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Introduction 

The family F* may be defined over an arbitrary open Riemann surface Q. When Q is 

not simply connected there may exist no single-valued P H  [pseudoharmonic] function on 

Q with F* as its family of level lines. On the universal covering surface M of Q there do 

exist P H  functions u, single-valued on M and with a family F~  of level lines which projects 

into F* on Q. While u may not be single-valued on Q it may behave like an integral in 

that it has branches which differ by a constant, or it may have a real logarithm which has 

this property. In studying such behavior of u one may focus on the branches of u obtained 

by continuation of u along a single closed curve k not homotopic to zero on Q. 

In this way one is led to the essentially typical case of a family F* defined on a sphere 

Z* with a north pole N and south pole S removed. Although there may be no single-valued 

P H  function u on Z* with F* as its family of level lines there will in general be multiple- 

valued functions u satisfying linear relations 

(1.0) u[p (1)] = au(p)  + b (a I= O) 

where p and p(1) are points on the universal covering surface M of Y~*, and where p and 

p(ll in M project into the same point in Z*, but on M have longitudes 0 and 0 + 2 Jr respec- 

tively. However the values of the constants a and b for which a relation (I.0) may hold 

depend in a deep way upon the nature of the family F*. See MJ 4 and MJ 5. 

In  the present paper we decompose ~:* into canonical regions, "primitives," "caps," 

"annuli," "polar sectors," "cut  sectors," etc., whose nature is determined by F*. With 

F we associate integral indices v (F) and # (F) [defined in a later paper]. The existence of 

P H  functions u satisfying prescribed linear relations (1.0) depends upon these indices and 

upon the character of the decomposition of Y~*. 

1 --533807. Acta Mathematica. 91. Impr im6 lo 18 mai 1954. 
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W h e n  F *  is non-s ingular  K a p l a n  [3] has  given a decompos i t ion  of Y~* in some bu t  

no t  in all  of the  cases we f ind essent ial .  K a p l a n ' s  resul ts  are less genera l  in an  a priori 

sense t h a n  ours even in the  non-s ingular  case in t h a t  he requires  the  curves  in F *  to  be 

homeomorph ic  mapp ings  of in te rva l s  and  circles. We  confi rm m a n y  of K a p l a n ' s  theorems  

pa r t i cu l a r ly  on a sympto t e s ,  and  a d d  the  resul ts  necessary  for our  purposes .  Our  main  

theorems  are  s t rong ly  af fec ted  b y  the  presence of s ingular  po in ts  in F * .  See also B o o t h b y  

[1, 2] and  TSki  [5]. 

w 2. R e v i e w  and ex tens ions  

Let  E be a 2-sphere.  Le t  N and  S be d i ame t r i ca l l y  oppos i te  poles  in E, t e r m e d  re- 

spec t ive ly  the  nor th  and  south  poles of Z. Se t  

Z*  = Z  - N - S .  

Let  ~o be a d iscre te  set of po in ts  in Y~* and  set  G = ~]* - w .  Consider  a f ami ly  F of open 

arcs or top  [topological]  circles in G suppos ing  t h a t  F conta ins  a unique  e lement  :r meet ing  

any  given po in t  pEG. A n  open arc ill G is under s tood  as t i le  image  in a 1 - 1 cont inuous  

mapp ing  into G of an  open in te rva l .  The arc  is the  image  and  no t  the  mapp ing .  A top  

circle in G is t i le  homeomorph  in G of a circle. 

F-neighborhoods Xv. Le t  n bc the  open disc { Iw] < 1} in the  eomI)lcx w-plane.  W i t h  

each po in t  pE)-]* there  shall  be assoc ia ted  an F -ne ighbo rhood  Xv of p with )Cv c G U p, 

and  a top  mapp ing  of )~v onto  1) which sen(ls p into w -- 0 and the  ma x ima l  open arcs of 

FIX  ~ in to  the  max ima l  open level arcs  of ~ w  n, in D,n > 0, [with w = 0 exc luded  when 

n > 1]. We  suppose  n = 1 for pEG and  n > 1 for peso. Po in t s  in eo arc  t e r m e d  singular 

poin t s  of F .  The  va lue  wED is t e r m e d  a canonica l  p a r a m e t e r  of i ts an t eceden t  in Xv. 

The open arcs of F [  ( X v -  p) inc iden t  with p are t e r m e d  F-rays of Xv. These rays  

d iv ide  Xv - p in to  2n  open regions t e rmed  F-sectors of Xv inc iden t  wi th  p. 

Right N. W i t h  each pEG we also associa te  a ne ighborhood  Nv of p in G and  a homeo- 

morphic  mapp ing  of _~v onto  a square  K : ( - 1  _<u < 1 ) ( - 1  ~ v ~ 1) such t h a t  p goes 

in to  the  origin in K and  the  m a x i m a l  subarcs  of FI~V v go into arcs u = c , - 1  ~ v g  1, 

where e is a cons tan t  in the  in te rva l  [ -  1,1]. W e  refer to  N v as a r igh t  ne ighborhood  or 

r igh t  Nv of p and  t e rm (u,v) canonical coordinates of the  an teceden t  in N r  of (u,v) in K.  

An  open arc /t in Nv on which v = T ( u ) ( - 1  < u <  1), where q~ is s ingle-va lued  and  

cont inuous,  is called a t r ansversa l  of Nv. The  open arc in Nv on which v = 0, - 1 < u < 1, 

is called the  principal transversal of Nv. More genera l ly  a t r ansve r sa l /x  shall  be any  open 

arc  in G each po in t  of which is in an  open subarc  of ~t which is a t r ansversa l  of some 

r igh t  N~. A t ransversa l  with a closure in Y~ which is an  arc  in G is the  p r inc ipa l  t rans-  
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versal of a suitably chosen r ight  Nv. A non-singular arc in Z* is te rmed a transverse arc 

if a subarc of some transversal.  I f  Y is an F-sector  incident with p, a t ransversal  meeting 

each element of F l Y  and with p as limiting end point  is called a transversal ray of Y in- 

cident with p. Transversal  rays  ~t and # incident with p, bu t  in different F-sectors of Xv  

incident with p, define a transversal cut ~p~ of X~. 

F-vectors. Any  sensed subarc of an :rE F will be called an F-vector .  B y  definition an  

F-vec tor  is simple and closed in G, and never a top  circle. Each  F-vec tor  is in some r ight  

N~ [MJ 2 w 3]. 

Coherent sensing. Let  each r162 F be given a sense. The resulting family  F s of sensed 

will be called a sensed image of F .  We shall refer to a continuous deformation A of an F-vec tor  

A in the space of F-vectors  with a Frdchet  metric. The sense of an image of A under  A 

shall be determined by  the A- images  of the initial and final points  of A. We say t h a t  F s 

is coherent ly sensed if any  continuous deformation A of an F-vec tor  A (initially sensed as 

in F 8) through F-vectors  sensed by  ~ is necessarily th rough  F-vectors  sensed by  F s. 

We say tha t  F is coherent if it admits  a coherent ly sensed image F s, otherwise non-coherent.  

A family F on Z* m a y  be coherent  or non-coherent  as the following examples show. 

Examples. Let  Z* be represented by  the z-plane, with z =~ 0, S by  the origin, and 

N by  the point  a t  iafinity. I f  z = x + iy, the level lines of x on Z* afford a coherent  

family. The loci on which 
X 2 

y=  ~ - a - a  ( a > 0 )  

taken with the open arc on which x = O, y > 0 afford a non-coherent  family.  

We shall establish the following theorem. 

Theorem 2.1. A necessary and su]/icient condition that F be coherent over G is that, 

taken over some neighborhood o / N  or o /S ,  F admit two distinct coherent sensings. 

This follows as in the proof of Th 4.2 of MJ  2. 

The/amily  F*. The family F *  shall consist of elements h, k, m . . . .  in E* which are top  

circles or open arcs in E*. I f  a non-singular point  p is in h, h shall contain the open arc 

ave  F meeting p and any  limiting end point  or points of avEE*.  An hE F *  comprising just  

one ~E F is called non-singular.  

Positive and negative limit points. Let  an open arc hEF* be sensed and be given a 

1 - 1 representat ion in which p (t) is the 1 - 1 continuous image of t, - co < t < o% with 

t increasing in the positive sense of h. By  a positive (negative) l imit point  of h is mean t  

any  point  in E which is a l imit point  of a sequence of points p (t~), where t ,  increases (de- 

creases) wi thout  limit as n ~ oo. 
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Covering sur/aces M and /amilies F M. Le t  K be a n y  open, o r ien ted  and  connec ted  

R i e m a n n  surface and  w, F ,  "F* admiss ib ly  def ined for K as above  for Z*.  L e t  M be a 

r e l a t ive ly  unbranched ,  unborde red  covering surface of K.  Le t  aM be a n y  m a x i m a l  open 

arc  or top  circle in M "cover ing"  an  e lement  ~ E F .  I f  cr is an  open arc, ~ M  is an  open arc. 

I f  ~ is a top  eircle, 0~ M is an  open arc  or a i lomeomorphic  t op  circle. The t o t a l i t y  of the  

e lements  0~ M covering the  e lements  gE F forms a f ami ly  FM in M.  Le t  O) M be the  set of po in ts  

in M covering t i le  set  ~o in 22". The fami ly  FM includes  one and  only  one e l emen t  meet ing  

each po in t  of M - o ~ .  J u s t  as F *  was def ined in Z* with  the  a id  of F and  ~o, so here F ~  

is defincd in M in te rms  of FM and e0M. 

In  the remainder o/ this paper M shall be the universal covering sur/ace o/22". 

F r o m  MJ  2 we infer the  following. 

Theorem 2.2. Let the universal covering sur/ace M o/ "Z* be considered as a top sphere H 

/rom which one point Z has been removed. 

(1) Then any open arc O~ME FM has limiting end points in H, distinct unless coincident 

with Z. Each end point o/ O~ M di[/erent /tom Z is a point o/WM. Cf. MJ  2 Th 7.1. 

(2) There are no top circles in F~. 

(3) For any open arc hME F~ the positive and negative limit sets reduce to Z. Cf. M J  2 

Th 7.2. 

Corollary 2.1. No two top circles in F* can intersect or be joined by a subarc o/an element 

in F*. 

If  two top  circles gl and  g2 ill F *  met  there  would be a f ini te  sequence of e lements  of 

F in gl U g2 whose closure would car ry  a closed curve g (not necessar i ly  s imple)  bounding  

a region in 22*. A su i t ab ly  chosen closed curve gM covering g wouhl be s imple  wi th  carr ier  

in F ~ ,  con t ra ry  to Th 2.2(2). The  second a f f i rmat ion  of the  corol lary  is s imi la r ly  es tabl ished.  

F*  Theorem 2.3. I[ M is the universal covering sur[ace o[ 22* no hE M intersects a trans- 

versal or a transversal cut in M in more than one point. 

Since M is the  homeomorph  of a f ini te  z-plane this follows from Cor. 7.5 of M J  2. 

w 3. F-sets and F-regions 

W i t h  F there  are  na tu r a l l y  assoc ia ted  cer ta in  sets  and  regions which we now define. 

By  a region we shall  a lways  mean  an  open, connected  set. 

F.sets. A set  H c Z will be t e r m e d  an  F - se t ,  if whenever  a non-s ingular  po in t  p is in 

H,  the  a r E F  mee t ing  p is also in H.  F r o m  the  na tu r e  of a r igh t  Np of p i t  is clear  t h a t  the  



CURVE FAMILIES F *  LOCALLY THE LEVEL CURVES OF A PSEUDOHARMONIC FUNCTIOI~ 5 

complement,  closure or boundary  of an F-se t  is an F-set .  The intersection, or union of 

any  ensemble of F-sets  is also an F-set .  

Conditions O. An open set R in Z which is an F-se t  will be said to satisfy Conditions 

0 if the inclusion of a point  p of Z* in fl R implies t ha t  any  sector of a sufficiently restricted 

F-neighborhood X~ of p is in R or in Z - / ~ ,  and at  least two of the F - rays  bounding sectors 

of Xv N R are in fl R. 

F-regions. A simply connected region R in Z whose boundary  consists of more than  

one point  and which satisfies Conditions O will be called an F-region.  

The boundary fiR. I f  R is an F-region f iR is an F-set .  Le t  pEf lR  be non-singular and 

suppose tha t  ~v E F meets p. A n y  sufficiently small r ight  ne ighborhood Nv of p is separated 

by  :r into two regions of which at  least one and possibly bo th  are in R. 

Up  to this point  we have not  used curves (which are mappings) bu t  ra ther  sets such 

as open arcs and top circles. We now introduce open curves and closed curves as continuous 

mappings into Z of sensed open arcs and circles respectively. Two such curves ql  and ~2 

are the same or more precisely in the same curve class if ql  = ~2 T, where T is a top sense 

preserving mapping of the domain of T1 onto the domain of ~2. I f  T is a top  mapping  of 

the domain of a curve ~ onto itself invert ing sense, then ~ T will be denoted by  ~ - .  We 

m a y  denote ~ by ~ + .  

If  ~0 is a mapping of a domain E into Z defining a curve, the image ~(E)  in Z will be 

termed the carrier ]~01 of q. By  the intersection of two curves q and v 2 we mean  the inter- 

section of [~1 and ]91. By  definition a curve ~ bounds a set E if f iE  = ]q[ .  

R-continuations in fl R. Suppose Z oriented so tha t  the local r ight  (left) sets of any  

point  in an open sensed arc are well defined, cf. MJ 1 w 5. Let  R be an  F-region and a E F 

be in fl R. Le t  cr be sensed so tha t  its local r ight  sets are in R. Then R can be continued as 

a locally simple curve q, cf. Morse [4], so tha t  its carrier is an F-set ,  and so tha t  the sensed 

carrier of a simple open subcurve of ~ has its local r ight  sets in R. Continued maximal ly  

in this way  with carrier in F *  If R, ~ will be called a right R-cont inuat ion  in f iR. Le/t R- 

continuat ions in f iR are similarly defined. Two R-cont inuat ions  ql  and ~2 are regarded 

as the same if and only if they  are bo th  r ight  or both left continuations,  and if ~1 and T2 

are in the same curve class. 

We need a parameter izat ion of the boundary  of an F-region.  We shall make use of 

an open disc D { I w I < 1 } and suppose t h a t  fl D is given the counter-clockwise sense in the 

w-plane, so tha t  local left sets of fl D are in D. 

Theorem 3.1. An F-region R is the 1 - 1 image in a directly con/ormal map ] o~ an open 

disc D (  Iwl < 1} onto R. A n y  such map admits a continuous extension over D such that f lD 
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is mapped onto fl R. This mapping is 1 - 1 in a su//iciently small neighborhood relative to 

D o /any  point o/fl  D whose image is in Z*. The antecedent in fl D o / N  or o / S  is a nowhere 

dense and possibly empty set. The mapping 

(3.1) q~ =/[r iD 

de/ines a closed curve bounding R o/which ~ R is the carrier. 

One first  defines / over  D. B y  well k n o w n  theorems  one can ex tend  / as s t a t ed  over  a 

set  D 1 such t h a t / ( D 1 )  cove r s /~  N Z*.  I f  f i r  does not  include N or S the  proof  is complete .  

To cont inue consider  the  case in which fl R includes  bo th  N and  S. 

Le t  DN and  Ds be respec t ive ly  the  / - an teceden t s  of the  in tersec t ion  of R N •* wi th  

the  nor the rn  and  southern  hemispheres  of Z. Le t  E be the  set of po in ts  in flDN a t  which 

/ is no t  y e t  def ined.  S e t / ( z )  = N for zEE. W e  shal l  show t h a t  / as  ex t ended  is con t inuous  

a t  each po in t  z 0 of E.  

Now E is bounded  from Ds so t h a t  / is cont inuous  a t  z 0 i f / [  DN is con t inuous  a t  z 0. 

