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1. Statement of results

A) Let C denote an oriented closed Jordan curve in the extended complex plane
(Riemann sphere). We denote by D, = D,(C) and D,=D,(C) the domains interior and
exterior to O, respectively, and we denote by 4,(z)|dz| =2p,c)(2)|dz| the Poincaré metric
in Dy, j=1, 2. We denote by ¢ an integer, ¢>2.

In this paper we investigate the integral equation

plz)= f f i (C—2) 2 (0 Wy(l)dEdy, 2ED,, (1.1)

where the given function ¢ and the unknown function y are assumed to be holomorphic
in D, and D,, respectively. We will give conditions under which the equation is uniquely
solvable, and some applications of these conditions.

We write equation (1.1) in the abbreviated form
p=LEy, (1.2)
and denote by —C the curve C with the orientation reversed. Thus
¢=LC%y

is an abbreviation for the formally transposed equation

o) = f fD (C—2) A0y dedy, €D,
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B) For every simply connected domain D with at least two boundary points let
Mz)|dz| =Ap(2)|dz| denote the Poincaré metric. Let G' be a discrete group of conformal
self-mappings z > (z) of D; we include the case of the trivial group @=1={id}. For every
integer ¢=>2 let A,(D, @) denote the complex Banach space of integrable automorphic
forms of weight (—2q), that is the space of holomorphic functions ¢(z), 2€ D, satisfying
the conditions

p(p(2))y'(2)* = p(z) for y €4, (1.3)
@) = 0(|2]29), z—>o0if €D, (1.4)
and ”(p"Aq(D-G) = J:f Ap (z)2“’ ](p(z) I dedy < oo,
DIG

Also, let By(D, @) denote the complex Banach space of bounded automorphic forms of
weight (—2g), that is the space of holomorphic function ¢(z), z€ D, satisfying (1.3), (1.4)
and

| ]l 2ecor = sUP A5(2)~¢ | p(2) | < oo.

We set 4D, 1) = A(D), B(D, 1)=B,(D). Clearly B,(D, G)< B,(D).
For p€A,(D, G) and y€B,(D, G) we set

(@, Yla.nic = J‘fmcl(z)%%fp(z)az—)dxdy-
Concerning these spaces see Bers [4].
TarorEM 1. The mappings
L& : By(Dy) ~ By(Dy), (1.5)
L8 : Ay(Dy)—> Aq(Dy) (1.6)
are anti-linear confinuous and injective, and

(C(él)‘p’ ¥)a.0,= (@5 L%y)e.p, (1.7)
for p€A(D,), € By(Dy).
C) A group G of Mébius transformations z > (az +b)/(cz +d) is called a quasi- Fuchsian
group with fixed curve C if every y €@ maps D, onto D; and D, onto D,.

THEOREM 2. Let G be a quasi- Fuchsian group with fixed curve C. Then
L& By(Dy, G) <= By(D,, G), (1.8)

and there exists a continuous anti-linear injection
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£9: 4,(D;, 6) > 4,(Dy, &) (1.9)

such that (L0, ¥)a.pue = @ L% P)a.0uo (1.10)
for p€Ay(Dy, @), wEBy(D,, @). (If G=1, then L=L.)

D) A Jordan curve C will be called a quasi-circle if it is the image of a circle under a
quasiconformal automorphism of the Riemann sphere.

TEEOREM 3. Let C be a quasi-circle and G a quasi- Fuchsian group with fixed curve C.

Then the mappings
LY :By(Dy, Q) — B(D,, G),

and £9:4,(D,, 6)—>A,(D,, G

are surjective (and therefore bijective topological isomorphisms). The theorem applies, in
particular, to G'=1.

E) Let U and L denote the upper and lower half-planes, respectively. A quasicon-
formal self-mapping w:U U is known to be continuous also on RU {co}. We call w
normalized if it leaves 0,1, co fixed. Two normalized quasiconformal self-mappings
wy:U—U and w,: U~ U will be called equivalent if w, () =w,(z) for all z€R.

By a Fuchsian group we will mean a discrete group of conformal self-mappings of U
(and hence also of L). A normalized quasiconformal self-mapping w of U is called compatible
with a Fuchsian group I' if, for every y €T, the mapping woyow=1:U U is a Mobius
transformation. In this case I'; =wI’w-! is a Fuchsian group, and the mapping

y=>x(y) =woyow?
is an isomorphism of I'" onto I'; called the quasiconformal deformation induced by w.
Let T, w and y be as above. If 2, €R is an attracting fixed point of y €T, then &, =w(x,)
is an attracting fixed point of 4(y). Using this observation one concludes easily that y is
determined by the equivalence class of w. Also, if I is of the first kind, that is if the fixed
points of elements of I' are dense in R, then the equivalence class of w is determined by y.
As an application of Theorems 1-3 we will establish

THEOREM 4. To every normalized quasiconformal self-mapping w:U —U compatible
with the Fuchsian group T there belong canonical topological isomorphisms of A, (U, T') onto
AU, wl'w™) and of B(U,T') onto By(U, wl'w), g=2, 3, ... . These isomorphisms depend.
only on the equivalence class of w.

