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1. Introduction 

1.1. The Stokes conjecture 

In this paper we settle a question of the regularity, at one exceptional point, of the free 

boundary in a problem governed by the Laplace equation and a non-linear boundary 

condition. 

The physical problem concerns gravity waves of permanent form on the free 

surface of an ideal liquid (that is, of a liquid having constant density, no viscosity and 

no surface tension). We suppose throughout that the motion is two-dimensional, 

irrotational and in a vertical plane. Of the various cases to be introduced in section 2, 

we consider here only the simplest: that of periodic waves on liquid of infinite depth. If 

we take axes moving with the wave (axes fixed relative to a crest) as in Figure 1, the 

problem becomes one of steady motion; the fluid domain is 

f~ = ( ( x , y ) : - ~  < x <  ~, - ~  < y <  Y(x)), 

where the free surface F={(x, Y(x)): xER} is unknown a priori, and Yis to have period 

2. Moreover, we assume F to have a single crest (Y to have a single maximum) per 

wavelength, and F to be symmetrical about that crest. One seeks a stream function W 

that (a) is harmonic (AW=0) in f~, (b) satisfies tP(x+2,y)=ttt(x,y), (c) is such that the 

fluid velocity (Wy,-Wx)---~(c, 0) as y ~ - ~ ,  (d) satisfies the free-surface conditions 

�9 =0  and l l v w l 2 + g y = c o n s t a n t  on F.  (1.1) 

Here the wavelength ,1. and gravitational acceleration g are given positive constants, 

and the wave velocity ( - c ,  0), relative to the fluid at infinite depth, is to be found after 
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Figure 1. Some nota t ion for (a) periodic waves  on water  of  infinite depth,  (b) the ex t reme wave con templa ted  
by Stokes.  

specification of some measure of the height or amplitude of the wave profile. The 

height H of the wave may be defined as 

H = m a x  Y(x)-min Y(x). 
xER xER 

(Certain other definitions are equally legitimate.) 

In the manner of his time, Stokes [9] assumed that, for fixed 2 and g, there exists a 

family of solutions parametrized by H; he calculated various formal approximations to 

them for small values of H/2. He argued [10] that the wave o f  greatest height, as it has 

come to be called, is distinguished by sharp crests of included angle 2~/3. (At these 

crests, the fluid velocity, relative to our axes, must then be zero.) He also conjectured, 

although with less conviction and with no mathematical argument whatever, that 

between the sharp crests the wave profile is strictly convex: Y"(x)>0. (This summary 

Stokes's remarks may suggest a greater precision than he intended. Stokes did not 

define wave height, nor did he explicitly specify fixed wavelength. The words 'greatest 

height', 'steepest form' and 'limiting form' were all used in his paper to describe the 

extreme wave. However,  there is no ambiguity in his description of the sharp crest and 

the convexity of the profile.) 

Stokes gave essentially the following argument (which has served, since then, as 
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an exercise for generations of students) to show that, if the slope Y'(x) has a simple 

discontinuity at x=0, then the included angle must be 2:t/3. Suppose that 

Y'(x)-- ,+tana as x~'0 or x~0 ,  respectively; 

let x + i { y -  Y(O) } = r e i~ and suppose further that 

W ( x , y ) = A r b c o s b ( 0 + 2 ) + o ( r b )  as r---~0, 

where the constants a, A and b are to be determined, and the gradient of the o-term is 

assumed to be o(rb-l). Then Substitution into (1. l) yields b=3/2 and a=~r/6. 

In the present paper, we shall prove that the waves of  extreme form whose 

existence has recently been established doindeed have sharp crests o f  included angle 

2Jr/3. Before beginning the proof, however, we must relate this question to rigorous 

results for steady gravity waves of large height. 

1.2. Recent analysis of the problem 

The first existence proof for waves whose slope need not be small is due to Krasovskii 

[6], who applied positive-operator methods to a non-linear integral equation, but his 

analysis is restricted to wave angles strictly less than :z/6; that is, to waves for which 

SUPxlY'(x)l<l/X/-3-. Changing Krasovskii's approach slightly but significantly, Keady 

and Norbury [5] studied the integral equation due to Nekrasov; for periodic waves and 

infinite depth this is 

qT(s) = -~- K(s, t) sin qo(t) dt, 

v+ sin q) 

0 < s ~< n, (1.2) 

where 

sin�89 1 tan~s+ tanl t  
K(s, t) = f l o g  l~ ' tan�89 s - I  

x sin�89 Is-t] x tan�89 t 
(1.3) 

for (s, t) E [0, ~] • zr] with s4:t. We abbreviate J'~ sin q~ (u) du to .f~sin q0 throughout this 

paper. Equation (1.2) results from (a) differentiation of (1. I) with respect to the velocity 

potential qb, and some manipulation, (b) mapping one period o f  the flow domain 

(-�89 -oo<y<Y(x) in the physical plane, or --~c2~<qb<�89 --oo<W<0 in the 
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plane of the complex potential ~+i t t  t) conformally onto the punctured unit disk 