Le t  zn, n = 1, 2 . . . .  then  be an  a r b i t r a r y  sequence of po in ts  in DN tend ing  to  z 0. Then  

/(zn)--> N.  Otherwise  the  set of po in ts  /(zn) would have  an  accumula t ion  po in t  p in / ( / )N) - N  

a t  which / - l ( p )  is well def ined and  has  a f ini te  set of values  a 1 . . . . .  am, no t  in E and  in 

numbcr  a t  mos t  the  number  of di f ferent  F - sec to r s  in an  F - n e i g h b o r h o o d  of p. I n  a suf- 

f ic ient ly  small  ne ighborhood  of each a i in D,  / is well  def ined and  z bounded  from z o. F r o m  

this  con t rad ic t ion  we infer t h a t / ( z ~ ) - - > N  and  t h a t  / is cont inuous  a t  z 0. 

W e  s imi la r ly  ex tend  / over  Ds .  The  case in which f i r  includes  N or  S alone is s imilar .  

I f  the  an teceden t  of N in r D  were dense in riD,/ (z)  would equal  N over  some arc  of 

fl D and  hence be cons tan t .  

The theorem follows. 

Inner cycles. A J o r d a n  curve ~ whose carr ier  is a top  circle in F *  will be cal led an inner  

cycle. 

N-loops, S-loops, NS-curves, SN-curves. L e t  g be an  open arc  in F * .  Le t  ~ be a s imple  

sensed curve whose carr ier  is g. Suppose  t h a t  g has  a un ique  nega t ive  l imi t  po in t  A and  

a unique  pos i t ive  l imi t  po in t  B. Then  e i ther  A = B = N,  or A = B = S ,  or A = N and  

B = S, or A = S and  B = N. [Th 2.2(3).] Then  ~ is called respec t ive ly  an  N- loop,  S- loop,  

NS-curve ,  SN-curve .  B y  the  exterior E9~ of an  N- loop  [S-loop/  wi th  carr ier  g is m e a n t  

t h a t  region in E which is bounded  b y  ~ and  conta ins  S [N]. The  in ter ior  I ~  of ~ is def ined 

as Z - C 1  E ~ .  W e  call a t t en t i on  to  the  fact  t h a t  an~'N- or  S-loop,  NS- or S N - c u r v e  is in Z*.  

Meridians. The carr ier  g of an  NS.  or S N - c u r v e  will be cal led a mer id ian .  I f  M is 

the  universa l  covering surface of ]E* one sees t h a t  a gM cover ing g d iv ides  M into  two d i s jo in t  

regions.  
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Lemma 3.0. Let cf be an inner cycle or an N-  or S-loop in F*,  and let q be a point not in 

q~ if q; is an inner cycle, and in EqJ if q) is a loop. Then a transversal ray 2 incident with q 

meets q) in at most one point. 

Let  H be either one of the two regions bounded by  qo if ~ is an inner cycle, and I q  if 

~o is a loop. If  ~ enters H at  a point  p of T it leaves H at  no other  point  r. Otherwise the 

subarcs of 2 and [ ~ ] with end points p and r would bound a s imply connected region in E 

containing neither N nor  S. This is impossible by  Th 2.3. 

Lemma 3.1. A n y  set of N-loops (S-loops) with disjoint interiors and diameters exceeding 

some positive constant is finite. 

I f  the lemma were false for N-loops there would exist a set of N-loops ~vn, n = 1, 2 . . . .  

with disjoint interiors I~% and points p . E q ,  such t h a t  p~--->qEZ* as n t oo. The number  

of ~% which meet  q is at  most  the number  of F-sectors in an F-ne ighborhood of q. We can 

accordingly suppose tha t  no ~% meets q. Note  tha t  q is in no I~%. We can fur ther  suppose 

the Pn chosen in ~% so as to be in a transversal  r ay  ;t incident with q. Since q is in ET~ 

for each n, it follows from L 3.0 tha t  q= meets ), only in p~. Hence I~% includes the open 

arc 2~ of )t separated from q by  Pn" Thus 

Iq) n N Iq~ m D ~ N ;tm. 

This contradict ion to the choice of the qn implies the lemma. 

To adequate ly  describe the boundary  of an F-region we mus t  define N- and S-circuits. 

N-circuits, S-circuits. N-circuits  are defined as locally simple open curves T in Y~* 

whose carriers are F-sets  which have end points a t  N (i.e., positive and negative limit 

sets in N) and which intersect themselves wi thout  crossing. F r o m  this definition of an 

N-circui t  the reader can derive the following decomposi t ion of an N-circuit .  

When  ~ is an N-circuit ,  [(P[ carries three open arcs, a, b, c, whose closures are simple 

F-sets; of which ~ has the initial point  N and a terminal point  PEY~*, $ has the initial point  

P and terminal  point  P ,  ~ has the initial point  P and terminal  point  N. These arcs and end 

points N and P derive the order 

N a P b P c N  

from cp. The top circle $ separates N from S. Final ly a N b = c N b = 0, whiie a N c is the e m p t y  

set, or a half open arc with l imiting end point  P ,  or a = c. 

The N-circui t  ~0 carries the top  circle $. Let  ~p be an inner cycle with carrier l; and 

with a sense derived f rom ~. We term ~ the inner cycle of the N.circuit  q~. I t  is uniquely 

determined by  ~0. [Cot 2.1.] 
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When ~ is an N-circui t  the interior Iq) of ~ shall be the  region whose bounda ry  is 

I ~ I U N. This  region is unique and  does not  Contain S. 

The definit ion and decomposi t ion of an S-circuit  are similar. 

The sensed closed curve q) = f  [fl R o / T h  3.1. When  fl R meets  N or S let d be any  m a x i m a l  

open arc in f lD such t h a t  ~(d) is in Z*.  Then ~ I d  is a locally simple, open, sensed curve ~0 

with end points  in N U 5, and  l yJI is an F-set .  B y  v i r tue  of the  conformal i ty  of f l D,  the 

cont inui ty  o f ' / I / ) ,  and  the locally simple character  of ~[d,  ~1 d is a left R-cont inua t ion  

in fl R. When  fl R meets  nei ther  N nor S we set  d = fl D and note  t h a t  ~ = ~ I d, so t h a t  

is a left R-cont inua t ion  in f iR  with carrier f iR. In  each of the above  cases we t e rm ~ l d  a 

maximal  subcurve of q9 in Z*.  

The following theorem is basic. 

Theorem 3.2. I f  the boundary curve o / a n  F-region R is given by (3.1) in Th 3.1 then any  

" subcurve" y~ of q9 maximal  in F~ * is a left R-continuation in fl R.  

(1) Each maximal  subcurve ~o of q) is either (a) an N-  or S-loop, (b) an N-circuit,  (c) an 

S-circuit, (d) an N S .  or SN-curve,  or (e) an inner cycle. 

(2) Different types o/subcurves (b) to (c) cannot coexist. There is at most one vd o / t ypes  

(b), (c) or (e). When an inner cycle q~ occurs IqJ[ = f i R .  

(3) Type (d) occurs if and only i / f i R  D N 0 S. The subcurves y~ then include lust one 

NS-curve Y)l, and just one 5N-curve Y)2. I f  Iv21] :v l yj2[, Iv211 N 1~21 is either empty, a point, 

an arc, or a half open arc with one limiting end point at N or at 5. 

(4) The carriers o / n o  two v 2 intersect at most excepting v21 and YJ2 in (3). 

Le t  (q0} be the set  of subcurves  y~ of ~ max ima l  in Z*.  

The first s t a t emen t  in the theorem has been covered.  

Proof o / (  1 ), Caze I. The subcurve  ~0 joins the two poles. Then  ~0 mus t  be simple. Other-  

wise l y~l would car ry  a top circle separa t ing  N f rom S on R. This  is impossible when 

joins pole to pole and R is connected.  In  Case I,  ~ is an NS-curve  or 5N-curve .  

Case I I .  Not Case I.  I f  ~ is s imple it  is clearly an N-  or S-loop, or an inner  cycle. I f  

not  simple ~ is locally simple, has  an F-se t  carrier, intersects  itself wi thout  crossing itself 

and joins a pole Z to  Z. These are the character is t ics  defining an  N- or S-circuit .  

Proof of (2), Case I.  v 2 is an inner cycle. In  this case fl R = I~] ,  and all types  o ther  t han  

(e) are excluded. 

Case I I .  ~ is an N- or 5-circuit .  An inner cycle is excluded as jus t  seen. Since ]Y~I 

separates  S f rom N,  an N-circui t  excludes an S-circui t  and  vice versa,  and  any  circuit  

excludes an N 5 -  or SN-curve .  
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Case I I I .  yJ is an  NS- or SN-curve .  The exclusion of t ypes  (b), (c), (e), has  a l r e a dy  

been es tabl ished.  

Proo/ o/ (3). I t  is i m m e d i a t e  t h a t  ~ is of t y p e  (d), on ly  if f i r  inc ludes  N U S. Conversely  

if T is a closed curve and  meets  N and  S there  is a t  leas t  one N S - c u r v e  Y~I, and  one S N - e u r v e  

v~2 in {~}. These curves ~01 and  ~2 intersect ,  if a t  all, as s t a t ed  in Wh 3.2(3). F o r  I~ll  U [~21 

canno t  ca r ry  a t op  circle g; since g would  e i ther  s epa ra t e  N from S, which is imposs ib le  

when fiR ~ N U S, or bound  a region not  conta in ing  N or S,  which is imposs ib le  by  Th 2.2. 

F ina l l y  YJ1 and  F2 are  unique  as NS- and  SN-cu rves  in {~}. To see th is  le t  RM cover  

R on M, and  in fl RM let  ~fl M and  ~f2M cover ~Pl and  YJ2 respect ive ly .  There  can be no mer id i an  

g in fiR which is no t  covered on M b y  yJ1M or b y  yJ2M; otherwise a covering gM of g in RM 
would  d iv ide  RM. This is impossible  since RM is a home omorph  of R. W e  infer  t h a t  vd~ 

a n d  y~ are  un ique  NS- and  SN-cu rves  in {~}. W e  note  t h a t  y~l M N ~ M  = 0. 

Proo] o/ (4). Le t  ~ be any  e lement  of {~} of t ype  (a), (b), (c), or (e). Then the  closure 

of l~ I separa tes  E into  a t  leas t  two open sets of which one, say  ~2, conta ins  R. A n y  c lement  

of {~} is in R c $2. Lc t  p be a po in t  of ~]. A ne ighborhood  1t v of p re la t ive  to .(2 m a y  be 

ob ta ined  as a union of a f ini te  n u m b e r  of left  sets of ~ associa ted  with  p. Since ~(,) D R, Hv 

conta ins  a ne ighborhood  of p re la t ive  to  R. Bu t  if suff ic ient ly  res t r ic ted ,  the  above  left  

sets  of ~ are  in R, since ~ is an  R-con t inua t ion ,  so t h a t  H~, if suff ic ient ly  rcs t r ic tcd,  is a 

ne ighborhood  of p re la t ive  to R. We suppose H v so restrictc(t .  

Le t  F be any  e lement  of {q~}. Thcn 

I,pl nsT, c - R) n t i s =  n f iv .  

If  ~v meets  ~ i t  mus t  then  be carr ied by  IvTI. Bu t  I~tl carries n o  e l e m e n t  in {~v} o ther  than  

~. Thus  in tersect ions  of e lements  of {7} can occur  only  for two e lements  of t y p e  ((1). This  

es tabl ishes  Th 3.2 (4). 

We  shall  now give cer ta in  def ini t ions  and l emmas  useful in the  app l i ca t ion  of Th 3.2. 

F*-cycles. Let  R be any  s imply  connected  region in ~ which conta ins  S and  whose 

b o u n d a r y  fiR is the  union of N and of a f ini te  or coun tab ly  inf ini te  set of d i s jo in t  N-h)ops. 

Then  R is an  F- reg ion  whose b o u n d a r y  becomes the carr ier  of a closed curve def ined by  

the  mapp ing  ~ =[]riD of flD onto  f i r  as in Th 3.1. W e  t e rm the  curve ~ or ~v-  an  N- 

cycle. S-cycles  are s imi la r ly  defined.  

A n  N-cycle, S-cycle, or inner cycle will be called an F*-cycle. 

Concavity. Let  R be a region bounded  in pa r t  by  F*-cyc les ,  circuits,  or open arcs iu 

F * .  A n y  such e lement  ~ will be t e r m e d  concave t oward  R if no e l emen t  of F*IR has a 

l imi t ing  end po in t  in q. W e  t e rm R concave if no e lement  in F *  I R has  a l imi t ing  end po in t  

in fiR. If  an F* -cye l e  q bounds  a region H and  is concave t o w a r d  H,  ~v will be t e r m e d  con- 
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cave toward  any  set in H.  I n  pa r t i cu l a r  an  inner  cycle will  be t e r m e d  N-concave  [S-concave]  

if concave t o w a r d  N IS]. An  N- loop  9 will  be t e r m e d  S-concave  [N-concave]  if concave 

towards  E 9 [19]. An S- loop 9 is t e r m e d  N-concave  [S-concave] if concave towards  E 9 [ I 9 ] .  

F*-sets. A set in X will be cal led an  F * - s e t  if i t  con ta ins  each hEF* which i t  meets .  

I n  pa r t i cu la r  an  F * - s e t  which conta ins  an ccEF conta ins  a n y  l imi t ing  end po in t  which 

m a y  have in X*. The union or in tersec t ion  of an  ensemble  of F* - se t s  is an F*-se t .  Regions  

bounded  b y  F*-eyc les  whose m a x i m a l  subcurves  in 2~* are non-s ingular  are  F*-se t s .  

The  following is pa r t i cu l a r ly  noted.  

(A). I / a  region R is an F*-set and i/ Y is an F-sector in R incident with a point q in 

fl R, then fl R includes the two F-rays in fl Y incident with q. 

The following l e m m a  is a ma jo r  tool  in app ly ing  Th 3.2. 

Lemma 3.2. Let W be any ensemble o/ regions R each o/which is the interior o/ a non- 

singular N- or S-loop, or a region bounded by a non-singular inner cycle, and set U = Union  

R I ( R E W ) .  

(a). Then U is an F*-set. 

(b). U satis]ies Conditions O. 

(c). I] the regions o/ W /orm a sequence H 1 c  H 2 ~  .... i] ~ * -  U ~-0, and i / f H ~ i s  

a top circle in F / o r  each n, then U is concave and f U I Z * i s  simple. 

We discard  the  t r iv ia l  case in which fl U N Z* = O. 

Proo/o/  (a). Since each RE W is an F*-se t ,  U is an F*-se t .  

Proo] o] (b). Let  q hc a po in t  of/~ U in ~ *  and let  Y be an a r h i t r a r y  F - sec to r  imd(lcnt  

wi th  q. We prove the folh)wing. 

(m). I /  f l (Y  0 U) meets q then Y ~ U. 

Case I. Some HE W conta ins  an F - s e c t o r  in Y inc ident  wi th  q. Thc  closure of a t rans-  

versal  r ay  # in Y, inc ident  with q, meets  f H  in q. Since f H  is a non-s ingular  inner  cycle or 

N- or S- loop i t  cannot  meet  [t o ther  t h a n  in q. [Th 2.3.] Hence  Y is in H and  so in U. 

Case I I .  No t  Case I. Since f (  Y N U) meets  q there  exis ts  a sequence of poin ts  p~E Y n U 

such t h a t  p~--+q as n J" c~. Since Case I is excluded,  and  since q is non-s ingular  if in a n y  

f R  I (RE W), there  is a t  mos t  one RE W such t h a t  q mee ts  f iR. W i t h o u t  loss of genera l i ty  

we can then  suppose t h a t  Pn is in some RnE W such t h a t  f iR n does not  meet  q. There  ac- 

cordingly  exis ts  a po in t  r~ in f lR~ D Y such t h a t  r~-+q as n 1' oo. Le t  ~ be a t r ansversa l  r a y  

of Y inc ident  wi th  q. W e  can t ake  r~ in ~t. Le t  ~n be the  open arc in )1. s epa ra t ed  f rom q 

on ~t by  r~. Then ).~ is in R~ b y  L 3.0. Since r~-->q as n r 0% ). is in U and  hence Y 

is in U. 
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Thus (m) is t rue in Case I I  as well as in Case I. S ta tement  (b) follows from (m) and 

(a) of the lemma. 

