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0. Introduction 

Let G be a compact Abelian group and F the dual group of G. For p>2, a subset A of F 

is called a A(p)-set, provided LPA(G)=LE(G). Here LVA--LVA(G) denotes the closure in 

LP(G) of the characters belonging to A and considered as functions on G. The reader 

will find an introduction to the subject in W. Rudin's 1960 paper [Ru] and the book of 

Lbpez and Ross [L-R]. 

The main problem in this area is to construct A(p)-sets which are not A(r) for some 

r>p. This has so far only been done for p an even integer. In this case, the LP-norm 

may be expressed in an algebraic way and the solution is of an arithmetic or combina- 

torial nature. In this paper, we consider the range 2<p<oo. Our approach is the point of 

view of general uniformly bounded orthogonal systems and no further properties of 

characters are exploited. The main result is the following fact. 

THEOREM 1. Let ~=(tpt ...... qo n) be a sequence o f  n mutually othogonal functions, 

uniformly bounded by 1 (i.e., I1 oi11  1, i=I  . . . . .  n). Let 2<p<oo. There is a subset S o f  

{ 1 .. . . .  n}, ISl>n 2/p satisfying 

for all scalar sequences (ai). Here C(p) is a constant only dependent on p. In fact, (0.1) 

holds for a generic set S o f  size [n2/P]. 

Observe that the size n ~p is optimal. Indeed, if one considers for instance a finite 

Cantor group G = { I , - 1 }  k and let ~=G*,  the space LPs(G) is a Hilbertian subspace of 



228 J. BOURGAIN 

LP(G)~-I~, n=2 k, as soon as (0.1) is fulfilled. According to the results of [B-D-G-J-N] (cf. 

[F-L-M]), the largest possible dimension for such subspaces is n 2/p (up to a constant). 

Previous observation shows the relation of Theorem 1 above to Dvoretsky's theorem 

on Hilbertian sections of convex bodies (se again [F-L-M] for more details). 

An immediate corollary of Theorem 1 is the following. 

THEOREM 2. For 2<p<oo, there is a A(p)-subset of Z which is not a A(r)-set for 
any r>p. 

Let us point out that the situation for p<2 is different in this aspect. It was proved 

by Bachelis and Ebenstein ([B-E], based on earlier results of Rosenthal [Ro]) that for 

every set A~-Z 

{p Ell ,  2[; L~ = L~.} 

is an open interval. 

To deduce Theorem 
Skc[2k<~n<2 k + l] satisfying 

and 

2 from Theorem 1, consider for each k = l , 2  ....  a set 

ISkl = [ 4k~p] (0.2) 

1/2 

LP(m ~ C Z 
(0.3) 

just applying Theorem 1 to the system ~ =  {e2~;'~12k<~n<2k+z}. Put A=l.Jk~ 1S k. It follows 

from the Littlewood-Paley theory (cf. [St], for instance) 

2 1/2 

I [ J  EA "" Z aJ "ez:tijx 
Zaje2mJx IP~ (k=~l I j~sk I ) l i p  

(0.4) 

which for p~>2 is bounded by 

IJCSk lip/ 

invoking (0.3). 
On the other hand, since by (0.2) 
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Ee 2nijx >~( f 2.k/lO E e2a./j x rdX) l/r>C2-klrlskl__2k(l/p-llr)[slcll/2 
I jesk I ~ \J-2-~/I0 jes~ 

A is not a A(r)-set for any r>p. 

Our approach will first cover the range p E ]2, 4[. At some points the cases 2<p~<3 

and 3<p<4 will be distinguished, because of different behavior of the function [x~ '-2. In 

the last section, we show how to proceed for p~4. Clearly, Theorem 1 need only be 

proven in the real context. 

The letter C will be used for different constants, possibly depending on p. The rest 

of the paper is devoted to proving Theorem 1 and is organized as follows: 

Section 1: 

Section 2: 

Section 3: 

Section 4: 

Section 5: 

Section 6: 

The exposition 

A probabilistic inequality 

An entropy estimate 

Decoupling inequalities 

End of the proof (p<4) 

End of the proof (p~>4) 

Further comments 

is completely self-contained. 

