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1. Introduction. 

In functional analysis one is often presented with the following situation: a locally 

compact space X is given, and along with it a certain topological vector space • of 

real functions defined on X; it is of importance to know the form of the most general 

continuous linear functional on ~. In many important  cases, s is a superspace of the 

vector space ~ of all reul, continuous functions on X which vanish outside compact 

subsets of X, and the topology of s is such that  if a sequence (]n) tends uniformly 

to zero and the ]n collectively vanish outside a fixed compact subset of X, then (/~) 

is convergent to zero in the sense of E. In this case the restriction to ~ of any 

continuous linear functional # on s has the property that  # ( / ~ ) ~ 0  whenever the se- 

quence (/~) converges to zero in the manner just described. I t  is therefore an important 

advance to determine all the linear functionals on (~ which are continuous in this eense. 

I t  is customary in some circles (the Bourbaki group, for example) to term such 

a functional # on ~ a "Radon measure on X" .  Any such functional can be written 

in many ways as the difference of two similar functionals, euch having the additional 

property of being positive in the sense that  they assign a number >_ 0 to any function 

/ satisfying ] (x) > 0 for all x E X. These latter functionals are termed "positive Radon 

measures on X" ,  and it is to these that  we may confine our attention. 

I t  is a well known theorem of F. Riesz (Banaeh [1], pp. 59--61) tha t  if X is 

the compact interval [0, 1] of the real axis, then any positive linear functional /~ on 

,~ has a representation in the form 

1 

(l) = f l (x) d V (x). 
0 

V(x) being a certain bounded, non-decreasing point-function on [0,1]. When X is a 

geD~rat locally compact space, the problem has been t rea ted  (albeit in a rather incidental 
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fashion) in Halmos' book "Measure theory", which will be denoted by [H] in the sequel. 

I t  is shown ([H], Chapter X, Theorem D, p. 247) that  every positive linear functional 

/~ on ~ of the type described has a representation 

# (t) = f I (x) d u (x) (i .  1) 
X 

where m is a certain Borel measure on X ([HI, pp. 223-4). The result for a general 

compact space X is also proved in the recent publication [2]. 

At the moment when I was ready to submit the present account for publication, I 

received from E. Hewitt a reprint of his recent paper written jointly with H. S. Zucker- 

man [3]. This joint paper forms the sequel to an article bearing the same title which 

is written by Hewitt alone and which is not yet published. The overlap between the 

present theory and that  developed in [3] is not large and the two accounts are in 

many respects complementary. I wish to express here my thanks to Professor Hewitt 

for reading and commenting upon the present paper in its MS form; several of his 

suggestions have been incorporated with advantage. Apart from fragmentary indications 

devoid of all detail which have appeared in the writings of Cartan and Godement, I 

believe that  the account in [3] and that  given below arc the only one~ which develop 

the theory of Radon measures in the particular manner adopted (in which the novel 

feature is the appearance of the measures as functiona]s). 

The main aim of the paper is to show that  a positive Radon measure on X de- 

fines a countably additive measure function on X by integration with respect to which 

we can recover the original functional. The method we adopt has several advantages 

over that  of Halmos. For example, if X is not countable at  infinity, the class of Borel 

sets in X as defined by Halmos does not include all open sets. These sets are so 

simple that  ~t is desirable that  they be measurable for the measure m in (1.1). Again, 

the class of Borel sets is not  necessarily closed under complementation: in our treat- 

ment, the class of measurable sets does enjoy this property, includes all the wide Borel 

sets defined in w 2, and is closed under the operation (A) of Lusin and therefore in- 

cludes all the analytic subsets of X. Finally, Halmos does not show that  the measure 

m in (1. l) is regular for all Borel sets: we show tha t  it is possible to arrange tha t  

it has this property on a significantly wider class of sets. 

None of these remarks has any significance when X is countable at infinity, and 

it cannot be denied tha t  in the contrary case the theory of the measure-function is 

not as complete as one might wish. The defects appear to be irrevocably connected 

with the pathology of the infinite in measure theory. However, these difficulties appear 
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only when one insists on introducing the measure-function, of .which there is strict 

need only for the purposes of comparison with Halmos' treatment. The integration 

theory appears to be satisfactory in most important respects. 

The method we adopt is similar to that  exploited by McShanc in his book "Inte- 

gration" in order to discuss the Lebesgue and Lebesgue-Stieltjes integrals on the real 

axis and Euclidean spaces. However, some of the proofs given there need important 

modifications in the general case. In addition, McShane's treatment corresponds to 

studying the method over each compact subset of X separately. There is no need to 

do this, and the process is often inconvenient. Nevertheless, it will often be convenient 

to make references to McShane's proofs whenever they are applicable, and in doing 

this we shall refer to his book by the symbol [M]. 

The Bourbaki volume on integration, hereafter referred to as [B], appeared whilst 

the present paper was in Vhe hands of the referee. Bourbaki's treatise uses a method 

different from that  discussed here, presumably in order to have a uniform treatment 

of reul-valued and vector valued functions. This is made possible by completing (~ as 

a uniform structure, rather than as a partially ordered set. The method used here 

is linked with that  of Bourbaki by means of Exercices 5 and 6 on pp. 172--173 of 

[B]. Other comparisons with [B] will be made at the appropriate places. Several proofs 

which formed part of the original version of this paper have I)ecn omitted and references 

to [B] substituted. My thanks are due to the referee for sugge:4i,ms in this and many 

other directions. 

2. Preliminaries Concerning Measures. 

We shall adopt the notation and terminology of [H] as f~r as is convenient. 

Let us consider first certain non-void sets F of subsets of X, a locally compact 

(Hausdorff) space with points x. F is said to be a a-ring if it is clo:~ed under countable 

unions and differences ([HI, p. 24); F is a a-algebra if it is a a-ring and contains X 

as a member, in which case it is cloded under complementation. B denotes the set 

of all Borel subsets of X ([H], p. 219), the minimal a-ring containing all the compact 

subsets of X. B* is the set of all "wide" Borel sets, the minimal a-ring containing 

all closed subsets of X. Always, B < B * ,  and B = B *  if and only if X is countable 

at infinity. 

A subset of X is called bounded if it is relatively compact ( t h a t  is, if it has a 

compact closure); it is called a-bounded if it is the union of countably many bounded 

sets. The set of all a-bounded sets in X is a a-ring containing B. Any a-bounded 

open set is a member of B ([HI, Theorem A, p. 219). 
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If F is a a-ring of subsets of X, a measure on F will mean a set-function m, 

defined, positive (that is, >_0), possibly +c~ ,  and countably additive on 17; m is 

locally bounded on 17 in case m (S)<  + c~ for every bounded set S E F. 

By a measure-space (over X) we shall understand a p~ir {F, m} formed of a a-ring 

F of subsets of X, assumed to be at least as large as B, together with a measure m 

on 17; {F, m} is said to be locally bounded if m is locally bounded on F, that  is if 

m(K)< + c ~  for all compact subsets K of X. A subset S E F  is said to be 

a) inner-{F, m}-regular if m(S)= sup m(K) for all compact set:~ K<S; 
b) outer-{F, m}-regular if re(S)= inf re(G) for all open sets G e F  with G>S; 
S is {F, m}-regular if it satisfies both a) and b). The measure-space {F, m} is itself 

said to be regular if every set S e F  is {F, m}-regular. 

By a Borel measure space (over X) we mean a measure-space of the form {B, m}: 

such a measure-space is completely defined by its measure-function m, and it is simpler 

to speak of a Borel measure, a locally bounded Borel measure, et cetera. These notions 

agree with those of Halmos. 

Any measure-space {F, m} defines a Borel measure when we restrict m to B: the 

resulting Borel measure (-space) is termed the Borel restriction of {F, m}. 

We can now summarise some of the results we shall prove: 

1) With every positive Radon measure ,n on X is asso(.iated a locally bounded 

measure-space {F,/i} in which F, the set of sets termed "measural)le for #" ,  is a a-al- 

gebra at  least as large as B* and containing all the analytic subsets of X (Theo- 

rems 5 and 9). 

2) The set F~o~ of sets whi('h are {F,/t}-regular invarial)ly contains B and all 

open sets; {F, g} is regular at least whenever X is the union of countably many open 

sets of finite measure, hence surely whenever either X is countable at infinity or/~ is 

bounded (Theorem 7 and corollaries). 

3) The Borel restriction o f  {F,/~} is a locally bounded and regular Borel measure 

(Theorem 8). 

4) Every locally bounded and regular Borel measure is the Borel restriction of the 

measure-space {F,/~} associated with a unique positive Radon measure/~ (Theorem 10). 

3. Pre l iminaries  Concerning F u n c t i o n s .  

By a function we shall always mean a real-valued function on X; continuity is 

taken to imply finiteness, but discontinuous functions may take the values + co. If 

/ is a continuous function, Kr, the support of ], is the closure of the set {xEX:/(x)40}: 
Kr is thus the complement of the maximal open set on which ] vanishes (cf. w 9). 
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(~(X) (denoted by /~ in [H], p. 240) is the real vector space of continuous func- 

tions / on X for each of which KI is compact. This class of functions is denoted 

by ~ (X,  R) in [3]. 
o o O o  

Given two functions / and g, / < g means that  / (x) _< g (x) for each x E X;  we then 

say that  / minorises g, and that  g majorises /. We say that  / is positive if />_0. 

