EXTREMAL DEVIATION IN A GEOMETRY BASED ON THE
NOTION OF AREA.

By

BUCHIN SU

of HANGCHOW, CHEKIANG.

1. Introduction.

The extension of Levi-Civita's work on geodesic deviation® has been carried
out by Berwald®, Duschek and Mayer®, Knebelman? Davies® and others in the
geometry of Finsler-Cartan. Geodesics in such a space are naturally the extremals
of the variation problem

(1) dfF(x‘; ad . 2t dd L andE=o,

Tl 2 SRS GRS , . P dx" .
where F(x', 2% ..., z*; i', 4% ..., @") denotes a function of 2/, i’ = 0t and is
positively homogeneous of degree one in i’. On the other hand E. Cartan has
obtained a geometry based on the notion of area.® In an n-dimensional manifold
of coordinates ¢ let
(2) 2= (' 7 ..., oY)

be the parametric representation of a hypersurface and let
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(3) fw(x" £9£1) dotdv® ... dv"1 !
" Qv
(n—1)

be an (n — 1)-ple integral over a domain of the hypersurface, which is supposed
to be invariant with regard to the parameter transformation, where P>o0. As
theé curve-length of a curve in a space of Finsler is defined by the integral in
the left-hand side of (1), E. Cartan has taken (3) as (» — 1)-dimensional surface-
area of the hypersurface piece. The geometry of Cartan is uniquely determined
only in the case where a certain tensor H” has the rank ». In this case we
follow Berwald® in calling the manifold behaving the Cartan geometry a regular
Cartan space. '

In the present paper we propose to solve the following question:

How depends the deviation of an extremal hypersurface in a regular Cartan
space upon the curvature and torsion of the space, when the extremal hypersurface
is deformed to a nearby extremal hypersurface?

In order to express the equation of extremal deviation in an invariantive
form we have first to give preliminaries about the infinitesimal deformation of
a general hypersurface (§ 2).® The variation of the mean curvature H of a hyper.
surface is calculated in § 3, which corresponds to the formula of Duschek and
Mayer concerning the variation of Eulerian vectors in a Finsler space. We
establish in § 4 the above formula in tensor form and in § 5 reach the extremal
deviation of a minimal hypersurface by setting H = 0. Finally, a generalization
is briefly stated.

Throughout the present paper the notations and formulae in Berwald, Acta

are utilized without explanation.

2. Preliminaries.

Let (2) be the parametric representation of a hypersurface in the Cartan

space, so that the matrix

! Latin indices are in the range 1,2,...,# and Greek 1,2,...,n — I.

? L. BErwALD, Uber die n-dimensionalen Cartanschen Riume und eine Normalform der zweiten
Variation eines (n — 1)-fachen Oberflichenintegrals, Acta mathematica, 71 (1939), 191—248. This
paper will be referred to as Berwald, Acta.

* The infinitesimal deformation of X, immersed in V, bas been considered by many authors.
Ct. for example, E. T. DaVIES, On the deformation of a subspace, Journ. London Math. Soc., 11

(1936), 295—301.
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0 x! Oz

(a xf) I A
dv* P! x‘\ d 2™

gt e

is of rank » — 1. By (—1)**!p, we mean, as in Berwald, Acta, the determinant
formed by striking out the kth column of the matrix (4). It is known tbat the
(n — 1)-dimensional surface-area of a domain of the oriented hypersurface (2) is
given by the {» — 1)-ple integral of the form

(g} 0= fL(x,p)dv‘ av® - dv*h,

(n—1)

where the integration is calculated over the domain.
Consider the infinitesimal deformation

(6) =g + §(z) ¢,

which carries on the point {x) into the point (Z) infinitely near (z), 4t being an
infinitesimal. In (6), &{x), 2=1, 2, ..., n, denotes an analytic function of posi-
tion. The hypersurface S given by (2) is now infinitesimally deformed into another
hypersurface S of the equations

