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Introduction 

I .  Let  w = / ( z )  l)e a non-cons tant  meromorphic  funct ion in tile unit  circle I zl < 1. 

Using the s tandard  nota t ion  1 we write (a=*:/(0)) 

r 

~V(r,a)-=N r, /i:-ii - .  r 
0 

where n(r, a) denotes the number  of the roots of the equat ion / ( z ) = a  in the disk 

I z l / r ,  multiple roots being counted with their order of multiplicity.  For  a ~ / ( O ) t h e  

above integral tends to the limit + o~. By  the cus tomary  (tefinition of N (r, a), this 

logarithmic singulari ty at  a = / ( 0 )  is removed, but in this paper  we prefer permit t ing 

the existence of the singularity.  For  lim N (r, a) we write N (1, a). 
r - * l  

With  the help of N (r, a) the characterist ic funct ion T(r)  of [(z) can be defined 

as the mean-vMue (Shimizu-Ahlfors 's theorem) 

T (r) = f N (r, a) d/t, 

where the integral is extended over the whole plane and dlt denotes the spherical 

element of area divided by :~, i.e., 

[a[ d ia l  d a r g a  
d ~ =  ~ ( l  +[ar-) ~ 

According as T{r) is bounded or not,  the funct ions /{z) meromorphie  in [z I < 1 

fall into two essentially different classes. I f  /(z) is of bounded characteristic,  then 

x For the general theory of single-valued meromorphic functions we refer to NEVANLINNA [7]. 
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for almost all ~ in 0 g ~ <  27e, l im/(z)  exists uniformly in the angle l arg ( 1 - z e - ~ ) l  
z..-)e t r 

< - - ~  for all ~ > 0  (Fatou-Nevanlinna's theorem). If this property holds for the 
= 2  
boundary point z : e  t~ we denote the above unique limit by /(e ~r and call / (e  ~r a 

boundary value of /(z). The set of all boundary values / (e  ~) in 0_-<~<2~ is of 

positive capacity (Nevanlinna-Frostman's theorem). 

2. In this paper we consider the following problem: 

The distribution o/ values o/ a /unction /(z), meromorphic and o/ bounded charac- 

teristic in I zl < 1, is to be investigated under the /ollowing condition: For almost all cp 

the boundary values w = / ( e  ~) belong to a given closed point set F which is o/ positive 

capacity and o/ non-void connected complement. 1 

The study of this problem is divided into two essentially different cases; for we 

shall show that  under the above conditions only the following two alternatives are 

possible : 

A. w = /  (z) takes no value outside I1. 

B. w =/(z)  takes every value outside ]', with the possible exception o/ a set o/ ca- 

pacity zero. 

In case A the study of the distribution of values of /(z) leads to a problem of 

majorization. The situation is then governed by theorems like Schwarz's lemma, 

LindelSf's principle, principle of hyperbolic measure, etc. A sharp and general prin- 

ciple well applying to this case is the following (Littlewood [4], [5], Lehto [2]): Let  

the values of /(z) lie in a plane domain G with at least three boundary points, and 

let w = x  (z) map the unit circle conformally onto the universal covering surface of G 

and satisfy the condition x (0)=/ (0) .  Then, for every r <  l, 

with equality if and only if / (z)=x(e~~ (v~ a real constant). This inequality con- 

tains Schwarz's lemma and Lindel6f's principle as special cases, both in a sharpened 

form. The case A thus being governed by known principles, we shall not deal with 

it in this paper. 

In the above ease B the study of the distribution of values of [ (z) gives rise 

to a problem of minori~tion. This problem will be treated in detail below. Our 

main result reads as follows: I /  the point w =/ (0)  i8 not in 1", we have 

A short summary of our principal resulta about this problem is given in [3]. 
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(1) N I,T~ h 

except perhaps /or a set o/ values a o/ capacity zero. Here g (a , / (0) ,  C (F) )deno tes  the 

Green's function of the complement of F with singularity at the point /(0). This 

result is sharp in the following two senses: First, we have equality for every a if 

w = f  (z) maps the unit circle conformally onto the universal covering surface of the 

complement of F. Secondly, given an arbi t rary closed set of capacity zero outside F, 

we always have a function /(z), satisfying the above conditions, for which 

(f a) N l, <g(a,/(O),C(F))  

at all points of this null-set. 

The above results can also be stated directly in terms of the boundary values 

without prescribing the set 1". We then have to impose on /(z) the additional re- 

striction that  the complement of the closure of the boundary values is not void. 

3. Quite symmetrical results are obtained if the points of 1" are Picar(l excep- 

tional values for the function /(z). In  other words, suppose tha t  all values w=/(z)  

lie in the complement of I ' ,  and that  for almost all q), w - / ( e  iq') belongs to 1'. Let 

us introduce the function 

2~ 

( ) 1 )  1 li m f g ( / ( r e l D ,  a,C(F))dq~ 
0 

which measures the convergence in the mean towards the value a in the neigh- 

bourhood of the frontier I z[ = 1. We then have the invariant  relation 

(2) ~ a + N  1, = g ( a , / ( 0 ) , C ( P ) ) .  

Here the right-hand term, which plays the role of a characteristic function, is a do- 

main function and independent of /(z), up to the value of /(0). 

As for the relative magnitude of the components q) and N in (2) it follows from 

the inequality (1) tha t  

~ 

except perhaps for a set of values of capacity zero. Therefore, it is natural  to call 

a value a ~zormal for ] (z) if (3) holds; o therwi~  a is exceptional. As in Nevanlinna's  
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theory,  for a more detailed s tudy  the concept of de/iciency (~ (a) o/ the value a can 

be introduced, the natura l  definit ion here being (a#=[(O)) 

6 ( a )=  -- 1 
g (a, / (0), C (I ' ))  g (a, / (0), C ( F ) ) '  

this definition can readily be modified for a = / ( 0 ) .  

In  the special case tha t  the functions /(z) considered satisfy the conditions 

[ / (z) ] < 1, [ / (e  ~*)[ = 1 almost everywhere,  certain analogous results have been estab- 

lished by Fros tman  [1]. 

w l .  Fundamental lemma 

4. This chapter  is devoted  to prel iminary considerations, the tools necessary for 

the following representat ion being developed. The results are collected in a lemma 

which will be of fundamenta l  importance below. 

