
Acta Math., 172 (1994), 163-255 

Classification of amenable subfactors of type II 

by 

SORIN POPA(1) 

University of California 
Los Angeles, CA, U.S.A. 

C o n ten t s  

0. Introduction 
1. Basics of the theory of subfactors 

1.1. General inclusions 
1.2. Subfactors of finite index 
1.3. The s tandard invariant (the paragroup) 
1.4. Core and model inclusions 

2. A representation theory for subfactors 
2.1. Definition and motivation 
2.2. Basic construction for representations 
2.3. Smooth representations 
2.4. Standard representations 

3. Amenabli ty for inclusions of type II1 factors 
3.1. Definitions and motivations 
3.2. Basic properties 

4. Approximation of amenable inclusions by higher relative commutants 
4.1. Statement of results 
4.2. A F01ner-type condition 
4.3. Local approximation 
4.4. Global approximation 
4.5. Bicommutant condition and existence of hypertraces 

5. Classification by s tandard invariants 
5.1. The main result 
5.2. A list of subfactors of index 4 4  
5.3. Strong amenabili ty for paragroups and s tandard invariants 
5.4. ~ r t h e r  characterizations of amenabili ty for inclusions 

Appendix 
A.1. A local quantization principle 
A.2. A per turbat ion result 

(1) This work was supported in part by an NSF Grant DMS-8908281. 

12-945202 Acta Mathematica 172. Imprim~ le 28 juin 1994 



164 s. POPA 

0. Introduct ion 

A central problem arising in the theory of subfactors, after Jones initiated it in the early 

80's, is the classification of subfactors N C M  of finite index of the hyperfinite (or ap- 

proximately finite dimensional) factors M. Besides its intrinsic interest, the classification 

of subfactors provides a natural approach for the problem of classification of actions by 

groups of automorphisms on (single) yon Neumann algebras as well. Further motiva- 

tions towards solving this general problem comes from low dimensional quantum field 

theories (ILl], see also [FRS], [Fr]), as the main problems in the theory of superselection 

sectors ([DHR]) can be formulated in terms of the classification of endomorphisms of 

finite statistics (= index 1/2) of the hyperfinite factors. The physically relevant invariant 

for a subfactor, that can be "observed" in practice, is the lattice of its higher relative 

commutants {M~AMj),,j in the Jones tower N c M C M 1  ... ([Po5], [GHJ], [J3]). We will 

call this invariant the standard invariant of N c M  and denote it GN,M. The inclusions 

between these higher relative commutants are described by Jones' principal (or standard) 

graph FN,M ([J3]). An abstract characterisation of the invariant GN,M is given in [Oc2] 

as the paragroup of all irreducible correspondences (bimodules, see [C3]) generated under 

Connes' composition (or fusion) rule by N c M ,  and FN,M as its "fusion rule matrix" (a 

Cayley-type graph). 

We prove in this paper that for a large class of subfactors, that we call strongly 

amenable, this invariant is a complete invariant. All the examples of subfactors com- 

ing out this far from quantum field theories and polynomial invariants for knots ([J3], 

[Well, [We2]) are strongly amenable. Also, the classical problems of classifying actions 

of amenable discrete groups and compact Lie groups on hyperfinite factors were given 

equivalent formulations in terms of classification of certain subfactors that are strongly 

amenable ([Po6], [PoWa]). Our result is in some sense the most general that can be ob- 

tained, as we show that strongly amenable subfactors give the largest class of subfactors 

which can be reconstructed (generated) in a direct way from their standard invariants. 

We now state in more details the main results of the paper. 

A main concept that we introduce here for studying subfactors is that of represen- 

tation of inclusions. This provides both the proper set-up for defining a conceptually 

suitable notion of amenability and the tools for proving the classification results. While 

for a single von Neumann algebra M a representation is simply an embedding MCB(7~), 

for some Hilbert space 7~, for an inclusion of type II1 factors N c M  we define a repre- 

sentation as an embedding of N C M  into an inclusion of von Neumann algebras AfCz2~4, 

with NCAf, MCA, t and with s ,~4--*Af a conditional expectation of ]~4 onto Af that 

restricted to M agrees with the trace preserving expectation of M onto N. Typically, 

both A/and A,t are direct sums of algebras of the form B(7-/). In particular, the suitably 
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defined standard representation Afstcj~4st of N C M  is of this type and the inclusion 

(or multiplicity) matrix of Af st CJ~ st coincides with FN,M, a fact that justifies our ter- 

minology. The inclusion N C M i s  called amenable if whenever represented smoothly in 

some AfCr there exists an M-hypertrace ~ on J~ (in the sense of [C3]) satisfying 

~=~oC. This is equivalent to the existence of a norm one projection of A/'CJ~4 onto 

N C M ,  N C M  is strongly amenable if in addition the graph FN,M is ergodic. Our first 

result gives alternative numerical characterizations of these notions. 

THEOREM 1. Let N c M be an extremal inclusion ([PiPol], [PiPo2]) of finite index 

of factors of type II1. Then N C M  is strongly amenable if and only if  M is the hyper- 

.finite type IIt factor, tlFN,M[12=[M:N] and FN,M is ergodic. Also, if FN,M iS ergodic, 
then N c M  is strongly amenable if and only if N C M  has a hypertrace in its standard 

representation. In particular, if  M is the hyperfinite type IIl factor and if  N C M  has 

.finite depth, i.e., i f  FN,M is .finite, or if  [M:N]~4 then N c M  is strongly amenable. 