(o o L oY),

&

() &=

and consequently, the matrix (4) is transformed to

aF\ [0z O 0u
(®) 6;W~Qw+aﬂ5a“)

Denoting the corresponding variables of pi by ji (k = 1, 2, . .., #) and taking

account of (8), we can easily show that

; h
(9) 17k=pk+(g§:lﬁk—‘z—x%ph)5t k=1,2,...n),
where the summation convention for repeating indices is used and higher powers
of ¢ than the first are neglected.
In virtue of (6) and (9) there is no difficulty in expressing the corresponding
quantity A::: of any geometrical being A::: in terms of A:::, &, pr and their
derivatives. Thus we obtain



102 Buchin Su.

L L) =Ly + {2 Eg 0L (28 0¥
L._L(J,,p)—L(vb,P)"‘{oxig +0pk(8x”pk 9: '”ph)}dt’
[(7glz. 7_1__0_@(()_;:} &Qéh 1
([O) JLk_gZL(“(/ p)_gd(xp l().ﬁlg i ()pl (9"1)“1)[ («)xll)h J'dt,

_ _ Og (O o
y=g(x,p):y(x,p)+{ &+ g(dihpl P zph)}dt,

to within terms of higher order in ¢¢.
On account of the homogeneity of L, gir, g and the definition of 4!, [Ber-
wald, Acta, (5.4)] we can rewrite (10) in the form

L 10L, 08 og |
L“L{‘+(Loxf§+0xh zw)at}
h
(11) v Jik = Gax + {0%,68 magllh}dt
— - d log Vg aE
Vg=Vg{I+(’;—il—'q§ 42 )M}-

In a similar way we can determine [l; at the point (&) of S, either by the
definition I; = (V§p) /L and (11), or directly by the formula of expansion as well
as the relation [Berwald, Acta, (8.11)]

0 log Vg )
i =Ty — A Thon.

(12)

The result of computation is as follows:

(13) =1 ~{)5

I+ (Am — ™ (Fmoh &+ lh) l,} dt.

It is convenient to give here the corresponding formula for the contra-

variant components I':

(14) U=10U+ {l”(l";‘oh A+ A I on) §' — (17770 + 1700 5
05’1 k7i i Ik ik]
+0xklll(f1 P+ 1k—g )Idt.
This may also be obtained if nse is made of (13) and the relation

o y . g L OE
(13) g7 =g + {E" (2 AW Ion — Iy — IyY) + ZATka%lh}at,

a relation deduced from known identities [Berwald, Acta, (5.35), (8.8)].
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For the subsequent use we also give the following formulae:

ooy (000 «h |
(16) =T+ g ¥ 1k 5 ml] 8,
®p,

. oItk
(17) Yok = Ior + {lh 09; §—LI7 Hm ZJ

r;khgizj (4m _azm)( - ;’jm z,) I"{'ok}dt,

the latter being a consequence of (13) and (16).

3. Variation of the Mean Curvature.

We are now in a position to consider the variation of the mean curvature
H of a hypersurface § in the Cartan space.
Since the equations of S are given by (2), we have

o dE
(18) xo—xg+0 7 0L,
so that
— or;! o
(19) F(’OGZFZOG’{'{[th,xI(;?)*T? ;gaghlr

. onim 08
— b2l T 9 m lr

a&
=) (Phor b+ ST

s ,
+ T?owg(;x, + I eZi}“

Now, the second differentiation of (6) gives

(20)

= J
dredv®  dwedv’ T2t G0

5 9 PE L 9F a )
0t 0o e T 89 dve drf

and the second grundtensor a,, of the hypersurface S is given by [Berwald,
Acta, (24.5)]

0
(21) awza,g:lia—va——wﬂ-l“;“.
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Hence the second grundtensor d,, of the deformed hypersurface S turns out
as a necessary consequence of (13), (19) and (20), namely,