Le t  w=/ ( z )  be a meromorphie  funct ion in the unit  circle I zl < 1. In t roducing  

the function 

we first prove (Frostman [1]): 

(1.1) 

where 

r 

f n (r, a) 
N (r, a) = d - - r -  

0 

dr 

I /  # is a completely additive set /unction de/ined [or all Borel measurable subsets 

o[ a closed set S, then 

2 ~  

f if  N ( r , a ) d / ~ ( a ) = N ( r , ~ 1 7 6  2~ u( / (re f~))d~ , 
S 0 

f 1 u (w) = log [ ~  d/~ (a) 
S 

is the logarithmic potential belonging to the set /unction [~. 

Formula  (1.1) can easily be established by means of the principle of the argu- 

ment .  In  faet,  by this principle, 

2~ 

f d arg ( / ( r e  t~) - a) = 2 :~ (n (r, a) - n (r0 ~ )). 
0 
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Applying Cauchy-Riemann's differential equation to the left-hand side we obtain 

2rt 

r ~  logl/(re~r ~)) 
o 

Multiplying both sides by d#  and integrating over S with respect to d/~ (a) gives 

2n 

-r~r rd f u(/(re*r n(r,a)d/~-n(r,~)/~(S)) 
0 S 

whence (1.1) follows by integrating with respect to r. 

In  (1.1) both sides may be infinite. Since we shall apply this formula to a 

special case where the convergence can directly be seen, we shall not s tudy general 

conditions which would exclude divergence. 

5. As the next step we construct a sct function appropriate for our purposes. 

Let  1'  and E be two bounded, closed, disjoint point sets in the w-plane, both of 

positive capacity. Let the complements of 1" and 1N-E, denoted by C(F)and 
C(I'+E), respectively, be connected. 

Consider the well-known Robin equilibrium potentials 

(1.2) 

u, (w) f 1 = log W i (:) 
F 

where /~x and /t2, so-called equilibrium mass-distributions, are non-negative completely 

additive set functions defined for the Borel measurable subsets of I '  and / ' + E ,  

respectively, and of total mass 1. For every subset e of capacity zero we have 

/*l (e) = 0, /zs (e) = 0. In  contrast  to this, / z2 (E)>0  , since E is of positive capacity. 

(For details concerning the properties of equilibrium mass-distributions we refer to 

Fros tman [1].) 

I f  w is a point of C ( / ' + E )  we have 

(1.3) 
u l(w)=~q-g(w, oo, C(F)) 
u2 (w) = ~,~ - g (w, oo, C ( F +  g) ) ,  
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where 71 denotes the Robin ' s  constant  of C (F)  and g (w, oo, C ( / ' ) )  represents the Green's 

funct ion of C(F) with pole at  w = o ~ .  Correspondingly,  72 and g ( w , ~ , C ( F + E ) )  

denote the same quanti t ies with respect to C ( F +  E). I f  w is an internal point  of T' 

(if such points exist), then  
U 1 (W) = 7 1 '  

and similarly, if w is an inner point  of I '+E,  

u2(w) =72.  

Let  us now construct  the potent ial  

U(W) = U 2 ( W  ) --UI(W). 

Because Green's function is bounded in every par t  of its domain  of existence which 

does not  contain a certain neighbourhood of the pole, this potent ia l  u (w) is bounded 

in the whole w-plane. 

By  (1.2) we can write 

1 
u(w) = log[~_wid~(~), 

T'+ E 

where 

I I ~2 (e) - / h  (e), 
/~ (e) = 1/L2 (e), 

For  this set function /t we have 

e c  ] '  

e c E .  

/L ( F +  E) =/ .2 ( F +  E) -/~1 (17) = 0. 

I t  follows from the definition tha t  /~ (e)~ 0, if e is an arb i t rary  subset of E, whereas, 

by  the m a x i m u m  principle, / L ( e ) g 0  for every measurable subset of F .  F rom t h e  

properties of /~1 and H2 s ta ted above it follows tha t  /~ (e)= 0 if e is of capaci ty  zero. 

For  the sets E and 1" we have /~ ( E ) > 0 ,  /~ ( I ' ) < 0 .  The former  s ta tement  is imme- 

diately implied by  the above remark  concerning /l 2 (E) and by  the definition of /* 

the lat ter  one being an easy consequence of the min imum principle. 

I n  the above it was supposed tha t  the sets /" and E are bounded.  I f  either of 

the sets does not  satisfy this requirement,  the above reasoning must  be slightly 

modified. Since this can be made in an obvious manner  and no essential difficulties 

are encountered we omit  the details here. I n  any  case we can construct  a set func- 

t ion /~ which possesses the properties s ta ted above and for which the associated 

potential  u (w) is bounded in the whole plane. 
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6. Let  us consider a function w =[ (z) satisfying the following conditions: 

1. f (z) is meromorphie and of bounded characteristic in the unit circle [z I< 1. 

2. For  almost all r the boundary values f (e t*) belong to a bounded closed point 

set / '  of connected complement. 

3. The point w = [ (0) is in the complement of F. 

By the theorem of Nevanlinna and Frostman, referred to in the Introduction, the 

set / '  is of positive capacity. 

Let  E be an arbitrary closed point set of positive capacity and connected com- 

plement and lying outside / ' .  We apply formula (1.1) to this /(z) choosing for the 

set function the above /, which belongs to the sets / '  and E. Since in this case 

/ ~ ( S ) = / ~ ( F + E ) ~ 0 ,  it follows from (1.1) that  

2 n  

f l /  (1.4) N(r ,  a )d /~=u( / (O) ) -  ~-~ u(/(refq~))drf. 
F+ E 0 

Let  now r -~ l .  In the left-hand integral we can perform the passage to the 

limit under the integral sign since N (r, a) is monotonic in r. As for the right-hand 

side, we first conclude from the boundedness of u (w) that  

(1.5) 
2n 2n  2n 

f lim inf u( / ( re ' r  ~ l i m !  u ( l ( r e ~ ) ) d ~  ~ f lim sup u( l ( r e~ ) )d~ .  
0 r ~ l  r ~ l  0 r ~ l  

By hypothesis, the point w = / ( r e  ~) either is in F or tends to F for almost all ~p 

when r -+  1. Let us confine ourselves to studying such values ~ only. Then, if 

w = / ( e  ~) is an internal point of / ' ,  we have, by the above, 

(1.6) lim inf u (1 (re~*)) = lira sup u (1 (ret*))= )'2-)'1. 
T--}I r--~l 

In case w = / (e f ~) is a boundary point of / '  it follows from the definition of u (w) that  

(1.7) lim inf u (/(ret~)) ~_ 72 - ?I 
t..-r 

and 

(1.s) lira sup u (/(r e'*))  < ?~ - )'1 + s u p  g (1 (e' % ~ ,  C (F)). 
r-~-I 

By a theorem of Frostman [1], if w is a boundary point of F,  then 

s u p  9 (w, ~ ,  C (F)) =0 ,  
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except at most in a set of capacity zero. On the other hand, by Nevanl inna-Frostman's  

theorem, the set of boundary values which /(z) takes on l z[= 1 in a set of positive 

linear measure always is of positive capacity. Hence, by (1.6), (1.7), and (1.8), for 

almost all 

and thus, by (1.5), 

lim u (1 (refV)) =Y2 - Y l ,  

2~ 

lim~_.}l ! u (/(re'C)) d ~  = 2zr (Y2 - Y l ) .  