1. A probabflistic inequality 

For x E R n, denote x - t E  n x 2~/2 If ~ c R  n and t>0, denote N2(~f, t) the metrical entropy -'~- i=1 i j " 

number with respect to the/E-distance, i.e., the minimum number of/E-balls of radius t 

needed to cover ~. 

LEMMA 1. Let ~g be a subset o f  R% and B=supxe~lx I. Let 0<6<1 and (~i)i~=l 

independent O, 1-valued random variables (=selectors) o f  mean 6=f  ~i(~o)&o. Let 

l <~m<~n. Then 

[ s u p  [i~EA~i(O))X i x E ~, Ml<~m LqO(doT) 

[- r~ -11/2 / ~ \ 1/2 FB 
' t0  1 - 

(1.1) 

In the proof of Lemma 1, we use the following. 

LEMMA 2. I f  the (~i) are as above, then for q>~l 

! q 
~i((D) Lq(do) ) i=l log(2+q/61)" 

(1.2) 
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Proof. It is clearly no restriction to assume q>261. Write (assuming q an integer) 

i~q 'i :~ f  [ li~=l 'f((l))]qd(D 

= 6k(1--d)l-kk q <~ C 
k=0 k= I 

which may be evaluated by 

This implies (1.2). 

Proof of  Lemma I. 

< r C'q 1 q 
11og-~76/) J " 

By considering appropriate nets in ~ (taking the entropy 

information into account), there is a representation of the elements of x E ~g as sums 

x =  X 2ky(k) (1.3) 
kEZ 

2k<.~B 

where y(k) are vectors taken in a set ~:k of vectors y, lyN1 and where 

Hence, from (1.3) 

Iogl~kl ~< C log N(~, 2k-2). 

(1.1)~< ~ 2k sup Li~a~i(to) lYil J qo" 

Evaluating the individual terms of (1.5), we show that for ~=R~ 

X ) / 1 x-v2 
sup ~,(to)y i < < - C ~ + C I l o g - - ~ )  [qo+logl~]l 1/2. YE~'~4[<~m \iEA / qo 

Substitution of (I .4) and summing over k, 2k<-B, easily implies (1.1). 

Define 

( ' )  Ql=Ol/Em -1/2 and 02 = l o g ~ - m q  -l;z where q=q0+logl~[ .  

Writing, since [y[~<l, for ~A[~<m 

(1.4) 

(1.5) 

(1.6) 

(1.7) 
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E~i(~ EYi+ E Yi + E ~i(~ '+rap, 
iEA yi>~02 iEA, yi<~Ol @l<yi<o2 

+ E 'i(~~ sup (i~Ea,,co)Yi) 
Ot <yi <Q2 y E ~, ~Al<~m 

it follows that (1.6) is bounded by 

Q21+mp,+sup]} <~< ~,(w)Yi 
IY{<~I Ot Yl 02 

(ff 0~>~02, drop the last term.) 

By considering level-sets and inequality (1.2), the last term of (1.8) 
estimated 

E X/=-[- ~i(w) ~C6Q-~'+Cq E l'/21~ 2+ 
I diadic q I diadic 

Ot2>l>o~ 2 l>p~ 2 

using the definition of 02. 

Hence 

(1.8) 

may be 

(I.6) ~< mot +C6o~l +qoz(log I/6)-J+O~ -~ < CV ~ 6m +C(log I/6)-m(qo+logl~;{) v2, 

completing the proof. 

2. An entropy estimate 

In a later application of inequality (1.1), the entropy numbers N2(~, t) will be related to 

entropy numbers Nq(~, t) for certain sets of  functions ~, considered as a subset of the 

corresponding Lq-space. More precisely, we will make use of the following 

n LEMMA 3. Let ep_ {9i}i=I be an orthogonal system of functions uniformly bounded 
by 1, m<~n and 2~<q<~. Define 
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Then 

aO an  Om I 

I 1 

1 [ logNq(~m, t )< .Cm( log(~+l ) ) log l i f  0 <  t~<-~ -- 

(2.1) 

(2.2) 

(2.3) 

where C=Cq and v=v(q)>2. 