*h

0 ik .
(22) Qoo = Qpo + {lh at ¥—1 xz 2 g ) “m

9051 l’

()x’"

#2108 . 2%
Fg;la;h l,— (A —_ ]m) (Iwmoh §h 0§m lh) Qo

2 h k k
+lhzv7:ca g 08 g}dt

dwmk+l'gok adj“f“raok.ll-“

On the other hand the second equation (11) and the equation (18) gives

_ ; 0gir & a8 a9
(23) Yoo .900"‘{93 x’;g"()xh A:"d hlk+g:k-7/'g ”6x1+g”xkx{’ﬁ
so that
(24) det. (§oo) = L*(z, p) (1 + g*# b, 0 1),
(25) adj. (Foo) = 8dj. (goo) + hun adj. | %07 90| 5.
Jio Jip

Consequently, the reciprocal of g,, subjects to the transformation

oo Jeu
Gio Gap

— dlogyg zkhd(”L A (7§)
gﬁ’(axhg UIFE 2(9 2llxh6t.

(26) 7 = g + {L—2 hay adj.

In deriving these equations we have put

0Lk JEr 6§‘
I+ q;kxzxig—;—rgux‘ iy

dg;
(27) h; —-xlx"g" Gik ZAZ#dx"

and utilized the relation [Berwald, Acta, (23.6)]
(28) det. (go0) = L*(x, p).
Thus, upon substituting (22) and (26) into the expression
(29) = g% Gpo=(n— 1) H,
where H denotes the mean curvature of the transform §, and setting

(30) 6a(’—ag—ag,
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we are led to the following equation:

da¢ oryk gr
(31) ——(,"=1h90" Bl E— e
) 0§ 2§h
— 0 i ok [ U
VNS MY i Fp =1, + lrge 1290"6.;;1030"

(725 dlogg
— —m h ) h
1 l ( moh§ P} mlh) ) Ak 5

dg; ok 0 kF
l‘l"g” q" 2(7—57‘——2”1;535—,!}%

k

.0
+g 0[‘001,%”‘_‘

&
. g 2
+ _q?“ I?olx EP,

vdxt
oo Gou |

+ L~2a,, h;, adj.
po flay A} Gio Jin

105

In order to carry out the computation of the last term in the right-band
side of (31), it shall be mentioned that by the known result of determinant

theory !
(32) adj. [ 707 %e#) = det. (g,o) - (907 g — g*7 go¥).
Jioc Japu :
Therefore we have
L3 ago by, adj. | 907 Jev
(33) agohi adj. | "

= %(a(lo‘ hllu — Qg k(}#} (996 ngl — gldy(;[‘)
= a} b} — af I,
whence follows the equation:
a®
(34) “79=E—-ag Q.

In (34) we have put

or;k arr
(35) E=l gz, § 9o Iyg 5l
f k] T § 0% g
—geraially T,-”H'" — 1 +g<‘°x{)x";0x]dxklh

0 Ek
+ zgedrgokxdg—gj—a he

! Of e.g. SCOTT and MATREwWs, Theory of determinants, Cambridge (1904), p. 63.
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(?gzk 0 g
dx Ox

(75

ll lk gh

- (Am — lm) (I‘;znhgh _ 4

0 mlh)—«hjﬁ;.

The equation (34) for the variation of the mean curvature of a general
hypersurface in the Cartan space evidently furnishes an analogue of the formula
in a Finsler space due to Duschek and Mayer.