Proo[ o/(c). To show tha t  fl U IE* is simple note t ha t  U in (c) is s imply connected and 

hence an F-region. Moreover U contains N or S, and hence by  Th 3.2 the components  of 

fl U I E* contain neither a meridian nor the carrier of an N- or S-circuit. Th 3.2 then implies 

tha t  the remaining components  of fl U f ~*  do not  intersect, so that /~  U I y~* is simple. 

If  U were not  concave there would exist an arc hEF* 1U with a limiting end point  z 

in fl U. Let  z 1 be a point  of h. For  some n, H n contains Zr H~ excludes z. Nor  does f lH n 

contain z, since f l H  n is non-singular and contains neither N nor S. Thus f l H  n separates z 

f rom z 1 and so must  meet  h. Since f lH n is non-singular this is impossible. 

The inner closure ]~ in E* of a set E is defined by  the equat ion 

(3.2) /~ = E N E * - f l E .  

Equiva len t ly  the inner closure in E* of a set E is the set of all points in E* which possess 

a neighborhood in which E is everywhere dense. 

Lemma 3.3. I /  R satis/ies Conditions (9 its inner closure in ~*, the complement o/ its 

closure, and any component o / R  also satis/y Conditions (9. 

Consider the F-se t  /~. We shall show tha t  /~ satisfies (9 with R. To tha t  end let q be 

a point  of f i r  in 22*. The F- rays  in f iR incident with q are in two classes. Class i (i = 1, 2) 

consists of the F- rays  incident with i F-sectors in R incident with q. F- rays  in Class 2 

in fl R are not  in R'. The number  of F - rays  in fl R incident with q and in Class 1 is even 

(possibly zero) so tha t  the number  of F- rays  in fl/~ incident with q is even. If  this number  

is zero q is not  in fl/~. T h u s / ~  satisfies O with R. 

The remainder of the lemma is readily verified. 

w 4. Asymptotes 

Let  h be an open arc in F*  and q a point  of h. Sense h. The sensed open subarc of h 

following q on h will be called an F* - r ay  7r. Let  ~ be given as a 1 - 1 continuous image in 

2]* of the interval  0 < t < ~ ,  with the point  Jr(t) corresponding in ~ to t. Let  ~ be an F*-  

cycle in Y. given by  a mapping  of a circle, on which w = e  t~ into 22, so tha t  9~(0) cor- 

responds to w = e  ~~ and 9~(0 + 27r) =~c(O). We say tha t  7r and h are asymptot ic  to q~ in 

the positive sense of ~ if for some admissible representat ion of ~r 

dist [r (0), ~ (0)] --* 0 [as 0 f oo]. 

I n  discussing asymptot ic  rays the following lemma is fundamental .  
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L e m m a  4.1. Let 2 be a transversal. I / a n  F*-ray 7e meets t in/)oints  Pl, /)2, /)a which are 

successive on x in the set o/intersections o / ~  and t ,  then these points are also successive on 

i in one o / t ' s  two senses, and 7~ always crosses t in the same sense. 

F o r  i ~ ] le t  ~ j be the  arc of 7~ bounded  b y / ) i  and/ ) i ,  and  let  1~ j be the  arc of 1 bounded  

b y / ) i  and / ) j .  W e  show first  t ha t / )1 ,  P2, Pa occur in the  order  w r i t t e n  on 1, r egard ing / )a ,  

/)2, Pl as the  same order  on t .  

Case I. The ray 7e crosses t in opposite senses at/)1 and P2. 

The arcs ~'g12 and  i21 form a top  circle. Le t  R12 be the  region bounded  b y  21~12121 in ~: 

and  not  conta in ing  I - i12. B y  v i r tue  of Th 2.3, R n includas  a pole, say  S. The arcs 7~2a 

and  132 also form a t op  circle. L e t  R2a b c a  region bounde d  b y  th is  curve chosen so as no t  

to  conta in  R n.  Then R23 conta ins  N. A n y  order  of/)1, P2, Pa on 1 o ther  t h a n  t h a t  w r i t t e n  

will be shown to be impossible .  

Suppose the  order  on i is/)1, /)a,  P2 or/)3,/)1,/)2. These are  the  only  orders  which mus t  

be cxclu(lcd.. I n  these  cases z la  and  ~al form a t op  circle bound ing  the  region 

R,3 - Z - (R12 U ]~23). 

Hcrc  R13 is s imply  connected,  conta ins  no pole, and  in flR13 , ~,3 meets  t13 twice.  On M 

there  exis ts  a homcomorph ic  covering of Rla on which ~ a M  and  ~t~.~M meet  twice.  This  is 

con t ra ry  to Th 2.3. Thus  Pl, /)2, /)3 is the  only  order  poss ible  in I .  

Case 11. The ray 7~ crosses I in the same sense at Pl and P2. 

Suppose Pl, P~, P2 is the  order  in 1. Then ).t~ and  ~12 toge the r  bound  a region R into  

whose inter ior  7~ enters  a t / )2 .  Cont inued  in this  sense ~z mus t  leave  R by  crossing )~n a t  P3 

in a sense oppos i te  to  the  crossing a t / )1  an(l/)2. On revers ing the  sense of ~ and  denot ing  

/)1, P.z, Pa by  Pa, /)2, Pl respect ive ly ,  the  s i tua t ion  comes under  Case I and  is impossible .  

The or(ler P3, Pl , /)2 ,nay  be exc luded  in Case I I  as con t r a ry  to the  J o r d a n  Sepa ra t ion  

Theorem. Thus  the  order  on 1 m u s t  he/)1,  /)2, /)a in any  case. 

I t  remains  to show t h a t  all  crossings of 1 by  ~ are  in the  same sense. Wc first  show 

t h a t  Case I is impossible .  I n  Case I ,  x reversed in sense enters  Rla a t / )1 ,  and  con t inued  as 

an h E F *  mus t  meet  )[~3 in a poin t / )0 ;  for there  is no pole in the  s imply  connected  region 

R13 to which h can tend ,  cf. MJ  2 Th 7.2. Thus  P0, P,, P~. appea r  in this  or(tcr on z bu t  in 

the  order  P,, /)0,  P2 or Pl, P2, /)0 on I~3. Hence  Case I is impossible .  

In  Case I I  the  crossing of 1 a t / )3  is in the  same sense as a t / )1  and/)2;  for otherwise a 

reversal  of the  sense of ~ would  yie ld  Case I again.  

This  es tabl ishes  the  l emma.  

We s ta te  an  ex tens ion  whose proof  is essent ia l ly  ident ica l  wi th  the  preceding.  
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Lemma 4.2. Let 2 be a transversal cut with vertex q. Let h be an element in  F *  such that 

h (~ ~ excludes q. I/7~ is an F*-ray  in  h'the conclusion o / L e m m a  4.1 holds as stated. 

The exclusion of q from h N 2 insures t ha t  each point  of h N 2 is an  actual  crossing of 

2 by  g. All other points  of 2 are non-singular .  

Each of the regions of E into which the carrier of an inner  cycle divides E will be called 

a side of ~ or of [~]. The two sides of ~ ma y  be dis t inguished as the north or south side of 

according as the side contains  N or S. Given an  N- or S-cycle the region H bounded  by  

I~[ which contains  S or N respectively will be called the south or nor th  side of ~. 

The construction o / the  region J .  Let 7~ be an  F * - r a y  with a posit ive l imi t  po in t  pC•*. 

We shall construct  an  F-region  J such tha t  7~ is asympto t ic  to a curve carried by  f l J .  

Let 2 be a t ransversal  ray  inc ident  with p and  such tha t  ~ intersects  ~ in an  inf ini te  

sequence of points  

(4.1) PI, P2, Pa . . . .  

with l imit  poin t  p. Suppose tha t  the intersect ions of r~ with 2 appear  on r~ in the order 

(4.1). I n  accordance with L 4.1 the points  (4.1) appear  on )~ in the same order. 

For  k = 1, 2, .. . ,  let ~k be the arc PkPk+l of ~ and  2k the arc pkpk+l of 2. Let  Jk be 

the open region bounded  by the top circle zk2k chosen so as no t  to conta in  p. Then  

J l  c J2 c Ja c . . . .  

By vir tue  of Th 2.3 gl must  conta in  a pole, say S. Let  

J = Un ion  Jk (k = 1, 2 . . . .  ). 

Then  J is a s imply connected region which contains  S. Now Z - J k  meets N and  hence 

N E E - J =  N ( E - J k )  ( k = 1 , 2  . . . .  ). 
k 

We cont inue  with a proof of the following. 

(i) There is no singular point in  ~ /ollowing p~ in ~. 

Suppose z were such a s ingular  point .  There then  exists an 0r F with z as an  ini t ia l  

point  and  :r N ~ = 0. Let  h be an  F * - r a y  con t inu ing  ~. Since z is no t  in  the t ransversal  )1. 

and follows p~ in z ,  a sufficiently restr icted open arc of h with end point  z in ~ is in 

J~+l - J~  = Q~ 
for some n > o. Observe t h a t  

flQn = U n i on  zt~ 2nZt~+ 12~+I, 

and  tha t  the set Q* = Q~ - p~+l is s imply connected.  

Since Q~ is s imply connected and  contains  nei ther  N nor S, h mus t  meet  flQn in a point  

z' following z on h. There are several a priori possibilities for the locat ion of z and  z' in  

flQn bu t  in each ease one infers the existence of an inner  cycle of F *  in  Q~*, or else of a subare 
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b c Q* of an e lement  in F *  such t h a t  b in tersec ts  2 in more  t h a n  one point .  Since this  is 

imposs ib le  (i) follows. 

(ii) f J  is the set ~2 o/posi t ive limit points o/7~, so that the m a x i m u m  distance o /po in t s  

o/7~n/rom f lJ  tends to zero as n ~ ~ .  

S t a t e m e n t  (ii) is a consequence of an  e l e me n ta ry  l emma,  n a m e l y  t h a t  f J  is the  set  of 

al l  po in t s  which are l imi t  po in t s  of sequences z,~, n = ], 2 . . . .  in which z~ is in f J ~ .  This  

l e m m a  prcsupp0ses  the  inclusion re la t ions  Jz  c J2 c Ja  . . .  and  the  d is jo in tness  of the  t op  

circles f J ~ ,  n = 1, 3, 5 . . . . .  One notes  t h a t  f J ~  separa tes  f J n - 2  f rom fJn+2.  S t a t e m e n t  

(ii) follows on recal l ing t h a t  f J n  is the  union  of A n and  g~, and  t h a t  the  d i a m e t e r  of ;t~ 

t ends  to zero as n ~ ~ .  

(iii) J is a concave F-region whose curve boundary is an F*-cycle. 

I f  the  boundar ies  of the  regions J~ were top  circles in F ,  J would  sa t is fy  Condi t ions  

O on an F- reg ion ,  b y  L 3.2(c). W e  can, however ,  a l t e r  F in an  F - s e c t o r  Y conta in ing  the  

t r ansve r sa l  r a y  ;t used in cons t ruc t ing  J so t h a t  fl J,~, n = 1, 3, 5 . . . .  becomes a t op  circle 

in a new fami ly  F '  rep lac ing  F .  This  a l t e r a t ion  shall  leave F ] ( E  - Y) unaffected,  and  can 

be made  in Y in an obvious  manne r  leaving Y an F ' - s ec to r .  Cf. proof  of L 7.1 in MJ  2. 

W e  conclude t h a t  J satisfies Condi t ions  O, is concave,  and  t h a t  f J l Y , *  is s imple [L 3.2]. 

Since J is s imply  counecte(1 and  f J  conta ins  more t han  one poin t ,  i t  follows t h a t  J is an 

F- reg ion .  Since J conta ins  a pole, f J  carr ies no N- or S-c i rcui t s  nor  NS-  or SN-curves .  

I t s  curve b o u n d a r y  as given by  Th 3.2 reduces  to an F*-cyc le .  

This  establ ishes (iii). 

The pr inc ipa l  theorem of th is  sect ion follows. 

Theorem 4.1. I / a n  F*-ray 7~ has a positive limit point p E Z *  then 7~ is asymptotic to an 

F*-cycle q;. Moreover, 7e does not intersect qz, and q) is concave toward the side o/q~ which con- 

tains ~. 

The r ay  ~ de te rmines  an  F - r eg ion  J as jus t  cons t ruc ted .  B y  (iii) f J  carries an  F * -  

cycle ~ and we shall  show t h a t  T =~0 • sat isfies Th 4.1. I n  accordance  wi th  Th 3.1 ~ maps  

the  circle C ([w I = 1) in to  Big in a mannc r  which is 1 - 1 over  those  open arcs of C whose 

images  arc  in f l J]Z* .  W e  suppose  t h a t  the  po in t  w = e *e in C corresponds  to  the  po in t  

~(0) in f J .  Iden t i fy  the  po in t  p of Th 4.1 wi th  the  po in t  p used in the  cons t ruc t ion  of J 

and  suppose t h a t  p = ~ ( 2 n ~ ) ,  n = 0, :t: 1, ~ 2 . . . . .  Reca l l  the  t r ansversa l  r a y  ;t inc iden t  

wi th  p, and  the  poin ts  Pl, P~, . . .  on ;t N g used in the  cons t ruc t ion  of J .  

W e  s t a t e  the  following. 

(~) The Frdchet distance on Z of the subarc PnPn+i of ~ /rom the arc ~[ (0  _<0 _< 2~e) 

tends to zero as n ~ oo [for p roper  choice of ~0 as ~ i ] .  
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The proof of (9) s tarts  with (ii) and is almost  identical with the proof of Th 4.1 of MJ  3. 

I t  will be omitted.  Grant ing (9) one can then map  the arc PnPn+l of ~ in a homeomorphic  

manner  onto the interval  2n:~<_O _ < 2 ( n +  1)z, n - 1 ,  2 . . . .  with zr(0) a single-valued 

continuous image of 0 for all such 0, and such tha t  

dist [~(0), ~ (0 ) ] -+0  [as 0 q' ~ ] .  

This representat ion of ~ from Pl on is 1 - 1 and so admissible, and 7e is accordingly asymp-  

totic to % 

By  L 3.2(c), J is concave so tha t  ~ is concave towards  the side of ~0 which contains 7e. 

This completes the proof of the theorem. 

Corollary 4.1. No point o[ an open arc hE F *  is a positive or negative l imit  point o t h. 

This is immediate  if h is not  an asymptote ,  and true for asymptotes  since asympto tes  

cannot  intersect the concave F*-cycles  which are their  positive or negative limit sets. 

This corollary also follows from L 4.1 by a suitable argument .  

w 5. Concave annuli .,4 (T1, T~) 

We shall consider open ammli A (V1, ~2) in E* each bounded by  two non-intersect ing 

F*-cycles,  ~1 and q~2, and, in the case in which the annulus is concave, give a complete 

description of elements of F*  in the annulus. We proceed with three lemmas. 

Lemma 5.1. A sensed hE F* which is asymptotic in  its positive sense to an F*-cycle q~ 

can be asymptotic in its negative sense neither to q) + nor to q) - .  

Let  h be divided by  a point  p into two rays ~ '  and ~". Let  )~ be a transversal  tending 

to a point  q of ~ from the side of ~0 which contains h. If  the l emma were false n '  and 7e" 

would intersect 2 in sequences of points p'n and p~', n = 1, 2 . . . .  respectively, tending to 

q in ~t as n ~ ~ ,  with the order 

(5.1) . . . .  p~, p;,  q, p',', p~', . . .  

on h. These points cannot  appear  in the order (5.1) on ~t as they  should by L 4.1, and we 

infer the t ru th  of L 5.1. 