9 \ { 0 } ,  where 9={~EC: I~1<1} and ~=Qe is. The unit circle 09  represents one wave- 

length of F, with s=ar corresponding to the trough at x=- �89 and s=0 to the crest at 

x=0; the point ~=0 corresponds to y = - ~ ,  and the negative real axis within 9 to 

x = - ~ 2 ,  y<Y(- �89 The function rp(s)=tan-ly ' (x)  is the local wave angle, and 

v=2~q3o/3g2c, where q0 is the fluid velocity (relative to our axes)at the crest (0, Y(0)). 

One prescribes 2 and g; then from a non-trivial solution (v, rp) of (1.2) the value of c can 

be calculated, and the value of q0 follows. 

The linear integral operator with kernel K solves the Neumann problem for 

functions v(Q, s) harmonic in the unit disk 9,  vanishing on the real axis in 9,  and 

sufficiently smooth on 9 (sufficient smoothness is specified precisely in the Appendix); 

for such functions, 

f0 v(1, s) = K(s, t) (1, t) dt, 0 < s <<- z~. (1.4) 

The parameter v 1' 1/3 as the wave height H---~ 0, while v=0 for the wave o f  extreme 

form,  which is defined to be such that the fluid velocity qo at the crest is zero. 

K e a d y  and Norbury [5] proved that, for any rE(0, 1/3), equation (1.2) has a 

smooth solution cpv such that q0v (0)=0, cpv (z0=0 and 0 ~ qT~ (s) < �89 on [0, er]. A surpris- 

ing property of these solutions was suggested by the numerical work of Longuet, 

Higgins and Fox [7], and proved by McLeod [8]: if w is sufficiently small (but positive), 

then there exist small positive values s, of order v, such that q~(s)>er/6. 

The existence of a wave of extreme form (v=0) was proved by Toland [11], and 

then, in a more elementary manner, by McLeod [8]; in totally different ways, both 

these authors extracted convergent subsequences from sequences (%tn)} of solutions 

for which v(n)--*O as n---~.  We know from [2], [3], [8] and [11] that the limiting 

solution q~ is real-analytic on [6, Jr] for any 6 > O, that q~ (Jr)=O, that 

0<cp(s)< --~ for sE(0, er), liminfrp(s)>0, (1.5) 
3 s ~ 0  

and that cp'(s)=O(s -1 ) as s---~0. The upper bound ~r/3 in (1.5) is a recent result [3] and 

seems essential for our estimates in section 3. Both Toland and McLeod showed that, if 

a limiting value q9 (0§ lim,__.0q~ (s) exists, then it must be ~/6, but neither author was 

able to prove existence of rp (0+). Thus the question of the celebrated Stokes angle 

remained open. 
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The difficulty of the case v=0 is clear from the integral equation (1.2). If v=0, the 

second factor of the integrand is singular at t=0, in contrast to the case v>0. Indeed, if 

we denote the right-hand side of (I .2) by (T v 9)(s), then the non-linear operator To lacks 

certain properties needed for the application of fixed-point theorems and enjoyed by Tv 

for v>0. These adverse features of To are presented in the Appendix, and perhaps 

account for the unorthodox nature of our proofs in section 3, and for our failure to 

prove that Y is convex (or, equivalently, that cp is non-increasing on [0, ~r]) for the wave 

of extreme form. 

1.3. Plan of the present proof 

Our analysis involves the approximate integral equation 

1 f |  k" , sin 0 ( y ) ,  

0(x) = ~ J0 J0 
tx, y ) - - - fT -~ay  , 0 < x <  oo, 

sin 0 

where 

(1.6) 

left half-plane, one can consider the function 

v(x, y; e) -- - I m  log {(z-e) e-it}, 

infer that 

z= x+iy, x<.O, e>O, 

f0 v(O,y;e)= k(y, rl) (0, r/; e) d~/, 0 < y <  oo, 

and show that this formula remains valid as e-->O.) 

k(x, y) = 1 log x+y Ix-yl" (1.7) 

This has a solution O(x)=z/6, because 

I ~| 1 fo ~ l +u  I Jr k(x, y) 1 dy = ~ log - -  du = - - .  (1.8) 
3-  y [ l -u[  u 6 