4. Tensor Form of E and G.

Before we proceed further, expressions h¢ and h% should be calculated by
using (27), namely,

, ; 3k Y-
(37) hg = ges @l af & 275 q — Ao"aghlk + gl y”;g“ + gk, ;gwa—i,.-

In particular, taking account of the relations [Berwald, Acta, (23.21), (26. 16)]

(38) Aeh =0, geoahal =gt —1"V,
we ha.ve

. g . "
(39) 1:2_§‘“—2[]llc0—5 010g‘q}.‘h llll(?gkgh.

ozt ol ozt ° o xh

Substitution of (37) and (39) into (35) and (36) respectively gives

h r
(35) E =gt} xk Iy 77’”§—g<“’x'x’”lh1“*"""d§m
Ak 62 th

__ q00 *h 3 Joapk] 2 D

g F lr+g %xlhémf(?x’“

k % 0(1

-+ 2(]90 ‘*okxqa_g]__a/uxL,». & d‘lxlf

a& o ik

+ za’A“” j lk——zgikxj.'x-;la Pyl

’ % §h

(36) G = (Am I'mon— Iooh) §h + o (Am - lm)’

! DuscHEK and MAYER, loc. cit., formula (30), p. 301.
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provided that the formulae (8.11) and (8.13) in Berwald, Acta are used for
simplification.

We come now to rewrite £ and (' in an invariantive form. For this pur-
pose the covariant derivatives of & shall be utilized. Noticing that £ is a funec-
tion of position we have
ag

r
dx1+§

(40) gly=

r]’

0‘f§

(41) §"ljk=0f + (e — &) I}

*h
+ 5’( P M i r;:wk)
I"hg."mlJ1 *'m hlm,

so that partial derivatives 0&" /02 and 0°E*/0a?dx* in E and G can be sub-
stituted by the corresponding covariant derivatives.
In the first place we shall give a reduction of E in tensor form. After (40)

and (41) the expression may be written as

(42) =1 g0° ’L‘J .Z‘Lgh ]M + Cm §p'm + Zhgﬁ”’xhc g’

J»lr
. N . (9(}L .
T o h oed g TRE i gk 2t i foh
+§(291kx1xﬂa “INf - dle D —2ayp AN Ton )

where [ef. Berwald, Acta (12.7)]

L] 01”

(43) thl.r = _5;_7. - ,JE + I—~*h r*m 1*:72 I':‘m L r*h Hm, Iher— T;rh “m Ik
and
(44) Cn = 2l AG™ ) — 2 gip @] & a0 — by 0o ak I,

The expression in the parenthesis of (42) vanishes, because
A h— Au Ah  — phpt gt ok g iR
za,@Ag = 2 a*! Alﬂ—a ol gik

7 d it *L EmY el A
ZQ,LLCI’ att TPk = (gim T} + gme Iy ) 2%, a*

p

and consequently the expression reduces to

“\dx

= — att xi 7 gir l» = o.

. {0
— alm .’L‘; 2k ( Jik + gM”m I‘mor Gim I“: _ gmkr m)



108 Buchin Su.

It remains for us to simplify the expression C;‘. In virtue of a formula
[Berwald, Acta (16.8)] we have

(45) 2 2y T30 = b AT |, — K (Am |, — A7 A7 |) A%,
(e g0 at et T3 = — gev A s,

since lnjr =0, A**=o0 and 4} ¢g¢7= A2 =0 [Berwald, Acta (8.6), (5.5) and
(23.21)]. From (44) it follows that

(44) Op=2a%" (A7, lp— gou x @) — 9°° @, xk A o 1.

A reference to the relation [Berwald, Acta (23.16)]

(47) g,y =gt —U'l*
shows immediately
gé"’x”x"Azko (g — LI An], = Aim |, — A°°om |, =
In consequence,
(48) Cr = (a("’A’ lp — &, x) 7.