Corollary 5.1. I n  the set o/ F*-rays  issuing /rom a given point p E E *  and asymptotic 

either to q~ § or q~ - ,  where q~ is an F*-cycle, there is at most one F*-ray.  

Lemma 5.2. I t ~1 is an inner cycle and q~2 a second inner cycle or a concave N-  or S-cycle, 

then q~l is concave toward q~2. 
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The cycle ~1 does not  intersect ~2. This follows from Cor 2.1, if ~ is an inner 

cycle, and from the concavi ty  of ~2, if ~2 is an N- or S-cycle. For  definiteness suppose tha t  

% is on the nor th  side of ~l- 

If  the l cmma were false there would be an F * - r a y  7~ with initial point  r in ~ ,  entering 

A (~1, F2) at  the point  r and not  meeting ~ again. This ray  cannot  intersect W~ if ~2 is an 

inner cycle [Cor 2.1], or if ~2 is S-concave.  I t  follows from Th 4.1 tha t  ~ is asympto t ic  to 

an F*-eycle  Fa (possibly ~2) in C1 A (~1, ~ ) .  Let  2 be a transversal  in the south side of ~3 

tending to a point  p~%.  Then 7~ will intersect )~ in an infinite sequence of points pl, p~, ... 

tending to p as a limit point  and appearing on ~ in the order wri t ten [L 4.1]. Let  

(5.2) ~(r,  P2), Jt (Pc, Pl), ~(Pl, r) 

be respectively subarcs of ~ from r to P2, of ,~ f rom P2 to Pl, and of ~ f rom Pl tb r, forming 

a sequence b of arcs joining r to itself. Let  bM be an arc covering b on M. The end points  of 

bM cover r bu t  are not  coincident. They  can, however, be joined on M by  an arc covering 

I qJll a finite number  m of times to form a top circle gM Oil M. (That  m - 1 is true, but  

not  necessary for the proof.) 

Let  ~tM be the covering of )~ which meets gM. Then g M -  2M admits  an extension on 

M as an clement hM in F~ .  This is impossible since h~ meets ~M in two points. [Th 2.3.] 

We infer the t ru th  of the lcmma. 

Lemma 5.3. I n  a concave annulus  B between two F*-cycles there can be no singular 

point P. 

First  note t ha t  any inner cycle 9~ in B must  bc non-singular. For  it follows from L 5.2 

tha t  q~ must  be bo th  N- and S-concave and hence non-singular.  

Suppose then tha t  L 5.3 is false in tha t  P exists. There then exist at  least four F - rays  

issuing from P.  The continuat ions as elements in F*  of none of these F- rays  can carry 

an inner cycle, since such an inner cycle wouhl be singular. There are thus at  least four 

F*- rays  issuing from P.  None of these F*- rays  can meet  fl B or have a limiting end point  

at  N or S in fiB, since B is concave. I t  follows from Th 4.1 ti lat  each such F* - r ay  must  

be asymptot ic  to an F*-cycle  in /~. Moreover two different F*- rays  issuing from P are 

asymptot ic  to F*-cycles  95 and ~o 2 with different carriers [Cor 5.1]. 

The cycles ~01 and ~02 are concave toward their respective sides containing P,  so tha t  

P is in A (T1, ~2); for if cpi separated ~0s from P [i, ~ = (1, 2) or (2, 1)] then the asymptot ic  

r ay  from P to ~0j would intersect ~i, cont rary  to the concavi ty  of ~0 i toward  P.  Any  two 

remaining rays issuing from P determine an annulus A (~a, ~ 4 ) c  A (q01, ~2). F rom the 

reciprocity of the pairs (~01, ~02) and (Ta, ~4), we infer t ha t  A (T1, q02)= A (~0a, q%). Hence 
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with proper notation iT1] = I%I and ]iP~] = 19%1. Two of the four rays must  then be 

asymptot ic  to two cycles with the same carrier, contrary to Cot 5.1. 

Hence P does not exist and the lemma is true. 

Types o[ asymptotes in A (fol, io~). Suppose tha t  A (/% iv2) is concave and includes no 

inner cycle. An hEF* in A(~pl, Iv2) is an asymptote  in both its senses since A(fpl, q)2) is 

concave. I t  follows from Cor 5.1 that  in one of its senses h is asymptot ic  to iv1 • and in 

the other to iv2 ~=. If  h is asymptot ic  to tP~ in one sense and to Iv2 in its other sense then h is 

said to be of asymptot ic  type [iVl, iP2] = [f02, iv1] �9 The four possible asymptot ic  types of h are 

[i~ +, ~2 + ], [ ~  + ,  iv2 - ] ,  [rh - ,  ~ + ], [iP~ - ,  !v~ - ] .  

Two elements h and h' of F*  in A (f01, io2) must  be of the same asymptot ic  type. Other- 

wise h and h' would intersect in a point P. The existence of P becomes clear on considering 

the elements hM and hM covering h and h'  respectively on M. The intersection P cannot 

exist by L 5.3. 

We shall complete the analysis of annuli A (~vl, iv2) in w 8. 

w 6. N-caps, S-caps 

In  the decomposition of E into basic regions of a nature dictated by F*  one comes 

naturally to N-caps and S-caps. For the purpose of defining these caps and for many  

other purposes we shall abbreviate the phrase "inner closure ill E* of the union" by the 

word symbol ]~nion. With this understood an N-cap [S-cap] is the l~nion of all non-singular 

N-loops [S-loops]. This definition requires justification and elaboration. 

There is at  most a countably infinite number of elements in F with singular end points. 

Through each neighborhood in E* there accordingly passes a non-singular h EF*.  There 

are also examples of families F*  such that  through each neighl)orhood in Z* there passes 

a singular hE F*. Thus non-singular elements in F* are in fact everywhere dense, while 

singular elements in F* may be everywhere dense. If  in particular a neighborhood is in 

the interior of an N-loop [S.loop], then each non-singular hE F* meeting tbis neighborhood 

carries an N-loop [S-loop]. This fact will simplify subsequent proofs. 

Beside the question as to the vanishing of N-caps [S-caps] there is the question as to 

whether N-caps [S-caps] are bounded from S [N]. This leads to the natural separation of 

the cases in which N-loops [S-loops] are or are not bounded from S [N]. 

A first theorem follows. 

Theorem 6.1. I[ N-loop8 are not bounded ]rom S there exists an F-region Q which is an 

F*-set, whose curve boundary meets Y~* in an N S .  and an SN-curve and in disjoint N- and 

S-loops at most countable in number. 

2--533807. Acta Mathematica. 91. Imprim6 le 18 mai 1954. 
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There exist non-singular N-loops bearing points arbitrarily near S. I t  follows from 

L 3.1 that there is an infinite sequence ~1, ~2 . . . .  of nonsingular N-loops such that  

(6.1) I (~1)  c I (~2)  c .... 

while dist [8, ~n]-+0 as n ~ ~o. We shall show that  the set Q = Union I(~n), n = 1, 2 . . . .  

satisfies the theorem. 

The set Q is simply connected and flQ contains N and 8. Q satisfies Conditions O by 

L 3.2(b), and so is an F-region. I t  is an F*-set since a union of F*-sets. I t  follows from Th 

3.2 that  the closed curve boundary of Q meets Z* in an N8- and SN-curve, and in disjoint 

N- and S-loops at most countable in number. 

Corollary 6.1. I /N- loops  are not bounded/rom 8 there exists at least one meridian in F*. 

Th 6.2 is similar to Th 6.1, with g in Th 6.2 replacing S in Th 6.1. The prdof is similar. 

Theorem 6.2. Let g be a top circle in F*. I /  N-loops are not bounded/rom g there 

exists an t~-region which is an F*-set, which is in the north side o/ g and whose boundary 

meets N and g. 

.One defines Q as in the proof of Th 6.1, except that here dist [g, ~ , ] -+0  as n I' ~ .  

One continues as in the proof of Th 6.1. 

N-caps, S-caps. We have already defined an N-cap [S-cap]. One can equivalently 

define an N-cap UN as the (~nion of the interiors of all non-singular N-loops. If there are 

no N-loops we understand that UN = 0. S-caps Us are similarly defined. We tcrm UN [Us] 

bounded if bounded from 8 [N], otherwise unbounded. I t  is possible that UN or Us may 

equal Z*. 

Maximal N-cycles, S-cycles. By the interior I~  of an N-cycle ~ is meant the union of 

the interiors of all the N-loops carried by I~1- An N-cycle ~ will be termed maximal if 

I r  ~ I ~  whenever ~ is an N-cycle. There may be no maximal N-cycle ~, but when one 

exists the N-cap UN * 0 and fi UN = I~l" Maximal S-cycles are similarly defined. 

Corollary 6.2. I /N- loops  are not bounded away/rom an inner cycle % then ~ is the inner 

cycle o/ an N-circuit ~p. 

Let IN~ be the north side of ~. According to Th 6.2 F*[ IN~0 includes an open arc h 

with end points on ]~0[ and N respectively. Then [~01 U h carries an N-circuit ~p with the 

sense of 90, so that  ~ is the inner cycle of y). 

Cor 6.2 suggests a major theorem. 

Theorem 6.3. (i). I] UN is a bounded, non-empty N-cap, fl(UN U N) is the minimum 

carrier either o / a  maximal N-cycle q), or o / a n  inner cycle yJ not N-concave. 



C U R V E  F A M I L I E S  F *  L O C A L L Y  T H E  L E V E L  C U R V E S  O F  A P S E U D O H A R M O N I C  FU:NCTIOI~ 19 

(ii). Conversely, a maximal  N-cycle q) or an inner cycle ~ not N-concave bounds U~ U N ,  

where U N is a non-empty N-cap bounded/ tom S. 

(iii). A maximal  N-cycle q) and an inner cycle y~ which is not N-concave cannot coexist. 

When q~ exists q: - is the only other maximal  N-cycle, and when yJ exists ~v - is the only other 

inner cycle which is not N-concave. 

Proo/ o/ (i). We begin by  establishing (m) and (n). 

(m). I] fl U N carries an inner cycle ~v, fl(UN [J N)  = Iy~], and y) is the inner cycle o / a n  

N-circuit.  

The south side I s  y~ of ~ does not  meet  UN, since no non-singular N-loop meets yJ. 

Thus UN c IN y~. By Cor 6.2 ~ is the inner cycle of an N-circui t  9- As such ~ cannot  be N-  

concave. Each  non-singular element in I N ~  is an N-loop since there is an open arc in 

F*[Xg~v joining F to N. Hence UN U N = IN~P and f l (Ug U N)  = ]~f]. 

(n). I / U N  ~ 0 and i / f l  U N carries no inner cycle, fl U N is the m i n i m u m  carrier o /a  maximal  

N-cycle. 

Set H = X - C1 UN and let L be the component  of H which includes S. We shall show 

tha t  L is an F-region. Since UN is an F-set ,  L is all F-set .  Since /3~ is connected, L is s imply 

connected. Finally L satisfies Conditions O on F-regions with H and UN [L 3.3]. Now f lL  

carries no inner cycle and hence no N-circuit .  By  Th 3.2, f lL must  l)e the min imum carrier 

of an N-cycle  q~. This N-cycle must  be a maximal  N-cycle; otherwise L would' meet  the 

interior of some N-loop, col~trary to its definition. The interior I ~  of a maximal  N-cycle  

is an N-cap  UN. Hence f lUN : :  ~jV[ and (n) is  established. 

S ta tement  (i) follows from (m) and (n). 

Proo /o / ( i i ) .  We first (~stal)lish (a). 

(a). A ~  inner cycle y, which is not N-concave is the inner cycle o / a n  N-circuit ~. 

If  y~ is not  N-concav(,, an F* - r ay  7r exists in the nor th  side of y~ with an initial point  

in yJ. This ray  must  have a limiting end point  at  N. Otherwise zr would bc asymptot ic  to 

an S-concave F*-cyclc  Y~I north  of yJ. [Th 4.1], and yJ wouht be N-concave  by  L 5.2, cont rary  

to hypothesis.  I t  is clear t ha t  ty~[ U 7r carries an N-circui t  r /wi th  the sense of F, so tha t  y~ 

is the inner cycle of ~]. This establishes (a). 

I f  y~ exists any  non-singular clement in I(~/) is an N-loop by  (a), and all non-singular 

N-loops are nor th  of y~. I t  follows tha t  f l (UNU N ) = V .  If  ~ exists f l (UNU N ) =  l~[,  as 

already noted. I n  both  cases UN =~ 0. 

Proo/o / ( i i i ) .  There is precisely one N-cap  UN, in accordance with its definition. Now 

f l (VN t ) N ) =  ]~0] or [~v I by  (ii), when 99 or ~v exists. These possibilities are mutua l ly  ex- 

clusive since fl UN is unique. S ta tement  (iii) follows. 

Theorem 6.3 has an obvious counterpar t  for S-caps. 
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w 7. The metric space ,IJ 

Let  ~0 be an inner cycle or S-cycle. Le t  R be the region nor th  of ~v. The cycle ~v is sensed. 

We say tha t  ~f is positively sensed in N if y~ is in the  curve class of the curve ~0 = [ l f iR  of 

Th 3.1. Al ternately  let ~/J be an inner or N-cycle. Let  R be the region south of yJ. I t  is con- 

sistent with the  preceding to say tha t  ~v is posit ively sensed ill ~ if yJ - is in the curve class 

of ~ = ] I/~R of Th 3.1. For  S-cycles and N-cycles the two definitions are not  overlapping. 

Let  the lat i tude 0 on ~ be so defined tha t  when 0 increases on a parallel g, N is to the 

left of g. Since a parallel can be homotopical ly  deformed through  top circles on Y,*, non- 

bounding on E*,  into any  such top circle, it follows t h a t  when an inner cycle ~p is posit ively 

sensed in ~', and is t raced in its positive sense n times, then 0 ~ oo as n I" oo. 

Let  74 and S be degenerate closed curves with N and S, respectively, as carriers. We 

shall introduce a space 05 consisting of ~/, $, and all inner, maximal  N- and S-cycles, po- 

sitively sensed in 5",. By  a cycle in 05 we shall mean any  element in 05 other  than  T /o r  $. 

Two cycles ~ and W in @ will be ordered by  tile relation q~ < W, or equivalently,  W > ~, if 

[~v I separates ly~[ f rom S. We write $ ~: ~ / a n d  for every cycle ~vE05, ~/-z~v < $. Equa l i ty  

of elements in 05 shall mean tha t  they  belong to the same curve class. The order relation < is 

transitive. No two different cycles in 05 intersect. 

Let  x, y be any  pair of elements in 05 and let p be an arb i t rary  point  in y. Let  

d(x, y) = max dist [x, p]. 
p e y  

This distance makes 05 a non-symmetr ic  metric space. Set 

K (y) = d [S, Y]I(Ye 05). 

Suppose tha t  the radius of N is 1. 

Lemma 7.1. The trans[ormation K o/ 05 into the interval [0, ,'t] carries 05 in a 1 - 1  

manner into a closed subset o/ [0, zt]. 

Let  y~ be a sequence of elements in 05 such tha t  K(y , )  converges to a value b in [0, zt]. 

I t  is sufficient to show tha t  for some aE05, K ( a ) =  b. Withou t  loss of generali ty we can 

suppose tha t  the sequence Yn is decreasing in 05 and tha t  y~ < ~ .  The case of an increasing 

sequence is similar. 

Le t  R .  be the region in ~2 nor th  of y~ and set R = Union R, .  I f  R = ~2 - S, b = 0 = K ($). 

Suppose then tha t  R * Z -  S. For  n > 2 each y~ is a non-singular inner cycle [L 5.3], 

so tha t  it follows from L 3.2(c) tha t  R is a concave F-region with f lRlY.* simple. 

