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Introduction

The family F* may be defined over an arbitrary open Riemann surface @. When Q is
not simply connected there may exist no single-valued PH [pseudoharmonic] function on
@ with F* as its family of level lines. On the universal covering surface M of @ there do
exist PH functions %, single-valued on M and with a family F}; of level lines which projects
into F* on . While # may not be single-valued on ¢ it may behave like an integral in
that it has branches which differ by a constant, or it may have a real logarithm which has
this property. In studying such behavior of 4 one may focus on the branches of « obtained
by continuation of » along a single closed curve k not homotopic to zero on .

In this way one is led to the essentially typical case of a family F'* defined on a sphere
2* with a north pole N and south pole § removed. Although there may be no single-valued
PH function u on X* with F* as its family of level lines there will in gencral be multiple-

valued functions u satisfying linear relations
(1.0) u{pV] =au(p)+5 (@ =+0)

where p and p!¥) are points on the universal covering surface M of X*, and where p and
p'V in M project into the same point in 2*, but on M have longitudes 0 and 0 + 2 n respec-
tively. However the values of the constants a and b for which a relation (1.0) may hold
depend in a deep way upon the nature of the family F*. See MJ 4 and MJ 5.

In the present paper we decompose X* into canonical regions, ‘“‘primitives,” “caps,”

L« bR N1

“annuli,” “polar sectors,” ‘‘cut sectors,” etc., whose nature is determined by F*. With

F we associate integral indices » (¥) and u (F) [defined in a later paper]. The existence of
PH functions u satisfying prescribed linear relations (1.0) depends upon these indices and
upon the character of the decomposition of T*.

1 - 533807, Acta Mathematica. 91. Imprimé le 18 mai 1954.
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When F* is non-singular Kaplan [3] has given a decomposition of Z* in some but
not in all of the cases we find essential. Kaplan’s results are less general in an a priori
sense than ours even in the non-singular case in that he requires the curves in F* to be
homeomorphic mappings of intervals and circles. We confirm many of Kaplan’s theorems
particularly on asymptotes, and add the results necessary for our purposes. Qur main
theorems are strongly affected by the presence of singular points in F*. See also Boothby
[1, 2] and Toki [5].

§ 2. Review and extensions

Let 2 be a 2-sphere. Let N and S be diametrically opposite poles in X, termed re-
spectively the north and south poles of 2. Set

X*=2X-N-8.

Let @ be a discrete set of points in X* and set @ =X* — . Consider a family F of open
arcs or top [topological] circles in ¢ supposing that F contains a unique element o, meeting
any given point p€G. An open arc in @ is understood as the image in a 1 — 1 continuous
mapping into & of an open interval. The arc is the image and not the mapping. A top
circle in @ is the homeomorph in ¢ of a circle.

F-neighborhoods X ,. Let D be the open dise {|w]| <1} in the complex w-planc. With
each point p€eX* there shall be associated an F-neighborhood X, of p with ch G U p,
and a top mapping of X onto D which sends p into w = 0 and the maximal open arcs of
F| X, into the maximal open level arcs of Rw", in D,n >0, [with w = 0 excluded when
n >1]. We suppose n =1 for pe and = > 1 for p€w. Points in w are termed singular
points of F. The value we D is termed a canonical parameter of its antecedent in X .

The open arcs of F|(X, — p) incident with p are termed F-rays of X,. These rays
divide X — p into 2n open regions termed F-sectors of X incident with p.

Right N. With each p€(G we also associate a neighborhood N, of p in ¢ and a homeo-
morphic mapping of Np onto a square K:(—1<u<1)(—1<v=<1) such that p goes
into the origin in K and the maximal subarcs of F|N, go into arcs u=¢, -l <v <],
where ¢ is a constant in the interval {—1,1]. We refer to N as a right neighborhood or
right N of p and term (u,v) canonical coordinates of the antecedent in N of (u,v) in K.

An open arc 1 in N, on which v =¢(u)(— 1 <u <1), where @ is single-valued and
continuous, is called a transversal of N ,. The open arc in N on whichv =0, —1 <u <1,
is called the principal transversal of N, More generally a transversal 4 shall be any open
arc in G each point of which is in an open subarc of x which is a transversal of some

right N . A transversal with a closure in X which is an arc in @ is the principal trans-



CURVE FAMILIES F* LOCALLY THE LEVEL CURVES OF A PSEUDOHARMONIC FUNCTION 3

versal of a suitably chosen right N . A non-singular arc in X* is termed a transverse arc
if a subarc of some transversal. If ¥ is an F-sector incident with p, a transversal meeting
each element of F|Y and with p as limiting end point is called a transversal ray of ¥ in-
cident with p. Transversal rays 4 and y incident with p, but in different F-sectors of X
incident with p, define a transversal cut Apu of X .

F-vectors. Any sensed subarc of an a€ F will be called an F-vector. By definition an
F-vector is simple and closed in ¢, and never a top circle. Each F-vector is in some right
N, [MJ2§3].

Coherent sensing. Let each a€ F be given a sense. The resulting family F* of sensed «
will be called a sensed image of . We shallrefer to a continuous deformation 4 of an F-vector
A in the space of F-vectors with a Fréchet metric. The sense of an image of 4 under 4
shall be determined by the A-images of the initial and final points of A. We say that F*
is coherently sensed if any continuous deformation 4 of an F-vector 4 (initially sensed as
in F®) through F-vectors sensed by A is necessarily through F-vectors sensed by F*.
We say that F is coherent if it admits a coherently sensed image ¥, otherwise non-coherent.

A family F on Z* may be coherent or non-coherent as the following examples show.

Ezxamples. Let 2* be represented by the z-plane, with z =0, S by the origin, and
N by the point at infinity. If z =2« + ¢y, the level lines of  on £* afford a coherent
family. The loci on which

xZ

Y=1."9 (a>0)
taken with the open arc on which z =0, y > 0 afford a non-coherent family.

We shall establish the following theorem.

Theorem 2.1. A necessary and sufficient condition that F be coherent over G is that,

taken over some neighborhood of N or of S, F admit two distinct coherent sensings.
This follows as in the proof of Th 4.2 of MJ 2.
The family F*. The family F* shall consist of elements &, k, m, ... in £* which are top

circles or open arcs in 2*. If a non-singular point p is in %, % shall contain the open arc
«,€ F meeting p and any limiting end point or points of o ,€Z*. An he F* comprising just
one o€ F is called non-singular.

Positive and negative limit points. Let an open arc € F* be sensed and be given a
1 — 1 representation in which p(2) is the 1 — 1 continuous image of {, — co <t < oo, with
t increasing in the positive sense of h. By a positive (negative) limit point of % is meant
any point in X which is a limit point of a sequence of points p(t,), where ¢, increases (de-

creases) without limit as n } oo,
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Covering surfaces M and families Fy. Let K be any open, oriented and connected
Riemann surface and w, F, F* admissibly defined for K as above for *. Let M be a
relatively unbranched, unbordered covering surface of K. Let ay be any maximal open
arc or top circle in M “covering’’ an element a€ F. If « is an open arc, ay is an open arc.
If o is a top eircle, oy is an open arc or a homeomorphic top circle. The totality of the
elements o, covering the elements «€ F forms a family Fjrin M. Let wy be the set of points
in M covering the set w in X*. The family F, includes one and only one element meeting
each point of M — wy. Just as F* was defined in £* with the aid of ¥ and w, so here Fj;
1s defined in M in terms of ¥y and wy,.

In the remainder of this paper M shall be the universal covering surface of L*.

From MJ 2 we infer the following.

Theorem 2.2, Let the universal covering surface M of X* be considered as a top sphere H
from which one point Z has been removed.

(1) Then any open arc au€ Fy has limiting end points in H, distinct unless coincident
with Z. Each end point of oy different from Z is a point of wy. Cf. MJ 2 Th 7.1.

(2) There are no top circles in Fi.

(3) For any open arc hy€ Fy the positive and negative limit sets reduce to Z. Cf. MJ 2

Th 7.2.

Corollary 2.1. No two top circles in F* can intersect or be joined by a subarc of an element
tn F*.

If two top circles g, and ¢, in F* met there would be a finite sequence of elements of
F in g, Uy, whose closure would carry a closed curve g (not necessarily simple) bounding
a region in £*. A suitably chosen closed curve g, covering g would be simple with carrier

in Fy, contrary to Th 2.2(2). The second affirmation of the corollary is similarly established.
Theorem 2.3. If M is the universal covering surface of Z* no h€ Fy intersects a trans-
versal or a transversal cut in M in more than one point.

Since M is the homeomorph of a finite z-plane this follows from Cor. 7.5 of MJ 2.

§ 3. F-sets and F-regions

With F there are naturally associated certain sets and regions which we now define.
By a region we shall always mean an open, connected set.

F-sets. A sett H < X will be termed an F-set, if whenever a non-singular point pisin
H, the a,€ F meeting p is also in H. From the nature of a right N, of p it is clear that the
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complement, closure or boundary of an F-set is an F-set. The intersection, or union of

any ensemble of F-sets is also an F-get.

Conditions @. An open set R in ¥ which is an F-set will be said to satisfy Conditions
O if the inclusion of a point p of Z* in f R implies that any sector of a sufficiently restricted
F-neighborhood X , of pisin RorinX — R, and at least two of the F-rays bounding sectors
of X, N R arein §R.

F.regions. A simply connected region R in ¥ whose boundary consists of more than

one point and which satisfies Conditions & will be called an F-region.

The boundary BR. If R is an F-region SR is an F-set. Let p€f R be non-singular and
suppose that o€ F meets p. Any sufficiently small right neighborhood N, of p is separated
by «,, into two regions of which at least one and possibly both are in R.

Up to this point we have not used curves (which are mappings) but rather sets such
as open arcs and top circles. We now introduce open curves and closed curves as continuous
mappings into X of sensed open ares and circles respectively. Two such curves ¢, and ¢,
are the same or more precisely in the same curve class if ¢, =@, T, where T is a top sense
preserving mapping of the domain of ¢, onto the domain of @,. If T is a top mapping of
the domain of a curve @ onto itself inverting sense, then ¢ 7' will be denoted by ¢ —. We
may denote ¢ by ¢ +.

If ¢ is a mapping of a domain E into X defining & curve, the image ¢ (E) in X will be
termed the carrier || of . By the intersection of two curves ¢ and y we mean the inter-

section of |@| and |y|. By definition a curve ¢ bounds a set E if §E = |¢|.

R-continuations in 8 R. Suppose X oriented so that the local right (left) sets of any
point in an open sensed arc are well defined, cf. MJ 1 § 5. Let R be an F-region and «€ F
be in § R. Let « be sensed so that its local right sets are in R. Then R can be continued as
a locally simple curve @, cf. Morse [4], so that its carrier is an F-set, and so that the sensed
carrier of a simple open subcurve of ¢ has its local right sets in R. Continued maximally
in this way with carrier in F*|8 R, ¢ will be called a right R-continuation in 8 R. Left R-
continuations in § R are similarly defined. Two R-continuations ¢, and g, are regarded
as the same if and only if they are both right or both left continuations, and if ¢, and ¢,
are in the same curve class.

We need a parameterization of the boundary of an F-region. We shall make use of
an open disc D {|w| <1} and suppose that 8D is given the counter-clockwise sense in the

w-plane, so that local left sets of 8D are in D.

Theorem 3.1. An F-region R is the 1 — 1 image in a directly conformal map f of an open
disc D{|w| <1} onto R. Any such map admits a continuous extension over D such that D
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is mapped onto f R. This mapping ts 1 — 1 in a sufficiently small neighborhood relative to
D of any point of B D whose image is in £*. The antecedent in 8D of N or of S is a nowhere
dense and possibly empty set. The mapping

(3.1) p=f|pD

defines a closed curve bounding R of which § R is the carrier.

One first defines f over D. By well known theorems one can extend f as stated over a
set D, such that f(D,) covers B n Z*. If B R does not include N or § the proof is complete.
To continue consider the case in which 8 R includes both N and §.

Let Dy and Ds be respectively the f-antecedents of the intersection of B nX* with
the northern and southern hemispheres of 2. Let E be the set of points in 8Dy at which
/ i3 not yet defined. Set f(z) = N for z€ £. We shall show that f as extended is continuous
at each point 2, of E.

