CURVE FAMILIES F^{*} LOCALLY THE LEVEL CURVES OF A PSEUDOHARMONIC FUNCTION

BY

JAMES JENKINS and MARSTON MORSE
Johns Hopkins
University
Institute for Advanced Study

Introduction

The family F^{*} may be defined over an arbitrary open Riemann surface Q. When Q is not simply connected there may exist no single-valued $P H$ [pseudoharmonic] function on Q with F^{*} as its family of level lines. On the universal covering surface M of Q there do exist $P H$ functions u, single-valued on M and with a family F_{M}^{*} of level lines which projects into F^{*} on Q. While u may not be single-valued on Q it may behave like an integral in that it has branches which differ by a constant, or it may have a real logarithm which has this property. In studying such behavior of u one may focus on the branches of u obtained by continuation of u along a single closed curve k not homotopic to zero on Q.

In this way one is led to the essentially typical case of a family F^{*} defined on a sphere Σ^{*} with a north pole N and south pole S removed. Although there may be no single-valued PH function u on Σ^{*} with F^{*} as its family of level lines there will in general be multiplevalued functions u satisfying linear relations

$$
\begin{equation*}
u\left[p^{(1)}\right]=a u(p)+b \quad(a \neq 0) \tag{1.0}
\end{equation*}
$$

where p and $p^{(1)}$ are points on the universal covering surface M of Σ^{*}, and where p and $p^{(1)}$ in M project into the same point in Σ^{*}, but on M have longitudes θ and $\theta+2 \pi$ respectively. However the values of the constants a and b for which a relation (1.0) may hold depend in a deep way upon the nature of the family F^{*}. See MJ 4 and MJ 5.

In the present paper we decompose Σ^{*} into canonical regions, "primitives," "caps," "annuli," "polar sectors," "cut sectors," etc., whose nature is determined by F^{*}. With F we associate integral indices $\nu(F)$ and $\mu(F)$ [defined in a later paper]. The existence of $P H$ functions u satisfying prescribed linear relations (1.0) depends upon these indices and upon the character of the decomposition of Σ^{*}.

[^0]When F^{*} is non-singular Kaplan [3] has given a decomposition of Σ^{*} in some but not in all of the cases we find essential. Kaplan's results are less general in an a priori sense than ours even in the non-singular case in that he requires the curves in F^{*} to be homeomorphic mappings of intervals and circles. We confirm many of Kaplan's theorems particularly on asymptotes, and add the results necessary for our purposes. Our main theorems are strongly affected by the presence of singular points in F^{*}. See also Boothby [1, 2] and Tôki [5].

§ 2. Review and extensions

Let Σ be a 2 -sphere. Let N and S be diametrically opposite poles in Σ, termed respectively the north and south poles of Σ. Set

$$
\Sigma^{*}=\Sigma-N-S
$$

Let ω be a discrete set of points in Σ^{*} and set $G=\Sigma^{*}-\omega$. Consider a family F of open arcs or top [topological] circles in G supposing that F contains a unique element α_{p} meeting any given point $p \in G$. An open arc in G is understood as the image in a $1-1$ continuous mapping into G of an open interval. The arc is the image and not the mapping. A top circle in G is the homeomorph in G of a circle.
F-neighborhoods X_{p}. Let D be the open dise $\{|w|<1\}$ in the complex w-plane. With each point $p \in \Sigma^{*}$ there shall be associated an F-neighborhood X_{p} of p with $\bar{X}_{p} \subset G \cup p$, and a top mapping of \bar{X}_{p} onto \bar{D} which sends p into $w=0$ and the maximal open ares of $F \mid X_{p}$ into the maximal open level arcs of $R w^{n}$, in $D, n>0$, [with $w=0$ excluded when $n>1]$. We suppose $n=1$ for $p \in G$ and $n>1$ for $p \in \omega$. Points in ω are termed singular points of F. The value $w \in D$ is termed a canonical parameter of its antecedent in X_{p}.

The open ares of $F \mid\left(X_{p}-p\right)$ incident with p are termed F-rays of X_{p}. These rays divide $X_{p}-p$ into $2 n$ open regions termed F-sectors of X_{p} incident with p.

Right N. With each $p \in G$ we also associate a neighborhood N_{p} of p in G and a homeomorphic mapping of \bar{N}_{p} onto a square $K:(-1 \leqq u \leqq 1)(-1 \leqq v \leqq 1)$ such that p goes into the origin in K and the maximal subarcs of $F \mid \bar{N}_{p}$ go into arcs $u=c,-1 \leqq v \leqq 1$, where c is a constant in the interval [$-1,1$]. We refer to N_{p} as a right neighborhood or right N_{p} of p and term (u, v) canonical coordinates of the antecedent in N_{p} of (u, v) in K.

An open arc λ in N_{p} on which $v=\varphi(u)(-1<u<1)$, where φ is single-valued and continuous, is called a transversal of N_{p}. The open arc in N_{p} on which $v=0,-1<u<1$, is called the principal transversal of N_{p}. More generally a transversal μ shall be any open arc in G each point of which is in an open subarc of μ which is a transversal of some right N_{p}. A transversal with a closure in Σ which is an arc in G is the principal trans-
versal of a suitably chosen right N_{p}. A non-singular are in Σ^{*} is termed a transverse are if a subarc of some transversal. If Y is an F-sector incident with p, a transversal meeting each element of $F \mid Y$ and with p as limiting end point is called a transversal ray of Y incident with p. Transversal rays λ and μ incident with p, but in different F-sectors of X_{p} incident with p, define a transversal cut $\lambda p \mu$ of X_{p}.
F-vectors. Any sensed subare of an $\alpha \in F$ will be called an F-vector. By definition an F-vector is simple and closed in G, and never a top circle. Each F-vector is in some right N_{p} [MJ 2 § 3].

Coherent sensing. Let each $\alpha \in F$ be given a sense. The resulting family F^{s} of sensed α will be called a sensed image of F. We shall refer to a continuous deformation Δ of an F-vector A in the space of F-vectors with a Fréchet metric. The sense of an image of A under Δ shall be determined by the Δ-images of the initial and final points of A. We say that F^{s} is coherently sensed if any continuous deformation Δ of an F-vector A (initially sensed as in F^{s}) through F-vectors sensed by Δ is necessarily through F-vectors sensed by F^{s}. We say that F is coherent if it admits a coherently sensed image F^{s}, otherwise non-coherent. A family F on Σ^{*} may be coherent or non-coherent as the following examples show.

Examples. Let Σ^{*} be represented by the z-plane, with $z \neq 0, S$ by the origin, and N by the point at infinity. If $z=x+i y$, the level lines of x on \sum^{*} afford a coherent family. The loci on which

$$
\begin{equation*}
y=\frac{x^{2}}{4 a}-a \tag{a>0}
\end{equation*}
$$

taken with the open arc on which $x=0, y>0$ afford a non-coherent family.
We shall establish the following theorem.
Theorem 2.1. A necessary and sufficient condition that F be coherent over G is that, taken over some neighborhood of N or of S, F admit two distinct coherent sensings.

This follows as in the proof of Th 4.2 of MJ 2.
The family F^{*}. The family F^{*} shall consist of elements h, k, m, \ldots in Σ^{*} which are top circles or open arcs in Σ^{*}. If a non-singular point p is in h, h shall contain the open arc $\alpha_{p} \in F$ meeting p and any limiting end point or points of $\alpha_{p} \in \Sigma^{*}$. An $h \in F^{*}$ comprising just one $\alpha \in F$ is called non-singular.

Positive and negative limit points. Let an open arc $h \in F^{*}$ be sensed and be given a $1-1$ representation in which $p(t)$ is the $1-1$ continuous image of $t,-\infty<t<\infty$, with t increasing in the positive sense of h. By a positive (negative) limit point of h is meant any point in Σ which is a limit point of a sequence of points $p\left(t_{n}\right)$, where t_{n} increases (decreases) without limit as $n \uparrow \infty$.

Covering surfaces M and families F_{M}. Let K be any open, oriented and connected Riemann surface and ω, F, F^{*} admissibly defined for K as above for Σ^{*}. Let M be a relatively unbranched, unbordered covering surface of K. Let α_{M} be any maximal open arc or top circle in M "covering" an element $\alpha \in F$. If α is an open arc, α_{M} is an open arc. If α is a top eircle, α_{M} is an open arc or a homeomorphic top circle. The totality of the elements α_{M} covering the elements $\alpha \in F$ forms a family F_{M} in M. Let ω_{M} be the set of points in M covering the set ω in Σ^{*}. The family F_{M} includes one and only one element meeting each point of $M-\omega_{M}$. Just as F^{*} was defined in Σ^{*} with the aid of F and ω, so here F_{M}^{*} is defined in M in terms of F_{M} and ω_{M}.

In the remainder of this paper M shall be the universal covering surface of Σ^{*}.
From MJ 2 we infer the following.
Theorem 2.2. Let the universal covering surface M of Σ^{*} be considered as a top sphere H from which one point Z has been removed.
(1) Then any open arc $\alpha_{M} \in F_{M}$ has limiting end points in H, distinct unless coincident with Z. Each end point of α_{M} different from Z is a point of ω_{M}. Cf. MJ 2 Th 7.l.
(2) There are no top circles in F_{M}^{*}.
(3) For any open arc $h_{M} \in F_{M}^{*}$ the positive and negative limit sets reduce to Z. Cf. MJ 2 Th 7.2.

Corollary 2.1. No two top circles in F^{*} can intersect or be joined by a subarc of an element in F^{*}.

If two top circles g_{1} and g_{2} in F^{*} met there would be a finite sequence of elements of F in $g_{1} \cup g_{2}$ whose closure would carry a closed curve g (not necessarily simple) bounding a region in Σ^{*}. A suitably chosen closed curve g_{M} covering g would be simple with carrier in F_{M}^{*}, contrary to Th $2.2(2)$. The second affirmation of the corollary is similarly established.

Theorem 2.3. If M is the universal covering surface of Σ^{*} no $h \in F_{M}^{*}$ intersects a transversal or a transversal cut in M in more than one point.

Since M is the homeomorph of a finite z-plane this follows from Cor. 7.5 of MJ 2.

§ 3. F-sets and \boldsymbol{F}-regions

With F there are naturally associated certain sets and regions which we now define. By a region we shall always mean an open, connected set.
F-sets. A set $H \subset \Sigma$ will be termed an F-set, if whenever a non-singular point p is in H, the $\alpha_{p} \in F$ meeting p is also in H. From the nature of a right N_{p} of p it is clear that the
complement, closure or boundary of an F-set is an F-set. The intersection, or union of any ensemble of F-sets is also an F-set.

Conditions Θ. An open set R in Σ which is an F-set will be said to satisfy Conditions Θ if the inclusion of a point p of $\Sigma *$ in βR implies that any sector of a sufficiently restricted F-neighborhood X_{p} of p is in R or in $\Sigma-\bar{R}$, and at least two of the F-rays bounding sectors of $X_{p} \cap R$ are in βR.
F-regions. A simply connected region R in Σ whose boundary consists of more than one point and which satisfies Conditions Θ will be called an F-region.

The boundary βR. If R is an F-region βR is an F-set. Let $p \in \beta R$ be non-singular and suppose that $\alpha_{p} \in F$ meets p. Any sufficiently small right neighborhood N_{p} of p is separated by α_{p} into two regions of which at least one and possibly both are in R.

Up to this point we have not used curves (which are mappings) but rather sets such as open arcs and top circles. We now introduce open curves and closed curves as continuous mappings into Σ of sensed open arcs and circles respectively. Two such curves φ_{1} and φ_{2} are the same or more precisely in the same curve class if $\varphi_{1}=\varphi_{2} T$, where T is a top sense preserving mapping of the domain of φ_{1} onto the domain of φ_{2}. If T is a top mapping of the domain of a curve φ onto itself inverting sense, then φT will be denoted by $\varphi-$. We may denote φ by $\varphi+$.

If φ is a mapping of a domain E into Σ defining a curve, the image $\varphi(E)$ in Σ will be termed the carrier $|\varphi|$ of φ. By the intersection of two curves φ and ψ we mean the intersection of $|\varphi|$ and $|\psi|$. By definition a curve φ bounds a set E if $\beta E=|\varphi|$.
R-continuations in βR. Suppose Σ oriented so that the local right (left) sets of any point in an open sensed are are well defined, cf. MJ 1 §5. Let R be an F-region and $\alpha \in F$ be in βR. Let α be sensed so that its local right sets are in R. Then R can be continued as a locally simple curve φ, cf. Morse [4], so that its carrier is an F-set, and so that the sensed carrier of a simple open subcurve of φ has its local right sets in R. Continued maximally in this way with carrier in $F^{*} \mid \beta R, \varphi$ will be called a right R-continuation in βR. Left R continuations in βR are similarly defined. Two R-continuations φ_{1} and φ_{2} are regarded as the same if and only if they are both right or both left continuations, and if φ_{1} and φ_{2} are in the same curve class.

We need a parameterization of the boundary of an F-region. We shall make use of an open disc $D\{|w|<1\}$ and suppose that βD is given the counter-clockwise sense in the w-plane, so that local left sets of βD are in D.

Theorem 3.1. An F-region R is the $1-1$ image in a directly conformal map f of an open disc $D\{|w|<1\}$ onto R. Any such map admits a continuous extension over \bar{D} such that βD
is mapped onto β R. This mapping is $1-1$ in a sufficiently small neighborhood relative to \bar{D} of any point of βD whose image is in Σ^{*}. The antecedent in βD of N or of S is a nowhere dense and possibly empty set. The mapping

$$
\begin{equation*}
\varphi=f \mid \beta D \tag{3.1}
\end{equation*}
$$

defines a closed curve bounding R of which βR is the carrier.
One first defines f over D. By well known theorems one can extend f as stated over a set D_{1} such that $f\left(D_{1}\right)$ covers $\bar{R} \cap \Sigma^{*}$. If βR does not include N or S the proof is complete. To continue consider the case in which βR includes both N and S.

Let D_{N} and D_{S} be respectively the f-antecedents of the intersection of $\bar{R} \cap \Sigma^{*}$ with the northern and southern hemispheres of Σ. Let E be the set of points in βD_{N} at which f is not yet defined. Set $f(z)=N$ for $z \in E$. We shall show that f as extended is continuous at each point z_{0} of E.

Now E is bounded from D_{S} so that f is continuous at z_{0} if $f \mid D_{N}$ is continuous at z_{0}. Let $z_{n}, n=1,2, \ldots$ then be an arbitrary sequence of points in D_{N} tending to z_{0}. Then $f\left(z_{n}\right) \rightarrow N$. Otherwise the set of points $f\left(z_{n}\right)$ would have an accumulation point p in $f\left(\bar{D}_{N}\right)-N$ at which $f^{-1}(p)$ is well defined and has a finite set of values a_{1}, \ldots, a_{m}, not in E and in number at most the number of different F-sectors in an F-neighborhood of p. In a sufficiently small neighborhood of each a_{i} in \bar{D}, f is well defined and z bounded from z_{0}. From this contradiction we infer that $f\left(z_{n}\right) \rightarrow N$ and that f is continuous at z_{0}.

We similarly extend f over \bar{D}_{s}. The case in which βR includes N or S alone is similar.
If the antecedent of N in βD were dense in $\beta D, f(z)$ would equal N over some arc of βD and hence be constant.