(~+ is the set of positive functions in (s 

On occasions it will be useful to employ the notion of directed sets and systems 

of function~ or of subsets of X. In either case, the distinction between increasing and 

decreasing directed sets and systems will be quite obvious. The only point requiring 

explicit mention in this connection is this: if I and J are directed sets, I • J will 

stand for the directed set having as elements ordered pairs (i, j) with iE I and j E J 

and having as partial order the relation (i, j ) <  (i', j') signifying that  i < i '  and i < J'. 

The following four lemmas will be required. 

L o m m a  l :  I /  K ~ X is compact, and i/ N is a neighbourhood o/ K, there is a 

continuous /unction / such that 

0</_<1,  / = 1  on K, / = 0  on X - N ;  

in particular, /E ~ ~ i~ N is bounded. 

A proof of this is given in [H], Theorem B, p. 216. 

L o m m a  2: Any  open set G ~  X is the union o~ an increasing directed set o/ bounded 

open sets, each having its closure contained in G. 

p r o o f :  For each p E G, select an open neighbourhood N (p)of  p such that  N(p)  

is compact and contained in G: this is possible because X is locally compact and 

hence regular. The required directed set of open sets results on taking the finite unions 

of the selected neighbourhoods N (p). 

We now introduce two further sets of functions which play a fundamental role 

in the integration theory, namely: E = E (X), the set of lower semicontinuous functions 

each maiorising some function in ~;  and l l = I I ( X ) ,  the set of upper semicontinuous 

functions each minorising some function in ~. In an obvious notation, l i =  - E  and 

;E = -  lI, so that  every proposition concerning E has an analogue for II which is ob- 

tained by change of sign. We remark that  by convention a function in E may be + co 

at some or all points, but is nowhere - c o ;  an analogous convention applies to 1I. 

If ~ is a function which admits the value + co at the point x0, lower semicontinuity 

of q~ at the point x o means that  for each /inite number a, there is a neighbourhood 

of x o (in general depending upon a) throughout which r (x) > a. A similar remark applies 

to upper semicontinuity at  a point where the value - c o  is attained. 
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L e m m a  3:  Any /unction in ~ is the upper envelope o/those/unctions in ~ which 

it majorises. 

This assertion is trivial; cf. [B], p. 103, Lemme 1. For future reference we observe 

that  the lemma may be stated thus:  if ~ E ~, the ,:et D~ of functions ] E ~ majorised by 

is an increasing directed set, and we have at each point of X the relation q~ = l im/ .  
] ED~ 

The final lemma of this group has interest for those spaces X which satisfy certain 

countability restrictions, but  it is not essential to the general argument. I justify its 

inclusion on the grounds that ,  wherever it is applicable, it simplifies a /mmber of 

subsequent proofs. 

L e m m a  4 :  In order that every ]unction q~ E P. be the limit o /an  increasing (countable) 

sequence o/]unctions in (~, it is necessary and su]]icient that X satis]ies the two countability 

restrictions: 

(c) X is countable at infinity; 

(c') every open set in X is an Fa-set. 

P r o o f :  The necessity is trivial. A sketch of the proof of sufficiency follows. To 

begin with, there is no loss of generality involved in considering only positive functions. 

Obviously, the subset s of ~ formed of limit.~ of increasing sequences of functions 

in ,~ is itself closed un(ter the operations of taking limits of increasing sequences an(t 

of forming finite linear coml)inations with positive coefficients. Now every positive 

q~ in ~ is easily seen to be the limit of an increasing sequence of finite line~Lr com- 

binations with positive coefficients of characteristic functions of open sets in X. If (c) 

is true, the characteristic function of any open set in X i,; the limit of an increasing 

sequence of characteristic hmctions of bounde(t open sets. If (c') i;~ true, Lemma l 

shows immediately that  any such function is in ~0. 

4. The Definit ion of  Radon Measures on X. 

I t  is obvious that  the definition of a Radon measure on X given in w 1 above 

is identical with that  described in D~finition I, p. 50 of [B]. We therefore take its 

formulation for granted and, for the purposes of future reference, denote it, hereafter 

as Definition 1. Observe that  the type of continuity required of a linear functional # 

on {~ in order that  it be a Radon me~sure is equivalent to the existence for each 

compact subset K of X of a finite, positive number MK such that  

I~(/)I_<M~ �9 supl/(x)] (4.1) 
x E x  

is valid for all / E ~  with K I <  K;  cf. equation (2), p. 50 of [B], where our (s is de- 

noted by ~ .  
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As has been said, it is not difficult to show that  any linear functional /~ on 

which satisfies the inequalities (4.1) is decomposable in many ways into the form 

/~ =/ff - -  #" 

where # '  and #"  are positive Radon measures on X. 

unique so-called "minimal decomposition" 

# = # +  - /~ -  

(4.2) 

Further,  there exists always a 

(4. 3) 

of this form having the property that  for any decomposition (4.2), # '  - #+ and/~" - / ~ - a r e  

both positive Radon measures. See [B], ThdorSme 2, p. 54. 

For a positive linear functional on ~, the continuity is automatically arranged. 

Thus one might define a Radon measure as a linear functional on ~ having at least 

one decomposition (4.2) into the difference of two positive linear functionals, thereby 

avoiding all reference to continuity. 

We shall show in w 12 how ~ may be 

a locally convex topological vector space in 

are precisely those linear functionals on 

provided with a topology making it into 

such a manner that  the Radon measures 

which are continuous for this topology. 

Meanwhile, the notion of continuity already defined serves equally well. 

From this point onwards until explicit mention to the contrary, we shall consider 

a positive Radon measure on X, fixed once for all. 

5. The Integral defined by #. 

We aim to show that  the domain of the functional # can be extended to a wide 

class of functions having many of the properties of the Lebesgue-summable functions 

on the real axis, the functional /~ playing the role of an operation of integration. In 

anticipation of this we shall, for ] e (5, write /~ (/) in the form f/(x)dl~ (x) or simply 
X 

f ] d #  when no confusion can arise: this is pure symbolism at present. 

The first stage in the extension of the domain of g is to define the integral for 

functions in ~, or in 11. 

Defini t ion 2: I~ ~ E ~ we define 

J ~ d / ~ =  sup f ] d #  for / E ~ ,  ] < r  

and i] ~ q H we de/ine 

fy ;d /~=  inf fgd/~ for g e e ,  g_>yJ. 



140 R . E .  Edwards. 

n e m a r k :  This definition of f ~  d#  for ~ E ~ agrees with that  of #* (~) for positive 

given in D6finition 1, p. 104 of [B]. 

Since the intersection of ~ and 11 is exactly (~, these definitions will be shown 

to be compatible provided we make certain that  for/0 e ~,/~ (/0)= sup # (/)-: inf # (g), 

where / and g separately range over ~ and are further subject to ] <]o and g >/o re- 

spectively. But this is obvious. 

If 9 e ~ , - o o < f q ~ d t , <  + o o ;  if v / e l l , - o o _ < / v / d # < + o o .  Finally, if Obelongs 

to ~ or to 1 1 , - 0  belongs to II or to ~ respectively, and in either case 5 ( - O ) d # =  

- f  O d #  �9 For this reason it is always enough to prove properties of integrals of func- 

tions in ~. 

P ropos i t i on  t :  I/  9 (automatically in ~) is the limit o/ an increasing directed 

system (q~i)iel of ]u~wtions in ~, then 

fq~d/~=limfq~id/~. 
i e l  

For positive functions, this is just Th6orSme 1, p. 105 of [B]; removal of the 

restriction that  the functions be positive involves no difficulty. 

B o m a r k s :  (i) If we take in place of (~ei)iel the directed set Dr we recover 

Definition 1, which may be written in the form 

(ii) If X satisfies (c) and (c'), every 9 in $ is the limit of a monotone ascending 

countable sequence (/~)< ~ so that  we could then define 

the right member being independent of the particular sequence (/~) used. 

P r o p o s i t i o n  2: (a) The integral is additive and homogeneous on ~ (and there]ore 

on 1I as well). 

(b) I/  q~e~ and v/eli,  and i] v/<q~, then 5v/d/~<f~d/~. 
P r o o f :  (a) follows easily from Proposition 1. I t  is also equivalent to the con- 

]unction of Proposition 1 and Th6or6me 2, pp. 104--106, of [B]. 

(b) There is no loss of generality in assuming both integrals finite. Write ~ and 

v/ in the forms 

= lim/~, 
i e z  

v/= lim gj, 
i e J  
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whele (/i)i~l is an increasing, and (gi)iEJ a decreasing, directed system of functions 

in ~. Then (/i-gj)(i.j)E1• is an increasing directed system of functions in ~ with limit 

the positive function ~ - ~  in ~. So by Proposition 1, 

0 _< f (~0 - ~f)d# = lim f / ,  - gj)dit 
(i. i) 

=l im f / , d # -  lira f gjd/~, 
i~ l  ]~J 

since both limits on the right, namely fq~dit and f ~ d # ,  are finite. This yields (b). 