Consequently, the equation (1.4) yields the following relation for r~+l 

(1.9) f N (1, a) d/, = v (/(0)), 
F+ E 

where 

o r  

v ( / (0))  = g ( / (0) ,  ~ ,  c ( F ) )  - g ( / (0) ,  ~ ,  c ( F +  E) )  

v ( / (0))  = g ( / (0) ,  ~ ,  c ( F ) ) ,  

according as /(0) behmgs to C(E)  or is all inner point of E. In  both cases v(/(0)) 

is positive. In  the latter case this is evident, and in the former case it follows from 

the minimum principle. For if v ( / (0 ) )=0 ,  i.e., if 

g (/(0), ~ ,  C (1')) = q (/(0), ~ ,  C ( F +  E)), 

we conclu(lc from the minimum principle tha t  in the whole domain C ( F + E )  

g (w, ~ ,  C (1")) - g (w, ~ ,  C (F+  E)). 

This, however, is impossible since E is of positive capacity. Finally, it is readily 

seen that  v(!(0))  is positive also if w=/(O)  is a boundary point of E.  

If  the sets /" or E are not bounded we also obtain a formula (1.9) where the 

right-hand term v (/(0)) is positive and depends on /(0) and on the sets / '  and E only. 

We summarize the results needed below in the following 

Lemma. Let I" and E be two closed disjoint point sets in the w-plane, both o l 

positive capacity and connected complement. We then have a completely additive set/unc- 

tion /~, de/ined lor all Borel measurable subsets o/ I '+  E, which possesses the /ollowing 

properties: 

1. ~t (e) < 0 /or all measurable sets o/ I', ~t (e) > 0 /or all measurable sets o/ E. 

2. /x (e)= 0 [or all sets e o[ capacity zero, whereas /x (E)> O. 
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3. I /  w =/(z)  is a meromorphic /unction o/ bounded characteristic in the unit circle 

I z [ <  1 such that /or almost all q) its boundary values /(e ~r belong to I" and w=/(O) 

is not in F, then 

f N (1, . )  d~  = v (/(0)), 
F +  E 

where v (/(0)) is positive and only depends on the sets 1" and E and on the value w = ] (0). 

w 2. Minorant theorems 

7. In the w-plane let T' be a closed point set of positive capacity and non- 

void connected complement. Let  w = x  (z) be a function which maps the unit circle 

I z l <  1 onto the universal covering surface of the complement of F. By  this property,  

x (z) is uniquely determined e.g. up to the values of x (0) and arg x'  (0). 

Since 1" is of positive capacity x (z) has, by a well-known theorem ([7]), a bounded 

characteristic function. Hence, the boundary values w - - x  (e ~q') exist almost everywhere. 

They necessarily belong to the set I ' .  For if w 0 is an inner point of C ( F )  we call 

draw a circular disk K around w o such that  K entirely lies in C(I ' ) .  The maps of 

this disk by the function z = x -1 (w) (x- ~ denotes the inverse function of x) lie disjoint 

in the unit circle I z l <  1. Hence, when the point z ~ re l~) continuously approaches the 

circumference of the unit circle the image point w = x(z) again and again leaves the 

disk K and thus cannot converge towards the point w 0. 

Accordingly, the boundary values x(e l~) are in I ' ,  and we can apply the Lemma 

to w=x(z ) .  Since x(z) omits all values belonging to the set I ' ,  we have for these 

values a, N(1 ,  a) =0 ,  and so 

f N (1, a) d#=O.  
1" 

Hence, for x(z) the Lemma yields 

(2.1) f N (1, a) d/~ = v (x (0)). 
E 

Let now w = / ( z )  be an arbi t rary function of bounded characteristic which satis- 

fies the conditions of the Lemma.  In  other words, let w = / ( e  tr belong to F for 

almost all ~ and let w = / ( 0 )  be outside / ' .  By the Lemma,  we have 

f N (1, a) d lu=v( l (O) ) -  f N (1, a)dl~. 
E P 
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Since d#  ~ 0  in F,  this implies that  

(2.2) f N (1, a) d/x > v  (f (0)). 
E 

We now choose x (z) so that  x (0 )=  f (0). Then, combining (2.1) and (2.2), 

1 
(2.3) f N (1, ~ _ l a ) d / t >  f N (1, x ~ ) d / x .  

E E 

(1) 
From this relation we conclude that N 1, cannot be less than N 1, ~ 

at all points of E. For if so, i.e. if 

in E, it follows from (2.3), because d/~ ~ 0  in E ,  that  

f ~ (a) d/x = 0. 
E 

This, however, is impossible. For consider a monotonically decreasing sequence of 

positive numbers p ~ > p 2 > . . . ,  where p,-+0 for v-+oo.  Define E 0 as the subset of E 

where 8 ( a ) > p l ,  and let, E, ( v = l , 2  . . . .  ) be the set where p ,+ l<8(a)Gp, . ;  these sets 

E, (v=0,  1 . . . .  ) are measurable. Since d j u > 0  in E we have for each v 

E v E v E 

and hence 

f d/~ =0.  
sv 

Because E = ~ E, and /t is additive this implies that  

y fd#=t, (E)=O, 
E v E 

in contradiction to the Lemma according to which # (E)>0 .  

Since E was an arbitrary set of positive capacity we thus conclude that the 

inequal@y 
1 ... 1 

ca~t hold at most in a set o[ capacity zero. 