The theorem follows.
Inner cycles. A Jordan curve φ whose carrier is a top circle in F^{*} will be called an inner cycle.
N-loops, S-loops, $N S$-curves, $S N$-curves. Let g be an open arc in F^{*}. Let φ be a simple sensed curve whose carrier is g. Suppose that g has a unique negative limit point A and a unique positive limit point B. Then either $A=B=N$, or $A=B=S$, or $A=N$ and $B=S$, or $A=S$ and $B=N$. [Th 2.2(3).] Then φ is called respectively an N-loop, S-loop, $N S$-curve, $S N$-curve. By the exterior $E \varphi$ of an N-loop [S-loop] with carrier g is meant that region in Σ which is bounded by \bar{g} and contains $S[N]$. The interior $I \varphi$ of φ is defined as $\Sigma-\mathrm{Cl} E \varphi$. We call attention to the fact that an ${ }^{\wedge} N$ - or S-loop, $N S$ - or $S N$-curve is in Σ^{*}.

Meridians. The carrier g of an $N S$ - or $S N$-curve will be called a meridian. If M is the universal covering surface of $\Sigma *$ one sees that a g_{M} covering g divides M into two disjoint regions.

Lemma 3.0. Let φ be an inner cycle or an N - or S-loop in F^{*}, and let q be a point not in φ if φ is an inner cycle, and in $E \varphi$ if φ is a loop. Then a transversal ray λ incident with q meets φ in at most one point.

Let H be either one of the two regions bounded by φ if φ is an inner cycle, and $I \varphi$ if φ is a loop. If λ enters H at a point p of φ it leaves H at no other point r. Otherwise the subarcs of λ and $|\varphi|$ with end points p and r would bound a simply connected region in Σ containing neither N nor S. This is impossible by Th 2.3.

Lemma 3.1. Any set of N-loops (S-loops) with disjoint interiors and diameters exceeding some positive constant is finite.

If the lemma were false for N-loops there would exist a set of N-loops $\varphi_{n}, n=1,2, \ldots$ with disjoint interiors $I \varphi_{n}$ and points $p_{n} \in \varphi_{n}$ such that $p_{n} \rightarrow q \in \Sigma^{*}$ as $n \uparrow \infty$. The number of φ_{n} which meet q is at most the number of F-sectors in an F-neighborhood of q. We can accordingly suppose that no φ_{n} meets q. Note that q is in no $I \varphi_{n}$. We can further suppose the p_{n} chosen in φ_{n} so as to be in a transversal ra,y λ incident with q. Since q is in $E \varphi_{n}$ for each n, it follows from L 3.0 that φ_{n} meets λ only in p_{n}. Hence $I \varphi_{n}$ includes the open arc λ_{n} of λ separated from q by p_{n}. Thus

$$
I \varphi_{n} \cap I \varphi_{m} \supset \lambda_{n} \cap \lambda_{m}
$$

This contradiction to the choice of the φ_{n} implies the lemma.
To adequately describe the boundary of an F-region we must define N - and S-circuits.
N-circuits, S-circuits. N-circuits are defined as locally simple open curves φ in Σ^{*} whose carriers are F-sets which have end points at N (i.e., positive and negative limit sets in N) and which intersect themselves without crossing. From this definition of an N-circuit the reader can derive the following decomposition of an N-circuit.

When φ^{\prime} is an N-circuit, $|\varphi|$ carries three open $\operatorname{arcs}, a, b, c$, whose closures are simple F-sets; of which \bar{a} has the initial point N and a terminal point $P \in \Sigma^{*}, b$ has the initial point P and terminal point P, \bar{c} has the initial point P and terminal point N. These arcs and end points N and P derive the order

$$
N a P b P c N
$$

from φ. The top circle b separates N from S. Finally $a \cap b=c \cap b=0$, while $a \cap c$ is the empty set, or a half open arc with limiting end point P, or $a=c$.

The N-circuit φ carries the top circle \bar{b}. Let ψ be an inner cycle with carrier $\bar{\delta}$ and with a sense derived from φ. We term ψ the inner cycle of the N-circuit φ. It is uniquely determined by φ. [Cor 2.1.]

When φ is an N-circuit the interior $I \varphi$ of φ shall be the region whose boundary is $|\varphi| \cup N$. This region is unique and does not contain S.

The definition and decomposition of an S-circuit are similar.
The sensed closed curve $\varphi=f \mid \beta R$ of Th 3.1. When βR meets N or S let d be any maximal open arc in βD such that $\varphi(d)$ is in Σ^{*}. Then $\varphi \mid d$ is a locally simple, open, sensed curve ψ with end points in $N \cup S$, and $|\psi|$ is an F-set. By virtue of the conformality of $f \mid D$, the continuity of $f \mid \bar{D}$, and the locally simple character of $\varphi|d, \varphi| d$ is a left R-continuation in βR. When βR meets neither N nor S we set $d=\beta D$ and note that $\varphi=\varphi \mid d$, so that φ is a left R-continuation in βR with carrier βR. In each of the above cases we term $\varphi \mid d$ a maximal subcurve of φ in Σ^{*}.

The following theorem is basic.
Theorem 3.2. If the boundary curve of an F-region R is given by (3.1) in Th 3.1 then any "subcurve" ψ of φ maximal in Σ^{*} is a left R-continuation in βR.
(1) Each maximal subcurve ψ of φ is either (a) an N - or S-loop, (b) an N-circuit, (c) an S-circuit, (d) an NS. or SN-curve, or (c) an inner cycle.
(2) Different types of subcurves (b) to (e) cannot coexist. There is at most one ψ of types (b), (c) or (e). When an inner cycle φ occurs $|\varphi|=\beta R$.
(3) Type (d) occurs if and only if $\beta R \supset N \cup S$. The subcurves ψ then include just one NS-curve ψ_{1}, and just one $S N$-curve ψ_{2}. If $\left|\psi_{1}\right| \neq\left|\psi_{2}\right|,\left|\psi_{1}\right| \cap\left|\psi_{2}\right|$ is either empty, a point, an arc, or a half open arc with one limiting end point at N or at S.
(4) The carriers of no two ψ intersect at most excepting ψ_{1} and ψ_{2} in (3).

Let $\{\varphi\}$ be the set of subcurves ψ of φ maximal in Σ^{*}.
The first statement in the theorem has been covered.
Proof of (1), Case I. The subcurve ψ joins the two poles. Then ψ must be simple. Otherwise $|\psi|$ would carry a top circle separating N from S on \bar{R}. This is impossible when ψ joins pole to pole and R is connected. In Case I, ψ is an $N S$-curve or $S N$-curve.

Case II. Not Case I. If ψ is simple it is clearly an N - or S-loop, or an inner cycle. If not simple ψ is locally simple, has an F-set carrier, intersects itself without crossing itself and joins a pole Z to Z. These are the characteristics defining an N - or S-circuit.

Proof of (2), Case I. ψ is an inner cycle. In this case $\beta R=|\psi|$, and all types other than (e) are excluded.

Case II. ψ is an N - or S-circuit. An inner cycle is excluded as just seen. Since $|\psi|$ separates S from N, an N-circuit excludes an S-circuit and vice versa, and any circuit excludes an $N S$ - or $S N$-curve.

Case III. ψ is an NS - or $S N$-curve. The exclusion of types (b), (c), (e), has already been established.

Proof of (3). It is immediate that ψ is of type (d), only if βR includes $N \cup S$. Conversely if φ is a closed curve and meets N and S there is at least one $N S$-curve ψ_{1}, and one $S N$-curve ψ_{2} in $\{\varphi\}$. These curves ψ_{1} and ψ_{2} intersect, if at all, as stated in Th 3.2(3). For $\left|\psi_{1}\right| \cup\left|\psi_{2}\right|$ cannot carry a top circle g; since g would either separate N from S, which is impossible when $\beta R \supset N \cup S$, or bound a region not containing N or S, which is impossible by Th 2.2.

Finally ψ_{1} and ψ_{2} are unique as $N S$. and $S N$-curves in $\{\varphi\}$. To see this let R_{M} cover R on M, and in βR_{M} let $\psi_{1 M}$ and $\psi_{2 M}$ cover ψ_{1} and ψ_{2} respectively. There can be no meridian g in βR which is not covered on M by $\psi_{1 M}$ or by $\psi_{2 M}$; otherwise a covering g_{M} of g in \vec{R}_{M} would divide R_{M}. This is impossible since R_{M} is a homeomorph of R. We infer that ψ_{1} and ψ_{2} are unique $N S$ - and $S N$-curves in $\{\varphi\}$. We note that $\psi_{1 M} \cap \psi_{2 M}=0$.

Proof of (4). Let η be any element of $\{\varphi\}$ of type (a), (b), (c), or (e). Then the closure of $|\eta|$ separates Σ into at least two open sets of which one, say Ω, contains R. Any element of $\{\varphi\}$ is in $\bar{R} \subset \Omega$. Let p be a point of η. A neighborhood H_{p} of p relative to Ω may be obtained as a union of a finite number of left sets of η associated with p. Since $\Omega \supset R, H_{p}$ contains a neighborhood of p relative to R. But if sufficiently restricted, the above left sets of η are in R, since η is an R-continuation, so that H_{p}, if sufficiently restricted, is a neighborhood of p relative to R. We suppose H_{p} so restricted.

Let ψ be any element of $\{\varphi\}$. Then

$$
|\psi| \cap \bar{H}_{p} \subset(\Omega-R) \cap \bar{H}_{p} \subset|\eta| \cap \bar{H}_{p}
$$

If ψ meets η it must then be carried by $|\eta|$. But $|\eta|$ carries no element in $\{\varphi\}$ other than η. Thus intersections of elements of $\{\varphi\}$ can occur only for two elements of type (d). This establishes Th 3.2 (4).

We shall now give certain definitions and lemmas useful in the application of Th 3.2.
F^{*}-cycles. Let R be any simply connected region in Σ which contains S and whose boundary βR is the union of N and of a finite or countably infinite set of disjoint N-loops. Then R is an F-region whose boundary becomes the carrier of a closed curve defined by the mapping $\varphi=f \mid \beta D$ of βD onto βR as in Th 3.1. We term the curve φ or $\varphi-$ an N. cycle. S-cycles are similarly defined.

An N-cycle, S-cycle, or inner cycle will be called an F^{*}-cycle.
Concavity. Let R be a region bounded in part by F^{*}-cycles, circuits, or open ares in F^{*}. Any such element φ will be termed concave toward R if no element of $F^{*} \mid R$ has a limiting end point in φ. We term R concave if no element in $F^{*} \mid R$ has a limiting end point in βR. If an F^{*}-cycle φ bounds a region H and is concave toward H, φ will be termed con.
cave toward any set in H. In particular an inner cycle will be termed N-concave [S-concave] if concave toward N [S]. An N-loop φ will be termed S-concave [N-concave] if concave towards $E \varphi[I \varphi]$. An S-loop φ is termed N-concave [S-concave] if concave towards $E \varphi\left[I_{\varphi}\right]$.
F^{*}-sets. A set in Σ will be called an F^{*}-set if it contains each $h \in F^{*}$ which it meets. In particular an F^{*}-set which contains an $\alpha \in F$ contains any limiting end point which α may have in Σ^{*}. The union or intersection of an ensemble of F^{*}-sets is an F^{*}-set. Regions bounded by F^{*}-cycles whose maximal subcurves in Σ^{*} are non-singular are F^{*}-sets. The following is particularly noted.
(Δ). If a region R is an F^{*}-set and if Y is an F-sector in R incident with a point q in βR, then βR includes the two F-rays in βY incident with q.

The following lemma is a major tool in applying Th 3.2.
Lemma 3.2. Let W be any ensemble of regions R each of which is the interior of a nonsingular N - or S-loop, or a region bounded by a non-singular inner cycle, and set $U=$ Union $R \mid(R \in W)$.
(a). Then U is an F^{*}-set.
(b). U satisfies Conditions Θ.
(c). If the regions of W form a sequence $H_{1} \subset H_{2} \subset \ldots$, if $\Sigma^{*}-U \neq 0$, and if βH_{n} is a top circle in F for each n, then U is concave and $\beta U \mid \Sigma^{*}$ is simple.

We discard the trivial case in which $\beta U \cap \Sigma^{*}=0$.
Proof of (a). Since each $R \in W$ is an F^{*}-set, U is an F^{*}-set.
Proof of (b). Let q be a point of βU in Σ^{*} and let Y be an arbitrary F-sector incident with q. We prove the following.
(m). If $\beta(Y \cap U)$ meets q then $Y \subset U$.

Case I. Some $H \in W$ contains an F-sector in Y incident with q. The closure of a transversal ray μ in Y, incident with q, meets βH in q. Since βH is a non-singular inner cycle or N - or S-loop it cannot meet $\bar{\mu}$ other than in q. [Th 2.3.] Hence Y is in H and so in U.

Case II. Not Case I. Since $\beta(Y \cap U)$ meets q there exists a sequence of points $p_{n} \in Y \cap U$ such that $p_{n} \rightarrow q$ as $n \uparrow \infty$. Since Case I is excluded, and since q is non-singular if in any $\beta R \mid(R \in W)$, there is at most one $R \in W$ such that q meets βR. Without loss of generality we can then suppose that p_{n} is in some $R_{n} \in W$ such that βR_{n} does not meet q. There accordingly exists a point r_{n} in $\beta R_{n} \cap Y$ such that $r_{n} \rightarrow q$ as $n \uparrow \infty$. Let λ be a transversal ray of Y incident with q. We can take r_{n} in λ. Let λ_{n} be the open arc in λ separated from q on λ by r_{n}. Then λ_{n} is in R_{n} by L3.0. Since $r_{n} \rightarrow q$ as $n \uparrow \infty, \lambda$ is in U and hence Y is in U.

Thus (m) is true in Case II as well as in Case I. Statement (b) follows from (m) and (a) of the lemma.

Proof of (c). To show that $\beta U \mid \Sigma^{*}$ is simple note that U in (c) is simply connected and hence an F-region. Moreover U contains N or S, and hence by Th 3.2 the components of $\beta U \mid \Sigma^{*}$ contain neither a meridian nor the carrier of an N - or S-circuit. Th 3.2 then implies that the remaining components of $\beta U \mid \Sigma^{*}$ do not intersect, so that $\beta U \mid \Sigma^{*}$ is simple.

If U were not concave there would exist an arc $h \in F^{*} \mid U$ with a limiting end point z in βU. Let z_{1} be a point of h. For some n, H_{n} contains z_{1}. H_{n} excludes z. Nor does βH_{n} contain z, since βH_{n} is non-singular and contains neither N nor S. Thus βH_{n} separates z from z_{1} and so must meet h. Since βH_{n} is non-singular this is impossible.

The inner closure \hat{E} in Σ^{*} of a set E is defined by the equation

$$
\begin{equation*}
\hat{E}=\bar{E} \cap \Sigma^{*}-\beta \bar{E} \tag{3.2}
\end{equation*}
$$

Equivalently the inner closure in Σ^{*} of a set E is the set of all points in Σ^{*} which possess a neighborhood in which E is everywhere dense.

Lemma 3.3. If R satisfies Conditions Θ its inner closure in Σ^{*}, the complement of its closure, and any component of R also satisfy Conditions Θ.

Consider the F-set \hat{R}. We shall show that \hat{R} satisfies Θ with R. To that end let q be a point of βR in Σ^{*}. The F-rays in βR incident with q are in two classes. Class $i(i=1,2)$ consists of the F-rays incident with $i F$-sectors in R incident with $q . F$-rays in Class 2
 (possibly zero) so that the number of F-rays in $\beta \hat{R}$ incident with q is even. If this number is zero q is not in $\beta \hat{R}$. Thus \hat{R} satisfies Θ with R.

The remainder of the lemma is readily verified.

