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0. I n t r o d u c t i o n  

In this paper, we give a construction of the JSJ splitting of a one-ended hyperbolic group 

(in the sense of Gromov [Gr]), using the local cut point structure of the boundary. In 

particular, this gives the quasiisometry invariance of the splitting, as well as the annulus 

theorem for hyperbolic groups. The canonical nature of the splitting is also immediate 

from this approach. 

The notion of a JSJ splitting, in this context, was introduced by Sela [Se], who 

constructed such splittings for all (torsion-free) hyperbolic groups. They take their 

name from the analogy with the characteristic submanifold construction for irreducible 

3-manifolds described by Jaco and Shalen [JS] and Johannson [Jo] (developing a theory 

outlined earlier by Waldhausen). The JSJ splitting gives a description of the set of all 

possible splittings of the group over two-ended subgroups, and thus tells us about the 

structure of the outer automorphism group. 

We shall take as hypothesis here the fact that  the boundary is locally connected, 

i.e. a "Peano continuum'!. This is now known to be the case for all one-ended hyperbolic 

groups, from the results of [Bol], [Bo2], [L], [Sw], [Bo5], as we shall discuss shortly. This 

uses the fact that  local connectedness is implied by the non-existence of a global cut 

point [BM]. 

A generalisation of the JSJ splitting to finitely presented groups has been given by 

Rips and Sela [RS]. The methods of [Se] and [RS] are founded on the theory of actions 

on R-trees. They consider only splittings over infinite cyclic groups. It seems that  their 

methods run into problems if one wants to consider, for example, splittings over infinite 

dihedral groups (see [MNS]). 

A more general approach to this has recently been described by Dunwoody and 

Sageev [DSa] using tracks on 2-complexes. Fujiwara and Papasoglu have obtained similar 
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results using actions on products of trees [FP]. These methods work in a more general 

context than those of this paper. (They deal with splittings of finitely presented groups 

over "slender" subgroups.) However, one looses some information about the splitting. For 

example, it is not known if the splitting is quasiisometry invariant in this generality. The 

annulus theorem would appear to generalise, though this does not follow immediately. 

A proof of the latter has recently been claimed in [DSw] for finitely generated groups. 

(We shall return to this point later.) We shall see that  for hyperbolic groups, all these 

results can be unified in one approach. 

As we have suggested, deriving the splitting from an analysis of the boundary enables 

us to conclude that  certain topological properties of the boundary are reflected in the 

structure of the group. For example, we see that  the splitting is non-trivial if and only 

if the boundary has a local cut point (see Theorem 6.2). In fact, much information 

about the splitting can be read off immediately, without any knowledge of how the group 

acts on the boundary. In the course of the analysis, we shall also give an elementary 

proof that  the boundary has no global cut point in the case where it is assumed to be 

locally connected (Proposition 5.4), without reference to the papers cited earlier. This 

is a converse to the result of Bestvina and Mess IBM]. 

Our formulation of the JSJ splitting differs slightly from Sela's original, though in 

the case of torsion-free groups, it amounts to the same thing. Of course, for our result 

to apply to one-ended hyperbolic groups in general, we need the somewhat non-trivial 

fact that  the boundary is necessarily locally connected. We suspect that  many of the 

ideas of this paper can also be applied to relatively hyperbolic groups, a matter  we aim 

to pursue in the future (see also [Gu]). Indeed, most of the analysis proceeds in a general 

dynamical context, without any specific geometric input. 

In general, the boundary, OF, of a hyperbolic group, F, is a compact metrisable 

topological space, on which F acts as a discrete convergence group without parabolics, in 

the sense described in [GM1]. Now, OF is connected (i.e. a continuum) if and only if F is 

one-ended. By Stallings's theorem [St], this, in turn, happens if and only if F is not finite 

or virtually cyclic (i.e. two-ended) and does not split over a finite subgroup. In this paper 

we shall also assume that  0F is a Peano continuum. As noted above, this is equivalent 

to saying that  OF has no global cut point. In [Boll, [Bo2] this was shown to be the case 

if F does not split over any two-ended subgroup. (An alternative argument can be given 

via Levitt 's generalisation of [Bo2] in ILl.) This was generalised to strongly accessible 

groups in [Bo3]. Swarup showed how to adapt these arguments to deal with the general 

case [Sw]. This can be placed in a more general dynamical context [Bo5]. (Delzant and 

Potyagailo have recently shown that  every hyperbolic group is strongly accessible [DP].) 

A "local cut point" can be defined as a point xEOF such that 0 F \ { x }  has more than 
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one end. Putt ing the results of this paper together with those of [Bol], [Bo2] mentioned 

above, we deduce that  a hyperbolic group has a local or global cut point in its boundary if 

and only if it either splits over a two-ended subgroup or is a "virtual semitriangle group" 

as defined below. In particular, we see that  this property is quasiisometry invariant 

(provided we rule out cocompact Fuchsian groups). Another consequence is the "annulus 

theorem" of Scott and Swarup [SS] (stated in the torsion-free case), namely that  a (non- 

Fuchsian) hyperbolic group, F, splits over a two-ended subgroup if and only if there 

is some two-ended subgroup, G ~ F ,  such that  the pair (F, G) has more than one end. 

As mentioned earlier, this has recently been generalised to finitely generated groups by 

Dunwoody and Swenson [DSw]. (We also remark that  a different algebraic adaptation of 

such 3-manifold results, in the form on a torus theorem for 3-dimensional Poincar@ duality 

groups, had been obtained earlier by Kropholler--see [K] and the references therein.) 

Note that Fuchsian groups play a special role in this theory. By a Fuchsian group we 

mean a non-elementary finitely generated group which acts properly discontinuously on 

the hyperbolic plane. We do not assume that  the action is faithful, only that  its kernel 

is finite. This kernel is canonically determined as the unique maximal finite normal 

subgroup, and so the quotient 2-orbifold is also canonically determined. The group 

action is cocompact if and only if the 2-orbifold is closed, or, equivalently, if the group 

is a virtual (closed) surface group. In this case, the ideal boundary of the group is a 

circle. Such a group splits over a two-ended group if and only if the 2-orbifold is neither 

a sphere with three cone points nor a triangle with mirrors. This is what we mean by 

a "virtual semitriangle group". (A semitriangle group is the orbifold fundamental group 

of a sphere with three cone points.) 

By a bounded Fuchsian group, we mean a non-elementary Fuchsian group which is 

convex cocompact but not cocompact. Thus, the convex core of the quotient is a compact 

orbifold with non-empty boundary consisting of a disjoint union of compact 1-orbifolds 

(circles or intervals with mirrors). In this case, the ideal boundary of the group is a 

Cantor set with a natural cyclic order. The peripheral subgroups are the maximal two- 

ended subgroups which project to the fundamental groups of the boundary 1-orbifolds. 

The conjugacy classes of peripheral subgroups are thus in bijective correspondence with 

the boundary components. 

The essential features of the JSJ splitting can be summarised as follows. Our formu- 

lation differs slightly from that  given in [Se], though the result is more or less equivalent 

(at least in the torsion-free case). These matters will be elaborated on in w 

THEOREM 0.1. Suppose that F is a one-ended hyperbolic group, which is not a 

cocompact Fuchsian group. Suppose that OF is locally connected (or has no global cut 

point). Then there is a canonical splitting of F as a finite graph of groups such that each 
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edge group is two-ended, and each vertex group is of one of the following three types: 

(1) a two-ended subgroup, 

(2) a maximal "hanging Fuchsian" subgroup, or 

(3) a non-elementary quasiconvex subgroup not of type (2). 

These types are mutually exclusive, and no two vertices of the same type are adjacent. 

Every vertex group is a full quasiconvex subgroup. Moreover, the edge groups that connect 

to any given vertex group of type (2) are precisely the peripheral subgroups of that group. 

Finally, if G<.F is a two-ended subgroup such that (F, G) has more than one end, 

then G can be conjugated into one of the edge groups, or one of the vertex groups of type 

(1) or (2). 

A "hanging ~kmhsian" subgroup, G, of F, is a virtually free quasiconvex subgroup 

together with a collection of "peripheral" two-ended subgroups, which arise from an 

isomorphism of G with a bounded Fuchsian group. For a more careful description, 

see w (Thus a hanging Fuchsian group coincides with what Sela calls a "quadratically 

hanging" subgroup in the case where F is torsion-free.) By a "full" (quasiconvex) group, 

we mean one which is not a finite index subgroup of any strictly larger subgroup of F. 

Since the splitting is canonical, it is respected by any automorphism of F. From 

this one can deduce that a finite index subgroup of the outer automorphism group is 

generated by "Dehn twists" about the edges, and 2-orbifold mapping classes arising from 

the hanging Fuchsian subgroups. Thus it is virtually a direct product of a free Abelian 

group and finitely many 2-orbifold mapping class groups [Se]. 

In the course of the analysis, we also get topological information about the boundary. 

It turns out that  every local cut point plays a role in the JSJ splitting. More precisely, 

each local cut point lies in the limit set of (a conjugate of) a vertex group of type (1) or (2). 

It follows that  the valency of any point (i.e. the number of ends of OF\{x}) is always 

finite. In fact the maximum value of the valency of any point equals the maximal number 

of ends of a pair (F, G), as G ranges over all two-ended subgroups. This maximum is 

always finite. 

The proof we give here proceeds by studying the topology of the boundary. In our 

analysis, the circle arises as a special case. This case has been analysed by Tukia IT1], 

except for certain exceptional cases which were subsequently dealt with independently 

by Gabai [Ga], and Casson and Jungreis [CJ]. In such a case, the group is a cocompact 

Fuchsian group. In fact, Tukia's result is more general than this. For example it applies 

to the case of cyclically ordered Cantor se t s - -a  fact we shall use in order to describe the 

hanging Fuchsian subgroups. 

Most of the results given above can be arrived at without explicit reference to hyper- 

bolic groups. Instead, we work with a uniform convergence group action on a metrisable 
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Peano continuum. Such groups are necessarily hyperbolic [Bo6], but  for most of the 

analysis we shall not need any geometric input. Apar t  from the reference to Tukia 's  

work mentioned above, all the arguments are fairly elementary topology. There is one 

final point at which we need to refer back to hyperbolic g roups - - in  order to verify that  

hanging Fuchsian subgroups are indeed finitely generated (as required by the definition). 

In some ways, it would be nice to produce an argument which avoided this. 

We have already observed that  our splitting is canonical - - i t  arises naturally out of 

the action of F on OF. Indeed, correctly formulated, it is unique. This uniqueness is best 

described in terms of the action of F on a simplicial tree E. This is done formally in w 

We note that  the tree E arises purely out of the topology of OF. The action of F on OF 

then induces an action on E. 

The structure of the paper  is roughly as follows. In w we give a brief account 

of how splittings of groups are reflected in the topology of the boundary. In w we 

describe certain abstract  "order" structures which are meant  to capture something of 

the arrangement of local cut points in a (Peano) continuum. In w we carry out this 

analysis for a Peano continuum. In w we give a summary  of some general results about  

convergence groups. In w we derive the JSJ  splitting for a "uniform" convergence group 

acting on a metrisable Peano continuum (i.e. an action which is properly discontinuous 

and cocompact on the space of distinct triples). Finally, in w we give a summary  of the 

results applied specifically to the case of a hyperbolic group. 

1. Quasiconvex splittings of hyperbolic groups 

In this section, we recall some basic facts about  hyperbolic groups in order to establish 

some terminology and notation. We also describe how splittings over quasiconvex sub- 

groups are reflected in the topology of the boundary. It will be the aim of the rest of 

the paper  to examine the converse implications in the case of splittings over two-ended 

subgroups. 

Many of the statements given here concerning quasiconvex splittings appear  to be 

"folklore", though I have found no explicit reference. These results are also needed 

for [Bo3]. 

Let F be a hyperbolic group, and X its Cayley graph (or any graph with a discrete 

cocompact F-action). Let V(X) be the vertex set of X.  We give X a F-invariant pa th  

metric, d, by assigning to each edge a length of 1. Thus OF==-OX. Now, F acts properly 

discontinuously and cocompactly on the space of distinct triples in OX (see w In 

particular, it acts as a convergence group without parabolics in the sense of Gehring and 

Martin [GM1]. 
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Any infinite-order element, % in F is "loxodromic". In particular, fix(~)={xEOF] 

~/x=x} consists of precisely two points. Moreover, ('7) acts properly discontinuously and 

cocompactly on 0F\fix(~). Let G(~)={ger igf ix(~)=f ix(~,)} .  Then (~) has finite index 

in G(~). In fact, G(~,) is the unique maximal virtually cyclic subgroup of F containing % 

Two loxodromics have a common fixed point if and only if they lie in a common virtually 

cyclic subgroup (and hence have both fixed points in common). 

For brevity, we shall use the term "loxodromic" in preference to "infinite-order el- 

ement", and (in view of Stallings's theorem) we use "two-ended group" for "virtually 

cyclic group". 

Given a loxodromic 9'EF, we write l(~/)=min{d(x,~/x)ixEX} for the translation 

length of % Thus, l(~/) is a conjugacy invariant. There are only finitely many conjugacy 

classes of elements of translation length (at most) any given number. (A more natural 

and interesting conjugacy invariant is the "stable length" as defined by Gromov [Gr], but 

the simpler definition above will serve for our purposes.) 

A subgroup G ~ F  is quasiconvex if the G-orbit of some (and hence any) point of X is 

quasiconvex in X. Equivalently, G is quasiconvex if and only if there is some G-invariant 

quasiconvex subset Q c X  such that  Q/G is compact (i.e. a finite graph). Thus, G is 

itself a hyperbolic group, and the "limit set" AGCOF may be naturally (and hence G- 

equivariantly) identified with OG. Every two-ended subgroup is quasiconvex, with limit 

set consisting of two points. 

