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1. Introduction

Let NCM be an inclusion of type II; von Neumann factors with finite Jones index.
Let NCMCM;C... be the associated tower of factors that one gets by iterating the
Jones basic construction [J1]. The lattice of inclusions of finite-dimensional algebras
M!NM; obtained by considering the higher relative commutants of the factors in the
Jones tower, endowed with the trace inherited from | J M, is a natural invariant for the
subfactor NC M.

A standard lattice G is an abstraction of such a system of higher relative commutants
of a subfactor [P3]. That is to say, the relative commutants of an arbitrary finite index
inclusion of Il factors satisfy the axioms of a standard lattice and, conversely, any
standard lattice G can be realized as the system of higher relative commutants of some
subfactor that can be constructed in a functorial way out of G (see [P3]).

The abstract objects G carry a very rich symmetry structure. They can be viewed
as Jones’ planar algebras [J2]. They can also be viewed as group-like objects, serving
as generalizations of finitely generated discrete groups and large classes of Hopf algebras
and quantum groups.

Along these lines, a subfactor NC M can be viewed as encoding an “action” of the
group-like object =G ncar. Given G it is thus important to understand whether or not
it can “act” on a given II; factor M; i.e., whether G can be realized as Gy for some
subfactor N of the given algebra M.

The functorial construction of a subfactor NC M with a given standard lattice ob-
tained in [P3], as well as the one preceding it [P1], used amalgamated free products
and also depended on a choice of an algebra @ taken as “initial data”. However, it
remained an open problem whether one can construct a “universal” II; factor M that
would contain subfactors with any given standard lattice as higher relative commutants,

i.e., a factor M on which any G can “act”. It also remained an open problem to identify
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the isomorphism class of the algebras in the inclusions realizing a given standard lattice
as constructed in [P3].

We solve both of these problems in this paper. The following theorems summarize
our results:

THEOREM 1.1. Any standard lattice G can be realized as the system of higher relative
commutants of a type 11 subfactor P_yC P,, where both P_1 and Py, are isomorphic to
the free group factor L(Fy).

Moreover, the construction of subfactors P_yC Py can be chosen to be a functor from
the category of standard lattices (with commuting square inclusions as morphisms) to the

category of subfactors (with commuting square inclusions as morphisms).

THEOREM 1.2. The type I1; factors appearing in the inclusions constructed in
[P1], [P3], [P5], for the initial data Q=L(Fs), are all isomorphic to the free group
factor L(Fs).

THEOREM 1.3. Given an arbitrary inclusion of 111 factors M_1C My, there exists
an inclusion M_lcl\/i\o with the same standard lattice as M_1C My and so that M;>
MxL(Fy).

In other words, L(F) is the desired universal type II; factor, whose subfactors
realize all possible standard lattices; equivalently, any group-like G can “act” on L{Fy.).
Moreover, free products with L(Fo,) do not “constrict” the set of allowable standard
lattices of subfactors.

We note that these results are generalizations of earlier results about realization
of finite-depth subfactors inside free group factors [R2], [D3], irreducible subfactors in
L(F) [SU] and finite-depth subfactors of Mx*L(Fs), for M arbitrary [S3]|, as well
as results on the fundamental group of L(F,) [R1] and of arbitrary free products
M+ L(Fy) [S2].

It should be noted that free group factors L(F,,) cannot possess the universal prop-
erty in Theorem 1.1 without being isomorphic to L(Fs,). Indeed, if the property in The-
orem 1.1 holds, and standard lattices coming from elements of the fundamental group
of a II; factor can be realized as subfactors of L(F,), n<+4oo, then the fundamental
group of L(F,,) would be non-trivial, and hence L(F,,)=L(Fs) (cf. [R2] and [D1]). Our
constructions do not produce subfactors of L(F,,) for n finite.

We give two proofs of Theorem 1.1. The first proof consists in identifying the factors
constructed in [P3] as being isomorphic to L(Fs,), when the initial data involved in that
construction is taken to be L(Fy) itself. This proves Theorem 1.2 as well. The second

proof that we give to Theorem 1.1 also shows Theorem 1.3.
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The principal technique underlying both proofs is a functorial construction associ-

ating to a given standard lattice §=(A;;) a pair of non-degenerate commuting squares

B_1 C BO .A(ll C .Ag
U u U u (1.3.1)
AT C AZh, AT AT

in such a way that B_; CBy is the infinite amplification of the standard model inclusion
for G, and Ag are type I von Neumann algebras with discrete centers and with the inclu-
sion matrices between them given by the graphs of §. Most importantly, the commuting
squares in (1.3.1) satisfy (.A?)’ﬂfl;l: (’Bi)’ﬁflj_leij. Thus, each one of them encodes
the standard lattice G=(A;;);,;. To construct such canonical commuting squares out of
a given standard lattice or a subfactor, we use inductive limits of non-unital embeddings
naturally associated to the duality isomorphisms in the Jones tower.

We then give the first proof of Theorem 1.1 by showing that the inclusion (compare
[P1], [P3], [P5], [R2])

ALy, -1 (QRAZ) C AGxy 1 (QRAG ) (1.3.2)

is isomorphic to (the infinite amplification of) the one constructed in [P3], for any ar-
bitrary initial data ). Then we prove that if Q=L(Fs) then both amalgamated free
product algebras in (1.3.2) are isomorphic to L(Fo )®B(H ). This, of course, also proves
Theorem 1.2.

The techniques needed for the identification of such amalgamated free products
come from free probability theory pioneered by Voiculescu ([VDN]). The main obser-
vation is that the amalgamated free product algebra AYx,—1 (QRA;!) is generated by
A? and Q=L(F,); furthermore, @ has as generators an Zinﬁnite semicircular system
X1,X3,... [V]. The position of this family relative to AY is encoded in the statement
that {X,,} form an operator-valued semicircular system over A in the sense of [S2], [S3].
The rest of the proof involves manipulations with this semicircular system—in ways that
parallel earlier random-matrix techniques of Voiculescu [V], [VDN], and developed in
the context of amalgamated free products by F. Radulescu [R1], [R2] (we mention also
[D2], [D1], [D3], [DR)).

Our second proof considers the inclusion
B_1#4-1 (QRATT) CBoxy 1 (QBAG Y (1.3.3)

(notice that B; are hyperfinite). Since the first commuting square in (1.3.1) encodes G,
this inclusion has G as its system of higher relative commutants. We then use free prob-

ability techniques to prove that each of the algebras in this inclusion is isomorphic to
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@*L(Foo)(X)B (H) if Q=L(Fs), where B is hyperfinite. By the results of Ken Dykema,
each of these algebras is isomorphic to L(Fo)®B(H), giving another proof of Theo-
rem 1.1.

More generally, if we are given an inclusion of Iy factors M_; C My with standard
lattice G=(M/NM;), then the non-degenerate commuting square

M_,@B(H) C My®B(H)
U U
B_1 - Bo

together with the first commuting square in (1.3.1) give rise to a non-degenerate com-

muting square
M =M _1®B(H) ¢ My®B(H)=M§°

U U
AL c  Agh

Once again this commuting square encodes G, and the inclusion
M 1= M5 (QRATT) C M1 (QRAG ) = My (1.3.4)
has the standard lattice §. Using free probability again, we prove that
M, = (M*L(F))®B(H),

thus showing Theorem 1.3.

The rest of the paper is organized as follows. §2 describes the construction of the
commuting squares (1.3.1). §3 deals with the necessary free probability techniques nec-
essary in the identification of the various free product algebras. §4 presents the proofs of
the main results of the paper. Thus Theorem 1.1 is proved in Theorem 4.3; Theorem 1.2
is proved in Theorems 4.2 and 4.3 (first proof); Theorem 1.3 is proved in Theorem 4.5.

Acknowledgement. The second author would like to thank the Wiley W. Manuel
Courthouse in Oakland, CA, where an early part of the work was carried out while on
breaks from jury duty. The authors would also like to thank MSRI and the organizers
of the stimulating program on operator algebras. Research supported in part by NSF
Grant DMS-9801324, for the first author, and by an NSF postdoctoral fellowship, for the

second author.