R o m a r k :  The e3sential application of (b) is the proof of the second half of Remark 

(iii) following the next definition, which is essentially Theorem 4.8 of [3]. But in [3] 

the assertion (b) is replaced by a rather delicate argument, given loc. cir. Theorem 3.4, 

on the possibility of injecting a function of ~ between ~ and yJ. The use of directed 

systems avoids this and makes the proof more transparent. 

Now we can enter upon the second and final stage of the extension process, for 

which we formulate. 

Definit ion 3: For an arbitrary /unction / we de/ine the upper It-integral 

f / d i t = i n f f q d i t  for Ves r 

and the lower /t-integral 

f / d i t = s u p f v / d i t  for v/qll,  ~v</. 

We say that / is widely summable (/or It), or that f / d i t  exists, in case f / d i t = f / d i t  

(possibly in/inite), the value o/ f/d# being then the common value o/the upper and lower 

integrals o/ /. Finally, / is summable (/or It) in case its integral exists and' is /inite. 

R e m a r k s :  (i) Our definition of upper It-integral coincides with that  given for 

positive functions in Ddfinition 3, p. 109 of [B]; see also Exercices 5 and 6, p. 172-3 

of [B]. 
(ii) I t  is easy to see that  any / in ~ or in 1I is widely summable, and that  its 

integral according to Definition 3 agrees with that  according to Definition 2. In 

particular, any /E ~ is summable. 

(iii) Always f/dit=-f(-/)dit and f/dit<__f/dit. 
(iv) There appears to be no term standard in integration theory which corresponds 

to our "widely summable": "integrable" would be misleading since a function can be 

widely summable without being in any sense measurable for It. 

(v) I//<_g, f/d/~<_fgdit, f/dit<fgdit. 
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I t  is very easy to see that  the upper integral is a convex and positive-homogeneous 

functional of the integrand, the only proviso being that  the sum of two functions 

occurring in the statement of convexity be well defined. However, later results show 

that  a summable function can be infinite only at the points of a set which is negligible 

in inte~ation,  and so it is legitimate to state without any proviso the basic 

T h e o r e m  i :  The set o~ /unctions summable /or /~ is a real vector space, addition 

and subtraction being taken modulo sets which are null /or /~ (see w 6), and the integral 

is a linear /unetional o/ the integrand on this set. 

The next theorem is perhaps the most fundamental of all. 

T h e o r e m  2: Let (In) be an increasing sequence o~ widely summable /unctions such 

that f /l d tz > - c~. Then / = l i m / ~  is widely summable and 
n. - -}  c ~  

f /d/z:lim f /nd/,. 

The proof demands only a slight modification of that  given in [M], Section 15.7s, 

p. 81. We remark that,  even in the classical theories, Theorem 2 is not valid for in- 

creasing directed systems of widely summable (or even of summable) functions. See 

also [B], Th6or~me 5, p. 138, and Exercice 5, p. 172. 

The next theorem may also be proved by standard means given for example ill 

[M], Section 15.6s, p. 77; see also Proposition 12 and Corollaire, p. 136 of [B]. 

T h e o r e m  3: I /  / and g are summable, so also are the /unctions sup (/, g) and 

in[ (/, g). Further, i~ / and g are bounded and summable, so is /. g. 

As a consequence, / is summable if and only if all of tile functions/+ = sup (/, 0), 

/ - = s u p  ( - / ,  0), I/] = / + + / -  enjoy this property. The second assertion of Theorem 3 

is of course only provisional but is necessary for the discussion of the measure-function 

generated by /~. 

We end this w with the following characterisation of summable functions, the proof 

of which is an easy consequence of our definitions and of Theorem 2. 

T h e o r e m  4 ( V i t a l i - C a r a t h 6 o d o r y ) :  For / to be summab~, it is necessary and 

su//icient that there exist two /unctions q5 and ~ with the properties; 

(a) r is summable and is the limit o/ a decreasing sequence (q~n) o~ summable /unctions 

in ~, each malorising /; ~ is summable and is the limit o/ an increasing sequence (~n)  

O/ summable /unctions in 11, each minorising /; 

(b) f 
Whenever / is summable, f / d #  is the common value o~ the integrals in (b). 
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Remarks: (i) One can say that  r  ~ and / are equal on a set which is null for 

# in the sense of Definition 5 to follow. 

(ii) Compare Th~orgme 3 and Corollaire, p. 151 of [B]. 

6. The Measure-Function generated by/~. 

For a general locally compact space X, there is some difficulty in defining a notion 

of measurability which is desirable in all respects. Several alternative notions, which 

are known to be entirely equivalent in the classical cases, lead to widely divergent 

theories in the absence of suitable countability restrictions on X. Of ally notion of 

measurability one will desire tha t  on the one hand it be local (or analysable into the 

conjunction of local restrictions) and, on the other hand, that  these local restrictions 

may be pieced together so as to form some sort of global restrictions on the set. I t  

seems very difficult to discover how to piece together more than countably many such 

local restrictions in any one step. When X is countable at infinity, this is all that  

is required. But in the contrary case difficulties arise which I am unable to resolve 

satisfactorily. 

We adopt a strictly local definition of measurability which admits as measurable 

many sets which are not included in the definitions of Hahnos, but it appears that  

one cannot include these additional sets without sacrificing the regularity of the ass()- 

ciated measure-space. However, nothing is lost by doing this since one can recover 

the results of Halmos by suitable restriction of the sets. The theory laid out in [3] 

is also included. 

Our notion of measurability agrees with that prescribed in [B], D6finition 2, p. 181; 

this results from Proposition 2, p. 182 of [B]. Agreement is also attained over the 

notions of sets which are globally null and those which are locally null, termed respec- 

tively "n6gligeable" and "localement n6gligeable" in [B], D6finition 2, p. 118 and Dd- 

finition 3, p. 183. Our interior affd exterior measures ~q and ~e agree respectively with 

Bourbaki's i t .  and ft*, these latter being introduced in [B], Exercice 7, p. 173, and 

D6finition 4, p. 113: agreement is ensured by our Theorem 6 or by [B], Proposition 19, 

p. 114, and Exercice 7, p. 173. 

Definition 4: Let E be any subset o/ X,  Z~ its characteristic ]unction. We say 

that E is measurable (/or t~) i/ and only i/ /or every compact set K =  X,  the /unction 

Z~nK is summable (/or #). When this is the case, the (ft - ) measure o / E  is by de/inition 

the number 
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The results concerning the integral already at  our disposal lead to 

T h e o r e m  5: The set F = F (it) o] subsets o] X which are measurable /or It is a 

a-algebra containing B*, and {F, it} is a locally bounded measure-space over X.  

The interior and exterior ( i t - )  measures of an arbitrary set E c X are introduced 

via the equations 

It~ (E) = sup It (K) for K compact, K = E, 

I te (E)=inf  It(G) for G open, GDE.  

I t  is plain that  both It~ and Ite are positive set-functions, that  It(E) lies between 

Itt (E) and Ite (E) whenever E is measurable, that  It~ (E)_<it~ (E) whatever the set E, 

and finally that  Ite is countably sub-additive. 

Defini t ion 5: A set E c X is said to be null (/or It) in case Ite (E)= O. 

Any subset of a null set, and any countable union of null sets, is again null. 

The next theorem relates the interior and exterior measures of a set with the 

lower and upper integrals of the characteristic function of that  set. The theorem is 

proved in [M], Section 20.5s, pp. 111-4 for bounded sets, but it is rather essential 

for our purposes that  this restriction be removed. Since the necessary modifications 

are not difficult to formulate, we shall merely state the result. 

T h e o r e m  6: For an arbitrary set E c X ,  

It,(R)=fz dit, Ite( )=j-x dit. 
The {F, it } -regularity of a set E E F  is equivalent to the equality I t t (E)=i t , (E) ;  

Theorem 6 tells us that  this in turn is equivalent to the wide summability of ZE" This 

observation is one of the most important consequences of Theorem 6. Other conse- 

quences which are worth mentioning here are contained in the following corollaries. 

Coro l la ry  i : I /  E is null, Z~ is summable, and Iti (E) = Ite (E) = It (E) = f ZE dit = O. 

Corol la ry  2: I /  E is null, i/ / is widely summable, and i/ g = / save  perhaps on 

E, then g is widely summable and f g dtt = f / d i t .  

Corol la ry  3: I] / is positive, and i / f / d i t = O ,  t h e n / = 0  save perhaps on a null set. 

Corol la ry  4: 1/ / is summable, then: a) it is zero outside the union o / a  a-bounded 

set and a null set, and b) it is /inite save perhaps at the points o] a null set. 

Of these, Corollary 1 is immediate from Theorem 6. As for Corollary 2, it suf- 

fices to show tha t  

f gdit  < f /d i t ;  (6.1) 
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for, granted this, we can replace in it g by - g  and ] by - ]  to conclude tha t  

Sgd#>_5/d/u, whence it follows that  g is widely summable and that  Sgd/U=S/d/U. 
To prove (6.1), let us first assume that  f/d/u>-~. Define for each integer n the 

function gn = ] +n.z~. Since E is null, each gn is widely summable and Sg~d/u =f/d/u. 
The sequence (gn) is increasing, and g<  lim gn. By Theorem 2, lim gn is widely 

summable and 

S gd/u < S (Ii+m g~) d/u =li+m S gnd/u= f ]d/~, 

which is (6.1). If now S/d/u = - 0% we wish to show that  ;gdlu = - oo also. But, 

for any finite number ~, there is q e s majorising / such that  

f q~d/u <~--l. 