If G~<F is quasiconvex, then the setwise stabiliser of AG is precisely the commen- 

surator, Comm(G), of G in F. In this case, G has finite index in Comm(G). In fact, 

Comm(G) is the unique maximal subgroup of F which contains G as a subgroup of finite 

index. We say that  G is full if G=Comm(G).  (Note that,  for any quasiconvex group, G, 

the group Comm(G) is full quasiconvex.) 

If G,H<~F are both quasiconvex, then so is GNH (see [Sho]). It follows that  

A(GNH)=AGNAH. In particular, if A G N A H ~ g ,  then GNH contains a loxodromic. 

Suppose that  G~<F is quasiconvex, and that  ~EG is loxodromic. All F-conjugates of 

~' in G have the same translation length, and hence fall into finitely many G-conjugacy 

classes. Put  another way, only finitely many conjugates of G in F can contain a given 

loxodromic--or a given two-ended group. Putt ing this together with the observation of 

the previous paragraph, and the fact that  distinct maximal two-ended subgroups cannot 

have a common fixed point, we obtain 

LEMMA 1.1. Suppose that GCF is quasiconvex, and x6OF. Then there are at most 

finitely many conjugates, G p of G in F such that xEAG( [] 

We now go on to describe splittings of F over quasiconvex subgroups. 
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Suppose that  E is a simplicial tree with vertex set ViE ) and edge set E i E  ). Suppose 

that  F acts simplicially on E. We can suppose that  F acts minimally (i.e. there is no 

proper F-invariant subtree). Also, by subdividing the edges if necessary, we can suppose 

that  there are no edge inversions. Given v e Y ( E )  and e e E ( E ) ,  we write Fie ) and F(v) 

respectively for the vertex and edge stabilisers. If e e E ( E )  has endpoints v, wEV(E) ,  

then F ( e ) = F ( v ) n r ( w ) .  

We shall assume that  the quotient graph, E /F ,  is finite. Thus, F is the fundamental 

group of a finite graph of groups (see for example [DD]). We shall be interested in the 

case where F is hyperbolic, and each edge stabiliser is quasiconvex. 

In such a case, we can construct a F-equivariant map 6: X---~E by choosing arbitrarily 

the image, r for each v in a (finite) F-transversal of V(X). This determines r  

Each edge of X is then mapped linearly onto a geodesic segment in E. Since the action 

on E is minimal, r in necessarily surjective. On the level of quotients, this map is 

finite-to-one, except where it might collapse a finite subgraph of X/F to a point. 

Given e e E ( E ) ,  let re(e) be the midpoint of e. Let Q(e)=r Thus, Q(e)/F 
is compact and non-empty, and so Q(e) is quasiconvex. 

Given v e V i E ) ,  let E(v)CE(E) be the set of edges incident on v. Let S i v ) C E  be the 

connected subset of E consisting of v together with the segments of each eEE(v) lying 

between v and m(e). Thus OS(v)={m(e)ieEE(v)}. Let Q(v)=r Thus, Q(v) 
is F(v)-invariant, and Q(v)/Fiv ) is compact. Note that  if eEE(v), then Q(e)CQ(v). 
Suppose v,wEV(E). If v, w are not adjacent, then Qiv)nQ(w)=o, whereas if v and w 

are the endpoints of some edge eEE(E) ,  then Q(v)nQiw)=Q(e ). Since r is surjective, 

the collection { Q (v) I v E V (E) } gives a locally finite cover of X. 

Suppose that  ~ is a geodesic segment in X with both endpoints in Q(e) for some 

eEE(E) .  Since Q(e) is quasiconvex, ~ remains a bounded distance from Q(e). In par- 

ticular, its projection to E under r has bounded diameter. Since there are finitely many 

conjugacy classes of edge stabilisers, this bound can be taken to be uniform. 

Now suppose that  aCX is a geodesic segment connecting two points of Q(v) for 

some vEV(E) .  Since E is a tree, we see that  each component of a which lies outside 

Q(v) is of the type described in the previous paragraph, i.e. it connects two points of Q(e) 
for some eCE(v), and thus remains within a bounded distance of Qie). Now, Q(e)CQ(v)  

and so we deduce that  a remains a bounded distance from Q(v). If follows that  Q(v) 
is quasiconvex. Since Q(v)/F(v) is compact, we see that  F(v) is quasiconvex. We have 

shown 

PROPOSITION 1.2. Suppose that a hyperbolic group F splits as a finite graph of 
groups with each edge group quasiconvex. Then each vertex group is quasiconvex. [] 
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In certain circumstances, we can also say that  the vertex stabilisers are full quasi- 

convex subgroups. Suppose that  vEV(E) ,  and r(v)~<H~<r,  with [H:r(v)]<oo. Then, 

the H-orbi t ,  Hv, of v is finite. Thus, Hv has a well-defined geometrical centre, nEE.  

Now, a is H-invariant,  and is either a vertex or the midpoint of an edge. By connecting v 

by an arc to a, we see that  either [H:F(v) ]=2  and H is the stabiliser of an edge incident 

to v, so that  there is an edge inversion (a possibility we have been disallowing), or there 

is a vertex, w, adjacent to v with r ( v ) < r ( w )  and [F(w), F(v)] <oo. Thus, if we can also 

rule out the latter possibility in any particular situation, we can conclude that  all vertex 

stabilisers are full. 

We can associate to E an "ideal boundary",  0E, which we can think of as cofinality 

classes of geodesic rays in E. (We are only interested in 0E as a set, though it turns out 

that  EUOE can be given a natural  topology as a dendr i te - -see  [Boll for some discussion 

of this.) 

Now suppose tha t  c~ is a geodesic ray in X. We have observed tha t  Con can only 

double back on itself over bounded distances. Thus, either Con converges in some ideal 

point in 0E, or else it eventually remains within a bounded distance of some vEV(E) .  

In the latter case, we see that  a must converge on some limit point in AF(v). 

Now, suppose tha t  c~ and /3 are geodesic rays in X with r and r176 both un- 

bounded in E. Then Con and r176 converge on the same ideal point in 0E if and only 

if a and /3 remain a bounded distance apart .  The "if" bit is fairly trivial. For the 

"only if" bit, note that  (~ and /3 both pass in turn through a sequence of quasiconvex 

sets, Q(Vl), Q(v2), Q (v3), ..., where (vi)iEN is a sequence of vertices of E converging on the 

ideal point of 0E. By the local finiteness of {Q(v) IvEV(E)}, we see that  d(a, Q(vi))----,cx), 
where a is any fixed point of X.  Since the Q(v~) are uniformly quasiconvex, it is a simple 

geometric exercise to show that  c~ and /3  remain a bounded distance a p a r t - - a n d  thus 

converge to the same point of OF. We have essentially shown 

PROPOSITION 1.3. The set 0F \U~cv(~ )  AF(v) can be naturally identified with OE. [] 

Note that  if e E E ( E )  has endpoints v, wEV(E) ,  then r(e)=r(v)nr(w), so A t ( e ) =  

Ar(v)nAr(w). Also, by Lemma 1.1, we know that  only finitely many  of the sets At(v) 
for vEV(E)  can meet any given point of 0F. 

Of particular interest to us is the case where F has one end, so that  OF is connected, 

and where each of the edge stabilisers is two-ended. 

Let eEE(E) ,  so that  AF(e) consists of two points. Now, re(e) splits E lJ0E into two 

components E1UOE1 and E2UOE2. If vEV(E1)  and wEV(E2) ,  either A F ( v ) N A F ( w ) = ~ ,  

or there is some loxodromic 7EF(v)AF(w)=F(e). It follows that  AF(v)nAF(w)=AF(e) 
in this case. Note tha t  there are only finitely many v E V ( E )  for which AF(e)CAF(v) .  
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We see that  we get a natural partit ion of OFkAF(e) as U1UU2, where 

v =or u U 
vcV(E~) 

By similar arguments to those already given, it is not hard to see that  the sets U1 and U2 

are open in OF. (This is most easily seen by observing that  r  is a quasiconvex 

subset of X, by a similar argument to Proposition 1.2. Moreover, U~uAF(e) is precisely 

the ideal boundary of this set, and hence closed in OX.) In particular, 0r\Ar(e) is 

disconnected. This in turn implies that x/r(e) has more than one end, in other words, 

the pair ( r ,  F(e)) has more than one end. This is an instance of a much more general 

fact that  if a finitely generated group splits over a finitely generated subgroup, then the 

pair has more than one end. 

So far, we have not made any assumption of local conneetedness, though in that  

case, one can say more. 

Suppose that  OF has no global cut point, so that  OF is a Peano continuum IBM]. 

If x, yCOF, then OP\{x, y} has finitely many components, the closure of each containing 

both x and Y. If a~<r is two-ended, set e(G) to be the number of components of Or\AG. 
I f - y c F  is loxodromic, set e(~/)=e(@)). Note that some power, 3 '~, of "~ fixes setwise 

each component of 0F\fix(3') (where n<.e(~/)!). Thus, (or\fix(~/))/(~/n} has precisely 

e(~,)=e(~/n) components. But these components are in bijective correspondence with 

the the ends of X/(~/~) and so, by definition, the pair (F, ('),~)) has precisely e('y) ends. 

It follows that we could alternatively define e(G) as the maximum number of ends of a 

pair (I', G') where G ~ ranges over the finite index subgroups of G. 

Now, a consequence of our construction will be that  if a~<r is a two-ended subgroup 

with e(G)~>2, then G can be conjugated into a vertex group of type (1) or (2) in the 

JSJ splitting. In particular, if there exists such a subgroup, then the splitting will be 

non-trivial. This gives the result of Scott and Swarup [SS] referred to in the introduction. 

Another consequence is that  there are only finitely many conjugacy classes of maximal 

two-ended subgroups G of r such that  e(G))3. 

2. O r d e r  s t r u c t u r e s  

In this section, we summarise two kinds of structure we use to describe the arrangement 

of local cut points in a (Peano) continuum. 

The first structure is what we call a pretree. This consists of a set, T, together with 

a ternary "betweenness" relation, denoted xyz for x,y, zET. We speak of y as lying 

(strictly) "between" x and z. The relation should satisfy the following axioms: 
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(TO) If xyz, then x r  

(T1) The relations xyz and xzy can never hold simultaneously. 

(T2) The relation xyz holds if and only if zyx holds. 

(T3) If xyz  holds and w r  then either xyw or wyz holds. 

These axioms appear in a paper by Ward [W]. They are studied in some detail 

in [AN] and [Bol]. They describe very general structures, in that  most other treelike 

structures can be viewed as special cases of pretrees. 

One can show that  any finite subset, F ,  of a pretree can be embedded in a finite 

simplicial tree, T, in such a way that  xyz holds in F if and only if y separates x from z 

in T. In fact, one could take this as an alternative definition of a pretree. It also gives a 

simple means of verifying many statements about pretrees. 

Given x, y e T ,  we write ( x , y ) = { z e T I x z y  } and [x,y]={x,y}U(x,y).  We refer to 

such sets as intervals. We see that  such an interval carries a natural linear order (given 

an order on the pair {x, y}). If x, y, z ET, then [x, y] A [y, z] N [z, x] contains at most one 

point. If such a point exists, we refer to it as the median of (x ,y ,z) ,  and denote it 

by med(x, y, z). If T is such that  every three points have a median, then we refer to it 

as a median pretree. 

We say that  a pretree is discrete if Ix, Y] is finite for all x, yET. A discrete median 

pretree is the same as a Z-tree (except that  the axioms of a Z-tree are usually given 

in terms of the closed intervals, [x,y], rather than the betweenness relation--see,  for 

example [Sha D. It can thus be realised as the vertex set of a simplicial tree, where 

"betweenness" is interpreted in the obvious way. 

Every pretree can be embedded in a median pretree (see [AN] or [Boll). Of more 

significance here, is the fact that  every discrete pretree, T, can be embedded in a discrete 

median pretree, O. A simple way to describe such an embedding is as follows. A "star", F,  

in T is a maximal "null and full" subset of T. In other words, F satisfies the following. 

Firstly, there is no relation of the form xyz  where y c T  and x, z E F (F  is "null and full"), 

and secondly, if x E T \ F ,  there exist y, zC F  with xyz (maximality). We can take O to 

be the disjoint union of T, together with the set of all stars in T containing at least 3 

elements. One can show that  O admits a natural structure of a median pretree, which 

induced the original pretree structure on T. (For more details, see [Boll.) 

An example of a pretree is given by any connected Hausdorff topological space, M, 

where the relation xyz  is interpreted to mean that  y separates x from z in M (i.e. we can 

write M \ { y } = U U V ,  where U~x  and V ~ z  are open subsets of M). Proofs are given 

in [W], [Boll and [Bo4]. In particular, we derive the well-known fact that  if x, y e M ,  

then the set, [x, y], of points separating x from y, together with {x, y}, has a natural 

linear order. 
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More generally, we can speak of a "linearly ordered subset" of M; in other words, 

a subset, LCM,  with a linear order, <, such that  if x ,y ,  zEL,  then xyz if and only 

if x < y < z  or z<y<x.  Thus, any interval is such a set. For future reference, we note 

that  if x<y<z<w,  then {x,z} separates y from w in M. Also, M \ { y , z }  has at least 3 

components. 

So far, we have not made use of compactness or local connectedness. In this special 

case, we can say more [HY]: 

LEMMA 2.1. Suppose that M is a Peano continuum, and x, yEM.  Then Ix, y] is 

a closed subset of M. Moreover, the subspace topology on Ix, y] agrees with the order 

topology. [] 

As a corollary, we note that  the closure of a linearly ordered set of cut points in a 

Peano continuum is also linearly ordered. 