Since N c R, [ l f lR in Th 3.1 defines an F*-cycle  ~0 with carrier fiR. If  99 is an  inner cycle, 

is in r  If  ~0 is an  S-cycle, the concavi ty  of R implies tha t  q is a maximal  S-cycle, and  so 
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in  qS. W e  shall  show t h a t  b = K(~) .  Observe t h a t  0 < K(yn)  - K(q~) = d[$, Yn] - d[S, eft] < 

d[~,  Yn], using the  t r iangle  axiom.  B u t  d[% yn] -+0  as n I' co so t h a t  K(00 ) = l im K(yn)  = b. 

This establ ishes L 7.1. 

Our / ina l  metric/or q5 shall be one in which the distance between any two elements x and 

y in q5 shall be the Euclidean distance [ K ( x ) -  K(y ) l  between K ( x )  and K ( y )  as points in 

the interval [0, re]. 

I n  t e rms  of the  order  def ined in r and  i ts  metr ic ,  sup E and  inf E are  def ined for a n y  

n o n - e m p t y  subset  E of r  W e  u n d e r s t a n d  t h e r e b y  t h a t  " s u p "  = L.U.B.  and  " in f"  = G.L.B.  

Other  t e rms  involv ing  l imi ts  are  s imi la r ly  defined.  I t  follows f rom L 7.1 t h a t  ~b is 

compac t .  

U-type asymptotes. The metr ic iz ing of the  space q5 and  our  ear l ier  resu l t s  concerning 

the  absence of s ingular  po in t s  on a s y m p t o t i c  r ays  make  possible  the  t r e a t m e n t  of a p rob lem 

concerning concave annuli .  Such an  annu lus  A,  bounded  as i t  is b y  cycles ~ and  ~v in r  

will be said to  be of U- type  if f i l led wi th  a s y m p t o t e s  of t y p e  [~0 + ,  v 2 + ] or [ ~ - ,  ~ v - ] .  

Cf. w 5. The  theorem is as follows. 

Theorem 7.1. Let Ce, e > O, be the union o/e-neighborhoods o / N  and S. F o r / i x e d  e the 

number o/dis joint  annuli  o/ U-type which do not meet C a is / in i te .  

Suppose  the  theorem false. There  would  then  exis t  a sequence An, n = 1, 2 . . . .  of 

d i s jo in t  annul i  of U- type  wi th  boundar ies  0%, YJn, ~vn < ~v~, no t  mee t ing  Ce. W i t h o u t  loss 

of genera l i ty  we can suppose t h a t  ~1 > ~2 > . . . .  Since r is comple te  and  since d[S,  0%] > e, 

for some cycle 7EqS, ~%-->7 as n t co. 

Le t  p be a po in t  on 7 a t  the  m a x i m u m  dis tance  on {7] f rom 171 to s .  Le t  ~ be a t rans-  

versa l  on the  nor th  side of 7, inc ident  wi th  7 a t  p. W e  know t h a t  d [$, ~n] decreases mono- 

ton ica l ly  to  d (S, 7) as a l imit ,  and  t h a t  d [$, 7] equals  the  d i s tance  of p f rom S. Hence  for 

n suff ic ient ly  large,  say  n = m, ~ will in tersec t  z~ m in a s imple arc ~u, in ter ior  to  z~ m except  

for end po in t s  on %~ and  ~o m respect ive ly .  [L 3.0.] 

Le t  H "cover"  A m on M,  wi th  boundar ies  h and  k in F ~  covering ~m and  ~0 m respec- 

t ive ly .  The  arc # is covered on M b y  an  unending  sequence of d i s jo in t  open arcs . . . .  b l, 

b0, b 1 . . . .  such t h a t  OIb ~ t ends  to  -4- co as r-+-4-  co, while b~ separa tes  H into  two regions 

on one of which b,+l ,  b~+ 2 . . . .  lie, and  on the  o ther  br_l, b r _  2 . . . . .  

Le t  g on H cover a U- type  a s y m p t o t e  in A m. Le t  R~ be the  region on H bounded  on 

H b y  b n and  bn+ r I f  g meets  R n i t  m u s t  cross b n and  bn+l in un ique  points .  [Th 2.3.] W e  

infer t h a t  g mus t  mee t  the  open arcs  . . . ,  b l, b0, b 1 . . . .  in unique  po in t s  Pn appear ing  on 

9 in the  order  of the  indices n. Hence  019 t ends  to  + oo in one sense of g and  to  - oo in 

the  other ,  con t r a ry  to  our  hypo thes i s  t h a t  i ts  p ro jec t ion  on Z*  is of U- type .  

This  es tabl ishes  Th 7.1. Cf. K a p l a n  [3]. 
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w 8. The case  o f  no  mer id ian  

We begin with tile following lemma. 

Lemma 8.1. The absence o/meridians implies the [ollowing: 

(a). There is at least one cycle in q). 

(b). I /q5  contains precisely one cycle 90, 90 is N-  or S-concave. 

(c). A n  inner cycle, 90 .in qS, is N- or S-concave. 

(d). I/y~E q') is the immediate successor o[ 90C q5 and i/ 90 and ~f are cycles, then one at least 

o/these two cycles is concave toward the other. 

Proo/ o/ (a). Suppose tha t  there is no cycle in ~ .  There are then no asymptotes  in 

F* [Th 4.1], and no bounded S- or N-caps  [Th 6.3 (i)]. The set K of N-loops is empty;  

otherwise UN would be unbounded  and a meridian exist [Cot 6.1], con t ra ry  to hypothesis.  

Similarly there arc no S-loops. With  asymptotes  excluded the positive [negative] limit 

set of an open h c F *  must  reduce to N or to S. [Th 4.1.] Hence each h c F *  is a meridian. 

F rom this contradict ion we infer (a). 

Proo/ o/ (h). Suppose (b) false in tha t  90 is neither N- nor S-concave. If  90 is an N-cycle 

not S-concave, there would exist an elcmcnt h e F *  I Is90 (where Is90 is the south side of 

90) with a limiting initial point  in 1901- Such an h could not  be asymptot ic  to an F*-cyele  

~, because y, + wouhl he in q~ and different from 90. Hence 1901 U h wouhl carry a meri(lian 

contrary  to }lyI)othesis. Similarly 90 is not  an S-cycle. If  90 were an immr cycle there would 

exist rays 7g 1 and zr 2 in the north and south sides of 90 respectively, with initial points in 

1901 and limiting final points in N and S respectively, so tha t  190] U n~ U n2 would carry a 

meridian contrary  to hypothesis.  Thus (I)) is true. 

Proo/o/  (e). I f  (c) were false it wouht follow from (a) of the proof of Th 6.3 (if) t ha t  90 

wouhl be the inner cycle of an N-circui t  901 and of an S-circuit  902. Then I901 0 ]901 [ u 19021 

would carry a meridian cont rary  to hypothesis.  

Proo /e l  (d). There arc four cases as follows. 

(1) 90 and ~p inner cycles. 

(2) 90 an inner cycle, ~ a maximal  N-cycle. 

(3) 90 a maximal  S-cycle, ~ an inner cycle. 

(4) 90 a maximal  S-cycle, ~ a maximal  N-cycle.  

In  Case (1), (d) follows from L 5.2. 

I n  Case (2), the falsity of (d) implies, as in the proof of (b), t ha t  there exists an he  F *  

which meets 90 and ~; 90 is accordingly not  N-concave,  and so cannot  coexist with a maximal  

N-cycle ~0. [Th 6.3 (iii).] Case (3) is similar to Case (2). 
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I n  Case (4) the  fa l s i ty  of (d) aga in  implies  t h a t  there  exis ts  an  hE F *  which meets  q~ 

and  y~ and  is a mer id ian .  

We infer the  t r u t h  of (d). 

The subset ~ o/qS. An F * - c y c l e  which is N- or S-concave  will be cal led concave. Let  

be the  subse t  of concave F*-cyc le s  in (/). 

L e m m a  8.2. When there is no meridian the set tt ] is not empty and contains every cycle 

in qb , excepting q~N = fi ( U i U N)] (UN ~ 0) when q~N is a maximal  N-cycle not S-concave, and 

excepting q~ s = fl (Us U S) [ (Us "- O) when q~ s is a maximal  S-cycle not N-concave. 

The set T is not  empty .  F o r  there  is e i ther  exac t ly  one cycle in ~ ,  or e xa c t l y  two, or 

an inner  cycle. I n  each of these  cases L 8.1 implies  the  exis tence  of a concave cycle in  (/) 

and  hence in ~ .  I f  UN * 0 and  q~N is no t  in 71, TN is cer ta in ly  no t  S-concave  b y  def in i t ion  

of ~v. I t  cannot  be an inner  cycle b y  L 8.1 (c). The case of an excep ted  q~s is s imilar .  

The critical elements in  qb. We a im a t  a f inite decompos i t ion  of :E using such basic  

regions as N-caps ,  S-caps,  the  L~nion C of all concavc annuli ,  and  such o ther  sets as m a y  

be necessary.  No concave annulus  A meets  an N-cap  or S-cap,  since no N- or S- loop can 

enter  A. Hcncc  C cannot  meet  an N - c a p  Ux, or S-cap  Us. The ques t ion  then  is wha t  is the  

na tu re  of 
E - UN--  U s -  C. 

The pr(~blem is compl ica ted  by  the fact  t h a t  Ux,  Us or C m a y  be emI)ty.  W h e n  UN * 0 

and Us :*~ O, UN U N and  Us L) S have unique  cycles, in ~ ,  %v and  q)s respect ive ly ,  as boun(1- 

aries [Th 6.3.] W h e n  C * 0 i t  will t ) resent ly appea r  t h a t  i t  has  uni(lue e lements  y~x and  

y~s in q) as boundar ies ,  and  a p a r t  fr,)m sl)eeial cases one wouhl expec t  t ha t  in q~ 

( 8 . 1 )  S "  ~ q),S' ": ~/)S" : ~/)N" : (~N ' : ~/~" 

To simt)lify tl le i)roblem, and to include all  cases of t i le  vanish ing  of UN, Us and  C and  

the coalescence of the i r  1)oun(larics we define, (It novo, four cr i t ica l  e lements  in r  namely ,  

( 8 . 2 )  (~S, ~])S, ~/)N, ~N" 

Let q)N be 7~ i / there  are no N-loops and sup ~1 (S < q~ "< 7~) otherwise. 

Let q)s be $ i / there  are no S-loops and in/q51 (S < q~ < 71/) otherwise. 

Let ~PN = sup T ,  and y~s = inf T .  

The e lements  so def ined exist .  F o r  the  set kP is not  e m p t y  b y  L 8.2, nor is the  set  

r  (S < ~0 < 7~) since (/) D T .  One makes  use of the  completeness  of (/). Moreover  

(8.3)' S ~ ~Os <~ ~/)s <~ ~pN ~ (~N ~" ~5~. 
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An a l t e rna t ive  b u t  equ iva len t  def ini t ion of ~0N and  ~0 s follows. 

Let q~N be the closed curve in q5 with minimum carrier fl ( U iv U N). 

Let q~s be the closed curve in q5 with minimum carrier ~(Us  U S). 

W e  are  assuming t h a t  there  is no mer id ian ,  and  in th is  case C1UN N C1Us---O. 

I t  follows f rom the  second def ini t ion of ~g  and  ~s  t h a t  ~N > ~Os. Moreover  T is no t  emp ty ,  

so t h a t  for some cycle ~E ~P, $ < y~ g y~g, Tl > y~ => Vs. I n  s u m m a r y ,  

(8.3)" q~s < %~, T / >  y~s, S < y~.  

A t  the  end of this  sect ion we shall  see t h a t  the  condi t ions  (8.3)' and  (8.3)" are  the  only  

order  condi t ions  on the  e lements  involved.  

L e m m a  8.3 (a). I/~fN < qgn, y~n is N-concave. I/y~s > q~s, y~z is S-concave. 

(b). I/y~s < V2N, then vZs is N-concave or S, and ~N is S-concave or ~1. 

Proo/o~ (a). I f  q~s = ~N < ~0y, then  V)N is the  only  cycle in ~ .  I t  cannot  be S-concave  

since equal  to q~s, and  so mus t  be N-concave.  I f  q~s < VJN < ~N then  ~ON is an  inner  cycle 

in T and  mus t  be N-concave  b y  Th 6.3 (ii). S imi la r ly  ~fs is S-concave  if yJs > q~s. 

Proo/o/  (b). I f  ~s  = y~s and  ~s  ~= $, then  ~s  is in ~ and  hence N-concave ,  or no t  in 

~rs and  N-concave  (a cont rad ic t ion)  because ~s  =/7 Union R n for a p roper  choice of Rn, 

as in the  proof  of L 7.1 [L 3.2]. I f  q~s < y~s "< yJN, yJs is an  inner  cycle, and  N-concave  since 

< ~N. The case of ~N is s imilar .  

The open sets {X, Y}. Let  X and  Y be any  two successive e lements  in (8.3)'. I f  X = Y 

let  {X, Y} be the  e m p t y  set. If  X ~-- Y let  {X, Y} be the  open sct bounded  by  X and  Y. 

To describe F *  over  Z*  i t  is sufficient to  descr ibe  F *  over  the  sets  

I n  the  order  wr i t t en  such sets are  called, respect ive ly ,  S-ca/ps, S-spiral annuli, central 

annuli, N-spiral annuli, and  N-caps, We have  a l r eady  charac te r ized  N- and  S-caps.  We 

shall  character ize  spiral  and  centra l  annuli .  

Improper annuli. A spiral  annu lus  or a cent ra l  annulus  in which one a t  lcas t  of the  

the  bounding e lements  is TI or S will be called improper. Because of the  condi t ions  S < yJN 

and  ~ > ~s  imprope r  spiral  annul i  t ake  one of the  forms 

{s, {,p., 

I m p r o p e r  centra l  annul i  t ake  one of the  forms 

{s, {v,s, {s, a}. 
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The last wri t ten annulus is realized in the case of a family F consisting of the parallels 

on Z*. I f  Z* is covered by  just  one of the open sets (8.4) this set mus t  be a central  annulus 

of the form {$, ~}. 

I n  w 5 we have analyzed concave annuli  A (~1, ~2). Here ql  and q2 were cycles in q5 

concave toward each other. The description of a central  annulus follows. 

Theorem 8.1. A central annulus {y~s, v2N} = C is the Onion o /a l l  concave annuli. Each 

element o/ F*  meeting C is in C, and is either a non-singular top circle or a non-singular 

element h which is an asymptote in each o / i t s  senses. 

We begin by  establishing the following. 

(a) Each concave annulus A (q)l, qJ2) is in C. 

B y  definition of yJs and yJ.v, v2s =< ql  < ~~ --< V/N, and (a) follows. 

(b) Each point o / C  is in a concave annulus. 

When  C is non-empty  and proper it is a concave annulus [L 8.3 (b)]. I n  this case (b) 

is trivial. When  C is improper  bu t  not  e m p t y  three cases are distinguished. 

Case I. C = Z*.  In  this case 

(8.5) y J s = $ = i n f ~  ~ N = ~ = s u p  

and each cycle in ~b is an inner cycle. I f  ~01 and ~,, are cycles in ~b the annulus A (~01, T2) 

is concave by  L 5.2. I t  follows from (8.5) tha t  every point  of C is in some concave 

annulus A (~i, ~~ 

Case I I .  yJs = $, ~N < ~.  Each  cycle ~ in C is an inner cycle in all cases. I n  Case I I ,  

y~N is S-concave by L 8.3 (b), so tha t  A (~0, VQN ) is a concave annulus by  L 5.2. Since $ satisfies 

(8.5) it is clear tha t  each point  of C is in an annulus A (~0, ~N)- 

Case I I I .  Similar to Case I I  with S and N interchanged. 

Thus  (b) holds and it follows tha t  C is the union of all concave annuli.  Each  element 

of F*  in C is in a concave annulus A (q01, ~2) and so has the na ture  s ta ted  in the theorem. 

Theorem 8.2. Let {v/N, q~N} be an N-spiral annulus W :~ O. 

(i) For ~ properly chosen as one o/the cycles y~N •  each element in F*  I W is non-singular 

and asymptotic to ~ with an initial limiting point in q~N. 