2. Some canonical commuting squares associated to a subfactor

Let M_1C Mj be an inclusion of type II; factors with finite Jones index. In this section we

will associate to it a system of A-Markov commuting squares of semifinite von Neumann
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algebras with trace-preserving expectations

M_;

U

B_1

= U
A%,

U

—1
-1

c My
U
c Bo
U
c AjJ
U
C Ap!

in which the upper commuting square is the oo-amplification of

M_, C
U
M C

M, C M§* being the standard model associated with M_1C Mp, and in which

A, C
U
—1
A7l ¢

My
U
Mg

AR
u
At

229

is a commuting square of inclusions of type I von Neumann algebras with atomic cen-

ters and inclusion matrices given by the graphs of M_;CMy. The construction of the

commuting square

B_, C By
U U
A% c A
U U
AZ] C Ayt

will in fact only depend on the standard invariant §=Gs_, a, of M_1C My and will be
functorial in G. Each one of the commuting squares

B_1 € By
U @]
A1 C AgY,

0 0
A2, C Ap
U U
-1 —~1
AT C A

will completely encode G, as they will satisfy (A?)'NA;'=(B;)NA; =M;NA; ' ~M/N
M; in the Jones towers for € and M_,C My, respectively.
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The commuting square C° will be constructed as an inductive limit of non-unital

trace-preserving embeddings of the commuting squares

M2n71 C M2n

U U
A_oon—1 C A_xo2n
U U
A g1 C Aapn
U U

A_ton-1 C A_12n

where A;;=M/NM;, i,j€Z, are the higher relative commutants in some tunnel-tower
€] eg ey [}
wCM oCM_CMyCM CMC..
ibrA4A1CAL)andJ4_aLj:4Jk<jAkT

LEMMA 2.1. For each k>0, n>0, let of be the map from Moy ik into Maonypyo
given by

k —k—1
ay, (:v) =A €n41€2n+2 --- €2n+k+1€2n+k+2L €204 k+2 -+ €2n+1,

TEMapn k. Then of are non-unital *-isomorphisms and they satisfy:

(1) af(Manyj—1)=€2nt1Maniji1€2n41, §=0,1, ., k+1, with of Y, =k, if
J<k+1.

(2) af(A;iontj—1)=€2mt+14i2n4jr1€2n41, 1=0,1, .., k+1, —oo<i<—1.

(3) ok (x)=0'(x)eant1, TEM), Moy i, where o' is the duality isomorphism on
Ui jez Aij (see e.g. [P5]).

(4) If Tr, is the rescaled trace on |J, Manyr given by Tr,=A""7 then we have
Trpy1(ak(2))=Tr,(x), for all £E€Manik, for all k=0.

Proof. Since for all x€ My, we have [z,ean4k+2]=0, and since the element
Akl Zeoni1 .- €antk+2 I8 a partial isometry, it follows that afL is a x-isomorphism.
For the properties (1)—(4) we have:

(1) Since

€ontjt1Montj—1€on4j+1 = Montj—1€2n4j41 = €2ntjr1Monijri€onyjp1
it follows that

€ant1 - €ntht2Mony i 1€9n4k42 ... €2n41 =Cont1 - Conpjr1 Monyj 1€2n 4541 - 2041
= €n+t1 - Contit1Montjt1€2n4i+1 - €2n41

=ean+1Monyjt1€2n11-
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(2) Because €zni1,€2n42;, s €2n4k+2€ A1 2ntky2 and since A; onyj 1€2n4j41=
€2n+tj+14i antj+1€ontj+1 for each j=0,1,...,k+1 and —oo<i<—1, this part follows
by (1).

(3) This is trivial by the definition of ¢”.

(4) Since T(wegniki2)=A7(x) for €My, 1k, one gets T(ak(z))=Ar(z) so that
Hn+1(aﬁ(x))=T‘rn(m). u

Notation 2.2. To simplify the notation we will denote by €,, the system of commuting
squares

Myp,1 C My, C .. C Myyr C
U U U
A _oon-1 C A_oon C ... C A_oontk C
U U] U
A gon1 C Agon C ... C A gonyr C
U U U
A qon1 C Aign C .. C A_jonyr C
with C* denoting its truncation up to %k, k=0,1,... Thus, with this notation

Lemma 2.1 states that of identifies the commuting square (€%, Tr,,) with the “corner”

€2n+1Ck 1 €2n41 Of the commuting square (€X ,, Tr,, 1), endowed with the restriction of
the trace Tr,,+1 on it.

Moreover, since by Lemma 2.1 (1) we have afl+1|M2"+j_1:afL, for 0<j<k+1, with
the sequence {a¥(z)}, being constant from a certain point on, for each x€ May4;, for
all j, we immediately get the following:

COROLLARY 2.3. For each n>0 and z€ Uj>0 Mo,y j let

o () (i:efklingoafl(x).

Then we have:

(1) an(Cr)=¢€2n11Cnri1€2nt1-

(2) an(@)=0"(@)ean+1, €U; Aon—1,2n+=U; (M3 1N Many;), where o’ is the du-
ality endomorphism on Uj Agj that sends A;; onto Aiqa j+o, for all 52i>0 (as defined
in [P5]).

(3) Trpiican=Tr, and «, takes the Tr,-preserving expectations (= T-preserving
expectations) in €, into the restrictions to es,+1Cni1€2n41 Of the Tr,ii-preserving
expectations in C,iq.

(4) The top row of commuting squares in €, is a sequence of basic constructions of



232 S. POPA AND D. SHLYAKHTENKO

the initial homogeneous A-Markov commuting square of inclusions
Moy C My,
0
C,.= U U
A—0072n~1 C A-OO:Q"‘

Moreover, on(le,)=0on(1r,,) =€2n+1€A_0o 2n+1 has scalar central trace in A_co2n+1

(which is regarded as an algebra in C.), so that C ., is the A\~ -amplification of CJ.

Proof. ay, is well defined because for each z and k large enough one has o, (x)=ak (z)
(by Lemma 2.1(1)). Then properties (1)-(3) are just reformulations of Lemma 2.1
(1)—(4). The last property (4) is well known (see e.g. [P4]). O

Definition 2.4. We define C to be the system of inclusions of von Neumann algebras

M., € Mg C ... € M C

u U U
B, C By C .. € B, C
U u U
Ay, ¢ A§ < .. Cc A} C
U u U
‘AAl —1 —1
L C AT C .. C A C

obtained as the inductive limit of the sequence of non-unital trace-preserving embeddings

of commuting squares

(Co; Tro) <=2 (€4 Try ) <o (Cg; Trg) — ... .

By this we mean the following:
(2.4.1) We first take the (non-unital!) algebraic inductive limit M? of

ag @y
M; %Miﬂkg ‘——)Mi+4 ...

We note that M%,CMJC..., in a natural way.

(2.4.2) For each n20, j=2—1 and z€ M, 5, we denote by &, (z)=...cant1°an(2)
the image of z in M?. With this notation, we clearly have M{=J,, &n(Mitan)-

(2.4.3) On MY we take the C*-norm defined by (|0 ()| =12 a1,15,s If TE€EM;i2n-

(2.4.4) We define a positive tracial functional Tr on the algebras MY by Tr(a,(z))=
Tr, (z), if € M;yop.

(2.4.5) We define M; to be the completion of M? in the topology of convergence in
the norm ||z||2 7v=Tr(z*z)'/2 on bounded sets (in C*-norm) (note that M; can also be
defined through the GNS construction for (MY, Tr)).
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(2.4.6) We note that Tr extends to a normal semifinite faithful trace on M;, still
denoted Tr. Moreover, the algebras M; defined in this way clearly satisfy M; C M, 1 with
Trav,,,lv; =Try, (the notation being self-explanatory).

(2.4.7) We define B;, A, ! and A% i>—1, as the closure in the same topology of
|| - |l2,Tr-convergence on bounded sets of the s-subalgebras |J,0n(A—co,it2n) (for B;),
Un@n(A_1it2n) (for Ai_l) and |J,,&n(A_2,i12n) (for A?), respectively, all taken as sub-
algebras of MY.

(2.4.8) We note that the trace Tr on M; restricts to semifinite traces on A; ' (and
thus on B, and A? too), for each i>—1.