Now E is bounded from Dy so that f is continuous at z, if f| Dy is continuous at z,.
Let 2z,, n=1,2,... then be an arbitrary sequence of points in Dy tending to z,. Then
f(z,)— N. Otherwise the set of points f(z,) would have an accumulation point pin f(Dy) —N
at which f~1(p) is well defined and has a finite set of values @, ..., a,,, not in £ and in
number at most the number of different F-sectors in an F-neighborhood of p. In a suf-
ficiently small neighborhood of each a, in D, f is well defined and z bounded from z,. From
this contradiction we infer that f(z,)— N and that f is continuous at z,.

We similarly extend f over Ds. The case in which 8 R includes N or S alone is similar.

If the antecedent of N in 8 D were dense in 8D, f(z) would equal N over some arc of
f D and hence be constant.

The theorem follows.

Inner cycles. A Jordan curve @ whose carrier is a top circle in F'* will be called an inner
cycle.

N-loops, S-loops, NS-curves, SN-curves. Let ¢ be an open arc in F*. Let ¢ be a simple
sensed curve whose carrier is g. Suppose that ¢ has a unique negative limit point 4 and
a unique positive limit point B. Then either 4 =B=N, or A=B=8, or A=N and
B=8,0or A =8 and B=N. [Th 2.2(3).] Then ¢ is called respectively an N-loop, S-loop,
NS-curve, SN-curve. By the exterior E@ of an N-loop [S-loop] with carrier g is meant
that region in X which is bounded by 7 and contains S [N]. The interior I g of ¢ is defined
as Z —Cl Ep. We call attention to the fact that an"N- or S-loop, NS- or SN-curve isin Z*,

Meridians. The carrier ¢ of an NS- or SN-curve will be called a meridian. If M is
the universal covering surface of X * one sees that a g, covering g divides M into two disjoint

regions.
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Lemma 3.0. Let @ be an inner cycle or an N- or S-loop in F*, and let g be a point not in
@ if @ s an inmer cycle, and in Eg if ¢ is a loop. Then a transversal ray 2 incident with q

meets @ tn at most one point.

Let H be either one of the two regions bounded by ¢ if ¢ is an inner cycle, and I if
@ is a loop. If A enters H at a point p of @ it leaves H at no other point . Otherwise the
subarcs of 1 and || with end points p and r would bound a simply connected region in X

containing neither N nor §. This is impossible by Th 2.3.

Lemma 3.1. Any set of N-loops (S-loops) with disjoint interiors and diameters exceeding

some positive constant is finite.

If the lemma were false for N-loops there would exist a set of N-loops ¢,, n=1,2, ...
with disjoint interiors /¢, and points p,€¢@, such that p,—>q€Z* as n } co. The number
of @, which meet ¢ is at most the number of F-sectors in an F-neighborhood of ¢. We can
accordingly suppose that no ¢, meets ¢. Note that ¢ is in no Ig,. We can further suppose
the p, chosen in @, so as to be in a transversal rayy A incident with ¢. Since ¢ is in Eg,
for each =, it follows from L 3.0 that @, meets 4 only in p,. Hence Igp, includes the open
arc A, of A separated from ¢ by p,. Thus

Ip, NIp,22,NA4,.

This contradiction to the choice of the g, implies the lemma.

To adequately describe the boundary of an F-region we must define N- and S-circuits.

N-circuits, S-circuits. N-circuits are defined as locally simple open curves ¢ in X*
whose carriers are F-sets which have end points at N (i.e., positive and negative limit
sets in N) and which intersect themselves without crossing. From this definition of an
N-circuit the reader can derive the following decomposition of an N-circuit.

When ¢/ is an N-circuit, |@| carries three open arcs, a, b, ¢, whose closures are simple
F-sets; of which @ has the initial point N and a terminal point PeZ*, b has the initial point
P and terminal point P, ¢ has the initial point P and terminal point N. These arcs and end

points N and P derive the order
NaPbPcN

from ¢. The top circle b separates N from S. Finallya nb=cnb =0, while @ n ¢ is the empty
set, or a half open arc with limiting end point P, or a =c.

The N-circuit ¢ carries the top circle b. Let y be an inner cycle with carrier b and
with a sense derived from . We term y the inner cycle of the N-circuit ¢. It is uniquely
determined by ¢. [Cor 2.1.]
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When ¢ is an N-circuit the interior Ip of ¢ shall be the region whose boundary is
|| U N. This region is unique and does not contain S.

The definition and decomposition of an S-circuit are similar.

The sensed closed curve ¢ = f|f R of Th 3.1. When 8 R meets N or Slet d be any maximal
open arc in D such that ¢ (d) is in Z*. Then ¢|d is a locally simple, open, sensed curve y
with end points in N U S, and |y| is an F-set. By virtue of the conformality of f| D, the
continuity of fll_), and the locally simple character of ¢|d, ¢|d is a left R-continuation
in §R. When 8 R meets neither N nor S we set d = D and note that ¢ =¢|d, so that ¢
is a left R-continuation in # R with carrier § R. In each of the above cases we term ¢|d a
mazimal subcurve of @ in T*,

The following theorem is basic.

Theorem 3.2. If the boundary curve of an F-region R is given by (3.1) in Th 3.1 then any
“subcurve” y of ¢ maximal in X* is a left R-continuation in S R.

(1) Each maximal subcurve v of ¢ is either (a) an N- or S-loop, (b) an N-circuit, (c) an
S-circust, (d) an NS- or SN-curve, or (¢) an inner cycle.

(2) Different types of subcurves (b) to (e) cannot coexist. There is at most one yp of types
(b), (c) or (e). When an inner cycle g occurs || =B R.

(3) Type (d) occurs if and only if fR> N U S. The subcurves y then include just one
NS-curve y,, and just one SN-curve y,. If |p,| =+ |,|, |wi| Ny, is either empty, a point,
an arc, or a half open arc with one limiting end point at N or at S.

(4) The carriers of no two v intersect at most excepting vy, and y, in (3).

Let {@} be the set of subcurves y of ¢ maximal in Z*.

The first statement in the theorem has been covered.

Proof of (1), Case I. The subcurve y joins the two poles. Then p must be simple. Other-
wise |yp| would carry a top circle separating N from S on E. This is impossible when g

joins pole to pole and R is connected. In Case I, y is an NS-curve or SN-curve.

Case 11. Not Case 1. If y is simple it is clearly an N- or S-loop, or an inner cycle. If
not simple vy is locally simple, has an F-set carrier, intersects itself without crossing itself

and joins a pole Z to Z. These are the characteristics defining an N- or S-circuit.

Proof of (2), Case I. y is an inner cycle. In this case § R = |y|, and all types other than
(e) are excluded.

Case II. y is an N- or S-circuit. An inner cycle is excluded as just seen. Since |yp|
separates S from N, an N-circuit excludes an §-circuit and vice versa, and any circuit

excludes an NS- or SN-curve,



CURVE FAMILIES F* LOCALLY THE LEVEL CURVES OF A PSEUDOHARMONIC FUNCTION 9

Case II1. v is an NS- or SN-curve. The exclusion of types (b), (c), (e), has already
been established.

Proof of (3). It is immediate that y is of type (d), only if # R includes ¥ U 8. Conversely
if @ is a closed curve and meets NV and S there is at least one VS-curve y,, and one SN-curve
¥, in {p}. These curves y, and y, intersect, if at all, as stated in Th 3.2(3). For |y,| U |y,]
cannot carry a top circle g; since g would either separate N from S, which is impossible
when S B> N U 8, or bound a region not containing N or S, which is impossible by Th 2.2.

Finally v, and y, are unique as NS- and SN-curves in {p}. To see this let R, cover
Ron M, and in 8 By let y; y and ys y cover p, and y, respectively. There can be no meridian
g in 8 R which is not covered on M by v,y or by y2; otherwise a covering gy of g in R
would divide R,. This is impossible since R, is a homeomorph of E. We infer that y,

and y, are unique NS- and SN-curves in {p}. We note that y;y Nwen =0.
Proof of (4). Let 7 be any element of {g} of type (a), (b), (c), or (¢). Then the closure

of || separates X into at least two open sets of which one, say £, contains R. Any clement
of {g} isin B <. Let p be a point of 9. A neighborhood H, of p relative to £2 may be
obtained as a union of a finite number of left scts of 5 associated with p. Since 2> R, H
contains a neighborhood of p relative to R. But if sufficiently restricted, the above left
sets of 5 are in R, since 7 is an R-continuation, so that H , if sufficiently restricted, is a
neighborhood of p relative to B. We suppose H, so restricted.

Let y be any clement of {g}. Then
ly| nH,c(Q—-RynH,<|n| nH,.
If 9 meets 7 it must then be carried by |5|. But || carries no clement in {g} other than
7. Thus intersections of elements of {g} can occur only for two clements of type (d). This

establishes Th 3.2 (4).

We shall now give certain definitions and lemmas useful in the application of Th 3.2.

F*.cycles. Let R be any simply connected region in £ which contains § and whose
boundary £ R is the union of N and of a finite or countably infinite set of disjoint N-loops.
Then R is an F-region whose boundary becomes the carrier of a closed curve defined by
the mapping ¢ =f|8.D of §.D onto SR as in Th 3.1. We term the curve ¢ or ¢ — an N-
cycle. S-cycles are similarly defined.

An N-cycle, S-cycle, or inner cycle will be called an F*-cycle.

Concavity. Let R be a region bounded in part by F*.cycles, circuits, or open ares in
F*. Any such element ¢ will be termed concave toward R if no element of F*| R has a
limiting end point in ¢. We term R concave if no element in F*| R has a limiting end point

in R. If an F*.cycle ¢ bounds a region H and is concave toward H, ¢ will be termed con-
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cave toward any set in H. In particular an inner cycle will be termed N-concave [S-concave]
if concave toward N [S]. An N-loop ¢ will be termed S-concave [N-concave] if concave
towards Eg [I¢]. An S-loop ¢ is termed N-concave [S-concave] if concave towards He [I¢].

F*.sets. A set in X will be called an F*.get if it contains each A€ F* which it meets.
In particular an F*-set which contains an «€F contains any limiting end point which
o may have in X*. The union or intersection of an ensemble of F'*-sets is an F*-set. Regions
bounded by F*-cycles whose maximal subcurves in X* are non-singular arc F*-sets.
The following is particularly noted.

(A). If a region R is an F*-set and if Y is an F-sector in R incident with a point q in
B R, then B R includes the two F-rays in 8 Y incident with q.

The following lemma is a major tool in applying Th 3.2.

Lemma 3.2. Let W be any ensemble of regions R each of which is the interior of a non-
singular N- or S-loop, or a region bounded by a non-singular inner cycle, and set U = Union
R|(ReW).

(a). Then U is an F*-set.

(b). U satisfies Conditions @.

(c). If the regions of W form a sequence Hy< Hy< ..., if 2* —U *0, and if H 18
a top circle in F for each n, then U is concave and fU | Z*-is simple.

We discard the trivial case in which U nZ* =0.

Proof of (a). Since each ReW is an F*.set, U is an F*-get.

Proof of (b). Let q be a point of fU in X* and let Y be an arbitrary F-sector incident
with ¢. We prove the following.

(m). If B(Y N U) meets q then ¥ < U.

Case I. Some He W contains an F-sector in Y incident with q. The closure of a trans-
versal ray p in Y, incident with ¢, meets §H in ¢. Since § H is a non-singular inner cycle or

N- or S-loop it cannot meet ji other than in ¢. [Th 2.3.] Hence Y is in H and so in U.

Case I1. Not Case I. Since (Y N U) meets q there exists a sequence of pointsp, € Y N U
such that p,—>q as n 1 co. Since Case I is excluded, and since ¢ is non-singular if in any
BR|(ReW), there is at most one Re W such that ¢ meets § R. Without loss of generality
we can then suppose that p, is in some R, € W such that § R, does not meet g. There ac-
cordingly exists a point r, in § R, N Y such that r,,—>q as n 1 cc. Let A be a transversal ray
of Y incident with q. We can take r, in 1. Let 4, be the open arc in A separated from ¢
on A by r,. Then 4

is in U.

is in R, by L 3.0. Since r,->q as n t oo, 4 isin U and hence Y

n
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Thus (m) is true in Case II as well as in Case I. Statement (b) follows from (m) and
(a) of the lemma.

Proof of (c). To show that U |Z* is simple note that U in (c) is simply connected and
hence an F-region. Moreover U contains NV or S, and hence by Th 3.2 the components of
BU|Z* contain neither a meridian nor the carrier of an N- or S-circuit. Th 3.2 then implies
that the remaining components of S U|%* do not intersect, so that U |X* is simple.