For each k=1 ,2  . . . . .  enclose E is an open set Uk of measure less than 2 -k. The 
Oo 

function q~ = q  +k_~Zvk is in ~ and majorises g, since it is equal to + co on E. Hence 

d/u<f~xd/u=Sqd/u+k~/u(Vk)<~--_ l+k.x ~ 2-k=~" 

Since this is true for any finite ~, (6.1) is again verified and the proof thus completed. 

The proof of Corollary 3 runs along standard lines. Finally, consider a )o f  Cor- 

ollary 4: the proof of b) is similar. We may assume that  / is positive. Being sum- 

mable, it is majorised by a summable function in ~, and hence we may assume that  

] itself is positive, summable, and ill ~. Then there is an increasing sequence ( / , ) <  

such that  I ,  < / and !i+rn Stn d/u = f /d/u. Let 1o = l im/n ,  so that  10 is summable (Theo- 

rem 2), minorises/, and Stod/u=fld/u. Thus we have both t -  f0>_0 andS(l-lo)d/u--O. 
By Corollary 3, /= /0  save on a null set. This completes the proof since /o is zero 

outside the union of the compact supports of the / , .  

R o m a r k :  Assertion a) of Corollary 4 is a simple but significant result when one 

is dealing with spaces X which are not countable at infinity. 

7.  C o n c e r n i n g  R e g u l a r i t y .  

We recall from w 1 that Fr~ = Fr~ s (/U) denotes the set os sets B E F (/U) which 

are {F,/u}-regular, that is which are such that Xs is widely summable (according to 

the remarks following Theorem 6). We can prove 

T h e o r e m  7: (1) Every set E E F  is inner-{F,/u}-regular. 

(2) Every set in F~e~ having finite measure is almost a-bounded (that is, is the union 

o/ a a-bounded set and a null set). 
1 0 -  533805. Ac~a mathematica.  89. Imprlm6 le 2 avril 1953. 
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(3) Every almost a-bou~uted measurable set is in Fre~. 

(4) Every measurable set E is the disjoint union P U Q, where P is a-bounded and 

meas~trable (hence in Freg) and where Q is "locally null" in the sense that/,~e (Q 13 K)= 0 

/or every compact set K. 

(5) Every open set is in F~e~. 

Proof :  (1) Let  E e F  and let ~<tt(E).  There i~ then a compact set K0 such 

that  fZEngod/~>~. Since ZEnA-~ is summable, Theorem 6 shows that  fz~n~.od/~= 
=~tl(E fqK0). Hence there is a compact set K c E N  Ko, a fortiori K c E ,  such that  

/ti ( ) ~ #  (K) > g. So /~i (E) 2/z (E), and the assertion is proved. #(K) > ~. Therefore E " 

(2) Let E q Frr have finite measure. Then Ze is summable by Theorem 6; and 

by Corollary 4, ZE is zero outside the union of a a-bounded set and a null set, which 

yields our assertion. 

(3) Let E e F be almost a-bounded. We can then write E =  lim (E~ U N), whe'.e 
n - - ~  oo  

the increasing sequence (E=) is composed of bounded measurable sets, and where N 

is mill. Since E~ is bounded and measurable, ZE~ is summable, hence so also is 

ZE~U,~" By Theorem '2, Zz is at any rate widely summable, and so E e F ~ .  

(4) If E E F ,  we can find an increasing sequence (K,,) of compact sets such that  

ZEnK. is summable and 

~i2~ & f z~:n. d#  = #(E).  

Let P :  lira (E N K.) :  P is measurable, contained in E, and is a-bounded. Let Q = E -  P:  

Q is measurable and, if C is any compact set, Theorem '2 yields 

f,(E f~ C ) :  I gencd#=li,_.n I gtcnt%ncd#=~im t~(E n K~ N C)=#(P  f~ C). 

Thus lr (Q N C) = 0. Since Q fl C is boumled and measuraMe, this last is equivalent by 
3) to tt~(Q 13 C)=0,  so that  Q is locally null. 

(5) This is immediate since the characteristic function of any open set, being in 

!~, is widely summable. 

C o r o l l a r y  1:  1[ X itsel[ is almost a-bounded relative to # (or equi~,alently; i[ X 

is the union o/ countably many open sets o/ finite measure), then Fr~ exhausts F. This 

relation there[ore holds in the classical cases in which X is countable at infinity, or i/ 

the measure tt is bounded. 

C o r o l l a r y  2 : Always, F ~ :  B. 

We observe here that  for a set Q to be locally null, it is necessary and sufficient 

that  it be measurable and have measure zero. We prefer the term "locally null" since, 
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although in the classical cases/z (Q)= 0 is equivalent to/~e (Q)= 0, this is no longer the 

case ill general: this is shown by example in w 13 in connection with the t taar  measures 

on topological groups. The example there constructed is a set Z which is locally null 

and has infinite exterior measure. 

According to Theorem 7, (4), in order that  Fre~ shall exhaust F, it is necessary 

and sufficient that  every locally null set be null. 

T h e o r e m  8:  The Borel restriction o/ {F, H} is a locally bounded and regular Borel 

measure over X .  

P r o o f :  In view of Theorem 7, Corollary 2, it remains only to show that  if EEB,  

then / t (E )= in f  /~(H) for H E B ,  H open, and H ~ E .  For this it is enough to show 

that  any ol)en set G ~ E  contains somc open Borel set H DE. However, since E is 

a-bounded, we have E c  U O,,, where e'.~ch O~ is 1)ounded and open. Putting H =  

= U (G(~O,,), we see that  ( ; D l l D E ,  t]mt I t  is ol)ell , an(l that  H is a-boun(led and 
n = l  

so belongs to B (see w 2). This coml)letes the proof. 

We turn next to a brief (;onsideration of the notion of measurability in the sense 

of Carathdodory. The exterior measure /~ is <lefined for all subsets of X and satisfies 

the conditions : 

(C 1) t~(E):~f l~(F)  whenever E c F ;  

(C 2) /re ( U E,) ~ /~ (E,) for any sequence (En) of sets. These are two of the three 
n --1 n ~ l  

conditions characterising a Carathdodory outer measure on X (see [4], w 4, p. 43). The 

third condition is formulated loc. cut. only for metric spaces X and is to the effect 

that  /le (E U F) /1~ (E) I /~,.(F) shall be true whenever the sets E aml F are at positive 

distance. We shall replace it here by the condition 

(C 3) /~e (E U F ) = / ~ ( E ) t / ~ ( F )  whenever the sets E and F have disjoint neigh- 

bourhoods. 

The properties (C ]) and (C 2) have already hcen noted in w 6. As for (C 3), if 

E and F can 1)e enclosed in disjoint open sets G and H respectively, and if U is any 

open set containing E U F, then U N G and U n H are disjoint open sets containing 

E and F respectively. Therefore 

(U) _> # ( U n G) + t~ (U n H) _>/~ (E) + / ~  (F). 

Taking the infimum on the left, we derive 

which, combined with (C 2), yiehls (C 3). 
10* - 533s05. 
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Let us consider the set Fo = Fo (/~) of sets E c X which are measurable in the 

sense of Carath~odory relative to the outer measure /~e: E E Fo if and only if 

/~e (P U Q) = / ~  (P) +/~(Q) (7.1) 

is true for arbitrary sets P ~ E  and Q c X - E ,  or, equivalenty, if and only if 

/~e (A) = / ~  (A ~ E) + / ~  (A - A n E) (7.2) 

is true for all sets A c X .  By (C2), we do not alter the content of either (7.]) or 

(7.2) o,1 replacing therein " =  " by " >  " 

'l?he arguments of [4], pp. 44-50 are independent of (C 3) and show that  Fr is a 

a-algebra which is closed under the operation (A) of Lusin. 

The proof given on p. 51 of [4] that  Fc contains all the wide Borel sets uses the 

property (C 3) (in its original form for metric spaces X). However, the proof of the 

essential Lemma (7. l ) loc. cit. can be put through in the present case. In the terminology 

of Bourbaki, Topologie g6n6rale, Chapitre IX, ], Nos. 4 and 5, the space X is uniform- 

isable; take any "(~cart" 9~ on X which is uniformly contimlous relative to any uniform 

structure compatible with the topology of X; this ~ can replace the metric in Saks' 

argument. The proof of Theorem (7.4), p. 52 of [4] is then as before. 

Finally, it is easy to prove by familiar arguments (see for example the ultimate 

paragraph on p. l l7  of [M]) that  FoCF.  On the other hand, it does not seem possible 

to show (along the lines of Section 20.10s, p. l l6  of [M)) that  conversely F c F r  though 

this is surely the case if X is almost a-bounded relative to tt. 