For the subfactors associated to actions of finitely generated discrete groups G in 

[Po6] the graph FN,M coincides with the Cayley graph of the group G and the above 

condition I[FN,M 112= [M:N] becomes Kesten's characterisation of amenability for G. We 

will in fact introduce the notion of (strong) amenability for a standard invariant (or 

paragroup) GN,M, one equivalent characterisation of which is "[IFN,MIr" = [M:N] (and 

FN,M ergodic)". The above theorem thus states that  N c M  is strongly amenable if and 

only if M is amenable and ~N,M is strongly amenable. 

To state the next theorem we denote by NStC M st the canonical model coming from 

the invariant GN,M, i.e., from the higher relative commutants. 

THEOREM 2. N C M is isomorphic to NStc M ~t if  and only i / i t  is strongly amenable. 

In particular the isomorphism class of such an inclusion is completely determined by its 

standard invariant ~N,M. 

Since we will prove that the strong amenability of the standard invariant (or of the 

paragroup) is equivalent to the entropic condition "H(M st [NSt)=H(MI N)", the above 

theorem states that a subfactor of the hyperfiuite type II1 factor is isomorphic to its 

canonical model if and only if it has the same entropy as its model. 

Theorem 2 can be regarded as the analogue to the case of inclusions of factors of 

Connes' classification result for (single) amenable factors of type II ([C2]). To prove 

Theorem 2 we will first use the amenability condition to prove an appropriate Folner- 

type condition, in the spirit of [C2], by "decodifying" the hypertraces of N c M  into 

almost left invariant finite dimensional vector spaces that are right modules over the 

higher relative commutants. These finite dimensional vector spaces have no multiplicative 

structure, but by a "local quantization" method, similar to the one we used in ([Po3]), one 
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converts these vector spaces into genuine finite dimensional algebras of higher relative 

commutants, locally approximating the inclusion. Thus, through this technique, the 

amenability condition is used to recover the structure of the space of representation into 

the initial algebras, by means of the norm one projection (or hypertraces). Thus, in the 

single algebra case McB(7"I)=Ad, the projection of B(7-/) onto M takes the matricial 

structure of B(7/) back into M, while in the case of representations of N C M into Af= 

(~ B(IQ)C (]~ B(7-lk)--.M the projection of ArC A4 onto N C M gives rise to inclusions of 

finite dimensional commuting squares of algebras inside N C M, having the same inclusion 

matrix as AfcA4. In particular, in the case AfCAd is the standard representation of 

N c M  these finite dimensional inclusions come from GN,M. 
Before commenting on the use of the above theorems for genuine subfactor problems, 

let us note that they give alternative proofs to some of the classical results in single yon 

Neumann algebras and can be used to derive some new ones as well. For instance, 

Theorem 2 applied to N--MCM with M an amenable type II1 factor, implies Connes' 

fundamental theorem on the uniqueness of the amenable type II1 (and thus type IIr162 

factor. Taking M to be the hyperfinite type II1 factor, pEM a projection, 

a: pMp ~- (1 -p)M(1 -p)  

an isomorphism and N={x@a(x) lxEpMp} one obtains Connes' theorem on the classi- 

fication, up to outer conjugacy, of single automorphisms of the hyperfinite type II1 and 

II~ factors. A similar construction for actions of discrete groups with 0 entropy ([A], 

[KaiVe]), such as groups with subexponential growth, gives the uniqueness, up to cocy- 

cle conjugacy, of outer actions of such groups on the hyperfinite type II factors, more 

generally the classification of G-kernels on such factors, i.e., [J1] and part of the general 

such result in [Ocl]. Also, Theorem 2 is used in [PoWa] to obtain the classification of 

minimal actions of compact Lie groups. 

While Theorem 2 gives a complete classification of strongly amenable inclusions of 

type II, in terms of their standard invariants, for the actual listing of all such subfactors 

one still has to solve the graph theoretical problem of enumerating all such invariants, say 

for a given index. In this direction, for type II1 subfactors, the best set-up until now is the 

formalism of Ocneanu ([Oc2], [Ka], [IzKa]), who used it to give a full list of paragroups 

of index <4. The physically motivated point of view in [L1] of investigating the tensor 

category generated by an endomorhism of range N regarded as a Connes correspondence 

(bimodule), proved to be useful as well (cf. [Iz]). In some situations ad hoc arguments 

work out ([GHJ], [Po6]). Altogether the following exhaustive list of possible invariants 

coming from subfactors of index ~<4 can be obtained: 

For type II1 factors and index less than 4, the graph FN,M is of one of the forms Am, 

n~>l, D2n, n~>2, E6, Es and there is a unique possible paragroup (standard invariant) 
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for each of the graphs An (cf. [J2]), a unique one for each D2n and two for each Ec, Es 

(of. [Oc2], see also [Ka], [Iz], [SuVa]). If [M:N]=4 then FN,M is of the form "-2n-lA(1) (with 

n possible paragroups), n~> 1, or A~ ) (with one paragroup), or E (1), E (1), E~I)=E9 (one 

for each), or D (1) ( n - 2  for each), n~>4, or A~, D ~  (with one paragroup each). (All 

this, by using [GHJ], [Oc2], [PoC], [Izga].) 