(The integral may be evaluated by noting that the contributions of 0 < u <  1 and u> 1 are 

equal, and by expanding the logarithm in series for u<  1. Alternatively, noting that the 

kernel k(y, rl) plays a role like that of K(s, t) in (1.4) when the unit disk is replaced by the 
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We begin with the estimates (1.5) and the following observation (see the Acknowl- 

edgement below): if zd6 is the only solution 0 of (1.6) such that 

inf 0(x)>0, sup O(x)<.rd3, (1.9) 
xE(O, ao) xE(O.,~) 

then q0 (s)---~Jr/6 as s---~0 for any solution ~0 of (1.2), with v=0, that satisfies (1.5). By a 

solution of (1.6) we mean a pointwise solution in the space Cb(0, ~) of functions 

continuous and bounded on (0,~);  by a solution of (1.2), with v=0, we mean a 

pointwise solution in C b (0, er]. For any function f E  C b (0, oo), the abbreviations 

inff(x)= inf f(x), supf(y)= sup f(y), (1.I0) 
xE(0, oo) yE(0, 0.) 

will be convenient. 

To prove that :r/6 is the only solution of (1.6) and (1.9), we use a method that is 

perhaps elaborate but is wholly elementary. For any solution 0, we derive from three 

variants of the integral equation, and from consideration of the sine function on [0, :t/3], 

five inequalities involving the four functionals 

'lf0x/ tl / 6/ 'f0 x 'j0 x sUP--x 0 -  , sup O(x)- , inf x sin 0, sUP--x sin O. 

Let p=p(O) denote the first of these. The numerically small coefficients c2 and c3, in 

Lemmas 3.2 and 3.3 below, offer the hope that the five inequalities may be combined to 

one of the form 

p<.h(p), O<~p<.~r/6, 

where 

h(O)=O and h(p)<p if0<p~<~d6, 

which implies that p=O. This turns out to be the case. 

1.4. Remaining questions 

Although this paper settles the matter of the sharp crest and its included angle, some 

interesting questions remain open. 

(a) We say nothing of the rate at which tp (s)--> zd6 as s--> 0. This question is taken 



ON THE STOKES CONJECTURE FOR THE WAVE OF EXTREME FORM 199 

up in [1], where an exponent 76 (0, 1), in the estimate q0 (s)-:r/6=O(sY), is established 

that is probably the best possible. 

(b) With some natural definition of wave height, is the wave of extreme form that 

of greatest height? Numerical evidence and heuristic approximations [4], [7] suggest 

that it is, when the height H is defined as in section 1.1. 

(c) We have not proved convexity of the wave profile. 

1.5. Acknowledgement 

We are heavily indebted to J. B. McLeod for an emphatic statement of Theorem 2.1 

(for A<o~) to one of us, during a conversation in January 1980. Although we were aware 

already of the usefulness of the approximate kernel k, it was McLeod's  remark that 

ultimately led us to concentrate attention on the approximate integral equation. 

2. Reduction of the problem 

We consider flows with wavelength A 6 (0, ~] in liquid of mean depth h E (0, ~], the 

lower boundary in the physical plane being straight and horizontal when h < ~ .  We 

write A=~ for the solitary wave, and in that case h<oo. It is known from [2], [3], [8] and 

[11] that waves of extreme form exist for all these values of A and h. In section 1 we 

have considered the case A/h=O; all essential statements there about the wave of 

extreme form remain true in the general situation. 

The integral equation of Nekrasov type, for the wave of extreme form, is now [3] 

l fo'~ t~f~ (t)sincp(t) q0(s)= K(s, , - - 7 7 - ~  dt, 0 < s < : r ,  (2.1) 

o f~ sin rP 

where qo is still the local wave angle, K is as in (1.3) and (1.4), 

1 2 t  2 t  -�89 
f~(t) = -~-(cos -~-+fl~ sin ~ - )  , 

and fl~ is a continuous, monotone function of A/hE[0, oo) such that fla 1' 1 as A/h-->0, 

while fl~ $ 0 as A/h--> oo. We define floo=0 for the case A=oo, h<oo of the solitary wave. 

Recall that 

k(x,y)= l log x+y ( 0 < x < o o ,  0 < y < o o  x:~y). 
Ix-yl 
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The word solution continues to have the meaning assigned to it after (1.9). 

THEOREM 2.1. I f  zd6 is the only solution o f  

1 ( = .~ sin O(y) 
O(x) = -3 .]o k(x, y, ~ dy, 

J0 sin 0 

satisfying 

0 < x <  ~ ,  (2.2) 

inf O(x) > 0, sup O(x) <<. ~r/3, 
xE(0, ~) x E(0, ~) 

(2.3) 

then any solution cp of(2.1) satisfying 

lim infq0(s) > 0, 0 < 9(s) ~< 3 for s E (0, ~) (2.4) 
s--*0 

has the property: q0(s)----> ~/6 as s---~O. (Solutions ~ of(2.1)  and (2.4) are known to exist 

for all 2/h E [0, oo].) 

