

7. Non-homogeneous Equations. In the theorem of § 6 the elements in
the first row of any particular matrix solution will constitute a fundamental
set of solutions of the differential equation (A) (§ 2), provided the theorem is
applied to the system (B) (§ 2), associated with (A). Consider now the non-
homogeneous equation

(1) L(w, 4; y(, 4)) = a(w, 4)

where L is the differential operator involved in the left member of (A) and

w0

(19) ale, By~ D a@) T F = al, i),

Y=

the asymptotic relations being valid, in the ordinary sense, for L in R and for x
i (c,d) {¢e<d). The region R will be specified, say, as in Case I (§ 6) and it
will be assumed to exist. If y,(x, 1), yuo(x, A), ..., yn(x, 1) denote a full set of
solutions of the equation L = o such that, on writing

(2) Yz, 2) =iz, 1), Yz, )= (4=, 4)
we have
(2a) Yz, A ~ Sz, 4), Yz, )~ Sz, 4),

where the asymptotic relations are valid in a certain sense! for x in (¢, d) and
for A in R, then a solution of (1) can be given in the form

! Necessarily, in the problem now at hand, we have to deal with solutions of the homo-
geneous problem for which | S(x, 4)| does not formally vanish,
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@

(3) o, 1) = Dyela, 1) fa(u, 2) G2 (t, 2) d.

If the involved integrals are evaluated with the aid of Lemma 2, the asym-
ptotic properties of the solution y(x, 2) can be investigated.

We shall be looking for a solution whose asymptotic properties are in the
ordinary sense. Assume that in R not only inequalities of Case I (§ 6) hold but
that also

(4) o> RQV(x, 4) (c=x=d; Lin R).
It follows than that

(s) |ein =@ ] < 1 |e@n+1, 10 0= Qs 10| < 1,

|8Q"' %—1(‘”’ l)_Qn, 11)——1 (C, A)l < 1
(e+e=Zax=<d; 2in B; ¢> o).
Suppose there exists an infinite subregion Ry of R such that

(5 a) IeQx(Ty A= Qe A)I ~ O, |eQ1,+1,1(-", 7-)_Q11+1,1(C,)-)| ~ 0’

[ €9, rsma @8 =,y 08| g

(c+e=x=d; 2 in R)).
Consider a matrix solution of the homogeneous problem,
(6) Yz, A) =y, e d) =Y e, A)» Y (2,) (r=1,2,..),
as given by (31¢; § 6). Since

Y=Y, A) = (9s, (@, ¢, A) = » Yz, 1), Y (e, A)

it is observed at once that
(6 a) (71,5 (, ¢, A)) = yF Ve, », 4);
that is, the elements of Y —(x, 1) are obtained from those of Y (x, 1) by inter-

changing = and ¢. In view of (36; § 6), we accordingly have

”) Yz, 1) ~ (Z e V=Dt (e, 1)) = Sl ),

8=1
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(7 a’) (7/1 iz, ¢, 'l (ZGQS — Qa2 31 IE s(G x, ]-)) S_l(x, ﬂ,)

(@ in (¢, d); A in R; 3 5.5(x, ¢,4), 3l j:s(c, x, 4) o-series).

By (3), (7a) and by Lemma 2 it follows that the integral displayed in (3) can
be evaluated so that

T

n
(8) fa(u, &) gn,r(uo ) ~ Z e 11— Qle, ) N, r:o(C, 2, A)
=1
r=1,...n; ¢c+e=xz=d; Ain Ry; nnr.o(c, z,4) o-series).
n

Now, (8}, {7) and (3} will imply that

(9) g, 0) ~ D DeSnane o(x, ) (c+e=xz=d; Ain R).
=1 o=1

Here

(9 a) Gs o= Qs g(x, )“) — Qs n(c.- l)

and 7, 4(z, A) is a o-series defined by

{gb) 7230%'}' Zarlstl)f’?n; s(Cxl>

r=1
In view of (5a) it is concluded that

(10) ylw, 4) ~ e nEm A= nl iz 2)  (c+s<2=d; Ain R,

where n(z, 2),

(108) ne, =2 2 oz ),

s=1 o=z, _;+1

is a o-series. This is a consequence of the fact that, in view of (5a) and in
view of the inequalities of Case I (§ 6), we have

|eCso—@n@ A+ Q6] ~vo  (c+esx=d; Ain R)).