(2.4.9) If for each n we choose an inclusion Q,CP, between two of the algebras in
the commuting square C,, but so that for each n the algebras are chosen at the same
“spot”, and if we denote by Eg the unique Tr-preserving expectation of the inductive
imit ?d:efm onto the inductive limit Qd:efm, then by Corollary 2.3 we
have £Z(an(2))=an(E"(x)), for z€ P,.

In particular, by Corollary 2.3 (3), the properties (2.4.8) and (2.4.9) above show that
the system of inclusions €, endowed with the corresponding Tr-preserving expectations
between its algebras, is a system of commuting squares.

We now examine more closely the main properties of C.

LEMMA 2.5. If for each n>20 we let 1, be the identity in C,, i.e. 1lp=1p,, =
LA o 1= WMo =LA 1 pnsrs for all k20, and define p,=a,(1,) then we have:

(1) pn belong to .Aj, Trp,=A"" for all n, and po<p1<p2<... with pn/‘lﬂj
(=1¢).

(2) For each n, p,Cpy, is naturally isomorphic to €, via &, (as commuting squares
of trace-preserving expectations).

(3) pn has scalar central trace in pp1B_1pnt1, for all n=0.

(4) For each j>i>—1 and x€A;; there exists a unique element a(x) in |J, My such
that [o(x), pn]=0, for all n, a(x)pr=0a,(c'™(x)), where o’ is the duality isomorphism as
in Corollary 2.3(3). Moreover, o is a *-isomorphism and «a(A;;)=M,NM;=M;NA;,
for all j2iz—1.

(5) a(e;) belongs to Aj_l, for all j>1, and afey) belongs to AJ. Also, a(ent1)
implements the Tr-preserving conditional expectation of M,, onto M,_1, for all n>0.

Proof. (1) is clear by the definitions, and so is the equality p,,Cp,=0&,(Cy) of con-
dition (2). Then p, have scalar central trace in p,;1B_1Pn i1 because ez,41 has scalar
central trace in A_ . 2n+1 (see e.g. [P4]). This proves (3).

The first part in (4) follows by property (2) in Corollary 2.3. Then the equality
a(Ai;)=M;NM; is immediate by the definitions of a, M;, M;.
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Further on, by the way it is defined, «(A;;) is clearly contained in Aj‘l, so that we
have a(A;;)CM; ﬂAj—lC (A?)’ﬂ/l;l.

To prove the opposite inclusion note that, since A’ ,;MA_ 4 ;=A;;, it follows
that A" 5 10, NA_1 jron=0""(As) 50 that Gn(A_2iy9n) Nan(A-1 j12n)=0n(0""(4i5)),
which gives that pn((A?)’ﬂAj—l)pn:(pnA?pn)’ﬂpnAjflpn:a(Aij)pn. Since p,, 1, this
proves the last part of (4).

Since e; lies in A_y ; for j>1, it follows by (4) that «(e;) lies in A;l, j>1. Similarly,
since eq lies in A_, ; for all j>0, it follows that a(eo) lies in AJ.

Since ez, 1 implements the expectation of May onto Moy _1, it follows that i (e2p11)
implements the conditional expectation of pxMopr onto ppM_1pg. Since pi 1 and
a(e1)pr=0(eaxt1), we get the last part of (5) as well. O

The next lemma clarifies the structure of the inclusions A* , C A§C ... for k=—1,0.

To state it, let us denote by I'=Tp; , m,=(ar)kek ier the standard graph of
M_;C M, (or, equivalently, of =G , a1,), Wwhich describes the sequence of inclu-
sions Ay _1CA_10CA_11C.... Thus, if *€K denotes the initial vertex of I' and
Ko=(TT)"({*}), Ly=(TY"T'({*}), then K=UJ,, K, Ln=\J,, Ln, with the sets Ky, L,
having the following significance:

The set of simple summands of Z(A_1 2n—1) (resp. Z(A_1,2,)) naturally identifies
with the set K, (resp. L, ), with the inclusion K,,C K,, 1 (resp. L, C Lp+1) corresponding
to the embedding of Z(A_1 2,—1) into Z(A_1 2nt1) (resp. of Z(A_y 2,) into Z(A_12n12))
given by the applications

Z(Aglyj) Sz e Z(A_1,j+2),

with 2’ the unique element in Z(A_1 j12) such that zejo=2"e; 2.

Moreover, the inclusion graphs of A_1 2n—1CA_1 2, (resp. A_12,CA_12n+1) are
given by g I (resp. ,, I').

Also, there exists a unique vector §=(sy)kek such that s,=1, IT*$=X"'5 and such
that if £=(t;)1c, =AI*S then (\"sp ek, (resp. (\")ier,) give the traces of the minimal
projections in A_j 2,1 (resp. A_1 25 ).

Similarly, we denote by I"=Tr_, m ,=(0} ) e K ver the standard graph of
M_oC M_; (or, equivalently, the “second” standard graph of M_;C Mpy; note that by
duality T'=T"n,, a1, as well), with its standard vectors /= (sp/)wers, L=(tr)rer’-

With this notation at hand we have:

LEMMA 2.6. A¥ CcAkC... are inclusions of atomic von Neumann algebras, for
each k=-1,0. More precisely, for each n>=0 the reduced sequence of inclusions

pn(A* CAEC . )p, is isomorphic via &' to the sequence of inclusions (A_14k,2n-1C
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A_11k2nC...), with the trace Tr on the former corresponding to the trace Tr, on the
latter.

Moreover, if one identifies the set of factor summands of AZ1 (resp. A%) which
contain non-zero parts of the projection py, with the set of factor summands of A_1 2n—1
(resp. A_s9n-1), ie., with K, (resp. L), via the identification of p,A_ipn with
A_y9n_1 {resp. A_so,_1), then the inclusion matriz for AZ]CAZ" (resp. A%, CAD)
is given by T' (resp. (I")!), while the trace Tr is given on the minimal projections of A_]
(resp. A%,) by the eigenvector §=(si)kex (resp. t') and on the minimal projections
of Ayt (resp. AY) by the vector T (resp. A3').

Similarly, the inclusion graph for A;'C A;&l (resp. AYCAY,,) is given by T if @ is
odd and by T* if i is even (resp. (I")! if i is odd and by T’ if i is even), with the trace
vector for the minimal projections of A", and A3 (resp. A3,_, and AY,) being given
by A*3 and Nt (resp. N*t' and N'F+13).

Proof. We have already noted in Lemma 2.5 that the non-unital isomorphism &,
takes the sequence of inclusions (A_q,—1CA_; oCA_11C...) onto the sequence of in-
clusions p,(A_1CA¢C...)pp, with Trod,=Tr,. Since A;; are all atomic and p, 71, it
follows that Aj are all atomic.

From the above and the discussion preceding Lemma 2.6, the last part now follows
trivially. a

LEMMA 2.7. The sequence of inclusions

_ _ aler) _,ale2)
ATTCAZY C AT AT

is a Jones tower of A-Markov inclusions.

Proof. By Lemma 2.5 (5), a(en+1) belongs to A, and by commuting squares with
Mn—_1CM,, it implements the Tr-preserving expectation of A, 1 onto A;ﬁl.

By the definitions, we see that pnﬂflpn is contained in the linear span

@(Pn+1-Ao_lpn+1)0l(el)(Pn+1~A61Pn+1)-

Since p,, /1, this shows that 5p.Aj 'a(er) Ayt =A%

But by Lemma 2.6 the traces of the minimal projections in .A:}C.AO_ ! satisfy the
conditions in [J1]. Thus, the basic construction A1 C Ay e (Al e), where e=e 41, has
a A-Markov trace that extends Tr.

Altogether, this shows that Ag 193:»—93:6./45 L and ersaf(e;) extends to a trace-

la(el

)
preserving isomorphism of A~ CA;' C A7 outo A:%C.Aalé (Agle). d
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Let us summarize all the properties of the commuting square € emphasized thus far.
To state it, recall from [P2], [P4] that an inclusion of von Neumann algebras NCM with
a conditional expectation £ of finite index is called a A-Markov inclusion if there exists
an orthonormal basis (abbreviated hereafter as ONB) of M over N (with respect to &),
{m;};, such that 37, m;mi=1""1.