Proof. (i) Given any solution 9 of  (2.1) and (2.4), we shall construct  a correspond- 

ing solution 0 of  (2.2) and (2.3). First, we cast (2.1) into a more convenient form. Under  

the transformation ~=tan~s,  r/=tan �89 and ~p(~)=q0(2tan -1 ~)=9(s),  equation (2.1) be- 

comes 

where 

,y0 ~,(~) = ~ ~(~, ~) 
g~ (r/) sin ~,(r/) 

f0 ~ g~ sin ~p 

dq, 0 < ~ <  oo, 

1 1 

g~(~)=(1+,7 ~) 2(I+~z~2) 

For  ~---> 0, we may truncate the integral. By  (2.4), there exists a constant Co > 0 such 

that sin qg(t)~>2Co on (0,:r/2]; since f~(t)~>�89 we have 

fo 
r ~Cot for 0 ~< t ~  :r/2, 
f~ sinq~ [_~ Cot for 0 ~ < t < ~ ,  

whence 

fo ~ ga sin ~0 ~> Co tan-I ~, 0~<r/< oo. 
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Also, k(~, r/) ~< (8/3 er) (~/r/) when ~/r/~< I" Accordingly, if ~ ~< l, 

f=, ,~ ,g~(q)sin~p(q) f = ~  _t 0~< Kt;,r/) --fT----~---- dq~<constant. (l+r] 2) ~dr/=constant .~,  

Jo ga sm ~p 

so that 

';o ~p(~) = -~- k(~, r/) gx (r/) sin ~PO1) d~l + 0(~), 

f0 ~ g~ sin ~0 

where now, since r/E [0, 1], 

fo q C07l I ~ <  g~(r/) ~ 1, g~ sin ~ ~>-~- r/. 

(2.5) 

(2.6) 

(ii) Let  { a . }  be a decreasing sequence in (0,1) such that a . ~ O ,  and define 

OnECb(O, 1/a n] by 

On(y) = ~p(any) (0< any <~ I). (2.7) 

Setting ~=a,,x and ~=any in (2.5), we suppose that 

xE [a, b] ~ (0, ~), 

with a and b fixed, and that a,, is so small that 2Ct n b ~< 1; then 

t ' l / a  n 

0n(X) = -~- Jo k(x,y) g~(a"y)sinOn(Y) dy+O(a,). 

fo r gz (an 0. (z) Z) sin dz 

We now show that g~ may be replaced by 1 in this equation. Let ME [2b, l/a,,], so that 
M>~2x; then, by (2.6), 

l/an g~ (any) sin 0, (y) 
0 <~ k(x, y) [.y 

d M  / ga (an z) sin 0, (z) dz 
J0 

dy <~ constant. ( |= x---l dy <~ 
JM Y Y 

constant 
M 

and similarly if g~ is replaced by 1 for M<.y<.I/a.; moreover, 
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k(x'Y)lfog~(anz)sinOn(z)dz rOY sin On 

~0 e~ ~< constant, k(x, y) ct2n M2 dy  : constant, an2 M2. 
Y 

Choosing M=Ctn 2/3, we obtain 

1 l llan 
k(x, y) 0n(X)=Tj ~ 

sin 0 n (y) 

f0 y sin 0 n 

dy + O(a2n/3), (2.8) 

uniformly for x E [a, b]. 
The sequence of functions defined by the integral in (2.8) is bounded and equicon- 

tinuous on [a, b], by standard results for integral operators like that in question (note 

that k(x, y)= O(y) as y---~ 0, uniformly for x E [a, b]); hence the sequence { 0n} is relative- 

ly compact in C[a, b]. Now let {[am, bm]} be an expanding sequence of intervals 

whose union is (0, ~). We extract successive subsequences (Omj}j% 1 convergent in 

Clam, bm] , and contained in {0m_l.j}j~ 1 and hence in {0n}, and diagonalize; there 

results a sequence that converges uniformly on any compact subset of (0, co) to a 

function 0 E Cb (0, 0o), and 0 satisfies (2.2) and (2.3). Then O(x)=:~/6 for all x E (0, oo), by 

the hypothesis of the theorem. 

(iii) Finally, suppose that ~p(s)-r as s---> 0. Then there exists a sequence {an} as 

in (ii) such that ~p(an)--->y4=z~/6, and, by (2.7), 0n (1)--->y. But this contradicts the result 

of (ii). 