To summarise: 

T h e o r e m  9: Fo is a a-algebra, closed under the operation (A) o/ Lusin and con- 

brining all the wide Borel sets and hence all the analytic sets. Always Fc ~ F and F~ = F 

at least whenever X is almost a-bounded relative to /~. 

8. Further Theorems on the Integral.  

There is now no difficulty in defining the notion of measurability of functions 

and in proving most of the standard results: see for example [H], p. 76 et seq. In 

fact, the only familiar result which is not proved to remain valid in the general case 

is the summability of the characteristic function of a measurable set of finite measure: 

this is certainly true if X is almost a-bounded, but may be false in the contrary case 

(see w 13). However, it remains true that  a measurable function which is dominated 

by a summable function is itself summable. 
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The path is then open to prove in the standard fashion both Fatou's lemma 

and Lebesgue's theorem on the termwise integration of dominated sequences of sum- 

mable functions. Neither the statements nor the proofs of these familiar results need 

delay us here. 

9. The Support of a Radon Measure. 

This useful notion is defined first for a positive Radon measure/~. We know that 

/~(G)=sup fad~ for g e ~ ,  g-<Zv, 

G being any open set in X, It  is important for our purpose that this be refined to 

the extent of asserting that 

#(G)=supf/d/~ for / e ~ ,  / < 1 ,  KrcG. (9.1) 

The truth of (9.1) follows from Lemma 2, from Proposition 1, and from the equality 

~(G)=fxcdl~, this last being an almost immediate consequence of the definition 

of f~ (G). 

From (9.1) it follows easily that the union of any set of open sets each of measure 

zero again has measure zero. Hence there exists a maximal open set of measure zero. The 

complement of this set is by definition the support Kj, of the positive Radon measure/~. 

In case /~ is not positive, we employ the minimal decomposition ~u = #+ -~u- and 

define the support K, of /~ to be the union of Ks+ and K~,-. 
This is a consistent generalisation of the notion of support of a continuous function 

in the following sense, the situation described being the most usual in which both 

notions are in use simultaneously. If X is a group on which a Haar measure is de- 

noted symbolically by dx (see w 13), to any continuous function ~ on X one may 

assign the Radon measure /~ defined by 

f/d~=f/.~dx for all ]E~.  

It  then turns out that the support of the measure ~ is none other than the support of ~. 

The substance of this w may be compared with that of pp. 67-73 of [B]. Our 

definition of support is exactly that of Bourbaki for positive measures, and agreement 

for other measures is ensured by his Proposition 2, p. 70. 

10. Borel Measures as Positive Radon Measures. 

Let us assume given a locally bounded and regular Borel measure m over X. 

Then we may construct the corresponding integral f / d m  exactly as in [H], Chapter V. 
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The integral is defined and finite at any rate for all / e ~ .  Hence there exists one 

and just one positive Radon measure /t on X determined by the equation 

i~(/)=f/d~=f/dm for / q ~ .  (10.1) 

Our immediate aim is to show that  m is none other than the Borel restriction of the 

measure-space {F,/~} associated with /~. Since, according to Theorem 8, the Borel 

restriction of {F, #} is a regular Borel measure, it is necessary merely to verily that  

# (K)= m(K)  for every compact set K c X .  Now the appropriate definitions give, on 

tlle one hand, that  

m ( g ) = f z ~ d m ,  

and on the other hand that  

# ( K ) = f x K d # = i n f  f /d l~=inf  f / d m  

for all / 6 ~  satisfying / ~ Z ~ .  Thus we have only to show that  

f XKdm = inf f/dm. (10.2) 

But it is plain that  the left member minorises the right, the measure m being positive. 

On the other hand, since m is regular, for every e > 0  there is an open set G e B  

containing K and such that  m ( G ) < m ( K ) + e .  We may plainly assume that  G is 

bounded. Then by Lemma 1 we can choose / E (~ s'ttisfying / = l on K, 0 </_< 1, / = 0 

on X- -G.  Hence ZK<-/~Xo and so 

f /dm<_ f z a d m = m ( G ) < m ( K ) +  e. 

Since e is arbitrary, this proves (10.2). We are thus free to state 

T h e o r e m  10: Any locally bounded and regular Borel measure over X is the Borel 

restriction o] a unique {F,/~} linked with a positive Radon measure I.t on X. 

The substance of this w may be compared with that  of pp. 164--169 of [B], though 

Theorem 10 is not an immediate consequence of Bourbaki 's Thdorgme 5, p. 165, since 

the givell Borel measure m is not necessarily finite-valued. 

11. Radon Measures on Product Spaces. 

I t  is desirable that  the product of two Radon measures be defined in terms of 

their appearance as functionals on the spaces 6, rather than by the standard method 

used for measure-functions (see for example [H], Chapter VII). The way in which this 

may be done is described fully in the proof of Th4,or~me 1, p. 89 of [B], and we content 



A Theory of Radon Measures on Locally Coral)act Spaces. 151 

ourselves with recalling the main result. As usual, it is enough to consider only posi- 

tive measures. 

Let X and Y be two locally compact spaces with points x and y respectively; 

let Z = X • Y be their topological product with points z = (x, y). Z is again a locally 

compact space. Suppose given two positive Radon measures, /t on X and v on Y. 

There is then a unique positive Radon measure 2 on Z, termed the product of # and 

v and denoted by 2=/~ | v, such that  

f hd~:  f /d/, . f gd~, (11.1) 

holds for every function h (z) = h (x, y) on Z having the form / (x)- g (y) with / E (~ (X) 

and gEi$(Y). In view of the fact (proved in Lemme 1, p. 89 of [B]) that  the func- 

tions on Z of the form 
7t 

~/ ,  (x) �9 g~ (y), ( l l .  2) 
t - 1  

with/ ,  E (~ (X) and g~ E~ (Y), are dense in ~ (Z), it follows by continuity from (11.1) that  

fhdA=fd/~ (x) fh (x, y)dv (y)=fdv (y) fh (x, y)dtt (x) (11.3) 

is valid for every hEiS(Z); see Th6or~me 2, p. 91 of [B]. This is to say that  the 

Ful)ini theorem is automatically ensured for functions h E(~ (Z). 

t[owever, the fact that  ( l l .  3) is valid for all h E 15 (Z) does not iml)ly trivially that  

the s:mm relation is signit'icant and valid for, say, all h summable for L That this is true 

is the assertion of the Fubini theorem, which we shall study next. lit is in fact interesting 

that  the Fubini theorem does hohl since the measure-spaces involved are not generally 

suhject to the condition of being a-finite in the sense of lIahuos (Jill, l). 146), and it 

is known that  the theorem is not unrestrictedty true in the absence of this condition. 

T h e o r e m  i l  ( F u b i n i ) :  1/  h (z) = h (x, y) is summable /or 2 .= t t 6) v, then: 

(1) /or almost all [/~] x E X ,  h(x,  y) is summable in y /or v; 

(2) the /unction o~ x de]ined almosi everywhere [#] as f h (x, y)d~ (y) is summ~tble /or #; 

(3) f d # ( x )  f h ( x ,  y ) d v ( y ) = f h ( z ) d 2 ( z ) .  

By symmetry, the same is true with X and Y and # and v interchanged. Thus, in 

particular, the order o~ integrations in the iterated integral is irrelevant) 

P r o o f :  The basic idea of the following proof has its origin in some unpublished 

lecture notes of Professor J. L. B. Cooper, though the generality of the spaces X and 

Y involved demands some modifications. 

1 Our proof shows that (3) is significant and valid for all h in ~ (Z) or in [ [ (Z) ,  sum- 
mahle for ~ or not. 
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Let us denote by ~ the set of functions summable for 2 for which the theorem 

is true; ~ is known to include ~ (Z). We prove first that  .~ has two properties, namely: 

(i) 3~ contains all functions in ~ (Z) or 1t (Z) which are summable for 2; 

(ii) ~ contains the limit of any monotone sequence of its members, provided only 

that  this limit is summable for 2. If X and Y both satisfy conditions (c) and (c') 

of Lemma 4, w 3, (i) is a consequence of (ii): this is the case envisaged by Professor 

Cooper. In general, (i) must be proved independently in the following manner. 

(i) Consider any ~ E ~ (Z) which is summable for 2. Write ~ = lim h~, where the 
i E l  

hi form an increasing directed system of functions in ~ (Z). For a fixed x E X, ~ (x, y) 

E ~ (Y), being in fact equal to lim ht (x, y). By Proposition 2, ~* ( x )~ f9  (x, y)dv(y) = 
zEt 

= lim fh~ (x, y)dv (y)~l im h~* (x), say. Here h** (x) e (~ (X), so that  ~* E ~~ (X). Further, 
i E ~  ' i E t  

since h~ E~(Z),  it appears that  9*@) is finite for each x. Thus (1)is true for ~ and 

all x. Since ~*(x) is the limit of the increasing directed system (h~*)iEl of functions 

in ~ (X), we can apply Proposition 2 once again to deduce that  9" (x) is summable  

for Ft and that  

f ~(z)d2(z)=:.=liem f h,(z)d).(z)=lim, E, f d/,(x) f h:(x, y)d~(y) 

-: lim f h,* (x)d lt (x) = f q~* (x)d lt (x) 

=fd/,(x) fg(x, y)dv(y). 