§ 4. Asymptotes

Let h be an open arc in F^{*} and q a point of h. Sense h. The sensed open subarc of h following q on h will be called an F^{*}-ray π. Let π be given as a $1-1$ continuous image in Σ^{*} of the interval $0<t<\infty$, with the point $\pi(t)$ corresponding in π to t. Let φ be an F^{*} cycle in Σ given by a mapping of a circle, on which $w=e^{i \theta}$, into Σ, so that $\varphi(\theta)$ corresponds to $w=e^{i \theta}$ and $\varphi(\theta+2 \pi)=\varphi(\theta)$. We say that π and h are asymptotic to φ in the positive sense of π if for some admissible representation of π

$$
\operatorname{dist}[\pi(\theta), \varphi(\theta)] \rightarrow 0 \quad[\operatorname{as} \theta \uparrow \infty] .
$$

In discussing asymptotic rays the following lemma is fundamental.

Lemma 4.1. Let λ be a transversal. If an F^{*}-ray π meets λ in points p_{1}, p_{2}, p_{3} which are successive on π in the set of intersections of π and λ, then these points are also successive on λ in one of λ 's two senses, and π always crosses λ in the same sense.

For $i \neq j$ let $\pi_{i j}$ be the arc of π bounded by p_{i} and p_{j}, and let $\lambda_{i j}$ be the arc of λ bounded by p_{i} and p_{j}. We show first that p_{1}, p_{2}, p_{3} occur in the order written on λ, regarding p_{3}, p_{2}, p_{1} as the same order on λ.

Case I. The ray π crosses λ in opposite senses at p_{1} and p_{2}.
The $\operatorname{arcs} \pi_{12}$ and λ_{21} form a top circle. Let R_{12} be the region bounded by $\pi_{12} \lambda_{21}$ in Σ and not containing $\lambda-\lambda_{12}$. By virtue of Th 2.3, R_{12} includes a pole, say S. The arcs π_{23} and λ_{32} also form a top circle. Let R_{23} be a region bounded by this curve chosen so as not to contain R_{12}. Then R_{23} contains N. Any order of p_{1}, p_{2}, p_{3} on λ other than that written will be shown to be impossible.

Suppose the order on λ is p_{1}, p_{3}, p_{2} or p_{3}, p_{1}, p_{2}. These are the only orders which must be excluded. In these cases π_{13} and λ_{31} form a top circle bounding the region

$$
R_{13}=\Sigma-\left(\bar{R}_{12} \cup \bar{R}_{23}\right) .
$$

Here \bar{R}_{13} is simply connected, contains no pole, and in $\beta R_{13}, \pi_{13}$ meets λ_{13} twice. On M there exists a homeomorphic covering of \bar{R}_{13} on which $\pi_{13 M}$ and $\lambda_{13 M}$ meet twice. This is contrary to Th 2.3. Thus p_{1}, p_{2}, p_{3} is the only order possible in λ.

Case 1I. The ray π crosses λ in the same sense at p_{1} and p_{2}.
Suppose p_{1}, p_{3}, p_{2} is the order in λ. Then λ_{12} and π_{12} together bound a region R into whose interior π enters at p_{2}. Continued in this sense π must leave R by crossing λ_{12} at p_{3} in a sense opposite to the crossing at p_{1} and p_{2}. On reversing the sense of π and denoting p_{1}, p_{2}, p_{3} by p_{3}, p_{2}, p_{1} respectively, the situation comes under Case I and is impossible.

The order p_{3}, p_{1}, p_{2} may be excluded in Case II as contrary to the Jordan Separation Theorem. Thus the order on λ must be p_{1}, p_{2}, p_{3} in any case.

It remains to show that all crossings of λ by π are in the same sense. We first show that Case I is impossible. In Case I, π reversed in sense enters R_{13} at p_{1}, and continued as an $h \in F^{*}$ must meet λ_{13} in a point p_{0}; for there is no pole in the simply connected region R_{13} to which h can tend, cf. MJ 2 Th 7.2. Thus p_{0}, p_{1}, p_{2} appear in this order on π but in the order p_{1}, p_{0}, p_{2} or p_{1}, p_{2}, p_{0} on λ_{13}. Hence Case I is impossible.

In Case II the crossing of λ at p_{3} is in the same sense as at p_{1} and p_{2}; for otherwise a reversal of the sense of π would yield Case I again.

This establishes the lemma.
We state an extension whose proof is essentially identical with the preceding.

Lemma 4.2. Let λ be a transversal cut with vertex q. Let h be an element in F^{*} such that $h \cap \lambda$ excludes $q . I f \pi$ is an F^{*}-ray in h the conclusion of Lemma 4.1 holds as stated.

The exclusion of q from $h \cap \lambda$ insures that each point of $h \cap \lambda$ is an actual crossing of λ by π. All other points of λ are non-singular.

Each of the regions of Σ into which the carrier of an inner cycle divides Σ will be called a side of φ or of $|\varphi|$. The two sides of φ may be distinguished as the north or south side of φ according as the side contains N or S. Given an N. or S-cycle the region H bounded by $|\varphi|$ which contains S or N respectively will be called the south or north side of φ.

The construction of the region J. Let π be an F^{*}-ray with a positive limit point $p \in \Sigma^{*}$. We shall construct an F-region J such that π is asymptotic to a curve carried by βJ.

Let λ be a transversal ray incident with p and such that π intersects λ in an infinite sequence of points

$$
\begin{equation*}
p_{1}, p_{2}, p_{3}, \ldots \tag{4.1}
\end{equation*}
$$

with limit point p. Suppose that the intersections of π with λ appear on π in the order (4.1). In accordance with $L 4.1$ the points (4.1) appear on λ in the same order.

For $k=1,2, \ldots$, let π_{k} be the arc $p_{k} p_{k+1}$ of π and λ_{k} the arc $p_{k} p_{k+1}$ of λ. Let J_{k} be the open region bounded by the top circle $\pi_{k} \lambda_{k}$ chosen so as not to contain p. Then

$$
J_{1} \subset J_{2} \subset J_{3} \subset \ldots
$$

By virtue of Th $2.3 J_{1}$ must contain a pole, say S. Let

$$
J=\operatorname{Union} J_{k} \quad(k=1,2, \ldots)
$$

Then J is a simply connected region which contains S. Now $\Sigma-J_{k}$ meets N and hence

$$
N \in \Sigma-J=\bigcap_{k}\left(\Sigma-J_{k}\right) \quad(k=1,2, \ldots) .
$$

We continue with a proof of the following.
(i) There is no singular point in π following p_{2} in π.

Suppose z were such a singular point. There then exists an $\alpha \in F$ with z as an initial point and $\alpha \cap \pi=0$. Let h be an F^{*}-ray continuing α. Since z is not in the transversal λ. and follows p_{2} in π, a sufficiently restricted open arc of h with end point z in π is in

$$
J_{n+1}-\bar{J}_{n}=Q_{n}
$$

for some $n>0$. Observe that

$$
\beta Q_{n}=\text { Union } \pi_{n} \lambda_{n} \pi_{n+1} \lambda_{n+1}
$$

and that the set $Q_{n}^{*}=Q_{n}-p_{n+1}$ is simply connected.
Since Q_{n} is simply connected and contains neither N nor S, h must meet βQ_{n} in a point z^{\prime} following z on h. There are several a priori possibilities for the location of z and z^{\prime} in βQ_{n} but in each case one infers the existence of an inner cycle of F^{*} in Q_{n}^{*}, or else of a subarc
$b \subset Q_{n}^{*}$ of an element in F^{*} such that b intersects λ in more than one point. Since this is impossible (i) follows.
(ii) βJ is the set Ω of positive limit points of π, so that the maximum distance of points of π_{n} from βJ tends to zero as $n \uparrow \infty$.

Statement (ii) is a consequence of an elementary lemma, namely that βJ is the set of all points which are limit points of sequences $z_{n}, n=1,2, \ldots$ in which z_{n} is in βJ_{n}. This lemma presupposes the inclusion relations $J_{1} \subset J_{2} \subset J_{3} \ldots$ and the disjointness of the top circles $\beta J_{n}, n=1,3,5, \ldots$. One notes that βJ_{n} separates βJ_{n-2} from βJ_{n+2}. Statement (ii) follows on recalling that βJ_{n} is the union of λ_{n} and π_{n}, and that the diameter of λ_{n} tends to zero as $n \uparrow \infty$.
(iii) J is a concave F-region whose curve boundary is an F^{*}-cycle.

If the boundaries of the regions J_{n} were top circles in F, J would satisfy Conditions Θ on an F-region, by L $3.2(\mathrm{c})$. We can, however, alter F in an F-sector Y containing the transversal ray λ used in constructing J so that $\beta J_{n}, n=1,3,5, \ldots$ becomes a top circle in a new family F^{\prime} replacing F. This alteration shall leave $F \mid(\Sigma-Y)$ unaffected, and can be made in Y in an obvious manner leaving Y an F^{\prime}-sector. Cf. proof of L 7.1 in MJ 2.

We conclude that J satisfies Conditions Θ, is concave, and that $\beta J \mid \Sigma *$ is simple [L 3.2]. Since J is simply connected and βJ contains more than one point, it follows that J is an F-region. Since J contains a pole, βJ carries no N - or S-circuits nor $N S$ - or $S N$-curves. Its curve boundary as given by Th 3.2 reduces to an F^{*}-cycle.

This establishes (iii).
The principal theorem of this section follows.
Theorem 4.1. If an F^{*}-ray π has a positive limit point $p \in \Sigma^{*}$ then π is asymptotic to an F^{*}-cycle φ. Moreover, π does not intersect φ, and φ is concave toward the side of φ which contains π.

The ray π determines an F-region J as just constructed. By (iii) βJ carries an F^{*} cycle ψ and we shall show that $\varphi=\psi \pm$ satisfies Th 4.1. In accordance with Th 3.1 ψ maps the circle $C(|w|=1)$ into βJ in a manner which is $1-1$ over those open arcs of C whose images are in $\beta J \mid \Sigma^{*}$. We suppose that the point $w=e^{i \theta}$ in C corresponds to the point $\psi(\theta)$ in βJ. Identify the point p of Th 4.I with the point p used in the construction of J and suppose that $p=\psi(2 n \pi), n=0, \pm 1, \pm 2, \ldots$. Recall the transversal ray λ incident with p, and the points p_{1}, p_{2}, \ldots on $\lambda \cap \pi$ used in the construction of J.

We state the following.
(η) The Fréchet distance on Σ of the subarc $p_{n} p_{n+1}$ of π from the arc $\varphi \mid(0 \leqq \theta \leqq 2 \pi)$ tends to zero as $n \uparrow \infty$ [for proper choice of φ as $\psi \pm$].

The proof of (η) starts with (ii) and is almost identical with the proof of Th 4.1 of MJ 3. It will be omitted. Granting (η) one can then map the arc $p_{n} p_{n+1}$ of π in a homeomorphic manner onto the interval $2 n \pi \leqq \theta \leqq 2(n+1) \pi, n=1,2, \ldots$ with $\pi(\theta)$ a single-valued continuous image of θ for all such θ, and such that

$$
\operatorname{dist}[\pi(\theta), \varphi(\theta)] \rightarrow 0 \quad[\operatorname{as} \theta \uparrow \infty] .
$$

This representation of π from p_{1} on is $1-1$ and so admissible, and π is accordingly asymptotic to φ.

By L $3.2(\mathrm{c}), J$ is concave so that φ is concave towards the side of φ which contains π.
This completes the proof of the theorem.
Corollary 4.1. No point of an open arc $h \in F^{*}$ is a positive or negative limit point of h.
This is immediate if h is not an asymptote, and true for asymptotes since asymptotes cannot intersect the concave F^{*}-cycles which are their positive or negative limit sets. This corollary also follows from $L 4.1$ by a suitable argument.

§ 5. Concave annuli $A\left(\rho_{1}, \varphi_{2}\right)$

We shall consider open annuli $A\left(\varphi_{1}, \varphi_{2}\right)$ in Σ^{*} each bounded by two non-intersecting F^{*}-cycles, φ_{1} and φ_{2}, and, in the case in which the annulus is concave, give a complete description of elements of F^{*} in the annulus. We proceed with three lemmas.

Lemma 5.1. A sensed $h \in F^{*}$ which is asymptotic in its positive sense to an F^{*}-cycle φ can be asymptotic in its negative sense neither to $\varphi+$ nor to $\varphi-$.

Let h be divided by a point p into two rays π^{\prime} and $\pi^{\prime \prime}$. Let λ be a transversal tending to a point q of φ from the side of φ which contains h. If the lemma were false π^{\prime} and $\pi^{\prime \prime}$ would intersect λ in sequences of points p_{n}^{\prime} and $p_{n}^{\prime \prime}, n=1,2, \ldots$ respectively, tending to q in λ as $n \uparrow \infty$, with the order
$\ldots, p_{2}^{\prime}, p_{1}^{\prime}, q, p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots$
on h. These points cannot appear in the order (5.1) on λ as they should by L 4.1, and we infer the truth of L 5.1.

Corollary 5.1. In the set of F^{*}-rays issuing from a given point $p \in \Sigma^{*}$ and asymptotic either to $\varphi+$ or $\varphi-$, where φ is an F^{*}-cycle, there is at most one F^{*}-ray.

Lemma 5.2. If φ_{1} is an inner cycle and φ_{2} a second inner cycle or a concave N - or S-cycle, then φ_{1} is concave toward φ_{2}.

The cycle φ_{1} does not intersect φ_{2}. This follows from Cor 2.1, if φ_{2} is an inner cycle, and from the concavity of φ_{2}, if φ_{2} is an N - or S-cycle. For definiteness suppose that φ_{2} is on the north side of φ_{1}.

If the lemma were false there would be an F^{*}-ray π with initial point r in φ_{1}, entering $A\left(\varphi_{1}, \varphi_{2}\right)$ at the point r and not meeting φ_{1} again. This ray cannot intersect φ_{2} if φ_{2} is an inner cycle [Cor 2.1], or if φ_{2} is S-concave. It follows from Th 4.1 that π is asymptotic to an F^{*}-cycle φ_{3} (possibly φ_{2}) in $\mathrm{Cl} \boldsymbol{A}\left(\varphi_{1}, \varphi_{2}\right)$. Let λ be a transversal in the south side of φ_{3} tending to a point $p \in \varphi_{3}$. Then π will intersect λ in an infinite sequence of points p_{1}, p_{2}, \ldots tending to p as a limit point and appearing on π in the order written [L4.1]. Let

$$
\begin{equation*}
\pi\left(r, p_{2}\right), \quad \lambda\left(p_{2}, p_{1}\right), \quad \pi\left(p_{1}, r\right) \tag{5.2}
\end{equation*}
$$

be respectively subares of π from r to p_{2}, of λ from p_{2} to p_{1}, and of π from p_{1} tò r, forming a sequence b of ares joining r to itself. Let b_{M} be an arc covering b on M. The end points of b_{M} cover r but are not coincident. They can, however, be joined on M by an arc covering $\left|\varphi_{1}\right|$ a finite number m of times to form a top circle g_{M} on M. (That $m=1$ is true, but not necessary for the proof.)

Let λ_{M} be the covering of λ which meets g_{M}. Then $g_{M}-\lambda_{M}$ admits an extension on M as an element h_{M} in F_{M}^{*}. This is impossible since h_{M} meets λ_{M} in two points. [Th 2.3.]

We infer the truth of the lemma.
Lemma 6.3. In a concave annulus B between two F^{*}-cycles there can be no singular point P.

First note that any inner cycle φ in B must be non-singular. For it follows from L 5.2 that φ must be both N - and S-concave and hence non-singular.

Suppose then that L 5.3 is false in that P exists. There then exist at least four F-rays issuing from P. The continuations as elements in F^{*} of none of these F-rays can carry an inner cycle, since such an inner cycle would be singular. There are thus at least four F^{*}-rays issuing from P. None of these F^{*}-rays can meet βB or have a limiting end point at N or S in βB, since B is concave. It follows from Th 4.1 that each such F^{*}-ray must be asymptotic to an F^{*}-cycle in \bar{B}. Moreover two different F^{*}-rays issuing from P are asymptotic to F^{*}-cycles φ_{1} and φ_{2} with different carriers [Cor 5.1].

