A GENERAL PRIME NUMBER THEOREM.

By

BERTIL NYMAN
of UPPSALA.

Consider a monotone sequence of real positive numbers
(1) 1<y <Y< <ga<
Form all possible products
(2) T=Yn Yny oo Yy My SNy S e oy,
and arrange them in a non-decreasing sequence

(3) 1<, Sx < - Zgy < e

where every x appears as many times as it can be represented by formula (2).
The numbers {y,} are called the primes of the sequence { z»}. Let 7 (x) denote
the number of primes < z, and N(z) the number of x, < x.

This definition of generalized prime numbers is given by BeurLine, who
under certain general conditions has derived very interesting relations between
the functions N(x) and = (x).

In what follows, (s} denotes the function

(4) C(s)=1+x1“+x;’+-~-=fmx“st(x). s=o + it.

(For the sake of simplicity, we assume that N(x) has a step equal to 1 at the
point z=1.) Li(x) denotes the logarithmic integral, i. e. the principal value of
the integral

4y
log y
0

! A. BEURLING, Analyse de la loi asymptotique de la distribution des nombres premiers
généralisés, Acta mathematica, vol. 68.
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It is well known that Li(x) has the following asymptotic expansion:

j 1 1! 2!

Lifz) ~ @ llog x + (log x)* * (log =)

e
;T j

The following theorem will be proved:

Theorem: The following three statements are equivalent:
A. There exists a real number a > o, such that
x
(5) N(x)—ax+0{m} as x> oo
Jor every positive n.

B. To every &> 0 and every mon-megative integer m, a constant A' can be
chosen such that

(6) 1" ()| < Al ¢l

(7 || <l

uniformly in the region 6> 1, |t]| = ¢.

C. 7=(x) has the same asymplotic expansion as Li(x), 7. e.

(8) n(x)=Li(w)+o{aong);,} as 7 oo
Jor every positive n.

This theorem will be proved by the aid of Parseval’'s formula for Mellin
transforms.

From each of the hypothesis A, B and C it follows that the series defining
{(s) is absolutely convergent in the half-plane ¢>> 1 and can be written thete

as an BEuler-product

11—yt
Thus
(9) log {(s) =— Dllog (1 — y&*) = [@~*d 11 (a),
where
(r0) HOx)=n(x) + }n(xt) + () + .

! 4 always denotes a positive constant, possibly depending upon & and #, but not depending
upon ¢ and {. A4 can very well have different values in different places.
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For the proof we need the following lemmas:

Lemma I: Let @(s) be a function which is holomorphic in the band 1 <o < 2

vand, for n=0, 1, 2, 3, ..., satisfies the following conditions:
(11) |¢(”)(S)|<G—f—l)n—ﬂ,
(12) lp ()] < 4t
where k, =0 and
lim % =,
—

uniformly in the region 1 <o <2, |t|>t,>o0. Then toeverye>o0and n=o0,1,
2,3, ..., a constant A can be chosen such that
(13) lp™ ()| < At

uniformly tn the same region. ‘
Let us suppose that @, = 0 is the least number such that, for every ¢ > o,

l@m(s)| < 4|
uniformly in the above region. By (12), an < k.. Suppose that ¢ < { and choose
o’ so that ¢ <o’ < 2. For |¢|>t, we have, by (11),

o' +it

lg™ (o + )| < | (0" + it)| + [ |p+? (5)] |ds| <

’ +e
G———_—a)""‘l -+ (0 _G)A | t ‘“n-{—l N
o+it

Ikl
Putting o’ =0 + A|¢| "*2, where A is chosen so that ¢ < 2 for all ¢ in the

interval (I, g) and |t| > ¢, we obtain

n+41
(3 —_—
n+1 ot

lpi{o + ¢t)]| < 4] ¢

uniformly for 1 <o =<4$, |t|>4¢. By (11), an inequality of the same form
evidently holds even for 1 <o < 2. Thus

n+1
n+ 2

oan = Cn+1

and
20
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Qn

N Sa"+l < ... Cn+p _< kn+p .
n+1 n+2 n+p+1 nt+pti1

IA

Since we may choose p arbitrarily large, it follows that a, = o for all #, and
(r3) is proved.

Lemma II: Let @(s) and y(s) be two functions, which for o > 1 may be re-
presented by the absolutely convergent integrals

(14 pl) = o asa)
(15) w(s)=fwx"dT(x)

where S(x) is non-decreasing, S(x + 0)= S(z), and o < T'(x) < A. Let us put

dr | 1
M“’ j=

and suppose that
(16) [16:(c +it)Pdt

is uniformly bounded for o > 1 for a fixed k =o0. Then the relation

(17) S(x)=T(x)+o{ i } as @ - oo

(log )"
is valid for n < %k

By the proof, we can obviously assume that S(1 —o)=o0 and T'(1)=o.
Let o, > 1. The inequality

~——

S (x)

&%

@ (o) = fy—(fods(y) S(x )+00f Sy

O 1+ ay
150 x™ Yy

dy =

yields
S(x) < @ lo,) z.

Thus (14) may be integrated by parts for o > g,, i. e. for ¢ > 1, since we may
choose 0, arbitrarily near to 1. Thus

[}

(5 = [.’L‘“ %x)dx

s .
1
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Combining this formula and the analogous formula for ¥ (s), we obtain

o0

o=yl _ 56106,
x

x, 0o>1
s

1
Differentiating % times, we obtain, for ¢ > 1,

-]

(— 1)*6e(s) = fx"ﬁ(i);;—“—x) {log )t dx

From Parseval's formula for Mellin transforms, it follows that, for ¢ > 1,

]

X PP
2nf|0k(a+zt)] dt [

1

E(E)——ﬁ; T () (log )

2
1= de.