Thus (2) and (3) are valid for ~. The case of a function yJ e It (Z) summable for 2 

is deducible by a change of sign. 

(ii) Suppose that  h, summable for 2, is the limit of an increasing sequence (h,) 

of functions in 3~. Let E ,  c X with pe (E~) = 0 be such that  h, (x, y) is summable in 

y for v whenever x EX--En. Putting E= U E~, we see that  p ~ ( E) = 0  and that,  if 
r t - 1  

x e X -  E, the functions h,  (x, y) are collectively summable in y for v for all n. Hence, 

by Theorem 2, if x e X -  E, h (x, y) is widely summable for v and 

f h (x, y)dv (y)=!irn f h,, (x, y)dv (y). 

Thus (1) is true of h. By the same theorem, and by Theorem 6, Corollary 2, 

f h (x, y)dv (y) is widely summable for /~, and 

=lin~ f h,(z)d2(z) 
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since h~ E 5, which 
=fh(.,)d~(~)+oo 

by Theorem 2 once more. (1) and (2) now follow automatically (Theorem 6, Corollary 4, 

w 6) and the proof of (ii) is thereby completed. 

Granted (i) and (ii), if h is summable for ,~, and if q} and T are the two functions 

linked with h by the Vitali-Carath~odory theorem, then ~ and }P are both in .~. 

So we have 
f h(z)d2(z)= f q~(z)d;t(z)= f d/z(x) r e ( x ,  y)dv(y),l 
f h(z)d;~(z)= f ~ (z)d,~(z)= f d/~(x) f T (x, y)gv(y).j (11.4) 

But ~Y_< h_< q~ everywhere, so that  

f ~ (x, y) d v (y) 2 ; h  (x, y) d v (y), 

and hence also 

Similarly, 
(1L5) 

(11.6) f d/,(m) f ~ (x, y)d~,(y) ~ f dt,(x) f ],(x, y)d,,(y). 

Since q~ and ~ belong to 5, and since f C d ~ =  f ~d]t--fhd,~, this yields 

f d#(x) f h(x, f f ,,(x, ( , ,  7) 

Let us write H (x) = f h (x, y) d v (y) and H (x) = f h (x, y) d v (y), so that H -='. H everywhere. 

By (11.7) we have a for t io r i  

f u 

so that H is surely widely summable for t,. Likewise, (11.7) implies a fortiori that  

f ~ (~) d ~ (~) > f ~ (x) d ~ (x), 

so that  H is surely widely summable for /~. But  we have H(x)<_ f q)(x,y)dr(y), so 

that  / t (x)  is < + cr almost everywhere [/~], and further 

In a similar manner we see that  H(x)  is > - o o  almost everywhere [/~], and 

f_//(x) d/~ (X) > f d/t (x) f gt (x, y) d v (y) = f gt (z) d ~ (z) > - co. Since _//< H, it results that  

both are finite almost everywhere [/~] and that  both are summable for/~. And since 
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we see that  / t - - H  almost evcrywhere [tt]. This contains the substance of (1)and (2). 

Also, (3) is now immediate from (11.7) and (11.4). 

This completes the proof of the Fubini Theorem. 

The partial converse of Fubini's theorem usually known as the theorem of Tonelli 

may be proved exactly as in [M], Section 25.6, p. 145, with the difference that  it 

seems necessary in general to assmne a priori that  the function on the product space 

is zero outside a set which is almost a-bounded relative to the product measure 2. 

12. The Topologisation of (~ (X). 

I t  is by no means obvious that  the notion of the convergence of sequences in 

= ~ (X) defined in w 4 is precisely that  induced by some true topology on 6s I t  is a 

notion which serves to define the idea of convergent sequences (or more generally of 

filters or directed systems) and with it one can define the notion of a closed set 

(containing the limit of every convergent filter on that  set) and the closure of a set 

(the set of all limits of convergent filters on that  set), but  it is no longer certain tha t  

the closure of a set is always a closed set, nor tha t  the closure of a set is the smallest 

closed set containing that  set. 

From the point of view of functional analysis, it is highly desirable that  one 

discusses the possihility of defining on (5 a true topology which, as far as the conti- 

nuity of linear functionals in concerned, is 'equivalent to the pseudo-tol)ology defined 

in w 4. Further, it is natural to demand of these topologies tha t  they be compatible 

with the vector space structure of (~ arid I)e locally convex. 

Thus we are led to seek those topologies of a locally convex vector space on (~ 

with the property that,  relative to them, the topological dual of (5 is exactly the set 

�9 ~ = ~ (X) of all Radon measures on X. Such topologies are surely existent. In fact, 

amongst these topologie:~ there is a least fine and a finest. The least fine is none 

other than the usual weak topology, a ((~, ~))~), on (5 generated 1)y ~ :  the notation is 

that  of Dieudonnd [5]. The finest such topology is that  denoted I)y v ({s ~))~) on pp. 64-5 

of [6]. Further, the topologie~ we seek are precisely tho~'e which are locally con- 

vex and which are at once finer than a(~, ~ )  arid le.~s fine than z({~, ~)~). Con- 

sequently the main interest lies in studying and characterising in a manner not in- 

volving ~)~ explicitly this topology v ((~, ~)~): in this connection we discount as not 

sufficiently explicit the characterisation of ~ ((5, ~ )  according to the general theorem of 

Mackey-Arens ("convergence uniform on the convex and weakly compact subsets of ~,,) .1 

I This characterisation becomes explicit as soon as one provides independently the charac- 
$erisation of the weakly compact subsets of ~ afforded by Theorem 13 below. 
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When X is countable at infinity, the desired topology may be introduced in an 

a priori fashion as one of the so-called (~ ~)-topologies studied in [6]: see especially 

Exemple 1 ~ p. 67 of this reference. Denoting by r  the topology on (~ defined there, 

from Proposition 4, p. 70 of [6] it follows that  a sequence (/n)c(s is convergent to 

zero in the sense adopted in w 4 if and only if it converges to zero in the sense of 

the topology c/y,o (though this is no longer true if ([n) is replaced by a general directed 

system or filter on (~). That ~ = r (~, ~ )  whenever X is countable at  infinity is shown 

in Th6orSme 3, Corollary, p. 76 of [6]. 

However, if X is not countable at infinity, it is no longer a question of t h e  

(~ ~)-spaces of Schwartz and Dieudonn6: indeed, one has precisely the situation de- 

scribed in w 14, pp. 99-100 of [6]. In the notation there employed (save that  we use 

~a in place of E~ and (~ in place of E), we write X = U Y2~, where (Y2~) is an increasing 
a 

directed set of bounded open sets, put (~ for the vector subspace of ~ formed of 

functions / E ~ with Ks c ~ . ,  and take for ~ the topology of convergence uniform on 

~ . ;  ~ may then be defined as the finest of all locally convex topologies on ~ having 

the property that, for each ~, c~- induces on ~. a topology less fine than c~y~.~ As 

is shown by example loc. cit., a sequence ([.) may converge to zero for the topology 

c ~  and yet be not convergent to zero in the sense adopted ill w 4: in the example 

constructed, X is one of the familiar pathological spaces of ordinals and c~,, turns out 

to be the topology of convergence uniform on X. 2 ]n addition, the proof given for 

the case in which X is countal)le at infinity of the fact that  c ~ =  r((~, ~ )  is no longer 

available. Nevertheless we will show that  this latter result still stands. 

T h e o r e m  t 2 :  Whatever the locally compact space X,  r r((~, ~3~). 

proof :  We have to show, first that  ~ is the topological dual of (5 relative to 

5Y~,, and, second, that  no strictly finer locally convex topology on (~ enjoys this property. 

Now Proposition 5 of [6] still stands and serves to show that  the first assertion 

is true. :For completeness we will give the proof, which is in any case quite brief. 

Let ~t be any linear functional on (~ which is continuous for the topology c2"~,. There 

is then a neighbourhood V of zero in (~ (relative to the topology c~-) such that  [/~ ([)1 ~ 1 

if ] E V. Now for each r162 V N ~,  is a neighbourhood of zero in g ,  for the topology 

r that  is, there is a positive number R~ such that  / E ~,  and sup I] (x) I -< R, together 
x E x  

imply I/~(/)[< 1. But then it is clear that  to every compact set K c X  corresponds 

at least one 0r such that  K ~  ~2o, in which case we deduce easily that  

1 That  ~'r is independent of the system (5r used is easily seen by reasoning as in the para-  
graph beginning at  the foot of p. 67 of [6], 

2 See also Exercice 3, p. 65 of [B]. 
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Iju(/)] ~ R~ -1. st~p]] (x)] 

holds for ali / e  (~ with KI c K. Thus # is a Radon measure on X. 

Conversely, if /~ is a Radon measure on X, to every ~. corresponds, according to 

(4.1), a positive finite number playing the role R ;  1 in (12.1). Consequently, if e > 0 ,  

and if I is the interval ( - e, e) of real numbers,/~-1(i) N ~o is a neighbourhood of zero 

in ~,, for the topology ~a. But then (cf. pp. 66-7 of [6]), #-1 (I) is a neighbourhood 

of zero in ~ for the topology ~ .  Thus # is continucus for c'~7~, and the first assertion 

is now completely proved. 