The cycles φ_{1} and φ_{2} are concave toward their respective sides containing P, so that P is in $A\left(\varphi_{1}, \varphi_{2}\right)$; for if φ_{i} separated φ_{i} from $P[i, j=(1,2)$ or $(2,1)]$ then the asymptotic ray from P to φ_{j} would intersect φ_{i}, contrary to the concavity of φ_{i} toward P. Any two remaining rays issuing from P determine an annulus $A\left(\varphi_{3}, \varphi_{4}\right) \subset A\left(\varphi_{1}, \varphi_{2}\right)$. From the reciprocity of the pairs $\left(\varphi_{1}, \varphi_{2}\right)$ and $\left(\varphi_{3}, \varphi_{4}\right)$, we infer that $A\left(\varphi_{1}, \varphi_{2}\right)=A\left(\varphi_{3}, \varphi_{4}\right)$. Hence
with proper notation $\left|\varphi_{1}\right|=\left|\varphi_{3}\right|$ and $\left|\varphi_{2}\right|=\left|\varphi_{4}\right|$. Two of the four rays must then be asymptotic to two cycles with the same carrier, contrary to Cor 5.1.

Hence P does not exist and the lemma is true.
Types of asymptotes in $A\left(\varphi_{1}, \varphi_{2}\right)$. Suppose that $A\left(\varphi_{1}, \varphi_{2}\right)$ is concave and includes no inner cycle. An $h \in F^{*}$ in $A\left(\varphi_{1}, \varphi_{2}\right)$ is an asymptote in both its senses since $A\left(\varphi_{1}, \varphi_{2}\right)$ is concave. It follows from Cor 5.1 that in one of its senses h is asymptotic to $\varphi_{1} \pm$ and in the other to $\varphi_{2} \pm$. If h is asymptotic to φ_{1} in one sense and to φ_{2} in its other sense then h is said to be of asymptotic type $\left[\varphi_{1}, \varphi_{2}\right]=\left[\varphi_{2}, \varphi_{1}\right]$. The four possible asymptotic types of h are

$$
\left[\varphi_{1}+, \varphi_{2}+\right], \quad\left[\varphi_{1}+, \varphi_{2}-\right], \quad\left[\varphi_{1}-, \varphi_{2}+\right], \quad\left[\varphi_{1}-, \varphi_{2}-\right] .
$$

Two elements h and h^{\prime} of F^{*} in $A\left(\varphi_{1}, \varphi_{2}\right)$ must be of the same asymptotic type. Otherwise h and h^{\prime} would intersect in a point P. The existence of P becomes clear on considering the elements h_{M} and h_{M}^{\prime} covering h and h^{\prime} respectively on M. The intersection P cannot exist by L 5.3.

We shall complete the analysis of annuli $A\left(\varphi_{1}, \varphi_{2}\right)$ in $\S 8$.

§ 6. N-caps, S-caps

In the decomposition of Σ into basic regions of a nature dictated by F^{*} one comes naturally to N-caps and S-caps. For the purpose of defining these caps and for many other purposes we shall abbreviate the phrase "inner closure in Σ * of the union" by the word symbol Union. With this understood an N-cap [S-cap] is the Union of all non-singular N-loops [S-loops]. This definition requires justification and claboration.

There is at most a countably infinite number of elements in F with singular end points. Through each neighborhood in Σ^{*} there accordingly passes a non-singular $h \in F^{*}$. There are also examples of families F^{*} such that through each neighborhood in Σ^{*} there passes a singular $h \in F^{*}$. Thus non-singular elements in F^{*} are in fact everywhere dense, while singular elements in F^{*} may be everywhere dense. If in particular a neighborhood is in the interior of an N-loop [S-loop], then each non-singular $h \in F^{*}$ meeting this neighborhood carries an N-loop [S-loop]. This fact will simplify subsequent proofs.

Beside the question as to the vanishing of N-caps [S-caps] there is the question as to whether N-caps [S-caps] are bounded from $S[N]$. This leads to the natural separation of the cases in which N-loops [S-loops] are or are not bounded from $S[N]$.

A first theorem follows.
Theorem 6.1. If N-loops are not bounded from S there exists an F-region Q which is an F^{*}-set, whose curve boundary meets Σ^{*} in an NS. and an SN-curve and in disjoint N. and S-loops at most countable in number.

2-533807. Acta Mathematica. 91. Imprimé le 18 mai 1954.

There exist non-singular N-loops bearing points arbitrarily near S. It follows from L 3.1 that there is an infinite sequence $\varphi_{1}, \varphi_{2}, \ldots$ of nonsingular N-loops such that

$$
\begin{equation*}
I\left(\varphi_{1}\right) \subset I\left(\varphi_{2}\right) \subset \ldots \tag{6.1}
\end{equation*}
$$

while dist $\left[S, \varphi_{n}\right] \rightarrow 0$ as $n \uparrow \infty$. We shall show that the set $Q=\operatorname{Union} I\left(\varphi_{n}\right), n=1,2, \ldots$ satisfies the theorem.

The set Q is simply connected and βQ contains N and $S . Q$ satisfies Conditions Θ by L 3.2(b), and so is an F-region. It is an F^{*}-set since a union of F^{*}-sets. It follows from Th 3.2 that the closed curve boundary of Q meets Σ^{*} in an $N S$ - and $S N$-curve, and in disjoint N - and S-loops at most countable in number.

Corollary 6.1. If N-loops are not bounded from S there exists at least one meridian in F^{*}.
Th 6.2 is similar to Th 6.1 , with g in Th 6.2 replacing S in Th 6.1. The proof is similar.
Theorem 6.2. Let g be a top circle in F^{*}. If N-loops are not bounded from g there exists an F-region which is an F^{*}-set, which is in the north side of g and whose boundary meets N and g.
.One defines Q as in the proof of Th 6.I, except that here dist $\left[g, \varphi_{n}\right] \rightarrow 0$ as $n \uparrow \infty$. One continues as in the proof of Th 6.1 .
N-caps, S-caps. We have already defined an N-cap [S-cap]. One can equivalently define an N-cap U_{N} as the Cnion of the interiors of all non-singular N-loops. If there are no N-loops we understand that $U_{N}=0$. S-caps U_{S} are similarly defined. We term $U_{N}\left[U_{S}\right]$ bounded if bounded from $S[N]$, otherwise unbounded. It is possible that U_{N} or U_{S} may equal Σ^{*}.

Maximal N-cycles, S-cycles. By the interior $I \varphi$ of an N-cycle φ is meant the union of the interiors of all the N-loops carried by $|\varphi|$. An N-cycle φ will be termed maximal if $I \varphi \supset I \psi$ whenever ψ is an N-cycle. There may be no maximal N-cycle φ, but when one exists the N-cap $U_{N} \neq 0$ and $\beta U_{N}=|\varphi|$. Maximal S-cycles are similarly defined.

Corollary 6.2. If N-loops are not bounded away from an inner cycle φ, then φ is the inner cycle of an N-circuit ψ.

Let $I_{N} \varphi$ be the north side of φ. According to Th $6.2 F^{*} \mid I_{N} \varphi$ includes an open arc h with end points on $|\varphi|$ and N respectively. Then $|\varphi| \cup h$ carries an N-circuit ψ with the sense of φ, so that φ is the inner cycle of ψ.

Cor 6.2 suggests a major theorem.
Theorem 6.3. (i). If U_{N} is a bounded, non-empty $N-c a p, \beta\left(U_{N} \cup N\right)$ is the minimum carrier either of a maximal N-cycle φ, or of an inner cycle ψ not N-concave.
(ii). Conversely, a maximal N-cycle φ or an inner cycle ψ not N-concave bounds $U_{N} \cup N$, where U_{N} is a non-empty N-cap bounded from S.
(iii). A maximal N-cycle φ and an inner cycle ψ which is not N-concave cannot coexist. When φ exists $\varphi-$ is the only other maximal N-cycle, and when ψ exists ψ - is the only other inner cycle which is not N-concave.

Proof of (i). We begin by establishing (m) and (n).
(m). If βU_{N} carries an inner cycle $\psi, \beta\left(U_{N} \cup N\right)=|\psi|$, and ψ is the inner cycle of an N-circuit.

The south side $I_{S} \psi$ of ψ does not meet U_{N}, since no non-singular N-loop meets ψ. Thus $U_{N} \subset I_{N} \psi$. By Cor 6.2ψ is the inner cycle of an N-circuit η. As such ψ cannot be N concave. Each non-singular element in $I_{N} \psi$ is an N-loop since there is an open arc in $F^{*} \mid I_{N} \psi$ joining ψ to N. Hence $U_{N} \cup N=I_{N} \psi$ and $\beta\left(U_{N} \cup N\right)=|\psi|$.
(n). If $U_{N} \neq 0$ and if βU_{N} carries no inner cycle, βU_{N} is the minimum carrier of a maximal N-cycle.

Set $H=\Sigma-\mathrm{Cl} U_{N}$ and let L be the component of H which includes S. We shall show that L is an F-region. Since U_{N} is an F-set, L is an F-set. Since \bar{U}_{N} is connected, L is simply connected. Finally L satisfics Conditions Θ on F-regions with H and U_{N} [L 3.3]. Now βL carries no inner cycle and hence no N-circuit. By Th $3.2, \beta L$ must be the minimum carrier of an N-cycle q. This N-cycle must be a maximal N-eycle; otherwise L would meet the interior of some N-loop, contrary to its definition. The interior $I \varphi$ of a maximal N-cycle ρ is an N-cap U_{N}. Hence $\beta U_{N}=|\varphi|$ and (n) is established.

Statement (i) follows from (in) and (n).
Proof of (ii). We first establish (a).
(a). An inner cycle ψ which is not N-concave is the inner cycle of an N-circuit η.

If ψ is not N-concave, an F^{*}-ray π exists in the north side of ψ with an initial point in ψ. This ray must have a limiting end point at N. Otherwise π would be asymptotic to an S-concave F^{*}-cycle ψ_{1} north of ψ. [Th 4.1], and ψ would be N-concave by L 5.2 , contrary to hypothesis. It is clear that $|\psi| \cup \pi$ carries an N-circuit η with the sense of ψ, so that ψ is the inner cycle of η. This establishes (a).

If ψ exists any non-singular element in $I(\eta)$ is an N-loop by (a), and all non-singular N-loops are north of ψ. It follows that $\beta\left(U_{N} \cup N\right)=\psi$. If φ exists $\beta\left(U_{N} \cup N\right)=|\varphi|$, as already noted. In both cases $U_{N} \neq 0$.

Proof of (iii). There is precisely one N-cap U_{N}, in accordance with its definition. Now $\beta\left(U_{N} \cup N\right)=|\varphi|$ or $|\psi|$ by (ii), when φ or ψ exists. These possibilities are mutually exclusive since βU_{N} is unique. Statement (iii) follows.

Theorem 6.3 has an obvious counterpart for S-caps.

§ 7. The metric space Φ

Let ψ be an inner cycle or S-cycle. Let R be the region north of ψ. The cycle ψ is sensed. We say that ψ is positively sensed in Σ if ψ is in the curve class of the curve $\varphi=f \mid \beta R$ of Th 3.1. Alternately let ψ be an inner or N-cycle. Let R be the region south of ψ. It is consistent with the preceding to say that ψ is positively sensed in Σ if ψ - is in the curve class of $\varphi=f \mid \beta R$ of Th 3.1. For S-cycles and N-cycles the two definitions are not overlapping.

Let the latitude 0 on Σ be so defined that when θ increases on a parallel g, N is to the left of g. Since a parallel can be homotopically deformed through top circles on Σ^{*}, nonbounding on Σ^{*}, into any such top circle, it follows that when an inner cycle ψ is positively sensed in Σ and is traced in its positive sense n times, then $0 \uparrow \infty$ as $n \uparrow \infty$.

Let η and S be degenerate closed curves with N and S, respectively, as carriers. We shall introduce a space Φ consisting of η, S, and all inner, maximal N - and S-cycles, positively sensed in Σ. By a cycle in Φ we shall mean any element in Φ other than \boldsymbol{N} or S. Two cycles φ and ψ in Φ will be ordered by the relation $\varphi<\psi$, or equivalently, $\psi>\varphi$, if $|\varphi|$ separates $|\psi|$ from S. We write $S<n$ and for every cycle $\varphi \in \Phi, n<\varphi<S$. Equality of elements in Φ shall mean that they belong to the same curve class. The order relation $<$ is transitive. No two different cycles in Φ intersect.

Let x, y be any pair of elements in Φ and let p be an arbitrary point in y. Let

$$
d(x, y)=\max _{p \in y} \operatorname{dist}[x, p] .
$$

This distance makes Φ a non-symmetric metric space. Set

$$
K(y)=d[\boldsymbol{S}, y] \mid(y \in \Phi)
$$

Suppose that the radius of $工$ is 1 .
Lemma 7.1. The transformation K of Φ into the interval $[0, \pi]$ carries Φ in a $1-1$ manner into a closed subset of $[0, \pi]$.

Let y_{n} be a sequence of elements in Φ such that $K\left(y_{n}\right)$ converges to a value b in $[0, \pi]$. It is sufficient to show that for some $a \in \Phi, K(a)=b$. Without loss of generality we can suppose that the sequence y_{n} is decreasing in Φ and that $y_{n}<\boldsymbol{n}$. The case of an increasing sequence is similar.

Let R_{n} be the region in Σ north of y_{n} and set $R=$ Union R_{n}. If $R=\Sigma-S, b=0=K(S)$. Suppose then that $R \neq \Sigma-S$. For $n>2$ each y_{n} is a non-singular inner cycle [L 5.3], so that it follows from $\mathrm{L} 3.2(\mathrm{c})$ that R is a concave F-region with $\beta R \mid \Sigma^{*}$ simple. Since $N \subset R, f \mid \beta R$ in Th 3.1 defines an F^{*}.cycle φ with carrier βR. If φ is an inner cycle, φ is in Φ. If φ is an S-cycle, the concavity of R implies that φ is a maximal S-cycle, and so
in Φ. We shall show that $b=K(\varphi)$. Observe that $0<K\left(y_{n}\right)-K(\varphi)=d\left[\mathcal{S}, y_{n}\right]-d[\mathcal{S}, \varphi] \leqq$ $d\left[\varphi, y_{n}\right]$, using the triangle axiom. But $d\left[\varphi, y_{n}\right] \rightarrow 0$ as $n \uparrow \infty$ so that $K(\varphi)=\lim K\left(y_{n}\right)=b$. This establishes L 7.1.

Our final metric for Φ shall be one in which the distance between any two elements x and y in Φ shall be the Euclidean distance $|K(x)-K(y)|$ between $K(x)$ and $K(y)$ as points in the interval $[0, \pi]$.

In terms of the order defined in Φ and its metric, $\sup E$ and inf E are defined for any non-empty subset E of Φ. We understand thereby that "sup" = L.U.B. and "inf" = G.L.B. Other terms involving limits are similarly defined. It follows from L 7.1 that Φ is compact.
U-type asymptotes. The metricizing of the space Φ and our earlier results concerning the absence of singular points on asymptotic rays make possible the treatment of a problem concerning concave annuli. Such an annulus A, bounded as it is by cycles φ and ψ in Φ, will be said to be of U-type if filled with asymptotes of type $[\varphi+, \psi+]$ or $[\varphi-, \psi-]$. Cf. § 5. The theorem is as follows.

Theorem 7.1. Let $C_{e}, e>0$, be the union of e-neighborhoods of N and S. For fixed e the number of disjoint annuli of U-type which do not meet C_{e} is finite.