From Theorem 2 we thus have: 

COROLLARY 1. The above is the complete list of subfactors of index <~4 of the 
hyperfinite type II1 factors. In particular, the Jones subfactor of index 4cos 2 r/ (n+ l ), 

n<.cr is the unique subfactor with graph F=An of the hyperfinite type II1 factor, i.e., 
with higher relative commutants generated by the Jones projections. 

The Jones subfactors come from positive Markov traces on representations of Hecke 

algebras (or Braid groups). Their construction, in turn, is strongly related to the poly- 

nomial invariant for knots ([J3]). The general construction along these lines, which uses 

the general Markov traces on Hecke algebras ([Ocetal]), is obtained in [Wel], [We2]. The 

associated subfactors have index larger than 4 but were shown to have finite depth at 

roots of unity ([We2]) and strongly amenable in general ([Wa2], [PoWa]). By Theorem 1 

it follows that one can recognise them by merely "observing" their invariants. 

COROLLARY 2. The subfactors associated to positive Markov traces on representa- 

tion of Hecke algebras of type A, B, C, D of [Wel], [We2] are completely determined by 
their standard invariants. 

Finally, let us mention that a number of results have been recently obtained in [H] 

on the first possible subfactors with finite depth beyond 4 and on the accumulation point 

of their indices. The previously known subfactor with finite depth and smallest index 

but larger than 4 was Jones' subfactor of index 3 + v ~  (cf. [GHJ], [Ok]). 

Like in the single yon Neumann algebra case, by using the decomposition methods 

of [C1], [CT], the classification of inclusions of hyperfinite type III~ factors, 0<A~<I, 

reduces (cf. [Lo]) to firstly classify the associated inclusion of type II, which is solved by 

Theorem 2, and secondly to classify trace scaling actions on it. This second problem, of 

classifying properly outer actions on strongly amenable subfactors of type II, is solved in a 

parallelly circulated paper ([Pog]) thus showing that strongly amenable subfactors of type 

III~, 0 < A < 1, are completely classified by their appropriately defined standard invariant 

as well. A similar result holds true for subfactors of type III1 (paper in preparation). 

Part of the results in this paper have been announced by the author in a number 

of lectures during 1989-1991 and in a C. R. Acad. Sci. Paris note in 1990 ([PoT]). A 

preliminary form of the paper has been circulated since the summer of 1991 and was 

the subject of a one year course at UCLA in 1990-1991. The final version of the paper 
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was completed during the author's one year stay at IHES. He wishes to greatfully ac- 

knowledge the kind hospitality and the stimulating atmosphere that were extended to 

him throughout this period. 

1. Basics o f  the theory of  subfactors 

1.1. General  inclusions 

The generic notation for finite von Neumann algebras, i.e., von Neumann algebras which 

have a faithful normal tracial state, will be N, M, and r will usually denote the trace. The 

Hilbert norm given by r on M is denoted I[xH2=T(•*x) 1/2, xeM, and the completion 

of M in this norm is denoted by L2(M,r). When regarded as vectors in L2(M,r) 
(DM) the elements x e M  are denoted by 5. Note that M acts on L2(M,r) by left and 

right multiplication. We identify M, as an algebra, with its action on L2(M,r) by left 

multiplication. If JM:L2(M,r)--*L2(M,r) is defined by JM(~)=~*, then JxJ is the 

operator of right multiplication by x* and we have M~ the commutant 

of M in B(L2(M,r)). JM is called the canonical conjugation on L~(M,r). Note that 

the elements of L2(M, r) can be identified with the square summable operators al~iliated 

with M. Similarly, the predual of M, M. can be identified with LI(M, r), the summable 

operators a$1iated with M. 

1.1.1. Conditional expectations. A major feature of the yon Neumann subalgebras 

of a finite algebra is the existence of nice expectations onto them. If NCM is a yon 

Neumann subalgebra of M then we denote by EN the unique r-preserving conditional 

expectation of M onto N. eN: L2(M, r)--*L2(N, r) denotes the orthogonal proj.. ~ t ion  

onto L2(N, r), the closure of N in the norm I1" 112, in L2(M, r). Then eN(~)=EN(X) and 

eN, EN are related by the following important algebraic relations: 

(a) eNXeN----EN(X)eN, xeM. 
(b) N={xeM I [x, eN]=O}. 
(c) bEN, ben =0 ~ b=O. 
(d) [JM,eN]:-O. 
One still denotes by EN the extension of the conditional expectation of M onto N 

to an N-N bimodule projection from the summable operators of LI(M,r) (=M,) to 

LI(N, r) (=N.), i.e., when regarded as elements in M., EN(~)(Z)=~(EN(x)). 

1.1.2. Extensions by subalgebras. The von Neumann algebra generated by M and 

eN in B(L2(M,r)) is denoted by {M, N) or {M, eN) and it is called the extension of M 
by N. The construction of {M, N} is typically quantum theoretical, since even if N, M 

are abelian, (M, N) is not abelian, unless N=M and it is abelian. 
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W e  

(a) 
(b) 
(c) 

Tr(M,N) 

have the following important properties: 

(M, N)=vN(M,  eN )=S-'~ {xeNy l X, ye M} =JM N'JM. 
eN(M, N)eN=Nelv. 
There exists a unique faithful normal trace, Tr{M,~), on (M,N) such that 