Finally, suppose that  ~ is a locally convex topology on ~ strictly finer than ~ .  

Then, for some ~, ~-induces on ~ a topology strictly finer than ~ , .  But  ~a, with 

the topology r is a Banach space and hence is relatively strong in the sense of 

Mackey ([8], Definition 5, p. 523, and Theorem 10, p. 527). Therefore there is a linear 

functional 2 on ~a which is continuous for the topology induced on ~ by ~ b u t  not 

continuous for the topology ~ .  Since ~ is locally convex, the Hahn-Banach theorem 

shows that  2 has an extension ~ to all ~ which is linear and continuous for ~ .  This 

cannot be a Radon measure on X since if it were, its restriction to ~,, namely 2, 

would be continuous for the topology ~ , .  This completes the proof. 

R e m a r k s :  (i) The example of a locally compact space X which is not countable 

at  infinity constructed in w 14 of [6] to which we have already referred shows that  

peculiar things can h~ppen for such spaces. Combined with Theorem 12 it shows for 

example that,  although the space concerned is non-compact, every Radon measure on 

X is bounded. Of course, this situation can never arise if X is non-compact and 

countable at infinity: in this case, if (x~) is any sequence of points of X converging 

to infinity, and if (/~,) is any sequence of positive numbers, the equation 

~ ( 1 )  = ~. �9 l ( x . )  
n 

defines a positive Radon measure on X having total mass ~/1~. This argument breaks 

down in general since it may be (and in fact is, in the said example) impossible to 

find a countable sequence (x~) which converges to infinity. 

(ii) The above proof that  ~ =  ~(~, ~ )  is direct, but once it is shown that  ~l~ 

is the topological dual of ~ relative to r the remainder follows from the general theory 

of locally convex spaces. By definition, ~ (with ~'~) is the inductive limit of the 

Banach spaces ~,  and hence has the property of being "tonneld" in the sense of [7]. 

Hence, by Proposition 2 of [7], ~ is identical with ~((~, ~l~). 

An interesting consequence of Theorem 12 is the characterisation of the weakly 
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compact subsets of ~)~ afforded by the next theorem. As already hinted, it is possible 

to derive this characterisation directly and thus (using the theorem of Mackey-Arens) 

to give an independent proof of Theorem 12 itself. 

T h e o r e m  13: A subset M o] ~ is relatively weakly compact i] and only i/ the 

members o/ M are o/ uni/ormly bounded variation over each compact subset o/ X. 

Proof :  The condition is sufficient. I t  implies in fact that  for each :r there is a 

finite positive number R~ 1 such that  

f / d z  <_R; (12.2) 

holds for all # E M and all /E ~,, with sup ]/(x)I_< 1. I t  follows therefore that  M is 
xEX 

contained in the polar set of the set V c ~ defined by 

V= U {/E~o: sup II(x)l<_Ro }. 
a xEx 

Now this set V is a neighbourhood of zero in ~ relative to the topology c~,  and it 

will suffice to show that  consequently the polar set V ~ is weakly compact in ~r~. 

This last assertion is well known and is a generalisation of the assertion that, in 

the dual of a normed vector space, the norm-bounded sets are weakly compact. We 

indicate the proof for completeness. By definition, V ~ is the set of all/~ E ~J~ such that  

f /d/~ ~1 for all /EV.  For each / E ~ ,  let r r=sup  f /d t~l< + ~ ,  let & d e n o t e  the 
. E ~ , o  - 

compact interval ( -  rz, rx) of the real axis, and consider the topological product 

P=f f~eJ r  �9 

By Tychonoff's theorem, P is compact. On the other hand, each/~ E V ~ can be looked 

upon as a point of P whose co-ordinate with suffix / is the number/~ (/)E Jr. What  

is more, it is easy to see that  if we inject V ~ into P in this manner, the topology 

of P induces on V ~ the weak topology. Hence we are reduced to showing that  V ~ 

considered as a subset of P, is closed in P. However, supposing that  the point 

P =  (Ps)le.r of P is in the closure of V ~ it is very simple to show that  the mapping 

/-+Ps is linear on ~ and also that  IPI[-< 1 if /E V. This shows immediately that  ]-+Pr is 

a continuous linear functional on ~, hence is a Radon measure # on X (Theorem 12), 

and that  this /~ is a member of V ~ This completes the proof of the sufficiency of 

the condition. 

The condition is necessary. I t  is enough to show that  if M is weakly compact 

in ~)~, then for each :r the number 

sup If 
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is finite, /~ ranking over M and / over all functions of ~,, such that  sup I/(x)I <_ 1. In 
4" E .\" 

tile argument that  follows, M is assumed taken with the induced weak topology. For 

a fixed /, f/d/z represents a continuous function of /~, so that  

F 0 , ) = s u p  f /dr, (<  ~, ~ ) ,  

with / ranging over the aforesaid set, is lower semieontinuous in /~. Since M is com- 

pact, hence a Baire space, there is a measure /~0 EM and a symmetric weak neigh- 

bourhood W of zero in ~)~ such that  

F (/~) ~ c < + o o  

whenever H e M and t~ - tzo E W. But then, if/~ e W N ~);, we have F (/~) _< F (/~ t /10) ~- 

+F(t~o)< 2 c. By compactness of M, there is a finite number /~ (l _< i_< n) of points 

of M such that  any /~ e M satisfies t~-/~l E ~ N W for some i (depending upon / ~ of 

course). Consequently, if t ~ EM, 

F (/~) _< sup F (/~) + 2 c 

so that  the numl)er (12.3) is indeed finite, and the proof is complete. 

R e m a r k s :  (i) There are numerous interesting applications of Theorem 13. ]n 

l)arti(~ular, if X is a Euclidean sl)ac(', it in('ludes the famous "choice I)rhwil)lc" of de 

]a Valh~c Poussiu, used frequently in 1)otcntial theory. 

(ii) The dire,t  l)roof of Theorem 13 can again be reldaced by more general argu- 

ments. Since {5 is "tommlS", we have the following interesting fact: in ~).)~, there is 

identity between the sul)sets which are (a) relatively weakly compact, (b) weakly 

bounded, (c) strongly bounded (i. e. bounded with respect to the topology on 9.}~ of 

convergence uniform on the bounded subsets of ~), and (d) equicontinuous. The hypo- 

thesis of Theorem 13 is obviously sufficient to ensure that  (b), and hence (a), is true 

of M. Conversely, (a) is equivalent to (d), which is itself equivalent to the relation 

M c V ~ where V is a suitable chosen ncighbourhood of 0 in ~; and from this the 

necessity follows immediately. 

(iii) Some of the results of this w are contained in Exercice l, p. 64 of [B]. 

13. Haar  Measures  on  Topologica l  Groups.  

Let us suppose now that  X is a locally compact group: we shall write X nmlti- 

plicative]y, as in the custom when commutativi ty is not assumed. The neutral element 

of X is denoted by e. 
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I f  ] is any function on X, we denote by Ls/the left translate of / corresponding 

to the point s EX, tha t  is the function L j ( x ) = / ( s x ) .  Likewise, Rs/ will denote the 

right translate of /, defined by R~/(x)=/(xs). 
I t  is natural to single out from all the positive Radon measures oll X those which 

are tither left-invariant or right-invariant under translations. A non-zero positive Radon 

measure on X which is left-invariant in the sense that  

/, (1) = / ,  (Lsl) (t e ~S, s e X )  (14.1) 

is termed a left Haar  measure on X. The notion of right Haar  measure on X is de- 

fined in an analogous manner. The complete symmetry  between left and right, which 

finds formal expression in the consideration along with X of the opposing group X '  

having the same elements as X but  provided with the new law of composition defined 

by (xy) '=yx ,  makes it possible to consider only, say, the left Haar  measures on X. 

Since the notion of positive Radon measure used in this paper is exactly that  

utilised by Andrd Weil in [9], his proof of the existence and essential uniqueness(up 

to positive constant factors) of the left Haar  measure on X constitutes the natural  

reference at  this point. The present paper serves to fill in all the details implied 

in Weil's consideration of the Lebesgue spaces L ~ (X) constructed relative to the left 

Haar  measure and Iris appeal to the basic properties of these spaces. For the (level- 

opment  of the theory of the Haar  measure, we refer the reader to [91, observing 

here merely that :  

(1) X is discrete if and only if each one-point set has strictly positive measure (for 

any one left or right Haar  measure), the same measure (for a given I [aar  measure) 

for all points' because of translation invariance. 

(2) X is compact if and only if it has finite measure for any one (and hence a l l ) le f t  

or right Haar  measure. When this is the case it is natural to normalise both the left 

and right Haar  measures so tha t  for each of them X has total measure unity. These 

two normal[seal measures then c5ineide and we may  thus speak here, as in the case 

of abel[an groups, of the Haar  measure on X. The corresponding integral coincides 

for all continuous functions on X with the yon Neumann mean value of such functions 

(each of which is automatically uniformly almost periodic due to the compactness of X). 