Suppose the theorem false. There would then exist a sequence $A_{n}, n=1,2, \ldots$ of disjoint annuli of U-type with boundaries $\varphi_{n}, \psi_{n}, \varphi_{n}<\psi_{n}$, not meeting C_{e}. Without loss of generality we can suppose that $\varphi_{1}>\varphi_{2}>\ldots$. Since Φ is complete and since $d\left[\mathcal{S}, \varphi_{n}\right]>e$, for some cycle $\eta \in \Phi, \varphi_{n} \rightarrow \eta$ as $n \uparrow \infty$.

Let p be a point on η at the maximum distance on $|\eta|$ from $|\eta|$ to S. Let λ be a transversal on the north side of η, incident with η at p. We know that $d\left[S, \varphi_{n}\right]$ decreases monotonically to $d(S, \eta)$ as a limit, and that $d[S, \eta]$ equals the distance of p from S. Hence for n sufficiently large, say $n=m, \lambda$ will intersect A_{m} in a simple arc μ, interior to \bar{A}_{m} except for end points on φ_{m} and ψ_{m} respectively. [L 3.0.]

Let H "cover" A_{m} on M, with boundaries h and k in F_{M}^{*} covering φ_{m} and ψ_{m} respectively. The arc μ is covered on M by an unending sequence of disjoint open arcs \ldots, b_{-1}, b_{0}, b_{1}, \ldots such that $\theta \mid b_{r}$ tends to $\pm \infty$ as $r \rightarrow \pm \infty$, while b_{r} separates H into two regions on one of which b_{r+1}, b_{r+2}, \ldots lie, and on the other b_{r-1}, b_{r-2}, \ldots.

Let g on H cover a U-type asymptote in A_{m}. Let R_{n} be the region on H bounded on H by b_{n} and b_{n+1}. If g meets R_{n} it must cross b_{n} and b_{n+1} in unique points. [Th 2.3.] We infer that g must meet the open $\operatorname{arcs} \ldots, b_{-1}, b_{0}, b_{1}, \ldots$ in unique points p_{n} appearing on g in the order of the indices n. Hence $\theta \mid g$ tends to $+\infty$ in one sense of g and to $-\infty$ in the other, contrary to our hypothesis that its projection on Σ^{*} is of U-type.

This establishes Th 7.1. Cf. Kaplan [3].

§ 8. The case of no meridian

We begin with the following lemma.
Lemma 8.1. The absence of meridians implies the following:
(a). There is at least one cycle in Φ.
(b). If Φ contains precisely one cycle φ, φ is N - or S-concave.
(c). An inner cycle, φ in Φ, is N - or S-concave.
(d). If $\psi \in \Phi$ is the immediate successor of $\varphi \in \Phi$ and if φ and ψ are cycles, then one at least of these two cycles is concave toward the other.

Proof of (a). Suppose that there is no cycle in Φ. There are then no asymptotes in F^{*} [Th 4.1], and no bounded S - or N-caps [Th 6.3 (i)]. The set K of N-loops is empty; otherwise U_{N} would be unbounded and a meridian exist [Cor 6.1], contrary to hypothesis. Similarly there are no S-loops. With asymptotes excluded the positive [negative] limit set of an open $h \in F^{*}$ must reduce to N or to S. [Th 4.1.] Hence each $h \in F^{*}$ is a meridian. From this contradiction we infer (a).

Proof of (b). Suppose (b) false in that φ is neither N - nor S-concave. If φ is an N-cycle not S-concave, there would exist an element $h \in F^{*} \mid I_{S} \varphi$ (where $I_{S} \varphi$ is the south side of φ) with a limiting initial point in $|\varphi|$. Such an h could not be asymptotic to an F^{*}-cycle ψ, because $\psi \pm$ would be in Φ and different from φ. Hence $|\varphi| \cup \hbar$ would carry a meridian contrary to hypothesis. Similarly φ is not an S-cycle. If φ were an inner cycle there would exist rays π_{1} and π_{2} in the north and south sides of φ respectively, with initial points in $|\varphi|$ and limiting final points in N and S respectively, so that $|\varphi| \cup \pi_{1} \cup \pi_{2}$ would carry a meridian contrary to hypothesis. Thus (b) is true.

Proof of (c). If (c) were false it would follow from (a) of the proof of Th 6.3 (ii) that φ would be the inner cycle of an N-circuit φ_{1} and of an S-circuit φ_{2}. Then $|\varphi| \cup\left|\varphi_{1}\right| \cup\left|\varphi_{2}\right|$ would carry a meridian contrary to hypothesis.

Proof of (d). There are four cases as follows.
(1) φ and ψ inner cycles.
(2) φ an inner cycle, ψ a maximal N-cycle.
(3) φ a maximal S-cycle, ψ an inner cycle.
(4) φ a maximal S-cycle, ψ a maximal N-cycle.

In Case (1), (d) follows from L5.2.
In Case (2), the falsity of (d) implies, as in the proof of (b), that there exists an $h \in F^{*}$ which meets φ and $\psi ; \varphi$ is accordingly not N-concave, and so cannot coexist with a maximal N-cycle ψ. [Th 6.3 (iii).] Case (3) is similar to Case (2).

In Case (4) the falsity of (d) again implies that there exists an $h \in F^{*}$ which meets φ and ψ and is a meridian.

We infer the truth of (d).
The subset Ψ of Φ. An F^{*}-cycle which is N - or S-concave will be called concave. Let Ψ be the subset of concave F^{*}-cycles in Φ.

Lemma 8.2. When there is no meridian the set Ψ is not empty and contains every cycle in Φ, excepting $\varphi_{N}=\beta\left(U_{N} \cup N\right) \mid\left(U_{N} \neq 0\right)$ when φ_{N} is a maximal N-cycle not S-concave, and excepting $\varphi_{S}=\beta\left(U_{S} \cup S\right) \mid\left(U_{S} \neq 0\right)$ when φ_{S} is a maximal S-cycle not N-concave.

The set Ψ is not empty. For there is either exactly one cycle in Φ, or exactly two, or an inner cycle. In each of these cases $L 8.1$ implies the existence of a concave cycle in Φ and hence in Ψ. If $U_{N} \neq 0$ and φ_{N} is not in Ψ, φ_{N} is certainly not S-concave by definition of Ψ. It cannot be an inner cycle by L 8.1 (c). The case of an excepted φ_{S} is similar.

The critical elements in Φ. We aim at a finite decomposition of Σ using such basic regions as N-caps, S-caps, the Union C of all concave annuli, and such other sets as may be necessary. No concave annulus A meets an N-cap or S-cap, since no N - or S-loop can enter A. Hence C cannot meet an N-cap U_{N}, or S-cap U_{S}. The question then is what is the nature of

$$
\Sigma-U_{N}-U_{S}-C
$$

The problem is complicated by the fact that U_{N}, U_{S} or C may be empty. When $U_{N} \neq 0$ and $U_{S}=0, U_{N} \cup N$ and $U_{S} \cup S$ have unique cyeles, in Φ, φ_{N} and φ_{S} respectively, as boundaries [Th 6.3.] When $C \neq 0$ it will presently appear that it has unique elements ψ_{N} and ψ_{s} in Φ as boundaries, and apart from special cases one would expect that in Φ

$$
\begin{equation*}
S \varphi_{S}<\psi_{S} \psi_{N} \therefore \varphi_{N}=\boldsymbol{n} . \tag{8.1}
\end{equation*}
$$

To simplify the problem, and to include all cases of the vanishing of U_{N}, U_{S} and C and the coalescence of their boundaries we define, de novo, four critical elements in Φ, namely,

$$
\begin{equation*}
\varphi_{S}, \psi_{S}, \psi_{N}, \varphi_{N} . \tag{8.2}
\end{equation*}
$$

Let φ_{N} be \boldsymbol{N} if there are no N-loops and $\sup \Phi \mid(\boldsymbol{S}<\varphi<\boldsymbol{n})$ otherwise.
Let φ_{S} be \mathcal{S} if there are no S-loops and inf $\Phi \mid(\mathcal{S}<\varphi<\boldsymbol{n})$ otherwise.
Let $\psi_{N}=\sup \Psi$, and $\psi_{S}=\inf \Psi$.
The elements so defined exist. For the set Ψ is not empty by L 8.2 , nor is the set $\Phi \mid(\boldsymbol{S}<\varphi<\boldsymbol{n})$ since $\Phi \supset \Psi$. One makes use of the completeness of Φ. Moreover

$$
\begin{equation*}
S \leqq \varphi_{S} \leqq \psi_{S} \leqq \psi_{N} \leqq \varphi_{N} \leqq \boldsymbol{7} . \tag{8.3}
\end{equation*}
$$

An alternative but equivalent definition of φ_{N} and φ_{S} follows.
Let φ_{N} be the closed curve in Φ with minimum carrier $\beta\left(U_{N} \cup N\right)$.
Let φ_{S} be the closed curve in Φ with minimum carrier $\beta\left(U_{S} \cup S\right)$.
We are assuming that there is no meridian, and in this case $\mathrm{Cl} U_{N} \cap \mathrm{Cl} U_{S}=0$. It follows from the second definition of φ_{N} and φ_{S} that $\varphi_{N}>\varphi_{s}$. Moreover Ψ^{\prime} is not empty, so that for some cycle $\psi \in \Psi, S<\psi \leqq \psi_{N}, \boldsymbol{n}>\psi \geqq \psi_{S}$. In summary,

$$
\begin{equation*}
\varphi_{S}<\varphi_{N}, n>\psi_{S}, S<\psi_{N} . \tag{8.3}
\end{equation*}
$$

At the end of this section we shall see that the conditions (8.3)' and (8.3)" are the only order conditions on the elements involved.

Lemma 8.3 (a). If $\psi_{N}<\varphi_{N}, \psi_{N}$ is N-concave. If $\psi_{S}>\varphi_{S}, \psi_{S}$ is S-concave.
(b). If $\psi_{S}<\psi_{N}$, then ψ_{S} is N-concave or S, and ψ_{N} is S-concave or η.

Proof of (a). If $\varphi_{S}=\psi_{N}<\varphi_{N}$, then ψ_{N} is the only cycle in Ψ. It cannot be S-concave since equal to φ_{S}, and so must be N-concave. If $\varphi_{S}<\psi_{N}<\varphi_{N}$ then ψ_{N} is an inner cycle in Ψ and must be N-concave by Th 6.3 (ii). Similarly ψ_{S} is S-concave if $\psi_{S}>\varphi_{S}$.

Proof of (b). If $\varphi_{S}=\psi_{S}$ and $\psi_{S} \neq \mathcal{S}$, then φ_{S} is in Ψ and hence N-concave, or not in Ψ and N-concave (a contradiction) because $\varphi_{S}=\beta$ Union R_{n} for a proper choice of R_{n}, as in the proof of L 7.1 [L 3.2]. If $\varphi_{S}<\psi_{S}<\psi_{N}, \psi_{S}$ is an inner cycle, and N-concave since $<\varphi_{N}$. The case of ψ_{N} is similar.

The open sets $\{X, Y\}$. Let X and Y be any two successive elements in (8.3)'. If $X=Y$ let $\{X, Y\}$ be the empty set. If $X<Y$ let $\{X, Y\}$ be the open set bounded by X and Y. To describe F^{*} over Σ^{*} it is sufficient to describe F^{*} over the sets

$$
\begin{equation*}
\left\{\boldsymbol{S}, \varphi_{s}\right\} \quad\left\{\varphi_{S}, \psi_{S}\right\} \quad\left\{\psi_{S}, \boldsymbol{\psi}_{N}\right\} \quad\left\{\psi_{N}, \varphi_{N}\right\} \quad\left\{\varphi_{N}, \boldsymbol{n}\right\} . \tag{8.4}
\end{equation*}
$$

In the order written such sets are called, respectively, S-caps, S-spiral annuli, central annuli, N-spiral annuli, and N-caps, We have already characterized N - and S-caps. We shall characterize spiral and central annuli.

Improper annuli. A spiral annulus or a central annulus in which one at least of the the bounding elements is n or S will be called improper. Because of the conditions $S<\psi_{N}$ and $n>\psi_{S}$ improper spiral annuli take one of the forms

$$
\left\{\boldsymbol{S}, \psi_{S}\right\} \quad\left\{\psi_{N}, \boldsymbol{n}\right\} .
$$

Improper central annuli take one of the forms

$$
\left\{\boldsymbol{S}, \psi_{N}\right\} \quad\left\{\psi_{S}, \boldsymbol{n}\right\} \quad\{\boldsymbol{S}, \boldsymbol{n}\}
$$

The last written annulus is realized in the case of a family F consisting of the parallels on Σ^{*}. If Σ^{*} is covered by just one of the open sets (8.4) this set must be a central annulus of the form $\{\boldsymbol{S}, \boldsymbol{n}\}$.

In $\S 5$ we have analyzed concave annuli $A\left(\varphi_{1}, \varphi_{2}\right)$. Here φ_{1} and φ_{2} were cycles in Φ concave toward each other. The description of a central annulus follows.

Theorem 8.1. A central annulus $\left\{\psi_{s}, \psi_{N}\right\}=C$ is the \hat{O} nion of all concave annuli. Each element of F^{*} meeting C is in C, and is either a non-singular top circle or a non-singular element h which is an asymptote in each of its senses.

We begin by establishing the following.
(a) Each concave annulus $A\left(\varphi_{1}, \varphi_{2}\right)$ is in C.

By definition of ψ_{S} and $\psi_{N}, \psi_{S} \leqq \varphi_{1}<\varphi_{2} \leqq \psi_{N}$, and (a) follows.
(b) Each point of C is in a concave annulus.

When C is non-empty and proper it is a concave annulus [L 8.3 (b)]. In this case (b) is trivial. When C is improper but not empty three cases are distinguished.

Case I. $C=\Sigma^{*}$. In this case

$$
\begin{equation*}
\psi_{S}=\boldsymbol{S}=\inf \Psi \quad \psi_{N}=\boldsymbol{n}=\sup \Psi \tag{8.5}
\end{equation*}
$$

and each cycle in Φ is an inner cycle. If φ_{1} and φ_{2} are cycles in Φ the annulus $A\left(\varphi_{1}, \varphi_{2}\right)$ is concave by L 5.2 . It follows from (8.5) that every point of C is in some concave annulus $A\left(\varphi_{1}, \varphi_{2}\right)$.

Case II. $\psi_{S}=\boldsymbol{S}, \psi_{N}<\boldsymbol{n}$. Each cycle φ in C is an inner cycle in all cases. In Case II, ψ_{N} is S-concave by L $8.3(\mathrm{~b})$, so that $A\left(\varphi, \psi_{N}\right)$ is a concave annulus by L 5.2 . Since S satisfies (8.5) it is clear that each point of C is in an annulus $A\left(\varphi, \psi_{N}\right)$.

Case III. Similar to Case II with S and N interchanged.
Thus (b) holds and it follows that C is the union of all concave annuli. Each element of F^{*} in C is in a concave annulus $A\left(\varphi_{1}, \varphi_{2}\right)$ and so has the nature stated in the theorem.

Theorem 8.2. Let $\left\{\psi_{N}, \varphi_{N}\right\}$ be an N-spiral annulus $W \neq 0$.
(i) For η properly chosen as one of the cycles $\psi_{N} \pm$, each element in $F^{*} \mid W$ is non-singular an \bar{d} asymptotic to η with an initial limiting point in φ_{N}.
(ii) At most one such asymptote η has its initial point in a given N-loop ψ in φ_{N}.
(iii) When $W \neq 0, \varphi_{N}$ is a maximal N-cycle or η.