(xeN)=r(z), xeM.  
(d) NrNMBx~-,JMX*JMEMtnIM, N) is an antiisomorphism which takes the cen- 

ter of N, Z(N),  onto the center of {M,N}. If zEZ(N) then z'=JMZ*JM is the unique 

element of Z ( ( M, N) ) such that ze N = z' e N. Since Z ( N ), Z ( ( M, N) ) are commutative, 

z~-*z ~ is an isomorphism, called the canonical isomorphism. 
The construction of (M, N) with the trace Tr(M,N ) is called the basic construction 

([J2], [Ch], [Ski). We write it NcMCeN(M, g I. This proves to be a very powerful tool 

of investigation in the theory of inclusions of algebras. Note that properties (a), (b), (c) 

describe (M, N / abstractly, in the sense that, if B is a von Neumann algebra containing 

M and a projection e such that B=g~pMeM and with a trace Tr such that [e,N]=O, 
exe=EN(x)e, Tr(xe)=r(x),  zeM, then one has B=(M, eN), with e corresponding to eN. 

1.1.3. Orthonormal bases. We have the following general facts: 

(a) There always exists a family {~i}ielCL2(M,r) such that 

(i) EN(~7~j)=6ijfj, with f j  projections in N. 

Such a family is called an orthonormal basis of M over N. The orthonormal basis 

is unique, in the sense that if {~/j}jeJ is another basis of M over N with EN(~I~Wj)= 
gjeP(N) then Vd--e--f(EN(~Wj))iej, je j  is a unitary element from (~ieif iL2(N,r) onto 

(~j~jgjL2(N,v) satisfying 7/:~v, where ~7={~?j}, ~={~/}, i.e., ~j=~-]~iez~iEN(~j), 
j e J .  Also, ~'~i CtN( f i )=~j  CtN(gj), where CtN is the central trace on N and ~-]~i ~i~*= 

E j  ~Tj'; �9 
(ii) ~ i  ~iN=L2( M, 7") and ~ = ~ j  ~ jEN(~) ,  V~6L2(M, 7"). 

(b) If N, M are factors then the family {~i}iez can be chosen such that in addition 

one has: 

(i) If (M, N) is an infinite (still semifiaite) factor then 

EN(~*~i)=I, forall iGI.  

(ii) If IM, N) is a finite factor then I is finite and one has EN(~*~i)=I for all iEI 
but possibly one. Moreover in this case all ~i follow automatically bounded operators, 

thus ~/EM. 

The proof of (a) is trivial by a maximality argument. To prove part (i) of (b), let 

{~i}iez0 be a maximal family such that EN(~*~j)=~ij, i , jelo.  I f  Eielo ~iN~L2(M,v) 
then let {~j}jeI1 be a family in L2(M,r)  such that ~']~ie~o ~iN + ~jez ,  ~jN=L2(M, r) 
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and such that EN(~*Gj)=~ijfj, if jeI1, ieloUI1. If ~ j e l l  r(fj)~>l then there exists 

some partial isometries vj EN such that vjv~ <<.fj and ~ j  vjv~--1. Let ~ - - ~ j  ~jvj. Then 

EN(G*~)----1 and Ejv(G*Gi)=O for all iEIo, contradicting the maximality of {~i}ielo- If 

~ T ( f j ) < l  then we can take the above vj so that vjv~=fj and thus get G=~Gjvj so 

that ~ GiN + GN=L2(M,-c). Thus Io is infinite (otherwise (M, N) follows finite). So, 

there exists a countable infinite set I2CI0. Let f=EN(G*G) and label the set of indices 

/2 by {1,2,...}. For iEI2 put y~=Gi(1-f) ,  Y~'=Gif. Let G~=G+~ and ~=Y~+I+Y~, 

n~>2. Then clearly {Gi}ieZo\t2 U{~},~el2 satisfies the requirements. 

By [PiPol], part (ii) of (b) is now clear. 

Let us finally note that orthonormal bases can be used to give a very intuitive 

description of (M, N) as some amplification of N. To this end, note that if ~EL2(M, T) 
is regarded as a (possibly unbounded) operator affiliated with M, then EN(~*G) is a 

projection if and only if eNG*GeN is a projection and if and only if GeN is a partial 

isometry. Note that this partial isometry must then be in (M, N). 

(c) If {~i}iCL2(M,r) is an orthonormal basis of M over N like in (a) then any 

element ~ in (M, N) can be uniquely written as ~=~-~i,j GixijeNG~, where xijEfiNfj and 

where in fact x O. is the unique element x of N such that XeN=eNG*Yc~jeN. Moreover, 

if an infinite sum ~ i , j  Gix~jeNG~, with x~j e N ,  defines a bounded operator on L2(M, r), 
then that operator is in (M, N). In particular, ~-':~i GieNG* =I(M,N). 

(d) The canonical isomorphism zHz' of 1.1.2 (d), from Z(N) onto Z((M, N)) co- 
incides with the application z~-,~'~ i GieNzG*, i.e., ~ GieNzG* is the unique element z' in 

Z({M, N)) such that z'eN=zeN. 

1.1.4. Markov traces on the extension algebra. If M has a finite orthonormal basis 

over N, {Gi}iel, cardI<c(~, then (M;:N) is clearly a finite yon Neumann algebra and 

TrCM,N ) is a finite trace on (M, N). In fact we have the following: 

(a) (M, N) is finite if and only if ~-~i CtN(fi) is a densely defined (but possibly 

unbounded) operator affiliated with Z(N), where CtN is as in 1.1.3 the central trace on 

N and fi =EN(G*Gi), {~i}ieN being an orthonormal basis of M over N. 