3. Uniqueness for (2.2) and (2.3) 

3.1. Primary inequalities 

Throughout this section, 0 denotes any pointwise solution of (2.2) that is in Cb(0, oo) 

and satisfies (2.3); abbreviating as in (1.10), we define 

'lY0X( 6tl f 61 p = s u p  0 -  , m = s u p  O(x)- , (3.1) 
x 
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and note that 0~<p~<~r/6, m<-er/6. Our first two estimates involve the integrated kernel 

q(x,y)= k ( z , y ) d z = l  ~xlogf+~Y~+ylog [x2-y21 
Jr ( IX-Yl y2 ' (3.2 a) 

and 

qy (x, y) = _1 log Ix2-y21 Jr yZ (3.2 b) 

LEMMA 3.1. Equation (2.2) implies that 

f0x 1 f0~ - , s i n0 (y  ) 0 = f f  q(x, y) r--rT------- dy, 
sin 0 

,tO 

(3.3) 

which yields the estimate 

inf sin 0 I> c~, 1 log 2 ) > 0.0948. (3.4) where c I -- X/-f 8 ~r 2 

Proof. Obviously (3.3) results from integration of (2.2). Then, since q(x, y)>~O and 
q(x,y)=O(y -l) as y--> oo for fixed xE(0, oo), 

foXO>~l ( ~ q ( x , y ) ~ d y  
3 J~ J0 sin 0 

=~fx~176 d l~  

3 q(x, x) log sin 0 - ~- qy (x, y) log Y sm 0 dy 

+ q(x ,y) ldy .  
Y 

Referring to (3 2 a), we find that q(x,x)--CoX, with Co = (log 4)/:t, and we evaluate the last 
integral; from (3.2 b) we observe that qy(x,y) < 0 for y>x, Defining 

'for J = in f - -  sin O, 

we then obtain 
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fo x , (~fo ~ ) +  ~ i ~ l o ~ l  0 >I - ~ CoX log sin 0 + CoX log J + 4 Jr " 

Since (sin t)/t is a decreasing function on [0, st/3], we also have 

fo x fo x Jr/3 sin 0 I> O, 
sin (:r/3) 

and there results, upon division by x/3, 

f0 ~ ('f0 �9 ) ( t V~-2ar xl sin0+c01og -~- sin0 ~>c 0log J +  4 2 1 7 2  . 

I 
X 

The left-hand member of this inequality is an increasing function of (l/x) sin 0; taking 

its infimum, we obtain (3.4). 

LEMMA 3.2. Equation (2.2) implies that 

fo~t 61 'fo ~ (~fo y ) O- = - -~ qy (x, y) log Y sin 0 dy, (3.5) 

for any constant C > 0 .  With p as in (3.1), this yields the estimate 

1 Y 1 Y p~<czlog[sup--f s i n O / i n f - - (  s i n O ] , ]  
L Y Jo / Y Jo J ~, (3.6) 

/ 
where c 2 = ~ log (1 + V~-) < 0.1871. J 

Proof. To derive (3.5), we combine (2.2) and (1.8), and integrate with respect to x, 

to obtain 

[ X ( o - 6 ) = l [ ~ q ( x , y ) ~ y l o g ( f f o Y s i n O ) d y .  (3.7) 

Note from (3.2a) that, for fixed xE(0, oo), we have q(x,y)=O(ylogy) as y->0, and 

q(x,y)=O(y -1) as y---> oo. Thus integration by parts with respect to y gives (3.5). Now 

define 

J = i n f l l Y s i n O ,  K = s u p  l ( y s i n 0 ,  (3.8) 
Y J0 Y3o 
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and choose C= 1/J in (3.5), so that the logarithm there is non-negative. Equation (3.2 b) 

shows that 

qy(x,y)>O forO< y<x/X/-2,  

qy(x, y) < O for x/X/--f < y < oo, y * x. 

Accordingly, (3.5) implies that 

fo x . rx/VT {0-- ~-~-~>~ -l-J- I qy(X,y)log~dy 
\ 6 /  3 )  0 

= - - ~ q  x, log 

K 
= - c2x log 7 '  

while integration from y=x/X/-2-onwards yields 

foX(O-6)<~czx log  K .  

LEMMA 3.3. Equation (2.2) implies that 

1 .Io 

fo f x, O(x) 6 3Jr sin 0 
(3.9) 

With m as in (3.1), this yields the estimate 

f sin (Jr/6+m)_ ] 41og2 < 0.2943. (3.10) m <<. c 3 ~ 1 (Y  1 , where c 3 -  3Jr 

t i n f y  J0 sin 0 

Proof. Again we combine (2.2) and (1.8), and define 

( l  fY s inO) ,  F(y) = log ,-f-,/0 

so that FE cl(0, oo) and IF(y)l ~< constant. For fixed xE (0, co) as elsewhere, we have 
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Y~ 
O(x) . . . .  

