THE MINIMUM OF A FACTORIZABLE BILINEAR FORM.

By
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1. Let
Blxz, 9, 2, ) =(ax + By) (yz + d1) (1.1)

be a factorizable bilinear form, wheré «, 8, y, d are real, and =z, y, 2, ¢ take all
integral values subject to

xt—yz=*1. (1.2)

We suppose that #/=ad — 8y 0, and that B does not represent zero. Denoting
the lower bound of |B(z, 9,2 t)| by M(B), we have the following theorem,
which is due to Davenport and Heilbronn®:

Theorem.

0 uB <354, (13
2V

and equality occurs 1f and only if B s equivalent to a multiple of

Bl=(x+ 1+2V§ y)(z+l——y—gt), (1.4)

2

tn which case the lower bound is attained.

(i1} For all forms not equivalent to a multiple of B,

2—V2

M(B) < E

| 4], (1.5)

and equality occurs if and only if B is equivalent to a multiple of

! Quarterly Journal 18 (1947), 107—123.
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B2=(x—V5y)(z + V24 (1.6)

n which case the lower bound is attained.

(iii) For all forms not equivalent to a multiple of B, or By,

Va—1
M(B)= ——|4|, (1.7)
and equality occurs if and only if B is equivalent to a multiple of
By= (a—V2y){e + 3—V2)1}, (1.8)

in which case the lower bound is attained.
(iv) For any & > o, there exists a set of forms B for which

Vz—1
3

M(B)>( —d)|d|, (1.9)

and the set has the cardinal number of the continuum.

They proved these results by obtaining relations between the valaes as-
sumed by B and those assumed by the associated quadratic form

Qx, y)=(azx + By)(yx + dy) (1.10)

for coprime integers z,y. I give here an alternative proof; the method is
essentially the same as that which I used in a recent paper’ on the analogous
problem of determining the lower bound of | @ (x, y) @ (z, t)| for integral z, y, 2, ¢
subject to (1.2).

The proof exhibits the dependence of the result (iv) on the existence of a

Va—1
3

constant 7 >0 such that | By(z, v, 2, )| > ( + 17) | #] for all but a finite

number of values of =z, ¥, 2, ¢.

2. The associated quadratic form @, defined by (I1.10), has discriminant
D=(ad— gy =4°>0, and so is indefinite. Also @ does not represent zero,
since B does not. Let then?

ce o P=2, Q1. Po, Pyy Pay - - - (2.1)

! “The minimum of the product of two values of a quadratic form” (I1), Proc. London Math.
Soc. (3) 1 (1950).

? For these results, see I. SCHUR, Sifz-Ber. K. Preuss. Akad. Berlin (1913), 212—231
(214—216), whose notation 1 have adopted.
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be the chain of reduced forms equivalent to ¢, where

o=@, y)=(—10a, 2 + boxy + (— 1P apy® =0, 1, t2,..) (22)

so that, supposing a,>> 0, all the nuombers a,, b, are positive; further

bv + bv+1 _
2 ay+1

ke (2.3)
is a positive integer. We set
VD +b, VD —b,

'y = —y Sy =7 3 (2'4)
2 @y+1 28,41
whence
ay b
=y Sy —— =1y — 8y, —— =Tyt 8. (2.5)
Ay+1 Ay 41 Ay+1

From (2.3), (2.4), we deduce that

— — ks, (2.6)

Ty+1 Sv+1

ry=h, +
and so
rV:(k’Va k"’+11 k1/+2) .- ')v SW:(Oy k'v—l, k"’_Qi .. ) (27)

in the usual notation for continued fractions. We also write

r',v:’"v_'sz(o, kv-}-l, k1'+2, . .), (2.8)
so that
0< 7y <1, r,>k, = 1. (2.9)

We denote by (K) the infinite sequence of positive integers
(K): R S SRV N R (2.10)

K) is then determined by @, and hence also by B; conversely, (K) determines,
to within an arbitrary multiple, the class of forms equivalent to ¢, and hence
also the class of bilinear forms equivalent® to B.

