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Introduction. The special functions of classical analysis derive much of
their interest and importance from the properties of the numerical differential
equations that characterize them. Since the publication of Fréchet's famous
1906 thesis (Palermo Rendiconti), an enormous amount of significant contribu-
tions have been made to the study of very general classes of functions in many
general spaces — topblogical spaces, normed linear spaces, and many others —
and the study of the spaces themselves has received a considerable amount of
attention. Since the independent variables of the functions considered lie in
function spaces and other infinitely dimensional spaces, and in other general
spaces, it is clear that the special functions of general analysis could not in
general, from their very nature, be characterized by ordinary numerical differential

equations. It appears to the author that the characterization problem for special
1
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functions in general analysis will have to be sought amongst functional equations
in Fréchet differentials or in other differentials of general analysis.
In this paper we investigate the properties and solutions of a special differ

ential system in normed linear spaces
(r.1) dy(e) =Ty, 6z, y@), y(0) = Yy

in which the unknown function y(x) occurs quadratically in the function 7' and
dy(r) is the Fréchet differential of y(r). In Theorem 1 we prove that under
some natural assumptions, the differential system has a unique entire ana-
lytic solution in accordance with the theory of analytic functions in Banach
spaces." This special function y{r), characterized by the given differential system,
is given explicitly by (3.1) as an abstract power series that involves certain
iterations of the function 7. The ith successive Fréchet differential of y(x) with
equal increments is given by formula (4.2). The differential system (1.1) is
shown in section 5 (Theorem 2) to define a continuous transformation group
in an abstract parameter. Use is made of the Michal-Paxson-Elconin generalized
Lie differential equations.®

Some special instances are first taken up in section 6. The Banach spaces
are taken to be épaces of functions whose values are in normed linear rings.®
The particular case in which the normed linear ring is the space of square
matrices — normed in any one of several equivalent ways — and the function
T (y,, x, y,) is taken as in (6.1), is of considerable interest since ¢n this case the
system (1.1) characterizes the matrizant functional provided-y, s the unit matrix.
The wmatrizant it will be rembered is the functional expansion occurring in the

! The theory of analytic functions in {real and complex) normed linear spaces was initiated
by the author in collaboration with RopERT S. MARTIN in the author's seminar at the California
Institute of Technology during the year 1931—1932. Iréchet’s pioneer work on abstract poly-
nomials ‘Journal Math. Puares et Appl., 1929) was naturally a source of inspiration and encourage-
ment in pointing the way to abstract power series.

* Mrcuar, A. D. and Paxsox, E. W, >Maps of Abstract Topological Spaces in Banach
Spaces», Bull. of Amer. Math. Soc, vol. 42 {1936}, pp. 529—534; »Addendum», Bull. of Amer.
Math.. Soe., vol. 43 (1937), p. 888. Miciarn, A, D, and ELcoxiy, V., »Differential Properties of
Abstract Transformation Groups with Alstract Parameters», Amer. Journ. of Math. vol. 59 ‘1937),
pp. 120—143. See also MicHAL, A. D, HicgaeErG, I. E.. and TAvLOR, A. E., »Abstract Euclidean
Spaces with Independently DPosfulated Analytical and (teometrical Metries», Annali di Disa, vol.
VI (1937, .pp. 117—148.

5 MicHAL, A. D, »The Total Differential Equation for the Exponential Function in Non-
Commutative Normed Linear Rings», Proc¢. of the National Academy of Sciences (U.S. A.) vol. 31
{1945),. pp. 315—317. See also MicHAL, A. D. and MagrtIN, R. 8., »Some Expansions in Vector
Space», Journal de Mathéniatiqucs Pures et Appliguées, vol. 13 {1934) pp. 69—0I.
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Peano solution of a system of # linear differential equations in » unknown
functions with variable coefficients. As an instance of our general theory then,
we have solved the characterization problem for the matrizant. We believe this
result on the matrizant to be new and that other problems — not discussed in
this paper — in the theory of special functionals and their applications to
geometry can now be attacked with a good chance for success.

The theory of the system (1.1) and the methods of the first five sections
are instrumental in obtaining definitive results on the solution of an »ordinary»
linear differential equation (7.1) in Banach spaces as an entire analytic func-
tional of the one-parameter {(numerical) linear transformation on the right hand
side of {7.1) — see Theorem 3 and Theorem 4. The solution is characterized
by the completely integrable linear differential system (7.6) in Fréchet differentials.

Theorem 6 gives the generalized Taylor's series expansion of the solution
of (1.1) in an increasing order of Fréchet differentials. The Corollary to Theo-
rem 6 gives the generalized Taylor's series expansion for the well known matri-
zant functional — thus giving another new property of the matrizant.