Remarks. (1) It suffices to prove (2.2) replacing t -v by t-21ogt. Indeed, let q<r, 
1/q=(1-0)/2+0/r. One has in particular for each pair of elements f, g E ~,~, by HSlder's 
inequality 

1-0 f 0<~ 2 f 0 IIf-gllq<~llf-gll2 II -gilt II -gll,. 

Hence, for t>l  

/ / t  \~/o\ <~Cm/log[l+n\\t_2/Ologt,~__m:) l~ ) 

where t-2:~ t<t -v for some v>2. 
(2) It follows from the results of [B-L-M] (section 4) that for t> 1 

logNq(~m, 0 ~< log Nq(~n, t) <~ cqt-2n. (2.4) 

This estimate turns out to be too crude for our purpose. 
(3) Once (2.2) is obtained, it follows for t<�89 

l~176176 lal~< 1} ' t  ) 

<~Cml~176176 a i c p i [ a l < ~  m la' ~< 1} '1 ) 

implying (2.3). 
Thus it remains to verify (2.2) with v=2. 

LEMMA 3'. With the notations of Lemma 3, for 2 < t < W ~ -  
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lOgNq(~m,t)~ Cm l o g ( l + ~ ) t - 2 1 o g  t. (2.5) 

Proof. Let t~2 k/2. Fix a function f =  Y"ieA ai q~ I a] = 1 and write 

Z aicPi= Z aie~ cPi+ s ai(1-e~)cPi 
A A A 

= Z aie] q~i + Z ai(1-e]) e~ ~gi'ac Z ai(1-e])(1-e~) q0 i 
A A A 

l 

= s aie] qgi+ s ai(1--e])e~ cPi+... + Z ai(1--e])...(1--e~-')e~ cPi (2.6) 
A A A 

+Z ai(1-e])'" . (1 -e~  qq (2.7) 
A 

where (~)1-~i.~., l~j~k are +1,  signs to be specified. 
Denoting (2.6) by ~(e, u), it follows from Khintchine's  inequality 

a t~k f det"'deH ~]l~(~, U)llLq(du , dE~ Z Z ai(1--E])'"(1--gli-l)Eli q3i(u) Itq(dll~dg, ) 

f[  1,,2 

< v ~ - ~  2 '~2 < ~t. (2.8) 

Also, denoting 

and hence 

Moreover, 

Ae= {iEA I e: = ... = e~= -1}  

IA,I = 2-k Z (1-e~) . . . (1-e~ 
iEA 

f lA~] de = 2-km < ~Z" 

f [ ~  a~(1-e])z...(1-e~)Z] ~/Zde <- 2~z- t. 

(2.9) 

(2.10) 
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Inequalities (2.8), (2.9), (2.10) permit to find a choice of signs e// such that 

cp= X ai(l-e~)...(l-e~cp i 
A 

satisfies the conditions 

( •  aicPi)-9 q<<.ct 

cp E ct ~[,a~]" 

It is now easily seen that 

logN.('m, Ct) <~ log([m/t2])+ sup Nq( ( X ai9 i [al~<l ,1 

I n ,  n t  . m 

7'~ G" 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

The evaluation of the second term in (2.13) may be done from the results of [B-L-M], 

section 4 (cf. Remark (2) above) or, alternatively, using the method of support-reduc- 

tion described above and yielding (2.13). 

This concludes the proof of Lemma 3' and hence of Lemma 3. 

Remark. When defining the t-entropy number of the set ~, we do not require a 

priori the centers of the covering balls of radius t to belong to ~. This can however 

always be achieved, doubling the radius of the balls to 2t. Observe that in proving (2.13), 

the initial centers of the balls do not belong to ~,~ and have to be substituted (to make 

Remark (1) on the improvement of the exponent t -2 log t---~t -v applicable). 