- Finally, we define

4 ’
a T @ 17 AD Sy AP 1—8&  ,

Tt Y T s T =— " {vp=o0, k1, £2,...) (211
4 7+ 8 4 T S Y T ( 1, 2,000 (211)
Clearly, by (2.9), .

47 >o. (2.12)

! Two bilinear forms are said to be equivalent if the corresponding quadratic forms are
equivalent under integral unimodular transformation. It is easily seen that equivalent forms as-
sume the same set of values for integral =, g, z, ¢ satisfying (1.2).
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We now establish the following lemma, which constitutes the basis of the
proof of the theorem:

Lemma 1. (i) Suppose that > o, and that

N\

| B,y 2 0] = 7] (2.13)
Jor all integral x, y, z, t subject to (1.2). Then the inequalities
Ay 2'%, ie. ko + 8y <{A— 1)7; (2.14)
A‘,”Z;—, ie. B+ A+ 1)7 + 8 <4 (2.15)
AP = e, b+ 7 < (A= 1), (2.16)
AP =T ie. kA1t 1) <A (2.17)

hold for all v=o0, + 1, + 2,...

(i) Suppose that A= 2(Vz + 1). Then if the inequalities (2.14)—(2.17) hold for
all v, (2.13) is true for all integral x, y, 2, t subject to (1.2).

Proof. (i) Suppose that (2.13) bolds. Then, since equivalent forms assume
the same set of values,
IBV‘Z(—;—‘ (v=o0, 1, +2;...) (2.18)
where B, is a bilinear form corresponding to the reduced quadratic form g,.

From (2.2) and the relations (2.5), we have

[—av1(rvz + y)(s,x—y) if v is even

%:l avi1(rve—y)(svx + y) if v is 0dd, (2.19)
and so
B~B,~* avi1{rix + y)(sv 2z — ), (2.20)
| 2= (Bs)|=ay41(rs + s1). (2.21)
(2.18), (2.20), {2.21) now give
I(r.,x+y)(s.,z——t)]21 (v=0, + 1, +2,...). (2.22)

id!

Ty + 8y
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The inequalities (2.14)—(2.17) now follow at once, since they are the partic-
ular cases of (2.22) corresponding to (x, y, 2, t)=(1, — k., 0, 1), (1, —ky—1, 0, 1),
(0, 1, 1,0), (0, 1, 1, 1) respectively.

(i) Suppose now that A= 2(V2 + 1), and that

[B|<|—5;~I (2.23)
for some integral xz,, y,, 2,, {, satisfying (1.2). Lemma 1 (ii) will follow if we

then prove that at least one of the inequalities (2.14)—(2.17) is false for some ».

We apply to' B the integral unimodular transformation (;’ }';') and so obtain
RS |

an equivalent form
B=@X+8Y)yZ+41), (2.24)

say, which satisfies (2.23) with (X, Y, Z, T)=(1, o, o, 1), i.e.

|a6|<k%l- (2.23)
The quadratic form associated with B’ is
Q=eX+BY)yX+0Y)=aX?*+bXY+cY? say. (2.26)

Since |4 |=|ad—By| |b|=|aé + By|=|(ed —By) —2ad|, we deduce from (2.25)
that

2 2
(I—I)|4|<|b|<(, +I)|"|-

Squaring (since I —-—z— > o) and using the relation b*— 4ac=D(Q')= 4% we find

(I——z—)s~1<4—;)f<(1+%)2—1. (2.27)
2
A
either |a|<3VD or |c[<§Vﬁ._%.