Theorem I. Consider the non-homogencous equation (1). Asswme that there
exists a region R, as specified in the italics preceding (4), and assume that there
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exists a subregion R, of R so that (5a) holds. The equation (1) will then possess
a solution y(x,X) satisfying to infinitely many terms the asymptotic relation (10)
(where & > o).

An analogous theorem can be stated when R is defined as in Case II (§ 6).

8. Integro-differential Equations. We shall now apply the Fundamental
Existence Theorem for the solution of the integro-differential equation

(1) L e s ylz, ) = alw, 1) + fb(u, 2, W)yl ) du(= V (@, 4 9).

Here a(x,A) == 0 and L s the differential operator of the left member of (A) (§ 2) and

<]

(1a) a(r, i) ~ Zaw(ac)l

V===

E = ao(x» l)’

(1b) b(w, x, 4) ~ z By (u, x) },_% = B(u, x, 1).
v—p

The asymptotic relations are assumed valid for A in R (a region specified, say, as
in Case I (§ 6) and for x and w in the interval (c, d). The latter interval will
be assumed to be the one for which, according to the Fundamental Existence
Theorem, the asymptotic properties of solutions of (A) are stated. Moreover, it
will be assumed that the asymptotic relations (1a) and (1b) are uniform in
and z (c=wu,x=d).!

Equation (A) will possess a set of solutions yi(x,4) (G=1,... n),
(2) (g, ) 5 (%@ D gy, (x, 4),
(22) Ve, )7 = (71,5, 2) 5 (€Y= 0 35, 5 (, 1))

(¢,7=1,...m; x in (¢, d); A.in R);

here the o;;(x,4) and the 0;;(x, A) are o-series. By (1a), (1b), (2) and by (2a)

.. 8
(3) la(e, W] =[A[Fa, |b(u, 2, 4)] <]i]%b,

! Extension of the notion of uniformity of an asymptotic relationship (cf. § 1) from one
variable to several is quite obvious.
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7
(3a) |y, )| < |y, | g iz, 2)] < |eG@H] ]ty
(¢,j=1,...n; 2 and « in (¢, d); 4 in R).

On writing
x

() £ = Juelo) [ et ol B,

c

in view of (3a) it follows that, for x in (¢, d) and % in R,
q M x

B = 128 D [ o= (o, ] v
r=14

Suppose there exists a region R, extending to infinity and forming part of
R, such that
(6) RQYV(x, W) =0 (x in (¢, d); 4 in R)).

Since R is defined as in Case I (§ 6) the condition (6) implies

(6a) ROz, ) =0 (zin(e,d);Ain R;;2=1,...n).

Thus

(6b) R[Qclz, &) — Qulu, 1)) =0
t=1,..mc=usx=d; 4in R).

If, for = in (¢,d) and 2 in B,
(7) 2(z, )| = |22, (x — ) (r=0)
then, in view of (6b), from (5) it will follow that

(8) | ()] < ney? | 2|m+ak (g — o) +1/(r + 1)
(¢ in (e, d); & in R)).

On the other hand, by (3), it will follow that (7) implies

(o) Ifb(u, @, h)2(u, Adu| < bz |A)E+Ik (g — o) +1/(y + 1)

(@ in (¢,d); A in R)).

6—38122, dcte mathematica. 67. Imprimé lo 20 mars 1936,
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Functions z(z, 4), ez, 4) (¢ =0, 1,...) will be defined in succession by the

relations
(IO> L(Z‘,Z;ZO)ZG(W, Z‘)Eoo(xv 2’)*
(10a) Lz, &; 2;) = cilx, A) = fb(u, @, AY 25— (u, A)d u.

By (7; § 2) and in view of (10) and (10a), on using notation (4) we may write

(11) zi(z, A) = F (c)) (t=o0,1,...).

Unless stated otherwise the following inequalities will be for = in (e, d) and for
Ain R,. From (10) it follows that

(12) |co(x’ l)léaolll%lk (@y = a; 2y = a).

By virtue of (11; = 1) and since (7) implies (8),

(12a) |Zo(~”, l)lézolllf"”k(fv—w) (Zo=ny ay; 3p=1n+ a).