In particular, let I' be a finitely generated Fuchsian group of the first kind. Then
A U, T =B,(U,I'), its finite dimension can be computed from g, g, v, and »,, =2, 3, ...,
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where g is the genus of the Riemann surface U/I", »,, is the number of nonconjugate maximal
parabolic subgroups of I', and », the number of nonconjugate maximal cyclic subgroups of
order n of I'. Furthermore, two finitely generated Fuchsian groups of the first kind are
quasiconformal deformations of each other if and only if they have the same numbers g,
¥;, j=00,2,3,.... In this case, therefore, one part of Theorem 4 is well-known, But the

existence of canonical isomorphisms seems to be new even in this classical case.

F) Another application of Theorems 1-3 is to quasiconformal extensions of con-
formal mappings. Nehari [7] observed that if ¢(2) is holomorphic and univalent in L, then
the Schwarzian derivative {w, z} belongs to By(L) and ||{w, 2}| 5,2, <6. He also showed
that if || {w, 2}| 5,z <2, then w is univalent in L. The following theorem of Ahlfors and
G. Weill [2] (also proved in [1]) is a refinement of Nehari's result.

TrEOREM 5. Every @€ By(L) with ||¢|| 5,u)<2 is the Schwarzian derivaiive of a uni-
valent conformal mapping w which is a restriction to L of a quasiconformal automorphism of
the Riemann sphere. This w may be chosen so as to satisfy in U the Beltrami equation

W = pw,
with w(2) = —24%(2).

Now let C be again a Jordan curve and let w(z), z€.D,(C), be holomorphic. Nehari’s
argument shows easily that if w is univalent, then {w, z}€ By(D,). Theorem 5 suggests
the question: does there exist an >0 such that every ¢ € By(D,) with ||¢| 5,0, <e is the
Schwarzian derivative of a univalent function which admits a quasiconformal extension
to the whole plane? Ahlfors [1] showed that this is so if C is a quasi-circle. We shall prove
a refinement of this result which gives a complete generalization of Theorem 5.

THEOREM 6. Let C be a quasi-circle. There exists an anti-holomorphic homeomorphism
T of a neighborkood of the origin N, in By(D,) onto a neighborkood N, of the origin in B,y(D,)
with the following properties.

(i) ©(0)=0.
(ii) of G is a quasi- Puchsian group with fixed curve C, then
©(Ny 0 By(Dy, @) =Ny N By(Dy, G).
(iii) Every @ €Ny is the Schwarzian derivative of a univalent function w which is the
restriction to D, of a quasiconformal automorphism of the Riemann sphere, and

(iv) this automorphism may be chosen so as to satisfy in D, the Beltrami equation
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Ww- = pw,,

where w(2)=2(2)"p(z), p="p.

This theorem is crucial for the construction of general Teichmiiller spaces to be con-
sidered in a subsequent paper (see the announcement in [5]).

2. Preliminaries

A) Let D=CU {eo} be a domain and f: D->CU {o} a conformal mapping. Let p and
¢ be integers (or half-integers such that p + ¢ is an integer). For every function ¢({), € (D),
and for z€D we set

(f5.a9) (&) = @(f) [ (=) f'(2)°.
Clearly (fog)s.c=95.a0f3.q
whenever both sides are defined. For the sake of brevity we set
fo.0=1f5-
Let D and G have the same meaning as in § 1. For ¢=2, 3, ..., the mappings
fa: A(f(D), fGf ) > A,(D, @),
fa: B(f(D), fGf )~ B, (D, &)
are bijective isometries and

(@ Va.rovrer= o @, fe¥)anic-
The verification is trivial.

B) A sequence {y,}< B, (D) will be said to converge weakly to ¢ € B,(D) if

lim (@, ¥;)ep = (@, Y)e.p forall €Ay D). (2.1)

We recall (see [4]) that every continuous linear functional I on A (D) can be represented,
uniquely, as (@) =(gp, y),.p for some y € B (D). Hence, by a well-known property of Banach

spaces, (2.1) implies that
[¥sll 2ecs = O(1). 2.2)

Also, since for every z€ D the value p(2) is a continuous linear functional on B,(D), (2.1)

implies that
lim p,(z) =y(z) forall z€D. (2.3)

Conversely, statements (2.2) and (2.3) imply (2.1) in view of Lebesgue’s theorem on domi-
nated convergence.
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C) We recall now the definition and some properties of the Poincaré metric. We

have that
Aglz) =|z—2]1=1/2y, z=x+iy,

and for every conformal bijection f: U - D
/ ; 1Ap=Ay;
it follows that 93.340=Ap

for every conformal self-mapping g: D —D. By Schwarz’ lemma we have (cf. Ahlfors [1])

Apy(2) SAp,() if 2z, €D,< D, (2.4)
ip(?)|z—8D| <1, (2.5)

and, by Koebe’s }-theorem,
Ip(z)|z—@D[=} if oo¢D. (2.6)

Here 0.D denotes the boundary of D'and |z—2D| =inf|z—{|, {€aD.