Theorem 3, Theorem 4 and Theorem 6 with its Corollary are used in the
proof of Theorem 7 of section 9. In this theorem the solutions of a system
(9.1) of numerical linear differential equations as functionals of the coefficients are
shown to be characterized by the completely integrable linear differential system
{9.3) in Fréchet differentials. The generalized Taylor’s series expansions for the solu-
tion functionals are given by the expansions (9.4) and (9.5). There are obrious but
important applications of Theorem 7 to the approximate solutions of systems of lineay
differential equations.

" The paper closes with two sections on related topics. Section 10 gives an
existence and uniqueness theorem for the non-linear system (10.1), while section
11 shows briefly how to develop the subject matter of this paper in complex
Banach spaces (complete normed linear spaces with complex number multipliers).

It should be stated here at the outset that the known existence and unigqueness
theorems on completely integrable differential equations in Fréchet differentials
in Banach spaces (Michal and Elconin, Acta mathematica, vol. 68 (1937), pp.
71—107) are not strong énough to be used in obta,ining,‘some of the results of
the present paper. ' :

1. The Differential Equation. Let Bl and B, be Banach spaces _(901hplete

normed linear spaces with real number multipliers) and let 7'(y,, z. %) be a tri-
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linear function (additive and continuous in each of the three variables) on B, B, B,
to B,. Consider the differential system

(1.1) dy(x)= Ty, dx, y@), y(0) = v,
where dy(x) is the Fréchet differential of y(x) at x = x with increment dz, and
¥, is any chosen element of B,.

We shall need to make some assumptions on the trilinear function 7' (y,, z,y.).
We shall often write T'(y,, x, #,) simply as y, - ¥,

Assumption 1.

1.2) (- y) - y=y -z (y 2y
Jor all y€ B, and z,, x,€B,.
Define the linear function of y,,
(1.3) ‘ Ti(y;, 2, ¥s)
with y, and z as parameters, as the ith iteration of the linear function T (yy,, ys)
of Ys
Assumption 2.
(14) Ti (?/, L1, .7/) * &y Tj(.’/v Ly, !/) = Ti(!/» Ty, :'/ '$2' -Tj(.?/! xl: !/))
Jor all positive integers ¢ and j.
Assumption 3. There exists a positive M(y) such that
. y || ¢ . .
(1) 17z = D =),

The condition (1.2) in Assumption 1 implies that the »condition of complete
integrability!» for the total differential equation (1.1) is satisfied.

Although the restrictions imposed by the three assumptions are rather
strong, the author's more interesting instances of the total differential system
(1.1) satisfy all the three assumptions. The reader is referred to sections 6, 7
and 9 for a brief discussion of some of these instances.

2. Some Consequences of the Assumptions. To prove our existence and
uniqueness theorem for entire analytic solutions of the differential system (1.1)

! MicHAL, A. D. and ErcoNIx, V., »Completely Integrable Differential Equations in Abstract
Spaces», Acta mathematica, vol. 68 (1937), pp. 71—107. The condition of complete integrability
for (1.1} is (y X g 1y +y 2y (Y 23y =(y o0y -y 22-y+y-x2-{y-x,-y) for all y€ B,
and xy, x5 € By
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we need the results of the following lemmas, the first two of which are conse-
quences of condition (1.2) and do not use the assumptions 2 and 3.

Lemma 1. If x,, z,€ B, and w,, Ys, 4, € B, are arbitrary elements, then the
Jollowing identity holds:

(2.1) P!Il!lz.’/s(yl 23 Yo) Xy Ys = Py ¥y T (Y2 210 ),

where Py,y,y, denotes the sum of six terms obtained by permuting y,, ys, and ys.

Lemma 2.

(2.2) Ty, x,y)=T(y, x, y)-x-y for all x€B, and y€B,.
(2.3) yx(yzypcy=@zyprycy
Jor all x€ B, and y€ B,.

Lemma 1 is proved by two successive Fréchet differentiations in y of con-
dition (r.2). Clearly (2.1) implies condition (1.2). Now (2.2} of Lemma 2 is an
immediate consequence of (1.2). To prove the identity (2.3), take x, =z, =z,
¥=vys=y, and y;=y-z-y in (2.1). Then use (2.2) to obtain the identity (2.3).

In view of (2.2), the identity (2.3) can be written

(2.4) T*(y, @, y) = T*(y, =, y) -z - y.
For later use, we observe that Lemma 2 is equivalent to the following identities:

(2.5) Ty, z.9) -z y=y z Ty xy),
(26) Tg(yax,y)x'y:ysz(y»x1y)

The following lemma makes use of Assumption 1 and part of Assumption 2,
but not Assumption 3.

Lemma 3. The following identity holds for all x€ B, and y€ B,:

(2.7) "y, 2, 9)-x-y=y-z- Iy, x, y)

(n=1,2,...).