(We remark that  another advantage of working with Peano continua is that  it allows 

us to deal with components of open subsets, whereas, for an arbitrary continuum, it is 

more appropriate to work with quasicomponents--for a locally connected space, these 

notions coincide [HY].) 

The other type of "order structure" in which we are interested is, in some sense, at 

the opposite extreme to that  of a pretree, namely a cyclic order. This is a familiar notion. 

It can be defined as a set, A, together with a quaternary relation, denoted 5(x, y, z, w) 

for x, y, z, wEA,  with the following property. If FC_A is any finite subset, then we can 

embed F in the circle S 1, such that  if x, y, z, wEF,  then 5(x, y, z, w) holds if and only if 

x and z lie in different components of Sl \ {y ,w} .  It is not hard to write down explicit 

axioms for 6, though we will not bother here. (Note that  it would be enough to assume 

that  our finite set, F,  has at most 5 elements.) When dealing with cyclic orders we 

implicitly assume that  card(A)~>4. 

Every cyclic order carries a natural order topology. A base for the open sets is given 

by the collection of sets of the form {xEA] 5(a, b, c, x)} where a, b, c are any three distinct 

points of A. We say that  A is separable if it has a countable dense subset. Any compact 

separable cyclically ordered set can be embedded as a closed subset of the circle. 

We say that  two points x, y E A  are adjacent if there do not exist points z, wEA such 

that  5(x, z, y, w). A jump in A is an unordered pair of adjacent points. Let J (A)  be the 

set of all jumps. Note that  two jumps can only intersect in an isolated point. Note also 

that  A is a Cantor set, if and only if it is compact, separable, contains no isolated points 

and U J (A)  is dense in A. 

Suppose now that  M is a continuum, and that  aCM.  Given x,y ,z ,  wEa, write 

5(x, y, z, w) if y and w are separated by {x, z}. We say that  a is a cyclically separating 



156 B.H. BOWDITCH 

set if the relation 6 is a cyclic order on a. 

LEMMA 2.2. Suppose that M is a Peano continuum, and aCM is a cyclically sep- 

arating set. Then so is its topological closure, ~. Moreover, the subspace topology on 

(or on a) agrees with the cyclic order topology. 

Proof. We can effectively reduce this to the case of linear orders. Choose any aEa, 
and let M(a) be the space obtained by adjoining the space of ends to M\{a}.  Thus 

M(a) is a Peano continuum, and a \ { a }  is a linearly ordered set of cut points in M(a). 
We can now apply Lemma 2.1, and the subsequent observation to this set. The result 

can be deduced by first splitting a into two subintervals, and using the above to deal 

separately with the closures of each. 

(One could alternatively go back to first principles and adapt the arguments of [HY] 

to this situation.) [] 

Suppose now that  M is a Peano continuum with no global cut point. Given distinct 

points x, yEM, let hi(x, y) be the set of components of M\{x ,  y}. Thus, /4(x ,  y) is finite, 

and each element UE/~(x, y) is open and connected with OU={x, y}. 

Suppose that  A C M  is a closed cyclically separating set. Let /4(A) be the set of 

components of M \ A .  Suppose that  O={z, y} E J (A)  is a jump. We have card/4(z,  y)/> 2. 

Moreover, there is some UE/4(x, y) such that  AC U= UU{x, y}. Let/Xz~(0) =14(x, y)\{U}. 

LEMMA 2.3. 14(A)=UoEj(~ )l~a(O). 

Proof. Suppose UE/4(A). Since M has no global cut point, OU has at least two 

elements. Suppose x, y E OUC A. Now, we must have {x, y} E J (A)  (for if z, w E A with 

~i(x, z, y, w), we would have UU{x, y}C_M\{z, w} giving the contradiction that  z and y 

lie in the same component of M\{z ,  w}). Let O={x,y}. Since x, yEOU were arbitrary, 

and it is impossible for three distinct elements of A to be mutually adjacent, we see that  

OU={x,y}, and so UElX(x,y). Now UMA=O, and so UE/X~(0). We have shown that  

c_ j(,,) (e). 

Conversely, suppose that  0 E J (A)  and UE L(A (0). Since UN A = O and U is connected, 

we must have UCV for some VEb/(A). Thus, VE/4A(O') for some 0 'EJ(A) .  Since 

UAA=O, we have OUCOV. Thus O=OU=OV=~', and so U=VElX(A) as required. 

Finally, in order to see that  we have a disjoint union, note that  for UE/4z~ (0), we have 

OU=O. [] 

We define H to be the space of distinct unordered pairs in M. Thus, H takes its 

topology by identifying it as M x M  minus the diagonal, quotiented out by the involution 

which swaps the entries in a pair. 
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Note that  if A is a cyclically separating set, then J(A)C_l]. A simple consequence 

of Lemma 2.2 is 

LEMMA 2.4. J (A)  is a discrete subset of II. [] 

3. T h e  s t r u c t u r e  o f  local  cu t  p o i n t s  

Throughout  this section (except where otherwise stated), M will be a Peano continuum 

with no global cut points. We discuss the structure of local cut points in M. We also 

introduce the notion of an "annulus" which will be used throughout the rest of the paper. 

Suppose xEM. We define the valency of x, denoted by val(x)ENU{c~}, to be the 

number of ends of the locally compact space M\(x} .  We say that  x is a local cut point if 

val(x)/>2. Given nENU{c~},  we write M(n)={xeMival (x)=n } and M ( n + ) = { x e M  I 

val(x) ~>n}. We shall be particularly interested in the subsets M(2) and M(3+) .  (In the 

case in which we are really interested, it turns out that  M(c~)=O,  so it doesn't much 

matter  whether or not we include this in M(3+) . )  

Given x, yEM, we defined, in w /g(x, y) to be the set of components of M\{x ,  y}. 

We write N(x, y)=card/g(x, y) c N .  Note that  N(x, y) ~<min{val(x), val(y)}. We define 

a relation ,.~ on M(2),  by x~y  if and only if either x=y or N(x, y) =2. Note that  if x~y  

and x~y,  then x and y are both local cut points. 

The following construction will be useful in deducing a few basic properties of this 

relation. Suppose that  FC_M is a finite set. Let C(F) be the set of components of M \ F .  

Thus C(F) is finite. If UEC(F), we say that  U is adjacent to xEF if xEU.  We can thus 

define the bipartite graph G = G (F) with vertex set Y(6) = V0 (6) U V1(6), where V0 (6) = F 

and VI(6)=C(F) .  We define the edge set E (6 )  by joining xEV0(6) to uEVI(6) if they 

are adjacent in the sense already defined. 

We make the following observations. Firstly, G is a connected bipartite graph. If 

xEg=Vo(6), then deg(x)~<val(x), where deg(x) is the degree of x in G. No point of 

V0(6) can separate 6 (otherwise it would be a global cut point for M). It follows that  

each vertex of Vl(6) has degree at least 2. 

LEMMA 3.1. The relation ~ is an equivalence relation on M(2). 

Proof. It is clear that  ~ is reflexive and symmetric. So, suppose that  x~y  and x~z .  

We claim that  y~z.  We can assume that  x ,y ,z  are all distinct. Let F={x,y ,z} ,  and let 

6 = G ( F )  be the graph described above. Thus, deg(x)~<2, and the sets {x, y} and {x, z} 

both separate 6. 

Suppose that  there is some vertex ucVl(G) connected to each element of F.  Since 

{x,y} separates, there must be some component, C1, of 6 \ {x , y }  with OC~={x,y}. 
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Similarly, there is another component,  C2, with OC2={x, z}. Also the component,  C3, 

containing u has OC3={x, y, z}. These components are all distinct, so we get the con- 

tradiction that  deg(x) ~3.  

We conclude tha t  every vertex in VI(~) has degree 2. Now since x is not a global 

cut point, there must be a vertex uEVI(~)  adjacent to both  y and z. Similarly, there 

is a vertex v adjacent to both  z and x, and a vertex w adjacent to both  x and y. 

Thus, xvzuywx is a circuit in G. Since x cannot be connected to u, we see tha t  {y, z} 

separates ~, and so y ~ z  as required. [] 

(We remark that  we have only really used that  fact tha t  xEM(2) . )  

LEMMA 3.2. If  a CM(2)  is a ..~-equivalence class, then a is a cyclically separating 

set. 

Proof. Suppose that  F C a  is finite. Let G=G(F). Thus, each vertex of V0(G) has 

degree at most 2. 

Suppose, for contradiction, tha t  some uEVI(G) has degree at  least 3. Thus, u is 

adjacent to the subset of vertices WCVo(~) with ca rd (W)~3 .  Since any pair, x,y,  of 

distinct elements of W separates G, we see that  there must be at least one component,  C, 

of G \ W ,  with OC={x,y}.  But, since c a r d ( W ) ~ 3 ,  this contradicts the fact that  the 

degree of each vertex of W is at most 2. 

We deduce that  every vertex of G has degree at most 2. Since G is connected, it 

must be either an arc or a circle. But since no point of V0(G) separates, it cannot be an 

arc, and is thus a circle. Now the separation properties of F=Vo(G) are the same in 

as in M.  We deduce that  a is cyclically separating. [] 

LEMMA 3.3. Suppose that x ,y , z ,  wEM(2).  Suppose that z ~ w  and t h a t  z a n d  w 

lie in distinct components of M \  {x, y}. Then, x~y~z, ,~w.  

Proof. Let F={x ,y ,  z, w}, and G--G(F) .  Since {x,y} separates z and w, there can 

be no vertex of VI(G) adjacent to both  z and w. Suppose that  there is some uEV~(G) of 

degree at least 3. Then deg(u)=3,  and, without loss of generality, u is adjacent to the 

points x, y and z. Since G is connected, there must be another vertex vEVI(G) adjacent 

to w, and either x or y, say x. Since v is not adjacent to z, it must be adjacent to y. 

Since deg(y)~<2, and z and w are non-separating, this must account for all of G. But 

now, G\{z ,  w} is connected, contradicting the hypothesis that  z~w .  

We thus conclude that  every vertex of ~ has degree at most 2. But now, as in the 

proof of Lemma 3.2, we deduce that  ~ is a circle. In particular, x ~ y ~ z ~ w .  [] 
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LEMMA 3.4. Suppose that U1, U2, U3 are disjoint open connected subsets of M. 

Suppose that xi, yiE UiMM(2), for i=1 ,  2,3. Suppose that xz~x2~x3  and yl~y2~y3 . 

Then, xl,~yl,~X2,~Y2,~x3~Y3. 

Proof. We can suppose that  x ir  for each i. Since xl,x2,x3EM(2),  we see tha t  

M\{Xl,X2,X3} has precisely three components,  each adjacent to two of the xi. Let 

W1, W2,W3 be these components,  with xi~Wi.  Now {xl}UW2UW3 is a connected 

component of M\{x2,  x3}, and U1 is a connected subset of M\{x2,x3} .  Thus, UlC 

{xl}UW2UW3. Since ylEUI\{xl} ,  we see that  ylEW2UW3. Similarly, y2EW3UW1 

and y3EW1UW2. Now, without loss of generality, we can suppose tha t  ylEW2. Since 

y2EWaUW1, we see that  Yl and Y2 lie in different components of M \ { x l ,  x3}. Also, by 

hypothesis, yl~y2. Thus, applying Lemma 3.4 to the set {xl,x3,Yl,Y2}, we see that  

Xl~X3~Yl~y2.  The result now follows from Lemma 3.1. [] 

As an immediate corollary, we get 

LEMMA 3.5. If  a, TC_M(2) are ~-classes, with card(~M~)~>3, then a=~-. [] 

COROLLARY 3.6. If  ~ and ~- are ~-classes with ~=~, then a=T. 

Proof. If ~ is finite, then a=a=T=~-. Otherwise, apply Lemma 3.5. [] 

LEMMA 3.7. If  a is a H-class, then ~\aC_M(3+) .  

Proof. If a were finite, then a = ~ ,  so we can assume that  a is infinite. Choose any 

distinct a, b, cEa. Suppose xE~\a .  By Lemma 2.2, a is cyclically separating, so, without 

loss of generality, {a, x} separates b from c. In particular, N(a,x)>~2. But if va l (x)=2,  

then a~x,  and so we get xEa. We must therefore have val(x)~>3. [] 

Another relation on M we shall be considering is defined as follows. Given x, yCM, 

we write x ~ y  if xCy  and N(x, y)=val(x)=val(y)~>3. (Recall that  N(x, y) is the number 

of components of M \ { x ,  y}. The relation can thus be interpreted as asserting that  this 

number is as large as possible given the valency of x or of y.) 

LEMMA 3 . 8 .  If  x ~ y  and x ~ z ,  then y=z. 

Proof. Let n=va l (x ) .  Suppose that  yr  so that  x, y and z are all distinct. Now 

there are n components of M \ { x , y } ,  only one of which contains the point z. The 

rest are all components of M \ { x , y , z } .  Thus there are (at least) n - 1  components of 

M \ { x , y , z }  adjacent to x and y but not to z. Similarly, there are at least n - 1  such 

components adjacent to x and z but not to y. Thus, n=val(x)>~2(n-1)>n since n~>3. 

This contradiction shows that  y=z. [] 

In other words, some subset of M ( 3 + )  is parti t ioned into pairs of the form {x, y} 

where x~y .  We refer to such a pair as a ~-pair. For a general Peano continuum, the 
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relation ~ would appear  unnatural ly restrictive. However, in the special case which 

interests us in w we shall see that  this parti t ion accounts for all of M(3+) .  

Before going on to discuss these relations further, we introduce a notion that  will be 

used throughout the rest of this paper. For this definition, and the immediately ensuing 

discussion, we do not require tha t  M has no global cut point. 