Also, recall from [P2] that in the case that N, M are semifinite von Neumann algebras
and the expectation & preserves a semifinite trace Tr on M, then the above condition is
equivalent to the existence of a semifinite trace Trye, on M1={(M, ey} that extends the
trace Tr on M and satisfies Tr(zeny)=ATr(zy), for all z,yeM.

Definition 2.8. Let Q;,P;, i=—1,0, be arbitrary semifinite von Neumann algebras

with inclusions
Py C Po

U U
Q_1 C Qg

with a normal semifinite faithful trace Tr on Py which is semifinite on each of the smaller
algebras and such that the corresponding Tr-preserving expectations make the above
into a commuting square with both row inclusions of finite index. Then the commuting
square is non-degenerate if any ONB of the bottom row is an ONB for the top row. The
commuting square is A\-Markov if it is non-degenerate and the bottom (equivalently, the

top) row inclusion is A-Markov, in the sense explained above.

Note that if a commuting square is A-Markov then both of its row inclusions must
be A-Markov. Conversely, if both row inclusions of a commuting square are A-Markov,
then the commuting square is automatically non-degenerate, hence A-Markov itself. The
same conclusion is true if only the bottom row is assumed to be A-Markov, with the top
one having index <A1,

Note also that if one has a A-Markov commuting square denoted as in Definition 2.8
then the projection e:eg‘il implements the basic construction for Q_; C Qg as well. More-

over, the resulting system of inclusions

fpo _ fPl
U U
Qp C 9y,

where Q; is the algebra generated by Qy and e, is itself a A-Markov commuting square
(with respect to the Tr-preserving expectations). Thus, one can iterate the basic con-
struction and obtain from the initial A-Markov commuting square a whole Jones tower

of A-Markov commuting squares.
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THEOREM 2.9. (1) The commuting squares in the initial inclusion

M_1 C M,
U U
B, C B
= u U
A%, c AJ
U U
AT] C AG?

of C, with its Tr-preserving expectations, are all A-Markov.
(2) € is obtained by iterating the basic construction for C° with a(e;), i>1, being
the corresponding Jones projection.

(3) The commuting square

M_, € My
U U
B_, C By

15 isomorphic to the co-amplification of the commuting square

A w1 C A_wp,

i.e., it is obtained by tensoring the latter by B(I*(N)).
(4) The commuting square

A% c A
U U
—1 —1

ATl c oA

consists of infinite type I von Neumann algebras with discrete centers. The bottom inclu-
sion has graph given by T'=T1 | u,, and the top inclusion is given by the graph (I'),
where T'=1"; | 11, =T, 01, - The trace Tr is given on the minimal projections of AT}
by 5, on Ayt by T=AT"*5, on A° | by t’, and on AY by N5

(5) MQOMJ:MQOAJ-‘I:(B,-)’ﬂflj_l:(./l;l)’ﬂﬂg and o gives a natural isomor-
phism from

Sary v = (M{NM;)jniz 1

onto
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The last result in this section describes the functoriality properties of the commuting
squares appearing in C°. To state it, recall from [P3], [P5] that given two standard -
lattices §°=(A;),5i5 1, 9=(4i;);j>i>—1, an embedding of §° into § is a trace-preserving
isomorphism 2 from | J,, Aglm into |J,, A—1,» such that Z(A?j)CAij, for all j>i>—1, and
such that 1 takes the Jones A-sequence of projections {e%}n>1 of G% into a Jones sequence

of projections for G, satisfying the smoothness condition
B g, (Ue?)) = o(Eag,(€1))- (29.1)

Thus, one should keep in mind that a “morphism” between two standard lattices
implicitly requires that both lattices have the same index (i.e., both be A-lattices, with
the same \).

Note that by [P5], if ¢ is an embedding of a standard A-lattice Gy into a standard
lattice G, then for any —1<i<k<I<j one has commuting squares:

Ay C Aij
U U
uAY) C HAY).

THEOREM 2.10. (1) The object Car_, am, consisting of the commuting square

M_1 C My
U U
AZT C AF!

together with the fixed projection poe.Aj 1s canonically associated with M_,C M.
(2) The object CF consisting of the commuting square

By C By
U U
AT © Ayt

together with the fixed projection poeAj is canonically associated with the standard A-
lattice G, and it is functorial in G: If GoCS is a standard A-lattice embedded in G then
Cg‘o is naturally non-degenerately embedded (1) in (‘3?;t with commuting squares and with
the corresponding projections pg coinciding.

(3) The object Cg consisting of the commuting square

A%, c A
U U
-1 -1

AT ¢ A

() This means that all the sides of the commuting “cube” arising from the inclusion of the two
commuting squares are all non-degenerate commuting squares, with respect to the trace-preserving
conditional expectations.
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together with the fized projection poeﬂj is canonically associated with the standard

A-lattice G, and it is functorial in G, in the same sense as in (2).

Proof. (1) This part is clear by the construction of

B_, C By
U @]
A_1.C Ay

as the inductive limit of the canonical commuting squares

Myn_1 C My,
U U
A_i9n1 C A1

via embeddings which are canonical as well (being defined by using only the Jones pro-
jections in the tower ey, ey, ...). Also, po=@&o(1) so that the position of py inside A7 is
canonical as well.

(2) The fact that €¥ is canonically associated with § follows by first noticing that
the extended standard lattice §:(Aij)i, jez, associated with § as in [P5], is canonically
constructed from § by repeated basic constructions starting from the inclusion Ag oo C
A_1,00 (see the second paragraph in the proof of 2.2 in [P5]). In particular, the sequence
of inclusions A_ o, 1CA_c0,0C ..., with the whole system of inclusions of higher relative
commutants into it, is therefore canonical. From this, an argument similar to the one in
part (1) ends the proof.

If §oC§ in an embedding of standard A-lattices with the same Jones projections then
by the definition of the embeddings in the inductive limits of Definition 2.4, which only
depends on the Jones projections, it follows that the inductive limit algebras involved
in ngto are naturally embedded into the corresponding algebras of €%, with commuting
squares. To see that the embedding of the two commuting squares is non-degenerate note
that the embedding G°CG implements a natural embedding between the corresponding
extended standard lattices §0,§ (thus, with commuting squares!). This fact in turn is
an immediate consequence of the definitions, taking into account the smoothness condi-
tion (2.9.1).

(3) By the remarks following Definition 2.8, since the bottom row of Cg is A-Markov
and the top row has index <A™}, Cg is therefore A-Markov as well.

The functoriality is trivial, by the definition of Cg, since the construction of A%, C A
only depends on the Jones projections in §. Also, the commuting square conditions
involved in the embedding GoC G and the definition of the inductive limit, show that Cg,

sits inside Cg with non-degenerate commuting squares. a
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3. Amalgamated free products over type I algebras
We start with an easy lemma about compressions of amalgamated free products.

LEMMA 3.1. Let NCM?, i=1,2, be inclusions of von Neumann algebras with normal
faithful conditional expectations . Assume that the projection pEN has central support 1
in N. Then

p((Ml, 81)*N(M2a 82))]): ((lepy 8;)*pr(pM2pa 8;2)))5
where 8; denotes conditional expectation of pM*p onto pNp obtained by reducing & by p,
i=1,2.

Proof. Since p has central support 1 in N, there exists a family of partial isometries
v; €N so that for all ¢, vfv;<p, and so that Y v;v7=1 (in the sense of strong operator
topology). Let qk:Zlevwf.

Let wep((MY, EL)xn(M? E2))p be an element. Then given a strong neighborhood
U of w, one can find a k large enough so that a finite linear combination w'=3 w, of

words w] each of the form
PqkTIgEMgR Qe .. gk, M €M, mieM?,
belongs to U. But such a word can be rewritten as
w; =p<z vwf)ml (Z viv;‘) .
i<k i<k

Since each v}m;v;=pv;m;v,p belongs either to pM*p or pM?p, we deduce that
p((M, 1) 2y (M2, €2)) p = W™ (pM'p, pM?p),

as subalgebras of (M2, €1)#n (M2, £2)).