Thus, by (10; 7 = 1) and since (7) implies (9),

|cl(x, j')l é“ll““’/k(-”"‘ o) (‘11 = Q?? o =0+ 30)-

Continuing, the following inequalities are obtained

e a2
nysal; 31277'*”“1):

lex(e D] < 21 2] (e — o (z -

. bz
Icg(x,l)l§a2|l|"‘2/"(x—6)4 (a2=—4”1; o =0+ 31),

By induction it can be shown that
(13) Ici(x: Z’)I = ailll"‘i”‘(x - 0)21',
(133’) 'Zi(m7z’)'ézi|l|6i/k(x_c)2i+l (1’.:0:1,"')1

where
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_ bz s 4
(14) M= ny" 26+ 1
(14a) =n+e, op=48+ 3— f=1,2,...).
Now from (14) and (14a)

& mytb .
(15) Zi—1—(2i)(27;+1), 3 Zu——l—’l’]'l'ﬁ (Z——I,Z,...).
Thus
o zoh*® __nygb)
(10) BT 5. it ) (h“ z )’
(16 a) 3=13 + i(n +p) (=1,2,..).
The series
(17) y (e, ) = 2z, 1)
=0

is absolutely and uniformly convergent for z in (c,d) and for A in any finite
part of R;. In fact, by (13a), (16) and (16a), for these values of the variables
we shall have

nta «ri{}
() Q] = Sla@al s @—denlil* £le—a1a™),

=0

where f(u) is the function, entire in u, defined by

@®

hLuw
(171) I+l_21z'3 5...(2¢4+1)

In view of (10) and (roa), the series (17) represents a function, defined for z
in (¢,d) and for 4 in R, and satisfying (1). Such a solution will be unique in

every case when zero is the only solution of the equation
Lie, 459l 1) = [ bl Dylu, v

Theorem II. Consider the integro-differential equation (1), specified in the
italics following (1). Assume that there exists a region Ry, as defined by (6). The
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equation will then possess a solution y(z, ), defined for x in (c,d) and for A in R,
and satisfying for these values of the variables (17a), (17b). Moreover, this solu-
tion will be analytic in A for A tn B, (A5 w; x in (¢, d)), provided the involved
coefficients have the same property.

An analogous result can be stated when R is defined as in Case II (§ 6)
and also when d is made to play the role of ¢.

9. Concerning Boundary Value Problems. Let L(x,4;y) be the dif-
ferential polynomial involved in the left member of (A; § 2). Of various pos-
sible formulations of Boundary Problems, associated with the operator L, of
special significance is the following.

To determine a function y{(x, A) which satisfies

(1) Lz, ;9 (x, 4) = f(x)

and the boundary conditions
Y d
(1a) Mily)= ny(k—l)(t, Adaix(t)=o0 (t=1,...n).
k=1

Here the operators M; are linearly independent, the involved integrals are in
the sense of Stieltjes and the a; x(x) are functions of bounded variation. When
flx)=o0 the problem is termed homogeneous; otherwise it is called non-homo-
geneous. An extensive treatment of the problem (1), (1a) has been given by
Tamarkin?, who presents developments under the assumption that the roots of
the - characteristic equation of (A) are distinct and that in (A) H =1 (there are
also some other hypotheses). In the case when H is allowed to exceed unity
and the roots of the characteristic equation of (A) are not required to be distinet,
development of an adequate Boundary Value Theory (leading to expansions of
arbitrary functions) necessitates some restrictions on the nature of the poly-
nomials @;{x,A4) ({=1,2,...7n). Thus, for instance, we would have to assume
that the various regions, for which (A) has solutions of known asymptotic form
(as implied by the Fundamental Existence Theorem), abut on each other. A re-
quirement of this type would mean that the functions

! J. D. Tamarkin, Math. Zeit., loc. cif., pp. 1-—54. Concerning the possibility of the homo-
geneous and non-homogeneous problem and concerning the Green's function, enabling representa-
tion of the solution of the non-homogeneous problem (1), (1 a) in particular see Tamarkin, loc. cif.,
pp. 5—1Io0. It will be assumed that the reader is acquainted with these facts,
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(2) R (@)~ @V, )] @#j50,0=1,...n)

would have to be all independent of x at least after a function of x (only) has
been divided out. However, it is not the aim of the present paper to present
developments based on such a hypothesis.

Of particular importance is the special problem (1), (1a)

(3) Lz, &; y(w, 2)) = f(x),
(3a) M;(y)= Cyly) + Dily) = o,
(3b) Cily) = 2 y*e, A er, 5, Dyly) = g y*(d, ) di, ;

les,j, ds,; constants; Jei |, |dij]l 2 0; 2,5 =1,...0].1
We shall be concerned merely with the following Problem.