As o —+ 1, the right-hand member is non decreasing and thus has a limit, which,
by (16), is finite. By monotone convergence we thus get

f ,_MS(x); T() (log z) ’ df < oo,
Let us put S(x) — T'(x)=d(x). Then
(18) fld(z)l’-(lﬂo%c?ikdx<00.

Since S(x) is non-decreasing and o < 7" (x) < A, we have

d(x)

d(x) .
- V7 << < —_
d(y) = N for z_y_x+2 if d(x) > o,

— d{z) .
— > ey < .
dy) = 5 for ar'+2A<y z if dx)<o

2432
s (log y)** 1 [d(=x)|® (logz)*
f | ()| —?,?_ d.’/>A { 2 } { 6(.’»)]3—
@ x+~
2AI

=2 1og o} A‘————~‘{’j ’j%(x)}
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By (18), this integral must have the limit o as z - co. If we choose n < ?;k it
follows that
iim 92

log z)* < o.
z—o00 I = )

A quite analogous argument shows that lim = o. Thus the lemma is proved.

A implies B. Integrating (4) by parts, we get
Q—@ =fx" N(x) dx.
s x
1

Combining this formula and

0
a
= fax*dzx,
s —1
1

we obtain

(19) élé‘)__g____ wx_,N(x)—am

s §— I x
1

dx.

These formulae are valid for o > 1. However, by (5), it follows that the integral
in (19) is absolutely and uniformly convergent for ¢ = 1. Thus the left-hand
member of (19) is continuous in the closed half-plane o = 1. If g(s) denotes the
integral in.(19), we can write

(20) C(s)=a+ﬁ+sg(s).
Thus
(21) o) = R g + mge-n)
where
g(”) (s) = (— | il Bl ___N(.’l:) —az (log x)” dx.

1

By (5), this integral is absolutely and uniformly convergent for o = 1. Thus all
derivatives g™ (s) are continuous and bounded for ¢ = 1. Consequently, it follows
from (20) and (21) that {(s) satisfies the conditions of lemma 1 with all Z» =1
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and #, arbitrarily small. This lemma thus yields (6). The function ((s) satisfies
the inequality
|2 (0) St o + ¢8) (o + zit)] =1,

due to Hadamard. Using this and (6), a classical argument® gives (7).

B implies C. ‘The formula

(22) logs_s_l=fx"dp(x), a>1,
b 3
where
z ‘ I
Ty
(23) p(x)=f l0gyol:y=[n(:lc)—log log z+ 4,

1
is easily proved. We can now use lemma II with

S(x)=MH{x) (cf. ©!) and T(x)=p(x), since an inequality of the form

s
& log Z(s) — log P - 4
ds* s 1+ |t
is valid for ¢>1 and k=o0,1,2,... For, carrying out the differentiations,

every term will be of the form

AQ dv
.S‘k"'—"'"l d_.s‘” {log C(é‘) -log

8
é—l}’ y=o0,1,...,k,

and, if » > o,

dv
| 45 10g £10) =

| P,(s)
{Ls) )

for |t]| = ¢ by (6) and (7), since P,(s) is & sum of products of {(s) and its » first
derivatives. Further, by (7) and (20), the left-hand member of the above inequality

< d|tf

is continuous for ¢ = 1. Thus the lemma gives

x
(log x)*

H(x)=p(x)+0{ } as I > oo,

for every n. (8) will then follow from (10) and (23).

! Cf. A, E. INéHAM, The distribution of prime numbers, p. 29 and 30.
39—48173. Acts mathematica. 81. Imprimé le 29 avril 1949.
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C implies B. Integrating (9) by parts, we obtain

oz 20 _ -l

8§
1

Combining this formula and formula (22), integrated by parts, we get

logll) 1, s _ [ _ N@—pk
s —Elog;:_fx x dz.

If h(s) denotes the integral, we can write
(24) log £ (s) = log 3{7 + shis).

Since = (x) satisfies (8), it follows from (10) that II(x) also satisfies (8). Thus
h(s) is absolutely and uniformly convergent for ¢ = 1. It follows that {(s) is
continuous and =+o0 for o¢=1, with the exception of the point s = 1. Diff-

erentiating (24) » times, we obtain _
a gty — )T ) (o) 4 2 Bin~D
@s) o tog ) = (= Pl — )t [ 5= b e )+ men)

where
o0

h™ (8) = (— I)"far:"' M—}M (log z}* dx.

1

By (8), this integral is absolutely and uniformly convergent for o = 1. Thus all
derivatives h{(s) are continuous and bounded for ¢ = 1. Consequently, it follows
from (25) that the function (iis log {(s) satisfies the conditions of lemma I with
all 2, =1 and {, arbitrarily small. Thus

(26)

d" & —
mlogC(S) < A|tl, mn=1,2,3,...,

uniformly in the region ¢ > 1, |¢| =& From (24) and (26), it follows that

o' +it

|log§(a+it)|s|]og§(o"+it)|+f|%log§(s) lds| <
o+it
1 , . ,
<logo,__a+A(a oltlf, 1<e<d.
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Putting ¢’ = ¢ + |¢]|~%, we obtain
log Lo + 2t)] < log |t]*+ 4.
Thus

(27) 1)) < 4]t |

I

£s)

uniformly in the considered region. By carrying out the differentiations in (26)

!<A|t|*

and using (27), we can prove (6) by induction.

" B implies A. Let us put a = ¢! > o (cf. (24)!) and S(x) = N(z), T(x) =ax
in lemma II. As on page 305, it follows from (6), (7) and (24) that

e [l —=2
ci%”’{g ss I} <1+1|‘1t|“'S

18 valid for > 1 and k=0, 1, 2, ..., and (5) follows.