We now note that the algebras pM'p and pM?2p are free with amalgamation over
pNp with respect to the reduced conditional expectation. This is immediate from the
freeness condition. Since 8;, are faithful, it follows that this von Neumann algebra is

isomorphic to the free product ((pM'p, &})*pnp (pPM?p, E2)), as claimed. O

COROLLARY 3.2. If E-NM S NCM? are faithful conditional expectations, we have
the isomorphism

(MY, €M) 5 (M? €2))@ B(H ) = (M2@B(H ), £'®id) *xg () (MR B(H ), £°®id).

We now turn to identification of amalgamated free products with the free group
factor L(Fo).
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THEOREM 3.3. Let B be a von Neumann algebra, and ACB be a subalgebra. Let
E: B—A be a normal faithful conditional expectation. Assume that there exists a normal
faithful semifinite trace Tr on A, so that TroE is a trace on B. Assume lastly that A is
of type 1 and has discrete center.
Let
M =(B,E)x4 (A®L(Fs),id®T).

If B is of type I and pE B is a projection, Tr(p)=1, so that there is a system of matriz
units {eij}CB with €11=p, Ze“‘:l, then

M ={[(pBp, Tr(p-))*(L(Fe), )| @ B(H).

The proof of the theorem will consist of a sequence of lemmas. The notation and
assumptions of the first paragraph of the theorem remain fixed throughout this section.
It is convenient to omit mentioning the specific conditional expectations in expres-
sions for reduced amalgamated free products. It will always be clear from the context
what conditional expectations are understood. Moreover, note that all of the conditional

expectations in this paper are trace-preserving.

LEMMA 3.4. M is a factor if and only if the centers Z(A)NZ(B) have trivial inter-
section.

Proof. By [P1], the relative commutant of L(Fy,) inside M is equal to A. It follows
that Z(M)CA, hence Z(M)C Z(A). Since ACB, also Z(M)C Z(A)NZ(B). The other

inclusion is trivial. O

Let @ be a von Neumann algebra with a semifinite normal trace Tr, and let n;: @— @
be normal completely positive maps. Assume that each 7; is self-adjoint, i.e., Tr(n;(z)y)=
Tr(zn;(y)) for all x,y trace class in Q.

Define ®(Q, 11,72, ..., 1), where n=1,2, ... or +0c0, to be the von Neumann algebra
generated by @ and the Q-semicircular family Xy, X5, ..., X, so that

(i) X; are free with amalgamation over @Q;

(ii) each X; has covariance 7);.

Denote by Fg the canonical conditional expectation from ®(Q,n:1,%2,...,7,) onto Q.
By [S3], TroEg is a trace on ®(Q,m,...,n,). Moreover, Eg(X;qX;)=0;;1(q), for all
ge@. Recall [S2] that X; satisfy the inequality

Xl <2flm (D)2
Recall [S2] that if ¢;,7;€Q are elements, X is Q-semicircular of covariance 7, then

Yi=qXri+r;Xq;
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is again (-semicircular, of covariance
¢ qin(rier) g +rin(gieg) ri+ an(rizg)ritrin(gieri) e

In addition, {Y;} are free with amalgamation over @ if and only if Eg(Y;qY;)=0 for all
geQ and i#£j.

LeEmMA 3.5. M=®(B,E,E,E,...) (infinite number of copies).

Proof. By [S3],

Il

®B,E,E,..)~ (B, E)x®(A,id, id,id, ...)
(B, E)*a (A®®(C,id, id, ...))

(B, E)*a (AQL(Fs)) = M. 0

|14

14

We need a slight modification of the construction ® which works for semifinite com-
pletely positive maps, like Tr: B— B.

LEMMA 3.6. Let 1;:Q—Q, p: Q—Q be normal self-adjoint completely positive
maps. Assume that for each i, there exist (possibly unbounded) operators x; affiliated
with @, with (possibly unbounded) inverses, so that

wi(q) =x;mi(xiqz] )z, for all ¢€Q.

Then ®(Q,n1,7m2,-..) = ®(Q, p1, pz, -..) in a way that preserves Q and Eg. (The equation
means that p; is the closure of the densely defined operator qg—xin(xiqr])ez;.)

Proof. By definition,

‘I)(Qﬂhﬂha ) :W*(Q>X17X27 )7

where X; are QQ-semicircular, of covariance 7;. We claim that z}X;z,€®(Q,m, 72, ...)
(a priori, it may not be defined, since z; may be unbounded). It is sufficient, by passing
to the polar decomposition x;=wu;b;, u; €Q unitary, to consider only the case that x; are
self-adjoint. Denote by z} the value of the cut-off function {z—z}|_,, applied to z;.

Let Y;=x!X;z!. Then Y, is again Q-semicircular, of covariance

ni(q) = zimi(wiqal) ).

In particular,
IYell < 2l|2fmi(atal) 2] 2.
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Since zizt<z? we get that

wimi(xiat) w; < zin(@]) ot = X0 (2) 2 (@) Tix (=0, () <zin(@s) z; = p(l).

Hence we have that
1Yl[ < 2| p(L)]1M2

Note that Y;=x[_¢4(z:) 2 X;x5 X1 ,5(2:) if t<s. Hence Y; are bounded, and moreover
X[=r.r)(Z:)YiX[~r,j(z;) does not depend on ¢ once ¢>r. It follows that also the weak
limit of ¥; exists and is bounded. We denote the limit by z;X;x;. It is clear that
z; X;x; is @-semicircular of covariance q—x;n{x;qx;)z;. Note that X, eW*(Q, z; X;x;)
(one simply applies the same construction, starting with z; X;»; and using z; Yin the
place of z;).

Now,

(Q,m,m2,...) =W (Q, 21 X121, 22 X222, ...) = P(Q, 11, 2, --.),
since x; X;x; has covariance g—x;n{z;q92;) xi=p: (x;). 0

Definition 3.7. ®(Q,Tr,Tr,..)=®(Q,n,n,...), where 7 is any normal completely
positive map from @ to @, so that n(q)=z*Tr(zqz*)z for some z€Q, having a (possibly
unbounded) inverse.

It is not hard to see, from Lemma 3.6, that this definition does not depend on the
choice of 1. Moreover, if the trace Tr is actually finite, then this coincides with the
previous definition of ®(Q, Tr).

Remark 3.8. The “unbounded semicircular element” of Ridulescu [R1] (see also
[DR]) is precisely the “operator” one would get if in the construction of ®(Q,Tr) one
were to use a semifinite trace, but completely ignore the fact that Tr(1) is infinite. If
n(-)=zTr(z-z)z is as above, and X is @-semicircular of covariance 7, then Ridulescu’s
element would correspond to the operator £7'Xz ', which does not make sense as an
operator, because Tr is not a normal self-adjoint map from @ to itself. Note that, as used
in Radulescu’s work, the finite compressions X[ ¢4 (x)z " X2 x[_¢(x) do make sense
as operators in ®(Q, Tr). In particular, ®(Q, Tr) is exactly the algebra @+8X described
in [DR).

PRrRoOPOSITION 3.9. Let M be a von Neumann algebra with a semifinite faithful nor-
mal trace Tr. Then ®(M, Tr, Tr,...) is a factor of type 1l.