Suppose firstly that |¢|<<3VD. If we apply to @ the parallel transformation

By hypothesis, 2=2(Vz + 1), 1 + = <V2, and so (2.27) gives |ac|<€. Thus

X=z, Y=—px+ y (p integral), (2.28)

we obtain a form a'x® + b’ ay + cy?®, say, equivalent to ', for which ' =b—2pec.
We choose p so that 0 <—b+ VD + 2pc<z|e|; then, since b’'=VD implies
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that ¢ represents zero, we have
o<VD—V <2]el (2.29)
This gives b’ > VD —2|¢|> 0, whence also
o<VD—¥ <z2|c|<VD+V. (2.30)
Now (2.30) is just the condition that the form a’x* + b’ xy + ¢y® be reduced. Thus
¢ (X, Y)=¢.(z 9

for some », and so, by (2.19) and (2.21),

B (X, Y, Z,T)|_[(hety) (2T |hett)lszFyl
= - or (2.31)
| 4| Ty + 8 o + 8
where, by (2.28),
X=x, Y=—pux+y, Z=z, T=—pez+1t (2.32)

Suppose next that |a]<3VD. Then a precisely similar argument shows
that we can reduce @ by a transformation X=z—py, Y=y (p integral), and
so {2.31) still holds for some », where now

X=x—py, Y=y, Z=2z—pt, T=t. (2.33)

By hypothesis | B'| < % for (X, Y, Z, T)=(1, 0, 0, 1), i.e. for

(w’ y! Z’ t)=(1’ p, o? I) or ([’ O’ p’ I)’ (2'34)

according as (2.32) or (2.33) holds. On substituting (2.34) in (2.31), we see that,
for some integer p and some »=o0, + 1, +2,..., one of the four following

inequalities must be true:

[l —p| 1 |s,—p| 1

#y + Sy <'l’ 7y + 8y <l’ (2.35)
rlps—1l_1  slpr=il _1

Tyt 8y <7 Ty + 8 <1 (2.36)

Since, by (2.7), k<7, <k, + 1, 0<s,<1, the least value of |r,—p|.is
given by p=£k, or k, + 1, and the least value of |s,—p] is given by p=o0 or 1,
the corresponding values being |7, —p|=7, or 1—7,, |&—p|=8 or 1—s,.
Hence, if either of the inequalities (2.35) holds for some p, it follows that one
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of the four numbers A¥ is <>, ie. that one of the inequalities (2.14)—(2.17)

l )
is false.
. . I 1 . .
Finally, (2.6) gives r,—1=#ky-1 + T S= kv—1, and the inequalities (2.36)
can be written as
|81'-1—p + l.v—ll 1 I"v—l—p"‘kr—ll I
< LI
Pp—1 + Sp1 A el + Sp—1 A

But these are of the same form as (2.35), with »—1 in place of », and p re-
placed by p + k1. Tt therefore follows, as in the preceding paragraph, that if
either of the inequalities (2.36) holds, then one of (2.14)—(2.17) (with »—1 in
place of ») must be false.

3. We now take ~
1=3(V2 + 1)=7.24264 . . . (3.1)

and show that the inequalities (2.14)—(2.17) can be true for all » only if (K) is

one of three sequences’

(K)): wo[1]w (3-2)
(K): w[2]ee (3-3)
(Ks): °°[2]7 I, 1, [2]°°' (34)

Applying Lemma 1 (i), we shall then have the following result:

Lemma 2. The inequality

gl V-1
Bl< (5:)

can be satisfied for all forms B other than those corresponding to the sequences
(Ky), (Ky), (Ky).
In this section we therefore suppose that (2.14)—(2.17) are true for all »,

where /1=3(V5 +1).

Lemma 3. Every k, is 1 or 2.

! The notation co[a]ee is used for the infinite sequence each of whose elements is a; cola]
and [a)o» are the semi-infinite sequences with every element @, written to the left and to the
right respectively. n«] or [a]s, where n is a positive integer, will denote a sequence of n elements q.
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Proof. Suppose firstly that some &, = 4. Then, by (2.9), r» + 8, >k, = 4, and

one of r,, 1 —7, must be <3} Hence either AU or 4% is <} < %, contradicting
either (2.14) or (2.15).
Thus every 4, < 3. Suppose that some %,=3. Then

sv=(0, kv, .. .) > =1,

and either 7, <} or 1 —17, <§.

If 7, <3, (2.14) gives
3+E<(A—1)4,

or A> 7.5, which is false. If 1—, <3}, », =3 and (2.15) gives
3+3A+)+3<

or 2> 7.5, which is again a contradiction.
Thus 4, # 3. for any », and the lemma is proved.