(ii) At  most one such asymptote ~1 has its initial point in a given N-loop v 2 in qJN. 

(iii) When W :* 0, ~N is a maximal  N-cycle or ~ .  

Proof of (i). There is no cycle of r between ~0N and ~N when yJN < ~0N, since ~0N is then 

the first cycle in r before ~0N. There are no N-loops meet ing W, since ~0N is a maximal  

N-cycle  or ~ by  L 8.2. There are no elements in F*]  W asympto t i c  to ~0N as a cycle, since 

the conditions y~N<~pN< ~t imply  t h a t  ~0N is not  S-concave.  Hence each h E F *  I W is 
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asymptotic  to ~ = y~N 4- with a limiting initial point in ~N. There is no singular point P 

in W; otherwise the elements in F*  meeting P would include at  least two elements asymp- 

totic to FN4-, contrary to Cor 5.1. 

Proo/ o/ (ii). I f  (ii) were false there would exist points r and r '  of y~ in E* incident re- 

spectively with distinct elements h and h' in F*  I W, and asymptot ic  to 9" There would 

then be two F*- rays  with initial point at  r and asymptot ic  to ~ contrary to Cor 5.1. 

Proo/o/(iii) .  This follows from L 8.2. 

This completes the proof of the theorem. S-spiral annuli admit  a similar description. 

Covering by two sets {X, Y}. In  any covering of E* by  two non-empty sets {X, Y} 

and their common boundary fl, the first set must  be an S-cap, S-spiral or central annulus, 

and the second an N-cap, N-spiral or central annulus. There are thus nine a priori pos- 

sibilities, but a central annulus cannot be combined with a central annulus, nor an N-cap 

with an S-cap, since ~z < ~N when there is no meridian. There remain four comb.inations 

of two scts {X, Y}, namely 

(8.6) {S-cap, N-spiral A} {S-cap, central A} 

(8.7) {S-spiral A, N-spiral A} {S-spiral A, central A} 

and three other combinations, obtained by interchanging N with S and inverting the 

order of the two sets. 

I t  follows from L 8.3 that  the common boundary fl of the two sets is an N-concave 

~s in (8.6), and a non-singular inner cycle ~ps in (8.7). The cycle fl = (ps in (8.6) may  be a 

maximal S-cycle or an inner cycle. Each of these possibilities is realizable. 

In case meridians arc absent E is decomposed as follows. 

Theorem 8.3 (a). The non-empty open sets {X, Y} in (8.4) are disjoint, and, taken with 

their boundaries, cover Z. 

(b). A boundary cycle q~ common to two o/these open sets is singular at most i /one o/the 

sets is an N-cap or S-cap. 

(c). A boundary o/ an N-cap [S-cap] is an inner cycle ep at most i/ q~ is singular and 

S-concave [N-concave], and i / any  N-spiral [S-spiral] annulus is empty. 

(a) This needs no further proof. 

(b) This follows from L 8.3, on recalling tha t  r is non-singular if both N- and S- 

concave. 

(c) If ~ [~s] is an inner cycle then it is in ~ by L 8.2, and hence S-concave [N- 

concave], and any  N-spiral [S-spiral] annulus is empty  by Th 8.2 (iii). 
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Corollary 8.1. When there is no meridian a necessary and su//icient condition that each 

element in F* be non-singular is that there be no singular N- or S-loops. 

The corollary would follow immediately from the theorem, if the condition were 

that  there exist no singular N- or S-loops or N- or S-circuits. However, it follows from 

Th 8.3 (c) that  in the absence of meridians an N-circuit ~v (if it exists) is necessarily S- 

concave. Hence the elements in F* meeting a singular point in ~v must carry an N-loop. 

The case of an S-circuit is similar. Hence the condition of the corollary is sufficient. I t  is 

trivial that  it is necessary. 

Construction o /an  F. Without going into details one can assert that  any distribution 

of the signs < and = in (8.3)' that  is consistent with (8.3)" is realizable in an example 

which is non-singular. One can, for example, make use of central annuli covered by a 

continuous 1-parameter family of closed curves. An N-cap can be defined which is bounded 

by N and a single non-singular N-loop One can use N-spiral annuli which are covered by 

aymptotes each of whose initial points are in N. S-caps and S-spiral annuli of similar char- 

acter can be constructed when called for, and combined with these elementary N-caps, 

N-spiral annuli, and central annuli to form a family F as desired. 

w 9. Loop coverage 

The case of loop coverage arises, by definition, when points on N- or S-loops are 

everywhere dense in ~*. Clearly a necessary and sufficient condition for loop coverage is 

that  
~nion [UN, Us] =Y,*. 

When there is loop coverage it will appear that  there is at least one meridian in F*. Cf. 

Cor 6.1. When there is at least one meridian the decomposition of E* can be studied under 

the case of loop coverage and the case of no loop coverage. We here study loop coverage. 

By a maximal N-loop is meant any N-loop ~0 such that Iq~ ~ Iv/ whenever ~p is an 

N-loop with I v N I~0 * 0. A maximal S-loop is similarly defined. 

We need further information regarding unbounded N-caps UN. 

Theorem 9.1. I /  UN is not bounded/rom S and :*= E*, then each component R of UN is 

either i, the interior o /a  maximal N-loop or, ii, an F-region bounded by N U S, by two disjoint 

meridians and at most countably many disjoint maximal S-loops, iii, a region bounded by a 

maximal S-cycle and by N. 

(a) Two components o/ U N o/ types i or ii have disjoint boundaries in E*. 

(b) There is at least one component o/ type ii or iii. Any  component o/ UN o[ type iii 

equals U ~. The number o/components o/type ii is/inite. 
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L 3.2 implies tha t  each component R of UN is an F-region. As given by Th 3.2 

fiR does not carry an N or S-circuit since UN is not bounded from S. An R is then of type 

i if bounded from S, of type iii if N is isolated in fl R, of type ii otherwise. The maximal i ty  

of the loops follows from the definition of UN. 

Intersection o/ component boundaries. Two components of UN cannot have an open 

boundary arc in common since UN is an inner closure in Y~*. If  R 1 and R 2 are two components 

of UN of types [i, ii], [i, i] or [ii, ii] then fiR 1 and fiR 2 cannot meet in a point in Y~*; other- 

wise f i r  1 UflR 2 would carry an N-loop with interior R o such tha t  l~nion [R0, R1, R2] 

would be connected and in UN, contrary to the nature of R 1 and R2 as components of UN. 

Number o/ components. If  there were no component of type  ii or iii, UN would be 

bounded from S, contrary to hypothesis; tha t  any component of type iii is UN itself follows 

from the relation 

UN :D R ~  Z * - ~TsxD UN. 

The number of components R of UN of type ii is finite; for there exists in each such R 

an N-loop with diameter  exceeding z / 2  and the number  of such N-loops in different com- 

ponents R is finite by L 3.1. 

This completes the proof of the theorem. 

By an argument  similar to that  used in the last paragraph of the proof one can show 

that  the maximal number of meridians in any collection of disjoint meridians is finite in 

the ease of loop coverage. 

On setting 

(9.1) B = fl U N N fl Us 

one obtains the following theorem. 

Theorem 9.2. In  the case oJ loop coverage, the ]ollowing is true. 

(a) I[ UN is bounded ]rom S and Us ]rom N, B = ~U N- -  N = f l U s -  S is a top circle 

in F*. 

(b) I] UN is not empty and bounded/rom S, but Us is not bounded/rom N, B = fl UN 

is the carrier of a maximal N-cycle. A similar statement holds interchanging N and S. 

(c) I /  UN is not bounded/rom S nor Us/rom N, the components o/ BlY~* are simple 

and disjoint, and include a/ini te set (at least two) of meridians, and carry at most a countable 

set o/maximal N- and S-loops. 

Statements (a) and (b) follow from Th 6.3 and s ta tement  (c) from Th 9.1. 

Primitives. We shall give another decomposition of ~:* in terms of a ~nion  of certain 

elementary regions to be termed primitives. These primitives will enter into decomposi- 
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tions both  in the case of loop coverage, and in the case where at  least one meridian exists 

and there is no loop coverage. 

De[inition. Let  q01, q2 . . . .  be a sequence of disjoint non-singular N-loops such tha t  

(9.2) I~1 c I~2 c I~a  = . . . .  

Then Union I ~ n  will be called an N-element and denoted by  [~0]. An N-element  which is 

not  a proper subset of a ny  other N-element  is called an N-primitive. S-primitives [q~] are 

similarly defined. 

We shall establish a number  of proposit ions which lead up to a decomposit ion of 

UN [Us] into a ]~nion of disjoint N-primit ives  [S-primitives] countable in number.  The 

essence of the analysis lies in the introduct ion of a partial  order among  N- or S-elements, 

and, for ordered subsets of N- or S-elements, in the reduct ion of this order to a numerical  

basis. 

We say tha t  two N-elements  are ordered if one is included in the other. We similarly 

order interiors I ~  of N-loops y). Strict  inclusion of a set A in B will be denoted by the rela- 

t ion A < B or B > A. I f  ~ and ~p are non-singular N-loops and I ~  N Iy) * 0 I ~  and Iy) are 

ordered. We extend this fact  as follows. 

(~) I[ N-elements [(p] and [y)] intersect, [q~] and [~] are ordered. 

If  [q0] N [~o] * 0 then for suitable integers r and s, Iq% N Iy)~ -~- 0, and hence I~n  N I~,,~ * 0 

for n ~ r, m ~ s. Hence the set of all loop interiors of the form Iq~n, n ~ r, Iy)m, m ~ s, is 

ordered. F rom this set one can form an N-element  [~] such tha t  [~] ~ [~] and [~] ~ [y)]. 

I t  is clear tha t  either [~] = [~], or [$] = [~], or tha t  both of these equalities hold. S ta tcment  

(a) follows. 

(~) I[ [q0] and [~p] are ordered N-elements with diameters D[(p] and D[lp] respectively, 

then D [~0] > D [~] i /and  only i] [q~] > [~p]. 

Suppose tha t  I~% and Iy),~ are ordered, and let d(%~) and d(F,,) be the diameters of 

~ and yzn respectively. I t  is clear t ha t  d(%~) > d(y),,) if and only if Iffn > I~,,,. 

{1) If  [~0] > [F], the above N-element  [~] is such tha t  for some integer t, and for n ;:: t, 

~n is in the set [~1, ~2 . . . .  ] and I~ tD  [y)]. Hence D[~]  = D[~] > d(~t) -~ D[y~]. 

(2) I f  D[T] > D[y)], [~] has this same proper ty  so tha t  [~] > [~]. 

(y) I/[q~] and [y)] are ordered N-elements, D [(p] = D [~] i[ and only i/[q~] = [y~]. 

This is an immediate  consequence of (~). 

We state two basic lemmas independent  of the hypothesis  of loop coverage. 

Lemma 9.1. The Union V o/ N-elements [S-elements] in any ordered class K o/ N- 

elements [S-elements] is an N-element [S.element]. 
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I t  is sufficient to  consider  the  case of N-e lements .  Set  zJ = sup D[tE] I ( [~]EK) and  

d is t inguish  two cases as follows. 

Case I. F o r  some [yJ]EK, D[~v] = A. I n  th is  case i t  follows f rom ([~) and  (y) t h a t  [~p] 

includes  every  [~v] E K and  hence [yJ] D V. B u t  [~v] is in K so t h a t  V ~ [~v]. Hence  [y~] = V 

and  L 9.1 follows. 

Case I I .  :Not Case I .  I n  Case I I  there  is a sequence [~vr], r = 0, 1 . . . .  of N-e l emen t s  in 

K ,  such t h a t  D[~v ~] increases s t r i c t ly  as r ~ oo and  tends  to  A as r f' oo. Then  

(9.3) [~0] < [~vl] < [~v~] < . . .  [by  ([~)]. 

F o r  n successively 1, 2, 3 . . . .  one can choose a F~ in the  set [~l n, ~v~ n, . . . ]  such t h a t  

and  hence 

Thus  

(9.4) 

so t h a t  

I~v~ > [~,~-l] 

I ~ l  < I ~ 2  < IyJ a < . . . .  

[y)] > I~p~ > [~v "-~] (n = 1, 2 . . . .  ) 

D[~f] ~ D[q) ~-~] In = 1, 2 . . . .  ] 

and  hence D[yJ] ~ A. Bu t  D[v2] ~ A by  v i r tue  of the  def in i t ion  of J .  We  conclude t h a t  

D [W] = A. Bu t  c lear ly  V = [~p], and  L 9.1 follows. 

Corollary 9.1 The union K el all N-elements [S-elements] which meet a given N-element 

[S-element] is an N-primitive [S-primitive]. 

The e lements  in K each mee t  a g iven e lement  [~], so t h a t  K is t he  union  of an  

ordered  set of N-e lements  [S-elements] .  The  corol lary  follows f rom the  lemma.  

L e m m a  9.2. A primitive R is an F-region. Each component o / f i R  in F.* is concave 

toward R. 

The region R is an N-e l emen t  and  as such s imply  connected.  I t  is an  F - r eg ion  and  

an  F * - s e t  b y  L 3 . 2 .  Because  R is an  F * - s e t  the  componen t s  of f i r  in ~]* are  concave  

t o w a r d  R. 

L e m m a  9.3 (a). Each point in an N.loop [S-loop] is in the closure o / a n  N-primitive 

[S-primitive]. 

(b) No two primitives intersect. 

(c) The number o/ disjoint primitives with diameters exceeding a positive constant is 

/inite. 
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Proo/ o/ (a). We trea t  the case of a point  P in an N-loop ~0. Let  ;t be a transversal  r ay  

in 1 9  and incident with P .  Let  p , ,  n = 1, 2 . . . .  be a sequence of points  appearing on +~ 

in the order Pl, P2 . . . .  and tending to P as n I' co. We can suppose t h a t  each point  Pn is 

chosen so tha t  the N-loop q)n meeting p~ is non-singular.  Then ~ fl ;t =Pn [L 3.0] and P 

is in E ~ .  I t  follows t h a t  

1 9 1 c  1 9 2 c  ...  

so tha t  [~] is an N-element  and C1 [q~] contains P.  According to Cor 9.1 [~0] is in an N- 

primitive. 

The case of a point  P in an S-loop is similar. 

Proo/ o/ (b). An N-pr imit ive  [~] cannot  meet  an S-primit ive [y;]; otherwise some non- 

singular N-loop ~% would be in the interior of some non-singular S-Ioop YJm. This is clearly 

impossible. Nor  can an N-pr imit ive  [9~] meet  a different N-pr imi t ive  [y~]. For  [~] and [y~] 

would then be ordered [cf. (~)], and be equal, since both are maximal  N-elements.  State- 

men t  (b) follows. 

Proo/ o/ (c). In  each primitive with diameter  exceeding c > 0, there is a loop with dia- 

meter  exceeding e and two such loops in (lisjoillt primitives would have disjoint interiors. 

The number  of such loops is, however, finite [L 3.1] and (c) follows. 

L q.3 yields the following theorem. 

Theorem 9.3. There is at most a countable number o/ N-primitives [S-primiti~;es] which 

meet aa N-cap UN, [S-cap Us], and UN [Us] is the ~niou o/ these primitives. 

Corollary 9.2. In the case o/ loop coveraye there is at most a cr>untable number o/ primitives 

in G*, and Z* is the ~nion o[ these primitives. 

w 10. F-guides 

A pscudoharmonic funct ion with the open arcs of F as level lines is strictly increasing 

or.decreasing along a transversal.  The existence of simple arcs on M which arc finite se- 

quenccs of transversc arcs will tu rn  out  to be of the greatest  importance in the s tudy  of 

pscudoharmonic  functions u on M, and in answering the question as to the nature  of u 

as a Iunct ion on Y=*, in part icular  in finding pseudoharmonic  functions which are single- 

valued on Y.* and have the open arcs of Y as level lines. F-guides,  which we now define, 

are central in this s tudy.  