Proof. Choose pr€M to be an increasing family of projections of finite trace, and
so that py—1 strongly. Let d=3Y"(1/2%)py and n=dTr(d-). Then ®(M,Tr,Tr,...)=
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®(M,n,7,...), and is generated by M and M-semicircular elements Xq, X, ... of co-
variance 7. Consider the subalgebra B, C®(M,Tr, Tr,...), generated by ppMpr and
P X1D0k, Dk X2k, ... - Note that each pyX;px is pen( Dk Pr)Pe=pi Tr(dpk-)-semicircular
over pr My py, and the restriction of the canonical semifinite trace on ®(M,n,7,...) to By,
is a finite trace (having value Tr(py) on the identity of By). Moreover,

B 2 ®(Bx, Tr|g,, Tr| By, -.) = (By, 1/ Tr(pr)) * L(Foo ),

and hence is a II; factor. Since ®(M,7,7,...) is the closure of |, By, it follows that
O(M,n,n,...)=2®(M,Tr, Tr, ...) is a factor. Since it has a semifinite faithful normal trace,
it must be a factor of type Il,. O

LEMMA 3.10. Let N=®(Q,n1,m2, -, i1, 42, -..). Denote by
E;:N—>®(Q,m,n2,..)=N, and E,:N—®Q,p,p2,...)=N,
the canonical conditional expectations. Then
N (N, BQ)#0 (Nys EQ) = ®(Ny, 1o By, e B, ..
in a way that preserves Ny, Q) and E,, Eq.
Proof. By definition,
N=W*(Q, X1, X2,...,Y1,Y2,...),

where X; and Y; are free over ), and X; is r;-semicircular over Q, Y; is p;-semicircular
over (. The claimed decomposition as an amalgamated free product follows. The second
isomorphism follows from the fact that Y;, being free from W*(Q, X1, Xs,...)=N,, over Q,
is p1i0Ep-semicircular over N, (see [S2]). O

LEMMA 3.11. Assume that Q is a factor of type I, and m1,nz, ... are normal self-
adjoint completely positive maps from Q to itself. Assume that n;#0 for all i, and that
for each i, there exist subalgebras A;, each of type 1 with discrete center, so that

= E‘%T .

Then ©(Q,m1,m1, -, M2, M2, ... )=2D(Q, Tr, Tr, T, ...) (each n; is repeated an infinite num-
ber of times), in a way that maps Q) to Q, and preserves Eg.

Proof. Since

D(Q,m, 2, ) =D(Q, 71,71, - ) *Q P(Q M2, M2y )% -
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it is sufficient to prove the result in the case that all 7); are the same. We can then clearly
assume that all A;=A, and n;=FE4.

Let g1, 42, ... be the minimal central projections of A, > ¢;=1. Then A=3_ ¢;Ag;,
and each ¢;Ag; is a type I factor; let n,e NU{+oc} be the rank (square root of the
dimension) of ¢;Aq;. Let €%, 1<s,t<n; be a system of matrix units for ¢;Ag;; that is,

%

i
€5t Spgr = 5” (5tt/ess/,

eit = (eis)*7

q; = Z eis.

1<s<ni

CramM 3.12. Let P be an algebra of type 11, PCP be a unital subalgebra of
type o so that Pisa factor, and peﬁ be a projection of finite trace. Let v:Q—Q be
given by

v(q)=pTr(pgp)p, qeP.
Then ®(P,Tr, Tr,..)2®(P,v,v,...) in a way that preserves P and Ep.

Proof. Choose matrix units fijeﬁ sothat fi1=p, . fui=1, fi; [y =05 furr, [5=1Fii-
Let z=Y, f:i/2", and let u(p)=xTr(zpz)z, p€ P, be a completely positive map from P
to itself. Then ®(P, Tr,Tr,...)=®(P, 4, p,...). Let X; be a P-semicircular family of co-
variance p; thus ®(P, Tr, Tr,...)=W*(P, X1, X5, ...). Let Xf=Re fu. Xy fj1, <7, Y=
Im f1; X fj1, i<j. Then ®(P,Tr, Tr,...) is generated by P and {Xikj}k,iéju{y;?}k,i<j'
A straightforward computation shows that E(Xikjprﬁ;,):const-§ii/6jj/6kk/pTr(pqp),
E(}/i’;pl/;’,“]f,):const-6ii/5jj/5kkszr(pqp) and E(ijp}’i@l/):O. Hence, upon proper re-
scaling, {Xl’g}klgju{l/;’;}kl <; form a P-semicircular family of covariance v. Hence
&(P, Tr, Tr,...)2®(P, v, v, ...), as claimed. O

Cramv 3.13. ®(Q,Tr, Tv,..)=2®(Q,n,7, ..., Tr, Tr, Tr, ...}, in a way that preserves
Q and Eg.

Proof. Let p;=¢4,€Q. Let v;(q)=p;Tr(p;qp:;)p;- We first notice that, in view of
Claim 3.12,

O(Q, Tr, Tr, ...) = (®(Q, Tr, Tr, ... )% (P(Q, Tr, Tr, ... )xg ...))
= (®(Q, Tr, Tr, ..., v1, 11, ... ) %@ (R(Q, T, ..., 12, ...)) ) %@ ...
=o(Q, Ty, Tr, ..., w1, V1, ...y Vo, Va, -0
=®(Q,v1, V1, ey V2, Vo, . )40 R(Q, Tr, Tr, L)
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Let X ]1 be @Q-semicircular variables, free with amalgamation over ), and so that the

covariance of X7 is v;. Note that Xi=e{; XFel;. Let
Y; = Xieyy =
j_z Z €s1 jels‘Tr(es )1/2'
i 1<s<ns 11

This sum converges strongly, since X is diagonal relative to the orthogonal family of

projections {et }, and

1
Tr(ef;)'/?

1

— =2
Tr(ef,)'/?

es1 X ers <2l (1))*-

It is not hard to see that {Y;} form a Q-semicircular family of covariance E4=17. More-
over, ®(Q,v1,v1, ..., V2, 1, ...) is generated by @ and {Y;};, since X; is, up to a constant,
et Yjel . Hence ®(Q, vy, v, ..., 10,12, .. ) 2®(Q,n,, ...). Thus

@(Q, YI\I',F_[\I‘, ) = (I)(Q, Vi, V1, .0y V2, V2, )*Q@(Q, ’I‘I‘, T‘I‘, )

E‘I’(Qﬂlﬂ% ‘-o)>"Q<I>(62,’I‘I‘,’I‘I'7 )
=2(Q,m,n,..., Tr, Tr, ...). O

We now finish the proof of the lemma. By Lemma 3.10, we get that
o(Q, Tr, Tr, .} =2 ®(Q,n,7,..., Tr, Tr, ..} 2 ®(D(Q, n, 7, ...), Tr, Tr, ... ).

Noticing that P=®(Q,n,7,...) contains a Il factor P=Q, and setting p=eh €Q,
v(z)=pTr(pzp)p, €B(Q,n,7, ...), we get

(I)((I)(Qvn7n)7’]:‘r’ TI', ) = (D(¢(Q7”73 "7’ )7 v, v, ) = Q(an) 777 ey V|Q7 V|Q7 )7
the last isomorphism because

® (Qm,1, -
V:EQ(Q’"’"’ )oVOEQ(an )’

since p€@ (see Lemma 3.10).

Now, the algebra ®(Q, 7,7, ...,v|q,v|@,...) is generated by @ and a @Q-semicircular
system X1, Xo,...,Y1,Ys, ..., where {X;,Y;}; are free with amalgamation over @), X; has
covariance 77 and Y; has covariance v. Note that X; commutes with A (containing p=ei, ),
and Y;=pY;p, because of the form of v. In particular, X;=3", | ¢ ;<n, €45 Xi€h,- It follows
that ®(Q,n,7,...,v|Q,v|g, ...) is generated by

{anXia}e, {(1-q)X;i(1-q)}i, {ehYieli}s, Q.
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Furthermore, ®(Q, 7,7, ...) is generated by

{mXiqi}s, {(1=q)Xi(l—aq1)}s, Q.

Note that the three families {¢1 X;q1}4, {(1—q1) X:(1—q1) }i, {pYip}; are free with amal-

gamation over (J; this is because for all g€,

Eq 1 Xiqua(1—q1) X;(1-q1)) = 051 Ea(q19(1—q1))(1-q1) =0,

since ¢; is a central projection in A.

Next, since X; commutes with A, we get that

_ E: 1 1 _ 1.1 1,1 _ 1 o1
nXiq1 = 6ss)(iess_ E : eslelineslels_ E eslezpels'

1<ssm 1<ssm 1<ssmy
It follows that ®(Q, 7,7, ...,v|q,v|g,..) is generated by
{pXip}i, {(1-q)Xi(l-q)}, {pYir}: Q,
and the families
{pXip}i;, {(1-q)Xi(1—q1)}i, {pYip}
are free with amalgamation over Q. Moreover, ®(Q, 7,1, ...) is generated by

{pXip}s, {(1-q)Xi(1-q1)}i, Q.