D) An element ¢ €4,(D) will be said to belong to the subspace 4, (D) if there is a
pE€AyD,) with DU dD< D,y and y| D =g. Since 4,(D) is a subspace of By(D), so is A,D),
cf. [4].

LemMma 1. Let D be a Jordan domain and € By(D). Then there is a sequence {,} < A (D)
such that lim p, =y weakly in By (D), and if wE€AD), then also lim y;=vy in A,(D).

Proof. If y is a Mébius transformation, then A (D) =y%(4 (y(D))), as is easily verified.
Let A be the unit disc. In view of the preceding remark we lose no generality in assuming
that 0€D<A. Let f denote the conformal mapping of A onto D with f(0)=0, f(0)>0.

Let D), §=1,2,3, .. be Jordan domains with .D,DE,H and D= D,. Let {; be the
conformal mapping of A onto D, with £,(0) =0, £;(0) >0. Then, as is well known, lim f,({) =
J(¢) uniformly on the closure of A.

Now let p€B,(D) be given. For every j we have that §,=(fof; )9 € B,(D,). Hence
;=] D belongs to A,(D). We claim that the sequence {y,} has the required properties.
First, by (2.4), we have that

sl 5ecoy = SUP.en A ()% |95 (=)
< supzep; Ap;(2) I‘:”J(z)l = "'2’:”3«(17;') = "‘/’"Bq(D)-

Also, since lim (fof;?)(z) =z uniformly on every compact subset of D, we have that

lim 9;(z) =y(2) uniformly on every compact subset of D. Hence lim y, =y weakly in By (D).
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Assume now that y€A4,(D). Let £>0 be given. Then there is a compact K< D such
that

ff A (2 p(z)| dzdy <e. 2.7
D-K
We have that

ff Ap(2)* 7y (2) | dwdy < ff Ap; (2 9y (2) | dxdy = ff Ao (2 p(z)| dedy,
- D-K af

where o, < D is defined by (f; 0f™?) (0;) =D — K. It follows that

ff Ap(2)*?|p;(2)| dwdy <2¢ for large j. 2.8)
D-K

On the other hand, by what was said before,

Iimff Ao (2?7 py(2) — p(2)| dxdy =0. (2.9)
x

Since ¢ was arbitrary, relations (2.7), (2.8), and (2.9) imply that lim ||y, —|| 440 =0.
E) From now on let ¢, C, D;, D,, 4, A; have the meaning explained in §1.

LeMMA 2. For z€ D, the function

@AL) =(—2)"%, (€D, (2.10)
belongs to A (D,), and

llo: ]| et < 44-22mfq) |2 - C| =,
where |2—C| =inf|2—&|, £€C.

Proof. The first statement is trivial. Noting (2.6) we have
leodlaco= [ [ mer-sle=sl+agan
<4«~2UD |£= 0J-2|¢ — 2|2 dedy
<4“‘2ffb |&—2|%"%dEdy

<4a—2ff I¢I—2—ad§dn=4a—2(2ﬂ/q)lz_ol—a’
181>fz-C|
as asserted.
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F) LemMma 3. The functions ,w,, 2€ D,, span a dense subspace of A (D,).

Proof. In view of Lemma 1 it will suffice to show that if p € A ,(D,) is given, then there
is a sequence of elements g, in the space spanned by the ,w, with

lim || — @[l a0 = 0. (2.11)

Let us assume first that oo € D, U C. Then there is a smooth Jordan curve C, in D,
and a function ¥ holomorphic on C, and in the unbounded component D, of its comple-
ment, such that V" vanishes at co of order at least 2g and ¥'| D, =¢. We have that

IR ()

\F(:)= dczq_l »

where F({) is holomorphic for f€C,U D, and F(oo)=0. But then

F(O)= o) f”""”z for €D,

2 ¢, 2—C
and hence ()= (2q2m1) 'f (f(z)g; for (€D,
Co -

It follows that there exist functions ¢,((), j=1, 2, 3, ..., each of which is a Riemann sum
for the integral written above,

Ny
()= ’Zlcﬂc (=), 2x€C,,

such that lim @,({) ="¥({) uniformly on every closed set K< D0 Since W'({) and ¢,;({) are
0({£| 29 for { —>oo and, as one verifies easily from (2.6), 1,()2-?=0(|{]|%2), { »oo, it fol-
lows that (2.11) holds.

If oo € D, the same conclusion follows by a similar but simpler argument.