3. Decoupling inequalities 

The first step in our probabilistic approach is a decoupling procedure which will be 

performed in this section. 

The next lemma is formulated for 3 factors but easily generalizes. 

LEMMA 4. Consider for a= 1,2, 3 real oalued functions dpa, a= I, 2, 3 on R, satisfying 

I~o(x)l ~< c(1 + Ixl) "o (3.1) 

I ~ ( x ) - ~ ( y ) l  ~< C(l+lxl+lylY'~ ~ (3.2) 

where pa>0, 6>0. 
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Let x=(xi)l<i,n, Y=(Yi)l<.i<.n, z=(zi)t<~i<<.~ be scalar sequences with Ix[, [Yl, Izl ~<1 and 
{r//}i%l, {r independent O, 1-oalued random variables o f  respectiue mean 

f ~ f r/i(t) dt =-~ and ~i(t) dt = -~- (1 ~< i ~< n). (3.3) 

Define the disjoint sets 

R~-- {1 <<-i<<-nl r/At)-- 1}, R~-- (1 <<.i<~n[ r/i = 0, ~ i=  1}, R~ = {I ~i<~nl r/i--0, ~i--0}. 

Then 

<~C(l§ + ~y i  + ~_~z i )p-b (3.4) 

where p =p~ +P2 +P3. 

Proof. The argument is straightforward. Write by (3.2) 

and the analogues with ~1 replaced by r (resp. ~3), Pi by Pz (resp. P3), x by y (resp. z) 
and r/i---r/l by r/~m(1-r/i)~i (resp. r/~=(1-r/~)(1-~;)). Observe that by construction 

f f f 1 r/~(t) dt = r/~(t) dt = r/~(t) dt = -- .  
3 

Hence, by (3.1), the left member of (3.4) is bounded by 

+ l ~ ( r i z i - 1 ) y i t +  
3 I ~ I p-6 

2 1 

Since II~(r/?-~)x,ll,p(a,)~Clxl<c etc . . . . .  (3.4) easily follows. 

 /zil) 
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Remark. In what follows, Lemma 4 will be applied for functions ~ being one of  

the following 

~(x) = x (p = 1, ~ = 1) 

~(x)=lxl a or ~(x)=(l+lxl)~ 0 < o < I  (p=cr, c~=a) 
~(x) = Ixl~ o ~> z (p = o, ~ = I). 

We will use the following scalar inequalities. 

L~t~MA 5. Let x, yER.  Then 

[x+yl p ~< Ix+yl21yl p-z+(1 +lxlY'+2x(1 + Ixl)p-2y+(1 +lxlY'-2y 2 (2 < p <~ 3) 

Ix+yl" ~< Ix + yl'-2x%C(Ixl+lylY'-31yl3 + 2xlxlP-2y+(2p -3 )  Ix~'-2y 2 (3 <p).  

Proof. For (3.5), write 

Ix+ yl p <~ (x + y)2(IxlP-%lyl p-2 ) <~ (x + y)21ylp-Z +(x + y)2(1 +lxlY '-2. 

For (3.6), write 

(3.5) 

(3.6) 

(1 __:)(p-2)/2+~p < I .  (3.9) 

Fix a=(ai)ie s, la l  = I. Choose u(a)>0 and subsets I=I a, J=Jac(1 . . . . .  n} satisfying 

{1 . . . . .  n } \ ( l O J )  is at most 1 point (~-) 

min lail >- ~ >- max lail (3.10) 
iEl  iEJ 

Case 2<p~<3. 

Choose 0<~,<1 satisfying 

Ix + Y~" = [x + y[p-2x2 +lx + yl'-2(2xy+ y2 ) (3.7) 

and use the inequality 

[ [x+yl p -2 -  [x~'-2- (p-2)[xlp-4xyl ~< C([x I + ly[:-4y 2 

to replace the second term of  (3.7). 