Now, {pX;p}; are free with amalgamation over @, and pX;p is Q-semicircular with
covariance

q— Eq(pXipgpX;p) = pEa(pgp)p = const-pTr( pgp)p = const-v(q).

It follows that {pX;p}; (upon rescaling by some non-zero constant) form an infinite

Q-semicircular family of covariance v|g. Hence, by renumbering, we can join
{pXip}:U{pYip}:
into a single semicircular family of covariance v. It follows that the algebras
W*({pXip}i, {(1—aq1) Xi(1—q1) }i, {PYip}:i, Q)

and
W*({pXip}i, {(1-q1) Xi(1—aq1) }i, Q)
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are isomorphic to each other, in a way that maps Q to @, and preserves Eg. But we saw
before that the first of these algebras is isomorphic to ®(Q,n,7, ..., 7|, V|qg,...), while
the second is isomorphic to ®(Q,n,n,...). U

LemMma 3.14. If B is of type Il and pEB is a projection, Tr(p)=1, so that there
is a system of matriz units {e;;} C B with el1=p, Y ey =1, then

®(B, Tr, Tr, ...) = [(pBp, Tr(p-)) * (L(Fx), 7)| @ B(H).
Proof. Let p;=e;; be a family of orthogonal projections in B, Tr(p;)=1, > p;=1.
Let =) p,/2", and let n: B—B be given by n(b)=zTr(zbz)x. Then ®(B,n,7n,...)

®(B,Tr,Tr, ...), by definition. Hence ®(B, Tr, Tr,...) = W*(B, X1, X3, ...), where X; are

B-semicircular, each of covariance 1. Then
»®(B, Tr, Tr, . )py = W™ (p:1 Bpy, { X[ i 5)
where X{j:elinejl. It is not hard to see that
{ X5 PU{Re X7 4> 7 u{Im X[, : i > 5}

are free over p;Bp; and are again a p;Bp:-semicircular family, each having covariance

27"7J.Tr(p; p1). Denoting p=p; and 7(-)=Tr(p-p), we get (see [S3])
p®(B, Tr, Tr, ... ) p =2 ®(pBp,7,7,..) 2 (B, 7)*L(Fs). O

The following corollary, together with Lemma 3.14, implies Theorem 3.3.

COROLLARY 3.15. Let B be a W*-algebra with a semifinite normal faithful trace Tr.
Let ACB be a type I subalgebra with discrete center. Set M=®(B,E,E,...), where
E:B—A is the Tr-preserving conditional expectation. Then if M is a factor,

M=~&(B,Tr,Tr, Tr, ...).

Proof. Let F:®(B,E,E,...)—A denote the composition of
E:B>A and Eg: ®B,E,E,..)—>B.

Let N=®(B,Tr, Ty, ...), and denote by G: N—A the composition of Eg: N—B and
E:B—A. Note that F', G and E all satisfy the hypothesis of Lemma 3.11; moreover, by
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Proposition 3.9, N is a factor. We have

M=®(B,E,E,...)
~®(®(B,E,E,..),F,F,F,..)
~®(M,F,F,..)
> (M, Tr, Ty, ...)
=®(®(B,E,E,...),Tr, Tr, ...)
=®(B,E,E,E,...Tr,Tr,...)
~o(B,Tr,Ir, ..., E, E, ...)
~o(®(B,Tr, Tr,...),G, G, ...)
~®(N,G,G,...)
> ®(N,Tr, Ty, ...)
= ®(®(B, T, Tr, ...), Tr, Tr, ... ) X ®(B, Tr, Tr, ...).
This completes the proof. ]

We shall also need the following theorem:

THEOREM 3.16. Let ACB be an inclusion of type 1 von Neumann algebras with
discrete centers. Let Tr be a semifinite normal trace on B, and let E:B—A be the
Tr-preserving conditional expectation. Let

M=(B,E)*4 (A®L(Fy),id®T).
Then if M is a factor, M=L(Fo,)®@B(H).
Proof. By tensoring B with B(H ), and noting that

(B&B(H), E®id)*agp(m) (AR L(Foo)®B(H),id® r®id)

(see Corollary 3.2), we may assume that B2B®B(H). Assume that M is a factor. By
Corollary 3.15 we obtain the isomorphism

M=~®(B,Tr,Tr, ...);

it is therefore sufficient to prove that the latter algebra is isomorphic to L(Fu,)® B(H).
It is not hard to see that ®(B, Tr, Tr,...)®@ B(H )= ®(B®B(H ), Tr, Tr, ...); hence we
may replace B=@ B(H) with P C, i.e., to assume that B is commutative.
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We also have (arguing as before) that
&(B, Tr, Tr,...) 2 ®(B,id, id, ..., Tr, Tr, ...).
Setting B=®(B,id, id, ...)=B&L(Fo) gives that
&(B, Tr, Tr,..) = ®(B, Tr, Tr, ...).

Note that Ez@L(Fm). Tensoring with B(H) again allows us to replace B with B=
B®B(H). It thus remains to be proved that ®(B, Tr, Tr, ... ) L(Fo, )® B(H).

Denote by ¥ a choice of the semifinite trace on L(Fy)®B(H). Then there exist
numbers \;>0 so that (B, Tr)=@, (L(Fs)®B(H), \;¥). Choose in each direct sum-
mand in B a projection p; of trace 1. Let p=> p;. Then B contains a set of matrix
units e;; with e;;=p and >_ e;;=1. Compressing to p gives that ®(B, Tr, Tr, ...)Q B(H ) =
O(A, TY, TY', ...), where A= L(F ), and Tt’ is the direct sum of the traces .

It follows that we may assume that the value of Tr on the minimal central projections
of B is the same. It follows that the isomorphism class of ®(B, Tr, T, ...) does not depend
on the choice of the normal faithful semifinite trace on B; furthermore, it is sufficient to
consider the case that B is commutative.

We now make a specific choice of B=I*°(Z) and the trace Tr:

Tr(fy=)_ 2"f(n).

neZ

The translation action of Z on B gives rise to a trace-scaling action « of Z on
&(B, Tr, Tr,...) (by naturality of the construction ® and the fact that Tr is scaled by
the action of Z). Since (B, Tr, Tr, ...} is generated by a B-semicircular family, it is eas-
ily seen that N=®&(B, Tr, Tr, ...) x4 Z is generated by a B(H )=B xZ-semicircular family,
hence isomorphic to ®(B(H),n,n,7,...) for some n: B(H)—B(H). Note that N is a
factor of type Ilw, since ®(B,Tr,Tr,...) is a III;/, factor. By Theorem 2.1 of [SU],
N2O(C, u, pi, 1)QB(H) for some p: C—B(H). Note that

D(C, p, by ...) = B(C, p)xB(C, 1) *...
and is a a free Araki-Woods factor [S2], [S1]. Being type III; /o, it must be that ®(C, 1)

is isomorphic to the unique type III; /5 free Araki-Woods factor. Hence ®(B, Tr, Tr, ...) =
L(F.)®B(H), being the core of this factor.

oo
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4. Functorial constructions of subfactors via free products

Let us begin by recording the following general result (which is well known for semifinite

inclusions with trace-preserving conditional expectations).

PROPOSITION 4.1. (a) Let

Fo

P_q C Po

Ue_ Ueo (4.1.1)
F_ 1

Q4 C Qg

be a commuting square, and assume that &; are faithful normal conditional expectations.
Let Q be a diffuse finite von Neumann algebra with a normal finite faithful trace 7, and
set

Then 5
M_, C Mo
U U
Fo
Py C Po (4.1.2)
U(S_l USO

F_1
Q4 C Qg

forms a commuting diagram of inclusions of von Neumann algebras. Moreover,
M_ NMy=P",NQ,.

(b) Assume that (4.1.1) forms a commuting square, and F; are finite-index condi-

tional expectations. Assume also that (4.1.1) is non-degenerate, i.e., any ONB {m;} for
the inclusion

forms an ONB for the inclusion

(equivalently, Sp(QoP-1)=Po).