Definition. An annulus, A, consists of an ordered pair, (A- ,  A+), of disjoint closed 

connected subsets of M,  such that  if U is a component  of M \  (A-UA+),  then U N A - r  

and U N A + r  

We write R(A)=M\(A-UA+). We write N(A) for the set of components of R(A). 
Thus, each element o f /4 (A)  is an open connected subset of M, and H(A) is finite. We 

write N(A)= card H(A). 

The clause about  the closure of each component  of R(A) meeting both A-  and A + 

is largely for convenience. It  is easy to arrange this. Suppose that  B=(B-, B +) is any 

ordered pair of disjoint closed connected subsets of M. Let H(B)  be the set of all com- 

ponents of M\(B-UB+). Let Lt+(B)={UEbI(B)I ONB~:~O and U N B ~ : = ~ } ,  and let 

H~ and UNB+-J:O}. Thus H(B)=H~ 
Let A • =B=LU U H+ (B). Then, it is not hard to see that  A =  (A-,  A +) is an annulus with 

H(A)=H~ We shall write A=B' for this construction. 

Note that  if A is an annulus, then M\A-  and M\A + are both connected open 

subsets of M. 

Given two annuli A and B, we write A<B to mean that  M = i n t  A+Uint B - .  Thus, 

if A<B, we have A - C i n t B -  and B+C_int A +. It  is easily seen that  the relation < is a 

partial  order on the set of all annuli in M. 

Given any closed set KC_M and annulus A, we write K<A to mean that  KC_ int A- ,  

and A<K to mean that  KC_int A +. For xEM we define x<A and A<x respectively to 

mean { x } < A  and A<{x} .  Note that  if A and B are annuli, then A<B is equivalent to 

( M \ i n t  A +) < B .  

We can think of the relation < as describing "nesting" of annuli. There is another  

relation of interest, namely <<, which can be thought of as describing inclusion of annuli. 

Given annuli, A and B, we write A<<B to mean that  B-C_int A -  and B + C i n t A  +, 

or in other words, B-<A<B +. Note that  R(A)ER(B). Clearly << is also a partial  

order. 

LEMMA 3.9. Suppose that A,B are annuli with A<<B. Then there is a natural 
surjective map f: H(A)-+H(B) such that UC_f(U) for all UEH(A). 

Proof. We have R(A)CR(B). If UEH(A), then U is a connected subset of R(A) 
and thus of R(B). It  thus lies in some element of H(B)  which we set to be f(U). 
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To see that  f is surjective, suppose Vcbl(B). Now V meets both B -  and B + 

and so V meets both A- and A +. Thus VAR(A)r  (otherwise VnA  + and V n A -  

would partit ion V into two closed subsets). It follows that  V meets some component, U, 

of R(A). Thus UUV is a connected subset of R(B) and so UUV=V. In other words 

u c v  so f ( u ) = v .  [] 

COROLLARY 3.10. If A<<B, then N(A)>~N(B). [] 

So far, none of our discussion of annuli has assumed that  there is no global cut point. 

For the rest of this section, however, we shall reinstate this hypothesis. 

Note that,  in this case, any pair, (x,y),  of distinct points of M is an annulus. 

(To be more precise, we should write ({x}, {y}), though we shall not bother about this 

distinction.) In this case, the nota t ion/g(x ,  y) and N(x, y) agrees with that  previously 

defined. 

LEMMA 3.11. Suppose that xCM(n), where n<cc, and that FC_M\{x} is com- 

pact. Then, there is an annulus, (K,x) (or more properly (K, {x})), with F<(K,x)  and 
N(K,x)=n.  

Proof. By definition, M \ { x }  has n ends. So, given any compact set FC_M\{x}, 

we can find another compact set, F'CM, with FC_intF '  and such that  M\(F'U{x})  

has precisely n unbounded components. Let K be the union of F p together with all the 

bounded components of M \ F '  (i.e. (K, x)=(F', x)'). [] 

By a similar argument, we obtain: 

LEMMA 3.12. If xEM(cx~), and FC_M\ {x} is compact, then there is some annulus 

(K,x)  with F<(K,x) ,  and N(K,x)  arbitrarily large. [] 

LEMMA 3.13. Suppose that A is an annulus. Suppose that (Ki,xi) for i = l , . . . , p  

are annuli with A<<(K~, x~) and N(Ki,x~)>~3 for all i. If the points x~ are all distinct, 
then p<n n, where n=N(A). 

Proof. For each i, we get a surjective map fi:bl(A)--~lg(Ki,xi) as described by 

Lemma 3.7. Such a map gives rise to a partit ion of b/(A) into disjoint non-empty 

subsets--given by the preimages of elements of Li(Ki, xi). 

Suppose that  for a given i, the sets U1, U2,U3cbI(A) lie in distinct elements of 

this partition, so that  f(U1), f(U2) and f(U3) are all distinct. Choose any ylEU1, 

y2EU2 and y3EU3. Thus, x~ separates each distinct pair from {Yl,Y2,Y3} in M\F~ 
and hence in M \ A - .  (Recall that  M\Fi  and M \ A  are connected.) In other words, 

x i=med(y l ,  Y2, Y3) in the pretree structure on M \ A -  as described in w 
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Suppose that  for some i r  the maps fi and f j  give rise to same partit ion of L/(A). 

Then, we could choose the same sets U1, U2, U3 and points Yl,Y2, Y3 for each. Thus, 

in M \ A - ,  we get that  x i=med(y l ,  Y2, y3) :x j ,  contradicting the hypothesis that  the xi 

are all distinct. 

It follows that  each of the partitions are different. Since there are less than n n 

partitions of an n-set, the result follows. [] 

Of course, one could do a lot better  than n n. We only really care that  this number 

is finite. A similar argument yields 

LEMMA 3.14. Suppose that A is an annulus. Suppose that (K~,x~) for iE1,. . . ,p 

are annuli with A<<(Ki,xi) and N(Ki,xi)>~2 for all i. If  x ~ x j  for all i, then p<~ n n. 

Proof. As with Lemma 3.13. This time, i f p > n  n, we obtain y l , y2EM and i r  such 

that  both xi and xj separate Yl from Y2 in M \ A - .  It follows that  x i~x j .  [] 

We can now draw some conclusions from these observations. Let H be the space of 

unordered pairs of distinct points in M, as described at the end of w Let H ( 3 §  be 

the subset of ~-pairs, i.e. pairs {x, y} such that  x~y .  

LEMMA 3.15. 1I(3+) is a discrete subset of 11. 

Proof. Suppose {x,y}EH.  Let U, V be disjoint connected open neighbourhoods of 

x and y. Let A= (U, Y)'  be the corresponding annulus. Now if (z, w)E (U• V)M II(3+),  

then we can think of (z, w) as an annulus with A<< (z, w) and N(z, w)~> 3. By Lemma 3.13 

and Lemma 3.8, there can only be finitely many such pairs (z,w). In other words, 

(U• is finite. Now, any compact subset, K C H  can be covered by finitely 

many sets of the form U• and so KN11(3+) is finite. In other words, 11(3+) is 

discrete. [] 

Let H(2)CII  be the set of pairs, {x,y}, such that  x, yeM(2)  and x~y ,  xCy.  We 

can define the equivalence relation ~ on H(2) by {x, y}~{x ' ,  y'} if x~x' , ,~y~y' .  

As with Lemma 3.15, using Lemma 3.14 in place of Lemma 3.13, we obtain 

LEMMA 3.16. Any compact subset of II can meet only finitely many H-classes 
in 11(2). [] 

Put  another way, it is impossible for an infinite set of distinct N-classes to accumulate 

at two distinct points of M. Clearly, this also applies to closures of ,,~-classes. 

Given x, yEM,  and ~EH, we write x~y to mean that  x and y lie in different com- 

ponents of M \ r  We say that  a subset P of II accumulates at some point a c M  if for 

every neighbourhood, U, of a, there are infinitely many ~ E P  with ~C U. 
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LEMMA 3.17. Suppose that a, bEM are distinct. Suppose that P C  II(2)UII(3+) is 

such that a~b for all ~EP, and that if ~,~?EPMII(2) with ~ ,  then ~=~?. Then either 
P is finite, or it accumulates at a or at b (or both). 

Proof. By Lemmas 3.15 and 3.16, if the conclusion fails, then P must accumulate at 

some point cEM\{a, b}. Now, M\{c}  is connected, locally connected and compact and 

so admits an exhaustion by compact connected sets. Thus, there is an open neighbour- 

hood Usc such that  M \ U  is connected and contains both a and b. Now if ~EP,  with 

~C U, we would have a~b. But a, bEM\UCM\~ ,  giving a contradiction. [] 

The next objective is to construct a discrete pretree, T, based on the structure 

of local cut points. In the case where there is a convergence group action (w this 

construction will give rise to a simplicial tree E which describes the JSJ splitting. 

Let T I = H ( 3 + )  be the set of ~-pairs in M(3+) ,  and let T2=M(2)/~ be the set of 

H-classes in M(2). Let T=TIUT2. Note that  if ~, ~ E T  are distinct, then ~MU=O. 

LEMMA 3.18. Suppose that (,~?ET are distinct. Suppose that a, bE~ are distinct, 

and that UEU(a,b). If ~MUr then ~CU. 

Proof. If the result fails, then there are points x, yET separated in M by {a, b}. It 

follows that  ~?ET2, so that  x, yEM(2) .  (For if ~={x,  y}ET1, then there would be some 

YEbl(x,y) with a,b~U, so V=VU{x,y}  would connect x to y in M\{a,b}.) If (ET2,  

then a,b,x, yEM(2), and so, by Lemma 3.3, we get that  a~b~x...y. This gives the 

contradiction that  ( = ~ .  We are thus reduced to the case where ( = { a , b } E T i .  Now, 

N(x, y)=2 ,  so we can let b/(x, y)={W1, W2}. Since {a, b} separates x and y, the points a 

and b cannot lie in the same component of M\{x ,y} .  Thus, we can assume that  aEWz 
and bE W2. But g(a, b)/>3, so there is some component, CE/g(a, b), with x, y~  C. Thus, 

C = C U { a ,  b}EM\{x ,  y}. But now CUWIUW2 is a connected subset of M\{x ,  y}. We 

thus arrive at a contradiction. [] 

Given ~?ET and x, yEM, we write xuy if there are distinct points a, bE~? such that  x 

and y are separated in M by {a, b}. Given ~, ~, 0ET,  we write ~ 0  if (3xE~)(3yEO)(x~y). 
In view of Lemma 3.18, this is the same as saying that  there are distinct a, bE~ and 

distinct U, VEbl(a, b) such that  ~E U and 0C_V. 

LEMMA 3.19. With the ternary relation thus defined, T is a pretree. 

Proof. Properties (TO) and (Wl) are immediate. Property (W3) is also elementary. 

Suppose ~ 0  and ~r We can find a, bEu and U, VEl~(a,b) such that  ( C U  and 0C_V. 

Choose any xE~. If x~U then (~0, and if x ~ V  then 0~?~. 

To deduce (T2), suppose, for contradiction, that  ~ 0  and (0~?. We can find a, bEU 

such that  r and 0 are subsets of distinct elements of b/(a, b), and we can find c, dE0 such 
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that  ~ and ~ are subsets of distinct elements of/~(c,  d). Let U be the element of /~(a ,  b) 

containing ~, and let V be the element of /~(c, d) containing ~. In particular, a, bcV. 
Now, U=UU{a,b} is connected. Also c,d~U, so UCM\{c,d}.  We see that  UC_V. In 

particular, ~C_V, contradicting the fact that  {c, d} separates ~ from ~TD{a, b}. [] 

PROPOSITION 3.20. T is a discrete pretree. 

Proof. Given Lemma 3.19, it remains to verify that  if r ~ET  are distinct, then the 

pretree interval [~, U] is finite. 

Choose distinct a, bE~ and c, dE~?. Let U~, Ub, Uc and Ud be disjoint open neigh- 

bourhoods of a, b, c and d respectively. Suppose ~0~7, so that  there is a pair of distinct 

points x, yCO such that  {x, y} separates r from ~. In particular, {x, y} separates both a 

and b from both c and d. Now, clearly {x, y} cannot be a subset of both U~ and Ub, nor 

a subset of both Uc and U4. Applying Lemma 3.17, we see that  there are only finitely 

many possibilities for {x, y} up to the relation ~. Thus, there are only finitely many 

possibilities for 0. [] 

From the discussion in w we see that  T can be embedded as a subset of the set of 

vertices in a simplicial tree. (Note that any singleton u-class will be a terminal vertex 

in this tree. In the next section we rule out the possibility of such singletons in the case 

of discrete group act ions--Corollary 5.15.) 

In summary, we have shown that  the two kinds of subsets of M, namely ,--classes in 

M(2) and E-pairs in M(3+) ,  together can be embedded in a natural way in a simplicial 

tree. In the case that  interests us (w we shall see that  these subsets account for all 

local cut points in M. 

4. C o n v e r g e n c e  g r o u p s  

In this section, we describe some general properties of convergence groups which we shall 

be using in the next section. Some general references are [GM1], IT1], [T2], [Fr], [Bo4]. 

The notion of a convergence group was defined by Gehring and Martin [GM1] in 

the context of groups acting on topological spheres. Most of the basic theory gener- 

alises without problems to compact Hausdorff spaces (or at least to compact metrisable 

spaces)--see, for example, IT2]. Here, we shall be principally interested in what we shall 

call "uniform convergence groups"--see,  for example, [Bo4]. 

It is shown in [Bo6] that,  in fact, uniform convergence groups are precisely hyperbolic 

groups acting on their boundaries. We shall not refer to that result he re - - the  extra 

geometric information does not seem to help much in this context. 
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Let M be a compact Hausdorff space. Let (I)(M) be the space of distinct (ordered) 

triples in M, i.e. M • M •  M minus the large diagonal. Note that  (I)(M) is locally compact 

Hausdorff. Suppose that  a group, F, acts by homeomorphism on M. We get an induced 

action on (I)(M). The group, F, is said to be a convergence group on M if the action on 

(I)(M) is properly discontinuous. 