Proof of (i). There is no cycle of Φ between φ_{N} and ψ_{N} when $\psi_{N}<\varphi_{N}$, since ψ_{N} is then the first cycle in Φ before φ_{N}. There are no N-loops meeting W, since φ_{N} is a maximal N-cycle or $\boldsymbol{\eta}$ by L 8.2. There are no elements in $F^{*} \mid W$ asymptotic to φ_{N} as a cycle, since the conditions $\psi_{N}<\varphi_{N}<\boldsymbol{n}$ imply that φ_{N} is not S-concave. Hence each $h \in F^{*} \mid W$ is
asymptotic to $\eta=\psi_{N} \pm$ with a limiting initial point in φ_{N}. There is no singular point P in W; otherwise the elements in F^{*} meeting P would include at least two elements asymptotic to $\psi_{N} \pm$, contrary to Cor 5.1.

Proof of (ii). If (ii) were false there would exist points r and r^{\prime} of ψ in $\Sigma *$ incident respectively with distinct elements h and h^{\prime} in $F^{*} \mid W$, and asymptotic to η. There would then be two F^{*}-rays with initial point at r and asymptotic to η contrary to Cor 5.1.

Proof of (iii). This follows from L 8.2.
This completes the proof of the theorem. S-spiral annuli admit a similar description.
Covering by two sets $\{X, Y\}$. In any covering of Σ^{*} by two non-empty sets $\{X, Y\}$ and their common boundary β, the first set must be an S-cap, S-spiral or central annulus, and the second an N-cap, N-spiral or central annulus. There are thus nine a priori possibilities, but a central annulus cannot be combined with a central annulus, nor an N-cap with an S-cap, since $\varphi_{S}<\varphi_{N}$ when there is no meridian. There remain four combinations of two sets $\{X, Y\}$, namely
$\{S$-cap, N-spiral $A\}\{S$-cap, central $A\}$
$\{S$-spiral A, N-spiral $A\}\{S$-spiral A, central $A\}$
and three other combinations, obtained by interchanging N with S and inverting the order of the two sets.

It follows from L 8.3 that the common boundary β of the two sets is an N-concave φ_{S} in (8.6), and a non-singular inner cycle ψ_{S} in (8.7). The cycle $\beta=\varphi_{S}$ in (8.6) may be a maximal S-cycle or an inner cycle. Each of these possibilities is realizable.

In case meridians are absent Σ is decomposed as follows.
Theorem 8.3 (a). The non-empty open sets $\{X, Y\}$ in (8.4) are disjoint, and, taken with their boundaries, cover Σ.
(b). A boundary cycle φ common to two of these open sets is singular at most if one of the sets is an N-cap or S-cap.
(c). A boundary of an N-cap [S-cap] is an inner cycle φ at most if φ is singular and S-concave [N-concave], and if any N-spiral [S-spiral] annulus is empty.
(a) This needs no further proof.
(b) This follows from L 8.3, on recalling that φ is non-singular if both N. and S. concave.
(c) If $\varphi_{N}\left[\varphi_{s}\right]$ is an inner cycle then it is in Ψ by L 8.2 , and hence S-concave [N concave], and any N-spiral [S-spiral] annulus is empty by Th 8.2 (iii).

Corollary 8.1. When there is no meridian a necessary and sufficient condition that each element in F^{*} be non-singular is that there be no singular N - or S-loops.

The corollary would follow immediately from the theorem, if the condition were that there exist no singular N - or S-loops or N - or S-circuits. However, it follows from Th 8.3 (c) that in the absence of meridians an N-circuit ψ (if it exists) is necessarily S concave. Hence the elements in F^{*} meeting a singular point in ψ must carry an N-loop. The case of an S-circuit is similar. Hence the condition of the corollary is sufficient. It is trivial that it is necessary.

Construction of an F. Without going into details one can assert that any distribution of the signs < and $=$ in $(8.3)^{\prime}$ that is consistent with (8.3)" is realizable in an example which is non-singular. One can, for example, make use of central annuli covered by a continuous 1-parameter family of closed curves. An N-cap can be defined which is bounded by N and a single non-singular N-loop One can use N-spiral annuli which are covered by aymptotes each of whose initial points are in N. S-caps and S-spiral annuli of similar character can be constructed when called for, and combined with these elementary N-caps, N-spiral annuli, and central annuli to form a family F as desired.

§ 9. Loop coverage

The case of loop coverage arises, by definition, when points on N - or S-loops are everywhere dense in Σ^{*}. Clearly a necessary and sufficient condition for loop coverage is that

$$
\text { Onion }\left[U_{N}, U_{S}\right]=\Sigma *
$$

When there is loop coverage it will appear that there is at least one meridian in F^{*}. Cf. Cor 6.1. When there is at least one meridian the decomposition of Σ^{*} can be studied under the case of loop coverage and the case of no loop coverage. We here study loop coverage.

By a maximal N-loop is meant any N-loop φ such that $I \varphi \supset I \psi$ whenever ψ is an N-loop with $I \psi \cap I \varphi \neq 0$. A maximal S-loop is similarly defined.

We need further information regarding unbounded N-caps U_{N}.
Theorem 9.1. If U_{N} is not bounded from S and $\neq \Sigma^{*}$, then each component R of U_{N} is either i, the interior of a maximal N-loop or, ii, an F-region bounded by $N \cup S$, by two disjoint meridians and at most countably many disjoint maximal S-loops, iii, a region bounded by a maximal S-cycle and by N.
(a) Two components of U_{N} of types \mathbf{i} or ii have disjoint boundaries in Σ^{*}.
(b) There is at least one component of type ii or iii. Any component of U_{N} of type iii equals U_{N}. The number of components of type ii is finite.

L 3.2 implies that each component R of U_{N} is an F-region. As given by Th 3.2 βR does not carry an N or S-circuit since U_{N} is not bounded from S. An R is then of type i if bounded from S, of type iii if N is isolated in βR, of type ii otherwise. The maximality of the loops follows from the definition of U_{N}.

Intersection of component boundaries. Two components of U_{N} cannot have an open boundary arc in common since U_{N} is an inner closure in Σ^{*}. If R_{1} and R_{2} are two components of U_{N} of types [i, ii], [i, i] or [ii, ii] then βR_{1} and βR_{2} cannot meet in a point in Σ^{*}; otherwise $\beta R_{1} \cup \beta R_{2}$ would carry an N-loop with interior R_{0} such that Union [R_{0}, R_{1}, R_{2}] would be connected and in U_{N}, contrary to the nature of R_{1} and R_{2} as components of U_{N}.

Number of components. If there were no component of type ii or iii, U_{N} would be bounded from S, contrary to hypothesis; that any component of type iii is U_{N} itself follows from the relation

$$
U_{N} \supset R \supset \Sigma^{*}-\bar{U}_{S} \supset U_{N}
$$

The number of components R of U_{N} of type ii is finite; for there exists in each such R an N-loop with diameter exceeding $\pi / 2$ and the number of such N-loops in different components R is finite by L 3.1.

This completes the proof of the theorem.
By an argument similar to that used in the last paragraph of the proof one can show that the maximal number of meridians in any collection of disjoint meridians is finite in the case of loop coverage.

On setting

$$
\begin{equation*}
B=\beta U_{N} \cap \beta U_{S} \tag{9.1}
\end{equation*}
$$

one obtains the following theorem.
Theorem 9.2. In the case of loop coverage, the following is true.
(a) If U_{N} is bounded from S and U_{S} from $N, B=\beta U_{N}-N=\beta U_{S}-S$ is a top circle in F^{*}.
(b) If U_{N} is not empty and bounded from S, but U_{S} is not bounded from $N, B=\beta U_{N}$ is the carrier of a maximal N-cycle. A similar statement holds interchanging N and S.
(c) If U_{N} is not bounded from S nor U_{S} from N, the components of $B \mid \Sigma^{*}$ are simple and disjoint, and include a finite set (at least two) of meridians, and carry at most a countable set of maximal N - and S-loops.

Statements (a) and (b) follow from Th 6.3 and statement (c) from Th 9.1.
Primitives. We shall give another decomposition of Σ^{*} in terms of a Onion of certain elementary regions to be termed primitives. These primitives will enter into decomposi-
tions both in the case of loop coverage, and in the case where at least one meridian exists and there is no loop coverage.

Definition. Let $\varphi_{1}, \varphi_{2}, \ldots$ be a sequence of disjoint non-singular N-loops such that

$$
\begin{equation*}
I \varphi_{1} \subset I \varphi_{2} \subset I \varphi_{3} \subset \ldots \tag{9.2}
\end{equation*}
$$

Then Union $I \varphi_{n}$ will be called an N-element and denoted by [φ]. An N-element which is not a proper subset of any other N-element is called an N-primitive. S-primitives [φ] are similarly defined.

We shall establish a number of propositions which lead up to a decomposition of $U_{N}\left[U_{S}\right]$ into a Cnion of disjoint N-primitives [S-primitives] countable in number. The essence of the analysis lies in the introduction of a partial order among N - or S-elements, and, for ordered subsets of N. or S-elements, in the reduction of this order to a numerical basis.

We say that two N-elements are ordered if one is included in the other. We similarly order interiors $I \psi$ of N-loops ψ. Strict inclusion of a set A in B will be denoted by the relation $A<B$ or $B>A$. If φ and ψ are non-singular N-loops and $I \varphi \cap I \psi \neq 0 I \varphi$ and $I \psi$ are ordered. We extend this fact as follows.
(α) If N-elements $[\varphi]$ and $[\psi]$ intersect, $[\varphi]$ and $[\psi]$ are ordered.
If $[\varphi] \cap[\psi] \neq 0$ then for suitable integers r and $s, I \varphi_{r} \cap I \psi_{s} \neq 0$, and hence $I \varphi_{\dot{n}} \cap I \psi_{m} \neq 0$ for $n \geqq r, m \geqq s$. Hence the set of all loop interiors of the form $I \varphi_{n}, n \geqq r, I \psi_{m}, m \geqq s$, is ordered. From this set one can form an N-element [ζ] such that $[\zeta] \supset[\varphi]$ and $[\zeta] \supset[\psi]$. It is clear that either $[\zeta]=[\varphi]$, or $[\zeta]=[\psi]$, or that both of these equalities hold. Statement (α) follows.
(β) If $[\varphi]$ and $[\psi]$ are ordered N-elements with diameters $D[\varphi]$ and $D[\psi]$ respectively, then $D[\varphi]>D[\psi]$ if and only if $[\varphi]>[\psi]$.

Suppose that $I \varphi_{n}$ and $I \psi_{m}$ are ordered, and let $d\left(\varphi_{n}\right)$ and $d\left(\psi_{n}\right)$ be the diameters of φ_{n} and ψ_{n} respectively. It is clear that $d\left(\varphi_{n}\right)>d\left(\psi_{m}\right)$ if and only if $I \varphi_{n}>I \psi_{m}$.
(1) If $[\varphi]>[\psi]$, the above N-element [ζ] is such that for some integer t, and for $n \geq t$, ζ_{n} is in the set $\left[\varphi_{1}, \varphi_{2}, \ldots\right]$ and $I \zeta_{t} \supset[\psi]$. Hence $D[\varphi]=D[\zeta]>d\left(\zeta_{t}\right) \geq D[\psi]$.
(2) If $D[\varphi]>D[\psi],[\zeta]$ has this same property so that $[\varphi]>[\psi]$.
(γ) If $[\varphi]$ and $[\psi]$ are ordered N-elements, $D[\varphi]=D[\psi]$ if and only if $[\varphi]=[\psi]$.
This is an immediate consequence of (β).
We state two basic lemmas independent of the hypothesis of loop coverage.
Lemma 9.1. The Union V of N-elements [S-elements] in any ordered class K of N elements [S-elements] is an N-element [S-element].

It is sufficient to consider the case of N-elements. Set $\Delta=\sup D[\varphi] \mid([\varphi] \in K)$ and distinguish two cases as follows.

Case I. For some $[\psi] \in K, D[\psi]=\Delta$. In this case it follows from (β) and (γ) that $[\psi]$ includes every $[\varphi] \in K$ and hence $[\psi] \supset V$. But $[\psi]$ is in K so that $V \supset[\psi]$. Hence $[\psi]=V$ and L 9.1 follows.

Case II. Not Case I. In Case II there is a sequence $\left[\varphi^{r}\right], r=0,1, \ldots$ of N-elements in K, such that $D\left[\varphi^{r}\right]$ increases strictly as $r \uparrow \infty$ and tends to Δ as $r \uparrow \infty$. Then

$$
\begin{equation*}
\left[\varphi^{0}\right]<\left[\varphi^{1}\right]<\left[\varphi^{2}\right]<\ldots \quad[\text { by }(\beta)] . \tag{9.3}
\end{equation*}
$$

For n successively $1,2,3, \ldots$ one can choose a ψ_{n} in the set $\left[\varphi_{1}{ }^{n}, \varphi_{2}{ }^{n}, \ldots\right]$ such that

$$
I \psi_{n}>\left[\varphi^{n-1}\right]
$$

and hence

$$
I \psi_{1}<I \psi_{2}<I \psi_{3}<\ldots
$$

Thus

$$
\begin{equation*}
[\psi]>I \psi_{n}>\left[\varphi^{n-1}\right] \quad(n=1,2, \ldots) \tag{9.4}
\end{equation*}
$$

so that

$$
D[\psi] \geq D\left[\varphi^{n-1}\right] \quad[n=1,2, \ldots]
$$

and hence $D[\psi] \geqq \Delta$. But $D[\psi] \leq \Delta$ by virtue of the definition of Δ. We conclude that $D[\psi]=\Delta$. But clearly $V=[\psi]$, and L 9.1 follows.

Corollary 9.1 The union K of all N-elements [S-elements] which meet a given N-element [S-element] is an N-primitive [S-primitive].

The elements in K each meet a given element [φ], so that K is the union of an ordered set of N-elements [S-elements]. The corollary follows from the lemma.

Lemma 9.2. A primitive R is an F-region. Each component of βR in $\Sigma *$ is concave toward R.

The region R is an N-element and as such simply connected. It is an F-region and an F^{*}-set by L 3.2. Because R is an F^{*}-set the components of βR in Σ^{*} are concave toward R.

Lemma 9.3 (a). Each point in an N-loop $[S$-loop] is in the closure of an N-primitive [S-primitive].
(b) No two primitives intersect.
(c) The number of disjoint primitives with diameters exceeding a positive constant is finite.

Proof of (a). We treat the case of a point P in an N-loop φ. Let λ be a transversal ray in $I \varphi$ and incident with P. Let $p_{n}, n=1,2, \ldots$ be a sequence of points appearing on λ in the order p_{1}, p_{2}, \ldots and tending to P as $n \uparrow \infty$. We can suppose that each point p_{n} is chosen so that the N-loop φ_{n} meeting p_{n} is non-singular. Then $\varphi_{n} \cap \lambda=p_{n}[\mathrm{~L} 3.0]$ and P is in $E \varphi_{n}$. It follows that

$$
I \varphi_{1} \subset I \varphi_{2} \subset \ldots
$$

so that $[\varphi]$ is an N-element and $\mathrm{Cl}[\varphi]$ contains P. According to Cor $9.1[\varphi]$ is in an N primitive.

The case of a point P in an S-loop is similar.
Proof of (b). An N-primitive [φ] cannot meet an S-primitive [ψ]; otherwise some nonsingular N-loop φ_{n} would be in the interior of some non-singular S-loop ψ_{m}. This is clearly impossible. Nor can an N-primitive [φ] meet a different N-primitive [$\psi]$. For [φ] and [$\psi]$ would then be ordered [cf. (α)], and be equal, since both are maximal N-elements. Statement (b) follows.

Proot of (c). In each primitive with diameter exceeding $c>0$, there is a loop with diameter exceeding e and two such loops in disjoint primitives would have disjoint interiors. The number of such loops is, however, finite [$\mathrm{L}, 3.1$] and (c) follows.