3. Solution of the integral equation. Uniqueness

A) For g €L, (D,) and z € D, we define

2-q
mgo) o= [ B aa— ([ ner-w@ordean @1

LEMMA 4. MP is a continuous mapping
ME : Lo (Dy) —> By(Dy),

and for every Mobius transformation y there is a commutative diagram
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L (y (D) — 2% L,(D)
Mo me 32)
Ve
B, (y (Dy)) —»  B,(D,)

Proof. It is obvious that the upper row is a bijective isometry. To establish commuta-

tivity note that for every Mébius transformation y,

() —y(@)* = (L —2)%'(0)y'(2)-
Hence, for o €L{y(Dy)),

(va 0 My 0) (2) =y’ (2)° (M) 0) (v

/ }«;(Dl)@)z_qo'(é') dédy
B 2 a
v f ¥(Dp (C"V(z))za
¥ @) f Ao (PQ) "¢ sly(©) |y €[ dE dn
(V(C) p(2)*
H Y@ Ap, ) [y Q)" 2 aly(©) |y () ddy
D, =27 9" 0"y ()"
_ f M@ o) ¥ Oy () dedy
D, (C—2)
= (M 0y%42.0120) (2).
To complete the proof of the lemma it suffices to establish the first statement for the
case when oo €C. Let 0 €L,(D,). Since the integral defining ¢(z)=(MP0)(z) converges
absolutely, ¢ is holomorphic in D,. Next, for (€D, and z€ D, we have, by (2.5), (2.6),

WIS @|C-0 P < 4]g =) (33)
M(z) < (4]z—O)I< (4 [C 2| (3.4)
2 -2¢ d
Thus 2)™ ()] < Aal2) ™ f A) | Cl":?qldg !

- dEd
< 0]l oo o A (2) 74972 f L} Ié——zlz”

< lolltcown A2 (2) 74972 (2 /q) |z~ C| ¢
<£22n/q) |o]lLewy,

so that ”(p"Bq(D,)/IIO'”Loo(Dl) < 42"‘2(27z/q).
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B) LEmma 5. The mapping
LQ:B,(D,)— B,(D,)

is continuous, and for every Mobius transformation y there is a commutative diagram

B,(y(Dy) Y . B,D
L% LY (3.5)
Bq(y(Dy)) Ye >  B,(D,)

Proof. For every simply connected domain D with more than one boundary point

we define the continuous mapping
KB : Bo(D) > L (D)
by (XD g) (2)= Ao () p(a), (3.6)

and verify that for every Mobius transformation y the diagram

*
Y-a2, a2

L. (y (D)) = Ly (D)
Hs%o Xy 6
Ve
B, (y (D)) > B,(D)
is commutative. We also verify that
LO=MP 0 XS. (38)

Thus Lemma 5 follows from Lemma 4,

C) We are now in a position to prove Theorem 1. The mappings (1.5) are continuous
by Lemma 5. They are antilinear for M is clearly linear while X is anti-linear. Also, we
have that for z€ D,, p € B(D,),

(E(Ca) @) (2) = (e, P)a.D1»
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where ,w, is defined by (2.10). If L&y =0, then, by Lemma 3, (p, y),.» =0 for all ¢ € B,(D;).
Since B,(D,) is canonically isomorphic to the dual of 4 ,(D,) we conclude that y=0. Thus
L£¥ is injective.

We prove next the continuity of (1.6). In view of Lemma 5 we may assume that
oo €C. Using (3.3), (3.4), we have

2-2¢q
”c(cq"P”A on S ff As (z)2“’ff 40) I'p(gll dt dn dxdy
! D, D, |&—2|

<40- 2” P2 ol |” ch":’|2+2d§dn

AP 2 p(d)| dEdn
D, -0

<472 (2z/q) 2% @) d&dn = (2" =/q) o] ayeo0-
b,

<49°2(27/q)

Finally, (1.7) holds because by Fubini’s theorem both sides equal to

f f J f LOP 29 A2 2 (0) p(2) dedydzdy.
Dix Dy (C - z)2a

This completes the proof.
D) Proof of Theorem 2. We have, by Lemma 5,

LPoy;=yp;0LY for yEeQ (3.9)

This implies (1.8). The remainder of the proof depends on the theory of Poincaré theta-
series (see [4] and Earle’s paper [6] where several proofs are simplified).

We recall that for a simply connected domain D with more than one boundary point
and a discrete group @ of conformal self-mappings of D there exists a linear, continuous

surjective mapping
O : 4,(D)— A,(D, Q)

with e @ Yapie =P Pap for p€B,(D). (8.10)

This mapping is defined by
0= 2 7,
but we do not use this formula explicitly.

Let @ € A,(D,) be such that OF)¢=0. Then OF o L@ ¢ =0. For, by (1.7) and (3.10)
we have for every yp € B, (D,, &)
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(052 0 LL @, v)o.p,16 = (LE @, ¥)a.0,

= (@, L%)q.0,= (05 9, L% v)a.0,c = 0.

and it is known that By(D,, @) is canonically anti-isomorphic to the dual of A4,(D,, G).
We conclude that the mapping (1.9) may be defined by setting

£90089=080LPy
for g € A(Dy).

4. Quasi-circles

A) Let C be a Jordan curve. By a quasi-reflection about C we mean an orientation-
reversing automorphism z>—h(z) of the Riemann sphere which leaves every point of ¢
fixed (h|C'=id) and is an involution (hok=id). It is clear that » maps the domain D,
interior to C onto the domain D, exterior to C and vice versa.