If M is metrisable, this is equivalent to the following hypothesis, which was the 

original definition in [GM1], and is the most frequently used formulation of convergence 

group. Suppose that  (%~)neN is a sequence of distinct elements of F. Then, there is a 

subsequence (Ti)i and points A, # E M  such that  the maps 7il(M\{.k}) converge locally 

uniformly to it. (Note that  it follows that  7 i - l l (M\{i t} )  converge locally uniformly 

to A.) In this hypothesis, we allow for the possibility that  A=it. The equivalence of these 

definitions for actions on spheres is proven in [GM2]. Their argument would seem to 

generalise unchanged to Peano continua. A general proof is given in [Bo4]. (In fact we 

don' t  need to assume that  M is metrisable, provided we reformulate the Gehring-Mart in 

definition in terms of nets rather than sequences.) 

One can classify the elements of F into elliptic (finite order), parabolic (infinite order 

with a single fixed point) and loxodromic (infinite order with two fixed points). If 7 EF  is 

loxodromic, we can write its fixed point set, fix(7 ) = {fix-(7), fix+ (7)}, where fix-(7) and 

fix + (7) are, respectively, the repelling and attracting fixed points. In this case, the cyclic 

group, (7), acts properly discontinuously and cocompactly on M\f ix(7) .  The discussion 

of loxodromics in w applies equally well to this more general situation. 

Note that  if K C M  is closed with card(K)~>2 and fixed setwise by a loxodromic 7, 

then fix(7)C_K. We also have [T2]: 

LEMMA 4.1. Suppose that K C M  is closed and 7 E F  is such that 7KC_int K .  Then 

7 is loxodromic, with fix+(7)Eint K and f i x - ( 7 ) E M \ K .  [] 

We say that  a subgroup of F is elementary if it is finite or two-ended. 

It is common to allow, in the definition of an elementary group, any group which 

fixes a point of M. Such a group must either be a torsion group, or else contain a 

parabolic element. However, neither of these possibilities can arise in the case of interest 

to us. (Parabolic elements are ruled out by Lemma 4.4. It is also well known that  torsion 

subgroups cannot occur in hyperbolic groups--see,  for example, [GH]. In any case, all 

groups which we claim to be non-elementary will be seen to contain a loxodromic element, 

and so cannot be torsion groups.) 

The following is a trivial observation: 

LEMMA 4.2. Suppose that G<~F is non-elementary, and that K C M  is a non-empty 

closed G-invariant subset. Then G acts as a convergence group on K .  [] 
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We shall be mainly dealing with a restricted class of convergence groups. For this, 

it is convenient to assume that  M is a perfect compact Hausdorff space. (Recall that  

"perfect" means "having no isolated points" .) 

Definition. We say that  F acts as a uniform convergence group on M if it acts 

properly discontinuously and cocompactly on the space of distinct triples, (I)(M). 

It follows easily that  there is a compact subset, (I)0 c (I)(M), such that  (I)(M)--U F(I)0. 

Direct dynamical proofs of the following three lemmas can be found in [Bo4]. 

LEMMA 4.3. The action of a uniform convergence group is minimal (i.e. there is 

no proper non-empty closed invariant subset). [] 

LEMMA 4.4. A uniform convergence group has no parabolic elements. [] 

LEMMA 4.5. If [" acts as a uniform convergence group on a Peano continuum, then 

F is finitely generated and one-ended. [] 

In particular, F does not split over any finite subgroup in this case. 

It is well known that  a hyperbolic group acts as a uniform convergence group on its 

boundary (a proof is given in [Bo4]). The converse is given in [Bo6]. For a non-elementary 

hyperbolic group F, the results stated above can be deduced by direct geometric argu- 

ments. Note that  OF is perfect and metrisable. The fact that  F acts as a convergence 

group on 0F by the Gehring-Martin definition is shown directly in [T2] and [F]. There are 

several arguments to show that  F has no parabolics (see for example [GH]). Also, it is easy 

to see that  OF is connected if and only if F is one-ended (again, see for example [GH]). 

Returning to our set-up of a group F, acting on a perfect compact Hausdorff space, M, 

we formulate a notion of quasiconvexity for subgroups in dynamical terms. 

Given a closed subset A C M, we define (I)M (h) = { (x, y, z) e (I)(M)I x, y e A}. Thus, 

(I)M(A) is a closed subset of (I)(M). 

Elementary (i.e. finite or two-ended) subgroups of F are always deemed to be qua- 

siconvex. Otherwise: 

Definition. A non-elementary subgroup, G~<F, is quasiconvex if there is a non-empty 

closed perfect G-invariant set A G M  such that  q)M(A)/G is compact. 

(In fact, the assumption that  A is perfect is r edundan t - - i t  is a consequence of the 

definition given that  M is perfect. However, we shall only apply it in cases where we 

already know A to be perfect.) 

For most purposes in this section, we only explicitly use an apparently weaker prop- 

erty, namely that  (I)(A)/G is compact, where r  y, z) e ~ ( M )  lx, y, zeA}  is the 
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space of distinct ordered triples in A. In fact, this turns out to be equivalent to quasi- 

convexity (see [Bo4]). 

Note that  if G is quasiconvex, then G acts as a uniform convergence group on A. 

In particular, from Lemma 4.3, we see 

LEMMA 4.6. The set A is the unique minimal non-empty closed G-invariant subset 

of M.  [] 

In particular, A is uniquely determined by G. We refer to it as the limit set of G, and 

write A--AG. In the case where G is two-ended, we set AG to be the fixed point set of any 

loxodromic in G. (This definition agrees with the standard one for convergence groups.) 

Note that  G has finite index in the setwise stabiliser of A (since the setwise stabiliser 

acts properly discontinuously on ~(A) and (I)(A)/G is compact). 

Before continuing, we make a few remarks about two-ended subgroups which will 

be relevant to the subsequent discussion. 

Note that  if G is any two-ended group, then the end-preserving subgroup is a normal 

subgroup of index at most 2 in G. It can be defined purely group-theoretically in terms 

of the action of G on its Cayley graph. Also, any infinite-order element g c G  determines 

an ordering on the pair of ends of G, according to which end any given forward orbit 

tends. We can refer to this as the "direction of translation" of g. It is well known that  

a two-ended group acts properly discontinuously and isometrically on the real line (see 

for example [DD]). It is not hard to see that  the end-preserving subgroup of G and the 

direction of translations of elements are respected by such a representation. Note that  a 

subgroup, G, of a convergence group F, is two-ended if and only if it preserves setwise an 

unordered pair of distinct points, {x, y } C M .  In this case, the pointwise stabiliser of x 

and of y is precisely the end-preserving subgroup of G. Moreover, if "y~G is loxodromic, 

then y=fix+(9 ,) if and only if q' translates in the direction of y in the intrinsic group- 

theoretical sense. 

As mentioned in the introduction, we have a special interest in convergence groups 

acting on circles. Such actions have been completely analysed by ]5akia IT1] and the 

subsequent papers of Gabai [Ga], and Casson and Jungreis [CJ]. It turns out that,  up to 

topological conjugacy, such a grouP can be represented by a group acting isometrically 

and properly discontinuously on the hyperbolic plane, H 2, where we are considering the 

induced action on the ideal circle, OH ~. We state explicitly two special cases of this. 

Firstly: 

THEOREM 4.7 IT1], [Ga], [CJ]. Suppose that F acts as a uniform convergence group 

on circle, S 1. Then, there is a properly discontinuous cocompact isometric action of F 

on H 2, and a F-equivariant homeomorphism of S 1 to OH 2. [] 
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We refer to such a group as a cocompact "Fhchsian group". Group-theoretically, 

this is the same as saying that  F is a virtual surface group. There is a slight distinction 

between our formulation and that  given in the references cited, in that  we are not as- 

suming the action to be effective. However the distinction is essentially trivial, since the 

kernel of such an action can be simply characterised as the unique maximal  finite normal 

subgroup. (Note that  the fact tha t  F is finitely generated is easy to see in this case, since 

its quotient by the kernel of the action is the orbifold fundamental  group of the compact  

3-orbifold ~(S1) /F . )  

The following result follows from Tukia 's  original paper  IT1]: 

THEOREM 4.8. Suppose that A is a cyclically ordered Cantor set, and that F acts 

as a minimal discrete convergence group (without parabolics) on A,  preserving the cyclic 

order. Then, there is a properly discontinuous action of F on H 2 (without parabolics), 

and a cyclic-order-preserving F-equivariant homeomorphism from A onto the limit set 

of the F-action on 0 H  2. 

Proof. In the terminology of IT1], the action of F is of the "second kind". Thus, in 

view of Theorem 6B(f) of that  paper,  it suffices to show that  that  the action of F on A 

extends to a convergence action on the circle, S 1. 

As in w let J ( A )  the set of jumps in A, which in this case are all disjoint. Suppose 

0 c J ( A ) .  Note that  if ~ e r  were loxodromic with f ix(7)N0~O,  then in fact fix( 'y)=0. 

(Otherwise there would be (')')-orbits of points converging on each element of 0 from 

either side, showing that  0 could not be a jump.)  We also see tha t  the setwise stabiliser 

of a jump is either finite or two-ended. 

Now, we can certainly find a cyclic order-preserving embedding of A in S 1. The 

jumps of A are then in bijective correspondence with the complementary open intervals 

of S I \ A .  

Let O = { x , y } C J ( A ) ,  and let G be the setwise stabiliser of 0. Let I C S  1 be the 

complementary open interval with O I= { x , y } .  We want to define an action of G on I .  

Suppose, first, that  G is two-ended. Now as discussed earlier in this section, G admits 

a properly discontinuous isometric action on the real line. Now there is a natural  corre- 

spondence between the ends of the real line and the ends of G, and thus, in turn, with 

the pair {x, y}, which are the ends of the interval I .  We now take any homeomorphism 

of I with the real line respecting this identification of ends. We thus conjugate the action 

of G under this homeomorphism, to give an action of G on I .  The case where G is finite 

is simpler. In this case, we just  take any homeomorphism of I with the real line. We 

define the action of F E G  on the real line by setting g to be the identity if g fixes x and y, 

and to be reflection in the origin if g swaps x and y. 
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We now perform this construction for one jump in each F-orbit. To extend over a 

given P-orbit of jumps,  we conjugate by appropriate  elements of F. 

This extends the action over S 1. It  is now a simple exercise to verify that  this is a 

convergence action. [] 

(In fact, the construction of the extension to S 1 probably is not really necessary 

one should be able to adapt  the arguments of IT1] directly to this case though I have 

not worked through the details.) 

Note that  we have not assumed that  F is finitely generated. In this special case, we 

obtain 

PROPOSITION 4.9. With the hypotheses of Theorem 4.8, if, in addition, F is finitely 

generated without parabolics, then F is conjugate to a bounded Fuchsian group. [] 

Here "bounded" means convex cocompact but not cocompact,  as described in the 

introduction. Note that  the peripheral subgroups are precisely the stabilisers of jumps.  

In particular, each such stabiliser is two-ended, and there are finitely many conjugacy 

classes of such. 

5. C o n v e r g e n c e  ac t i ons  on  P e a n o  c o n t i n u a  

In this section we continue in a similar vein to w but now introducing convergence 

actions into the picture. 

Let M be a metrisable Peano continuum, and let r be the space of distinct 

triples in M. Let F be a group acting as a uniform convergence group on M, i.e. acting 

properly discontinuously and cocompactly on ~. (One can probably avoid the metris- 

ability assumption, but this would raise technical complications we don' t  really want to 

be bothered with here.) We shall shortly see (Proposition 5.4) that  M has no global cut 

point, so from that  point on, we can bring the results of w into play. 

By Lemma 4.4, we know that  F is finitely generated and one-ended. We shall not 

use the finite generation result explicitly here, only the fact that  F does not split over 

any finite subgroup. The fact that  F is countable is used for Lemma 5.31. 

LEMMA 5.1. There are finite collections, P Y~ p P ( i ) i = 1  (Wi)i=l, of open (Ui)i=l, and 

connected sets Ui, V~, WiC_M such that Ui fqVi=ViNWi=WinUi=~ for all iC{1, ...,p}, 

and such that if x, y, z C M  are all distinct, then there is some 7EF and iC{1, ...,p} such 

that 7xEUi, ~/yEVi and 7zCW~. 

Proof. Let OoC_O be compact with O=UFePo.  Given any (x ,y ,z)COo,  we can 

certainly find open connected sets U~x,  V g y  and W g z  whose closures are all disjoint. 

We now cover D0 with finitely many sets of the form U• V• W. [] 
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LEMMA 5.2. There are finite collections P P (Ui)i=l and (Oi)i=l of open connected 

subsets of M such that UiMOi=O for all i, and such that if K C M  is closed and 

x E M \ K ,  then there is some ~/EF and iE{1, ...,p} such that ~/xEUi and ~/KCOi. 

Proof. Let Ui, V~, Wi be as described by Lemma 5.1. Let Oi be an open connected 

set such that  ~ c Oi and Oi M Ui-- O. 

Choose any y E M \ ( x }  and choose a sequence of points z n e M \ { x ,  y} with z~--*x. 

Now, applying Lemma 5.1, we can find a sequence (~n)neN of elements of F such that  

%~xCUi(n), %~yEV~(n) and %~znEW~(~), for some i (n)E{1, . . . ,p}.  Passing to a subse- 

quence, we can suppose that  i(n) is constant,  equal to k say, and that  the ~',~ are all 

distinct. Passing to a further subsequence, we can suppose that  ~/nX--+aEU, "~ny--*bEV 

and %~zn--*cCW. Note that  a, b, c are all distinct. Suppose that  for all n E N ,  ~/nK~Ok. 