- -  / 1  Let ~-{q)i}i=l be a 1-bounded orthogonal system of functions and define for 

So{1 . . . . .  n} the number  
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X a ~ < y  2 and E a ~ < l - y  ~. 
iEl iEJ 

Apply then (3.5) pointwise, letting 

X(U) = X ai qgi(u) and y(u) = X ai qgi(ll)" 
I j 
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(3.1I) 

Integration in u and using HOlder's inequality and the definition of K s then yields 

fix(u) <. + +21 (y, x(1 + Ixl~-2)I +[(y, y(1 + IxlY~ I + y(u)lPdu I Ix+Yll~ IlYll~-2+ II1 Ixl I1~ 

\ 'P-2)a+ l~ss(~ a,) "/z+CKPs-I 

+ 2l(y,x(l +lxlY'-2)l+l(y, y( l +lxl)p-2)[. 

Hence, by (3.11), (3.9), (-x-) 

/~s ~< [(1-72)(p-2)/2 +Y p] gPs+CWs-l+sup[21(Y, x(l+lxl~'-2)l+l(Y, y(l + Ixl)~-~) I1 

K~ ~< C sup[l(y, x(1 + Ixl)p-2)I+] (y, y(l+lxlY'-2)l+fKes -~ (3.12) 

where the supremum is taken over all vectors x=~ietnsaiq~ i, y=Y.sbicPi with [al, Ibl~l 

and max Ib;I-<l~q -~/'-. 
Next u s e L e m m a 4 .  1 2 3 Let R t, gt, R t be as in Lemma 4. We have pointwise 

oi,,(u)](,+ x ai,,(u)1"-2at 
ksnR~ _1 k 1~s"R~, _1 l~s.R; / 

~< C(1 + [X(U)I + [y(u)[) 2 

where we considered d?(x)=x, ~2(x)=x, $3(x)=(1 +Ix[) e-2. 

Hence, integrating in u 

supI(y,x(l+,xl~'-2),<~C[supl(~biq~i,( X aicPil(l+ Laicpil)e-2) dt+C. 
I \soRt \i~soR~, / 

(3.13) 

Again, the supremum is taken over sets I={1 .. . . .  n}, lal-<l, Ib[-<l and /~ satisfying 

max Ib~l-<l/1-1/2. 
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Replace similarly (y, y(1 + Ixl) p-2), letting again r = r =x, ~3(x) = (1 + Ixl) ~-2. 

(,+ aiq9 i 
InSflR~ 

One gets now 

supl (y, y( 1 + Ixl) p-~ )1 ~< c ( sup 
J 

P-2t I dt+C. 

(3.14) 

/~s ~< C sup[I (y, xlxr-2)l+ I (y, ylx~ '-2) I] + C~s- '  

where the supremum is taken the same way as in (3.12). 

Applying Lemma 4 with functions r r '-2, we now get 

~< CK~ -I 

+<:S ~upl (:~ ,,,,,,,. (,,,so~;a,,,,,) I,n~.,, :,,,,1"-) I <,, <3.19, 
<3 0, 

the supremum being taken over sets I c {  1 ... . .  n}, lal, Ibl~<l and/~ satisfying 

(3.18) 

and, by (-x-) 

Collecting estimates, it follows that 

/Is ~< first term (3.13)+first term (3.14)+C/~s -l. (3.15) 

Case 3<p. 

Choose now 0<7< 1 such that 

(1-y2)+Cy3 < 1 (3.16) 

where C relates to the constant in (3.6). Take I, J satisfying (3.10) and now 

a~<1-7 2 and ~ a ~ < 7  2. (3.17) 
iEl iEJ 

Let x(u), y(u) be defined as above. Integrating (3.6), one gets 

f ,x(u)+y(u)rdu<-K~(~, a~)+cgPs(~ a~)3t2+21(y, xlx~-2)l+(2p-3)I(y, ylx~-2)I 
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Let  {~i}in I be independent 

6=  S ~i(~o) d~o satisfying 

and consider the random set 

max Ibil I/1 -'r2. 

0, 1-valued random variables (selectors) of  mean 

6n = n zO' (3.21) 

S~o = {i = 1 . . . . .  n I ~i(o9) = 1} 

which has expected size - n  ~v. Denote  

K(w) = K s .  