For what values of A is the non-homogeneous problem (3), (3 a), (3b) possible,
when L 1s the unrestricted operator of (A) (§ 2) and (¢, d) (c < d) is the interval
Jor which the Fundamental Existence Theorem had béen stated?

The stated problem is possible for those and only those values A for which
the determinant

(4) 4 ()= | (M; ()| @Gj=1,...n)

does not vanish. Here y,(x, 4), ..., ¥a(x, 1) denotes a set of » distinct solutions
of (A). The values for which (1) = o are called characteristic values.

Let the elements g:{z,4) ({=1,...n) be those in the first row of the
matrix Y (x, 4) = ,Y (¢, ), Y (x, 4), referred to in Part Il of the Fundamental
Existence Theorem, as applied to the system B (§ 2) (associated with the equa-
tion (A)). On writing

(5) C=(ci5)y D=1(ds;), Yl(x 2)=(yijle, 2 A)= Ve, 1)
it follows that

(6) AW =|Y(,)C+ Y(d1D|=|C+ Y(d,ND].

! Of. Tamarkin, loc. cit., p. 10. Also of. Birkhoff, loc. ¢it., and Birkhoff and Langer, loc. cil.
There are, of course developments due to a number of other writers. All these developments are
for a restricted operator L.
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By taking the interval (¢, d) sufficiently small it is observed that the neigh-
borhood of A= is divided in a finite number of regions (each bounded by
regular curves extending to infinity and nowhere intersecting for |A| > 1, > o,
where 1, is sufficiently great),

(7) Ry, Ry,s, Ry, Ras, Ry, ..., Rv—y, v, By, Ry, n11 (or Ry,1)?,

such that
1°.  Interior any particular region R,(1 =v = n) there exists no curve alony
which, for some i and some j (¢ 7 j) and for some x in (c,d),

(8) RO, 1) = R P, 4),

unless RQW(x, 1) =R Q]‘.’)(x, ).

2°.  Every region R, i1 (1 =v =< N) can be included in a sector whose angle
is as small as desired.

The last part of the above statement is a consequence of the fact that
every function @.(x,2) — Qj(x,4), which is not identically zero, is of the form
(2; § 6), (2a; § 6). In fact, as seen from (2; § 6), we have for every function
of this type

kH—m Lk H
(9) R, 1) =g, @) 2] * [cos ((p;,j(x) + ~—/c~—0) + s jlx, ),)]

where, for A— oo, h; j{z,4) > 0 (uniformly in z for x in (¢, d)). Here g ;(z) is

the angle of ¢{';  (x) and 6 is the angle of A. Let us define the B}, .

a branch, extending in the A-plane to infinity and satisfying (8). Such a curve

curve as

is defined for every x in (¢, d). Moreover, in view of (9) it follows that any
particular curve B/ ;.. has a limiting direction ¢ = 6; ;(x), where 6 satisfies the
equation

(9a) cos ((pi,j(x) + ka—_ m 0) =

Since the angle of ¢! (z) is continuous in consequence of previously made

hypotheses, the variation of 0; ;(x) can be made as small as desired by choosing
the interval (¢, d) sufficiently small. This, however, implies 2°. From the rela-

tion (9) it also follows that, if for a fixed z and j the angle of qg”j (x) is in-

! Here RN, N+1 is adjacent on one side with RNy and on the other with R,.
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dependent of x, all the corresponding curves B} formed by varying « from

¢ to d, will have limiting directions independent’i)f z. Thus

3% If all the functions qY)(x), involved in (2a; § 6), have angles independent
of x then every region R, .11 (1 =v = N) can be included in a curvilinear sector
bounded by two curves with the same lomiting direction at infinity.

In every region R, the real parts of the @{!)(x,4) (/ = 1, ... n) can be ordered
for x in (c,d), for instance, as in Case L. (§ 6). According to Part II of the
Fundamental Existence Theorem, associated with R, there will be a matrix solu-
tion *Y {z, 1), such that

7

(10) vamemm@m~(2ﬂM”%&%uwa0=rmmm

§=1

{(x in {¢,d); A in R,; cf. (36; § 6)).

The formal matrix in the last member of (10) is independent of ». In general,
of course, inequalities of Case I (§ 6) will be for a set of subscripts distinct
from that displayed. For a given » the *y(c, x, A) possess analytic continuations
in the complete vicinity (4] =4, >0) of i=oc0; this being true for every x
in (¢, d).*

Since

it will follow that
Y (2, d) =Y (e, \) ==Y (z,4) = Y (z,4).