The theory of product measures has an application in the case of groups which is 

a t  once peculiar to this case and of the utmost  importance. This is the question of the 

convolution or product by  composition of two measures on the group X. Let  X be 

as before, and suppose given two Radon measures t~ and v on X. We may  as usual 

assume tha t  ff and v are positive. Let  2 be the product measure/z  | v on X x X. The 
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convolution /~*v of /x and v (in that order) is said to exist if, whatever the function 

/q @(X), the function F on X• X defined by F (x, y)=](xy) is summable for 2, in 

which case #*v  is by definition the positive Radon measure on X specified by the 

equation 

f /d(/~.v)= f Fd2=f d/u(x) f ](xy)dv(y) 
=fdv(y) f/(xy)d~(z) 

for all /E ~ (X), the last three equalities being consequences of the Fubini theorem. 

Since the function F is continuous on X • X, part (i) of the proof of Theorem 11 shows 

that in any case the last three of the above equalities hold good at least whenever 

] E ~+ (X). This fact provides the simplest method of determining the existence of/~* v 

in those cases having the greatest importance. For # *  v exists if and only if F is 

summable for ~t whatever the function ] E 6 + (X); and for such an / ,  the summability 

for 2 of F is equivalent to the finiteness of either (and hence both) of the iterated 

integrals fd/x(x)f/(xy)dv(y) or fd~,(y)f/(xy)d,u(x). For example, the two most 

important cases may be dismissed in this way: /~*v surely exists if either ( l ) a t  least 

one of # or ~, has a compact support, or (2) both /~ and v are bounded. 

The question of the convolution of functions may be treated either as a special 

case of that of Radon measures, or it may be treated with equal success indepen- 

dently and in the standard fashion. 

We terminate this w by discussing an example of a set which is locally null but 

not (globally) null. For the construction we take a locally compact, non-discrete group 

X having a non-countable, discrete subgroup Z. For example, let X be the direct 

product of the real axis with the discrete topology by the torus group T, and let Z 

be the subgroup of X defined as the direct product of the aforesaid real axis by the 

trivial subgroup of T: this simple example was suggested to me by Dr. C. tI. Dowker. 

We shall show that Z, although measurable and having zero measure, has a non- 

summable characteristic function; it will appear in fact that /~ (Z) = 0 and/~e (Z) = + 0% 

~t denoting any Haar measure on X. 

To begin with, Z is measurable and has measure zero because, whatever the com- 

pact set K of X, K N Z is finite and hence has measure zero (X being non-discrete, 

every one-point set has zero measure). This shows also that ft~ (Z)= 0. 

To show that gz is non-summable, it is enough to show that Z is not almost 

a-bounded in X. The last paragraph shows that the intersection of Z with any a-bound- 

ed set is countable. Hence we have only to show that Z N G is countable whenever 

the open set G has finite measure. But, since Z is discrete, it is easy to see that we 
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can find an open neighbourhood N of e such that  zN N z 'N= ~ for any two distinct 

points z and z' of Z. I t  follows that  to each point z E Z N  G corresponds an open 

neighbourhood U (z) of z such that  U (z) c G and U (z) N U (z') = O if z and z' are distinct 

points of Z N G. For any finite set {zl . . . .  , zn} of distinct points of Z N G we have 

accordingly 

r - 1  

whence it follows at once that  the set of z EZ  N G such t h a t / ~ ( U ( z ) ) > 0  is countable. 

But this set must be none other than Z N G itself since any Haar  measure assigns a 

strictly positive measure to any non-void open set. This argument proves at the same 

time that  /~e (Z) = + c~. 

14. The Duals of Some Topological Vector Spaces of Functions. 

We shall now complete the circle by discussing a few useful examples of the 

situation described in the opening paragraph of this paper. Recall that  this situation 

is as follows: Given a topological vector space E of real continuous functions oil the 

locally compact space X, required to identify the topological dual E' of E. 

The number of possible examples in plainly unlimited. We shall merely discuss 

a few of the most frequently occurring instances, the method being adequately indicated 

in this fashion. 

1 ~ When X is compact and E is the Banach space of all real continuous functions 

on X, taken with the uniform norm: 

Iltll = sup It( )1, (14.1) zEA." 

the solution of the problem is immediate by very definition of a Radon measure ;see  

[B], pp. 41-48. A slight extension of this result arises when X is locally compact and 

E the space of all real continuous functions on X which tend to zero at infinity: here 

too the solution is immediate ([B], Exercice 9, p. 67). In either case, the dual E' may 

be identified with the set ~j~l (X) o] all bounded Radon measures on X (the condition o] 

boundedness being void i] X is compact) in such a manner that to any u E E' corresponds 

a unique /~ E ~ 1 (X) such that 

u (1) = Sx 1 (x) (x) (14.2) 

lot all lEE.  See als0 [2], p. 39; and [10]. 

Two consequences are perhaps worth noting. To begin with, the useful criterion 

given by Banach ([1], Th~or&me 8, p. 224) for the weak convergence of sequences of 



162 R . E .  Edwards. 

functions in E is now just a combination of the Banach-Steinhaus theorem and the 

Lebesgue theorem on the termwise integration of sequences of summable functions. 

Secondly, regarding E is an algebra under pointwise mutiplication, use of the notion 

of support of a Radon measure leads to a very direct proof of a well known theorem 

oil the structure of closed ideals ill E, namely: Let ~ be any closed ideal in ~, and 

let E be the set o] points x o] X at which at least one o/the members o] ~ is non-zero; 

then ~ contains those and only those ]unctions o] E which vanish on C E (at least). The 

proof of this requires only the observation that,  if IX is a Radon measure and / a 

continuous function, and if the measure defined symbolically by d v=/dix is zero, then 

any point x at which ](x)~O belongs to the complement of the support of IX. 

2 ~ When X is non-compact, a number of important  exanlples are covered by 

the following set-up. Let  ~ be a set of subset~ A of X;  without loss of generality 

one may assume that  the sets A are closed and that  ~ is an increasing directed set. 

In all examples met in practice, the union of the sets A E ~ is X itself. Let  then E be 

the space of all real continuous functions / on X which satisfy the condition that, 

for each A E ~  and each ~>0 ,  there is a compact set K ~ X  such that 

I ] (x ) l<e  for x E A - K .  (14.3) 

On E one takes the topology of the ~-convergence, that  is the topology defined 1)y 

the seminorms 

Na (l) = sup I/(x)l 
xe.-t 

with A E 6 .  E is then a separated locally convex space. I t  is not difficult to show 

that :  the dual ~' may be identi/ied with the set o] bounded Radon measure.% each o/which 

has its support contained in some set A E ~ ,  the identi]ication between an element u E E' 

and the corresponding measure t x being obtained by (14.2). Too see this, observe first 

that  the restriction to (~ of any given u E E' is continuous on ~, so that  there is a 

Radon measure IX such that  (14.2) is valid for all ] E ~ .  On the other hand, the 

continuity of u (on E) implies the existence of a set A E ~ and a finite, positive number 

M such that  

l u (/)l-< M. N a (t) 

for all /E  E. If in this relation we restrict / to ~, it is easily concluded that  IX has 

its support contained in A and is in addition bounded (having a norm in ~ 1  (X) at  

most M). This being so, (14.2) extends to all /E  ~ by virtue of the condition (14.3). 

The two most important examples of the present situation arise when ~ comprises 

all the finite subsets of X or all the compact subsets of X; in either case, E embraces 
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all continuous functions on X, the condition (14.3) being void. The second instance 

here has been discussed by Hewitt  ([11], Theorem 21). 

I t  is perhaps interesting to observe that  if | has a countable base (i. e., if there 

exists a sequence (An) of sets e |  such that  every A E ~  is contained in some An), 

the space E, which is in any case complete, is metrisablc. As a consequence, the subsets 

of E' which are weakly bounded have the property that  their members are supported 

by a /ixed set A fi ~ and arc further of uniformly bounded total variation. 

The method is limited in two main directions, each of which may be instanced 

by an example. 

3 ~ Suppose that  X is non-compact and that  E is the space of all bounded, real 

continuous functions on X taken with the norm (14.1). The equation (14.2) defines 

a member u of E' if and only if the Radon measure # is bounded. On the other hand, 

as is well known, not every element u of the dual can be represented in the form 

(14.2). I t  is shown in [12] that,  in order to obtain the general member of E', the right 

member of (14.2) must be supplemented by a linear combination of two generalised 

limits at infinity on X. Alternatively, a representation (14.2) may be effccted for all 

u e E '  by replacing X by its ~cch compactification. I t  is of course true that  a 

resprescntation of the form (14.2) can be accorded to every u e  E', but  only on condition 

that  u bc allowed to be a general bounded, finitely-additive set-function. 

4 ~ If X is compact and if E comprises discontinuous functions, it is again true 

in general that  not every u can be represented in the form (14.2) with # a Radon 

measure on X. An example is provided by taking for E the vector space generated 

by all bounded, real, semicontinuous functions on X, the norm being (14.1) once more. 

I t  is quite easy to show that  a general u e E' has a decomposition u = u' i ~ u"  in which 

u' has a representation (14.2) whilst u"  is orthogonal to all continuous functions (with- 

out necessarily being zero on E itself). 
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