To prove this lemma, let us observe that (2.7) for =1 and » = 2 holds
by virtue of Lemma 2 whose validity depends only on the condition (1.2). We
shall give an induction proof of (2.7) for n = 1. Take x, =z, =z, y, = T"(y, 2, ¥),
and y, =y, =y in identity (2.1), and obtain for n» =1
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Ty, x, y) z-y+(y-ax Ty, z p)xy+ @ axy o Iy xy
(2.8)
=Ty, 9) -y xy)+tyz(Ty x, 9 xcy)+y x{yx Ty x ).

On using the induction hypothesis in (2.8) we obtain

2Ty, 2, ) x-y + (y-zy) 2 Ty, = 9)
2ol =2y-x- TNy, 2, 9) + T"(y, v, y) x (y z-y)
But from (1.4) we have
(2.10) xy)a- Ty 2, 9)=TWxy 2y <y
and hence from (2.9)

(z.11) T4y, 2, y) -y =y -z Ty, z, y).

But we know that (2.7) holds for » = 1, 2. Hence the lemma follows immediately.
The following lemma makes use only of assumption 3.

Lemma 4. The power series in the Banach variable x

(2.12) Yo + 2 T (5o, , o)

i=1

defines an entire analytic function' y(x) on B, to B.

3. Existence and Uniqueness Theorem for Differential System. With the
aid of the preceding four lemmas we can shorten the proof of the main theorem
of the paper concerning the differential system (1.1).

Theorem 1. Under assumptions 1, 2 and 3 of § 1, and under the assump-
tion? 4
Ty, 2y, g2y y) =Ty, %1, ) 27y

1 A power series Z P,(x) in Banach spaces defines an entire analytic function of x if the
i=0
-]
real power series m (P27 converges for all real 2 and if m{P,) is the modulus of the homo-
i=0
geneous polynomial P,(x) of degree 7 in Banach spaces.
It can be shown that the »associativity» (2):(yy+ @ ¥2) X1 Yz = Y1- X2 a2 1- ys) for all
y; € B; and x; € B; implies that assumptions 1 and 2 of § 1 and the above assumption 4 are
satisfied by the trilinear function 7 (y,, x, y2). Hence, the conclusions of Theorem I hold under the
restrictions that the trilinear function 7T'(yq, @, ¥) satisfies assumption 3 of § I and the identity (2.
The special instances considered in this paper satisfy assomption 3 of § 1 and the identity (2.
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Jor all ye€B, x,, x,€B, (1=2,3,...), the differential system (1.1) has a unique
entire analytic solution given by

(3.1) y(@) =y, + 2 4w, yo), where A'(x, y)) = T (yo, . 00)
i=1
so that A'(x, yo) is the ith iterate, as a function of z, of A (x, 2) =y, x- z evaluated
Jor z =y,
To prove this theorem, let us then find necessary and sufficient conditions
that an entire analytic function

(3.2) v =+ S )

i—=1

satisfy the differential system (1.1). In (3.2), £:(z) is a homogeneous polynomial
of degree 7 on B, to B, i.e., 2;(x) is a continuous function of x such that

(1) Qi(hx) =2 Q;(x) for all real 1 and all z€ B,;

(2) Qi(x +4z)= D" @, (z, 2) for all real 2 and all z, z€B,.
r=0

Robert 8. Martin?! first proved (it was later proved independently by Mazur and
Orlicz® that a homogeneous polynomial in Banach spaces has a unique polar,
i.e., there exists a unique <¢linear function w;(x,, x5 ..., 2;) such that
wi{z, z, ..., 2)= ;(x). The polar is in fact defined by

1

Z'l! J;l ap.. .7 Qi(o)’
where z...c; 18 the dth successive difference operator with successive incre-
ments z, x,, . . ., ;. Robert 8. Martin also proved that the Fréchet differential

of a homogeneous polynomial ,(z) exists and is given by

(3-3) 0Q(x)=rtwile, x, ... 2 dx).

! MARTIN, R. 8., »Contributions to the Theory of Functionals», California Institute of
Technology Thesis, June, 1932,

? MaAZUR, 8. and OrLicZ, W., Studia Mathematica, vol. 5 (1934), pp. 50—68. This paper did
not appear until 1936.. See also TavLOR, A. E. »Additions to the Theory of Polynomials in
Normed Linear Spaces». The Tdhoku Math. Jour., vol. 44 (1938) pp. 302—318.
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By a theorem of the author® on the term by term Fréchet differentiability
of a power series in Banach spaces, it follows that the Fréchet differential of the
entire analytic function y(x) in (3.2) exists for each z € B, and is given by

(34 Syle) = Dinla, o, . ., 2, d2).
=1
If we use (3.4) in the differential system (1.1) we find
(3-5) 2, (x) = A (x, yo)
(3.6) Q, () = A%, yo)
and for » = 2, the following relations
(3-7) (n+ Dwwsr(x, 2, ..., 2, 0x) =y 0 2u(x) + Lu.(x)- 02y,
+ 2 Qi(x) - dx- Q(x).
i+j=n
4,21

The result (3.6) was obtained on using (2.2) of Lemma 2.
We see that a necessary condition that (3.7) hold is that for » = 2

(3'8) ' -Qn+1(x) = n+ 1 {yox -Qn(x) + Qn(x)‘x'?/o

+ 3 )2 @)
it+j=n
i,5=1
If we now use results (3.5) and (3.6), and if we use an induction proof on (3.8),
we find on using (2.7) of Lemma 3 and (1.4) (Assumption 2) for 2, = x, = = and
y =1y, that
(3.9) Qi) = A2, y) (=1,2,..)