If U were not concave there would exist an arc h€ F*|U with a limiting end point 2
in SU. Let 2; be a point of . For some n, H, contains z,. H, excludes z. Nor does 8 H,,
contain z, since §H, is non-singular and contains neither N nor 8. Thus §H,, separates z
from 2z, and so must meet k. Since §H, is non-singular this is impossible.

The inner closure £ in X* of a set E is defined by the equation
(3.2) E=Enz*-BE.

Equivalently the inner closure in £* of a set ¥ is the set of all points in £* which possess

a neighborhood in which Z is everywhere dense.

Lemma 3.3. If R satisfies Conditions O its inner closure in X*, the complement of its

closure, and any component of R also satisfy Conditions 6.

Consider the F-set B. We shall show that R satisfies @ with B. To that end let q be
a point of # R in £*. The F-rays in R incident with ¢ are in two classes. Class ¢ (¢ =1, 2)
consists of the F-rays incident with 7 F-sectors in R incident with ¢. F-rays in Class 2
in R are not in R. The number of F.rays in § R incident with ¢ and in Class 1 is even
(possibly zero) so that the number of F-raysin [)’R incident with ¢ is even. If this number
is zero ¢ is not in ﬂR Thus R satisfies @ with R.

The remainder of the lemma is readily verified.

§ 4. Asymptotes

Let % be an open arc in F* and ¢ a point of k. Sense k. The sensed open subarc of h
following ¢ on h will be called an F*.ray n. Let 7 be given as a 1 — 1 continuous image in
2* of the interval 0 <t < oo, with the point s (t) corresponding in s to f. Let ¢ be an F*-
cycle in ¥ given by a mapping of a circle, on which w =¢'?, into Z, so that ¢ (8) cor-
responds to w=¢'® and @(6 +27) = (). We say that » and h are asymptotic to ¢ in

the positive sense of 7 if for some admissible representation of =
dist [n(0), p(0)] >0 [as8 1 oo].

In discussing asymptotic rays the following lemma is fundamental.
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Lemma 4.1. Let A be a transversal. If an F*-ray z meets A in points p,, p,, ps which are
successive on 7 in the set of intersections of m and A, then these points are also successive on

A in one of A’s two senses, and 7 always crosses A in the same sense.

For i = j let 7u;; be the arc of x bounded by p, and p;, and let 4;; be the arc of A bounded
by p, and p;. We show first that p,, p,, p; occur in the order written on A, regarding p,,

P2, P, as the same order on A.

Case 1. The ray m crosses A in opposite senses at p, and p,.

The arcs 7, and A, form a top circle. Let Ry, be the region bounded by m;,4,; in 2
and not containing A — 4;,. By virtue of Th 2.3, R,, includes a pole, say S. The arcs 7,y
and A, also form a top circle. Let R,; be a region bounded by this curve chosen so as not
to contain R ,. Then R,, contains N. Any order of p,, p,, p; on A other than that written
will be shown to be impossible.

Suppose the order on 4 is p,, ps, P, OF Pa, P;, P,. These are the only orders which must

be excluded. In these cases 71,5 and 4;, form a top circle bounding the region
Ry =% — (Rlz U st)-

Here Ry; is simply connected, contains no pole, and in 8 Ry,, ;3 meets A;; twice. On M
there exists a homeomorphic covering of E; on which 73 and 4,3, meet twice. This is

contrary to Th 2.3. Thus p,, p,, p, is the only order possible in A.

Case I1. The ray m crosses A in the same sense at p, and p,.

Suppose py, Py, P, is the order in 4. Then A, and n,, together bound a region R into
whose interior z enters at p,. Continued in this sense 7 must leave R by crossing 4,, at p,
in a sense opposite to the crossing at p; and p,. On reversing the sense of & and denoting
D1, Do Py Y P, Dy, Py Tespectively, the situation comes under Case I and is impossible.

The order p;, p;, p, may be excluded in Case II as contrary to the Jordan Separation
Theorem. Thus the order on 4 must be p, p,, p; in any case.

It remains to show that all crossings of 4 by & are in the same sense. We first show
that Case I is impossible. In Case I, 7 reversed in scnse enters R,; at p;, and continued as
an he F* must meet 4;; in a point pg; for there is no pole in the simply connected region
R,; to which & can tend, cf. MJ 2 Th 7.2. Thus p,, p;, p, appear in this order on & but in
the order p,, Py, Py OF Py, Do, P ON A;5. Hence Case I is impossible.

In Case II the crossing of 1 at p, is in the same sense as at p, and p,; for otherwise a
reversal of the sense of & would yield Case I again.

This establishes the lemma.

We state an extension whose proof is essentially identical with the preceding.
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Lemma 4.2, Let A be a transversal cut with vertex q. Let h be an element in F* such that

h N A excludes q. If w15 an F*.ray in h'the conclusion of Lemma 4.1 holds as stated.

The exclusion of ¢ from 2 N A insures that each point of 2 N A4 is an actual crossing of
A by 7. All other points of 1 are non-singular.
Each of the regions of 2 into which the carrier of an inner cycle divides % will be called

a side of g or of |@|. The two sides of ¢ may be distinguished as the north or south side of
@ according as the side contains N or 8. Given an N- or S-cycle the region H bounded by

|@| which contains S or N respectively will be called the south or north side of ¢.

The construction of the region J. Let m be an F*.ray with a positive limit point peZ*,
We shall construct an F-region J such that n is asymptotic to a curve carried by §J.

Let A be a transversal ray incident with p and such that & intersects 4 in an infinite
sequence of points

(4.1) P15 P2s P> -

with limit point p. Suppose that the intersections of s with A appear on & in the order
(4.1). In accordance with L 4.1 the points (4.1) appear on 1 in the same order.
For k=1,2,..., let m, be the arc p,p,,, of = and 4, the arc pypi1 of 1. Let J, be

the open region bounded by the top circle n, A, chosen so as not to contain p. Then
Jycd,cJ,=....
By virtue of Th 2.3 J, must contain a pole, say S. Let
J=TUniond, (k=1,2,...).
Then J is a simply connected region which contains S. Now £ —J, meets N and hence
NeX—-J= D(Z =J) (k=12 ...

We continue with a proof of the following.

(1) There is no singular point in z following p, in 7.

Suppose z were such a singular point. There then exists an « € F with z as an initial
point and « Nzx = 0. Let h be an F*.ray continuing «. Since z is not in the transversal

and follows p, in 7, a sufficiently restricted open arc of A with end point z in 7z is in

o1~ Jw=Qn
for some n > 0. Observe that
BQy = Unionn, A, 7, 14,1,
and that the set @7 = @, — p,,, is simply connected.
Since @,, is simply connected and contains neither N nor S, » must meet @, in a point
2z’ following z on h. There are several a priori possibilities for the location of z and 2’ in

BQ,, but in each case one infers the existence of an inner cycle of F* in @3, or else of a subarc
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b< @ of an element in F* such that b intersects A in more than one point. Since this is
impossible (i) follows.

(i) BJ is the set 2 of positive Limit points of m, so that the maximum distance of points
of , from BJ tends to zero as n 1 cc.

Statement (ii) is a consequence of an clementary lemma, namely that §J is the set of
all points which are limit points of sequences z,,n =1, 2, ... in which z, is in 8J,. This
lemma presupposes the inclusion relations J, < J,< J; ... and the disjointness of the top
circles 8J,,n =1,3,5,.... One notes that §J, separates §J, , from pJ, ,. Statement
(ii) follows on recalling that f§.J, is the union of 1, and &, and that the diameter of 1,
tends to zero as n 4 oo.

(iii) J s @ concave F-region whose curve boundary is an F*-cycle.

If the boundaries of the regions J, were top circles in F, J would satisfy Conditions
@ on an F-region, by L 3.2(c). We can, however, alter F in an F-sector Y containing the
transversal ray A used in constructing J so that §.J,,n=1,3, 5, ... becomes a top circle
in a new family F’ replacing F. This alteration shall leave F|(X — Y) unaffected, and can
be made in Y in an obvious manner leaving Y an F'-sector. Cf. proof of L 7.1 in MJ 2.

We conclude that J satisfies Conditions €, is concave, and that #J|X* is simple [L 3.2].
Since J is simply connected and f$J contains more than one point, it follows that J is an
F.region. Since J contains a pole, fJ carries no N- or S-circuits nor NS- or SN-curves.
Its curve boundary as given by Th 3.2 reduces to an F*-cycle.

This establishes (iil).

The principal theorem of this section follows.

Theorem 4.1. If an F*.ray n has a positive limit point peX* then  is asymptotic to an
F*_cycle ¢. Moreover, t does not intersect @, and @ is concave toward the side of ¢ which con-
tains m.

The ray z determines an F-region J as just constructed. By (iii) 8J carriecs an F*-
cycle y and we shall show that ¢ =y 4 satisfics Th 4.1. In accordance with Th 3.1 y maps
the circle €' (|w| = 1) into #J in a manner which is 1 — 1 over those open arcs of C whose
images arc in 8J|X*. We suppose that the point w =¢€'® in C corresponds to the point
w(0) in 8J. Identify the point p of Th 4.1 with the point p used in the construction of J
and suppose that p =y (2nxn),n =0, +1, 2, ... . Recall the transversal ray 4 incident
with p, and the points p,, p,, ... on A N7z used in the construction of J.

We state the following.

(n) The Fréchet distance on X of the subarc p,p,,, of m from the arc ¢|(0 <6 < 2n)

tends to zero as n 1 oo [for proper choice of ¢ as p+].
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The proof of (n) starts with (ii) and is almost identical with the proof of Th 4.1 of MJ 3.
It will be omitted. Granting () one can then map the arc p,p, ., of # in a homeomorphic
manner onto the interval 2nn <0 <2(n + 1), n=1,2,... with =(0) a single-valued

continuous image of 6 for all such 0, and such that
dist [z (0), ()] >0 [as 0 1 oo].

This representation of 7 from p; on is 1 — 1 and so admissible, and 7 is accordingly asymp-
totic to ¢.
By L 3.2(c), J is concave so that ¢ is concave towards the side of ¢ which contains 7.

This completes the proof of the theorem.

Corollary 4.1. No point of an open arc he F* is a positive or negative limit point of h.

This is immediate if & is not an asymptote, and true for asymptotes since asymptotes
cannot intersect the concave F*-cycles which are their positive or negative limit sets.

This corollary also follows from L 4.1 by a suitable argument.

§ 5. Concave annuli 4 (¢;, ¢2)

We shall consider open annuli 4 (g,, @,) in £* each bounded by two non-intersecting
F*.cycles, ¢, and @,, and, in the case in which the annulus is concave, give a complete

description of elements of F* in the annulus. We proceed with three lemmas.

Lemma 5.1. A sensed he F* which is asymptotic in its positive sense to an F*-cycle ¢

can be asymplotic in its negative sense neither to ¢ + nor to ¢ —.

Let h be divided by a point p into two rays #’ and #”. Let 1 be a transversal tending
to a point g of @ from the side of ¢ which contains h. If the lemma were false ' and ="
would intersect A in sequences of points p, and p;’, n =1, 2, ... respectively, tending to

g in 4 as n 1 oo, with the order
(5.1) e P2, DL G, DL D2y e

on k. These points cannot appear in the order (5.1) on 1 as they should by L 4.1, and we
infer the truth of L 5.1.

Corollary b.1. In the set of F*-rays issuing from a given point peL* and asymplotic

either to @ + or ¢ —, where @ i3 an F*-cycle, there is at most one F*-ray.

Lemma 5.2. If ¢, is an inner cycle and @, a second inner cycle or a concave N- or S-cycle,

then @, is concave toward @,.
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The cycle @, does not intersect g, This follows from Cor 2.1, if @, is an inner
cyele, and from the concavity of ¢,, if ¢, is an N- or S-cycle. For definiteness suppose that
@, is on the north side of ¢,.

If the lemma were false there would be an F*.ray zz with initial point rin ¢,, entering
A(gy, @,) at the point r and not meeting ¢, again. This ray cannot intersect ¢, if ¢, is an
inner eyele [Cor 2.1, or if ¢, is S-concave. It follows from Th 4.1 that z is asymptotic to
an F*_cycle ¢, (possibly @,) in Cl 4 (p,, ,). Let A be a transversal in the south side of ¢,
tending to a point pEg,. Then & will intersect 4 in an infinite sequence of points p,, p,, ...

tending to p as a limit point and appearing on 7 in the order written [L 4.1]. Let

(5.2) 7(r, Po),  A(D2 P1)y TPy, 7)

be respectively subares of 7r from » to p,, of 4 from p, to p;, and of 7 from p, to 7, forming
a sequence b of arcs joining r to itself. Let by be an arc covering b on M. The end points of
by cover r but are not coincident. They can, however, be joined on M by an arc covering
|g1| a finite number m of times to form a top circle gy on M. (That m =1 is true, but
not necessary for the proof.)