LeMMa 6. A Jordan curve C is a quasi-circle, that is the image of RU {co} under a
quasiconformal automorphism z>> w(z) of the Riemann sphere, if and only if there is a quasi-

reflection h about C such that the mapping z>— h(z) is quasiconformal.

This is almost trivial. Let ¢ be a conformal mapping of U onto D,. If  is given, set

w=gin UURU {co} and w(z) =h(g(z)) for z€L. If w is given, set h(z) =w(w~(z)).
B) The following is due to Ahlfors [1].

ProrosiTIiON L Let C be a Jordan curve passing through oo. Then C is a quasi-circle
if and only if there exists a quasi-reflection about C satisfying a uniform Lipschitz condition.

The sufficiency is merely a corollary of Lemma 6. The necessity is a deep result which

is basic for what follows.
C) We will also need

LeMmaA 7. Let C be a quasi-circle. Let G be a function continuous in the whole plane.
Let H and K be measurable functions such that off C we have
oG o6
-Z == 4.1
H=-, K 2y (4.1)
in the sense of distributions. Assume also that H and K are square integrable over eve}y bounded:
set. Then (4.1) is valid in the whole plane.
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Proof. If C=RU {co}, then the assertion is well known and easily proved. In the
general case the assertion follows from the special case and from the behavior of partial

derivatives under quasiconformal mappings (see, for instance, Ahlfors-Bers [3]).

Lemma 8. Let z>>g(z) be an automorphism of the Riemann sphere and assume that g
18 conformal off a quasi-circle C. Then g is conformal everywhere (and hence a Mdbius trans-
formation).

This is an immediate corollary of Lemma 7.

5. A reproducing formula
A) The aim of this section is to prove

ProrositioN II. Let C be a Jordan curve passing through oo and let Dy, D, denote
the domains interior and exterior to C, respectively. Let z>—> h(z) be o quasi-reflection about C
which satisfies a uniform Lipschitz condition.

Then every y € By(D,) satisfies the reproducing formula

1=~ L [ GEMEHE) 20 ) ded
Y " €2

As an example, let ¢ be RU {co}. Then we may set h(l) = and obtain the known
identity

for z€D,. (5.1)

29— lff (G- 4‘)2“ 2¢(C)d5d’7 (5.2)

—2)%

valid for ze U,

B) Proof of Proposition II. For ¢ € B,(D,) set

29 —
(0= =2 = hor 8 v, 63)
Then (5.1) reads plz)= ff v"(éC) if;gn. (5.4)
We will show below that |70 (D) < cllvllaan A2(8)?79, (5.5)

where ¢ depends only on % and ¢. This implies, first of all, that the integral in (5.4) con-
verges absolutely. Also, if lim y; =y weakly in B, (D,), cf. § 2, then

() dEd t)déd
th ”Ec—zw" HDXW —z)“n'

Hence it will suffice to prove (5.4) under the assumption that rpeﬁq(D2).
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In order to prove (5.5), let ¢, be the Lipschitz constant of k. Then the derivative
oh|0C =1(0h/0& +i(Oh[On)), taken in the sense of distributions, is a measurable function
which satisfies the inequality |oh/ol| <c,. Also, if £€C, we have that

|E=R(O)] <IE~E] + 1D = | —E] + W) ~R(D)| < L+ |E ]
so that [E—h(D)] < (Q+¢y)|C—C]|.
On the other hand, since for £ ¢C the points £ and A(() are separated by C,
[-Cl<|~-rD)|.
By the above inequalities and (2.5), (2.6) we have
0 <o <AQE-HO| <V, §=1,2,
where ¢, depends only on ¢, and hence also
0 <o, SABENE—hO)| <o, j=1,2,
where ¢, depends only on ¢,. Now,

9N < Nl o0 AR (2))?
and (5.5) follows.

C) Now let p€ A (D,). The argument used in the proof of Lemma 3 shows that there
exists a function F(z), holomorphic in Dy U CU {co} and vanishing at z=co, such that

_ d2q—1F
pe = =0T
e h fF(i) h 1 f _D
— . eD..
We set G) = go (z—h(z) F?(h(z))/j! for z€D,
F(z) for z2€D,U C,

Then @ is continuous everywhere and holomorphic in D,. In D, the derivative G'(z) is
bounded on every bounded set. In D, the derivatives 9G/0Z and 0G/éz, taken in the sense

of distributions, are measurable functions which are bounded on every bounded set and

oG n

z (-1’

We conclude, by Lemma 7, that G has measurable locally bounded partial derivatives
everywhere. Hence we may apply the well known identity

so--L[[ wQEm, 1 ok
|

T itl<R 65 C—Z 20 ll=R C“‘Z
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for |z| < R. Let D, , denote the intersection of D, with the disc [z] < R. The formula above

reads
ff V.,,(C) dédn 1 f G({)d¢
29 D)o (- " 2m -r £z

For 2€ D, j, both sides may be differentiated (29 —1) times. This yields
ff Yy C)dfdn (24—1)!f G()
D !

ve (£— 271 =z (€ —z)zq '

Since G(L) =0(|{| ) for { —>oo, the identity just written becomes, for B —> + oo, the desired
relation (5.4).