Now the conditions (3.9) are also sufficient that y(x) in (3.2) satisfy the dif-
ferential system (1.1). In fact an application of (1.2), (1.4) and assumption 4 to
the evident formula for the first Fréchet differential & 77+ (y,, z, yo) (n = 2)
8 I (yo, @, yo) = Yo 0 - T (yo, , Yo) + Yo~ - (Yo~ - T" o, @, o)
+ Tz(yov x, ?/de T"_z(?/m x, ”0)) +- T"_l(?/m &z, ?/oax T(:'/Ov Z, .'/o))
+ T"l(yo’ x, Yo 0y, .
shows that (3.7) holds for » = 2. Hence by Lemma 4, the truth of the theorem
follows.

! MICHAL, A, D., »The Fréchet Differentials of Regular Power Series in Normed Linear Spaces»
Duke Math. Jour., vol. 13 (1946), pp. 57—59.
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4. Higher Order Differentials of the Solution. It is possible to give the
expression for the nth successive Fréchet differential with equal increments of
the solution function (3.1) of the differential system (1.1). By a simple calcula-
tion the second Fréchet differential with equal increments dx given by

(4.1) 8 y(r) =21 T%(y, o, y).

We shall prove the following general formula by induction:
(4.2) dy(x) =12 Ty, oz, y) for any positive integer i.
Clearly from the induction hypothesis for ¢ =1, we have

(4.3) "tly(x)=n! 6 Ty, 0., ).

From the elementary theorems on Fréchet differentials and definition of
T"(y, dx, y) we find

(4.4) §T(y, b, y) = T(y, 0, y)- - T (y, Iz, y)
+y-dx- 1"y, dz, ).
From the induction hypothesis for ¢ = n —+1, # we have
(4.5) " ly(x) = (n—1)! T"" 'y, o2, ¥),
"y(x)=n! I"(y, s, y).
Hence 0"y(x)=(n — «)! d T '(y, dx, y), which implies
(4.6) dT"'y, 6, y) = nT"(y, d, y).

On using (4.15), the definition of T"+(y, dx, y), and the identity (1.4) for z=1,
Jj=mn—1, we find that (4.4) reduces to

(4.7) 8Ty, dx,y)=(n + 1) T (y, o, y).

This result inserted in (4.3) gives (4.2) for i=n + 1.
The following corollary of the Theorem 1 is now clear.

Corollary. If the increment dx = x, then the solution of the differential
system (1.1) will have the generalized > Maclaurin serics expansion»

(48) v =m+ 3 Eaylo)

where 6'y(0) is the ith successive Fréchet differential of y(x) at x* =0 with all ¢
tnerements equal to dx = x.
2—46929. Acta mathematica. 80. Imprimé le 1 juin 1948.
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5. A Continuous Transformation Group. The differential system (1.1) defines
a continuous transformation group in the Banach space B, with a parameter
ranging over the Banach space B,. The classical Lie theory of finite and infinite
continuous groups naturally does not treat of such generalized groups. The be-
ginnings of a generalized Lie theory, with the differential aspects as the main
flavor, was given by Michal and Elconin.! The generalized Lie differential equa-
tions were also given by Michal and Paxson.?

From the existence and uniqueness theorem of section 3 we see that the
differential system ((1.1) with a slight change in notation)

(s.1) djle)=T(jw,da, jl@), glo)=y
is satisfied by

(5.2) _ 7=/, ),

where .

(5.3) fly, )=y + DTy, o 9)

=1

Let us look at (5.2) as a transformation in B, for each value of the parameter
a€B,. Clearly 7=y for ¢ =0 so that the identity transformation corresponds
to ¢ =o.

It follows from Theorem 2.5 of Michal and Elconin?® that

(5.4) Sy @, 8)=fly, « + p)

Evidently the inverse transformation to (5.2) corresponds to — @, so that
the unique solution of the non-linear equation (5.2) is given by

(5.5) y =S, —a
. e., by the entire function of «
(5.6) y=7+ (= 1T} q 7).

i

Il
-

Theorem 2. The differential system (1.1) defines an Abelian continuous trans-
formation group in B, with the translation group of B, as its two identical para-
meter groups.