Let Ay be the covering of 4 which meets gy. Then gy — Ay admits an extension on
M as an clement ky in Fiy. This is impossible since hy meets 45 in two points. {Th 2.3.]

We infer the truth of the lemma.

Lemma 5.3. In a concave annulus B between two F*-cycles there can be no singular
point P.

First note that any inner cycle ¢ in B must be non-singular. For it follows from L 5.2
that @ must be both N- and S-concave and hence non-singular.

Suppose then that L 5.3 is falsc in that P exists. There then exist at least four F-rays
issuing from P. The continuations as elements in F* of none of these F-rays can carry
an inner cycle, since such an inner cycle would be singular. There are thus at least four
F*.rays issuing from P. None of these F*.rays can meet f B or have a limiting end point
at N or S in 8B, since B is concave. It follows from Th 4.1 that each such F*.ray must
be asymptotic to an F*-cycle in B. Moreover two different F*.rays issuing from P are
asymptotic to F*-cycles ¢, and ¢, with different carriers [Cor 5.1].

The cycles ¢, and @, are concave toward their respective sides containing P, so that
P is in A(@,, p,); for if @, separated ¢; from P [i,§ = (1, 2) or (2, 1)] then the asymptotic
ray from P to ¢; would intersect ¢,, contrary to the concavity of ¢; toward P. Any two
remaining rays issuing from P determine an annulus A (g, ¢,) < 4 (g, ;). From the

reciprocity of the pairs (¢, ¢,) and (gs, @,), we infer that A (@,, @) = 4 (@3 ¢4). Hence
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with proper notation |@,| =|@s| and |@,| =|@,|. Two of the four rays must then be
asymptotic to two cycles with the same carrier, contrary to Cor 5.1.

Hence P does not exist and the lemma is true.

Types of asymptotes in A (@y, @,). Suppose that 4 (@, .} is concave and includes no
inner cycle. An A€ F'* in A(g,, ¢,) is an asymptote in both its senses since A4 (g, @,) is
concave. It follows from Cor 5.1 that in one of its senses  is asymptotic to ¢, 4+ and in
the other to ¢, 4. If A is asymptotic to ¢, in one sense and to ¢, in its other sense then his

said to be of asymptotic type [¢,, @] = [@,, ¢,]- The four possible asymptotic types of » are

oot et [ to@e~) (o=@ t) o= @a—1
Two elements 2 and 2’ of F* in A (g, p,) must be of the same asymptotic type. Other-
wise h and 2’ would intersect in a point P. The existence of P becomes clear on considering
the elements ky and &y covering % and &’ respectively on M. The intersection P cannot
exist by L 5.3.
We shall complete the analysis of annuli 4 (¢, @,) in § 8.

§ 6. N-caps, S-caps

In the decomposition of ¥ into basic regions of a nature dictated by F* one comes
naturally to N-caps and S-caps. For the purpose of defining these caps and for many
other purposes we shall abbreviate the phrase “inner closure in %* of the union” by the
word symbol Union. With this understood an N-cap [S-cap] is the Union of all non-singular
N-loops [S-loops]. This definition requires justification and elaboration.

There is at most a countably infinite number of elements in F with singular end points.
Through each neighborhood in 2* there accordingly passes a non-singular A€ F*. There
are also examples of families F'* such that through each neighborhood in X* there passes
a singular h€ F*. Thus non-singular elements in F* are in fact everywhere dense, while
singular elements in F* may be everywhere dense. If in particular a neighborhood is in
the interior of an N-loop [S-loop], then each non-singular h€ F* meeting this neighborhood
carries an N-loop [S-loop]. This fact will simplify subsequent proofs.

Beside the question as to the vanishing of N-caps [S-caps] there is the question as to
whether N-caps [S-caps] are bounded from § [N]. This leads to the natural separation of
the cases in which N-loops [S-loops] are or are not bounded from S {N].

A first theorem follows.

Theorem 6.1. If N-loops are not bounded from S there exists an F-region @ which is an
F*_set, whose curve boundary meets 2* in an NS- and an SN-curve and in disjoint N- and
S-loops at most countable in number.

2 ~ 533807. Acta Mathematica. 91. Imprimé le 18 mai 1954.
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There exist non-singular N-loops bearing points arbitrarily near §. It follows from

L 3.1 that there is an infinite sequence ¢,, @,, ... of nonsingular N-loops such that

(6.1) Ig) = I(p) < ...,

while dist [S, ¢,]—>0 as n $ co. We shall show that the set @ = Union I(p,), n=1,2, ...
satisfies the theorem.

The set @ is simply connected and S contains N and S. ¢ satisfies Conditions @ by
L 3.2(b), and so is an F-region. It is an F*-set since a union of F*-sets. It follows from Th
3.2 that the closed curve boundary of ¢ meets X* in an NS- and SN-curve, and in disjoint

N- and S-loops at most countable in number.

Corollary 6.1. If N-loops are not bounded from S there exists at least one meridian in F*.

Th 6.2 is similar to Th 6.1, with ¢ in Th 6.2 replacing S in Th 6.1. The proof is similar.

Theorem 6.2. Let g be a top circle in F*. If N-loops are not bounded from g there
exists an F-region which is an F*-set, which is in the north side of g and whose boundary

meets N and g.
.One defines @ as in the proof of Th 6.1, except that here dist [g, ¢,]—>0asn t co.

One continucs as in the proof of Th 6.1.

N-caps, S-caps. We have already defined an N-cap [S-cap]. One can equivalently
define an N-cap Uy as the Onion of the interiors of all non-singular N-loops. If there are
no N-loops we understand that Uy = 0. S-caps U are similarly defined. We term Uy [Us]
bounded if bounded from S [N], otherwise unbounded. It is possible that Uy or Us may
equal 2%

Maximal N-cycles, S-cycles. By the interior Ip of an N-cycle @ is meant the union of
the interiors of all the N-loops carried by |@|. An N-cycle ¢ will be termed maximal if
Lo > Iy whenever y is an N-cycle. There may be no maximal N-cycle ¢, but when one

exists the N-cap Uy =0 and Uy = |p|. Maximal S-cycles are similarly defined.

Corollary 6.2. If N-loops are not bounded away from an inner cycle ¢, then @ is the inner
cycle of an N-circuit .

Let Iy @ be the north side of ¢. According to Th 6.2 F*| Iy includes an open arc &
with end points on |@| and N respectively. Then [@| U kb carries an N-circuit ¢ with the
sense of @, so that ¢ is the inner cycle of p.

Cor 6.2 suggests a major theorem.

Theorem 6.3. (i). If Uy 13 a bounded, non-empty N-cap, f{Un VU N) is the minimum

carrier either of a maximal N-cycle @, or of an inner cycle y not N-concave.
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(ii). Conversely, a maximal N-cycle @ or an inner cycle v not N-concave bounds Uy U N,
where Uy s a non-empty N-cap bounded from S.

(iii). A maximal N-cycle ¢ and an inner cycle y which is not N-concave cannot coexist.
When @ exists ¢ — is the only other maximal N-cycle, and when v exists p — is the only other
inner cycle which is not N-concave.

Proof of (i). We begin by establishing (m) and (n).

(m). If BUy carries an inner cycle yp, f(UyVU N)=|y|, and y is the inner cycle of an
N-circuit.

The south side Isy of ¢ does not meet Uy, since no non-singular N-loop meets .
Thus Uy < Iyy. By Cor 6.2 p is the inner cycle of an N-circuit 7. As such g cannot be N-
concave. Each non-singular element in Iy is an N-loop since there is an open arc in
F*|Iyy joining y to N. Hence UyUN =Iyyand B(UyUN) = |y].

(n). If Uy + 0 and if S U ycarries no inner cycle, f U y is the minimum carrier of a maximal
N-cycle.

Set I =% —ClUy and let L be the component of H which includes 8. We shall show
that L is an F-region. Since Uy is an F-set, L is an F-set. Since Uy is connected, L is simply
conneeted. Finally L satisfies Conditions @ on F-regions with H and Uy [L 3.3]. Now 8L
carrics no inner cycle and hence no N-circuit. By Th 3.2, L must be the minimum carrier
of an N-cycle @. This N-cycle must be a maximal N-cycle; otherwise L would meet the
interior of some N-loop, contrary to its definition. The interior I of a maximal N-cycle
@ is an N-cap Uy. Hence BUy = 'p| and (n) is established.

Statement (i) follows from (in) and (n).

Proof of (ii). We first establish (a).

(a). An inner cycle yp which is not N-concave is the inner cycle of an N-circuit ».

If y is not N-concave, an F*.ray m exists in the north side of y with an initial point
in . This ray must have a limiting end point at N. Otherwise &z would be asymptotic to
an S-concave F*-cycle p, north of . [Th 4.1], and ¢ would be N-concave by L 5.2, contrary
to hypothesis. It is clear that |y| Uz carries an N-circuit  with the sense of y, so that y
is the inner cycle of 7. This establishes (a).

If 9 exists any non-singular element in I () is an N-loop by (a), and all non-singular
N-loops are north of y. It follows that f(UyU N)=y. If ¢ exists S(UyUN) =|¢]|, as
already noted. In both cases Uy =+ 0.

Proof of (iii). There is precisely one N-cap Uy, in accordance with its definition. Now
B(UxUN)=|g| or |p| by (ii), when ¢ or y exists. These possibilities are mutually ex-
clusive since S Uy is unique. Statement (iii) follows.

Theorem 6.3 has an obvious counterpart for S-caps.
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§ 7. The metric space &

Let y be an inner cycle or S-cycle. Let B be the region north of . The cycle v is sensed.
We say that v is positively sensed in X if y is in the curve class of the curve ¢ =f|3 R of
Th 3.1. Alternately let ¢ be an inner or N-cycle. Let R be the region south of ¢. It is con-
sistent with the preceding to say that y is positively sensed in 2 if ¢ — is in the curve class
of p =f|fR of Th 3.1. For S-cycles and N-cycles the two definitions are not overlapping.

Let the latitude 0 on X be so defined that when 0 increases on a parallel g, N is to the
left of g. Since a parallel can be homotopically deformed through top circles on X*, non-
bounding on Z*, into any such top circle, it follows that when an inner cycle v is positively
sensed in % and is traced in its positive sense n times, then 0 4 oo as n 1 .

Let N and § be degenerate closed curves with N and 8, respectively, as carriers. We
shall introduce a space @ consisting of H, §, and all inner, maximal N- and S-cycles, po-
sitively sensed in 2. By a cycle in @ we shall mean any element in @ other than # or §.
Two cycles ¢ and o in @ will be ordered by the relation ¢ <<y, or equivalently, y > ¢, if
|@| scparates |y| from S. We write § << M and for every cycle e @, N < ¢ < §. Equality
of elements in @ shall mean that they belong to the same curve class. The order relation <is
transitive. No two different cycles in @ interscct.

Let z, y be any pair of clements in @ and let p be an arbitrary point in y. Let

d(x, y) = max dist [z, p].
Dey

This distance makes @ a non-symmetric metric space. Set
K (y) =d($, y| (ye D).
Suppose that the radius of X is 1.

Lemma 7.1. The transformation K of @ into the interval [0, n] carries @ in a 1—1

manner into a closed subset of [0, 7).

Let y,, be a sequence of elements in @ such that K (y,) converges to a value b in [0, ].
It is sufficient to show that for some a€ P, K (a) = b. Without loss of generality we can
supposc that the sequence y,, is decreasing in @ and that y, < H. The case of an increasing
sequence is similar,

Let R, be the regionin ¥ north of y, and set R = Union R, If R =% —§,b =0 = K (§).
Suppose then that R =+=ZX — 8. For » >2 each y, is a non-singular inner cycle [L 5.3],
so that it follows from L 3.2(c) that R is a concave F-region with SR|Z* simple.
Since N < R, f|f R in Th 3.1 defines an F*.cycle ¢ with carrier § R. If ¢ is an inner cycle,
g@isin @. If p is an S-cycle, the concavity of R implies that ¢ is a maximal S-cycle, and so
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in @. We shall show that b = K (p). Observe that 0 < K (y,) — K(p) =4[S§,y,] —d[S, ¢] <
d[@, ¥,], using the triangle axiom. But d[g, ¥,] >0 as n 1 oo so that K (p) =lim K(y,) =b.

This establishes L 7.1.