MEROMORPHIC FUNCTIONS OF BOUNDED CHARACTERISTIC 97 

This result is sharp in the following sense: Given an arbitrary closed null-set 

B outside 17 we can always /ind a /unction /(z), satis/ying the above conditions, 

such that (2.4) is true at all points o/ B. To prove this consider a function x*(z) 

which maps the unit circle onto the universal covering surface of the complement 

of I ' + B .  As shown above, the boundary values w=x*(e  ~) belong to the set I ' + B .  

But  since B is of capacity zero it follows from Nevanlinna-Frostman's theorem that  

for almost all q. the boundary values x* (etr must belong to 17. Hence, x* (z) fulfills 

the conditions imposed on / (z) above. On the other hand, all points of B are Picard 

exceptional values for x* (z) and so for these values a we really have the inequality 

.1 1 

8. In order to express the above results in a somewhat different form we make 

use of the lemma in [2] according to which the function N (r, a ) i s  subharmonie 

in a. Hence, 
N (r, a) _~ g (a, / (0), C (17)), 

and thus, putting / ( z ) = x  (z) and letting r -~ l ,  also 

( ' )  {2.5) N 1, ~ _ -  a <g(a,x(O),C(F)).  

By the mean-value argument used in [2] to establish the subharmonieity of 

N(r,  a) and applying Harnaek's prineiple, it is readily seen that  N 1, x__a is not 

only subharmonie but  even regular harmonic in C(17), except for the logarithmic 

singularity at a = x (0). Now it immediately follows from the maximum principle that  

the Green's function g (a, x(0), C(17)) is smaller than any other funetion harmonic 

and non-negative in C ( F )  and with a similar singularity at  the point a = x ( 0 ) .  Con- 

~sequently, we obtain from (2.5) the following equality (Poinear6 [8], Myrberg [6]) 

(1) 
t2.6) N 1 , ~  =9(a ,x (0 ) ,C(17) ) .  

Considering this relation we can summarize the above results as follows. 

Theorem 1. Let / (z) be meromorphie and o/bounded characteristic in the unit circle. 

For almost all q) let its boundary values w =/ (e  ~) belong to a closed point set 17 o/ 

non-void connected complement, and let w=/(O)  be outside 1". We then have in the 

~ , ~ m e n t ~  o/ 17, 

(2.7) N (1, a) ~ a  (a , / (0) ,  C (F)) 

7-533807 .  Acta Mathematica. 91. Imprim6 le 14 mai  1954. 
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with the possible exception o[ a set o/ values a o/ capacity zero. Such an exceptional 

null-set can exist. Equality holds in (2.7) /or every a e.g. i/ w = / ( z )  maps the unit  

circle onto the universal covering sur/ace o/ the complement o/ F. 

9. This theorem, in character somewhat similar to the classical principle of Phrag- 

mdn and LindelSf, can be expressed in an integrated form which is convenient from 

the point of view of various applications. For this purpose, let us cover the w-plane 

with a non-negative mass /~, i.e., # is a completely additive, non-negative set func- 

tion defined for all Borel measurable point sets of the plane. 

(2.8) 

By the definition of N (1, a) we can write 

1 l 

fN(1, a) a, farf f (r) = -- n (r, a) d #  . . . .  dr,  
r r 

0 0 

where the integrals may  also be divergent. Here 

f2 (r) = f n (r, a) d/L 

obviously denotes the total mass lying on the Riemann surface onto which the func- 

tion ] (z) in question maps the disk I z] ~ r. Each surface element e of this image sur- 

face is then furnished with the mass /, (e). 

Incidentally, we make some remarks about  the convergence of the integrals (2.8). 

We do not go into details, in particular since the divergence case too may not be 

without interest. If  the total  mass M of the plane is finite, an easy estimate based 

on Nevanlinna's first fundamental  theorem in the exact spherical form ([7]} yields 

1 

f (,)+u(1,O,), 
0 

where T is the characteristic function of /(z) and 

f I/l + l a l  ~ uiwl= log  § 
denotes the "spherical-logarithmic" potential  belonging to the mass distribution ,u. 

Since [(z) is of bounded characteristic, i.e., T (1)< c~, it follows tha t  the integrals 

(2.8) are convergent if the potential u has a finite value at  the point w = [ (0). If, 

however, the total  mass M is infinite the domain C ( / ' )  must  generally satisfy certain 

additional restrictions in order tha t  the integrals (2.8) were convergent. 

Let  us now impose the following condition on the mass ~:  Let t~ (e)= 0 / o r  each 

measurable set e o/ capacity zero. I t  follows from the metrical properties of harmonic 
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null-sets (see [7]) t h a t  this condit ion is fulfilled e.g. if d/z equals the  Eucl idean or 

spherical  e lement  of area. We then  obtain,  by  (2.8), the  following in tegra ted  fo rm 

of Theorem 1. 

Theorem 1'. Let /(z) be a meromorphic /unction o/ bounded characteristic whose 

boundary values w = / ( e  ~) belong /or almost all qo to a closed point set F o/ connected 

complement, and /or which w = /  (O) is not in 1". Further, let w = x ( z )  map the unit 

circle onto the universal covering sur/ace o/ the complement o/ F and satis/y the condi- 

tion x (0)=/(0) .  Then, i/ the w-plane is covered with a non-negative mass /~ /or which 

ke (e)= 0 /or every set e o/ capacity zero, we have 

1 1 

f O (r; /) dr >= f D (r-; x) r 
0 0 

where go(r;/) and gO ( r ;x )  denote the total mass on the image o/ ] z l g r  by /(z)  and 

x (z), respectively. I /  the right-hand integral diverges the inequality is interpreted to mean 

that the le/t-hand integral also is in/inite. 

t0 .  I f  the  bounda ry  values of /(z)  belong to 2" for a lmos t  all % Theorem 1 

gives us answer to the  following quest ion:  How large sets o/ values can / ( z )  omit 

outside F? 

Of course, /(z)  can omi t  all values outside / ' .  Disregarding this t r ivial  case we 

suppose t ha t  there is a poin t  z 0 in the uni t  circle such t ha t  w - / ( % )  belongs to the 

complement  of I ' .  We  shall f i rst  show tha t  it does not  mean  any  rcstr ict ion for our 

s tudy  to suppose t h a t  w = / ( 0 )  is not  in I ' .  For  consider the  funct ion 

( Z+Zo ~ 
1" ( z ) = l l ' 

for which /* (0) (=/(Zo)  ) belongs to the  complemen t  of F.  Now 

z +  z o Z*--  

1 +~0 z 

t rans forms  the uni t  circle in to  itself in a one-one manner .  Hence,  the bounda ry  

values of f* (z) also belong to U for a lmost  all ~. Moreover,  the  funct ions ] (z) and  

/* (z) omi t  exac t ly  the  same values  in the  uni t  circle. Consequent ly ,  / (z)  can be re- 

placed b y  /* (z), i.e., we can assume t h a t  w = / ( 0 )  belongs to the  complement  of F .  