Then we can find w~CK such that  ~/~wnEM\Ok. 

We now apply the convergence property to (%~)ncN. Passing to a subsequence, we 

can find points A, I t E M  such that  %~](M\{A}) converges uniformly to #. Now since 

~/~x--*a and %~y--*b, we see that  # must equal a or b. 

Suppose that  #=a. Since ~/ny-~a, we must have A=y. Since zn-~x, the points 

z~ remain in a compact  subset of M \ { y ) .  Thus, "~zn--*a contradicting the fact tha t  

~/nZn--+c~a. 

Suppose that  #=b. Since %~x-~b, we must have )~=x. Now, w n E K C M \ { x } ,  and 

K is compact.  Thus, %~w~--*b. Now bcUk and %~wnEM\Ok. But Uk and M \ O k  are 

disjoint closed sets, so we again get a contradiction. 

In conclusion, we deduce that  there must be some n C N  such that  ~nKC_Ok. Also 

~/~xE Uk as required. [] 

In the last section, we described a process associating an annulus ( B - ,  B+) I to any 

pair of disjoint closed subsets, B -  and B +, of M. Given iC{1, ...,p}, set A~=(O~, U~)'. 

A p Thus, OiCA~ and UiCA +. This gives a finite collection of annuli, ( ~)i=1" The basic 

property of this collection may be expressed as follows: 

LEMMA 5.3. Suppose that K C M  is closed, and x c M \ K .  Then, there is some 

~/cF and iC{1, ...,p} such that K<~/Ai<x. 

Proof. This follows immediately from Lemma 5.2 (with ~ replacing ~/-1). [] 

We now get one of the principal results: 

PROPOSITION 5.4. M has no global cut point. 

Proof. Suppose that  x E M  is a global cut point. Choose any y, z E M  separated by x. 

Applying Lemma 5.3, with K - - { y ,  z}, we get an annulus A=~/Ai, with K < A < x .  But 
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now, y, zEA- which is connected, and x~A- ,  contradicting the fact that  x separates y 

from z. [] 

We are now in the situation described in w We thus have the definition of valency 

of a point, the sets M(n) and M(n+) ,  and the relations ,,~ and ~, etc. We immediately 

have the following result. 

Let N=max{N(Ai)[1 <~i<p}. 

PROPOSITION 5.5. If xEM, then val(x)~<N. 

Proof. Suppose val(x)>N. By Lemma 3.11 and Lemma 3.12, there is an annulus 

(K,x) with N(K,x)>N. But now, Lemma 5.3 gives us some iE{1,. . . ,p} and some 

3, E F such that  3,Ai << (K, x). By Corollary 3.10, we get N(Ai) =N(3"Ai) >1 N(K, x) > N, 
contradicting the definition of N. [] 

In particular, we see that  M(oc)=O.  

Now, exactly as in w if G~<F is a two-ended subgroup, we define e(G) to be the 

number of components of M\AG. Similarly, if 3'EF is loxodromic, set e(3')=e(@)). 

Thus, e(3,)=N(x, y), where {x, y}=fix(3')=A(G). 

LEMMA 5.6.  I f  ~/Er i8 loxodromic with f i x ( 3 , ) = { x , y } ,  then 

val(x) = val(y) = N(x, y) = e(3,). 

Proof. As in w after raising 3, to some power, if necessary, we can suppose that  3' 

fixes each component UEld(x, y). Now, U/(3") is compact. (It is a connected component 

of (M\fix(3,))/(3,).) Since (3,) is two-ended, it follows that  U has precisely two ends. 

Since 0 =  UU{x, y} is compact, we see that  these ends are compactified by the points x 

and y. Thus, M\{x}=U{Uu{y}IUEld(x , y)} has precisely N(x, y)=card b/(x, y) ends. 

Thus val(x)=N(x, y)=e(3,). Similarly for y. [] 

COROLLARY 5.7.  If e(3,)~>3 and fix(3,)={x,y}, then x.~y. [] 

We shall see (Proposition 5.13) that  there is a converse to Corollary 5.7. 

We are assuming that  F acts cocompactly on the space of distinct triples, so it 

certainly acts cocompactly (though not properly discontinuously) on the space of distinct 

unordered pairs, 1I. (In other words, there is a compact set IIo C II such that  I I=  U FII0.) 

Recall that  11(3+)c II is the set of ~-pairs. Clearly this is F-invariant. Lemma 3.15 

tells us that  this is discrete, and so: 

LEMMA 5.8. I I (3+) /F  is finite. [] 

Putting this together with Corollary 5.7, we obtain 
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PROPOSITION 5.9. There are finitely many conjugacy classes of maximal two-ended 

subgroups G<~F for which e(G)>~3. [] 

The same argument, using Lemma 3.16 in place of Lemma 3.15, will enable us to 

establish that  there are only finitely many F-orbits of ,-,-classes in M(2). For this to 

work, however, we will first need to establish that  there are no singleton ,-.-classes. This 

will form part of a more substantial analysis later on. We first need to make a few more 

general observations. 

From Lemma 4.1, we note 

LEMMA 5.10. Suppose that A is an annulus, and ~/EF with A<TA.  Then, "~ is 

loxodromic, and fix- (~) < A and A < fix + (~f). [] 

Extending Lemma 5.3, we get the following nesting property of annuli: 

LEMMA 5.11. Suppose that K C M  is closed, and x E M \ K .  Then, there is some 

iE{1, ...,p}, and a sequence of elements ('/n)neN such that 

K < ?oA~ <'hA~ < "f2Ai < ... < x. 

Proof. Lemma 5.3 gives us ~/0EF and i(0)E{1, ...,p} such that  K<~oAi(o)<X. We 

now apply Lemma 5.3 again, with M\~/0 int A~(0) replacing K.  This gives ~i and i(1) such 

that  M \'~0 int A+(o) <~/1Ai(i) <x.  But the first relation is equivalent to ~0Ai(o) <~/iAi(i). 

We now continue inductively. On passing to a subsequence, we can suppose that  i(n) is 

constant. [] 

LEMMA 5.12. Every point of M(3+)  is the fixed point of some loxodromic in F. 

Proof. Suppose xEM(3+) ,  so 3~<val(x)<oc. Lemma 3.11 gives an annulus (K, x) 

with N ( K , x ) ~ 3 .  Lemma 5.11 now gives us some iE{1, ...,p} and a sequence, (%~)neN, 

of elements of F with K<~/oAi<~/iAi<...<x. For each n, we have %,Ai<<(K,x), and 

so Ai<<(~/~iK,~/~ix). Applying Lemma 3.13, we can find m < n E N  with 7~1x=7~ix .  

Let 7 = ? n ? ~  1 so that  ~/x=x. Now ~fmAi<%~Ai=7(~/mAi), so by Lemma 5.10, "7 is loxo- 

dromic. [] 

PROPOSITION 5.13. Suppose x, yEM.  Then x ~ y  if and only if there is a loxo- 

dromic 7EF with e(7)~>3 and fix(~/)={x,y}. Moreover, M(3+)  is a disjoint union of 

such ~-pairs. 

Proof. By Corollary 5.7, if ~/EF is loxodromic and e(7)>~3, then fix(~f) is a ~-pair. 

Suppose xEM(3+) .  Then Lemma 5.12 gives us such a ~/with xEfix(~/). By Lemma 3.8, 

if x~y ,  it follows that  fix(~/)---{x, y}. [] 
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LEMMA 5.14. Every isolated point of a H-class in M(2) is the fixed point of a 

loxodromic in F. 

Proof. Suppose that  aC_M(2) is a H-class. To say that  xCa is isolated means that  

there is an open set UC_M such that  aMU={x} .  Let F = M \ U .  By Lemma 3.11, there 

is an annulus (K,x)  with F < ( K , x )  and N ( g , x ) = 2 .  We now argue as in the proof 

of Lemma 5.12, using Lemma 3.14 in place of Lemma 3.13, to obtain ~/m,~/nCF with 

F<~/mAi<~/nAi<x and ~/~lx~/~lx .  Let ~=~'n~m 1, so that  x ~ x ,  and ~/is loxodromic. 

Now, ~/,~Ai <x,  so ~/nAi =~(~/mAi) <~/x. Thus K<7~Ai <~/x, and so ~/xCM\K=U.  Since 

x ~ x  and aMU={x},  we deduce that  ~/x=x. [] 

COROLLARY 5.15. I f  a is a N-class in M(2) which contains an isolated point, then 

there is a loxodromic ~/CF such that fix( 'y)=a. 

Proof. Let x C a  be an isolated point of a. By Lemma 5.14, x is fixed by some 

loxodromic ~CF. We can suppose that  x=fix+(~/). Let y=fix-(~') .  By Lemma 5.6, 

N(x , y )=2  and yEM(2) ,  and so x~y .  In other words, f ix(7)Ca.  Suppose that  there 

is some zEa\f ix( 'y) .  Then ~nzEa  for all n. But ~/~z--~x, contradicting the assumption 

that  x is isolated in a. We deduce that  a=fix(~) .  [] 

In particular, we see immediately that  there are no singleton H-classes. As a conse- 

quence, we deduce 

LEMMA 5.16. There are finitely many F-orbits of H-classes in M(2).  

Proof. As in the proof of Lemma 5.8, using Lemma 3.16 in place of Lemma 3.15. [] 

Definition. We shall say that  a subset A C M is a necklace if it is the closure of a 

H-class, a, in M(2),  and card(A)~>3. 

Note that  by Corollary 3.6, A determines a uniquely. We write a = a ( A ) .  By 

Lemma 2.2, A is a cyclically separating set, and by Corollary 5.15, A is perfect. 

We shall later describe necklaces as the limit sets of the "MHF" subgroups of F. 

The first objective will be to show that  the setwise stabiliser of A in F is quasiconvex. 

Suppose that  O0cO is compact. Lemma 3.16 and the subsequent remarks tell us 

that  the set of necklaces, A, such that  ~ 0 n ~ M ( A ) ~ O  is finite. 

PROPOSITION 5.17. Suppose that A is a necklace, and that Q<~F is the setwise 

stabiliser of A. Then, Q is quasiconvex, and A is the limit set of Q. 

Proof. Since A is perfect, it is enough to show that  OM(A)/Q is compact. 

Let O0CO be a compact set such that  O = U F O 0 .  Let {~/1 A, ...,~/mA}, where "~iEF, 

be the set of F-images of A such that  ~ONOM(~/i/k)~O. This is a finite set, as noted 
~i / m --1 above. Let = U i = l ~ i  ~0. Thus, ~cO_ is compact. 



174 B.H. BOWDITCH 

Suppose QEOM(A). Now, there is some ~,EF such that  "YOEO0. Now 9'QEffPM(~A) 

and so O0MOM(TA)~O. Thus, ~A=~,~A for some iE{1, ...,m}, and so ~-17~EQ. Now, 

QE'~-I(I~0=("~-I"/i)"~i-I(I)0 C u QII/. This shows that OM(A)_C u Q~,  and so ~M(A)/(~C 

(U Qqy)/Q. Since ~M(A) is a closed subset of O, it follows that r is compact, 

as claimed. [] 

Note that  the cyclic order on a necklace, A, is defined purely in terms of the topology 

on M, and is thus Q-invariant. In particular, the set of jumps, J (A) ,  is Q-invariant. 

PROPOSITION 5.18. If M is not homeomorphic to a circle, then every necklace in 

M is a Cantor set. 

Proof. Let AC_M be a necklace. Since M is metrisable and hence separable, then 

so is A. 

If J ( A ) = g ,  then A is a compact separable cyclically ordered set with no jumps. 

Thus A is homeomorphic to a circle. By Lemma 2.3, we see that  / g ( A ) = g ,  and so 

M \ A =  u / g ( A ) = o .  Thus, M = A  is itself a circle. 

Suppose that  J ( A ) ~ O .  Let A' be the closure of U J (A) .  Thus, A'  is a non-empty 

closed subset of A. Since it is canonically defined, it must be invariant under the setwise 

stabiliser of A. Applying Proposition 5.17 and Lemma 4.6, we see that  A%---A. In other 

words, U J (A)  is dense in A. Since A is separable and perfect, it follows that  it must 

be a Cantor set. [] 

Note that  by Theorem 4.7, we see that  if M is homeomorphic to a circle, then F is 

a cocompact Fuchsian group. Moreover, the action of F on M is topologically conjugate 

to the action of the Fuchsian group in 0 H  2. 

From now on, we shall assume that  M is not homeomorphic to a circle. 

Definition. A subgroup, Q~<F, is an MHF subgroup if it is the setwise stabiliser of 

a necklace A C M .  A pempheral subgroup of Q is the stabiliser, in Q, of a jump of A. 

Thus, an MHF subgroup, Q, is quasiconvex, and its limit set A = A Q  is a Cantor 

set. Peripheral subgroups are either finite or two-ended. In fact, by Theorem 4.8, we see 

that  Q is conjugate to a Fuchsian group, and the peripheral subgroups have their usual 

meaning. We make no explicit use of this fact in this section. We do not yet know that  

MHF subgroups are finitely generated. 

The term "MHF" is meant to be an abbreviation of "maximal hanging Fuchsian". 

This is essentially what is called a "maximal quadratically hanging" subgroup in Sela's 

terminology, as discussed in the introduction. In w we show, under the assumption that  

M is the boundary of a hyperbolic group, that  MHF subgroups are finitely generated, 
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and hence bounded Fhchsian groups. In this case, the terminology agrees with the notion 

of "maximal hanging ~chs ian"  as described in the introduction. 

Let us make a few more observations about MHF subgroups in general. 

LEMMA 5.19. Suppose that Q is an MHF subgroup, and A=A(Q).  Then J (A) /Q  

is finite. 