Our final metric for @ shall be one in which the distance between any two elements x and
y in D shall be the Buclidean distance | K (x) — K (y)| between K (x) and K (y) as points in
the interval [0, 7).

In terms of the order defined in @ and its metric, sup E and inf K are defined for any
non-empty subset £ of @. We understand thereby that “sup” = L.U.B. and “inf” = G.L.B.
Other terms involving limits are similarly defined. It follows from L 7.1 that @ is
compact.

U-type asymptotes. The metricizing of the space @ and our earlier results concerning
the absence of singular points on asymptotic rays make possible the treatment of a problem
concerning concave annuli. Such an annulus 4, bounded as it is by cycles ¢ and y in @,
will be said to be of U-type if filled with asymptotes of type [p +,yp +] or [¢p —,p —].
Cf. § 5. The theorem is as follows.

Theorem 7.1. Let C,, e > 0, be the union of e-neighborhoods of N and S. For fixed e the

number of disjoint annuli of U-type which do not meet C, is finite.

Suppose the theorem false. There would then exist a sequence 4,,n=1,2,... of
disjoint annuli of U-type with boundaries ¢, y,, ¢, <y,, not meeting C,. Without loss
of generality we can suppose that ¢, > @, > ... . Since @ is complete and since d[§, ¢,] > ¢,
for some cycle n€ @, p,—n as n 1 oo.

Let p be a point on 7 at the maximum distance on |7| from || to 8. Let 1 be a trans-
versal on the north side of 7, incident with # at p. We know that d[$, ¢,] decreases mono-
tonically to d(S, n) as a limit, and that d[S, ] equals the distance of p from S. Hence for
n sufficiently large, say n =m, A will intersect 4, in a simple arc u, interior to 4,, except
for end points on ¢,, and p,, respectively. [L 3.0.]

Let H “‘cover” A, on M, with boundaries % and k in Fj covering ¢,, and p,, respec-

tively. The arc u is covered on M by an unending sequence of disjoint open arcs ..., b_;,
by, by, ... such that 0|b, tends to 4 oo a8 r— + oo, while b, separates H into two regions
on one of which b,,,,b,,,, ... lie, and on the other b,_;, b,_,, ... .

Let g on H cover a U-type asymptote in 4,,. Let R, be the region on H bounded on
H by b, and b,,,,. If g meets R,, it must cross b, and b, in unique points. [Th 2.3.] We
infer that g must meet the open arcs ..., b_y, by, by, ... in unique points p, appearing on
g in the order of the indices n. Hence 0|g tends to + oo in one sense of g and to — oo in
the other, contrary to our hypothesis that its projection on 2* is of U-type.

This establishes Th 7.1. Cf. Kaplan [3].
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§ 8. The case of no meridian

We begin with the following lemma.

Lemma 8.1. The absence of meridians implies the following:

(a). There is at least one cycle in D.

(b). If @ contains precisely one cycle @, @ 18 N- or S-concave.

(¢). An inner cycle, ¢ in @, is N- or S-concave.

(d). If we D is the immediate successor of p€ P and if g and y are cycles, then one at least
of these two cycles is concave toward the other.

Proof of (a). Suppose that there is no cycle in @. There are then no asymptotes in
F* [Th 4.1}, and no bounded S- or N-caps [Th 6.3 (i)]. The set K of N-loops is empty;
otherwise Uy would be unbounded and a meridian exist [Cor 6.1], contrary to hypothesis.
Similarly there are no S-loops. With asymptotes excluded the positive [negative] limit
set of an open A€ F* must reduce to N or to S. [Th 4.1.] Hence each Ae F* is a meridian.
From this contradiction we infer (a).

Proof of (b). Suppose (b) false in that @ is neither N- nor S-concave. If pisan N-cycle
not S-concave, there would exist an element A€ F*| Is@ (where Is5¢ is the south side of
@) with a limiting initial point in |@|. Such an % could not be asymptotic to an F*-cycle
y, because y £ would be in @ and different from ¢. Hence |@| U 2 would carry a meridian
contrary to hypothesis. Similarly ¢ is not an S-cycle. If ¢ were an inner cyele there would
exist rays ;; and 7, in the north and south sides of @ respectively, with initial points in
|@| and limiting final points in N and § respectively, so that |@| Uz, Un, would carry a
meridian contrary to hypothesis. Thus (b) is true.

Proof of (¢). If (¢) were false it would follow from (a) of the proof of Th 6.3 (ii) that ¢
would be the inner cycle of an N-circuit ¢, and of an S-circuit ¢,. Then [@| U |@,| U |g,]
would carry a meridian contrary to hypothesis.

Proof of (d). There are four cases as follows.

(1) ¢ and y inner cycles.

(2) @ an inner cycle, y a maximal N-cycle.

(3) @ a maximal S-cycle, v an inner cycle.

(4) @ a maximal S-cycle, y a maximal N-cycle.

In Case (1), (d) follows from L 5.2.

In Case (2), the falsity of (d) implies, as in the proof of (b), that there exists an he F'*
which meets ¢ and y; @ is accordingly not N-concave, and so cannot coexist with a maximal
N-cycle y. [Th 6.3 (iii).] Case (3) is similar to Case (2).
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Tn Case (4) the falsity of (d) again implies that there exists an A€ F* which meets ¢
and y and is a meridian.
We infer the truth of (d).

The subset ¥ of @. An F*.cycle which is N- or S-concave will be called concave. Let

¥ be the subset of concave F*-cycles in @.

Lemma 8.2. When there is no meridian the set ¥ is not empty and contains every cycle
in @, excepting gy = (Ux UN)|[(Uy =+ 0) when @y is @ maximal N-cycle not S-concave, and

excepting ps = B(Us U 8)|(Us + 0) when @s is a maximal S-cycle not N-concave.

The set ¥ is not empty. For there is either exactly one cycle in @, or exactly two, or
an inner cycle. In each of these cases L. 8.1 implies the existence of a concave eycle in @
and hence in W. If Uy = 0 and gy is not in ¥, ¢y is certainly not S-concave by definition
of ¥. It cannot be an inner cycle by L 8.1 (c). The case of an excepted g5 is similar.

The critical elements in @. We aim at a finite decomposition of ¥ using such basice
regions as N-caps, S-caps, the Union C of all concave annuli, and such other scts as may
be necessary. No concave annulus A meets an N-cap or S-cap, since no N- or S-loop can
enter 4. Hence €' cannot meet an N-cap Uy, or S-cap Us. The question then is what is the
nature of

X2-—Uy—Us—C.
The problem is complicated by the fact that Uy, Us or € may be empty. When Uy =0
and Ug+:0, Uy U N and Ug U S have unique cycles, in @, ¢y and ¢g respectively, as bound-
aries [Th 6.3.] When C =0 it will presently appear that it has unique elements yy and

ys in @ as boundaries, and apart from special cases one would expect that in @

(8.1) S ps<ysTyn o N

To simplify the problem, and to include all cases of the vanishing of Uy, Us and € and

the coalescence of their boundaries we define, de novo, four critical elements in @, namely,
i b

(8.2) Pss Ys, PN, PN

Let g be W if there are no N-loops and sup @|(S < ¢ < N) otherwise.
Let s be S if there are no S-loops and inf @\ (§ <@ < N) otherwise.
Let yy =sup ¥, and ps =inf V.

The elements so defined exist. For the set ¥ is not empty by L 8.2, nor is the set

D|(§ <@ <MN) since @ > ¥. One makes use of the completeness of @. Moreover

(8.3 S<ps<yps<yvn=gprv=MN.
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An alternative but equivalent definition of ¢ and ¢4 follows.
Let oy be the closed curve in @ with minimum carrier §{(Uy U N).

Let @5 be the closed curve in @ with minimum carrier B{(Us U S).

We are assuming that there is no meridian, and in this case ClUy N ClUs=0.
It follows from the second definition of gy and @ that gy > @s. Moreover ¥ is not empty,

so that for some cycle e ¥, § <y <yy, N>y = ps. In summary,
(8.3)" ps <on, N>ys, S$<pw.

At the end of this section we shall see that the conditions (8.3)" and (8.3)" are the only

order conditions on the elements involved.

Lemma 8.3 (a). If yx <@, yy 18 N-concave. If ys > @s, ys 18 S-concave.
(b). If ws <wyu, then ps s N-concave or §, and py is S-concave or N.
Proof of (a). If ps =y <g@u, then py is the only cycle in . It cannot be S-concave

since equal to gs, and so must be N-concave. If s <yy <@y then py is an inner cycle

in ¥ and must be N-concave by Th 6.3 (ii). Similarly s is S-concave if ps > @s.

Proof of (b). If ps=ws and ps = §, then ps is in ¥ and hence N-concave, or not in
Y and N-concave (a contradiction) because s =pf Union R, for a proper choice of R,
as in the proof of I, 7.1 {L, 3.2]. If ps <ys <wyu, ys is an inner cycle, and N-concave since
< @y. The case of py is similar.

The open sets {X, Y}. Let X and Y be any two successive clements in (8.3). f X = Y
let {X, Y} be the empty set. If X << ¥ let {X, Y} be the open set bounded by X and Y.

To describe F* over X* it is sufficient to describe F* over the sets

(8.4) {S, o5t {ps, wsb {ws, vv} {ww on}  {on N}

In the order written such sets are called, respectively, S-caps, S-spiral annuli, central
annuli, N-spiral annuli, and N-caps, We have already characterized N- and S-caps. We

shall characterize spiral and central annuli.

Improper annuli. A spiral annulus or a central annulus in which one at least of the
the bounding elements is ¥ or § will be called improper. Because of the conditions § <y

and N > ys improper spiral annuli take one of the forms

{S,vst {wn, M}

Improper central annuli take one of the forms

{S,vnt {ywss M} {S M}
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The last written annulus is realized in the case of a family F consisting of the parallels
on X*. If X* is covered by just one of the open sets (8.4) this set must be a central annulus
of the form {§, N}.

In § 5 we have analyzed concave annuli 4 (¢,, ¢,). Here ¢, and ¢, were cycles in @

concave toward each other. The description of a central annulus follows.

Theorem 8.1. A central annulus {ys, yy} = C is the Union of all concave annuli. Each
element of F* meeting C is in C, and is either a non-singular top circle or a non-singular
element h which is an asymplote in each of its senses.

We begin by establishing the following.

(a) Each concave annulus A (p,, ¢,) is in C.

By definition of ys and py, s < @, <@, <yw, and (a) follows.

(b) Each point of C is in a concave annulus.

When C is non-empty and proper it is a concave annulus {L 8.3 (b)]. In this case (b)

is trivial. When C is improper but not empty three cases are distinguished.

Case I. C =X*. In this case
(8.5) ps=S=inf¥ wyy=HN=sup¥
and each cycle in @ is an inner cycle. If ¢, and @, are cycles in @ the annulus 4 (g,, @,)
is concave by L 5.2. It follows from (8.5) that every point of C is in some concave
annulus 4 (¢,, ¢,).

Case I1. ys=§, yy < N. Each cycle ¢ in C is an inner cycle in all cases. In Case II,
ww is S-concave by L 8.3 (b), so that 4 (g, yv) is a concave annulus by L 5.2. Since § satisfies
(8.5) it is clear that each point of C is in an annulus 4 (g, y).

Case II1. Similar to Case II with S and N interchanged.

Thus (b) holds and it follows that C is the union of all concave annuli. Each element

of F*in C is in a concave annulus 4 (¢,, ¢,) and so has the nature stated in the theorem.

Theorem 8.2. Let {yn, pn} be an N-spiral annulus W = 0.

(i) For n properly chosen as one of the cycles yy +, each element in F*| W is non-singular
and asymptotic to n with an initial limiting point in @y.

(ii) At most one such asymptote 1) has its initial point in a given N-loop p in @y.

(iii) When W =0, @y 13 @ maximal N-cycle or H.

Proof of (i). There is no cycle of @ between @y and gy when gy < @u, since yy is then
the first cycle in @ before gy. There are no N-loops meeting W, since gy is a maximal
N-cycle or ¥ by L 8.2. There are no elements in F*| W asymptotic to gy as a cycle, since
the conditions yy <@y <N imply that gy is not S-concave. Hence each i€ F*I W is
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asymptotic to # =yy-L with a limiting initial point in @y. There is no singular point P
in W; otherwise the elements in F'* meeting P would include at least two elements asymp-

totic to py4-, contrary to Cor 5.1.

Proof of (ii). If (ii) were false there would exist points  and 7’ of y in £* incident re-
spectively with distinct elements A and %’ in F*|W, and asymptotic to . There would
then be two F*-rays with initial point at  and asymptotic to # contrary to Cor 5.1.