6. Solution of the integral equation. Existence

A) In this section we prove Theorem 3. Let C be a quasi-circle. Without loss of
generality (cf. Lemma 5) we assume that it passes through oo. In view of Proposition I
we may apply Proposition IT to the curve C. Let ¢ € B,(D,) be given, and let v, be defined
by (5.3). We note (5.5) which shows that setting

o=M"2y,
we have ¢ €L, (D,). The reproducing formula (5.4) may be written as
(MP0)(2) =) or Uuw,) =y(2),
where .0, is defined by (2.10) and I:4,(D,) - € is the continuous linear functional defined
by
= f R M@ @Q) o(¢)dEdn, PEAL(Dy).

But in view of the anti-isomorphism between B,(D,) and the dual of 4,(D,), cf. (4], there
is a p € B (D,) with
UP) = (¢: )a., -

In particular, (o@z5 ®)e.0, = P(2),
which means that L& ¢ =y. Thus L& : B,(D,)— B,(D,) is surjective.

B) Now let G be a quasi-Fuchsian group with fixed curve C. If w € B(D,, G)< B,(D,),
then there is a ¢ € B(D,) with L9p=y. By Theorem 1, it is unique. It follows from (3.9)
that p € B,(D,, &). Hence £ : B,(D,, @)~ B,(D,, G) is surjective.

Assume, finally, that ﬁ((}”:Aq(})l, Gy~ A, (D,, G} is not surjective. Then there is a
@ €A44(D,, G) and a y,€ By(D;, @) such that
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(Po» Yoda.Daic + 0 (6.1)
and (£90, vo)epue=0 forall @€Ay(D,, Q).
The latter condition means, by Theorem 2, that
(@, L% wo)a.pye =0 forall @€A, (D, G)

and this implies that £ y,=0. But then p,=0 by Theorem 1, so that (6.1) is impossible.

7. Ysomorphisms between spaces of automorphism forms

A) This section contains the proof of Theorem 4.

A normalized quasiconformal self-mapping w: U — U is completely determined by its
Beltrami coefficient u(z) =wz/w, (cf. Ahlfors-Bers [3]). We write w=w,. The function u
is a bounded measurable function defined in U, with |u(z)| <k<1. We continue it to L
be setting u(z) =0 for z€L, and we denote by w# the unique topological self-mapping of C
which leaves 0, 1 fixed and satisfies the Beltrami equation

— =g, 7.1
0% ”az -( )

We shall establish later
ProrosirioN III. Two normalized quasiconformal self-mappings, w, and w,, of U
coincide on R if and only if the functions wet and w® coincide on LUR.

B) Let I' be a Fuchsian group. If w,:U U is compatible with I (cf. § 1), a direct
computation shows that
¥ =u forall ye€l. (7.2)
Conversely, if (7.2) holds, one computes at once that for y €G the function woy satisfies
(7.1) so that woy =§ow where y is a Mobius transformation. This means that w, is com-
patible with I'. We assume that this is so and set I'; =w,T'w,".
Now relation (7.2) shows, in the same way, that for every y €I" the mapping

wkoyo (wk)~L

is & Mobius transformation. Therefore the group G=w+I'(wk)—! is a group of Mébius
transformations. It is, as one sees at once, a quasi-Fuchsian group with fixed curve
C=wrR) U {co}. We have that D,(0)=wr(U) and D,(C) =w#(L).

Now let g,:wr(U)—U be the conformal bijection which sends 0, 1, oo into 0, 1, oo,

respectively. Then g,owk:U - U is a normalized self-mapping satisfying (7.1). Hence

w, =g, owr|U.

"
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It follows from Proposition III that w#|L, D,, D,, C and ¢ « depend only on the equivalence
class of w,,.

C) Proof of Theorem 4. With the notations introduced above and setting, for every

function @(2), (j¢)(2) =p(Z), consider the sequence of mappings

ey (g} *
By(U, T) —4— B,(L, T) <=2 B(Dy, 6) =% By(Dy, 6) % B,(U, ).
Now j and £'% and surjective topological anti-isomorphisms; this is trivial for j and follows
from Theorem 3 for £9. On the other hand, (w#); and (g,); are bijective topological
isomorphisms, cf. § 2. The resulting mapping B (U, I') > B,(U, I'}) has the required pro-

perties.

The mapping A,(U,T") > 4,(U,T) is constructed similarly, with £ replaced by £%.

D) Proof of Proposition I1I. Let g, have the same meaning as above and let
¢,:w?(U)— U be the conformal mapping such that

w, =g,ow?|U.

We note that, since w?(U) and w#(U) are Jordan domains, the mapping g, and g, can be
extended, by continuity, to homeomorphisms of w”(UURU {co}) and wr#(U URU {co}),
respectively.