Proof. Recall that  F acts cocompactly on the space, H, of unordered pairs in M, 

i.e. there is a compact set IIoC_II such that  H =  u FII0. Using Lemma 3.16, we see that  

only finitely many F-images, ~'IA, ..., ~,,~A, of A meet H0. By Lemma 2.4, for each i, 
m the set J~=J(A)n'y~-lII0 is finite. Now, we see easily that  the set U~=l Ji gives a finite 

transversal to the Q-action on J(A).  [] 

We see immediately 

COROLLARY 5.20. An MHF subgroup, Q, has finitely many Q-conjugacy classes of 

peripheral subgroups. [] 

Recall that  a necklace, A, is the closure of a unique H-class, denoted a(A).  

LEMMA 5.21. Suppose that QC_F is an MHF subgroup. Then A \ a ( A ) = U J o ( A  ), 

where J0(A) is some Q-invariant subset of J(A).  Moreover, if G is the peripheral 

subgroup corresponding to some jump in J0(A), then G is two-ended, and e(G)>~3. 

Proof. Suppose x c A \ a ( A ) .  By Lemma 3.7, val(x)~>3. Thus, by Lemma 5.12, there 

is a loxodromic "yEF, with xEfix(7). Let y be the other fixed point of 7. Thus, by 

Lemma 5.6, N(x, y)=val(y)=e(7)=val(x)>~3. Since val(y)>2, we have that  y•a(A).  

Now, we can assume that  y-fix+(~/). Now, if the necklaces ~/nA for n~>N were 

all distinct, they would accumulate at both x and y, violating Lemma 3.16. We must 

therefore have ~mA='ynA for some m~n.  Thus, replacing ~/by ~n-m we can suppose 

that  ~,A=A, and so ?/cQ. We conclude that  yCA. Now since N(x,y)>2,  we see that  

no pair of points of M, and so in particular of a(A),  can separate x from y. Thus, {x, y} 

is a jump of A. Note that  {x, y } C A \ a ( A ) .  

We now let J0(A) be the set of jumps arising in this way. [] 

COROLLARY 5.22. Suppose that Q and Q' are distinct MHF subgroups of F. Let 

A=A(Q) and A'=A(Q' ) .  Then, either A N A ' = O ,  or ANA'CJ0(A)NJ0(A') .  In the 

former case, QNQ t is finite. In the latter case, QNQ r is two-ended, and of finite index 

in peripheral subgroups of both Q and Q'. Moreover, e(QNQ')>>-3. 

Proof. Note that  by Lemma 3.5, card(AnAt)~<2. If ANA~=o,  then QNQ t is fi- 

nite. (Otherwise, we would easily arrive at a contradiction, on applying the convergence 

hypothesis to a sequence of elements in QNQ~.) 
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Now, we have a(A)na(A~)=~. Thus, if x E A M A  ~, then without loss of generality 

x E A \ a ( A ) .  Thus, by Lemma 5.21, we see that  val (x)>3.  It  follows that  x also lies 

in A ' \ a ( A ' ) .  Again, by Lemma 5.21, we see that  xEfix(q,)Mfix('7'), where ~,EQ and 

?~EQ ~ are loxodromics. Since they share a common fixed point, ~, and ~,1 lie in a common 

two-ended subgroup of F. It  follows easily that  they have a common power, gEQ, NQ ~. 
Now, fix(g)eJo(A)NJo(A'), so fix(g)C_ANA'. Since c a r d ( A r i A ' ) < 2 ,  we see that  f ix(g)= 

ANA I. [] 

At the end of w we described how to put a pretree structure on the set, T, consisting 

of all ~-pairs  and u-classes. We saw (Proposition 3.20) tha t  T is in fact a discrete pretree, 

and so embeds naturally in a discrete median pretree, O, using the construction outlined 

in w We can identify O as the vertex set of a simplicial tree, E. We shall write E=E(E) 
for the set of edges of E. 

I t  is natural  to part i t ion T into two subsets as follows. We write O2C_T for the 

set consisting of all infinite u-classes, and write 01=T\02. Thus, O1 consists of all 

~-pairs  and u-pairs .  (By the lat ter  we mean a ,-.-class consisting of two points.) We 

write O 3 - - O \ T .  Thus O=Ol[JO2UO3.  We shall sometimes speak of this as defining a 

"3-colouring" of the vertex set. 

From the construction of O from T, it is not hard to see that  every vertex of O 3 has 

degree at least 3 in E, and tha t  no two vertices of O3 are adjacent. (In fact, we shall see 

later that  no two adjacent vertices of O have the same colour, so that  this is indeed a 

3-colouring in the usual sense.) 

Since the construction of E is canonical, we see that  F acts simplicially on E, pre- 

serving the 3-colouring. Given 0EO and eEE, we write F(0) and F(e) for the vertex and 

edge stabilisers respectively. Thus, if 0EO1, then F(0) is a two-ended subgroup, and if 

0EO2, then F(0) is an MHF subgroup. 

Reinterpreting Lemma 5.8 and 5.16, we get 

LEMMA 5.23. (O1UO2)/F is finite. [] 

We shall see in fact that  E has finite quotient under F. To be able to speak of the 

quotient graph we need to know that  there are no edge inversions, which will follow when 

we have established the claim that  adjacent vertices have different colours. We shall also 

see that  all edge stabilisers are elementary, and thus two-ended given tha t  F does not 

split over a finite subgroup. 

Given 0 E O, let Eo C_ E be the set of edges incident on 0. We can define an equivalence 

relation, _~, on 0 \ { 0 }  by writing r  and only if not (0r 1. Thus, there is a natural  

bijection between Eo and (O\{0})/_~. In fact, since no vertex of 03 is terminal, we see 

that  T = O t U O 2  must intersect every -~-class in O\{0}.  We can thus restrict the relation 
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--- to T\{O}. In this way we get a natural bijection between E0 and (T\{O})/~--. 
Given a pair of distinct points, O={x, y}CM, we wri te /g(0)=/~(x ,  y). 

LEMMA 5.24. If OF01, then there is natural bijection between Eo and Lt(O). 

Proof. By Lemma 3.18, if ~ET\{0} ,  then ~CU for some UEb/(0). Since the action 

of F on M is minimal, we see that  each such U must contain some such ~. By the 

definition of the pretree structure on T, we see that  ~-~? if and only if they lie in the 

same element U. [] 

LEMMA 5.25. Suppose that aEO2.  Let A be the necklace ~. Then, there is a 
natural bijection between E~ and J (A) .  

Proof. Suppose ~ E T \ { a } .  Using Lemma 5.21, we see that  either ~MA=O or 

~EJ0(A).  If r  then there is some UE/~(A) with ~EU. (For if r intersected 

two components of M \ A ,  then it would be separated by some pair of points of a, 

contradicting Lemma 3.18.) Now by Lemma 2.3, there is a unique 0 E J ( A )  such that  

UE/gA(~). We can thus define a map h: T\{a}--*J(A) so that  either h(~)=~EJo(A), or 

h(~)CUEl~A(h(~)). It follows easily from the minimality of the action of F on M and 

Lemma 3.18 that  h is surjective. We claim that  h(~)=h(~?) if and only if r 

Firstly, suppose h(r If ~,U~Jo(A),  then they lie in different components 

of M \ A  and are thus separated by some pair of points of a. Thus ~ .  Similarly, if 

CEJo(A), so h(r we can suppose that  ~ J 0 ( A ) .  Thus, r where UEb//,(~) and 

0EJ (A)  and 0 r  Again, we see that  ~ .  

Conversely, suppose that  h (~ )=h(u )=0 ,  say. We distinguish two cases. 

If 0 E J ( A ) \ J o ( A ) ,  then PC a, and so card/g(0)=2.  Thus, /~A (0) consists of a single 

element, U. Since ~, U~0, we have ~, ~C_U, and so they are not separated by any pair of 

points of a. Thus r  

Finally, suppose that  0EJo(A).  Thus 0 _ A \ a .  Let K = 0 u U / g A ( 0 ) ,  so that  K 

is closed and connected. Also M \ K  is the component of M \ 0  which contains a. In 

particular, KAa=O. By the definition of h, we have ~, ~?CK, and so again we see that  
~---~. [] 

We immediately get 

LEMMA 5.26. If OF01, then Ee is finite. If 0EO2, then Ee/F(0)  is finite. 

Proof. If 0EO1, then/~(0)  is finite, so we apply Lemma 5.24. If 0EO2, then 0 is an 

MHF subgroup. In this case, Lemma 5.19 tells us that  J (A) /F (~ )  is finite. [] 

Since we don't  yet know that  there are no edge inversions, we define F0(e) to be the 

"directed edge stabiliser" of an edge e. In other words, where ~, uEO 

are the endpoints of e. Thus, F0(e) has index at most 2 in F(e). 
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Suppose 0 E S i .  Now F(0) is two-ended, and e(F(0))---card/A(0)=cardEe. In other 

words, e(r(e)) equals the degree of ~ in ~. If eEEo, then Fo(e) has finite index in F(0) 

and is thus a two-ended group. 

Suppose a E 8 2 ,  so that  F(a)  is an MHF group. If eEE~, then Fo(e) is the stabiliser 

of a jump of #--A(Fo(e)).  In other words, Fo(e) is a peripheral subgroup of F(a) ,  and 

is thus elementary. Since F doesn't split over any finite subgroup, it follows that  F(e) is 

two-ended. (Note that,  from the construction of ~, every edge, e, lies in an arc connecting 

two points of OiUO2. We know corresponding vertex groups to be infinite, so if F(e) 

were finite, we would obtain a non-trivial splitting.) 

Now every edge eEE is incident on some vertex of 81UO2. It follows that  Fo(e) 

and hence F(e) is elementary. 

We next want to show that  no two adjacent vertices have the same colour. We have 

already noted that this is true of 03. 

Suppose that ~, UEOi are the endpoints of some edge eEE. Now, F0(e)=F(()AF(U) 

is of finite index in both ~ and ~?. But these groups are both two-ended with limit sets 

and ~? respectively. We get the contradiction that ~--~?, showing that this situation is 

not possible. 

Suppose now that a,a'CO2 are the endpoints of the edge eEE. Let A=A(F(a)) 

and A '=A(F(a ' ) ) .  Since Fo(e)=F(a)AF(a') is two-ended, we see, by Corollary 5.22, 

that  O=AAA'EJ(A)AJ(A'). Now, e(Fo(e))~>3, and so 0EOi.  But now, we have aOa' 
contradicting the assumption that  a and a '  are adjacent. 

We have shown that  no two points of e i  and no two points of e2  are adjacent. Thus, 

the partition, ~={~lkJ~2[_JO3, is indeed a 3-colouring in the usual sense. It follows that  

there are no edge inversions, i.e. F0(e)=F(e)  for all eEE. We can thus construct the 

quotient graph ~ /F .  Clearly ~ / F  is connected. 

Now we can identify the vertex set, V(~ /F ) ,  of ~ / F  with (3/F. Thus V(~/F)= 
WiUW2UW3 gives a 3-colouring of Z /F ,  where Wi=Oi/F. By Lemma 5.23, WiUW2 
is finite. By Lemma 5.26, each vertex of WiUW~ has finite degree in ~ /F .  Also every 

vertex of W3 is adjacent of a vertex of WiAW2. We conclude that  E / F  is finite. 

Note that  no vertex of ~ is terminal (has degree 1). Since Z / F  is finite, we see easily 

that  the action of F on ~ is minimal (i.e. there is no proper invariant subtree). 

There are a couple more observations we can make concerning the structure of the 

vertex groups. 

LEMMA 5.27. If 0EO3, then F(~) is non-elementary. 

Proof. Suppose, for contradiction, that  F(0) is elementary. We know that  0 has 

degree at least 3 in F.. Since F(O) contains each incident edge group, we see that  it contains 
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a loxodromic element, and is therefore two-ended. If (cO1 is adjacent to 0, then, since the 

edge group F(~)MF(0) is two ended, we see that  F(0) and F(~) are commensurable, and so 

we see that  ~=A(F(())=A(F(0)) .  It follows that  at most one vertex of O1 can be adjacent 

to 0. We can thus find two distinct vertices, a,~-cO2, adjacent to 0. But now, F(0) is 

commensurable with peripheral subgroups of F(a) and F(T). Applying Corollary 5.22, 

we see that  u=A(F(a))NA(F(~-))EO1, and the the betweenness relation aUT holds. We 

thus get the contradiction that  0=~EO1. We conclude that  F(0) is non-elementary as 

claimed. [] 

It is also clear that  F(0) cannot be an MHF subgroup. (If it were, it would be equal 

to F(0 ~) for some 0'C02. If e is any edge in the arc connecting 0 to 0', then we get the 

contradiction that  r ( e ) = r ( e )  is not two-ended.) 

Note that  it follows from Lemma 5.27 that  O1 is precisely the set of vertices of E of 

finite degree. 

Also, if e, e'EE and F(e) and F(e') are commensurable, then AF(e)=AF(e')  is a 

~-pair or a ~-pair, and so F(e),F(e')C_F(0) for some 0EO1 incident on e and e'. 

Finally, note that  if 0EO1 is adjacent to some vertex, aEO2, then it follows from 

Lemma 5.21 that  e(F(e)) )3 ,  where e is the connecting edge. Since F(0) is commensurable 

with F(e), we see that e(r(0))=e(r(e))~>3. On the other hand, if e c E( E)  connects a 

vertex in O2 to a vertex in O3, then F(e) is maximal two-ended and e(F(e))=2. 

We want to summarise these properties in group-theoretical terms, with a view to 

describing the uniqueness of the splitting in w We will get a slightly cleaner statement 

if we, somewhat artificially, insert a vertex of degree 2 at the midpoint of each edge of 

E which has one endpoint in 02 and the other in 03. With these extra vertices, we can 

partition V(E) as VI(E)UV2(E)UV3(E), where V2(E)=O2, Va(E)=O3, and VI(E) consists 

of the set O1 together with the set of new degree-2 vertices we have just introduced. 