Proof of (iii). This follows from L 8.2.

This completes the proof of the theorem. S-spiral annuli admit a similar description.

Covering by two sets {X, Y}. In any covering of £* by two non-empty sets {X, Y}
and their common boundary §, the first set must be an S-cap, S-spiral or central annulus,
and the second an N-cap, N-spiral or central annulus. There are thus nine a priori pos-
sibilities, but a central annulus cannot be combined with a central annulus, nor an N-cap
with an S-cap, since s < @y when there is no meridian. There remain four combinations

of two sets {X, Y}, namely
(8.6) {S-cap, N-spiral A} {S-cap, central 4}
(8.7) {S-spiral A, N-spiral A} {S-spiral 4, central 4}

and three other combinations, obtained by interchanging N with S and inverting the
order of the two sets.

It follows from L 8.3 that the common boundary § of the two scts is an N-concave
@s in (8.6), and a non-singular inner cycle s in (8.7). The cycle 8 = @5 in (8.6) may be a
maximal S-cycle or an inner cycle. Each of these possibilities is realizable.

In case meridians are absent 2 is decomposed as follows.

Theorem 8.3 (a). The non-empty open sets {X, Y} in (8.4) are disjoint, and, taken with
thewr boundaries, cover 2.

(b). A boundary cycle ¢ common to two of these open sets is singular at most if one of the
sets 18 an N-cap or S-cap.

{c). 4 boundary of an N-cap [S-cap] is an inner cycle ¢ at most if ¢ is singular and
S-concave [N-concave), and if any N-spiral [S-spiral] annulus is empty.

(a) This needs no further proof.

(b) This follows from L 8.3, on recalling that ¢ is non-singular if both N- and S-
concave.

(¢) If pn [ps] is an inner cycle then it is in ¥ by L 8.2, and hence S-concave [N-
concave], and any N-spiral [S-spiral] annulus is empty by Th 8.2 (iii).
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Corollary 8.1. When there is no meridian a necessary and sufficient condition that each

element in F* be non-singular is that there be no singular N- or S-loops.

The corollary would follow immediately from the theorem, if the condition were
that there exist no singular N- or S-loops or N- or S-circuits. However, it follows from
Th 8.3 (c) that in the absence of meridians an N-circuit ¢ (if it exists) is necessarily S-
concave. Hence the elements in F'* meeting a singular point in ¢ must carry an N-loop.
The case of an S-circuit is similar. Hence the condition of the corollary is sufficient. It is

trivial that it is necessary.

Construction of an F. Without going into details one can assert that any distribution
of the signs <and =in (8.3)" that is consistent with (8.3)" is realizable in an example
which is non-singular. One can, for example, make use of central annuli covered by a
continuous 1-parameter family of closéd curves. An N-cap can be defined which is bounded
by N and a single non-singular N-loop One can use N-spiral annuli which are covered by
aymptotes each of whose initial points are in V. S-caps and S-spiral annuli of similar char-
acter can be constructed when called for, and combined with these elementary N-caps,

N-spiral annuli, and central annuli to form a family F as desired.

§ 9. Loop coverage

The case of loop coverage arises, by definition, when points on N- or S-loops are
everywhere dense in X*. Clearly a necessary and sufficient condition for loop coverage is
that

Onion [Uy, Us] =X*.
When there is loop coverage it will appear that there is at least one meridian in F*. Cf.
Cor 6.1. When there is at lcast one meridian the decomposition of X* can be studied under
the case of loop coverage and the case of no loop coverage. We here study loop coverage.

By a maximal N-loop is meant any N-loop ¢ such that I¢ > Iy whenever o is an
N-loop with Iy N I =+ 0. A maximal S-loop is similarly defined.

We need further information regarding unbounded N-caps Uy.

Theorem 9.1. If Uy is not bounded from S and =+ X*, then each component R of Uy is
either i, the interior of a maximal N-loop or, ii, an F-region bounded by N U S, by two disjoint
meridians and at most countably many disjoint maximal S-loops, iii, a region bounded by a
maximal S-cycle and by N.

(a) Two components of Uy of types i or ii have disjoint boundaries in T*.

(b) There is at least one component of type ii or iii. Any component of Uy of type iii

equals Uy. The number of components of type ii is finite.
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L 3.2 implies that each component R of Uy is an F-region. As given by Th 3.2
f R does not carry an N or S-circuit since Uy is not bounded from S. An R is then of type
i if bounded from 8, of type iii if N is isolated in 8 R, of type ii otherwise. The maximality
of the loops follows from the definition of Uy.

Intersection of component boundaries. Two components of Uy cannot have an open
boundary arc in common since U y is an inner closure in £*. If R, and R, are two components
of Uy of types [i, ii], [i, i} or [ii, ii] then § R, and §§ B, cannot meet in a point in T*; other-
wise SR, UB R, would carry an N-loop with interior R, such that Union [R,, R,, R,]
would be connected and in Uy, contrary to the nature of B, and R, as components of U y.

Number of components. If there were no component of type ii or iii, Uy would be
bounded from 8, contrary to hypothesis; that any component of type iii is Uy itself follows

from the relation
Uy>RoX*—Ugo Uy.

The number of components R of Uy of type ii is finite; for there exists in each such R
an N-loop with diameter exceeding =/2 and the number of such N-loops in different com-
ponents R is finite by L 3.1.

This completes the proof of the theorem.

By an argument similar to that used in the last paragraph of the proof onc can show
that the maximal number of meridians in any collection of disjoint meridians is finite in
the case of loop coverage.

On setting
(9.1) B=8UyNBUs

one obtains the following theorem.

Theorem 9.2. In the case of loop coverage, the following is true.

(a) If Uy ts bounded from S and Us from N, B=BUy — N =8Us— 8 is a top circle
in F*.

(b) If Uy is not empty and bounded from 8, but Us is not bounded from N, B=8Uy
8 the carrier of @ maximal N-cycle. A similar statement holds interchanging N and S.

(c) If Uy is not bounded from S nor Us from N, the components of B|Z* are simple
and disjoint, and include a finite set (at least two) of meridians, and carry at most a countable
set of maximal N- and S-loops.

Statements (a) and (b) follow from Th 6.3 and statement (c) from Th 9.1.

Primitives. We shall give another decomposition of Z* in terms of a Union of certain

elementary regions to be termed primitives. These primitives will enter into decomposi-
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tions both in the case of loop coverage, and in the case where at least one meridian exists
and there is no loop coverage.

Definition. Let @, @, ... be a sequence of disjoint non-singular N-loops such that
(9.2) Ip,clp,cIp;<... .

Then Union I¢, will be called an N-element and denoted by [p]. An N-element which is
not a proper subset of any other N-element is called an N-primitive. S-primatives [¢] are
similarly defined.

We shall establish a number of propositions which lead up to a decomposition of
Uy [Us] into a Onion of disjoint N-primitives [S-primitives] countable in number. The
essence of the analysis lies in the introduction of a partial order among - or S-elements,
and, for ordered subsets of N- or S-elements, in the reduction of this order to a numerical
basis.

We say that two N-elements are ordered if one is included in the other. We similarly
order interiors Ty of N-loops y. Strict inclusion of a set 4 in B will be denoted by the rela-
tion 4 < B or B> A. If ¢ and y are non-singular N-loops and Ip N Iy +=0 I¢ and Iy are
ordered. We extend this fact as follows.

() If N-elements [@] and [y] intersect, [p] and [y] are ordered.

If [p] N [] = O then for suitable integers rand s, I, N Iy, 2= 0,andhence I'p, N Iy, +0
for n = r, m = s. Hence the set of all loop interiors of the form I¢p,, n =7, Iy, m=s, is
ordecred. From this set one can form an N-element [{] such that [{] > [¢] and [{]> [y].
It is clear that cither [{] = [@), or [{] = [y], or that both of these equalitics hold. Statement
(o) follows.

(B) If [p) and [y] are ordered N-elements with diameters D[@] and D[y] respectively,
then D[p] > D[y] if and only if [¢] > [y].

Suppose that I, and Iy, are ordered, and let d{p,) and d(y,) be the diameters of
¢, and y, respectively. It is clear that d(p,) > d(y,,) if and only if I¢, > Iy,,.

(1) If [¢] > [¢), the above N-clement [{] is such that for some integer ¢, and for n :: ¢,
¢, 1s in the set [@, @,, ...] and I, > [¢]. Hence D{p] = D[{] > d({,) = D[y].

(2) If Dip] > D[y], [£] has this same property so that [¢] > [y].

(v) If [¢] and [y] are ordered N-elements, D[@] = D[y] if and only if [¢] = [v].

This is an immediate consequence of (3).

We state two basic lemmas independent of the hypothesis of loop coverage.

Lemma 9.1. The Union V of N-elements [S-elements] in any ordered class K of N-

elements [S-elements) is an N-element [S-element].
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It is sufficient to consider the case of N-elements. Set 4 =sup D[¢]|([¢p]€K) and
distinguish two cases as follows.

Case 1. For some [p]€ K, D[yp] = A. In this case it follows from (8) and (y) that [y]
includes every [p]€ K and hence [y]> V. But [y] is in K so that V > [y]. Hence [y] =V
and L 9.1 follows.

Case 1I. Not Case I. In Case II there is a sequence [¢"], r =0, 1, ... of N-elements in
K, such that D{g"] increases strictly as r 1 oo and tends to 4 as 7 1 oo. Then

(9.3) P <[pl<[pfl<... [by ()]
For n successively 1, 2, 3, ... one can choose a y, in the set [¢,", ¢,", ...] such that
Iy, >[g" ]
and hence
Ty, <Iyp, <Iyg<....
Thus
(0.4) W1>Iy, >  (n=1,2,..)
so that

Dlyl= D"} [»=12,..]

and hence D[y] = A. But D[yp] = 4 by virtue of the definition of 4. We conclude that
D[y]= A. But clearly V =[yp], and L 9.1 follows.

Corollary 9.1 The union K of all N-elements [S-elements] which meet a given N-element
[S-element] is an N-primitive [S-primitive].
The elements in K cach meet a given element [¢], so that K is the union of an

ordered set of N-elements [S-elements]. The corollary follows from the lemma.

Lemma 9.2. A primitive R is an F-region. Each component of SR in * i concave
toward R.

The region R is an N-element and as such simply connected. It is an F-region and
an F*.set by L 3.2. Because R is an F*-set the components of SR in X* are concave
toward E.

Lemma 9.3 (a). Each point in an N-loop [S-loop] is in the closure of an N-primitive
[S-primitive].

(b) No two primitives intersect.

(¢) The number of disjoint primitives with diameters exceeding a positive constant is

finite.
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Proof of (a). We treat the case of a point P in an N-loop ¢. Let 4 be a transversal ray
in I and incident with P. Let p,, n =1, 2, ... be a sequence of points appearing on A
in the order p,, p,, ... and tending to P as n 1 co. We can suppose that each point p,, is
chosen so that the N-loop g, meeting p, is non-singular. Then ¢, N 2 =p, [L 3.0] and P

is in Eg,. It follows that
Ip,clg,<...

so that [@] is an N-element and Cl [¢] containg P. According to Cor 9.1 [¢] is in an N-
primitive.

The case of a point P in an S-loop is similar.

Proof of (b). An N-primitive [¢] cannot meet an S-primitive [y]; otherwise some non-
singular N-loop ¢, would be in the interior of some non-singular S-loop v,,. This is clearly
impossible. Nor can an N-primitive [¢] mect a different N-primitive [y]. For [¢] and [y]
would then be ordered [cf. (x)], and be equal, since both are maximal N-elements. State-

ment (b) follows.

Proof of (c). In cach primitive with diameter exceeding ¢ > 0, there is a loop with dia-
meter exceeding ¢ and two such loops in disjoint primitives would have disjoint interiors.
The number of such loops is, however, finite [[L 3.1] and (¢) follows.

1. 9.3 yields the following theorem.

Theorem 9.3. There is at most a countable number of N-primitives [S-primitives] which

meet an N-cap Uy, [S-cap Us), and Uy [Us) is the Onion of these primitives.

sorollary 9.2. I'n the case of loop coverage. there is at most @ countable number of primitives

in X* and L* is the Onion of these primitives.

§ 10. F-guides

A pseudoharmonic function with the open arcs of F as level lines is strictly increasing
or.decreasing along a transversal. The existence of simple arcs on M which are finite se-
quenees of transverse arcs will turn out to be of the greatest importance in the study of
pseudoharmonic functions 4 on M, and in answering the question as to the nature of u
as a function on X*, in particular in finding pseudoharmonic functions which are single-
valued on £* and have the open arcs of F as level lines. F-guides, which we now define,

are central in this study.