! MicHAL, A, D. and ELcoNIN, V., loc. cit.
? MicHAL, A. D. and Paxsox, E. W., loc. cit.
3 MicHAL, A. D. and ELcoxNIN, V. loe. cit.
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6. Some Instances of the Differential System (1.1). Let B, be the Banach
space of real continuous functions y(f, s) over ¢ <t s =<, and let I?, be the
Banach space of real continuous functions x(s) over a < s < 0. The norm in
each case is taken in the usual way as the maximum of the absolute value of
the function. If we take 7T'(y,, x, ,) as

t

(6.1) S ot )y s, 1) s,

r

then the differential system (1.1} in this instance becomes

(6.2) [ dylxe(w)/t, r]= {'y [x(w)/t, s] 0 (s)y [x(u)/s, r]ds

Yy [O/t> 7'] =Y (t! I').

It is not difficult to show that assumptions 1, 2, 3, and 4 are all satisfied. Hence
by the existence and uniqueness theorem of section 3 the unique entire func-
tional solution of (6.2) is given by

(6.3) v (@) = o+ 21" (o, @)+
i=1
where 1(y,, ) stands for w,(t s)x(s) and the = denotes integral composition

powers and products in accordance with the definition: %, *y, stands for

f

(6.4) [ott, ) pals,n) ds.

r

As we shall see later, the following modification of the previous instance
will be of considerable impertance. Let N be a complete normed linear ring’
(not necessarily commutative) with / as a unit element. Let B, and B, be
Banach spaces defined as in the previous instance with the difference that the
values of the functions are now in N. Hence the norms in B, and B, are defined
respectively by

! MicHAL, A. D., »The Total Differential Equation for the Exponential Function in Non-
Commutative Normed Linear Rings», Proc. of the National Acad. of Se. (U.8. A.), vol. 31 (1945},
pp. 315—317. See also MicHAL, A. D, and MArTIN, R. S. »Some Expansions in Vector Space»
Journal de Mathématiques Pures et Appliquées vol. 13 (1934), pp. 69—0I,
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[I|u||= max ||y (¢, s)||v

(6.5)
: |2l = max l=(3)llx
a=s=b
where | v is the norm of N, and the ordinary products of functions in (6.1) to

(6.4) are to be interpreted as (non-commutative) ring products.
If the initial condition function #,(¢, 7) = I, the unit of N, then the solu-
tion of (6.2) becomes

[j[L(ll\/t 1]——I+J u (lu+f1u (luf Jdv
(6.6) .
. , I +f duf:c j (wydw + -

where x(u)x(v), z(u)x(v)x(w), etc. are associative but not commutative ring
products.

The functional y[x(u)/¢t, r] has also the following properties:

(1) If x(u)x(v) =2 (@) x(u) for all real w, © in the interval (a, ), then

2

/ r(u)du
ylz@)/t r]=¢ :
where ¢* is the exponential function in the normed linear ring N. — See my

paper in Proc. Nat. Acad. of Sciences, 1945, for a characterization of ¢

(2) The Fréchet differential of the functional y[x(u)/?, ] commutes with
the numerical derivative of y[x(u)/t, ] with respect to the variable ¢. (This se-
cond property is an evident consequence of the result that (6.6) satisfies the
differential system (6.2).)

(3) yla; () + 2 (w)/t, 1] = y [, (W)/t, 7]y [, (0) /28, 7]

if @ (u)xy(v) = 2y (v) 2, (u) for all u, v, in the interval (a, b). In particular, this
identity holds if xz,(u)= I, the unit of the normed linear ring N, and in fact
we have the formula y[I + z(u)/t, r] = &7y [x(u)/t, r], where ¢’ is the numerical
exponential function.

If in particular, the normed linear ring N is that of all square matrices

= (x;) of real numbers x} with » rows and normed, say, as

(6.7) II»LH~=VZ
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we see that (6.6) is the matrizant' and that the completely integrable differential
system (6.2) with wo(t, 7) = I characterizes the matrizant. Hence the results of the
previous sections immediately apply to the matrizant. These theorems on the
matrizant are believed to be new. For example, let us write explicitly the nth
successive Fréchet differential of the matrizant ¢! [x ()] as given by (4.2):

t &
oy [x] =n! [yl [] 0w (sy) ds, [y [x] 6 (s) ye [x] disy

(6 8) : *n—1
- [yt el oz (s v [#] d s

r

(n=1).

It is of some interest at this point to inquire into the term by term Fréchet
differentiability of the functional expansion (6.6). An application of the author’s-
theorem ® on the Fréchet differentiability of power series in Banach spaces shows
that the Fréchet differential of the functional y[x(u)/t, 7] exists for each x(u)
of B, and is given by the alternative expansion -

t ) t u, -1
dy [e(u)/t, ] = fd;v(u)du + Z [fd‘;v(ul) du, fx(ug) du, - fx(ui) du;
(6.9) v I r r
’ Wy i1
+ f(L.'(ul)du, fx(ug) dy - fdx(m) du,]-
r r r

If the matric-valued function w,(f, ») is taken to be an arbitrary matric-
valued function in B, instead of the unit matrix I, then we obtain a generaliza-
tion of the matrizant and the following — by Theorem 2 — will be an infinite
continuous transformation group on B, to B, with 4 (s)€ B, as the variable
parameter of the group:

t [4 N
(6.10) ¥ =Yy, + ff’/oilA(Sl)?/osr’dSl + fﬂlofglA(sﬂdslfyo:; Aso)yoprdsy + -+
7. Applications to »>Ordinary»> Differential Equations in Banach Spaces.