By  Theorem 1 we have ,  up  to  a null-set,  

N (1, a) :> g (a, / (0), C (/")) > 0. 
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Hence, if ~ (z) takes one value outside / '  it must  take all values in the complement 

of / ' ,  except perhaps  a set of capacity zero. Such a null-set is possible as is shown 

by  the function x* (z) considered above in Section 7. I t  takes values outside /" but  

omits all values which belong to an arbitrari ly given closed set of capacity zero in 

the complement of F. We thus obtain 

Theorem 2. Let w = /  (z) be a meromorphic /unction o/bounded characteristic whose 

boundary values /(e ~)  /or almost all q~ belong to a closed point set F o/ non-void con- 

nected complement. Then only the /ollowing two alternatives are possible: 

A. The /unction w = /  (z) takes no value belonging to the complement o/ I'. 

B. The /unction w = /  (z) takes every value belonging to the complement o/ F, with 

the possible exception o/ a set o/ capacity zero. Such an exceptional null-set can actu- 

ally exist. 

i t .  The above Theorems 1 and 2 can also be expressed in a more direct form 

without prescribing the set F. In  fact, let /(z) be of bounded characteristic in the 

unit circle, and let the complement of the closure of its boundary values be not void. 

This complement then consists of a finite or enumerable set of domains; let D be an 

arbi t rary domain of this set. We apply Theorem 2 by choosing /" equal to the comple- 

ment  of D and obtain 

Theorem 3. Let /(z) be o/ bounded characteristic in I zl < 1, and let the complement 

o~ the closure o/ its boundary values be not void. Then, i/ D is an arbitrary connected 

portion o/ this complement, only two alternatives are possible: Either w = /  (z) takes no 

value belonging to D, or w = ]  (z) takes every value in D, except perhaps a set o/ ca- 

pacity zero. 

As a simple special case let us e.g. note the following 

Corollary 1. Let / (z) be o/ bounded characteristic in the unit circle, and let the 

boundary values w =/ (e  ~)  /or almost all q~ belong to a closed Jordan curve which divides 

the w-plane into two open parts A and B. Then, up to perhaps a set o~ capacity zero, 

either the set of values o/ / (z) coincides with A or with B, or / (z) takes all values 

in A + B .  

i2 .  In  order to express conveniently the result of Theorem 1 in similar terms, 

we first slightly generalize the definition of the function 

N (r,a)= i n(r 'a)  

0 
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Let  nt (r, a) denote the number  of the roots of the equation / ( z ) = a  in the circu- 

lar disk 

~ - t  -_<r ( I t l <  1), 

multiple roots being counted with their multiplicity. For t=O,  nt (r, a )co inc ides  with 

n (r, a). By means of nt (r, a) we now define the function 

Nt (r, a) = ~ nt (r, a) d r. 
J r 
o 

From the standpoint of the theory of the distribution of values this function can be 

used equally well as N (r, a) for characterizing the density of the roots of the equa- 

tion ] (z) = a. While N (r, a) has a logarithmic singularity at  a = / (0), this function 

possesses a singularity at  a = / ( t ) .  

I t  follows from the definition that  

where 

1" (z) = 1 \1  + ~z/" 

Hence, we immediately get from Theorem 1 

Theorem 4. Let /(z) be o/ bounded characteristic in the unit circle, and let the 

complement o/ the closure o/ its boundary values be not void. Let D be a connected part 

o/ this complement such that there is a point t in the unit circle I z] < 1 at which w = /  (z) 

takes a value belonging to D. Then, /or all values a belonging to D, 

Nt (1, a) > g (a, / (t), D), 

with the possible exception o/ a set of capacity zero. 

t3 .  Let  us s tudy when a proper inequality holds in (2.7), i.e., when 

(2.9) N 1 , ~  > g ( a , / ( 0 ) , C ( _ F ) ) ,  

except perhaps for a null-set. A necessary condition is readily obtained: If  all values 

of w = / ( z )  lie in the complement of /1, then ([2]) 

(1) ,v ( , , - - 1  ] r, 
\ I - a ~ -  
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and hence also 
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(1 )  ( 1 )  N 1,]--_~ a g N  1,~_a =g(a,/(O),C(P)). 

Thus, in order tha t  (2.9) is valid / (z) must  take values which belong to the set F. 

For further s tudy we again make use of the Lemma,  which gives 

,2.10, / (N (1, / l~_a) - N (1, x~-a) ) d f l :  .r  (1, ]~-a) 'dtt' �9 
E / "  

(A) Suppose first tha t  N 1, is positive in / '  only in a set e of capacity zero. By 

the Lemma, then /~ (e)= 0 and it follows that  

f (iv (1, t_~) - N (1, ~_a)) d" = 0" 
E 

By a reasoning exactly similar to the one used in Section 7 we conclude from this 

tha t  (2.9) cannot be true in a set of positive capacity. 

, Suppose hereafter tha t  N 1, }~_~ > 0 in in a set e of positive capacity. As is 

easily seen, we then have # (e)<0,  whence it follows tha t  

F 

and hence, by (2.10), 

/(N(1, f~a)-N(1, xla))d,'>O" 
E 

Therefore, the inequality 

cannot hold at  all points of E. Since E was an arbi t rary  set of positive capacity 

we thus obtain: 

Theorem 5. Let the /unction / (z) and the set F have the same meaning as in 
Theorem 1. Regarding the inequality 

N(1,  a) ~_g (a, / (0), C (F)) 

only the /ollowing two possibilities can occur: Except perhaps a set o/ capacity zero we 
either have the equality 
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N (1, a) = g  (a, /(0), C (F))  
or the proper inequality 

N(1 ,  a)>g(a, [(0), C (I')). 

The latter alternative is valid i/ and only i] [ (z) takes a set o[ values o[ positive capacity 
which belongs to F. 

I t  follows from the principle of harmonic  measure tha t  the lat ter  a l ternat ive 

occurs if there is a point  set of positive capaci ty  in the unit  circle I z l <  1 such tha t  

at  every point  of this set the value of /(z) belongs to / ' .  