Definition. A non-singular arc on X* is termed m-transverse if the union of m con-

sequtive transverse arcs. A top circle on T* is termed m-transverse (m > 1) if the union
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of m consecutive transverse arcs, and l-transverse if every open subarc is a transversal.
An m-transverse top circle separating N from § for which m is a minimum is called an
F-guide.

The existence of an F-guide is most difficult- to establish in the case in which there
cxists at least one meridian L, and this is the case where the F-guide is most useful. In
casc L exists an n-transverse top circle g in £* which separates N from S, intersects L in
a single point, and is such that % is a minimum subject to these conditions, is called an
FL-guide. An FL-guide nced not be an F-guide, but once the existence of an FL-guide is
established the existence of an F-guide follows readily, even in the cases where there is

no meridian,

Reversing points. A point of junction P of two successive transverse arcs whose union
is an arc g, is called a reversing point of g if the sense of crossing of clements of F reverses
at . Recall that P is non-singular. It is clear that the junction point P of two successive
transverse arcs in a finite minimal decomposition of an arc ¢ into transverse arcs is a revers-
ing point. Otherwise the two ares would form a single transverse arc and ¢ could not have
been minimally decomposed.

The existence of an FL-guide. Except for one point in L, an FL-guide g, if it exists,
will be in the region /1 =2 ~ L. The region A is the homeomorph of a finite z-plane so that
the results of MJ 2 can be applied to the family Fy= F|A. In MJ 2 “bands” played a
fundamental role. A band R(N ), relative to A, is defined ag the union of all elements in
Fy which meet a right neighborhood N, in A. As shown in MJ 2 a band B(N,) in A is an
Fy-region, and has boundary components in A which are simple. If ¥ is a set in A it will
be necessary to distinguish between the boundary § E of E relative to X, and the boundary
po X of K relative to A.

We begin with two lemmas.

Lemma 10.1. Any tiwo non-singular points p, and p, on the boundary B R of o band R

A =2 —L can be juined by an m-transverse arc g such that ¢ — p, — p, is in R and m — 3.

Any two points ¢, and ¢, in different elements of Fy in R can clearly be joined by a
transverse arc in E. But the given points p; and p, can be joined to points ¢, and ¢, in B
and neighboring p, and p,, respectively, by transverse arcs k|, k,, in R cxcept for p, and
ps. One can suppose ¢, and ¢, so near p, and p,, respectively, that k; does not meet k,.
Let k be a transverse arc joining ¢, to ¢, in R. If ky Nk = ¢, and k, N k = g, the arc ¢ = k, kk,
satisfics the lemma. Otherwise let k; and k; be maximal initial subares of %, and k;, re-
spectively, intersecting k only in their endpoints ¢; and ¢, and let &’ be the subarc ¢; ¢;
of k. Then the arc g = kyk’ k; satisfies the lemma.
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Lemma 10.2. If a meridian L exists an FL-quide g exists.

Let p be an arbitrary non-singular point in L, and let 42 and y be sensed transverse
arcs joining p to points P and @ respectively, on opposite sides of L. We suppose A and u
80 restricted that AN p =0, ANL=p,uNL=0p.

It follows from Th 9.1 of MJ 2 that there exists a finite set of disjoint bands

(10.1) R,R,, ... R [m > 1]

m

of A whose Union is an F-region H which contains P and Q. Let P, and @, be respectively
the first intersection of 4 and x with 8 H. The point P; is not necessarily in § R,, nor @,
in R,

If R, and R, i j, are two bands in (10.1) whose Onion is connected, 8, R, N B, R,
includes at least one clement a€ Fy, so that one can connect E; with R; by an arc which
crosses « at one point only. The points P, and ¢, can accordingly be connected by a non-
singular arc ¢, in H except for P; and @,, and meeting the respective boundaries S, R,
in at most a finite set of s points. If then one chooses g so that s is minimal, it follows
that R, Ng, i =1, ..., m, is cither the empty set or two points p; and p;” appearing in
this order on g. The points p; and p;’ can be joined by a r-transverse arc g, (r < 3) with
g~ v —pi' < R [L10.L]

If p # P, and p = Q,, the subarcs pP; of 1 and Q,p of y, united with the arcs g in
proper order, give an n-transverse top circle, with n :23m -+ 2, meeting L only at p. If
p = P; the subarc of pP, of 1 is not needed.

The case in which p = @, is similar.

An n-transverse top circle meeting L only at p and for which n is minimal accordingly
exists, and the lemma follows.

The principal theorem of this section follows. No hypothesis as to the existence of a

meridian is made.

Theorem 10.1. Corresponding to an arbitrary admissible family F defined on T*, there

always exists an F-guide g.

Let % be a non-singular subarc of an element of F, with end points P, and P, in Z*,
Lhere exist top circles g; and g, in 2*, each separating N from S and with ¢, N g, =0,
g0 k=P, g,N k=P, Then g, and g, bound a doubly connected domain X < 2*. X is
topoloéica,lly equivalent to £* under a mapping 7 of X onto X*. Under 7', F|X goes
into a family F’ admissibly defined over £*. In F', T'(h — P, — P,) is a meridian L'. From
L 10.2 we infer the existence of an F'L’-guide ¢'. For some finite m, T-1¢’ is m-transverse
relative to F and the existence of an F-guide follows.

To apply this theorem certain definitions and lemmas are needed.
3 — 533807, Acta Mathematica. 91. Imprimé le 19 mai 1954.
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Let p be any non-singular point and N, a right neighborhood of p with canonical coor-
dinates u and v. Given r€ N, with u =0 at r, a sensed transverse arc g meeting r will be
said to be sensed away from pif |u| is increasing on g as r is approached in ¢’s positive sense.
A similar definition is understood on M.

A construction for use in L 10.3. Given h€ Fy let 4 and B be non-singular points in A.
Let H be one of the two regions into which A divides M. In H suppose that there are
n =0 Fy-rays m,, ..., , with end points in the arc 4 B of k. Suppose these rays written in
the order in which they are met by an arc % joining 4 to B with k — 4 — B< H, and
meeting each ray 7, in just one point. Let A and x4 be non-intersecting open transversals in
H incident with 4 and B respectively. It follows from Th 2.3 that 4 and x meet none of
the rays.

Lemma 10.3. In the preceding configuration A can be joined to an arbitrary point Peu,
or to P =B, by an m-transverse arc g with g — A — P < H — ) — u and such that g is sensed
away from B when P is in u. The minimum value of m ¢s n + 1 when P is in u, and n + 2
when P = B.

The lemma is true when » = 0; in this case a minimum m = 2, when P = B, [Cf. Th 2.3.]

When n >0 let P, be a point in n, N H,i=1, ..., n, and set Py =A4. It is clear that

Py, can be joined to P, by a 2-transverse arc k, whose maximal open subarc is in the set
H* =H — Union (4, u, 7, ..., 7,).

The junction point of the two transverse arcs composing k, must be a reversing point
[Th 2.3]. Moreover P, can be joined to PEu by a 1-transverse arc sensed away from B
at P. Let g be the arc joining 4 to P obtained by uniting these arcs. The points P,, ..., P,
in g are not reversing points. Thus g bears n reversing points. These reversing points divide
g into n + 1 transverse arcs.

Let g now be an arbitrary m-transverse arc satisfying the lemma. Suppose Peu. Let
@, be the first point of intersection of g with n; and K, the last point. Set K, = 4. The
subares K,,_,@,., m =1, ..., n, intersect only when successive and then only in a common
end point. They cannot be transverse arcs, by Th 2.3, and hence bear at least one reversing
point. Thus g bears at least » reversing points so that m = » + 1.

The case in which P = B is similar.

Corollary 10.1. An F-guide g which meets the interior of a non-singular loop ¢ has precisely
one reversing point in Ip.

Let an N-loop g [S-loop ¢] into whose south side [north side] there enters just one
F*.ray with initial point in g, be termed S-semi-concave [N-semi-concave]. Cf. MJ 2 Th 8.1.
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Lemma 10.4 (a). A merician h whick is concave toward one of its sides is met by an
F-guide in just one point.

(b). An F-guide g meets no S-concave or semi-concave N-loop, or N-concave or semi-
concave S-loop each point of whick is the limit point of a sequence of points on non-singular

meridians.

Proof of (a). The intersections of g with h are isolated on g and hence finite in number.
If ¢ meets & in more than one point it meets » in at least two points. One then uses
L 10.3 to show that g can be modified so as to cross & just once and be an m-transverse
arc with m smaller than previously. Since m is supposed to be a minimum for g this is
impossible.

Proof of (b). We suppose (b) false in that ¢ meets an §-semi-concave N-loop ¢ satisfying
the conditions of the lemma. At the first point p of intersection of g with ¢, g crosses |g|.
Otherwise g will have a reversing point at p and cross some non-singular meridian passing
near p more than once, contrary to (a).

Let A and B then be two points, at which g enters I¢ and leaves I respectively,
bounding an open subarc g(4, B) of g in I¢. Consider the case in which the F*.ray n
given in Eg as incident with @ has its initial point » in the open subarc @(4, B) of ¢.
There will then be at least one F*-ray in I incident with r. Let P be a point in an open
transversal in g just following g(4, B). By L 10.3, g(4, B) carries at least two reversing
peints. However, there exists a 2-transverse arc g,(4, P), in E¢ except for 4 in ¢, which,
substituted for g(4, P), gives a simple closed curve g, in place of g, with a reversing point
at 4, and at only one other point of ¢,(4, P), but with no reversing point at P. Thus g,
is an F-guide meeting @ without crossing ¢. This we have seen is impossible.

The case in which no F*.ray = is incident with ¢ (4, B) is similar. This is the case
which always occurs if ¢ is S-concave. The case of an S-loop is of like character. We infer
then that g cannot cross loops conditioned as in the lemma.

The index v (F) of F. The number of reversing points in an F-guide ¢ is called the
index v (F) of F. It is independent of the choice of g as F-guide. The following theorem

gives an evaluation of v (F).

Theorem 10.2, If there is at least one meridian in F*, each reversing point of an F-guide
g 18 in a primitive, while each primitive met by g contains just one reversing point of g. Thus
the index v (F) is the number of primitives met by g.

Let P be a reversing point of g. A non-singular element A€ F* which meets g in a
point ¢ = P sufficiently near P meets the two transversal subarcs of g incident with P.

When a meridian exists, k as non-singular, must either be a meridian or a loop. But %
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cannot be a meridian by L 10.4. Hence % carries a loop ¢. Then P is in I¢. Otherwise g
would enter I at two points. This is impossible, for by L 10.3 an F-guide can meet a
non-singular loop in at most two points. Similarly P is in the interior of each of a sequence
@15 Pa, --- of disjoint loops whose carriers meet g in a sequence of pairs of points tending
to P as a limit. If ¢, is properly chosen
Ipyc g, < ...

so that Union I¢, is an element containing P in its interior. By Cor 9.1 P is in a primitive
containing this element. That each primitive met by g containg just one reversing point
follows with the aid of Cor 10.1.

The theorem follows.

§ 11. No loop coverage, meridians present

To decompose Z* properly in this case a new type of covering region is needed to
supplement N- and S-caps.

Meridional regions. A maximal connected open set R < 2* in which the set of points
on non-singular meridians is everywhere dense is called meridional. Equivalently a merid-
jonal region is a maximal connected open set R < £* which is the OUnion of non-singular
meridians in R.

In the case at hand the open set
(11.0) X=3*-Cl{Uy U Us)

is not empty. We begin with a lemma.

Lemma 11.1. Any element h€ F* which meets X is a meridian.

Such an % cannot be a loop since & is not in the closure of Uy or Us, nor a top circle,
since it would then be carried by an N- or S-circuit and so bound Uy or Us [Th 6.3 ii].
It cannot carry an asymptotic ray m since such a ray, from a certain point on is non-
singular, contrary to the fact that x would meet any meridian in points following any
prescribed point on 7. Hence & is a meridian.

A “covering” in M of a meridian or N- or S-loop in Z* is called a meridian or N- or
S-loop in M. Observing that no meridional region can intersect an N- or S-cap, the natural

decomposition of X* is here as follows.

Theorem 11.1. In case loop coverage fails and a meridian exists, Z* i3 decomposed as
follows. Set B=B(UxU N)N B(Us US).
(a). If B=0, the set X in (11.0) is a doubly connected meridional region R bounded on
the north by BUy, or by N if Uy =0, and on the south by BUs, or by S if Us =0.
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(b). If B =0 each component R of X is an F-region R such that Ry in M is bounded
by two disjoint meridians, whose projections in X* intersect at most in a point, and by a set
(possibly empty) of disjoint N- or S-loops.