We only consider the case 2<p~<3. The case 3<p  is identical at this stage and left to the 

reader (we will point out however how the argument has to be modified to deal with 

p~>4). 

From (3.13), (3.14), (3.15), it clearly follows that 

f K(coY'dco C f K(coy'-' dr 

where 

dto I dto 2 dw 3 

(3.22) 

(3.23) 

sup refers to vectors a,/~, ~; lal, Ibl, ~ 1 and max la,.I ~< ([supp bl+lsupp~l) -m 
(.r-) I <~i<~n 

sup refers to vectors a, 6, ~; [ti[, Ibl, lel ~ 1 and max(lail, Ibil) <~ [supp ~1 -la.  
(-x- -x-) 1 ~i<~n 

We denote here supp~={i=l  . . . . .  n[ai=~O } and always assume its size [suppt~[~<n0=- 

n~V=6n. In order to obtain (3.22), (3.23), we performed a decoupling on the variable w 

to independent variables to 1, w2, to 3, using the disjointness of  the sets R~, R~, R~ appear- 

ing in the scalar products  in (3.13), (3.14), for individual t. 

16-898283 A c t a  M a t h e m a t i c a  162. Imprim6 le 25 mai 1989 
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Define q0=logn and for l<~m~<n0, let 

H m = {a = (ai)l~i,,, I lal ~< 1 and Isupp al ~< m}. 

Hence, with this notation 

Estimate (3.22) by 

ff upl] ~u~ ILf~o,,,Ao(l+lL, o,l~'-~)l ta~, ~ ]m,<.oiilol.,.m~xlo,~mr,~,. , , , o,o3 
L II ~' ~ ~n.,, L%ao,,)J 

denoting 

fa, o, = Z ~,(o9) a i %. 

Splitting a in level sets, one gets further by triangle inequality 

sups_ .sup } 
ml<no no>~>Z 1 ]A--m;b. dE n. i  V m i~.a L'~ 

(3.24) 

Evaluating (3.23), we proceed less crudely and write a representation 

a =  Z ~'t a(l), ~ =  Z ~t ~(l) (m3=lsupPOI) 
m3 <2l <no m3 <21<no 

where 

ZZ~<~ 1, Z / z ~ <  1 (3.25) 

Isuppa(l)l ~< 2 t, Isupp/~(l)} ~ 2 t (3.26) 

lai(/)l ~< 2 - ~ ,  Ib,(l)l ~< 2 - ~  (3.27) 

decomposing in level sets (the existence of such representations is easily seen by 
considering a decreasing rearrangement). 
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Coming back to (3.23), estimate the scalar product 

I(fa,,o,,fb,,o~(l+lfe,,o~lY-2)l <~ ~ ;~/Ul, l(L.),,o,,fsr ly-2)l 
m3 <21, 21'<n0 

~<E sup I<f~r162 
d>_O (I,l')6".~m3,d ' , 

denoting for convenience ,~m,d={(l, l')l m<21, 2r<n0 and II-l'l=d}. 
The following estimate for (3.23) may be written from the preceding 

(by 3.25) 

f ~  sup E [  sup Ill'm, m m(0)l,0)2,0)3)l[LqO(ao%]}d0)2d0)3 
I . m 3 < n o  d>oLml,mzlno>ml>~2dm2;m2>~m3 ' z' 3 
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(3.28) 

where 

- 1 
g m , , m 2 , m 3 ( 0 ) l  ' 0)2' 0)3) = sup sup sup : E  ~i(0)Ol(r ~(l+lf~ o31)"-2)1 

~al~<ml b~nm2 een,. 3 ~/ml i E A  ' ' 

and fb, o, is defined as above. 
We will prove the following estimate in the next section 

II/~ml,mvm3(0)P 0)2' 0)3)llL%d~,)< C{ ~mN/2-1q rn +m "1 ,/2 3 1 (l+K(0)2)+K(0)3))P-~ (3.29) 

for some o>O. 
Substitution of (3.29) in (3.24) gives the estimate, since 6=no~n, no=n Ely 

surf ; '  a m , / 2 - , +  , . C [ l+ (ang ,2 - , ) , / 2 ]  I I r (0 ) ) l l~ -~  CIIK(0))II~ -~ 