L 9.3 yields the following theorem.
Theorem 9.3. There is at most a countable number of N-primitives [S-primitives] which meet an $N-\operatorname{cap} U_{N},\left[S-c a p U_{S}\right]$, and $U_{N}\left[U_{S}\right]$ is the \hat{O} nion of these primitives.

Corollary 9.2. In the case of loop coverage there is at most a countable number of primitives in 2'*, and Σ^{*} is the Onion of these primitives.

§ 10. F-guides

A pseudoharmonic function with the open arcs of F as level lines is strictly increasing or decreasing along a transversal. The existence of simple arcs on M which are finite sequences of transverse arcs will turn out to be of the greatest importance in the study of pseudoharmonic functions u on M, and in answering the question as to the nature of u as a function on Σ^{*}, in particular in finding pseudoharmonic functions which are singlevalued on Σ^{*} and have the open arcs of F as level lines. F-guides, which we now define, are central in this study.

Definition. A non-singular arc on Σ^{*} is termed m-transverse if the union of m consequive transverse arcs. A top circle on Σ^{*} is termed m-transverse ($m>1$) if the union
of m consecutive transverse arcs, and 1-transverse if every open subare is a transversal. An m-transverse top circle separating N from S for which m is a minimum is called an F-guide.

The existence of an F-guide is most difficult to establish in the case in which there exists at least one meridian L, and this is the case where the F-guide is most useful. In case L exists an n-transverse top circle g in Σ^{*} which separates N from S, intersects L in a single point, and is such that n is a minimum subject to these conditions, is called an $F L$-guide. An $F L$-guide need not be an F-guide, but once the existence of an $F L$-guide is established the existence of an F-guide follows readily, even in the cases where there is no meridian.

Reversing points. A point of junction P of two successive transverse arcs whose union is an are g, is called a reversing point of g if the sense of crossing of elements of F reverses at P. Recall that P is non-singular. It is clear that the junction point P of two successive transverse arcs in a finite minimal decomposition of an are g into transverse ares is a reversing point. Otherwise the two ares would form a single transverse are and g could not have been minimally decomposed.

The existence of an $F L$-guide. Except for one point in L, an $F L$-guide g, if it exists, will be in the region $\Lambda=\Sigma-L$. The region Λ is the homeomorph of a finite z-plane so that the results of MJ 2 can be applied to the family $F_{0}=F \mid A$. In MJ 2 "bands" played a fundamental role. A band $R\left(N_{p}\right)$, relative to Λ, is defined as the union of all elements in F_{0} which meet a right neighborhood N_{p} in Λ. As shown in MJ 2 a band $R\left(N_{p}\right)$ in Λ is an F_{0}-region, and has boundary eomponents in Λ which are simple. If E is a set in Λ it will be necessary to distinguish between the boundary βE of E relative to Σ, and the boundary $\beta_{0} E$ of E relative to A.

We begin with two lemmas.
Lemma 10.1. Any two non-singular points p_{1} and p_{2} on the boundary βR of a band R in $A=\Sigma-L$ can be joined by an m-transverse arc g such that $g-p_{1}-p_{2}$ is in R and $m=3$.

Any two points q_{1} and q_{2} in different elements of F_{0} in R can clearly be joined by a transverse are in R. But the given points p_{1} and p_{2} can be joined to points q_{1} and q_{2} in R and neighboring p_{1} and p_{2}, respectively, by transverse ares k_{1}, k_{2}, in R except for p_{1} and p_{2}. One can suppose q_{1} and q_{2} so near p_{1} and p_{2}, respectively, that k_{1} does not meet k_{2}. Let k be a transverse arc joining q_{1} to q_{2} in R. If $k_{1} \cap k=q_{1}$ and $k_{2} \cap k=q_{2}$ the arc $g=k_{1} k k_{2}$ satisfies the lemma. Otherwise let k_{1}^{\prime} and k_{2}^{\prime} be maximal initial subares of k_{1} and k_{2}, respectively, intersecting k only in their endpoints q_{1}^{\prime} and q_{2}^{\prime}, and let k^{\prime} be the subarc $q_{1}^{\prime} q_{2}^{\prime}$ of k. Then the arc $g=k_{1}^{\prime} k^{\prime} k_{2}^{\prime}$ satisfies the lemma.

Lemma 10.2. If a meridian L exists an $F L$-guide g exists.
Let p be an arbitrary non-singular point in L, and let λ and μ be sensed transverse arcs joining p to points P and Q respectively, on opposite sides of L. We suppose λ and μ so restricted that $\lambda \cap \mu=0, \lambda \cap L=p, \mu \cap L=p$.

It follows from Th 9.1 of MJ 2 that there exists a finite set of disjoint bands

$$
\begin{equation*}
R_{1}, R_{2}, \ldots, R_{m} \quad[m>1] \tag{10.1}
\end{equation*}
$$

of Λ whose Union is an F-region H which contains P and Q. Let P_{1} and Q_{1} be respectively the first intersection of λ and μ with βH. The point P_{1} is not necessarily in βR_{1}, nor Q_{1} in βR_{m}.

If R_{i} and $R_{j}, i \neq j$, are two bands in (10.1) whose Onion is connected, $\beta_{0} R_{i} \cap \beta_{0} R_{j}$ includes at least one element $\alpha \in F_{0}$, so that one can connect R_{i} with R_{j} by an arc which crosses α at one point only. The points P_{1} and Q_{1} can accordingly be connected by a nonsingular arc g, in H except for P_{1} and Q_{1}, and meeting the respective boundaries $\beta_{0} R_{i}$ in at most a finite set of s points. If then one chooses g so that s is minimal, it follows that $\beta R_{i} \cap g, i=1, \ldots, m$, is either the empty set or two points p_{i}^{\prime} and $p_{i}^{\prime \prime}$ appearing in this order on g. The points p_{i}^{\prime} and $p_{i}^{\prime \prime}$ can be joined by a r-transverse are $g_{i}(r \leqq 3)$ with $g_{i}-p_{t}^{\prime}-p_{i}^{\prime \prime} \subset R_{i} .[\mathrm{L} 10.1$.

If $p \neq P_{1}$ and $p \neq Q_{1}$, the subarcs $p P_{1}$ of λ and $Q_{1} p$ of μ, united with the arcs g_{1} in proper order, give an n-transverse top circle, with $n \leq 3 m+2$, meeting L only at p. If $p=P_{1}$ the subarc of $p P_{1}$ of λ is not needed.

The case in which $p=Q_{1}$ is similar.
An n-transverse top circle meeting L only at p and for which n is minimal accordingly exists, and the lemma follows.

The principal theorem of this section follows. No hypothesis as to the existence of a meridian is made.

Theorem 10.1. Corresponding to an arbitrary admissible family F defined on Σ^{*}, there always exists an F-guide g.

Let h be a non-singular subare of an element of F, with end points P_{1} and P_{2} in Σ^{*}. Chere exist top circles g_{1} and g_{2} in Σ^{*}, each separating N from S and with $g_{1} \cap g_{2}=0$, $g_{1} \cap h=P_{1}, g_{2} \cap h=P_{2}$. Then g_{1} and g_{2} bound a doubly connected domain $X \subset \Sigma *$. X is topologically equivalent to Σ^{*} under a mapping T of X onto Σ^{*}. Under $T, F \mid X$ goes into a family F^{\prime} admissibly defined over Σ^{*}. In $F^{\prime}, T\left(h-P_{1}-P_{2}\right)$ is a meridian L^{\prime}. From L 10.2 we infer the existence of an $F^{\prime} L^{\prime}$-guide g^{\prime}. For some finite $m, T^{-1} g^{\prime}$ is m-transverse relative to F and the existence of an F-guide follows.

To apply this theorem certain definitions and lemmas are needed.

Let p be any non-singular point and N_{p} a right neighborhood of p with canonical coordinates u and v. Given $r \in N_{p}$ with $u \neq 0$ at r, a sensed transverse are g meeting r will be said to be sensed away from p if $|u|$ is increasing on g as r is approached in g 's positive sense. A similar definition is understood on M.
A construction for use in \mathbf{L} 10.3. Given $h \in F_{M}^{*}$ let A and B be non-singular points in h. Let H be one of the two regions into which h divides M. In H suppose that there are $n \geqq 0 F_{M}^{*}$-rays π_{1}, \ldots, π_{n} with end points in the arc $A B$ of h. Suppose these rays written in the order in which they are met by an arc k joining A to B with $k-A-B \subset H$, and meeting each ray π_{i} in just one point. Let λ and μ be non-intersecting open transversals in H incident with A and B respectively. It follows from Th 2.3 that λ and μ meet none of the rays.

Lemma 10.3. In the preceding configuration A can be joined to an arbitrary point $P \in \mu$, or to $P=B$, by an m-transverse arc g with $g-A-P \subset H-\lambda-\mu$ and such that g is sensed away from B when P is in μ. The minimum value of m is $n+1$ when P is in μ, and $n+2$ when $P=B$.

The lemma is true when $n=0$; in this case a minimum $m=2$, when $P=B$. [Cf. Th 2.3.]
When $n>0$ let P_{i} be a point in $\pi_{i} \cap H, i=1, \ldots, n$, and set $P_{0}=A$. It is clear that P_{i-1} can be joined to P_{i} by a 2 -transverse arc k_{i} whose maximal open subarc is in the set

$$
H^{*}=H-\operatorname{Union}\left(\lambda, \mu, \pi_{1}, \ldots, \pi_{n}\right)
$$

The junction point of the two transverse arcs composing k_{i} must be a reversing point [Th 2.3]. Moreover P_{n} can be joined to $P \in \mu$ by a l-transverse arc sensed away from B at P. Let g be the arc joining A to P obtained by uniting these arcs. The points P_{1}, \ldots, P_{n} in g are not reversing points. Thus g bears n reversing points. These reversing points divide g into $n+1$ transverse arcs.

Let g now be an arbitrary m-transverse arc satisfying the lemma. Suppose $P \in \mu$. Let Q_{i} be the first point of intersection of g with π_{i} and K_{i} the last point. Set $K_{0}=A$. The subarcs $K_{m-1} Q_{m}, m=1, \ldots, n$, intersect only when successive and then only in a common end point. They cannot be transverse arcs, by Th 2.3, and hence bear at least one reversing point. Thus g bears at least n reversing points so that $m \geqq n+1$.

The case in which $P=B$ is similar.
Corollary 10.1. An F-guide g which meets the interior of a non-singular loop φ has precisely one reversing point in I φ.

Let an N-loop g [S-loop g] into whose south side [north side] there enters just one F^{*}-ray with initial point in g, be termed S-semi-concave [N-semi-concave]. Cf. MJ 2 Th 8.l.

Lemma 10.4 (a). A meridian h which is concave toward one of its sides is met by an F-guide in just one point.
(b). An F-guide g meets no S-concave or semi-concave N-loop, or N-concave or semiconcave S-loop each point of which is the limit point of a sequence of points on non-singular meridians.

Proof of (a). The intersections of g with h are isolated on g and hence finite in number. If g meets h in more than one point it meets h in at least two points. One then uses L 10.3 to show that g can be modified so as to cross h just once and be an m-transverse arc with m smaller than previously. Since m is supposed to be a minimum for g this is impossible.

Proof of (b). We suppose (b) false in that g meets an S-semi-concave N-loop φ satisfying the conditions of the lemma. At the first point p of intersection of g with φ, g crosses $|\varphi|$. Otherwise g will have a reversing point at p and cross some non-singular meridian passing near p more than once, contrary to (a).

Let A and B then be two points, at which g enters $I \varphi$ and leaves $I \varphi$ respectively, bounding an open subarc $g(A, B)$ of g in $I \varphi$. Consider the case in which the F^{*}-ray π given in $E \varphi$ as incident with φ has its initial point r in the open subarc $\varphi(A, B)$ of φ. There will then be at least one F^{*}-ray in $I \varphi$ incident with r. Let P be a point in an open transversal in g just following $g(A, B)$. By L $10.3, g(A, B)$ carries at least two reversing points. However, there exists a 2 -transverse arc $g_{1}(A, P)$, in $E \varphi$ except for A in φ, which, substituted for $g(A, P)$, gives a simple closed curve g_{1} in place of g, with a reversing point at A, and at only one other point of $g_{1}(A, P)$, but with no reversing point at P. Thus g_{1} is an F-guide meeting φ without crossing φ. This we have seen is impossible.

The case in which no F^{*}-ray π is incident with $\varphi(A, B)$ is similar. This is the case which always occurs if φ is S-concave. The case of an S-loop is of like character. We infer then that g cannot cross loops conditioned as in the lemma.

The index $v(F)$ of F. The number of reversing points in an F-guide g is called the index $\nu(F)$ of F. It is independent of the choice of g as F-guide. The following theorem gives an evaluation of $\nu(F)$.

Theorem 10.2. If there is at least one meridian in F^{*}, each reversing point of an \bar{F}-guide g is in a primitive, while each primitive met by g contains just one reversing point of g. Thus the index $\nu(F)$ is the number of primitives met by g.

Let P be a reversing point of g. A non-singular element $h \in F^{*}$ which meets g in a point $q \neq P$ sufficiently near P meets the two transversal subarcs of g incident with P. When a meridian exists, h as non-singular, must either be a meridian or a loop. But h
cannot be a meridian by L 10.4. Hence h carries a loop φ. Then P is in $I \varphi$. Otherwise g would enter $I \varphi$ at two points. This is impossible, for by L 10.3 an F-guide can meet a non-singular loop in at most two points. Similarly P is in the interior of each of a sequence $\varphi_{1}, \varphi_{2}, \ldots$ of disjoint loops whose carriers meet g in a sequence of pairs of points tending to P as a limit. If φ_{n} is properly chosen

$$
I \varphi_{1} \subset I \varphi_{2} \subset \ldots
$$

so that Union $I \varphi_{n}$ is an element containing P in its interior. By Cor 9.1 P is in a primitive containing this element. That each primitive met by g contains just one reversing point follows with the aid of Cor 10.1.

The theorem follows.

§ 11. No loop coverage, meridians present

To decompose Σ^{*} properly in this case a new type of covering region is needed to supplement N - and S-caps.

Meridional regions. A maximal connected open set $R \subset 2^{*}$ in which the set of points on non-singular meridians is everywhere dense is called meridional. Equivalently a meridional region is a maximal connected open set $R \subset \Sigma^{*}$ which is the Onion of non-singular meridians in R.

In the case at hand the open set

$$
\begin{equation*}
X=\Sigma \Sigma^{*}-\mathrm{Cl}\left(U_{N} \cup U_{S}\right) \tag{11.0}
\end{equation*}
$$

is not empty. We begin with a lemma.
Lemma 11.1. Any element $h \in F^{*}$ which meets X is a meridian.
Such an h cannot be a loop since h is not in the closure of U_{N} or U_{S}, nor a top circle, since it would then be carried by an N - or S-circuit and so bound U_{N} or U_{S} [Th 6.3 ii]. It cannot carry an asymptotic ray π since such a ray, from a certain point on is nonsingular, contrary to the fact that π would meet any meridian in points following any prescribed point on π. Hence h is a meridian.

A "covering" in M of a meridian or N. or S-loop in $\Sigma *$ is called a meridian or N - or S-loop in M. Observing that no meridional region can intersect an N - or S-cap, the natural decomposition of Σ^{*} is here as follows.