Lemma 4. If k.=2, then
rm<2—Vz=(0, 1, I, 2a). (3.6)
Further, if v,=2 — V2. then s,=V2—1 =(6, 20).
Proof. We obtain from (2.16) and (2.15) in turn
by +1=@A—1)s<iA—1)—@A—1)k—@A*— 1), (3-7)
whence
0<i{A--1)— Ak, — 227},

Ary<A—1—h.
On substituting k,=2, A=3(V2 + 1), this gives
< 1—%=2—V§.
If now #,=2— V2, there is equality throughout in (3.;), whence
(A—1)so=lhs + 1%,

(3Vz+2)s,=4—V2,
s=Vz2—1.

Lemma 6. A4 subsequence . .. 2,1, ... of (K) must form part of a subsequence

e n2,1,1,2, ...,
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Proof. By hypothesis, #,=2, ky+1=1 for some ». Then, by Lemma 4,
o =(0, 1, koya, brts, .. )<2—V2=(0,1,1,2,2,...)

Comparing partial quotients in this inequality, we find k.42 < 1, whence k,;a=1;

then k,+3 = 2, whence, by Lemma 3, k,y3=2.

We now exclude the special sequences (K,), (K,) defined in (3.2), (3.3). From
Lemma 3, we then see that each of the numbers 1 and 2 must occur in (K),
and so also a subséquence ...1,2,... or...2,1,.... By the symmetry in
7y, s» of (2.14)—(2.17), we may suppose that (K) contains a subsequence...2,1,....
Lemma 5 now establishes the existence of a subsequence

e 20, 1, 1,2,. .. (3.8)
of (K).
If now (3.8) extends to the right as ... 2., I, 1, [2]w, We have

7=(0,1, 1, 20)=2 — V2,

whence, by Lemma 4, s,=(0, 2«), and so (K) is (Kj) ((3.4)). By symmetry, if (3.8)
extends to the left as o[2], 1,1, 2,...,(K) is again (K,). Thus if we now ex-
clude also the special sequence (K,), there can only be a finite number of ele-
ments 2 immediately to the right and to the left of (3.8). Hence (K) must con-
tain a subsequence

co Lal2l, 1, 1, [2ms 1, L.,
and so, using Lemma 5, a subsequence

2,1, 2] 1, 0 f2)e, 1, 0, 2, (3.9)

where m, n are finite integers =1.
We now complete the proof of Lemma 2 by showing that the existence of a
subsequence (3.9) of (K) leads to a contradiction with the inequalities (2.14)—(2.17).
Suppose firstly that m is even. Then, taking %,=2 as the last 2 of the block

a[2], we have
!’
rv=00,1,1,[2]n, 1, 1,2,...)

\

{0, 1, 1, [2]m, 1, 1), an even convergent,

=0, 1, 1, [2]m+1)

vV

(o,
(01 I, 1, 2°°)7

contradicting (3.6).
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Thus we can suppose that m is odd and, similarly, that #» is odd; by
symmetry, we may further suppose that m = n.

We define the numbers «; for i=o0, 1, 2, ... by
U=0, Up=1, ..., Uipe=2U+1 + u; (2 =0). (3.10)
“; . . . . -
Then clearly W= “- is the ¢'® convergent to the continued fraction (0, 2,)=V2 —1,
i+1
and so
o=wy<w,<w, <  <Vz2—i< <w,<w,<w =4 (3.11)

Taking k,=2 as above, we then have

’

rv=1(0, 1, 1, [2]m 1, 1,2,...)
>(0, 1, 1, [2]a, 1, I, 2), an even convergent;

SUm+1+ 2 Un

a simple calculation shows that the value of this continued fraction is )
13 Umtrt 5 U

whence
, 8+ 2wn
o> P (3.12)
Also,
sv=1(0, [2]u=1, 1,1, 2,...)
> (0, [2]s-1, 1, 1), an even convergent,
= (0, [2]n) = wn;
since m =, (3.11) shows that wn < w,, whence
Sy > wm. (3‘13)
(2.15), with (3.12) and (3.13), now gives
8+ 2wp
_— m <A
2+ (A + 1)13+5wm+w <
or
l>5w'"+25w'"+34- (3.14)