Assume that w?|L=w#|L. Then w*(L) =wA(L), w*|R=w#|R and w*(U)=w#(U). The
last equality shows that ¢, =g,. Hence w,|R=g,0w”|R=g,0w#|R=w,|R.

Assume next that w,|R=1w,|R. Define

5 _{9,7109,,(,2) for z€w (UURU {oo}),
= wow) '(z) for z€w’(LURU {co}).

This function is well defined and continuous everywhere. Only points on €' =w#(R U {co})
must be checked. There

(95 109,)|C = wow; Tow, 0 (wk)1|C = (w*|R)o (w; ! |R)o(w,|R)o (wr)1|C = w>o(wk)|C.

Also % is an automorphism of the Riemann sphere. It is conformal in w#(U) and in w#(L)
and, since C is a quasi-circle, everywhere (by Lemma 8). Since 4 leaves 0, 1, oo fixed,
h(z) =z. Hence w¥o(w#)~! =id in w#(L). This means that w?|L =w#|L.

9 —662900. Acta mathematica. 116. Imprimé le 14 juin 1966.
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8. Schwarzian derivatives

A) We recall that the Schwarzian derivative {w, 2z} of a meromorphic function func-

_ (0@ 1(w" )\
tw, Z}_(w' (z)) "2(w' (z))‘

It is holomorphic wherever either w is holomorphic and w’ =0 or w has a pole of order one.

tion w(z) is defined as

Also, {w,2z}=0 if and only if w is a M6bius transformation, and if z is a meromorphic func-

tion of £, then
{w, 2}dz? = {w, £}d(2 + {C, z}d22.

In particular, if ¢ is a Mobius transformation, then
{yow, z} = {w, 2}, (8.1)
{woy, 2} = ({w, 2}oy)y'(2)2 =3 {w, 2}. (8.2)
B) Lemma 9. Let D be a simply connected domain with at least two boundary points.
Let w(z) be meromorphic and univalent in D. Then {w, z} € By(D) and |[{w, 2}|| 5,0, <96.

If D is a half-plane or a disc this was proved by Nehari [7] with 96 replaced by 6.
Nehari’s argument also works in the general case.
In view of (8.1) and (8.2) we lose no generality in assuming that w is holomorphic in
D and that co¢ D. Let z,€ D and set §=|2,—2D|. The function W(()=w(z,+0/C) is uni-
valent for |£| >1 and so is the function
‘ w’ (24) 0
w(zy+ /) — w(z,y)

=+ const. — (%2 {w, Z}z,) %_+ et

2
By the “area theorem” %|{w, 2ha| < 1.

This means, since 2,€.D is arbitrary and, by (2.6), A5(z)6>1, that Ap(2)~2| {w, 2}| <96,
as asserted.

C) Now let .D;, D,, C have the same meaning as before and let L,(D,), denote the
open unit ball in the Banach space L.,(D;). Every element y €L,(D;) we consider as defined
everywhere in C with u(z) =0 for 2¢ D,.

For u€L,(D,), let z>—>wr(z) denote the unique automorphism of € which leaves 0, 1
fixed and satisfies the Beltrami equation (7.1). Then w#(z) is conformal and univalent in
D,. For z€ D, we set

b = {wk, z}. (8.3)

By Lemma 9 we have that @#€ By(D,). The mapping u > @# will be denoted by Hp.
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LemMA 10. Let y be a Mobius transformation. Then the diagram

Lo (y D)y ——— =2+ L (D)),
(S He
B,(y (D)) Y . BDy

18 commutative.

Proof. Let p €L (y(D,)), and set v =9%1,1 4. One sees at once that » EL,(D;); and that
wkoy satisfies the Beltrami equation w;=vw, Hence w”=7ow#oy where § is another
Moébius transformation. Now, using (8.1) and (8.2) we have

Ney*raap=Nev="{w’", 2} ={fow’ op,z} ={w oy, 2} =y {w", 2} =95 0 Nyt
as asserted.

D) Let G be a quasi-Fuchsian group with fixed curve € and let L(D;, G) be the closed
subspace of L.(D,) consisting of those u for which y*, ; u =g for all y€Q. Also, set

Loo(Dp G)1 = Loo<D1)1 n Loo(Dlr G)-
Lemuma 11. If @ is a quast- Fuchsian group with fixed curve C, then
NeLo(Dy, @), < By(Dy, G).
This follows at once from Lemma 10.

E) The proof of Theorem 6 depends on the following

ProrositionN IV. The mapping No:L (D)), —~ By(D,) ts holomorphic. Its derivative
at u =0 is the linear mapping (—6/m) M, that is the mapping

S ([ wl)dafdy
#e) n” (.