Thus, noticing that the covariant derivatives of /; vanish identically we obtain
(49)  E=geoal k(& i + 2 (a7 A7, b — af, 2p) 8| + 90”2} @} Ryor &

The last term in FE as given by (49) may further reduce to a simpler form if
we notice that, using Berwald, Acta (12.12),

Bjorr = (5}’ + LAY Ryorr
and accordingly,
(50) g?“xzxgl—ejokr:g@“xgxﬁ RjOk’:Rgor'
Hence follows the result:
(51) E = g0 (1 8) oo + 207 Az, 1, — a5 ) @ |, + Re,, &,
where we have used the abbreviation

(52) A:::|90=A:::l,~jm:;xz;

for a scalar or tensor 4:::.
Having thus established the tensor form of E, we have in the next place
to consider @, for which (36) and (40) are sufficient. The result runs as follows:

(53) G = A" E) e — (h ED) |-
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In case the deviation is in the xnormal direction

(54) P=VU

the equation (34) takes the form

(55) "% By —Gva,

where

(56) EN=g9“V|9,,+2a9"A;aV|,+RgooV,
(57) Gy=A"Vi;— V.

5. Extremal Deviation of a Minimal Hypersurface.

Suppose that the original hypersurface S which we have to deform into a

near one is minimal, namely,

(58) ag=o.

In order that the deformed hypersurface S be minimal also, it is necessary and
sufficient that £ = o, namely,

(59) 9 (Moo + 2(at” A7 1l — a7 2) 2| + B¢, & =o.
This we shall call the equation of extremal devialion.

Putting
(60) E=iral + VI

we are led to

(61) 9¢ Vigo + 2a0® A7, Vie + R, V+ (B, — 2a 2 af ) A" — 207, | = 0.
For the purpose of rewriting this equation in explicit form it is convenient

to prove here the following formulae:

(62) ' Vim=VA™ + o 2™,

oV .
—_ d A m ® =
(63) 9% T VIM T,

ov

|
61}‘7 + a()g Vh"'l‘fn.

In fact, the function & being of position alone must obey the condition
(64) mal 4+ Al m + V| E+ VI =o.

By composing this equation with /; and using the relations
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il = — L
Ll =4y — L™ — A™),
i — g — T+ A,

we easily find (62). On account of the equation 4°=o it follows that V|’ =o,

that is, V7 is homogeneous of degree zero in p;,. For such a function we have

oV oV . 0V Opm
—_— +.__

= i
av° 0xfx° 0 pm 0 x°

oV al 0 L
—_ " j 7|\m m s -~
= s S+ Vi (6u“+lm01;"10g]/;)
= gﬂxﬁ + VI (IGom — ape ),

which proves (63).
The last equation implies

(65) V|1—(,9V+ ape ACV + a(,,](’

As Vj: is also homogeneous of degree zero in pi,

Vlw:%V| + avo Vis|m s, — Vi TP

and consequently

oV
Viea= e ol + avo Vi |y, @l — Vip 37

0v°

977, 0% ot .
= — Vi + ave Vs 2, 2t — Vi, T2,

av° l‘a,vga,b.o a”Vf ” SE x If“?

In virtue of (65) and the fundamental equations of the hypersurface [Ber-
wald, Acta (25.6)] we obtain
oV OV . 0(au,Ar)

T g, AR+
dregre et Gy 0

V]gfr= Vv

v
— (I, + 4z o) (z _ T @ AR V)

— s Vio + Qo V|,|'".L‘l x,

0r  [Dau, " ,
M s g aue (g, + A7 aw,)}l .
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Hence under the assumption (58) follows

lian's o 7]
g\dgvi’ 0 + (a:‘A% - Fg"—«A ” avo)

<

(66) g°’ VI(w:

S5

v‘t

+ {ggdﬂa_fu_gé_{u_) f— a[u‘l A/u (F(‘)() -+ Ao—l’vavo) V

av°

N

vo’

2% d
taga t gw{i’ﬁ’ — au (I3, + A;”a.,a)}}.‘“
+ al 2l a;, Vyilm.

To compute the last term we apply the operator | to the equation

V,,—‘W+ Vi It

Noticing the interchange law
Vi —virr =7 (log v%) 7 (g 7 )
and (62) we shall first find
67)  VIm=(VA +ear)im + VA™| + defram + deam |
— (I — A" (VA™ + A*2™)
and, as a consequence of the formulae [Berwald, Acta (8.11), (8.13), (25.6),

(25.10)], obtain
V A + ol
At 90

+ VA"(F;J + Ay auo— I37)

+ A (I, + A e — I37)
+ ITop 2y A™ TV + &l ), IFoi [ (VA" + A% o)

+ I7oe (M| + Av 22 ™).