This is trivial if one regards Gielv~* E (M, N) as the cyclic projection [~iN] of L2(M, T) 
onto GiN. 

(b) The following conditions are equivalent and if they are satisfied then Tr(M,N ) is 

finite: 

(i) If {Gi}ieI is an orthonormal basis of M over N then ~ i  Ct~v(fi) is a bounded 

operator in Z(N), where fi=EN(G*~i), iEI. 
(ii) M has a finite orthonormal basis over N. 

(iii) (M, N}--sp MeNM. 
Indeed, (iii) =~ (ii) by the Gram-Schmidt algorithm and the rest is trivial by (a) and 
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by 1.1.3. 

(c) If Tr(M,N ) is finite and we denote by ),=Tr(M,N)(I(M,N)) -1 and by TI=T(M,N) def 

ATr(M,N), its normalization, then the following conditions are equivalent: 

(i) 
(i t) There exists an extension ~ of the trace ~- to (M, N)  such that ~'(xeN)=)r 

VxEM, some ~ E C .  

(ii) If E1--E(M M'N) is the Tl-preserving conditional expectation of (M, N) onto M 

then E1 (eN)=c~1 is a scalar multiple of the identity. 

(ii') There exists a conditional expectation E of (M, N} onto M such that  E(eN)= 
cdl, oLEC. 

(iii) There exists an orthonormal basis {~i} of M over N with ~-~i ~i~* =f~l, j3ER+. 

Moreover, if the above conditions are satisfied then A--A~=a=a '= /~  -1 and given 

any orthonormal basis {r]j} we have ~ j  y jy~=A-11.  And then 7"1 is the unique trace on 

(M, N)  satisfying (i') and E1 is the unique expectation satisfying (ii'). 

Indeed, by the definition of t1,  (i) =~ (g) with ~--r l  and ~ '=~ .  Clearly (V) ::~ (ii'), by 

taking E to be the unique "~-preserving expectation and c~'=X ~. Since for any orthonormal 

basis {~i} we have ~ i e N ~ * = l ,  by (ii') we get (iii) w i t h / 3 = a  ~-1. If (iii) is satisfied 

e * and xEU then x=x ~ i  ~i N~i so that r l ( x ) =  ~"~. TI(x~ieN~)=)~ ~ T(X~i~*)=)~DT(X), SO 

that Af~=l and rllM=V. Thus (iii)=:~ (i) and (iii)=~ (ii). If El(eN)=al then TI(eNX)= 
)~'I(X)=AT(X), SO that A = a  and (ii) =* (i). 

An inclusion NCM with a trace ~" for which the above equivalent conditions (c) are 

satisfied is called a )~-Markov inclusion and r(M,N)=T~ a A-Markov trace. 
Note that  by [J2] a finite dimensional inclusion N c M  with irreducible inclusion 

matrix T is Markov if and only if the trace on M is given by the unique Perron-Frobenius 

eigenvector of T T  t. 

Note that  if (NcM,  T) is a A-Markov inclusion and {~i}~ is an orthonormal basis 

of M over N then {A-1/2~ieN} is an orthonormal basis of M~=(M,N) over M and 

(McM~,v~) is a Markov inclusion. One can thus obtain by iteration a whole tower of 

inclusions N c M c ~ M 1  c ~ M 2  C... and a trace ~-~ on [.J Mn, where en+l =eM~_~, Mn+~ = 

sp Mnen+~Mn=(M~, M~-I), r(en+lX)=)~r(x),  xeMn and in fact enen+xen=)~en. It is 

called the Jones tower associated to the Markov inclusion N cM. 

1.1.5. Commuting squares. We now define the suitable notion of morphism between 

the objects that  we study here, namely between inclusions of algebras. So, let N c M  
and Q c P  be inclusions of finite von Neumann algebras such that P c M ,  QCN. Then 

N C M 

U U 

Q c P 
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is called a commuting square if IyMI2M_~i, MI2M_IpM ~N~P - - ~ P ~ N - - ~ Q "  Note that for this relation to 

hold true it is sufficient to have EM(p)CQ or EM(N)CQ. This concept was initially 

introduced in [Po3] to study the various mutual position and normalization properties of 

subalgebras of a type II1 factor. It later proved to be extremely important for the theory 

of subfactors as well ([PiPol], [We1], [HSc]), The key observation that makes commuting 

squares appear naturally whenever we consider subalgebras of a yon Neumann algebra 

is the following: 

Example ([Po3]). If B C N C M  are finite von Neumann algebras then 

is a commuting square. 

N C M 

U kJ 

BIflN C BIf'lM 

The type of "morphisms" that we are interested in are the commuting squares 

N C M 

U U 

Q C P 

in which M is somehow minimally generated by N and P. For instance, if Q=P then we 

would like to only consider embeddings of Q c P = Q  into some N C M  for which N=M.  

We thus define a commuting square as above to be nondegenerate if P generates M as a 

right N module. We actually have: 

PROPOSITION. The .following conditions are equivalent: 

(i) supp{ e yl , y P}=V{UeNMU'lu U(V)}=l. 
(ii) V{vepMv* [ vE/,/(N)} = 1. 

(iii) Any orthonormal basis of P over Q is an orthonormal basis of M over N. 
(iv) Any orthonormal basis of N over Q is an orthonormal basis of M over P. 
(v) sp P N =  M (i.e., the commuting square is nondegenerate). 