3wn t+ 5§

The r.h.s. of (3.14) is an increasing function of wn for wm = 0, since its derivative is

a positive multiple of 15w} + 50wm+ 23 > 0. Hence, since, by (3.11), wn>V2—1,
we deduce from (3.14) that

5(V5——1)2+ 25(V5—I) + 34_24 + 15V5=

e 3(Vz—1)+ 3V2 + 2

3(V2 +1)=2.
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This contradiction shows that a sequence (3.9) cannot occur in (K); the proof of
Lemma 2 is therefore complete.

4. We now examine the special sequences (K,), (K,), (K,) and the corre-

sponding classes of bilinear forms.

(l) If (K) is (Kl): °°[I]°°‘ k»=1 and 7{51:'91’:(0, Iw)zysz_ l, 7'w=V52+ : for
all ». By (2'5)) 2 =1y Sy=1, bﬂ' =Py — & =1, so that
av+1 ay+1
gv=alz®+zy—y’=a (x + 2 +2V5 4/) (x +1=¥5 —21/5 y)

Thus B is equivalent to a multiple of B1=(x + %‘-/—Sy) (z + 1_271/5 t).

Also, since 7, s, >3,

Ty I—1‘L=3—V§ Sy 1—sv=3—V§

et sT s 2V T mts T nts, 2Vs » for all ».
w=3—Vs .
Hence, by (2.11), A® = , and so, by Lemma 1 (ii),
| 2V
3—Vs
B |==—F——|4].
I ll ZVS l l
Since B,(1,0, 1, 1)=3_2V5, | #4(B,)|=V3, it follows that
— Ve
M(B)-3—23| 4|, (4.1)
2V

and that the lower bound is attained.

(i) If (K) is (K,): w[2]w, k»=2 and 7, =s,=(0, 2ee)=V2—1, r,=V2 + 1 for

ay hv
=TySv=1,

Ay+1 Ay+1

all v. By (2.3), =r,—s8 =2, so that g,=a(2*+ 229y —y®) ~

~a(@®—2y")=a(x—V2y)(z+V2y). Thus B is equivalent to a multiple of
B2=(x——V5y)(z + V2t).

Also, since 7, s, <%, the least of the expressions 4¥ is

Vie1 2—V3

Afvl) — Asys) — — ,
2V2 4
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whence, by Lemma 1 (i),

2—V2
4

|B,| = |4].

Since B,(1,0, —1, 1)=V2—1, | 4(By)|=2V2, it follows that

2—V2

M (Bz) = 4

|41, (4.2)
and that the lower bound is attained.

(iif) Suppose finally that (K) is (K,): «[2], 1, 1, [2]e. Taking %, =2 as the
last 2 of the block «[2], we have #1=(0, 1, I, 2e)=2 — V2,

8= (0, 2»)=V§_— I, =2+ 7'1=4——V5,
whence, by (2.19),

pi=a{la—V2)e—y}{(Va—1)z + gy}~ ale—V2y){z + (3—V2)y}.

Thus B is equivalent to a multiple of By=(z—Vz2y) {z + (3 ——VE)t}.

In order to show that the (attained) lower bound of | B,| is Va—1

need the following lemma:

| 4], we

Lemma 6. If, in any sequence (K), kv-g=lky1=ke=kyy1=kor2=2, then

L4

w> -1 ;-
A = (t=1, 2, 3, 4).