6 fo  1 log F'(y) dy 
33r 

I lim 1 
3er ~-,0 [30 gx+~ \ y + x  

| F(y) dy 1 _ _  + 
3Jr .Jo y+x  

1 f f  +f  F(y) 
lim { ] | dy . 

3~r ~--,o [go gx+,~ y - x  

Set y = z - x  in the first integral, y = x - z  in the second, and y = x + z  in the third; then the 

first two may be combined to give 

0(x)_ ~r = 1 lim (= F ( x + z ) - F ( l x - z t )  dz, 
6 3er ~--,o 3~ z 

and F ( x + z ) - F ( l x - z  [) ~ 2F'(x)z as z---~ 0. Accordingly, 

{ z 1 sin 0 
: ~ _  1 ( =  1 Ix-zl  Jo 

O(x) 
6 3~-./0 z l ~  x+z  fo Ix-zlsinO dz, 

and we let z=xu  to obtain (3.9). 

Now let J be as in (3.8), and let l(u) denote the logarithm in (3.9). For u~<l, 

sin 0 
1 - u  ax(I-.) 

l (u )= log  ~ 1-1 (xO-.)  ' , 

sin 0 
dO 

where 

f xtl+.) sin 0 ~< 2xu sin (er/6+m), 
( l - u )  

fo x"-') sin 0 >1 x (1 - u) J. 

Hence 

[ l + u  ( 1 - u ) J  / J  

= log ~ 1 + 2u sin Or/6+m)-2uJ  
( (l+u)J J 
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2u ~sin(er/6+m) 1} (u~< 1), 
T+- u L J 

Similarly, for u~ > 1, 

l(u) ~< log/i_r 2 sin (:d6+m)-2J ~ ~  j ~< l ~ u  ( sin j(ed6+m)-1}. 

Using these bounds for l(u) in (3.9), we obtain (3.10). 

Two more inequalities. By Jensen's inequality 
function on [0, :d3], 

s u p l f 0 '  ' ~< s inO~<supsin( l fo  O) s i n ( 6 + p ) .  

Also, the elementary inequality 

implies that 

inf --1 [Y sin 0 1> 
Y J o  

sin O(z) >1 sin (:d6+m) 
O(z) :r/6+m 
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and the concavity of the sine 

zd6+m Y Jo ~/6+m 

(3.11) 

(3.12) 

3.2. Manipulation 

LEMMA 3.4. p<0.086. 

Proof. (i) First, we use Lemma 3. l and (3.11) in Lemma 3.2 to obtain 

p <- c 2 log sin (:r/6+p) _f(p), say. (3.13) 
CI 

Here p 6 [0, :r/6], and f is a strictly positive, increasing, concave function on [0, :r/6]. 
Moreover, f(0.398) < 0.398, so that f(p) < p if p E [0.398, zd6]. But then (3.13) shows 
that p < 0.398. 

(ii) Since m ~< :r/6, it follows from (3.12) that 

sinO~ >-sin (:'r/3) ( 6 - p ) .  '~ M3 

Now using this and (3.11) in Lemma 3.2, we obtain 
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p ~< c 2 log 2:z sin (zr/6+p) = g(p), say. (3.14) 
3V'3- (M6-p)  

Then g is strictly positive and increasing on [0, 0.398]; it has one point of inflexion 

there, and is concave to the left of that point and convex to the right of it. Moreover, 

g(0.086)<0.086 and g(0.398)<0.398, so that g(p)<p i fp E [0.086, 0.398]. But then (3.14) 

shows that p<0.086. 

LEMMA 3 .5 .  m <~ Qp, 

where 

C 3 
Q = < 2.053. 

n /6-c3-0 .086 

Proof. Using (3.12) in Lemma 3.3, we obtain 

m<~c~{ .zr/6+m 1}, 
~ /6 -p  

or, equivalently, 

c3P 
m ~  

~/6-c3-- p' 

and we apply Lemma 3.4 to the denominator of this bound, recalling from Lemma 3.3 

that c 3 < 0.2943. 

THEOREM 3.6. p=0.  In other words, st~6 is the only solution of  (2.2) and (2.3). 

Proof. Using (3.11) and (3.12) in Lemma 3.2, we obtain 

p <~ c 2 log (yr/6+m) sin (3r/6+p) 
(M6-p)  sin (~r/6+m)" 

(3.15) 

Now t/sin t is an increasing function on [0,M3]; hence Lemma 3.5 imolies that 

Jr~6 + m ~/6 + Qp 
~< - F(p); say. 

sin (:r/6+ m) sin (M6+ Qp) 

Let po=0.086; by Lemma 3.4, it is sufficient to consider p E [0, p0]. Now F is convex on 

[0, Po]; hence 

3+R,, 
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where 

Po sin(:r/6+Qpo)- <0.459. 