The functional expansion (6.6) of the previous instance enters in an essential
way in connection with the treatment of an ordinary linear differential equation

! See, for example, expansion (4.8), page 22 of MicHAL, A. D., »Matrix and Tensor Calculus
with Applications to Mechanics, Elasticity, and Aeronautics», Galcit series, John Wiley & Sons
(New York, 1947).

® Duke Math. Journal, loc. cit.
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in Banach spaces. Let «(x, w) be a linear function of € B,;, a Banach space,
with values in D, and depending parametrically on a real variable z for
a =z =<1b. The differential equation

dw(x) .
(7.1) de «a (.l‘, It)
can be written conveniently as
' dw(z) o
(7.2) do = A (x) - wz),

where 4-w is the bilinear function on N B, to B; and N here stands for the
wellknown complete normed linear ring of linear transformations on B; to B,
We shall assume that A(x) is continuous in the interval (a, b). It should be
emphasized here that the restriction of continuity on A(x) is merely illustrative.
Other well known function spaces of functions -A(x) can be considered leading
to similar results with the evident changes in interpretations of the notations.
If the Banach spaces B, and B, are the two function spaces described in the
second instance of section 6, and if the space N is taken as the normed linear
ring of linear transformations on I’; to B, then, if we write the expansion

(6.6) in the following notation

(7.3) QLA =1+ [ Al + {4 ) [ 4020+

we can state the following two theorems.

Theorem 3. The wunique solution — obriously continuous — of the differential
system
(7.4) fo) = A(x)-wl(r), wl@)=1w, (L continuous in {a, )

s given by
(7.5) wlx) = QA )],
where the functional QX[A ()] is detined by the entive functional expansion (7.3).

Theorem 4. There exists a wunique entive analytic solution of the completely
integrable system in Iréchet differentials

(7.6) [ duld/x]= ‘ _(_);‘:‘ [4] 6 1(5) e [A7EdE,
l w

o/x] =,
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where Qi[A] is a given functional on B, to B, and is defined by (7.3). It 4s
given by the entire analytic functional (7.5) with A(n) ranging over the Banach
space B,.

The proof of Theorem 3 is similar to that of the classical theorem on
numerical systems of linear differential equations while the proof of Theorem 4
uses similar methods to those of the proof of Theorem 1.

Theorem 4 is an existence and uniqueness theorem. However, under the
assumption that the Fréchet differential dw [A/x] exists, it can be shown quite
readily that w[4/x] must necessarily satisfy the differential system (7.6). In
fact, since w [A/x] satisfies the system (7.4), we see that the Fréchet differential
dw[A/x] must necessarily satisfy the linear differential system

d(ln ()= A(x)-diw + A (x) 20, {dw[4d/x] t: 0.
On solving this system for the arbitrarily chosen A (x), we see that w[Ad/z] as
a functional of A(x) must satisfy the differential system (7.6). We cannot go
into details in this paper, but more extensive and similar studies can be made
for higher order equations and for non-linear equations.

The nth successive Fréchet differential with equal increments of the func-
tional Q2[4 (n)] exists for each positive integer » and is given by

@

(7.7) 0" (Al =nl [ F[4, 94 )x, ] 95 [A] d§

a

while the nth successive Fréchet differential with equal increments of the solu-
tion w[A/xz] of (7.4) as a functional of A(x) exists for each positive integer n
and is given by

(7.8) drwlAlx] = n!f o [A, 0]z, & w[d/E]dE
In (7.7) and (7.8) we understand that
(7.9) I'[A, 6 4]z, £] = Q[A] 6 A (5),

®
and Fr[A,dA/x, &] stands for the nth combined ring (normed linear ring N)

and integral composition power with variable limits. For example

LA, 8 A e, = [ FLA, d4/z, q] 1[4, 6 4[5, Fdn.

@
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Theorem 3 and Theorem 4 can also be obtained by suitably generalizing
some of the contents of my Proceedings 1945 paper »Differential Equations in
Fréchet Differentials Occurring in Integral Equations». We shall speak briefly

of this generalization. Consider the functional equation
(7.10) S=y+ Koy

with respect to which we make the following assumptions:

(1) Koy is a bilinear function whose values and independent variable y
are in a Banach space B while the independent variable K ranges over a com-
plete normed linear ring R for which a unit I is not assumed to exist.

(2) (K,K,)0y=K,0(K,0y) for all K, K,€R and y€B.
(3) There exists a positive number M such that

X Mi—? . .
”K’Hsmllhﬂ‘ (i=2,3,...)