Theorem 11.1. In case loop coverage fails and a meridian exists, $\Sigma *$ is decomposed as follows. Set $B=\beta\left(U_{N} \cup N\right) \cap \beta\left(U_{S} \cup S\right)$.
(a). If $B=0$, the set X in (11.0) is a doubly connected meridional region R bounded on the north by βU_{N}, or by N if $U_{N}=0$, and on the south by βU_{S}, or by S if $U_{S}=0$.
(b). If $B \neq 0$ each component R of X is an F-region R such that R_{M} in M is bounded by two disjoint meridians, whose projections in Σ^{*} intersect at most in a point, and by a set (possibly empty) of disjoint N - or S-loops.
(c). The number of components of X is finite.

It follows from L 11.1 that any non-singular element in F^{*} which meets X is a meridian. Hence the components of X are meridional.

Proof of (a). It is clear that X is bounded as stated, and hence doubly connected.
Proof of (b). Here X is an F-set and satisfies Conditions Θ with U_{N} and U_{S}. Hence R does likewise [L 3.3]. Since there exists a non-singular meridian there is no N. or S circuit. Hence the components of βR in Σ^{*} must consist of two meridians h and k, and a set (possibly empty) of disjoint N - and S-loops. R is in fact an F-region. The meridians h and k intersect at most in a point, since X and hence R is an inner closure. Statement (b) follows.

Proof of (c). If there were infinitely many components of X there would be infinitely many meridians in βX of which no two would intersect in more than a point. There would then be infinitely many components of $U_{N} \cup U_{S}$ whose closures would meet the equator of Σ, and by virtue of Th 9.3 infinitely many primitives with diameters at least $\frac{\pi}{2}$. This is impossible by L 9.3 (c).

This completes the proof of Th 11.1.
Lemma 11.2 (i). If R is a meridional region each element $k \in F^{*} \mid R$ is carried by a meridian in F^{*}.
(ii). There is at most one element $h \in F^{*} \mid R$ incident with a given N - or S-loop in βR, and no such h is incident with a meridian in βR.
(iii). There is no singular point in R.

Proof of (i). This follows from L 11.l.
Proof of (ii). Suppose two elements h and k in $F^{*} \mid R$ were incident with points p and q in an N - or S-loop φ in βR. Let $\varphi(p, q)$ be the arc of $|\varphi|$ between p and q in case $p \neq q$, and let $\varphi(p, q)=p$ in case $p=q$. Let h^{\prime} and k^{\prime} be meridians carrying h and k respectively. It is then clear that $h^{\prime} \cup k^{\prime} \cup \varphi(p, q)$ carries an N-loop and an S-loop intersecting in $\varphi(p, q)$. Since at least one of these loops meets R this is impossible. That no element $h \in F^{*} \mid R$ is incident with a meridian in βR is similarly proved.

Proof of (iii). The denial of (iii) implies the existence of a loop meeting R. Thus (iii) must be true.

Theorm 11.2 (a). It R is a simply connected meridional region each F-guide g crosses R without reversing point in R and without meeting the loop boundaries of R. The union of the elements in F meeting $g \cap R$ is R.
(b). A doubly connected meridional region R exists if and only if there is an F-guide without reversing point, and in case R exists the union of all elements in F meeting an F-guide g is R.

Proof of (a). By virtue of L 1 i .2 (ii) each N-loop [S-loop] in βR is S-concave or semiconcave [N-concave or semi-concave]. It follows from L 10.4 that an F-guide g meets no N - or S-loop in βR. Now g meets each non-singular meridian in precisely one point [L 10.4], and since non-singular meridians are everywhere dense in R there can be no reversing point in $g \cap R$. Each element $h \in F^{*} \mid R$ is carried by a meridian k in F^{*} [L 11.1], and k meets g. Since there is no singular point in $R\left[\mathrm{~L} 11.2\right.$ (iii)], we conclude that $h \in F^{*} \mid R$ is an element in F meeting g. Hence R is the union of elements in F meeting g.

Proof of (b). Suppose an F-guide g exists without reversing points. Then B, in Th 11.1, $=0$. Otherwise g would enter U_{N} or U_{S} and hence meet a primitive [Th 9.3], and by Th 10.2 carry at least one reversing point, contrary to hypothesis. Hence $B=0$ and we infer the existence of a doubly connected meridional region [Th 11.1 (a)].

Conversely the existence of a doubly connected meridional region R implies, as in the proof of (a), the existence of an F-guide without reversing point, and that R is the union of all elements in F meeting g.

The establishes Th 11.2.
There is no singular point in a meridional region [L 11.2 (iii)], and none in a central or spiral annulus [Ths 8.1 and 8.2] or in a boundary common to a central and a spiral annulus [Th 8.3 (b)]. Thus each singular point of F^{*} is in $\mathrm{Cl} U_{N} \cup \mathrm{Cl} U_{s}$. Hence the following theorem.

Theorem 11.3. Regardless of loop coverage or the existence of meridians, a necessary and sufficient condition that F^{*} be non-singular is that there exist no N. or S-circuit or singular N - or S-loops.

§ 12. Meridians present, no inner cycle

When there is at least one meridian we have distinguished the case of loop coverage from the case of no loop coverage. One can equally well make a different division into the cases in which an inner cycle exists and no inner cycle exists.

When there is both an inner cycle φ and a meridian, φ is the inner cycle both of an N - and an S-circuit. The cycle φ is the common curve boundary of $U_{N} \cup N$ and $U_{S} \cup S$.

Loop coverage thus occurs as in Th 9.2 (a). In this case Σ^{*} is the Union of primitives as indicated in Cor 9.2. In this section we suppose that no inner cycle exists and divide Σ^{*} into canonical polar sectors.

Our decomposition of Σ^{*} into polar sectors is analogous to our decomposition of Σ^{*} into caps and annuli in $\S 8$. We began there with a partial ordering of inner cycles, N - and S-cycles. We begin here with a partial ordering of meridians in M.

Order among meridians in M. Let θ represent the longitude of a point in Σ^{*}. On M we understand that the range at θ is the whole θ-axis. By a parallel in M is meant an unending open arc in M covering a parallel in Σ^{*}. By the positive side of a meridian x in M we understand that region in $M-x$ in which θ takes on arbitrarily large positive values on each parallel in M. The negative side of x is the complement in $M-x$ of the positive side of x.

Two meridians x and y in M which are not identical shall stand in the relation $x<y$ or $y>x$, if y meets the positive but not the negative side of x, or equivalently if x meets the negative but not the positive side of y. If $x<y$ the set $x \cap y$ may be empty, a point, an are, or a half open are whose projection in Σ has one end point in Σ^{*}, and a limiting end point either at N or at S.

A point p in M has coordinates $[\lambda, 0]$ where 0 and λ are respectively the longitude and latitude of p. There exists a top mapping T of M onto M such that the coordinates of $T p$ are $[\lambda, 0+2 \pi]$. If E is an arbitrary set in M the set $T^{n} E$, $n= \pm 1, \pm 2, \ldots$ is termed congruent to E. We shall denote $T E$ by $E^{(1)}$.

The covering in M of an N - or S-primitive, meridional region, N - or S-loop, etc. given in Σ^{*}, will be called by the same name as a subset of M. Conversely the projection into Σ^{*} of various sets first defined on M, such as polar sectors, cut sectors, etc. will be called by the same name as subsets of Σ^{*}.

Polar sectors. If x and y are meridians in M and if $x<y \leqq x^{(1)}$, the intersection of the positive side of x with the negative side of y will be called a polar sector $\Pi=\Pi(x, y)$ in M. When no ambiguity can arise we speak of a polar sector as a sector. If $x \cap y=0, \Pi$ is connected. If $x \cap y$ is a point or arc, Π has two components, one an N-loop interior, the other an S-loop interior. If $x \cap y$ is a half open arc, Π has precisely one component of one of these types. If $y=x^{(1)}$ the projection of Π in Σ^{*} has just one boundary meridian and an inner closure in Σ^{*} which is Σ^{*}.

Cut sectors. Let $\Pi(x, y)$ be a sector in M such that $x \cap y \neq 0$, or such that $x \cap y=0$ but there exists an open arc $c \in F_{M}^{*} \mid \Pi$ with end points in x and y respectively. We term Π a cut sector. When $x \cap y$ is a point we term Π simply degenerate; when $x \cap y$ is an arc or
half open arc we term II doubly degenerate. The open arc c in a non-degenerate cut sector is unique, and in such a sector $y \cap x^{(1)}=0$; otherwise an inner cycle would exist in F^{*}, contrary to the hypothesis of this section. Hence c divides Π into an N-loop interior and an S-loop interior with c as common boundary.

The meridian class ξ. Let ξ be the class of meridians in Σ^{*} in the boundaries of meridional regions or of unbounded N - or S-primitives, that is primitives whose closures meet N and S. Cf. Th 6.1. The set ξ_{M} of meridians in M covering elements of ξ is ordered without exception. The set ξ may be empty. If ξ is empty there can be no unbounded primitives, and the only meridional region possible is one without meridional boundaries, that is, a doubly connected meridional region [Th 11.1]. The set ξ may contain only one meridian. There can then be no meridional region, since a meridional region, as an inner closure, cannot have a single meridian boundary. When ξ contains precisely one meridian and there is no inner cycle, this meridian must be the sole meridian boundary of an N - or S-primitive.

If y is the immediate successor of $x \in \xi_{M}, x$ and y are termed adjacent in M. If $\boldsymbol{\xi}$ contains only one meridian h, h_{M} and $h_{M}^{(1)}$ are adjacent in M.

Lemma 12.1. If x and y are adjacent meridians in ξ_{M}, then x and y are meridian boundaries in M either of a meridional region, an unbounded primitive, or of a maximal cut sector.

The truth of this lemma will follow from (i) and (ii).
(i). If for the given x and $y, \Pi(x, y)$ meets a meridional region H or unbounded primitive H in M, then x and y are meridian boundaries of H.

Recall that H has unique meridian boundaries x_{1} and y_{1} with $x_{1}<y_{1}$, and that x_{1} and y_{1} are adjacent in ξ_{M}. Hence $x \leqq x_{1}<y_{1} \leq y$. But x and y are adjacent in ξ_{M} by hypothesis. Hence $x=x_{1}, y=y_{1}$ and (i) is proved.
(ii). If for the given x and $y, \Pi(x, y)$ meets no meridional region or unbounded primitive, then $\Pi(x, y)$ is a cut sector which is maximal in M.

If $x \cap y \neq 0, \Pi$ is a cut sector by definition of a cut sector.
Suppose then that $x \cap y=0$. Then Π is connected. Since Π contains no meridional region by hypothesis its homeomorphic projection $\Pi^{*} \subset \Sigma^{*}$ cannot meet the region X of (11.0). [L 11.1.] Hence

$$
\Pi * \subset \mathrm{Cl}\left(U_{N} \cup U_{S}\right)
$$

The openness of Π^{*} and the disjointness of U_{N} and U_{S} then implies that

$$
\begin{equation*}
\Pi * \cap \beta U_{N}=\Pi * \cap \beta U_{s} \tag{12.1}
\end{equation*}
$$

The open F-set $\Pi^{*} \cap U_{N}$ is bounded from S. Otherwise there would be an unbounded N-element E in this set; the N-primitive which contains E is $E,[c f .(\gamma) \S 9]$ and in Π^{*},
contrary to hypothesis. Similarly $\Pi^{*} \cap U_{S}$ is bounded from N. Hence the set in (12.1) is bounded from N and from S. This set is an F-set separating N from S in the connected set Π^{*} and contains a finite collection of elements in F. There must then exist an open arc $c \in F_{M}^{*} \mid \Pi$ with end points in x and y. Thus Π is a cut sector. It remains to show that Π is maximal.

The meridian y is in the boundary of a meridional region or an unbounded primitive in the positive side of y. Hence there can be no cut sector which contains Π and meets the positive side of y. Similarly with the negative side of x. Hence Π is maximal and the lemma follows.

A polar sector whose meridian boundaries are those of a meridional region or of an unbounded primitive will be called a meridional sector or primitive sector respectively. In general a meridional sector is not a meridional region, nor a primitive sector a primitive. With this understood we state a theorem of paramount importance in the study of pseudoharmonic functions on M.

Theorem 12.1 (a). If there is at least one meridian in F^{*} and no inner cycle, then Σ^{*} is the Onion of a finite non-empty set of disjoint polar sectors each of which is (1) a meridional sector, (2) a primitive sector, or (3) a maximal cut sector.
(b). The set of meridians bounding the canonical sectors in (a) is the set of meridians bounding the meridional and primitive sectors in (a).
(c). Any finite circular sequence of sectors of types (1), (2), or (3) is realizable subject to the following conditions. On M adjacent sectors of the same type must be primitive sectors. A doubly degenerate cut sector Π cannot be adjacent on M to two meridional sectors.

Statement (a) of the theorem follows from L 12.1, Th 11.1 (c), and L 9.3 (c). Statement (b) follows from $L 12.1$ with particular reference to the definition of the set ξ_{M}. Turning to (c) we note that two maximal cut sectors Π_{1} and Π_{2} in M cannot be adjacent since Onion $\left(\Pi_{1}, \Pi_{2}\right)$ would then be a cut sector. Two meridional sectors cannot be adjacent to each other or to a doubly degenerate cut sector since the Union of these sectors would then be a meridional sector. That any finite circular sequence of sectors of types (1), (2), or (3) is realizable with the above exceptions is readily established by simple examples.

The non-singular case. When there are no singular points, $F^{*}=F$; there are then no N - or S-circuits so that $\varphi_{N}\left[\varphi_{S}\right]$ is either $N[S]$ or a maximal N-cycle [S-cycle]. Th 6.3 is accordingly simplified. If loop coverage occurs it is impossible that U_{S} be bounded from S and U_{S} bounded from N as well. Cf. Th 9.2 (a). In N-spiral [S-spiral] annuli all asymptotes have initial points at $N[S]$. Cf. Th 8.2; Th 8.3 reduces to Th 8.3 (a).

When a meridian exists there is no inner cycle, so that Th 12.1 covers the case where
a meridian exists completely. In this theorem reference to cut sectors should be deleted. Th 12.1 (b) is trivial. When a meridian exists the index $\nu(F)$ of F is simply the number of disjoint unbounded primitives. An F-guide crosses each such primitive and has just one reversing point therein. Each open arc or top circle in the boundary of a region is concave toward that region.

Bibliography

Previous papers in this series:
MJ 1. Contour equivalent pseudoharmonic functions and pseudoconjugates, American Journal of Mathematics, vol. 74 (1952), pp. 23-51.
MJ 2. Topological methods on Riemann surfaces. Pseudoharmonic functions, Annals of Mathematics Studies, No. 30 (1953), pp. 111-139.
MJ 3. The existence of pseudoconjugates on Riemann surfaces, Fundamenta Mathematicae, vol. 39 (1952), pp. 269-287.

MJ 4. Conjugate nets, conformal structure, and interior transformations on open Riemann surfaces, Proceedings National Academy of Sciences, vol. 39 (1953), pp. 1261-1268.
MJ 5. Conjugate nets on an open Riemann surface, Report of the Conference at the University of Michigan, June 1953, (to appear).

Other references:
[1]. W. M. Boothby, The topology of regular curve families with multiple saddle points, American Journal of Mathematics, vol. 73 (1951), pp. 405-438.
[2]. -. The topology of level curves of harmonic functions with critical points, American Journal of Mathematics, vol. 73 (1951), pp. 512-538.
[3]. W. Kaplan, The structure of a curve-family on a surface in the neighborhood of an isolated singularity, American Journal of Mathematics, vol. 64 (1942), pp. 1-35.
[4]. M. Morse, Topological methods in the theory of functions of a complex variable, Annals of Mathematics Studies, Princeton, 1947.
[5]. Y. Tôkr, A topological characterization of pseudoharmonic functions, Osaka Mathematical Journal, vol. 3 (1951), pp. 101-122.

[^0]: 1-533807. Acta Mathematica. 91. Imprimé le 18 mai 1954.