Then, by (3.15), 

p ~< c 2 log (:r/3 +Rp) sin (:t/6+p) = G(p), say. 
:r/6-p 

Here G(0)=0, and for p E [0,po] 

[R ,} G'(p) = c z ~/3+Rp I- cot(:r/6+p) + zr/6-p 

c J 3R + cot--~-~ + 1 } < 0.84. 
<" 2 ]. :r 6 zd6-p-----~ 

Therefore G(p)<p i fp  E (0, Po], and (3.16) now shows that p=0. Consequently 

f0 (6) O- =0  for all xE (0, ~), 

and, by differentiation, O(x)= :r/6. 

(3.16) 

Appendix. Adverse properties of the integral operator for v = 0 

Let T denote the operator called To in section 1.2, and defined by 

( T ~ ) ( s ) = l f o ~ K ( s , t ) ~ d t ,  0<s~<:r .  

Jo sin V 

(A.1) 

Here we present three properties of T which have frustrated our attempts to prove by 

means of fixed-point theorems that, for a wave of extreme form (a) tp(s)----~ n/6 as s--~ 0, 

(b) the profile function Y is convex (equivalently, that ~ is non-increasing on [0, z0). We 

begin with a method of evaluating T~ explicitly for certain functions V. 

A.I. Explicit evaluation of TW 

As before, we write 9 =  {~ E C: [ ~ I < 1 } and r is. 
LEMMA A.1. Assume that 

14-812904 Acta mathematica 148. Imprim6 le 31 aot~t 1982 
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w 

(a) w is holomorphic on ~ \ {  1}, 

(b) there exist positive constants  M and d such that 

Iw'(OI ~MlG-1 l -2+6 for  ~;E ~ \ { 1 ) ,  

(c) w(r is real f o r  real ~ E [ - 1 ,  1). 

Then, with the notation w(ei ')=a(s)+ib(s)  (where a and b are real), 

b(s) = - K(s, t) a'(t) dt, 0 < s <~ 3. 

Proof. Define 

Wn(~) = W for n = 1,2 . . . . .  

and let w.(e iO=a.(s )+ib . ( s ) .  Then w. is holomorphic on ~ and real on [ - 1 ,  I]. The 

characterization (1.4) of  K(s, t), and the Cauchy-Riemann equation 

Ov n/OQ=-Q-~ Oun/Os (where w n=u. + iv .), imply that 

b,(s) = - K(s, t) a'~ (t) dt, 0 <~ s <~ 3. 

Now bn(s)-* b(s) and a'(s)---~ a'(s) as n---~ ~ with s E (0, Jr]; we claim that the lemma then 

follows from the Lebesgue  dominated convergence theorem. Without loss of  general- 

ity, let d E (0, 2]; then 

"-Z t n e " - ,  
n + l [  n + l  

<- K(s, t) M ~z sm-~--) = F(s, t), say. 

Here K(s , t )=O( t )  as t---~0, for fixed sE(0 ,~] ,  and K(s , t )  has merely a logarithmic 

singularity at t = s, so that F(s,.)  E L 1 (0, ~) for s E (0, :r], 

LEMMA A.2. K ( s , t ) c o t 2 d t = e r _ s ,  0 < s ~ < ~ "  

Proof. The function w0(~)=- log (1-~)  satisfies the hypotheses  of  Lemma A.1 if 

we choose arg (1 - r  E (- :r /2,  :r/2) for r E ~ ,  and then, for s E (0, :r], 

1 s = 1 ( : r - s ) .  a o ( S ) = - l o g ( 2 s i n 2 ) ,  - a~ ( s )=-~-co t -} - ,  bo(s) 
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LEMMA A.3. Let w be as in Lemma A.1, with 6>~1 in condition (b), and also 

restricted as follows: (d) s exp {-a(s)}---~ 0 as s--, O, (e) the functions a'(s) sini(s/2)and 

a(s) are so small that the equation 

s i n v d ( s ) = { l c o s 2 - a ' ( s ) s i n 2 } e - a ( ' )  , 0 < s  ~<zr, (A.2) 

defines V/(s) E [0, ~r/2) for s E (0, zr]. (Note that a'(s)-~ 0 as s---~ Jr.) Then 

(Tv? ) ( s )= l ( z r - s )+ lb ( s ) ' 3  0<s~<:r"  (A.3) 

Proof. From (d) and (e) we have 

f0 t sin = s i n t  e_~t), 
2 

si_sn~(t____~)_ 1 cot_~__a'(t) .  

f0 si n ~P 2 

Hence,  using Lemmas  A.2 and A. 1 to evaluate the integral in (A. 1), we obtain (A.3). 

A.2. Non-compactness 

This section is included to excuse our failure to exploit the wide variety of  fixed-point 

theorems now available for non-linear compact  operators.  Let  

A = {~0 E C[0, ~r] : ~p(0) = :rr/6, ~0(x) = 0, ~p(s) i> 0). 