Summarising the above discussion, we have 

THEOREM 5.28. F acts minimally and simpliciaUy on E without edge inversions 

and with finite quotient E/F.  The edge stabilisers are all two-ended subgroups. The 

action of F preserves the 3-colouring, (VI(E), V2(E), V3(E)), of the vertex set of E. No 

two vertices of VI(E) are adjacent, and no two vertices of V2(E)UV3(E) are adjacent. 

I f  vEVI(E),  then the vertex stabiliser, F(v), is a maximal two-ended subgroup of F, 

and e(F(v)) equals the degree of v in E. This degree is finite and at least 2. If the degree 

equals 2, then at least one of the incident vertices lies in V3(E). 

If  vcV2(E), then F(v) is an MHF subgroup of F. I f  e c E ( E )  is incident on v, then 

F(e)~<F(v) is a peripheral subgroup of F(v). 



] 8 0  B.H. BOWDITCH 

If vEVa(E), then F(v) is non-elementary (and not a torsion group) and is not an 

MHF subgroup. [] 

We also note that any pair of commensurable edge stabilisers lies inside a common 

incident vertex stabiliser, F(v), for v E V1 (E). 

The term "MHF subgroup", as we have defined it, makes reference to our particular 

construction. We shall give an algebraic reinterpretation of this term in w 

Clearly this construction has been canonical. It describes a "maximal" splitting over 

two-ended subgroups. There are various ways to describe this maximality. Below we give 

a topological and a group-theoretical formulation. 

PROPOSITION 5.29. Every local cut point of M lies in the limit set of some vertex 

stabiliser, F(v), where vEVI(E)uV2(E).  

Proof. This follows since M(2) is a union of ~-classes and M(3+)  is a union of 

.~-pairs. The set of local cut points is, by definition, M(2)UM(3+) .  [] 

PROPOSITION 5.30. Suppose that G<~F is a two-ended group with e(G)~2. Then 

G < F ( v )  for some vEVI(E)UV2(E). 

Proof. If e(G)~>3, then A(G) is a ~-pair  ~gEO1, and so G~<F(O). If e (G)=2,  then 

either A(G) is a ~-pair  0eO1 so again G.<r(e) ,  or else A(G) is a subset of some infinite 

~-class aEO2. In the latter case, a is G-invariant, and so G~<F(a). [] 

Now, since F is countable and H ( 3 + ) / F  is finite (Lemma 5.8), it follows that  M(3+)  

is countable. Using this, we deduce 

PROPOSITION 5.31. Suppose that A C M is a closed perfect cyclically separating set. 

Then, A lies in the limit set of F(v) for some vcV2(E).  

Proof. In other words, we claim that  A lies in some necklace. Now, we have A C 

M(2)UM(3+) ,  and since A is perfect, it is locally uncountable. Thus, AMM(2) is dense 

in A. But if x, yCAMM(2), then x,..y. Thus, ANM(2)C_a for some H-class a. Thus 

AC_~, which, by definition, is a necklace. [] 

Note that  another way of expressing the maximality of the splitting is to say that  

no vertex group of the form F(v) for vcV3(E) splits over a two-ended subgroup relative 

the incident edge groups (i.e. in such a way that  the incident edge groups are conjugate 

into one of the vertex groups in the supposed splitting of F(v)). 
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6. C o n c l u s i o n  

In this section, we reintroduce some geometry, and give a summary  of our results in the 

context in which we are really interested, namely when F is a hyperbolic group in the 

sense of Gromov [Gr]. For an exposition of such groups, see, for example, [GH]. 

Dunwooody's  accessibility theorem for finitely presented groups [Du] tells us tha t  

any hyperbolic group can be split as a finite graph of groups where the edge groups are 

all finite, and where all the vertex groups are all finite or one-ended. Note that  the vertex 

groups are all quasiconvex (see Proposition 2.1) and hence themselves hyperbolic. This 

can be thought of as analogous to the splitting of a 3-manifold into irreducible components 

along 2-spheres. Here we are concerned with the second stage of splitting, which is over 

two-ended subgroups. This is analogous to the characteristic submanifold construction 

for irreducible 3-manifolds described in [JS] and [Jo] following ideas of Waldhausen. 

Suppose, then, that  F is a one-ended hyperbolic group, so that  0F is a continuum. In 

this case, Bestvina and Mess IBM] conjectured tha t  OF has no global cut point and showed 

that  this implies tha t  0F is locally connected. The converse is given by Proposit ion 5.4. 

As discussed in the introduction, this is now known for all one-ended hyperbolic groups, 

though we shall not explicitly use this fact here. 

If OF does contain a global cut point, then the set of all global cut points has the 

structure of a pretree (w From this information, one can construct an equivariant 

quotient of OF which is a non-trivial dendrite [Bol]. (The equivalence relation on OF can 

be defined by deeming two points to be not equivalent if there exists a set of cut points 

individually separating them which is order isomorphic to the rational numbers in the 

natural  linear order.) The group F acts as a convergence group on this dendrite, and one 

can adapt  the Rips machinery for R-trees  to this context to show tha t  F splits over a 

two-ended subgroup [t3o2]. (One can give an alternative argument using Levit t 's  gener- 

alisation of [Bo2] in [L].) One can continue along these lines to rule out this possibility 

altogether [Sw] (see also [13o5]). 

We shall now assume that  there is no global cut point, so that  0F is a metrisable 

Peano continuum. Now, F acts as a uniform convergence group on OF, so we can quote 

the results of the last section. In particular, assuming that  F is not a cocompact Fuch- 

sian group, we get a splitting of F as a finite graph of groups, E /F ,  as described by 

Theorem 5.28. 

Now, all the edge groups in this splitting are two-ended and hence quasiconvex. It  

follows, by Proposition 1.2, that  all the vertex groups are also quasiconvex, in the usual 

geometric sense as described in w 1. 

In fact, it is not hard to see that  the notion of quasiconvexity defined in w agrees with 

the usual geometric notion in the case of a hyperbolic group acting on its boundary. We 
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thus get two reasons why MHF subgroups are quasiconvex--either using Proposition 1.2 

as above, or directly from Proposition 5.17. In particular, MHF subgroups are finitely 

generated in this case. By Proposition 4.9, we see that  an MHF group is conjugate to 

a bounded Fuchsian group by a conjugacy that  sends incident edge groups to peripheral 

subgroups. Recall that  a "bounded Fhchsian group", as described in the introduction, 

is a non-elementary finitely generated group that  acts properly discontinuously without 

parabolics on H 2, and such that  the quotient, H2/F,  is not compact. We do not assume 

that  the action is effective--only that  the kernel is finite. Note that  such an action 

is necessarily "convex cocompact", i.e. geometrically finite without parabolics. Thus, 

formally, a bounded Fuchsian group consists of a virtually free group with a preferred 

collection of peripheral subgroups. 

We next define the notion of a "hanging ~chs i an"  subgroup. In the torsion-free 

case, this coincides with what Sela calls a "quadratically hanging" subgroup. 

Definition. A subgroup, Q~<F, is a hanging Fuchsian subgroup if it occurs as the 

vertex group of a finite splitting of F, in such a way that  Q admits an isomorphism with 

a bounded Fuchsian group so that  the incident edge groups in the splitting are precisely 

the peripheral subgroups of Q. 

Without loss of generality, we can assume that every other vertex group of the 

splitting is adjacent to Q. In this case every edge group in the splitting is two-ended. 

Thus, by Proposition 1.2, every vertex group is quasiconvex. In particular, this shows 

that  every hanging Fklchsian subgroup is quasiconvex. 

From the discussion of the boundary given in w it is not hard to see that  the limit 

set, A(Q), of Q is a perfect cyclically separating set. Thus, by Proposition 5.31, we see 

that  A(Q)C_A(F(v)) for some vEV2(E). Since F(v) is the setwise stabiliser of F(v), we 

see that  Q~<F(v). We conclude 

PROPOSITION 6.1. Every hanging Fuchsian subgroup of F is quasiconvex, and lies 

inside one of the MHF subgroups of the JSJ splitting. [] 

We have already noted that  an MHF subgroup is a bounded Fuchsian group, and 

hence itself hanging Fuchsian. This justifies the terminology-- the  MHF subgroups of F 

are precisely the maximal hanging Fuchsian subgroups. 

We have observed that  our splitting is canonical in that  it arises explicitly from the 

action of F on OF. In fact, the uniqueness of the splitting can be characterised in purely 

group-theoretical terms. To describe exactly how this works, we digress for a moment to 

consider precisely what we mean by a splitting of an arbitrary group. 

Usually a group splitting is described in terms of a presentation of a group as the 

fundamental group of a graph of groups. However, to describe uniqueness in these terms 
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is a little clumsy. Formally it is more convenient to view a splitting as an additional 

structure associated to the group satisfying certain axioms. These can be laid out explic- 

itly as follows. (Our formulation rules out the possibility of an edge group being equal 

to the two incident vertex groups, but this situation never arises with JSJ  splittings.) 

Suppose tha t  F is any group. We view a splitting of F as consisting of a collection, 12, 

of subgroups of F, together with a symmetric  binary relation on 12 satisfying the following 

conditions. Firstly, 12 is closed under conjugacy, and each element of 12 is equal to its 

normaliser in F. This defines an action of F on 12, such tha t  the stabiliser of any GEl2 is 

equal to G itself. We suppose that  the binary relation on /2  is F-invariant. Moreover, if 

we view 12 as the vertex set of a graph, E, with this adjacency relation, then we assume 

that  E is a simplicial tree. Thus, F acts simplicially on E. We go on to assume that  

there are no edge inversions and tha t  E / F  is finite, giving us a graph of groups in the 

usual sense. 

In the case where F is a one-ended hyperbolic group (with locally connected bound- 

cry), we have constructed such a splitting as described in w We can extract  from our con- 

struction those algebraic features which determine its uniqueness. (Of course, our con- 

struction has been entirely canonical throughout,  so this is of interest primarily in relat- 

ing our construction to others that  have appeared elsewhere.) Firstly, E admits  a vertex 

3-colouring (VI(E), V2(E), Vs(E)), satisfying the conclusion of Theorem 5.28. In this 

context, we should interpret the  te rm "MHF subgroup" as a maximal hanging Fuchsian 

subgroup as formulated in this section. Moreover, this splitting is maximal  in the sense 

described by Proposit ion 5.30. Recall, in particular, from the conclusion of Theorem 5.28, 

that  every edge group F(e) is a finite index subgroup of an incident vertex group of the 

form F(v) for veVl (E) .  Moreover c ( r ( e ) ) = ~ ( r ( v ) )  equals the degree of v in E. Other 

properties of the splitting can be deduced from this assumption; for example, the fact 

that  any pair of commensurable edge groups are subgroups of a common incident vertex 

group of this type. Bringing the conclusion of Proposition 5.30 into play, one can go on 

to derive the fact that  no vertex group of Vs(E) splits over a two-ended subgroup relative 

to its incident edge groups. Moreover, every hanging Fuchsian group lies inside a vertex 

group of V2(E). Thus, every maximal hanging Fuchsian group occurs as such a vertex 

group. Finally we note that  the adjacency relation in the tree, E, is determined by the 

observation that  v is adjacent to w if and only if r(v)nr( ) is infinite and {v, w}NVI(E) 

has exactly one element. (We shall not give proofs of these observat ions--we already 

knew all these things about  our particular splitting, so, if we wish, we could simply add 

them to our list of requirements.) We now have enough information to see easily that  

our splitting is unique. We leave the details of these assertions as an exercise. 

We should note that  our formulation of the JSJ splitting differs slightly from that  
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in [Se]. Apart from questions of torsion, the main difference is due to the fact that  

some of our vertex groups of type (1) are omitted from Sela's splitting. This has two 

consequences we remark upon. Firstly, in Sela's account, edge groups incident on MHF 

groups are only assumed to be of finite index in peripheral subgroups (and not equal to 

peripheral subgroups as here). Secondly, Sela's splitting is only canonical up to certain 

"sliding operations" whereas ours is unique. 

Note that  since it is canonical, any outer automorphism must respect this splitting. 

Thus, there is a finite index subgroup of Out(F) which fixes each vertex in the graph of 

groups. One can modify the arguments of [P] to show that  each vertex group, G, of type 

(3) is rigid relative to the incident edge groups (i.e. the subgroup Out(G) preserving the 

conjugacy classes of these edge groups is finite). Thus, with a bit more work, one arrives 

at Sela's result (given in the torsion-free case) that Out(F) is virtually a direct product 

of infinite cyclic groups and orbifold mapping class groups. With these techniques at 

our disposal, it should not be hard, for example, to give a precise description of when 

Out(F) is infinite, though we shall not pursue this question here. (See [MNS] for further 

discussion.) 

There are also a few topological consequences to our construction. From Proposi- 

tion 5.29, every local cut point plays a role in the splitting. In particular, the existence 

of a local cut point implies that  the splitting is non-trivial. We conclude 

THEOREM 6.2. Suppose that F is a one-ended hyperbolic group which is not a co- 

compact Fuchsian group. Then F splits over a two-ended subgroup if  and only if  OF has 

a local cut point. 

In particular, we see that,  modulo Fuchsian groups, this property is quasiisometry 

invariant. (In fact, to see this, we only need that  the existence of a global cut point 

would give rise to a splitting [Bol], [Bo2].) 

For completeness, we note that  a cocompact Fuchsian group splits over a two-ended 

subgroup if and only if it is not a virtual semitriangle group, as discussed in the intro- 

duction. (A "semitriangle group" has a presentation of the form (a, b[aP=bq=(ab)r=l) ,  

where p, q, r E N  satisfy p - l + q - l + r - 1  < 1.) 
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