Then all the commuting squares in (4.1.2) are non-degenerate. In particular, the
indez of

F
M_1C My

is given by » m;m}.
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(c) Assume that

P c Pyt P, P
U U C U U
Q71 < 9t Q, c 98

is a non-degenerate inclusion of non-degenerate commauting squares (non-degeneracy here
means that all of the 6 commuting squares obtained by combining the inclusions of P!
and Q] , are non-degenerate). Set

M =P} % (2 0Q).

Then o 0
M, ¢ M3
U U
M} < Myt

s again a non-degenerate commuting square.

Proof. (a) Note that the algebra generated by P_; and @ inside My is isomorphic
to My; this is because @ and P_; are free with amalgamation over Q_;, and the condi-
tional expectations involved in the amalgamated free products are faithful.

(b) By the non-degeneracy and commuting square condition, an orthonormal basis
{m;} for Q_1CQq “pulls out” to become an orthonormal basis for M_1C Mp.

(c) By arguing as in part (a), we get the vertical inclusions in

M2, ¢ M§
U U
M- ¢ Mt
-1 0 -

Using the commuting square conditions and non-degeneracy, we see that an ONB for
M”1cMgz* (coming from an ONB for Q-1cQg") is an ONB for M%, C M3. O

We now turn to the algebras constructed in [P3].

THEOREM 4.2. Let G be a standard lattice, and let

A%, c AJ
(‘39: U U
AZL C Agt

be the commuting square associated to G in Theorem 2.10, and let po be the canonical
projection in A:inP_l. Let Q be a tracial von Neumann algebra with diffuse center.
Consider the inclusion of algebras

Por= AL 41 (QRATT) CPo = Adxy -1 (QRAG ). (4.2.1)
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Then the inclusion

PoP—1P0 C poPopo (4.2.2)
is isomorphic to the inclusion constructed in [P3).

Proof. Let us denote by G the bottom sequence of commuting squares in Gy, i.e.,

corresponding to the case n=0 in Notation 2.2:

A—2,~1 C A_z,o C ... C A_ka C ...
U U U
A—l,—l C A——l,O C ... C A—l,k C

Note that this sequence of commuting squares coincides with the standard lattice associ-
ated to the subfactor M_,C M_1, which by duality is isomorphic to the standard lattice
associated to MyC M;.

Also, denote by G! the bottom sequence of commuting squares in C:

A%, € A} C .. c A) C
U U U
ATV c At o AN

Finally, denote by A% :m, for k=-—1, 0, the closure being taken with respect to the
strong topology implemented by the semifinite trace Tr on UnAEL.

Note that by Lemma 2.5, €} is naturally isomorphic to poClpg, via &. Let us denote
by & this (trace-preserving) isomorphism. Thus we have

o _
A9 00 C A1 00 = (oA poC poAS po)

as well. Also, by the irreducibility of the inclusion matrix for A71C Ay " it follows that the
central support of po in AZ! is equal to 1. Thus, by Lemma 3.1, we have an isomorphism

(Q®A—1,oo ¥4 o A—Z,oo) =~ pO(Q®-A;ol ot ‘Ago)pO;

that we still denote by a.
Moreover, inside of the algebra po(Q®AL %, -1 A% )po we have the Jones tower of
type 1I; factors

pO(Q®A:}*A:}‘Ag1)pOCPO(Q®A51* =1 Ag)poC e s

Denote by M7 C My C ... this Jones tower of type II; factors. Also, denote by N_1C NoC...
the Jones tower of factors constructed in [P3], [P5]. Thus, Nee=Q®A_100%4_; o A-200
and each of the factors Ny, k>—1, is defined as the smallest von Neumann subalgebra
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which contains ) as well as all the vector spaces ®F(QVA_2 ), n>k, where ®} are the
completely positive maps defined inside N, out of the Jones projections, as in [P3], [P5].

Since &(New)=Mo and & takes Q onto Q, A_2 , onto po A po, for all n, and Jones
projections onto Jones projections, it follows that a(Ny) is a subfactor inside M} and
that the system of inclusions

M, C¢ My C .C M C .
U U U
a(N_1) € a(Ng) C ... C a(Nk) C ..

has all squares commuting. Since &(Ny ) =M, by commuting squares, the isomorphism
a takes Ny onto My, for all k> —1. a

We now have all the necessary ingredients to obtain the functorial constructions of
subfactors in L(Fo). We denote by G the category whose objects are standard lattices.
The morphisms in this category are by definition embeddings of standard lattices with
the same index (i.e., embeddings of M-lattices with the same )), satisfying the smoothness
condition (2.9.1).

THEOREM 4.3. Let G be the category of standard lattices, with embeddings as mor-
phisms. Let S=S(L(F)) be the category of subfactors (P_1CFy), Po=L(Fx), P-1=Fy
of L(Fy) with morphisms 1: (P_1C Py) —(Q-1C Qo) given by non-degenerate commuting
square inclusions

Q-1 C Qo
U U
P, C P

Denote by G the functor G:S—G assigning to an inclusion its standard lattice,
S(P.1CPRy)=59p_,cp,
Then there exists a functor F: G—S which is a Tight inverse for G:
GoF =id.
Proof. We give two proofs to this theorem.

For the first proof, let @=L(F.,) and define F(G) to be the inclusion (4.2.2) con-
structed in Theorem 4.2. By Theorem 4.2,

§= ST_lciPo = 9(3:(9))7

so that JF is the right inverse to G. Moreover, by Proposition 4.1, F has the proper

functorial properties. In fact, now that we have established that the construction of the
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subfactor F(G) coincides with the construction of subfactors in [P3], [P5], the functoriality
of F also follows from the functoriality of the construction in those papers.

It remains to show that po®P; po=L(F), or, equivalently, that P; = L(F)®B(H ).
Recall that P; are given as amalgamated free products (4.2.1), with @Q=L(F,). Thus by
Theorem 3.16, P; =~ L(Fo,)®B(H ). This ends the first proof.

Now, for the second proof of the theorem, for a given standard A-lattice § consider
the A-Markov commuting square

B_1 C By
= U U
AZ} C At

as in Theorems 2.9 and 2.10. Recall that A~], A, " are type I von Neumann algebras with
discrete center. Moreover, each one of the algebras B_;, By is isomorphic to an algebra
of the form Ry®B(H), where Ry is hyperfinite of type II; (possibly with non-trivial
center). Let Q=L(F). Denote by F(G) the compression of the inclusion

(Q®ATY) -1 B_1 C(Q®AG ) %41 Bo

to the canonical trace 1 projection in A:% (denoted by pg in Theorem 2.9). By Proposi-
tion 4.1, we get that the standard lattice of this inclusion is G, i.e., §oF(9)=§. Propo-
sition 4.1 implies that F is a functor between the categories G and S. Theorem 3.3
implies that each of the algebras involved is isomorphic to an algebra of the form
(Ro*xL(Foo))®B(H )= L(Fs )®B(H ), where R is hyperfinite of type II; (the last iso-
morphism follows from the results of Dykema [D1]). It follows that the compressed
inclusion F(G) consists of algebras isomorphic to L(F,). O

COROLLARY 4.4. Let G be any standard lattice. Then there exists an inclusion
P_1CPy having G as its system of higher relative commutants, and so that P_= Py
L(Fe).

We now describe some further universal properties of L(F).

THEOREM 4.5. Let M;1CM0 be an inclusion of 11 factors with finite index. Then
there exists an inclusion J\//T_lcl\//fo functorially associated to M_1C My, with ]\7_12
M_1xL(F), ]\/ZO'EMO*L(FOO), so that J/W\,lC]\/l\o has the same index and the same
standard lattice of higher relative commutants as M_,C M.

Proof. By Theorems 2.9 and 2.10, there exists a non-degenerate commuting square

M_,®B(H) C My®B(H)
U U
AT] c ARt
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with A:} and Ay ! type I with discrete centers. Letting

Moy = (M_1®B(H)) %4-1 (L(F®A_1)),
Mo = (Mo®B(H)) 41 (L(Fe®Ag 1)),

we see that M_; C My has the same higher relative commutants as M1 C M. Compress-

ing by a finite projection and noticing that in view of Theorem 3.3,

M1 = (Mo xL(Foo)) ® B(H),
Mo = (Mo* L(Foo)) ©B(H ),

gives the result. 0

[S3]
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