Theorem 5 can be expressed in a slightly different form which often appears in 

applications. Let  F*  be a closed subset of I" such tha t  F*  is of connected comple- 

ment  and tha t  I ' - / ' *  is of positive capacity.  Let  w=/* (z)be a funct ion of bounded  

characteristic, with boundary  values in U* for almost  all ~v, and having w=[* (0) 
outside F.  Then 

( 1 )  ,. 
N l,  ~ , 2  a > g (a, (0), C' (F)),  

except at  most  for a set of capaci ty  zero. To prove this we first conclude from 

Theorem 2 tha t  /*(z) takes all values outside 1'* up to a set of capaci ty  zero. Ill 

particular,  f* (z) takes a set of values of positive capaci ty  which belongs to I ' - 1 ' * ,  

and the inequali ty follows from Theorem 5. 

In  case of a proper  inequali ty we have an r 0 such tha t  

N(r , ] l~a )  > N ( r , x ~ a )  

for every r ~  r 0. I n  general, this does not  hohl uniformly with respect to a. 

w 3. Functions omitting a set of values of positive capacity 

14. In  this chapter  we suppose tha t  w = / (z) is a meromorphic  funct ion in [z[ < 1 

such tha t  its values lie in a plane domain  G whose boundary  F is of positive ca- 

pacity.  As is well known,  /(z) is then of bounded  characteristic.  

Let w=x(z)  m a p  the uni t  circle onto the universal  covering surface G ~r of G 

and satisfy the condition x ( 0 ) = / ( 0 ) .  Denot ing by  x -1 the inverse funct ion of x we 

form the funct ion ~(z)=x-~(/(z)) and choose the branch of x -~ so tha t  v2(0)=0.  

Since ~ (z) can be cont inued in the whole unit  circle it follows from the m o n o d r o m y  

theorem tha t  yJ (z) is single-valued. Obviously, I~v (z) l<  1 in I z] < 1. 
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Let  a ( * / ( 0 ) )  be an a rb i t ra ry  point  in G and let z 1, z 2, ... denote  all roots of 

the equat ion x ( z ) = a  in the uni t  circle. Since l y~ (z) l<  1, the  product  

et (9  (z)) = 1-[ r (z) - z~ 
I~1~ ~ 1 - ~ W (z) 

converges and represents  a regular analyt ic  funct ion in the uni t  circle. I t  follows 

from the principle of the a rgument  tha t  

2 ~  2 ~  

(3.1) f dargzt(y~(rd*))=rd f drr log [et(y~(re~))ldcf=2ztn(r,O), 
0 0 

(3.2) 

Here 

where n (r, 0) denotes the number  of the zeros of et (9 (z)) in I z I g r. Now z (~f (z)) = 0 

if and only if ~ (z)=z~, i.e., if and only if [ (z)=x (z,,)=a. Hence,  n (r, 0 ) f o r  et (v2(z)) 

equals n (r, a) for /(z),  and we obta in  by  integrating (3.1) with respect  to  r, 

2 ~  

f ( ' )  -~-2et log l e t (~0(r~ '~ / l l e~- log  I,~(~o(o//I = N  ~ , ) - ~  �9 
0 

(1) 
log let (Y~ (O))l = log let (O) l = ~. log I z. I = - N 1, ~---a ' 

v 

and thus, by (2.6), 

Similarly, 
log let (9 (0))1 = - g (a, / (0), G). 

log In (V (z))l = - g  C a, ] (z), G) = - g  (] (z), a, G). 

Hence, (3.2) yields the following relat ion 

27t (1)  if (3.3) N r,]- a +2-ft g(l(re'r 
0 

15. We shall now analyze the equat ion (3.3) in more detail  in the case tha t  the 

boundary  values / ( d  ~) of ] (z) belong to F for a lmost  all ~. 

Denoting 
2 n  

r  05 = ~ l i m  g(/(re~l,a, ala~, 
0 

we obtain a non-negat ive funct ion r (a) which measures the mean convergence of ] (z) 

towards the value a in the neighbourhood of the boundary  I z] = 1. By  (3 .3)we have 

(3.4) N (1, a) + r (a) = g  (a, / (0), G), 
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where the right-hand term is a domain function and independent of the part icular  

function /(z) up to the value of /(0). Hence, if some /(z)  takes a given value a 

relatively seldom, i.e., if N 1, is small, this is compensated by  a strong approx- 

imation of the value a in the neighbourhood of I z I = 1 so tha t  the sum N + ~ at tains 

its invariant  vMue, characteristic of the domain G. The situation shows an obvious 

similarity to Nevanlinna's  first fundamental  theorem for meromorphic functions. 

However, here the sum N +  ~ is essentially independent of the function [ (z) but  

depends on the value a considered, whereas the corresponding sum N + m in Nevan- 

linna's theory depends on the function but  not on the value a. 

A further analogue of Nevanlinna's  theory is found by  investigating the relative 

magnitude of the components N and q} in (3.4). Since r ( a ) i s  non-negative we 

have for all a 
N (1, a) <g  (a, / (0), G). 

On the other hand, it follows from Theorem 1 tha t  

N (1, a) _~g (a, / (0), G), 

except perhaps for a set of values a of capacity zero. Hence, up to such a null-set, 

N (1, a) =g (a, / (0), G) 

or, which is the same, 

(a) = 0. 

This result can be considered as an analogue of Nevanlinna 's  second fundamental  

theorem. 

By an example similar to the one used above in Section 7 it can be shown 

that  given an arbi trary closed set in G of capacity zero we always have a function 

! (z), satisfying the above conditions, such tha t  for this ! (z) the function q)(a) is 

positive at  all points of the given null-set. 

We summarize the above results in 

Theorem 6. Let /(z) be a meromorphic /unction in the unit circle I z[ < 1. Let the 

values of /(z) lie in a plane domain G, whose boundary I" is of positive capacity, and 

let the boundary values w = / ( e  re) belong to 1"/or almost all q~. Introducing the ]unction 

2n  

= lim g (l (r e ~),  a, G) d~0, 

0 
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which characterizes the mean convergence towards the value a in the neighbourhood o[ the 

]rontier, we have the invariant relation 

( ' )  N 1 , ~ _ a  + q5 =g(a, / (O),G).  