(3.30) 

Substitution of (3.29) in (3.28) gives 

sup E [(6m~/E-l)~/2 + E-d/E] " llK(o))11~-~ <~ CIIK(0))IIPP -~ (3.31) 
m3<no O<d<log(no/m3) 

Collecting estimates (3.22), (3.23), (3.24), (3.28), (3.30), (3.31)gives 

IIK(0))llg < ClIK(0 ) ) I I~ - '+CIIK(0 ) ) I I ' .  - ~  =~ IIK(0))II,, < c .  



242 J. BOUROAIN 

From the definition of K(oJ), this means that a random set Sor . . . . .  n}, 

satisfies generically (0.1). 

ISJ--n ~,, 

4. End of the proof (2<p<~3 and, similarly, 3<p<4) 

Let again 2<p~<3. It remains to show (3.29). The argument is based on the results of the 

first two sections of this paper. With to 2, o93 fixed, denote briefly 

gb=fb,~2; h~=fe.~, 3. 

Evaluate (3.29) by Lemma 1, taking m=m~ and 

~g= {(l(q~,,g~(l+lh~ly'-2)l)7=ll 6EII,., ,  eEII,.3}. 

Since q0=logn- log  1/6, (1.1) yields the bound 

f" 
C[dV2+m-~le]B+Cmll~(logn) -le [logN2(~,,t)ll/edt (4.1) 

dO 

where B-- supxe ~[x I. 
It follows from Bessel's inequality that ),,2 

[ ( ~0,, gb(1 +lhel)P-2 ) 12 ~< Ilgs(l +lh~l)P-2112 

which by H61der's inequality is further bounded by 

Ilgallplll+lh~lll~ 2<~ Ilgbllp( l + llh~ll,,Y'~-~( l +llh~llJ ~-~ <~g(~~ g(~~ ~-~>" (4.2) 

Similarly, there is the distance computation )2 
I I(~i, gb(l+lh~l~-2)l-I(q~, gb,(l+lhc,l~-2)l 12 <~ Ilgt,(l+lhcl~-2-gb,(l+lh~,l)p-2112 �9 

.=  

(4.3) 

Using the inequality (p~<3) 

I(1 + Ixl) ~-2-(1 + lyl)~-21 ~< ( p - 2 )  Ix-yl 

it follows 

Igb(1 + Ihcl~-2-gv(1 + Ihc, l~ '-21 ~ Igb--gb'l(1 + Ihcl~'-2 +lgvl Ih~-hc,I 
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hence, for q=2p/(4-p), r=2p/(p-2) 

(4.3) <~ Ilgb-gb, llq( l +llhclly-E+llgb,llullhc-hc,[I, 

<~ g(w3)P-211gb-gb,llq + g(w2)Hhc-hc,llr. 

Therefore 

Substitution of (4.2), (4.4) in (4.1) yields 

C[61/2..t. m ~-1/2] m ~  j2 -i)K(r ) K(co3)p/2 -1 

+ cm? 1/2(log n)-I/2K(o93) p-2 f0 | [log Nq(~m2, t)] l'2dt 

+ cm ?~/2(log n)-~/2K(c02) fo | [log S,(~m3, t)] ~/2dt. 
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(4.4) 

(4.5) 

Since q, r<~ for 2<p<4,  application of the entropy estimates (2.2), (2.3) yields the 
following bound on (4.5), 

Cr brn~CZ_l+ m3-11/2 / m \112 / m \1/2 
ml J K(c~ ) K(w3)P-Z+Cl~m31) K(w2). l 

This proves (3.29), with o=p/2. 

5. End of the proof (p~>4) 

In this section we show how to handle the case p~>4. Ifp~>4, a use of Bessel's inequality 
in evaluting the distance (cf. (4.3)) is inappropriate, since the resulting exponent 
2(p-2)>~p, in this case. One proceeds in a different way and generates the random set 
S, IS[~n 2/p in several steps. 