(68) ah oy, Vi | ~A”0

On the other hand composition of (64) with z} gives immediately
(69) i+ Az, ol |r = — Vgral,

so that
;. i a4 Ié? A
(70) CL'Q.’L'th“ =4 0U9+ Vld 0

+ 4°(Iy, + Ay aue— I77)

|

+ Tlopy A™[F + A7 a7, 2t Toil" — I'los 7|

62.”

() "|")“(Iw +A/a,,n—F'”+x’x xlrrmim

@ 'm Yo
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For convenience’ sake let us introduce
(71) Xer =l al a;, o r;?fm
(72) Yoo = An |t oy,

so as to express in (68) each term with Latin indices. The expression Xg" is
closely connected with the temsor P¢¢ [Berwald, Acta (7), p. 245] by the relation

(73) W ag s, To2|m = Xoo o + P2 L,

which shows that both the tensors Xff and P¢? stand for the tangential and
normal components of a certain covariant vector in space.
As to the second expression (72} we can write the alternative one:

6gtk 2

(74) Yir = — 3 Ar A" — 2 Ap, foer 4 3 2 g Gy dp, Tn

[cf. Berwald, Acta (5.4), (5.14), (5.9), (23.20)].
A reference to the relation

IFo|m =PI 0y - 12— I7,:(Im — A™)
suffices to rewrite two terms in (70), namely,
Ara A IToill" = A", ably ITP|™ + A° L5y + A# A” Ty,
@l ay 2 Iroi [* = a2, o L ITP|™ + T2 + A% I,
Moreover, decomposing, as usual, T,‘o(, into components:
Tlop =TS0 2% + Iloglr
and making- use of the formula

erm”r— m!o____o’

we have

(78) @by, Vsl = + AN, + A2 au,)

0 V {OA"
6
+ A* A" 0w — Fgow g7 + Toop Y*° + AT 22 L, TP H”‘}

(71”
d

AT, A% g+ A Theg + 2t ot L 1P
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The only two terms with Latin indices in the right-hand side of (75) can,
however, be expressed in terms of X-'g”, A, and g.p, as it may easily be shown
on account of the relation [Berwald, Acta (15.6)]

LI,2 =21 T:;.Hh — gap U I‘:ﬁ I

and 4,=4, @l The result of carrying out the computation is as follows:

Aray, @ L TP = — A, X2,
x; x:n .’I,'z, lp I‘:lp “m == gay X’g'.
Thus we have finally
. ov gAY
(76) Vis|m o o, = Aot V{ow + 4°(y, + A3 auo)

+ Tgou AF A* — Tgoug" — Au XB” + T5oq YW}

ar
(R

+ + 2Ty, + A aye + A" Toop — ga XY7).

Substitution of (76) into (66) and utilization of the equation
0

i af [o + A |, = YR (‘Zg —Toocg° ¥V
give the required form of (61):
i*v , oV
0 oo At T Al . TTe . A0Tv T [
(77) ¢ Py Pl (2a A7, + zas A — T — 4 a.,a)avt+ IV + 4, =o0,
where we have placed
(78) T = (a8, A*)p + RY,,

+a{dy, + A7(By, + 3 ApFape) — Ay X0
— Ag# A" ayo + Thos(A” A° + g*° + Y*O),

. . -
(79) de=R¢  —2a, I3t +af,

QO(Z

)+ 2I‘;ea$

+ ag(Ag¥ aus— Al aua + A Iios — gou X4¢ + 2 A% ay0).

Evidently, & is an invariant similar to Koschmieder's U; [cf. Berwald, Acta
(33.2)], since they have several terms in common. But I have not been able to
find the relation between these invariants.