( Here N 1, is the main term [or we have 

except perhaps for a set o[ values a oJ capacity zero. Such an exceptional null-set can exist. 

t6 .  Let us give certain immediate conclusions of this theorem. Since theun ion  

of two sets of capacity zero also is of capacity zero the latter statement of Theorem 6 

can be expressed in the following form which stresses the invariance in the distribu- 

tion of values under the above circumstances. 

Corollary 2. Let [1 (z) and /2 (z) be two /unctions meromorphic in the unit circle 

and satis]ying the ]oUowing conditions: 

1. The values o] /l (z) and /2 (z) lie in a domain whose boundary I" is o] positive 

capacity. 

2. The boundary values fl (e~) and ]2 (eta) belong to F ]or almost all q). 

3. /1 (o) = / ,  (o). 

Under these conditions 

with the possible exception of a set of values o[ capacity zero. 

This result can also be stated in terms of the integral 

1 

0 

which was introduced in Section 9, as follows: 

Corollary 3. Let w =/1 (z) and w =/~ (z) be two meromorphic functions which/ul/iU 

the requirements 1--3 o] Corollary 2. Let the w.plane be covered with a non.negative 
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mass ix, which satisfies the condition ~ (e)= 0 /or every set e el capacity zero, and let 

f2 (r) denote the total mass on the image el I z l<  r by the considered /unction. Then 

1 

f ~ (r) dr  
r 

o 

has the same value /or /1 (z) and /~ (z). 

According to Shimizu and Ahlfors, Nevanlinna's first fundamental theorem can 

be written in the form ([7]) 

m (r, a) § N (r, a) = T (r), (3.5) 

where 

and 

(3.6) 

2~ 1/ 
m (r, a) = 2 ~  log 

0 

l / ~ l / ( r e ' D [  ~ Vl § [a[ 2 
[ / (r e' ~) - a I d ~ - log 

Vl+l/(0>l = VI+ [al  ~ 
J/(o)-aJ 

0 

A (t) denoting the area of the image of ] z l < t  by ](z) in the mapping onto the Rie- 

mann sphere. 

As remarked above, /~ satisfies the condition of Corollary 3 if d/~ is put  equal 

to the spherical element of area. Hence, by (3.6), in this special case Corollary 3 

yields 
T (I, h) = T (I, I~). 

Further, considering this result it follows from (3.5), by Corollary 2, that 

m (1, ]1 l~aa) = m (1' ] / ~ )  ' 

except at most for a set of values a of capacity zero. Choosing especially/1 (z)=/(z)  

arbitrarily and setting /2 (z)=x (z), we have 

(A) m 1, > m  1, , 

where inequality can hold only in a set of capacity zero. 

Considering the representation of N(1 ,  a) by means of the Green's function of 

the image of I zl < 1 by ] (z), the latter part of Theorem 6 can also be expressed in 

the following form which yields a geometric interpretation. 
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Corollary 4. Let / (z) be a meromorphic /unction in the unit circle and let it satis/y 

the conditions o/ Theorem 6. Then, with the possible exception o/ a set o/ values a o/ 

capacity zero, 
g (P,,  / (0), F) = g (a, / (0), G), 

v 

where F is the image o~ ] z l <  1 by w = / ( z ) ,  and P~ (v= 1, 2 . . . .  ) denote all points o/ F 

above the point w = a. 

t 7 .  L e t  us r e tu rn  to Theorem 6, and  consider a funct ion ] (z )which  satisfies the  

conditions s ta ted  there.  We call a value a normal for  / (z) if q} (a) = 0 ; in case q} (a) > 0 

the  value a is called exceptional. By Theorem 6, the  set  of except ional  values  a lways  

is of capac i ty  zero. 

For  a more  detai led s tudy  we introduce,  following the  example  of Nevan l inna ' s  

theory,  the concept  of de/iciency r (a) by  defining for  a :~/(0) ,  

~b (a) N (1, a) 
(a) = - = 1 - - 

g (a, / (o), G) g (a, ! (0), G) 

For  a = / ( 0 )  we pu t  

where 

(~ (a) = 1 

,--la) 

1 

(1, a) = --/n (r, a) ~ n  (0, a) d r + n  (0, a) log r. N* 
J r 
0 

By this definition, 0 < 5 (a) _~ 1. For  normal  values (~ (a) = 0, whereas  the  max ima l  

deficiency 1 is ob ta ined  if and  only if N (1, a ) = 0 ,  i.e., if and  only if a is a Picard 

except ional  value for  /(z). As ment ioned  above,  g iven an a rb i t r a ry  closed null- 

set  B in G we can find a funct ion /(z)  such t h a t  all points  of B are Picard excep- 

t ional  values  for  /(z),  i.e. a t  all points  of B the  deficiency a t ta ins  its m a x i m u m  

value 1. 

Excep t  the  values  0 and  1, dt (a) can take  any  value k in the  in terval  (0,1). To  

show this consider the  funct ion 

(3.7) / (z) = - - e z  - 1 e~_l,~+l 
e - - z  

where ;t > 0. I t  is easily seen t h a t  I / (z) l < 1 in I z I < 1, and  t h a t  ] / (e  ~)1 = 1 except  for  

= 0 .  Hence,  in this case G is the  uni t  circle ] w l <  1, F being the  circumference 

Iwl-- 1. 
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1 
This funct ion /(z)  has its single zero a t  the  point  z = - ,  so t h a t  

e 

Since now 

we have  

Thus  

N (1, O) = log e = 1. 

g (w, l (o), G) = log w -  / (0) ' 

1 

g (0, / (0), G) = log I1 ' "  (0) 1 - -  = I + L  

1 
5 (0) = 1 - ~ ,  

and  we see t ha t  a = 0  is an  except ional  value for this /(z).  

As a funct ion of 2, 5 (0) is cont inuous and  monotonica l ly  increasing. I f  2->0,  

(~(0)->0, and if 2 - ~ - ~ ,  5(0) ->1.  Hence,  given any  k, 0 < k < l ,  we a lways  have  a 

2 > 0  such t h a t  5 ( 0 ) = k  for the  funct ion (3.7). 

w 4. Applications 

18. Throughou t  this chapter  we suppose t ha t  /(z) is a meromorph ic  funct ion of 

bounded character is t ic  in I z I < 1 whose bounda ry  values w = / (e'~) belong to I wl ~ 1 

for a lmost  all % By  Theorem 2, the  funct ion /(z)  ei ther is bounded:  I / ( z ) ] ~  1, or 

/ ( z )  t akes  every value a, l al  > 1, except  perhaps  a set  of capac i ty  zero. 