(vi) spN P =M.  

Proof. If uEP then ueMu * is the orthogonal projection onto uNcL2(M,  r). Taking 

~=u 'EM(u)=u-E~(u)  it follows that ~EP and that ueMu*VeM=[iN]~[~N]. By 

replacing ~ with ~E~(~*~) -1/2 it follows that we may also assume EM(~*~)=E~(~*~)=f, 

where f is a projection in Q. More generally, if {~i}iel EL2(P, ~) is an orthonormal basis 

of P over Q and ?/o=~'~i~iN and if ?'[o~L2(M,r) then it follows that there exists 

uEP such that u N ~ ' ~  ~iN. Let ~=u-~-~ i EM(~u)=u--~ i  E~(~*u)EL2(p, r). Then 

~ 0  and ~EL2(p,~'), ~ _ k ~ i N ,  in particular ~-l-~"~iQ, a contradiction. This proves 
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(i) =~ (iii). Clearly (iii) => (i), because (iii) means the existence of {~i}CL2(P, v) such 
that c ~Mc. Si~NSi are mutually orthogonal projections with ~ ~ieM~ = 1. 

Let {r b }je J C L Z(N, r) be an orthonormal basis of N over Q and {~i}iel an orthonor- 

mai basis of P over Q which is assumed to be also an orthonormal basis of M over N. By 

the commuting square relation r/j are orthonormal with respect to P as well. Assume WE 

L2(M, ~') is so that r/.l_)-~j r/jP, so that  7]lEi,j ~j~iQ. Since Q ~ ~iQ=~-]~ ~iQ=L2(p, ~') 
and ~ rljQ=L2(N, T), it follows that rI_LNP. Thus r/* •  = P N  and so 7/* _l_~ ~iN. 

Thus r/=0. Thus (iv) follows from (iii). Clearly (iv) is equivalent to (ii) the same way 

(i) r (iii). 

Clearly (iii)=>(v) and (iv)=} (vi). Conversely, if say (v) holds true and if {~j}jC 

L2(P, r) is a maximal orthonormal system for M over N so that )-~j ~jN~L2(M, v)= 

sp P N  (the last closure is :taken this time in L~(M, v)) then there exists xEP such that 

r ~ ~j N. But then the projection of ~ onto the Hilbert space ~ ~j N, PE ~j N (x), lies in 

L2(p,v) (since P~lv (}c )=~~jEN(~x)=~-~ jEQ(~x) ) ,  and thus ~-- /SE~N(~)#0 is 

in LZ(P, r) and it is orthogonal to ~ ~jN, thus contradicting the maximality of {~j}j. I"1 

COROLLARY. Let 
R C P C M 

U U U 

S C Q C N 

be commuting squares. Then the two small commuting squares are nondegenerate if and 
only if the big commuting square is nondegenerate. 

Proof. Assume the big commuting square is nondegenerate. Thus M=sp  NR=sp NP 
and P = Ep(M)=sp  QR, so that the two small commuting squares follow nondegenerate. 

Conversely, if P = s p  QR, M = s p  NP then M = s p  NQR=sp NR. E] 

1.1.6. Basic construction for commuting squares. A main feature of the nondegen- 

erate commuting squares is their well behavior to extensions: 

PROPOSITION. Let 
P c M 
U U 

Q c N 

be a nondegenerate commuting square. Let P c M c~g ( M, P)=(M, e~)  and Q c N c ~  
( N, Q ) = ( N, e~ ) be the basic constructions for the horizontal inclusions. If ( N, e M) de- 
notes the yon Neumann algebra generated in B(L2(M,r)) by N and e M then we have: 

(1) If {~/}/s an orthonormal basis of N over Q then 
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(2) There exists a unique isomorphism 0 of (N, eMp > onto (N, e~>=<N, Q) satisfying 

o(~)=~, x e N ,  0 ( e~ )=e~ .  0 can be defined bu 0 ( E ~ , ~ , , e ~ ; ) = E ~  �9 �9 P '~*  ~, ~ Q~3 and it is 

trace preserving, i.e., Tr(N,Q)oO=Tr(M,p)I(N,~tfi). 

~<M,P) (M, P)= (M, e M) ~ (N, e M) ~- (N, Q) with (3) The application ~(N,Q): 

(N,Q) ~ i ~ e ~  ~ = ~ P ~ * ~Eq (z~)ee ~;, 
%3 

is a normal faithful conditional expectation, and it is trace preserving on {M, eM), i.e., 
~ f  o l~(  M , P )  __ q-~ 

~ ( N , Q )  . . . .  

~<~,P)IM=E~. ~7(M'P) satisfies the commuting square relation ~(N,Q) (4) ~(N,Q> 
(5) q z E Q ' n P  then ~ i e ~ z ~ *  is the unique element z 'E(N, QyM<M,P) such that 

z' eMp = ze M and z~-+ z' is an isomorphism of Q' DP onto (N, Q)' D<M, P) , which coincides 

with the canonical isomorphism of Z(P) onto Z(<M, P)), resp. of Z(Q) onto Z((N, Q)) 
when restricted to Z(P) resp. Z(Q). 