Assume p/2<p~<p and n~P=6'n 2~p~. Assume also the statement of Theorem 1 is 

verified for the exponent p~. One may generate a random set S of size n 2/p by 
considering S as a subset of a random set Sic{1 . . . . .  N} of size ISl[=nl~n 21pl and 
satisfying, by hypothesis, the inequality 
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Thus one considers a 1-bounded sequence {~0;ll~<i~<nl} fulfilling (5.1) and its random 
subsets S of size [6'nt]. We have to establish the analogue of inequality (3.29) 

]lI~ml,m2,m 3 (tO l , tO 2 , %)llLq0(do,, ) ~< C { 6' m~/"'-14 m2ml+--m3. !) 1/2(1 + K(to2) + K(to3))P-~. (5.2) 

One may then repeat the calculation of section 3 leading to inequality (3.31), using the 
fact that r where no---n 2/p. To establish (5.2), one proceeds as in the 

previous section, except in evaluating B and the distance, where the use of Bessel's 
inequality is replaced by (5.1) and duality. Thus 

\ 1/2 

~l(~i,g~[h~lp-2)l 2) <~Cllgblh~lP-2llp,<~cg(~2)g(~o3)P/"'~-'m~ (p/''-'). (5.3) 

Similarly, from (5.1) and Hflder ' s  inequality 

(i=~ [(qgi, gblhc~-2)l--l(q~ gb'lhc'lP-2}l 2)1/2 

<~ CIIgblhc~-2-gb, lhc,~-211p, 

~< CII Igb--gb, l(IhclP-2+lhc, V'-2)llp,~+ll Ih~-hc, l(Ihcr-3+lh~,(-3)lgb,I I1,'~ (5.4) 

<~ CIIgb-gb,llq(llh~llp +llhc, llY-%Cllh~-h~,llq(llh~llp +llh~,llp+llgvll.) ~-2 

<~ c[ g(~o2)+ g(~3) ]"-2(llgb-gvllq + llh -hc, llq) 

where q=pp~/(p-p~(p-2)) (notice that p'~(p-2)<p)r 
Hence, similarly as in the previous section, the entropy-integral will contribute for 

c(.m2+..__m3~'/2f logn ]'/2[K(to2)+K(to3)]P_2. (5.5) 
\ m I ,/ \ logl / t}]  

(5.3), (5.5) and the fact that P/Pl - 1 < l (cf. (4. l)) imply (5.2) with p-o=max(p/p'~, p-2). 

6. Further  c o m m e n t s  

(1) The hypothesis of uniform boundedness of the system * in Theorem 1 is essential. 

Weakening this assumption, the following statement may be shown: 

Let 2<p<q<oo and tpl . . . . .  tpn an orthogonal (or 1-Hilbertian) system of n functions 
satisfying IIq~jllq<~l (l~<j~<n). Then (0.1) holds for a random set S~-{1 . . . . .  n} of size 

[Sign a, a=(1/p-1/q)/(1/2-1/q). The proof uses the same techniques as developed above 
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in this paper. A special case of the result (p even, q < 2 p - 2 )  was obtained in [A], where 

also its optimality (as an existence result) is observed. 

(2) The probabilistic techniques used in this paper to solve the A(p) problem have 

some applications to Garsia's conjecture (see [G]) on the rearrangement of finite 

orthogonal systems. 

The following result is obtained in [B]: 

Let {q91 ... . .  qgn} be an orthogonal system satisfying II~0Jll| (l~<j~<n). Then, there 

is a rearrangement :r E Sym(n) satisfying 

The permutation ~ is chosen at random in the symmetric group Sym(n). The estimate 

(7.1) is the best one may reach by a purely probabilistic approach. 

[A] 
[B] 

[B-D-G-J-N] 

[B-E] 

[B-L-M] 

[F-L-M] 

[G] 

[L-R] 
[Ro] 
[Ru] 
[St] 
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