De/inition. A non-singular arc on •* is te rmed m-transverse if the union of m con- 

sequtive transverse arcs. A top circle on Y=* is te rmed m-transverse (m > 1) i f  the  union 
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of m consecutive transverse arcs, and  1-transverse if every open subare is a t ransversal .  

An m-transverse top circle separat ing N from S for which m is a m i n i m u m  is called an  

F-guide. 

The existence of an F-gu ide  is most  difficult  to establish in the case in which there 

exists at  least one mer id ian  L, and  this is the case where the F-guide  is most  useful. I n  

case L exists an n- t ransvcrse  top circle g in Z* which separates N from S, intersects  L in 

a single point ,  and  is such tha t  n is a m i n i m u m  subject  to these conditions,  is called an 

FL-guide. An FL-guide  need not  be an  F-guide,  bu t  once the existence of an  FL-guide  is 

established the existence of an F-guide  follows readily, even in  the cases where there is 

no meridian.  

Reversing points. A point  of junc t ion  P of two successive t ransverse  arcs whose un ion  

is an arc g, is called a reversing point  of g if thc sense of crossing of e lements 'of  F revcrses 

at  P.  Rccall t ha t  P is non-singular .  I t  is clear tha t  the junc t ion  poin t  P of two successive 

transverse arcs in a finite min imal  decomposi t ion of an arc g into t ransverse arcs is a revers- 

ing point .  Otherwise the two arcs wouhl form a single t ransverse arc and  g couhl not  have 

bccn min imal ly  (tecomposed. 

7'he existence o[ an FL-guide. Except  for one point  in L, an  FL-guide  g, if it  exists, 

will be. in the region A = ". -- L. The region A is the homcomorph of a finite z-plane so tha t  

the results of MJ 2 can 1)e applic(l to the family F 0 = F I A .  Ill MJ 2 " ba nds"  played a 

fundamenta l  role. A band  R(N~,), r(~lative to A, is defined as the un ion  of all elements in 

F 0 which meet  a right neighb()rhood Nj, in A. As shown in MJ 2 a hand  R(N~)  in A is an 

F0-r(,gi(m, and has boundary  (~omi)~)ncnts in ,4 which are simple. ]f E is a set in A it  will 

I)(' necessary to (listinguish between the boundary  fl E of E relat ive to Z, and the boundary  

/~0E of E relat ive to A. 

We begin with two lcmmas. 

L[ 'mma 10.1. A n y  two non-singular points Pl and P2 on the boundary f i R  o[ a band R 

~n fl  - Z -- L can be ~oined by (in m-transverse arc g such that g - Pl - P2 is in R and m :~ 3. 

Any two points  q~ and q~ in different elements of F 0 in R can clcarly bc joined by a 

transverse arc in R. But  the given points  Pl and Pz can be joined to points  ql and  qz in R 

and neighboring Pl and p,,, resw.ctivcly, by transverse arcs ]Q, k.,, in R except for Pl and  

P2. 0nc  can suppose ql and  q., so near Pl and  P2, respectively,  t h a t  k 1 does not  mcct  k 2. 

Let k be a t ransverse arc joining q~ to q., in R. If/c 1 N k = ql and  ]c 2 N/c = q2 the arc g = k lkk  2 

satisfies the lemma.  Othcrwise let ]c~ and ]c~ be maximal  ini t ial  subarcs of ]c 1 a n d / Q ,  re- 
1 r t 

spectively, intersect ing k only in  their  endpoin ts  q~ and  q2, and  let k' be the subarc ql q2 

of k. Then  the arc g = k'l ]c' k~ satisfies the lemma.  
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L e m m a  10.2. I / a  meridian L exists an FL-guide g exists. 

Le t  p be an a r b i t r a r y  non-s ingular  po in t  in L, and  le t  ~t and  # be sensed t r ansverse  

arcs joining p to  po in ts  P and  Q respect ive ly ,  on oppos i te  sides of L. We suppose 2 and /~  

so res t r i c ted  t h a t  )~ (~/~ = 0, ~t A L = p, # ~ L = p. 

I t  follows f rom Th 9.1 of M J  2 t h a t  there  exis ts  a f in i te  set  of d i s jo in t  bands  

(10.I) R1, R 2 . . . . .  R m [m > 1] 

of A whose ~ n i o n  is an  F - reg ion  H which conta ins  P and  Q. Le t  P1 and  Q1 be respec t ive ly  

the  f irst  in te rsec t ion  of ~ and  # wi th  f i l l .  The  po in t  P1 is no t  necessar i ly  in fR1, nor Q1 

in fl R m. 

I f  R i and  Rj, i * j,  a re  two bands  in (10.1) whose l~nion is connected, /~0Ri  ~/~0Rj 

includes a t  leas t  one c lement  ~ E Fo,  so t h a t  one can connect  R i with R~ b y  an  arc which 

crosses ~ a t  one po in t  only.  The po in ts  P1 and  Q1 can accord ing ly  be connected  b y  a non- 

s ingular  arc  g, in H except  for Px and  Q1, and  mee t ing  the  respec t ive  boundar ies  floRi 
in a t  most  a f ini te  set  of s points .  I f  t hen  one chooses g so t h a t  s is min imal ,  i t  follows 

t h a t  /~R i N g, i = 1 . . . . .  m, is e i ther  the  e m p t y  set or two poin ts  p[ and  p[ '  appea r ing  in 

th is  order  on g. The po in ts  p[ and  p[ '  can be jo ined  b y  a r - t ransverse  arc gi (r <__ 3) wi th  

g , - p [ - p [ ' c  R,. [L 10.I.] 

I f  p =~P1 and p ~Q1 ,  the  subarcs  PP1 of ~t and  Qlp of it, un i t ed  wi th  the  arcs g~ in 

proper  order,  give an n - t ransverse  top  circle, wi th  n -: 3m t ~ 2, meet ing  L only  a t  p. I f  

P = P1 the  subarc  of PP1 of )~ is no t  needed.  

The case in which p = Q1 is s imilar .  

An  n- t ransverse  top  circle meet ing  L only  a t  p and  for which n is min imal  accord ing ly  

exists ,  and  the l e m m a  follows. 

The pr inc ipa l  theorem of th is  sect ion follows. No  hypo thes i s  as to  the  exis tence of a 

mer id ian  is made .  

Theorem 10.1. Corresponding to an arbitrary admissible ]amily F defined on F~*, there 

always exists an F-guide g. 

Let  h be a non-s ingular  subarc  of an  e l emen t  of F ,  wi th  end poin ts  P1 and  P2 in ]E*. 

s  exis t  top  circles g~ and g2 in E*,  each sepa ra t ing  N from S and  wi th  gl N g2 = 0, 

gl N h =P1, g2 N h = P2. Then gl and  g2 bound  a doub ly  connected  doma in  X ~ E*.  X is 

topologica l ly  equ iva len t  to E* under  a mapp ing  T of X onto  :E*. Unde r  T, F I X  goes 

in to  a f ami ly  F '  admiss ib ly  def ined over  E*.  I n  F ' ,  T (h - P1 - P2) is a mer id i an  L ' .  F r o m  

L 10.2 we infer the  exis tence of an  F ' L ' - g u i d e  g'. F o r  some f ini te  m, T- lg  ' is m- t ransverse  

re la t ive  to  F and  the  exis tence of an  F - g u i d e  follows. 

To a p p l y  this  theorem cer ta in  def ini t ions  and  l emmas  are  needed.  

3 -  533807. Acta Mathematica. 9l. Imprim6 lo 19 mai 1954. 
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Let  p be any  non-s ingular  p o i n t  and  Nv a r igh t  ne ighborhood  of p wi th  canonical  coor- 

d ina tes  u and  v. Given r E N v  wi th  u ~: 0 a t  r, a sensed t r ansverse  arc  g mee t ing  r will  be 

said to  be sensed away/rom p if ] u I is increasing on 9 as r is a pp roa c he d  in g 's  pos i t ive  sense. 

A s imi lar  def in i t ion  is unde r s tood  on M.  

A construction/or use in L 10.3. Given  hfiF*M le t  A and  B be non-s ingula r  po in t s  in h. 

L e t  H be one of the  two regions in to  which h d iv ides  M.  I n  H suppose  t h a t  there  are  

n > 0 F ~ - r a y s  7[: 1 . . . . .  ;71~ n w i th  end po in t s  in the  arc  A B of h. Suppose  these  r ays  wr i t t en  in 

the  order  in which t h e y  are  me t  b y  an  arc  k jo in ing  A to B wi th  k -  A - B  c H ,  and  

mee t ing  each r a y  7t i in jus t  one poin t .  L e t  ~t and  p be non- in te r sec t ing  open t ransversa l s  in 

H inc ident  wi th  A and  B respect ive ly .  I t  follows f rom Th 2.3 t h a t  2 and  p mee t  none of 

the  rays .  

L e m m a  10.3. I n  the preceding con/iguration A can be joined to an arbitrary point Prig,  

or to P = B, by an m-transverse arc g with g - A - P ~ H - ~ - p and such that g is seused 

a w a y / r o m  B when P is in p. The m i n i m um  value o / m  is n + 1 when P is in p, and n + 2 

when P = B. 

The l emma is t rue  when n = 0; in th is  case a m i n i m u m  m = 2, when P = B. [Cf. Th 2.3.] 

W h e n  n > 0 let  P~ be a po in t  in ~r~ f3 H,  i = 1 . . . . .  n, and  set  P0 = A.  I t  is clear  t h a t  

P t -  1 can be jo ined  to  P~ b y  a 2- t ransverse  arc  ki whose m a x i m a l  open subarc  is in the  set  

H *  = H - Union  (~, p ,  zt 1 . . . . .  ~tn). 

The  junc t ion  p o i n t  of the  two t ransverse  arcs composing  k i m u s t  be a revers ing p o i n t  

[Th 2.3]. Moreover  Pn  can be jo ined  to  P E p  b y  a 1- t ransverse  arc  sensed a w a y  from B 

a t  P .  Le t  g be the  arc jo in ing  A to P ob ta ined  by  un i t ing  these  arcs. The  po in t s  P1 . . . . .  Pn 

in g are  not  revers ing points .  Thus  g bears  n revers ing points .  These revers ing po in ts  d iv ide  

g in to  n + 1 t r ansverse  arcs. 

Le t  g now be an  a r b i t r a r y  m- t ransverse  arc  sa t i s fy ing  the  l emma.  Suppose  P E p .  Le t  

Qi be the  first  po in t  of in te rsec t ion  of g wi th  zt~ and  K~ the  l as t  point .  Se t  K o = A.  The  

subarcs  K,n_lQm, m = 1 . . . . .  n, in te r sec t  only  when successive and  t hen  on ly  in a common 

end point .  They  canno t  be t r ansverse  arcs, b y  Th 2.3, and  hence bea r  a t  leas t  one revers ing 

poin t .  Thus  g bears  a t  leas t  n revers ing po in t s  so t h a t  m > n + 1. 

The case in which P = B is s imilar .  

Corollary 10.1. A n  F-gulde g which meets the interior o] a non-singular loop q~ has precisely 

one reversing point in Iq). 

Le t  an  N- loop  g [S-loop g] in to  whose south  side [nor th  side] the re  en te rs  ju s t  one 

F * - r a y  with  ini t ia l  po in t  in g, be t e r m e d  S.semi.conv, ave [N-semi-concave] .  Cf. M J  2 Th 8.1. 
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Lemma 10.4 (a). A meridian h which is concave toward one o/ its sides is met by aN 

F-guide in ~ust one point. 

(b). An F-guide g meets no S-concave or semi-concave N-loop, or N-concave or semi- 

concave S-loop each point o/ which is the limit point o/ a sequence o/ points on non-singular 

meridians. 

Proo/o/la) .  The intersections of g with h are isolated on g and hence finite in number. 

If  g meets h in more than one point it meets h in at least two points. One then uses 

L 10.3 to show that  g can be modified so as to cross h just once and be an m-transverse 

arc with m smaller than previously. Since m is supposed to be a minimum for g this is 

impossible. 

Proo/ o/ (b). We suppose (b) false in that  g meets an S-semi-concave N-loop ~ satisfying 

the conditions of the lemma. At the first point p of intersection of g with ~, g crosses ]r 

Otherwise g will have a reversing point at p and cross some non-singular meridian passing 

near p more than once, contrary to (a). 

Let A and B then be two points, at which g enters I ~  and leaves I ~  respectively, 

bounding an open subarc g(A, B) of g in I~ .  Consider the case in which the F*-ray  r 

given in E~o as incident with ~0 has its initial point r in the open subarc ~(A, B) of ~. 

There will then be at least one F*-ray in I ~  incident with r. Let P be a point in an open 

transversal in g just following g(A, B). ]By L 10.3, g(A, B) carries at least two reversing 

points. However, there exists a 2-transverse arc gl(A, P), in E~0 except for A in ~, which, 

substituted for g (A, P), gives a simple closed curve gl in place of g, with a reversing point 

at A, and at only one other point of gl(A, P), but with no reversing point at P. Thus gl 

is an F-guide meeting ~ without crossing ~. This we have seen is impossible. 

The case in which no F*-ray 7t is incident with q~ (A, B) is similar. This is the ease 

which always occurs if q is S-concave. The case of an S-loop is of like character. We infer 

then that  g cannot cross loops conditioned as in the lemma. 

The index v (F) o/ F. The number of reversing points in an F-guide g is called the 

index v (F) of F. I t  is independent of the choice of g as F-guide. The following theorem 

gives an evaluation of v (F). 

Theorem 10.2. I~ there is at least one meridian in F*, each reversing point o /an  F-guide 

g is in a primitive, while each primitive met by g contains just one reversing point o/g.  Thus 

the index v (F) is the number of primitives met by g. 

Let P be a reversing point of g. A non-singular element hEF*  which meets g in a 

point q =~ P sufficiently near P meets the two transversal subarcs of g incident with P .  

W h e n  a meridian exists, h as non-singular, must either be a meridian or a loop. But tt 
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canno t  be a mer id i an  b y  L 10.4. Hence  h carries a loop ~. Then  P is in 1% Otherwise g 

would  enter  I ~  a t  two points .  This  is impossible ,  for b y  L 10.3 an  F - g u i d e  can mee t  a 

non-s ingular  loop in a t  most  two points .  S imi la r ly  P is in the  in ter ior  of each of a sequence 

~1, ~02 . . . .  of d i s jo in t  loops whose carr iers  mee t  g in a sequence of pa i rs  of po in t s  t end ing  

to  P as a l imit .  I f  ~vn is p rope r ly  chosen 

I~1 c I~2  c , . .  

so t h a t  Union  Iq)  n is an  e lement  conta in ing  P in i ts  inter ior .  B y  Cor 9.1 P is in a p r imi t i ve  

conta in ing  this  e lement .  T h a t  each p r imi t ive  met  b y  g conta ins  ius t  one revers ing  p o i n t  

follows wi th  the  a id  of Cor 10.1. 

The theorem follows. 

w 11. No loop coverage, meridians present 

To decompose  Y~* p rope r ly  in th is  case a new t y p e  of covering region is needed  to  

supp lemen t  N-  and  S-caps.  

Meridional regions. A m a x i m a l  connected  open set R c 2,* in which the  set of po in t s  

on non-s ingular  mer id ians  is everywhere  dense is called mer id ional .  E q u i v a l e n t l y  a mer id-  

ional  region is a m a x i m a l  connec ted  open set  R c ~ *  which is the  l~nion of non-s ingular  

mer id ians  in R. 

I n  the  case a t  hand  ti le open set  

(11.0) X = Z *  - C I ( U N  U Us) 

is not  emp ty .  We begin  with a l emma.  

L e m m a  11.1. Any  element hE F* which meets X is a meridian. 

Such an  h cannot  be a loop since h is not  in the  closure of UN or Us, nor  a t op  circle, 

since i t  would then  be carr ied  by  an  N- or S-c i rcui t  and  so bound  UN or Us [Th 6.3 ii]. 