Proof. (1), (2), (3), (5) follow trivially from 1.1.2, 1.1.5. To prove (4) note that for 
M * _ _  M * M * x E M  we have x=x  ~ ~jep ~ - ~  ~iEe(~i x~j)ep ~j so that: 

M * M * 
~ ( N , Q )  

= = [ ]  

J 

The construction of the inclusions 

P C 

U 

Q c 

M C (M,P) 

U U 
N C (N,Q) 

] t ~ ( M , P )  with the conditional expectation ~(N,Q) is called the basic construction for the commut- 

ing square 
P C M 

u u (1) 

Q c N 
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and the commuting square 
M C (M,P) 

E~ U U ~(M,V> (2) 
~(N,Q)  

N C (N,Q) 

is called the extension of the commuting square (1). 

Note that (N, Q) c (M, P) is an amplification of Q c P  and that the whole construc- 

tion can be regarded as a Takesaki type duality for inclusions. 

1.1.7. The probabilistic index of an expectation ([PiPol]). We will adopt the point of 

view in [PiPol] for defining the index of an inclusion of arbitrary von Neumann algebras 

Afc~A4, with a normal conditional expectation s of A4 onto Af. The index will in fact 

be attached to the expectation C. We thus put IndE=(max(A~01C(x)~Axlxefl4+}) -1 

and call it the index of E. 

If APnA//=C (so that in particular Af, A4 are factors) then there exists a unique 

normal conditional expectation of jbt onto Af (cf. [C1]) so we may as well denote 

[At :A f] d----ef Ind s 

If Ind s < oc and we denote B =flf ~ NAf = Z(N), ,4=Af' N v~/[, then E (,4) = B and from Ex/> 

Ax, xEJ4+, A=(IndE)- l>0  and the abelianness of B one sees that ,4 must be of the 

form (~=1,4k with Jtk homogeneous of type In~ with supnk finite (cf. e.g. [PoWa]). By 

[T2] we also deduce that if dim Af'NA4 < c~ then any other normal faithful expectation 

of A4 onto Af will also have finite index. We then say that AfcAd has finite index in the 

sense of [PiPol]. By using the weak compactness of the set of expectations with finite 

index, it has been shown in [Hi] that if AfcAd has finite index then there exists a normal 

expectation s so that IndCmin=inf{Inds I E:Ad~Af}. In the case either M or N is 

a factor yon Neumann algebra there exists a unique such normal expectation, called the 

expectation of minimal index. 

It is an easy exercise to show that if AfCfl4 are atomic algebras with finite inclusion 

(multiplicity) matrix F then ~min is the unique conditional expectation of J~A onto Af 

preserving the trace with the weights given by a Perron-Frobenius eigenvector of FF t. 

Note also that (by 2.1 in [PiPol]) if (NCM, T) is a A-Markov inclusion like in 1.1.5 

then MC (M, N) is also Markov and IndE(M M'N) =A-1. 

1.2. Subfactors  of  finite index  

If N C M  are type II1 factors then (M, N) is either of type II1 or type II~.  If dimN/C 

denotes the Murray and von Neumann coupling constant of N when acting on the Hilbert 
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space/C, then the Jones index of an inclusion of type II1 factors N c M  is by definition 

dimNL2(M,r),  and it is denoted by [M:N]. We actually have: 

1.2.1. (a) [M:N]=dimN1C/cfimMIC, for any representation of M on a Hilbert space 

/C with dimM/C < oo. 

(b) If dimM ]C <~ co then [M: N] < eo if and only if (M, N) (or N ~) is a type II1 factor. 

(c) If PCNCM then [M:PI=[M:NI[N:P 1. 
(d) If [M:N]<oo then NCM is an [M:N]-l-Markov inclusion. 

1.2.2. The probabilistic characterization of the index ([PiPol]). [M:N]=IndEN, 
with IndEN defined in 1.1.6, i.e., [M:N]-l=max(c>~O]EN(z)~cx, xeM+}, and with 

the convention 0-1=oo. Moreover, if [M:N]<oo, then there exist projections eoEM 
such that EN(eo)=[M:N] -1.1. Such projections on M are called Jones projections and 
they have a remarkable significance. 

1:2.3. The downward basic construction ([J2], [PiPol]). Any Jones projection eoeM 
satisfies the following: if NI=NN{eo}' then M is the basic construction for N1CN, i.e., 

(i) eoxeo=EN,(x)eo, xeM, 
(ii) M=sp(xeoylx, yeN}, 
(iii) there exists a trace preserving .-isomorphism of (N, N1 } onto M carrying N as 

a subalgebra of (N, N1) identically onto N as a subalgebra of M and eN~ into e0. 

Moreover, e0 is unique up to conjugacy by a unitary element in N (cf. [PiPol]), i.e., 

if e~eM is another Jones projection, i.e., so that EN(e~)=[M:N]-I.1, then e~=ueou*, 
for some uElg(N). 

The construction of a subfactor N1cN with a projection eoEM as above is called 

a downward basic construction for NcM.  Unlike the usual basic construction, which 

is unique and canonical, we see that the downward construction is unique only up to 

conjugacy by unitaries in N. 

1.2.4. Relative commutants ([J2]). If NCM has finite index then N'nM is finite 

dimensional and in fact we have: 

(i) [M:N]=[pMp:Np]/7"(p)r'(p), for any projection peg'NM, r' being the unique 

normalized trace on N'. 

(ii) [M:g]=~']~[piMpi:gpi]/r(pi), for any partition of the unity (p~} with projec- 

tions in NINM. 