8- 642127 Acta mathematica. 85
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6. A Generalization.

As in the case of a space of K-spreads’, the infinitesimal deformation so
far we have considered can also be generalized to the case wliere each of the
functions & depends upon the position as well as the normal direction of the
hypersurface. Hereafter we shall denote the corresponding formula in this case
by means of an equation with the same number preceded by prime. Thus, instead

of (6) we have to consider the extended infinitesimal deformation
6y P =+ E(x,p)dt,

where the & is a funection of both z' and pn., and is homogeneous of degree
zero in Pm, so that
(80) g e =o.

Upon setting

oz .
(81) Pt , = cofactor of PRLEL
and
g 9 "
82) L OTZL Py, = Qeme

we can after an easy calculation show that

(o) ﬁk=m+(z—§:pk*g§h : ;i)@t;
zzL{I (2 05e s 250800+ Qg ) o atl,
(r1) Jin = gnﬁ‘{ SOk o v’ (ag I~ Qjmn §"‘5m)}
Vi=Vy {I + (6 I;UTV% 4F (0§ I — Qkmn & i""))ﬁt};

h
(l3)' 7;=ll~—[z§llh+(z‘1 —l)(lmoh§”+§5 lh)l

Qo — 1oV — A7) Q) 8 I!'"] 8t;

L ¢f. B. 8u, On the isomorphic transformations in a Douglas space, Science Record, Acad.
Sinica, 2 (1947), 11—19; 139~ 146.
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% h

’ T o1 agj
(17) I“fok:I‘fkor{zh——g]"lh i Wnlj

i . OE \
- Tfkhag,, — (4™ —m) (megf + ojm l,) Tk

(lrrk ” Qymi — thg + Tzok( )Qrm_; g “”‘}61‘

Proceeding as before and using (8), we have the following relations:

(22) fpo="""+ [llag i QZZ’Z+L‘9,§ ”Tnxdgij;‘
e,
+ {lr Iyl o af Qomj — Tyl Qumg + aoo(l" — A7) Qrmj
+ Tl gl@ + rwgz"g d‘j:;;q Qmj} g H"‘] at,

(23) Joo="" (gn xazlg + ginx ezl(, + 24} Qi,,,;,) grmdt.

In the right-hand sides of these equations there are omitted all the terms in
(22) and (23) respectively.
Similarly, we obtain

(26) g7 = ¢°° + {hz‘u adj. |7 Jer! . det. (goo) — g""h?} dt
Gio Gin )
with the abbreviation
, Ol 0y,
(27) h}':“: (ghl‘xua A + g7h x},a r2s Alu )gh”m
and, in particular,
(39) hi=--+ 2 g* g xf "5 vl n g |m,

only the terms in addition being exhibited.

Tt shall be noted that on account of non-vanishing of & |™ in the present
('?lm’ 0l
v’ dve do°
have to utilize the formula [Berwald, Acta (25.11)]

case appear the derivatives of I, in each coefficient, for which we

ol

(83) e

F’tOj = a91 x}’——A"a#.; lj.
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Without expressing the way of carrying out the computation precisely we
conclude after a somewhat lengthy calculation that the equation for the varia-
tion of the mean curvature of a general hypersurface in the Cartan space also

takes the form (34) with new coefficients:

(84) B =gor ()10 + 2(a07 A2, 1, — axz) .

+ RE,, & — b BT o ap, @, 2
— g% ([Fog Thoo + 2005 Thop ) E7[™

+ g B [T (17, + Ay aus— 2 42 ay + 4
+ a7, (agv I7, + ap A2% G — %%f’;’)

— Gyo w{) 2 Iiom|l + Goo Toom — Gpw F;;,}

— (1‘;0 + za?”A;,, + a"”A;(,) Qem § [,

(85) G=(A"—1)(InE) | + (47 Qrmj — A" i Tmor + 1 Toom) ™.