In other words, the matriz Y (x,A) involved in (6) has the asymptotic property (10)
for x in {¢,d) and for A in B, (v=1,... N).
There will be no loss of generality to assume, as we shall, that

(11) shyoale, d, ) = 2alsen (e, )1 F,
»==0

where

(11a) 34, 5:0(C, d) = 01, 5.0(¢) 05, 5.0 (d)

! We assume now that the coefficients in (A) are analytic in the complete vicinity of A = oo
(A= o005 |alz=2,>0).
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(cf. (30; §6) and (34b; §6)).* It will be convenient to introduce the following
definition.

Definition. Consider the regions R, (w=1,...N) of (7). Let the totality
(if any) of identically vanishing functions Qs(d, A) — Qs{c,2) be denoted by

(12) Qs,, (d, ) — @, (c, 4) (w==1,...p).

Any particular region R may contain a finite set of non-overlapping closed subregions,
(12a) R, (t=1,...N,),

each extending to infinity and such that

(12b) li;n | €% A=l A | =0

Jor every s sw (w=1,...0). Here the limit is taken when A — o in a region

R,: G=1,...N,). We shall define R as a particular set of regions R, ;
(¢=1,...Ny;v=1,...N). Replacing (12b) by the condition
(12¢) lim | % =& 4] = o [s5< sww=1,...0)
2
we stmilarly define a totality of regions R”.
The functions displayed in (12b) and (12¢) will be assumed to approach

the limit uniformly.
Define a matrix

e n
(13) Mot = (c,-,,.+ 3 Sithn ol d)dk,j) Gj=1....n).
w=1k=1
The matrix obtained by interchanging ¢, ¢; (6,7=1,...7n) with d, d;;
(¢,7=1,...n) will be denoted as M%¢.
Since

Y=, 2) = (yi,5(m, ¢, ) ~ I'(w, ¢, 4)

( in (¢, d); A in R,; v=1,...0),

in view of (6) and (10) it will follow that

! Referring 10 § 6, we have taken m =gy =o0 and I(o'l.jzo(ac))l Zolsax=sd).
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(14) 4(#)~|C+ I'le,d, 1) D],
(14a) [Y~d, )| a4() ~|T(d,e,2) C + DI
(Ain R,; v=1,...0)."
We have
n n
4(2‘) ~ {Ci,j -+ Z er(d, l)—QS(C, G Z 3;;:7‘18(07 d) 2’) dT,J}I
8=1 =1
-"‘{M'*'Q:J(C,d,l)” (A in Ry v=1,... %),
where
QZ j C d 2 Z 231 Ty S 0 d Sk + Z{ er(d'l)AQs(c’M2327‘:8(6: d1 )') dr,j’
w=1r=1wv=1 858y r=1

Thus, on writing
A =[{M>2 + q,5(c d, W},

in view of (12b) it follows that (uniformly)

lim ¢; j{c, d, A} =0 (2,9==1,...; Ain R).

A—>®

Accordingly, one may write

(15) @)= M| + Ele, d, 1),
where
(15 a) alim Ele,d, ) =o0 (A in R").

Similarly, with the aid of (12¢) it may be demonstrated that

(16) [ Y d, ) 4(0) = M%) + &,(d, ¢, 2,

where

(16 a) lim £, (d, e, A) =0 (2 in R").
A ®

The following theorem can be now stated.

! (14), for instance, means that A4(1) can be obtained by replacing the formal o-series, in-
volved in the second member, by certain functions asymptotic, as stated, to these series.

7—36122. Acio mathematica. 67. Imprimé le 20 mars 1936.
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Theorem III. Consider the non-homogeneous boundary problem (3), (3a), (3 b).
Let (c,d) (¢ <d) be a suitable interval. Let a particular set of regions R and a
particular set of regions R’ be specified as in the Definition above. Let matrices
Med, M%< be defined by (13), (11a). Suppose the determinants | M&¢|, | M%¢| are
distinct from zero. The hon-homogeneous problem will then be possible for every i
in R’ and for every A in R”, provided |A| = 4, > 0. Here 2, is a fixed number,
depending on the choice of R’ and R".

The  determinants | M%¢], | M%¢| will certainly be distinct from zero when
there exist no identically vanishing functions (12).