An attractive proposit ion is to prove that T has a fixed point in A, and thus to obtain 

simultaneously the existence and regularity of  an extreme wave. 

A small difficulty is that T does not map A into itself (because sin ~p(t) < 0 when 

~r<~(t)<2Jr), but  this is easily overcome.  Defining ~. truncation operator J by 

~p(t) if 0 ~< vd(t) ~< zr, 
J~p(t) = l~r if ~p(t) > ~r, 

we may replace the operator  equation cp= T(p by 

q~= ToJq~, ~oEA, (A.4) 

because a priori bounds can be obtained to show that every solution of  (A.4) is also a 

solution of  tp=Tq0. The real difficulty, which obstructs further progress along these 

lines, is shown by the following theorem. 
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THEOREM A.4. The operator ToJ maps A into itself, and ToJ:A-->A is continuous 

but not compact (the norm being that o f  C[0, :t]). 
Proof. We omit the proof that ToJ maps A into itself continuously. (Given (1.8) or 

Lemma A.2, and step (i) in the proof of Theorem 2.1, it is not difficult to prove that 
(ToJ*p)(s)-->:r/6 as s-->0, when ,pEA, and the rest is routine.) To prove the non- 

compactness, we use Lemma A.3 and choose 

w(~)=c(1-~y, aE(0,1], 
a 

where the constant c > 0 is so small that condition (e) holds (c= 1/2:r will serve). Then 

sin*p~(s) = 

{ l c ~  (2 s i n 2 )  asia (1 +a ) ( : r - s )}  exp { _ c  (2 s i n 2 ) a c o s  a(2-s) .} ' 

Note that the first factor is bounded below by �89 �89 Is) a and above by 

�89189 the exponential does not exceed I, and equals 1 for s=O. Thus *p~ EA for each 

aE(O, 1], and the set {*pa:O<a~<l) is bounded in C[O,:r]. Now, by (A.3), 

(T*p~)(s)= (~r-s)- 2sin-~- sin 2 " '  

so that 

(T*pa) (0) = & for all a E (0, 11, 
6 

and 

1- -C 
(T*p~ (s)~ ---6- (~-s) as a-->0 with sE(0,:r]. 

Hence the sequence { T*pl/n} (in which a=  l/n and n - 1 , 2  ....  ) contains no subsequence 

convergent in C[0, ~r]. 

A.3. T preserves certain oscillations of unbounded variation 

Previous estimates (summarized in section 1.2) of extreme waves did not rule out 

certain functions tp that have oscillations of unbounded variation as s--> 0. In particular, 
functions behaving near s=0 like :d6+41 sin (logs) were compatible with those estimates, 
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The following example shows that T does not have a smoothing effect on such 

functions, but maps them into functions of the same general kind. We choose 

w(~) = ccos {log(1,q)} 

in Lemma A.3 to obtain 

EXAMPLE A.5. I f  

, S ~ - a ( s )  s,n ,,,,s, -- a' ,s ,  sln )  , 

where 

0<s~<:r,  

a(s)= ccos I l o g ( 2 s i n 2 )  }cosh :r-s 
2 ' 

and c is a small positive constant, then 

I (T~0) (s) = (~-s)  + c sin log sinh 
3 2 

A.4. /" fails to preserve monotonicity 

Define the closed, convex set B c A  by 

B = {~O E A : ~  is non-increasing on [0, :t]}. 

Any attempt to establish the convexity of the wave profile by finding a fixed point of T 

in B is thwarted by the failure of T to map B into itself. The following example shows 

this failure. 

EXAMPLE A.6. Define 

w(~)=c(1-~) a + 2 c o s { | o g ( l - ~ ) } ,  ~ ( ~ ,  

where k > 2  3/2 cosh (~/2), while c, a E (0,�89 are sufficiently small. Then the hypo- 

theses of  Lemma A.3 are satisfied, and ~0'(s)<0 on (0,~]. However, T~ is not 

monotone; in fact, 

liminfs'-a~(TV/)(s)<Os-,o as and limsSUpS'-a-~s (T~V)(s)>O. 
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T he  d e m o n s t r a t i o n  is by  di rec t  calculat ion.  H o w e v e r ,  this example  has a weak-  

ness:  the osci l la t ions (of  f o r m  s a sin (log s) with a small) tha t  o c c u r  in ~(s)  and TV/(s) as 

s ~ 0  canno t  o c c u r  in a w a v e  o f  ex t r eme  form;  they  are ruled out  by  the es t imate  

q~(s)-et/6=O(s r) tha t  we  quo t ed  f r o m  [1] in sec t ion  1.4. 
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