I t  cannot  ca r ry  an  a s y m p t o t i c  r a y  n since such a ray ,  f rom a cer ta in  po in t  on is non- 

s ingular ,  con t r a ry  to  the  fact  t h a t  n would  mee t  a n y  mer id i an  in po in ts  following a n y  

prescr ibed  po in t  on ~, Hence  h is a mer id ian .  

A "cover ing"  in M of a mer id ian  or N- or S- loop in Y,* is called a mer id ian  or N- or  

S- loop in M.  Observing  t h a t  no mer id iona l  region can in tersec t  an N- or  S-cap ,  the  n a t u r a l  

decompos i t ion  of Z*  is here as  follows. 

Theorem l l . 1 .  In  case loop coverage /ails and a meridian exists, Y~* is decomposed as 

/oUows. Set  B =fl(UN tJ N) N fl(Us D S). 

(a). I /  B = 0, the set X in (11.0) is a doubly connected meridional region R bounded on 

the north by fl UN, or by N i/ UN = 0, and on the south by fl Us,  or by S i/ Us = O. 
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(b). I f  B ~: 0 each component R of X is an F-region R such that RM in M is bounded 

by two disjoint meridians, whose projections in Z* intersect at most in a point, and by a set 

(possibly empty) o/disjoint N- or S-loops. 

(c). The number of components of X is linite. 

I t  ~ollows from L 11.1 that  any non-singular element in F*  which meets X is a 

meridian. Hence the components of X are meridional. 

Proof of (a). I t  is clear tha t  X is bounded as stated, and hence doubly connected. 

Proof of (b). Here X is an F-set  and satisfies Conditions O with UN and Us. Hence 

R does likewise [L 3.3]. Since there exists a non-singular meridian there is no N- or S- 

circuit. Hence the components of fl R in Z* must  consist of two meridians h and k, and a 

set (possibly empty)  of disjoint N- and S-loops. R is in fact  an F-region. The meridians 

h and k intersect at  most in a point, since X and hence R is an inner closure. Statement  

(b) follows. 

Proof o/(c). I f  there were infinitely many  components of X there would be infinitely 

many  meridians in f iX of which no two would intersect in more than a point. There would 

then be infinitely many  components of Un U Us whose closures would meet the equator 

of Z, and by virtue of Th 9.3 infinitely many  primitives with diameters at  least ~. This is 

impossible by L 9.3 (c). 

This completes the proof of Th 11.1. 

Lemma l l . 2  (i). I / R  is a meridional region each element kE F* [ R is carried by a meridian 

in F*. 

(ii). There is at most one element hE F*[ R incident with a given N- or S-loop in fiR, 

and no such h is incident with a meridian in fl R. 

(iii). There is no singular point in R. 

Proof o/(i). This follows from L 11.1. 

Proof of (ii). Suppose two elements h and k in F*] R were incident with points p and 

q in an N- or S-loop ~0 in fl R. Let ~o (p, q) be the arc of [~01 between p and q in case p =~ q, 

and let ~ (p, q) = p in case p = q. Let  h' and k' be meridians carrying h and k respectively. 

I t  is then clear tha t  h' U k' U q0 (p, q) carries an N-loop and an S-loop intersecting in q0 (p, q). 

Since at  least one of these loops meets R this is impossible. That  no element hE F*[R  is 

incident with a meridian in fl R is similarly proved. 

Proof of (iii). The denial of (iii) implies the existence of a loop meeting R. Thus (iii) 

must  be true. 
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Theorem 11.2 (a). It  R is a simply connected meridional region each F.guide g crosses 

R without reversing point in R and without meeting the loop boundaries o/ R. The union o/ 

the elements in F meeting g N R is R. 

(b). A doubly connected meridional region R exists i/ and only i/ there is an F-guide 

without reversing point, and in case R exists the union o/all elements in F meeting an F-guide 

g i s  R. 

Proo/ o/ (a). By virtue of L 1i.2 (ii) each N-loop [S-loop] in f i r  is S-concave or semi- 

concave [N-concave or semi-concave]. I t  follows from L 10.4 that  an F-guide g meets no 

N- or S-loop in fiR. Now g meets each non-singular meridian in precisely one point [L 10.4], 

and since non-singular meridians are everywhere dense in R there can be no reversing 

point in g N R. Each element h E F * [ R  is carried by a meridian k in F* [L ll.1], and k 

meets g. Since there is no singular point in R [L 11.2 (iii)], we conclude that  h E F * I R  is an 

element in F meeting g. Hence R is the union of elements in F meeting g. 

Proo/ o/ (b). Suppose an F-guide g exists without reversing points. Then B, in 

Th ll .1,  = 0. Otherwise g would enter UN or Us and hence meet a primitive [Th 9.3], and 

by Th 10.2 carry at least one reversing point, contrary to hypothesis. Hence B = 0 and 

we infer the existence of a doubly connected meridional region [Th 11.1 (a)]. 

Conversely the existence of a doubly connected meridional region R implies, as in 

the proof of (a), the existence of an F-guide without reversing point, and that R is the union 

of all elements in F meeting g. 

The establishes Th 11.2. 

There is no singular point ill a meridional region [L 11.2 (iii)], and none in a central 

or spiral annulus [Ths 8.1 and 8.2] or in a boundary common to a central and a spiral an- 

nulus  [Th 8.3 (b)]. Thus each singular point of F* is in Cl UN 0 C1 Us. Hence the following 

theorem. 

Theorem 11.3. Regardless o/loop coverage or the existence of meridians, a necessary and 

su//icient condition that F* be non-singular is that there exist no N.  or S-circuit or singular 

N- or S.loops. 

w 12. Meridians present,  no  inner  cyc le  

When there is at least one meridian we have distinguished the case of loop coverage 

from the case of no loop coverage. One can equally well make a different divis ion into  the 

cases in which an inner cycle exists  and no inner cycle exists.  

When there is both an inner cycle ~0 and a meridian, ~ is the inner cycle both of an 

N- and an S-circuit. The cycle ~ is the common curve boundary of U~ tJ N and Us tJ S. 
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Loop coverage thus  occurs as in Th 9.2 (a). I n  this case Y~* is the ~ n i o n  of pr imit ives  as 

indicated in  Cor 9.2. I n  this section we suppose t ha t  no inner  cycle exists and  divide ~*  

into canonical  polar sectors. 

Our decomposi t ion of ~ *  into polar sectors is analogous to our decomposi t ion of 

F~* into caps and  annu l i  in w 8. We began there with a par t ia l  ordering of inner  cycles, 

N- and  S-cycles. We begin here with a par t ia l  ordering of meridians  in  M.  

Order among meridians in M. Let 0 represent  the longi tude of a point  in ~* .  On M 

we under s t and  tha t  the range at  0 is the whole 0-axis. By  a parallel  in M is me a n t  an  unend-  

ing open arc in  M covering a parallel  in ~*.  By  the positive side of a mer id ian  x in M we 

under s t and  tha t  region in M - x  in which 0 takes on arbi t rar i ly  large posit ive values on 

each parallel  in  M. The negative side of x is the complement  in M - x of the posi t ive side 

of  X. 

Two meridians  x and  y in M which are no t  ident ical  shall s tand  in the relat ion x < y 

or y > x, if y meets the posit ive bu t  not  the negat ive  side of x, or equiva len t ly  if x meets 

the negat ive b u t  not  the posit ive side of y. If  x -< y the set x n y may  be empty ,  a point ,  

an  arc, or a half open arc whose project ion in E has one end point  in E*, and  a l imi t ing 

cnd point  either a t  N or at  S. 

A I)oint p in M has coordinatcs [~t, O] where 0 and  ~t arc respectively the longi- 

tude and  la t i tude  of p. There exists a to t) mapp ing  T of M onto M such tha t  the 

coordinates of Tp are [~, 0-t 2~] .  If E is an arb i t ra ry  set in M the set T " E ,  

n =  •  ___2 . . . .  is termed congruent to E. We shall denote T E  by E (~). 

The covering in M of an  N- or S-pr imit ive,  mcridional  region, N- or S-loop, etc. 

given in Z*, will be called by the same name  as a subset  of M. Conversely the project ion 

into Z* of various sets first defined on M, such as polar sectors, cut  sectors, etc. will be 

called by the same name as subsets of Z*.  

Polar sectors. If x and  y arc meridians  in M and  if x < y g x (~), the intersect ion of the 

positive side of x with the negat ive  side of y will be called a polar sector H = 1] (x, y) in 

M. When  no ambigu i ty  can arise we speak of a polar sector as a sector. If x N y = 0, [I is 

connected. If  x N y is a point  or arc, II has two components ,  one an  N-loop interior,  the 

other an  S-loop interior.  If  x f iy is a half  open arc, 11 has precisely one componen t  of one 

of these types. If y = x cl) the project ion of II in Z*  has jus t  one bounda ry  mer id ian  and  

an inner  closure in  Z*  which is Z*. 

Cut sectors. Let II (x, y) be a sector in M such tha t  x N y * 0, or such tha t  x N y = 0 

bu t  there exists an  open arc ceF*MI H with end points  in x and  y respectively. We te rm 

H a cut  sector. W h e n  x (~ y is a po in t  we t e rm [[ simply degenerate; when x N y is an  arc or 
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half  open arc we t e rm  [I doubly degenerate. The open arc  c in a non-degenera te  cu t  sec tor  

is unique,  and  in such a sector  y N x I1) = 0; otherwise an  inner  cycle would  exis t  in F * ,  

con t r a ry  to the  hypo thes i s  of th is  section. Hence  c d iv ides  II  in to  an  N- loop  in te r ior  and  

an  S-loop in ter ior  wi th  c as common bounda ry .  

The meridian class ~. Le t  ~ be the  class of mer id ians  in Z*  in the  boundar ies  of meri-  

d ional  regions or of u n b o u n d e d  N-  or S-pr imi t ives ,  t h a t  is p r imi t ives  whose closures mee t  

N and  S. Cf. Th 6.1. The set ~M of mer id ians  in M covering e lements  of ~ is o rdered  wi thou t  

except ion.  The set ~ m a y  be empty .  I f  ~ is e m p t y  there  can be no u n b o u n d e d  pr imi t ives ,  

and  the  only  mer id iona l  region possible  is one wi thou t  mer id iona l  boundar ies ,  t h a t  is, a 

doub ly  connected  mer id iona l  region [Th 11.1]. The set  ~ m a y  con ta in  on ly  one mer id ian .  

There  can then  be no mer id iona l  region,  since a mer id iona l  region,  as an  inner  closure, 

cannot  have  a single mer id ian  bounda ry .  W h e n  ~ conta ins  precisely  one mer id ian  and  there  

is no inner  cycle, th is  mer id ian  mus t  be the  sole mer id ian  b o u n d a r y  of an N- or  S -pr imi t ive .  

I f  y is the  immed ia t e  successor of X6~M, X and  y are  t e rmed  ad j acen t  in M.  If  ~ conta ins  

only one mer id ian  h, hM and  h~ ) are  a d j a c e n t  in M. 

L e m m a  12.1. I / x  and y are adjacent meridians in ~M, then x and y are meridian boundaries 

in M either o / a  meridional region, an unbounded primitive, or o/ a maximal  cut sector. 

The t ru th  of this  l emma  will follow from (i) and  (ii). 

(i). I [ /o r  the given x and y, H (x, y) meets a meridional region H or unbounded primitive 

H in M,  then x and y are meridian boundaries o~ H. 

Recal l  t h a t  H has  unique  mer id ian  boundar ies  x 1 and  y,  wi th  x 1 < Yl, and  t h a t  x 1 

and  y,  are ad j acen t  in ~M. Hence  x < x, < Yl ~ Y. B u t  x and  y are  a d j a c e n t  in ~M by  hypo-  

thesis.  Hence x = x 1, y = Yl and  (i) is proved.  

(ii). I [ / o r  the given x and y, II (x, y) meets no meridional region or unbounded primitive, 

then H (x, y) is a cut sector which is maximal  in M.  

If  x n y * 0, l ]  is a cut  sector  b y  def in i t ion  of a cut  sector.  

Suppose  then  t h a t  x N y = 0. Then H is connected.  Since H conta ins  no mer id iona l  

region by  hypo thes i s  i ts  homeomorph ic  p ro jec t ion  H*  c Y,* cannot  meet  the  region X 

of (11.0). [L l l . 1 . ]  Hence  

I I*  c C I ( U N  0 Us). 

The openness of H*  and  the  d is jo in tness  of UN and  U s then  impl ies  t h a t  

(12.1) H * N f l U N = H  * N i l U s .  

The open F - s e t  H*  f) UN is bounded  from S. Otherwise there  would  be an  u n b o u n d e d  

N-e lemen t  E in th is  set; the  N-p r imi t i ve  which conta ins  E is E,  [cf. (g) w 9] and  in I I* ,  
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cont rary  to hypothesis.  Similarly l-I* N Us is bounded  from N. Hence the set in (12.1) 

is bounded from N and from S. This set is an F-se t  separating N f rom S in the connected 

set I I*  and contains a finite collection of elements in F .  There mus t  then  exist an open 

F* are cE Mill with end points  in x and y. Thus  [I is a cut  sector. I t  remains to show tha t  

H is maximal .  

The meridian y is in the boundary  of a meridional region or an unbounded  primitive 

in the positive side of y. Hence there can be no cut  sector which contains [[ and meets the 

positive side of y. Similarly with the negative side of x. Hence II is maximal  and the lemma 

follows. 

A polar sector whose meridian boundaries are those of a meridional region or of an 

unbounded  primitive will be called a meridional sector or primitive sector respectively. I n  

general a meridional sector is not  a meridional region, nor  a primit ive sector a primitive. 

Wi th  this understood we state a theorem of pa ramoun t  importance in the s tudy  of pseudo- 

harmonic  functions on M. 

Theorem 12.1 (a). I / there is at least one meridian in F* and no inner cycle, then E* is 

the Onion of a finite non-empty set of disjoint polar sectors each of which is (1) a meridional 

sector, (2) a primitive sector, or (3) a maximal cut sector. 

(b). The set of meridians bounding the canonical sectors in (a) is the set of meridians bound- 

ing the meridional and primitive sectors in (a). 

(c). Any  finite circular sequence of sectors of types (1), (2), or (3) is realizable subject to 

the following conditions. On M adjacent sectors of the same type must be primitive sectors. 

A doubly degenerate cut sector 1] cannot be adjacent on M to two meridional sectors. 

Sta tement  (a) of the theorem follows from L 12.1, Th 11.1 (c), and L 9.3 (c). S ta tement  

(b) follows from L 12.1 with part icular  reference to the definition of the set ~M. Turning to 

(c) we note tha t  two maximal  cut  sectors 1] 1 and I]~ in M cannot  be adjacent  since l~nion 

(II1, II2) would then be a cut  sector. Two meridional sectors cannot  be adjacent  to each 

other or to a doubly  degenerate cut  sector since the ~)nion of these sectors would then be 

a meridional sector. Tha t  any  finite circular sequence of sectors of types  (1), (2), or (3) 

is realizable with the above exceptions is readily established by  simple examples. 

The non-singular case. When there are no singular points, F*  = F;  there are then no 

N- or S-circuits so tha t  ~N [~s] is either N [S] or a maximal  N-cycle  [S-cycle]. Th 6.3 

is accordingly simplified. I f  loop coverage occurs it is impossible tha t  Us be bounded f rom 

S and Us bounded from N as well. Cf. Th 9.2 (a). I n  N-spiral [S-spiral] annuli  all asymptotes  

have initial points at  N [S]. Cf. Th 8.2; Th 8.3 reduces to  Th 8.3 (a). 

When  a meridian exists there is no inner cycle, so tha t  Th 12.1 covers the case where 
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a meridian exists completely. In  this theorem reference to cut sectors should be deleted. 

Th 12.1 (b) is trivial. When a meridian exists the index v(F) of F is simply the number of 

disjoint unbounded primitives. An F-guide crosses each such primitive and has just one 

reversing point therein. Each open arc or top circle in the boundary of a region is concave 

toward that region. 
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