Let  us first  consider the case I / ( z ) l ' ~  l, and normalize /(z)  by  the  requi rement  

/ ( 0 ) = 0 .  Since the Grceu 's  funct ion g (w, a) of the unit  circle I w l <  1 is 

I 1 - S w  
g(w, a) = log lwL~_a  , 

the relat ion (3.3) becomes ( a ~ O )  

2~ 

f l l - 5 / ( r e ' ~ ) '  1 1 log - d ~ 0 + N ( r , a ) = l o g [ ~ .  (4.1) 2 x ] (re ~ )  - a 
0 

I f  z,,  z 2 . . . .  denote  the a-points  of ] (z) we have  

N ( r , a ) =  ~ log �9 
Izvl < r  

Hence,  by  (4.1), 

(4.2) 
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where every  z,. appears  according to its mult ipl ic i ty .  I f  the p roduc t  does not  contain 

any  fac tor  it is interpreted,  here as well as below, to mean  uni ty.  

I t  follows f rom (4.1) t h a t  if equal i ty  holds in (4.2), / (z)  mus t  necessari ly have  

bounda ry  values of modulus  1 a lmost  everywhere .  On the o ther  hand,  we conclude 

f rom Theorem 6 t h a t  if this  condit ion is fulfilled equal i ty  is t rue  up  to a set  of 

capac i ty  zero. We thus  get  

Corollary 5. Let / (z) be regular in the unit  circle and satis/y the conditions ]/(z) [ < I,  

/ ( 0 ) = 0 .  Let z, ,  z 2 . . . .  denote all points in [z[< l, where /(z)  takes a given value a 

( * 0). Then 

Equality can hold only i/  ]/(et~)l = 1 /or almost all q). I[  this condition is /ul/illed 

equality is valid except perhaps /or a set o/ values a o/ capacity zero. 

Hence,  for a bounded  funct ion / (z) for which / (0) = 0 and l/(etr  = 1 for a lmost  

all ~, a value a (~: 0) is normal ,  in the  sense of the  definit ion given in Section 17, 

if and only if 
 lz ]=lal. 

Iz~l<l 

In  case a = 0  the corresponding result  reads as follows: I f  

7~ n + l  / ( z ) = e , z " + c , + l  + ... ( c , * O )  

the value a = 0  is normal  if and only if 

(4.3) 1-I Iz, l = l c ,  I, 
0<1%1<I 

where zl, z~, .. .  denote  the  zeros of /(z).  I f  a = O  is an  except ional  value we have  

H Iz, l>[e.I. 
o< I%1 < 1 

19. Let  us consider these relat ions f rom a somewhat  different  poin t  of view. 

We const ruct  the  funct ion 

r (! (z) - a)  1"-I r ( z -  z~) 

where zl, z~, .. .  again  denote  the  a-points  of /(z).  B y  Schwarz ' s  l emma,  [to (z, r) l_~ I 

in ] z l <  1. Le t t ing  r ~ l  we thus  obta in  the  inequal i ty  
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(4.4) /(z)_ Z a z - z~_ 
1 - a / ( z )  <=i~1 1 - ~ , z  " 

F rom the max imum principle we conclude tha t  if equal i ty  is t rue in (4.4) for 

one point  z, it identically holds in z. Now, for z = 0 the relation (4.4) coincides with 

(4.2). By  considering Corollary 5 we thus find again the following result  of F ros tman  [1]: 

Let / (z) be a regular /unction in the unit  circle such that I / (z) I < 1 and I / (e' r [ = 1 

/or almost all qJ. I /  a is a complex number, l a l <  1, and Zl, z 2 . . . .  denote the a-points 

o/ / (z ) ,  we have the representation /ormula 

z - zv e_ t at~ / (z) -- a = eta I-~ ~ - - - ~  (~  = :r + arg z~) 
(4.5) 1 - -a / ( z )  izvl< 1 

i/ and only i/ a is a normal value /or [ (z). Hence, (4.5) is valid except perhaps /or a 

set o/ values a o/ capacity zero. 

As is well known, every convergent  Blaschke-product  z~ (z) has boundary  values 

(e t~) of modulus 1 for almost  all ~. F rom the above we conclude the following 

interrelation between the class of bounded functions with boundary  values of modulus  

1 almost  everywhere and its subclass of convergent  Blaschke-products :  1/ / (z)  be. 

longs to the /ormer class then /or "almost all" a the linear trans/orms 

/ ( z ) - a  
1 -a / ( z )  

belong to the latter class. In  particular,  if a = 0  is a normal value f o r / ( z ) ,  i.e., if (4.3) 

holds, then /(z) can be expanded as a Blasehke-produet  by means of its zeros. 

Heins has recently proved 1 tha t  an infinite convergent  Blaschke-product  takes 

every value e t~ ( 0 < v  ~< 2~)  infinitely often on the boundary .  Hence, by  the above 

result, if /(z) is non-rat ional  and a is a normal  value for /(z),  the funct ion 

/ (z) -- a 

1 -a l ( z )  

also has this property.  This yields us 

Theorem 7. Let / (z)  be regular and non-rational in the unit  circle, It (z) l_~ 1 and 

II (e' ~) I = 1 almost everywhere. Then / (z) takes every value e t ~ (0 < ~ < 2 •) infinitely 

o/ten on the /rontier I zl = 1. 

I In  a lecture g iven  in Zfirich in F e b r u a r y  1953. 
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20. Let us now suppose t ha t  w = / ( z )  also takes values outside [ w i g  1, and  

normalize / (z) by  the requi rement  / (0) = ~ .  If  / (z) -- a ([ a[ > 1, a :~ cr at  the points  

Zl, z2 . . . .  , we have by  Theorem 1, up to a set of capacity zero, 

1 
N (1, a) = ~ log i ~ i  >= g (a, ~ ,  (Iwl > 1)) = log ]a[. 

We take the an t i logar i thm and  express the result  in 

Corollary 6. Let / (z) be meromorphic and o/bounded characteristic in the unit  circle, 

/ ( 0 ) =  ~ ,  and let [/(eta) I<= 1 /or almost all qJ. I /  a is a complex number o/ modulus 

> 1, and zl ,  z 2 . . . .  denote all a-points o/ [ (z), then 

1 

except perhaps /or a set o/ values a o/ capacity zero. 
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