Proof. By symmetry, it suffices to show that (2.14) and (2.15) are satisfied
with A=7.1; and since 7,=(0, kv41, .. .)=(0,2,...) <}, 1—7r,>17,, and so itis
sufficient to show that A = 7.1, i.e. that (2.14) is true. Now
rv=(0,2,2,kpss3,...)>(0,2,2)=2; 5,=(0, 2, 2, ks, ...) < (0,2, 2, ky—s3) < (0,2, 2,1)=4.
Hence (2.14) is certainly true if

2+3<(A—1)8,
ie if A=4%{=y.07... and so in particular if A=7.1.
Our object, after Lemma 1 (ii), is to prove that the inequalities (2.14)—(2.17)

hold for all » if (K)is (K,) and A=3(V2+ 1)=7.24 ... Suppose first that k&,
occurs in the subsequence

20), 20), L2y 1, 2, 2 (4.3)

of (K,). By symmetry, we need consider only the values o, 1, 2 of ».
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As was shown above, ri=2—V2, §;=Vz—1, r,=4 — V2. Thus 1 —#]=s,=

~ . N e Vz—1
- _ (7) == 1_ = .
V2—1 <3}, and the least of the expressions A is P, 3
Using (2.6) (with v=o0, k,=2), we find that
s Vs )
ro=32 + Vz, ”:4__*11%, so=V2—1
14 14

The least of the expressions A{" is therefore

A= % _ a+Vz Va—i
oot s 18+ 35V2 3

Again using (2.6) (with v=1, k,=2), we find that

e ,rh=—, Sg=V2 —1.
2 2
) . 1—ry V2—1
The least of the expressions A is therefore e 3
e <2
If now k%, does not belong to the subsequence (4.3) of (Kj,), then clearly
ky_2=k,—1=k,=ky+1=2, whence, by Lemma 6, 4" = —lf > [2?___{
We have therefore shown that A% = Ve—1 for all », whence, by Lemma 1 (ii),
V2—1
| By| = ———|«].
3
Since |By(1, 1, 1,0)|=V2—1, | #(By)|=3, it follows that
Vz—1
M(B,)= 3 [4], (4.4)

and that the lower bound is attained.

5. Parts (i), (ii), (iii) of the theorem now follow at once from Lemma 2 and
(4.1), (4.2), (4.4), since the special sequences (K,), (K,), (K;) have been shown to
correspond to the classes of bilinear forms which are equivalent to multiples of
B,, B, B,, respectively.

It remains to establish the existence of the set of forms B satisfying (1.9)
for an arbitrarily assigned ¢ >o. This we do by “approximating’ to the sequence
(Kg) by sequences of the type

(K'): N I, 7@[2]1 I, I, "1[2]1 I, I, [z]mn I, I, [2]",,2, L, I,..., (51)

where ... ny, n, m;, my, ... are sufficiently large positive integers.
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If now %, does unot belong to a subsequence
2,2,1,1,2,2 (5.2)
of (K*), Lemma 6 shows (as in § 4 (iii)) that the corresponding
1 _ Vz—1
—_— > .
7-1 3
Suppose next that %, belongs to a subsequence (5.2) of (K*). This sub-

A =
v

sequence. forms part of a subsequence

ol2], 1, 1, [2), (5.3)
of (K*) where p, ¢ are some two of the integers ... ny, n;, m;, my, ... For suit-
ably large p, ¢, the values of 71, s, (for %, belonging to (5.2)) are as close as we
please to the corresponding values of 7, s, found above for (K,), since they
tend to these values as p and g tend to infinity. From the continuity of the

expressions A and the fact, proved above, that they are = ! When (K)

is (K,), it follows that
apsTEmiogy (5.4)
provided that p, ¢ > N=N(d).
We have therefore shown that (5.4) is true for all » provided that the
integers ... my, %y, my, my, . .. are > N. Then, by Lemma 1 {ii),

V2—1
3

|B‘]>( -—56)|41,

where B" is a bilinear form of the class corresponding to (K*), whence

This proves part (iv) of the theorem, since the set of sequences (K*) with

M(B*) = (

... My, My, My, Mg, . . . > N clearly has the cardinal number of the continuum.

It was suggested to me by Professor L. J. Mordell that the methods of
this paper might be extended to deal with more general classes of forms. Such
an extension is in fact possible, and I hope shortly to publish some results on
the minimum of a general bilinear form in four variables.