(c). The number of components of X is finite.

It follows from L 11.1 that any non-singular element in F* which meets X is a

meridian. Hence the components of X are meridional.
Proof of (a). It is clear that X is bounded as stated, and hence doubly connected.

Proof of (b). Here X is an F-set and satisfies Conditions @ with Uy and Us. Hence
R does likewise [L 3.3]. Since there exists a non-singular meridian there is no N- or S-
circuit. Hence the components of 8 B in X* must consist of two meridians % and k, and a
set (possibly empty) of disjoint N- and S-loops. R is in fact an F-region. The meridiang
h and k intersect at most in a point, since X and hence R is an inner closure. Statement
(b) follows.

Proof of (c). If there were infinitely many components of X there would be infinitely
many meridians in 8 X of which no two would intersect in more than a point. There would

then be infinitely many components of Uy U Us whose closures would meet the equator
of ¥, and by virtue of Th 9.3 infinitely many primitives with diamecters at least g Thisis

impossible by L 9.3 {c).
This completes the proof of Th 11.1.

Lemma 11.2 (i). If R is a meridional region each element k€ F*| R is carried by a meridian
m F*.

(ii). There is at most one element h€ F*| R incident with a given N- or S-loop in BR,
and no such b is incident with a meridian in § R.

(iii). There is no singular point in R.

Proof of (i). This follows from L 11.1.

Proof of (ii). Suppose two elements k and k in F*| R were incident with points p and
¢ in an N- or S-loop ¢ in S R. Let ¢(p, g) be the arc of |@| between p and ¢ in case p =g,
and let ¢ (p, ¢) = p in case p =¢. Let &’ and k&’ be meridians carrying » and k respectively.
It is then clear that ' U &’ U @ (p, q) carries an N-loop and an S-loop intersecting in ¢ (p, q).
Since at least one of these loops meets R this is impossible. That no element ke F*| R is
incident with a meridian in f R is similarly proved.

Proof of (iii). The denial of (iii) implies the existence of a loop meeting R. Thus (iii)

must be true.
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Theorem 11.2 (a). It R ¢s a simply connected meridional region each F-gquide g crosses
R without reversing point in B and without meeting the loop boundaries of R. The union of
the elements in F meeting g 0 R is R.

(b). 4 doubly connected meridional region R exists if and only if there is an F-quide
without reversing point, and in case R exists the union of all elements in F meeting an F-guide
g is R.

Proof of (a). By virtue of L 11.2 (ii) cach N-loop [S-loop] in § R is S-concave or semi-
concave [N-concave or semi-concave]. It follows from L 10.4 that an F-guide g meets no
N- or S-loop in § B. Now g meets each non-singular meridian in precisely one point [L 10.4],
and since non-singular meridians are everywhere dense in R there can be no reversing
point in g N R. Each element A€ F*| R is carried by a meridian ¥ in F* [L 11.1], and &
meets g. Since there is no singular point in R [L 11.2 (iii)], we conclude that A€ F*| R is an
element in F meeting g. Hence R is the union of elements in ¥ meeting g.

Proof of (b). Suppose an F-guide g exists without reversing points. Then B, in
Th 11.1, = 0. Otherwise g would enter Uy or Us and hence meet a primitive {Th 9.3], and
by Th 10.2 carry at least one reversing point, contrary to hypothesis. Hence B =0 and
we infer the existence of a doubly connected meridional region [Th 11.1 (a)].

Conversely the existence of a doubly connected meridional region R implies, as in
the proof of (a), the existence of an F-guide without reversing point, and that R is the union
of all elements in F meeting g.

The establishes Th 11.2.

There is no singular point in a meridional region {L 11.2 (iii)], and none in a central
or spiral annulus [Ths 8.1 and 8.2] or in a boundary common to a central and a spiral an-
nulus [Th 8.3 (b)]. Thus cach singular point of F*isin C1U y U Cl1Us. Hence the following

theorem.

Theorem 11.3. Regardless of loop coverage or the existence of meridians, a necessary and
sufficient condition that F* be non-singular is that there exist no N- or S-circuit or singular

N- or 8-loops.

§ 12. Meridians present, no inner cycle

When there is at least one meridian we have distinguished the case of loop coverage
from the case of no loop coverage. One can equally well make a different division into the
cases in which an inner cycle exists and no inner cycle exists.

When there is both an inner cycle ¢ and a meridian, @ is the inner cycle both of an

N. and an S-circuit. The cycle ¢ is the common curve boundary of UyU N and U5V S.
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Loop coverage thus occurs as in Th 9.2 (a). In this case X* is the Onion of primitives as
indicated in Cor 9.2. In this section we suppose that no inner cycle exists and divide Z*
into canonical polar sectors.

Our decomposition of X* into polar sectors is analogous to our decomposition of
X* into caps and annuli in § 8. We began there with a partial ordering of inner cycles,

N- and S-cycles. We begin here with a partial ordering of meridians in M.

Order among meridians in M. Let 0 represent the longitude of a point in £*. On M
we understand that the range at 0 is the whole §-axis. By a parallel in M is meant an unend-
ing open arc in M covering a parallel in X*. By the positive side of a meridian 2 in M we
understand that region in M —« in which 6 takes on arbitrarily large positive values on
each parallel in M. The negative side of x is the complement in M — x of the positive side
of «.

Two meridians z and y in M which are not identical shall stand in the relation x <y
or y >z, if ¥ meets the positive but not the negative side of , or equivalently if x meets
the negative but not the positive side of y. If x <<y the set x Ny may be empty, a point,
an arc, or a half open arc whose projection in X has one end point in £*, and a limiting
end point either at N or at S.

A point p in M has coordinates [4, #] where 0 and 2 are respectively the longi-
tude and latitude of p. There exists a top mapping 7' of M onto M such that the
coordinates of Tp are [A,0-+2x]. If K is an arbitrary set in M the set T"E,
n=*1,+2, ... is termed congruent to E. We shall denote TE by E®.

The covering in M of an N- or S-primitive, meridional region, N- or S-loop, ctc.
given in X*, will be called by the same name as a subset of M. Conversely the projection
into £* of various sets first defined on M, such as polar sectors, cut sectors, ete. will be

called by the same name as subsets of X *.

Polar sectors. If x and y are meridians in M and if <y < 2V, the intersection of the
positive side of x with the negative side of y will be called a polar sector Il =II(z, y) in
M. When no ambiguity can arise we speak of a polar sector as a sector. If z Ny =0, [T is
connected. If x Ny is a point or arc, II has two components, one an N-loop interior, the
other an S-loop interior. If 2 Ny is a half open are, 11 has precisely one component of one
of these types. If y = 2" the projection of Il in £* has just one boundary meridian and

an inner closure in X* which is Z*,
Cut sectors. Let II (z, y) be a sector in M such that z Ny =0, or such that x Ny =0

but there exists an open arc c€ Fi|II with end points in # and y respectively. We term

IT a cut sector. When x ( y is a point we term Il simply degenerate; when x N y is an arc or
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half open arc we term II doubly degenerate. The open arc ¢ in a non-degenerate cut sector
is unique, and in such a sector y N 2!’ = 0; otherwise an inner cycle would exist in F'*,
contrary to the hypothesis of this section. Hence ¢ divides Il into an N-loop interior and

an S-loop interior with ¢ as common boundary.

The meridian class £. Let £ be the class of meridians in 2* in the boundaries of meri-
dional regions or of unbounded N- or S-primitives, that is primitives whose closures meet
N and 8. Cf. Th 6.1. The set & of meridians in M covering elements of £ is ordered without
exception. The set £ may be empty. If £ is empty there can be no unbounded primitives,
and the only meridional region possible is one without meridional boundaries, that is, a
doubly connected meridional region [Th 11.1]. The set & may contain only one meridian.
There can then be no meridional region, since a meridional region, as an inner closure,
cannot have a single meridian boundary. When £ contains precisely one meridian and there
is no inner cycle, this meridian must be the sole meridian boundary of an N- or S-primitive.

If y is the immediate successor of €&y, x and y are termed adjacent in M. If & contains

only one meridian h, ks and hfy are adjacent in M.

Lemma 12.1. If x and y are adjacent meridians in &y, then x and y are meridian boundaries

in M either of a meridional region, an unbounded primitive, or of a maximal cut sector.

The truth of this lemma will follow from (i) and (ii).

(i). If for the given z and y, I (x, y) meets a meridional region H or unbounded primitive
H in M, then x and y are meridian boundaries of H.

Recall that H has unique meridian boundaries x, and y, with z; <y,, and that =,
and y, are adjacent in £y. Hence « =< ; <y, < y. But x and y are adjacent in &, by hypo-
thesis. Hence z = z,, y =y, and (i) is proved.

(11). If for the given x and y, Il (z, y) meets no meridional region or unbounded primitive,
then Il (z, y) is a cut sector which is maximal in M.

If z ny =0, Il is a cut sector by definition of a cut sector.

Suppose then that £ Ny =0. Then II is connected. Since II contains no meridional
region by hypothesis its homeomorphic projection II* < X* cannot meet the region X

of (11.0). [L 11.1.] Hence
MM*<=Cl(UyU Us).

The openness of I1* and the disjointness of Uy and U then implies that
(12.1) M*NBUy=T1*NBUs.

The open F-set [1* n Uy is bounded from S. Otherwise there would be an unbounded
N-element E in this set; the N-primitive which contains £ is E, [cf. (y) § 9] and in IT*,
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contrary to hypothesis. Similarly IT* n Us is bounded from N. Hence the set in (12.1)
is bounded from N and from §. This set is an F-set separating N from § in the connected
set II* and contains a finite collection of elements in ¥. There must then exist an open
arc ¢€ Fi|II with end points in  and y. Thus II is a cut sector. It remains to show that
IT is maximal.

The meridian y is in the boundary of a meridional region or an unbounded primitive
in the positive side of y. Hence there can be no cut sector which contains IT and meets the
positive side of y. Similarly with the negative side of . Hence II is maximal and the lemma
follows.

A polar sector whose meridian boundaries are those of a meridional region or of an
unbounded primitive will be called a meridional sector or primitive sector respectively. In
general a meridional sector is not a meridional region, nor a primitive sector a primitive.
With this understood we state a theorem of paramount importance in the study of pseudo-

harmonic functions on M.

Theorem 12.1 (a). If there is at least one meridian in F* and no inner cycle, then * is
the Union of a finite non-empty set of disjoint polar sectors each of which is (1) a meridional
sector, (2) a primitive sector, or (3) a maximal cut sector.

(b). The set of meridians bounding the canonical sectors in (a) is the set of meridians bound-
ing the meridional and primitive sectors in (a).

(c). Any finite circular sequence of sectors of types (1), (2), or (3) is realizable subject to
the following conditions. On M adjacent sectors of the same type must be primitive sectors.

A doubly degenerate cut sector 11 cannot be adjacent on M to two meridional sectors.

Statement (a) of the theorem follows from L 12.1, Th 11.1 (¢), and L 9.3 (c). Statement
(b) follows from L 12.1 with particular reference to the definition of the set &£,. Turning to
(¢) we note that two maximal cut sectors IT, and II, in M cannot be adjacent since Union
(H,, II,) would then be a cut sector. Two meridional sectors cannot be adjacent to each
other or to a doubly degenerate cut sector since the Union of these sectors would then be
a meridional sector. That any finite circular sequence of sectors of types (1), (2), or (3)

is realizable with the above exceptions is readily established by simple examples.

The non-singular case. When there are no singular points, F'* = F; there are then no
N- or S-circuits so that @y [@s] is either N [S] or a maximal N-cycle [S-cycle]. Th 6.3
is accordingly simplified. If loop coverage occurs it is impossible that Us be bounded from
8 and U s bounded from N as well. Cf. Th 9.2 (a). In N-spiral [S-spiral] annuli all asymptotes
have initial points at N [S]. Cf. Th 8.2; Th 8.3 reduces to Th 8.3 (a).

When a meridian exists there is no inner cycle, so that Th 12.1 covers the case where
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a meridian exists completely. In this theorem reference to cut sectors should be deleted.
Th 12.1 (b) is trivial. When a meridian exists the index » (F) of F is simply the number of
disjoint unbounded primitives. An F-guide crosses each such primitive and has just one
reversing point therein. Each open arc or top circle in the boundary of a region is concave

toward that region.
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