To the differential system (17) of my Proceedings 1945 paper, there will
now correspond the differential system

[oy(K)=—(K +kéK)oy
ly (o) =1/,

where k(K)=— K + K?®— K® + ---, while the unique solution of (7.10) is given by

(7.11)

(7.12) y=r+kof
It can be shown that the nth Fréchet differential of y(XK) with equal in-

crements &K is given by
(7.13) y(K)=(—1"2 (K + kdRK)" Oy n=r1,2,...)

This has been found rather useful in the specializations and applications of the
general theory — see, for example, expansion (9.5) for the solutions of a system
of linear differential equations as functionals of the coefficient functions.

§ 8. Generalized Taylor’s Series Expansions for Solution of Total Dif-
ferential System. If s (p.) is the modulus of a homogeneous polynomial p,(x)
of degree n on a Banach space £, to a Banach space E, and if m(wy) is the
modulus of the polar w,(x,, xs, . .., Zx) of pa(z), then we have the following

result due to R. S. Martin (1932), loc. cit.
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Theorem 5. 7he moduli m({p,) and wm(w,) of the homogeneous polynomial py(x)

and its polar w,(x;, vy, . . ., x,) respectively satisfy the inequalities

m(w,) n"

8.1 1< <
(8.1) mp,) n!

Proof. That 1 = ::E‘;"; is clear. To prove the second inequality, it is known
n
that
d?xl, a1y Pn (0)
(82) Wy (‘7.17 Lyy - o o 'T"): —

n!

n
where 7. ., . .

, 1is the nth difference operator with successive increments

H
. n . 1 I
Xy, Xy oo oy Xn. Since Ay v, o, pa(0) is a sum of 2" terms of form pu (-7 Z , i
. s < i=1

with  ¢;=1 1, we obtain from (8.2) with the aid of the triangular inequality

and the inequality || p. ()| < m(pa)||«]||", the following inequality

n

2 n .
(8.3) lontes, el = 2mip) (2 (mas

The theorem follows now readily sinece m{w,) =1 u-b | o.(x,, ..., )| for
Nl = lleall == | = 1. ‘

With the aid of Theorem 1 and Theorem g, we can prove the following
theorem without much difficulty.

Theorem 6. For any given x,€ By, the cntive analytic ~solution y(r) of (1.1)
can be expanded in a generalized Taylor's series of successive Fréchet diflerentials

with equal inerements dx valid for all dx€ B,

(8.4) ylep + 02) =yx) + 2 }, [07y ()]

RUREH

If we use (6.8) and (7.7), we obtain the 'following important new expansions

for the matrizant.

Corollary. The following generalized Taylor's series expansions hold for the
matrizant for all continuous matrices A (s) = (ai(s) and B(s) = (bis):
2
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()‘[A(s) + B(s)] = @ [A(s) f [A] B(s,) 2 [4] ds,
(3.5) + _o'?‘ j".f'_{g, [A] B(s,)ds, [n [4] B(s,) Q=[] ds,
’/ 1 [4] Bls) 2 [4] s

-] i * )
(8.6) QAW + Bl =[] + 2 [ 1714, BIt 241 45
where 107 [4, B/t &} stands for the 1th combined matric and integral composition
power of Q.[A}B(§) — see statement following (7.9). The expansions (8.5) and
(8.6) are uniformly convergent for all t,r in t, =1 r=1{,.

9. “Solutions of Systems of Numerical Linear Differential Equations as
Entire Analytic Functionals of their Coefficients. If we write the numerical
linear differential system -
dw'(z)

dz

(9.1)

= aj(x)wi(x), wi(a) = w] (a}(x} continuous in a < & <1)

as the matric differential system

dw(x)
(9.2) e = Ax)w(r), w(a) = w,,
we can specialize Theorem 3 and Theorem 4, (7.8), and use Theorem 6 with its
corollary to obtain the following theorem. ‘ '

Theorem 7. Let Q:[A(s)] be the matrizant of the matric-valued function A (s)
and w[A(s)/x] the unique solution of (9.2) as a functional of A(s), then the following
results give information as to the dependence of the solutions of (9.1) as functionals
of the coefficients a; (). There exists a unique entire analytic functional solution of
the completely integrable system in Iréchet differentials

[dn-[A/x]—{Q‘[l]dl (&) w478 4,
(9:3). I y a

w [0/ ] =y
It s given by the entire analytic functional solution of (9.2) as a functional of
A(s). The generalized Taylor's series cxpansion in Iréchet diflerentials, valid for
all continuous A(x) and d A4 (s),
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{9.4) wld(s) + 3 A(s)/x] =w[d(s) 1]+Z d‘u[l (s)/ I,

leads to the follouuzg eqmwlent expamzona

wld(s) + 6 A(s)/ 2] = w[A(s)]a] + f Q{4164 (s, w[4/s]ds,

(©:5) ;fﬂf[AldA tlslj.Q[l]dA(sg) [4] ds,

-1

f/ QI [A18 A () e [4/s)dss

a

(0.6)  wl[d(s)+ dd(s)/x]=w]d(s)/x] + i ff"[A, 0A/x, Elw[4/E] d§,

i=1a
where 17?’ [, 6 A/x, E] stands for the ith combined matric and integral composition
power of Q:[A]d A (§).