Proof. In proving the holomorphic character of the mapping N, we assume that D,
is bounded. In view of Lemma 10 this involves no loss of generality. We choose a fixed
but arbitrary p€L,(D;); and numbers &, and k such that |u| <k,<k<l. Let » denote an
arbitrary element of L(D,) with |v| <k —k,, and let ¢ denote a complex variable restricted

by the condition |¢] <1. We will prove that ¢** = N (u +t») satisfies the inequalities
9*
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ot —¢" | supn<c'|t| for [t|<}, 84)

1
t—1(<P

p+ty ptiay

<c" (|t +8]) for O<|t| |t,] <3,  (8.5)

Ba(Dy)

@)

w1
¢)—t—2(¢

where the constants ¢, ¢’ depend only on %, and k. Inequality (8.4) shows that the mapping
N is continuous, while (8.5) shows the existence of the limit, in B,(D,),

pt+iy

lim tl (@ —¢")
t—0

te€C
for every p €L(D;)y, v €Ly(Dy).

Let z, be a fixed but arbitrary point in D, and set
r=|z2,—C|, 0(z)=plzo+72), 7(2) =(zy+r2). (8.6)

Then one verifies immediately that

W (2, + r2) — P (z,).
WY (2o H 1) — W ()

wa+tr (z) —

and therefore @7t (0) = 129t (2). (8.7

Since o(z), 7(2) vanish for |z| <1, the function w’**"(2) is holomorphic for |z|<I,

and so is the function g(z) =2/u”***(z) whose value at 2=0 is

d o+iT
-1/ (457

djwﬂ‘i-t‘r 2 '! wo'+t1 C dC
Hence T()=27—m J~|c1=1_(#
and similarly for g.
We will denote by ¢, constants depending only on k&, and k. The results of [3] imply
that for every fixed z the numbers w’**(z) and g(z) =2/w’***(z) depend holomorphically

on t and that
|w* ¥ (2)| <cy, |g(e)| <c; for |z]|=L1.

§ . O+HiT
This implies that |§w—,(2) <em §=1,2,3,
dz 2=0
dwa+t1 (Z)
‘ g a=0>c4>0,

and hence |¢° "7 (0)| < ¢; and
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|@™(0) — ¢ (0)| <cgt| for [t|<4,
1 1 o]
t‘;(‘PoH"(O)“(PO(O))—;;;(WH“(O)_‘P (O))|<c7(|t1|+|t2|) for 0<|ty|, |t,]<3.

Noting (8.7), the fact that z,€ D, was arbitrary and the inequality (cf. (2.6)) 1;(2,) 2 <16 72,
we obtain (8.4) and (8.5).

F) In proving that the derivative of H at the origin is (—6/m) M we assume that
D, is bounded. This involves no loss of generality in view of Lemmas 4 and 10. For every
B ELL(D,) we have

(M) __2z— f u()dédn (8.8)
t=0

ot p, LC—D (-7
This follows easily from the formulas for w#, with u of compact support, contained in [3].
(As a matter of fact, (8.8) holds in general, even if D, =C, but we do not use this here.)
Also w'(2) is, for every fixed u €Ly (D;), a holomorphic function of both ¢ (for |¢| small)
and z€ D,. So therefore is ¢p*(z). For the sake of brevity we set w* =w, ¢* =@, and denote

differentiation with respect to z by a prime, that with respect to ¢ be a dot. Since dif-
ferentiation with respect to ¢ and z commute, we have

. {w z}. _ (w/)3 wul _ u-)/ (wl)2 wlll - 31i;"(w')2 wll + Gwlwlwll
@ s (w/)4 .

For t=0, however, we have w=z hence w'=1, w"”’ =w'"=0 and ¢ =""'. This means, in
view of (8.8), that

(&pt" (z)) & (8w"‘ (z))
o Jio 22\ @ )ico

f _p)dédu
p, {(C—1)({—2)

_ ”‘ M(C)dfdn
b, (&—2)*

Since we already know that the limit lim, ., ((1/t) Hc(tw)) exists in B,(D,), it follows
from the above relation that this limit is (—6/7) S .

9. Quasiconformal extension

We are now in a position to prove Theorem 6. Let C be a quasi-circle and G a quasi-
Fuchsian group with fixed curve C. Consider the mapping X% defined by (3.6). It follows
from the commutativity of the diagram (3.7) that

K3 : By(Dy, G) > Lo (Dy, G);
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it is clear that this mapping is anti-linear and maps the open ball § about the origin in
By(D,, @) of radius 1 into L(D,, ¢);. The mapping

Q=MN;0 X% : — B,(D,, G)

is therefore well defined .(cf. Lemma 11). By Proposition IV, Q is an anti-holomorphic
mapping, ((0) =0, and the derivative of Q at the origin is the anti-linear mapping

(—6/7) MP o KB =(—6/n) L,
cf. (3.8)). But by Theorem 3
(—6/7) L& : By(Dy, @)~ By(Dy, @)

is bijective. Hence, by the implicit function theorem in Banach space, there are neigh-
borhoods of the origin N, < By(D,, @) and N,< By(D,,G) such that Q: N, >N, is a bijec-

tion with an anti-holomorphic inverse. This is the assertion of Theorem 6.
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