Aside from its great theoretical interest, we believe that this theorem could
be used effectively in obtaining approximate solutions of a large class of systems
of linear differential equations with variable coefficients (and more simply with
constant coefficients) whenever the solution of only one system of the class is
known. The degree and character of the approximation is evident from the
definition of a Fréchet differential and of successive Fréchet differentials. The

following two corollaries will illustrate some of the applications of Theorem 7.

Corollary 1. If w(d/x] is, say, the known solution of the matric differential

system %SC) = Aw, w(a) = w, (4, a constant square malriz, and a < x < oo for
any finite a, then for any constant square matriz B, the solution of

lw(x
(9.7) dul2) (4 + B)uw, w«(a)=1w,

dzx

is given by _ ‘

wld + Blzj=w{d/x] + fc“f-"” ABwl[A]s]ds
a

wethen first order I'réchet differential corrections to w[A/x].

Corollary 2. Under the hypothesis of Corollary 1, the solution of (9.7) is given by

wld + Bjx)=wl[d/x] + f ev=aid Bag[A]s,]ds,

+ fe(-“—sl’ 1B ds, f es—etd Bo[A/s,]ds,
« @

wethin second order Fyéchet differential corrections to w{4/x].
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10. An Associated Differential System. There are other significant non-
linear differential systems related to (1.1) whose unique solutions are entire ana-
lytic functions. Let the trilinear function T (y, z, 2z) satisfy the assumptions of
Theorem 1. Consider the following differential system in the unknown functions
y(x) and z(x) and their Fréchet differentials d y(x) and dz(x) respectively :

[d y)=T(zw), d0x, 2x) — Ty w), dx, y)
10z

(10.1) (@) =—T(z), oo, yx) — T (y x, dx, z(x)

y(0) =0, z(0) = .
By methods similar to those in the proof of Theorem 1 the following existence

and uniqueness theorem can be established.

Theorem 8. Under the hypothesis of Theorem 1, the differential system (10.1)
in normed linear spaces is completely integrable and possesses the follnwing unique

entire analytic solution functions

|t = D 1y ),

{10.2)

N\

IZ(JJ) =2+ 2 (— 1) T {2y, , 2,),
i=1

where T (z,, x, 2,) s the nth iteration of T(zy, x,2) as a linear function of z
evaluated for z = z,.

If the trilinear function T'(y, z,z) and the Banach spaces B, and B, are
taken as in Section 6 with the norm (6.7) as the norm of the normed linear
matric ring N with unit 2z, = I, the identity matrix, the resultant system (10.1)
possesses the unique solution k

t

Y [z(w)] = fx(u) du— fx(u)duj{x(v) dvfx(w) dw + -,

(10.3)

3

Zlx()]=I— ftx(u)(luf:c(v)dv + -,

~11. The Differential Systems in Complex Banach Spaces. The results of
this paper can be shown to hold with some modifications for the case of com-
plex Banach spaces — complete normed linear spaces with complex number
multipliers. In some cases stronger theorems can be proved. For example, take
the case of Theorem 1. We can prove



On a Non-Linear Total Differential Equation in Normed Linear Spaces. 21

Theorem 9. Let B, and B, be complex Banach spaces. Under the assump-
tions of Theorem 1 there exists a wunique solution of the differential system (1.1).
It is given by the entire analytic function (3.1).

The uniqueness in Theorem 1 was proved within the class of all {single
valued) entire analytic functions whereas the unicity of the solution in Theorem
9 is asserted within the class of all (single valued) functions defined throughout
the complex Banach space B,.

The proof of Theorem g proceeds as the proof of Theorem 1 as soon as it
is established that any function that satisfies (1.1} throughout the complex
Banach space B,, with values in the complex Banach space B,, is necessarily an
entire analytic function. But this follows readily from known results. For, sup-
pose y(x) satisfies (1.1) throughout the complex Banach space B,. Obviously
then, the Fréchet differential of y(r) exists everywhere in B,. Hence y(x) is
continuous throughout B, and the Gateaux differential of y(x) exists every-
where in B,. This means that y(x} is analytic in A. E. Taylor's' sense in an
arbitrary sphere about the origin and hence it follows that y(x) is an entire
analytic function in our sense.

In the case of the analogues of the results in Section 9, it is clear that
the independent variable x will be a complex variable and that the integrals
will be line integrals in the complex plane extended over paths within the
Mittag-Leffler star® of the coefficients «{r) of the differential equations (9.1).
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