1.2.5. Extremal inclusions ([PiPol]). The inclusion NCM is called extremal if 

EN,nM(eo)eC1 for one (and thus all!) Jones projection eoEM. We have: 

(i) ([PiPol D N c M  is extremal if and only if the antiisomorphism N'NM~x~-* 
JMX*JMeM'N(M,N) is trace preserving, equivalently if 7(p)=r'(p), VpeN'nM, T' 
being the normalized trace on (M, N)=JN'J. 
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(ii) ([PiPol]) N C M  is extremal if and only if 

[vMv:Np]--[M :N]v(p) 2, VpeP(N'AM). 

(iii) ([PiPo2]) N C M  is extremal if and only if M C  (M, N) is extremal. 

(iv) N c P  and P c M  are extremal if and only if N c M  is extremal. 

(v) N c M  is extremal if and only if EN coincides with the expectation of minimal 

index (1.1.7). 

Property (iv) was recently proved in [L3] for arbitrary factors; we give here our in- 

dependent proof in the type II1 case for the sake of completeness. If N c M  is extrem- 

al then H(MIN)=ln [M:N]=In [M:P]+ln [P:g]  and H(PIN)<~In[P:N], H(MIP)< 
In [M:P], H(MIN)<~H(MIP)+H(P[N) forces H(M[P)=In[M:P], H(P[N)=ln[P:N]. 
Conversely, assume N c P ,  P c M  are extremal. Let eEP be a Jones projection for the 

inclusion N C P,  i.e., such that EN (e) = [P:N]-11. Let also f E eMe be a Jones projection 

for the inclusion ePeCeMe, i.e., f<.e, E~p~(f)=Ep(f)=[eMe:ePe]e=[M:p]-le. We 

then have 

EN(f) = ENEp(f) = [M: P ] - I E N ( e  ) = [M: p ] - l [ p :  N ] - l l .  

Let NI={e}'NN, then Nle=ePe. Since PCM satisfies the extremality condi- 

tion, it follows that ePeCeMe is still extremal so that E(epe),neMe(f)=[M:p]-le. 
It follows that there exist unitary elements Ul, ..., uneePe such that [ l (1 /n)~  uifu~- 
[M:p]-le[[2<el. Since ePe=Nle we can find unitaries viEN1 such that v~e=u~. Thus 

v J = u J  and we get 

n i 

Since N c P  is also extremal, there exist unitaries Wl, ..., wmEN such that 

Altogether we get: 

TI II : g l - l  l 
i,j 2 

letting ~1,2--~0 it follows that N C M is extremal. [] 
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1.3. The  s tandard invariant 

Throughout this subsection N C M  will be an inclusion of type II1 factors with finite 

index. 

1.3.1. The tower of factors ([J2]). Denote by MI=(M,N) ,  el=eN, the projection 

and the II1 factor obtained from the basic construction for N c M .  Since N c M  is an 

[M:N]- l -Markov  inclusion and M1 is a type II1 factor, we get [MI:M]=[M:N]<CO, 
and one can repeat this construction to get M2=(M1,M), e2----eM. More generally, by 

iterating the construction, one gets an increasing sequence of type II1 factors, called 

the Jones tower of factors, NCMCM1C.. . ,  with projections el ,e2,. . . ,  so that M i - I C  

MiC~+IMi+I  is the basic construction for Mi- l cMi ,  for each i ~ l  (where M_I--N, 

Mo=M). Thus, {Mi, ei}i~>-i satisfy: 

(i) [M~:M~-I]=[M:N]=T(ei) -I ,  i~1. 
(ii) ei+lxei+l=EMi_a (x)ei+l, xEMi. In particular ei+leie i+l=[M:N]-le i+l  �9 Also, 

e~ei+lei = [M:N]-lei. Moreover M~+I =sp  Miei+lM~. 
(iii) ei+lEM'xNMi+x. In particular [ei,ej]=O, for li-jl>~2, and et ,et+l , . . . ,ekE 

M[_2NMk, l<~l~k. 
(iv) "f(xei+l)=[M:N]-lT(x), xeMi.  

1.3.2. The tunnel of factors ([PiPol], [GHJ], [Po5]). Similarly, by iterating the 

downward basic construction, one obtains a decreasing sequence of type II1 factors, 

MDNDN1 DN2 D..., called a tunnel of factors, with corresponding projections eo, e - l ,  

e-2, .... They satisfy the conditions: 

(i') [Ni:Ni+l]=[M:Y]=r(e_i) -1, i>~O. 
(ii') e_ixe_i= Eg,+l (x)e_i, xENi, i>~O. Moreover Ni=sp Ni+le-i-lNi+l, i>/-1. 

(iii') e_ieN~+lnNi_l, eo,e_l,. . . ,e-keN~+lNM. 
(iv') r(xe_i)=tM:N]-lr(x), xeNi.  
As mentioned in 1.2.4, each step of this construction is unique up to conjugacy by 

a unitary element in the last chosen subfactor. If we iterate this construction say up to 

Nk, we call it a choice of the tunnel up to k, and denote it MDe~ ~-k+l 

Nk-1 DNk. Note that  this means that  the projection e-k (ENk-1),  which would uniquely 

determine one more subfactor, Nk+l={e-k}'NNk, has not been chosen. 

Note that by the product rule 1.2.1 (c) ([J2]) for indices of consecutive inclusions one 

has [MR :Mt]= [M:N] k-z <co  and similarly for the inclusions in the tunnel. Moreover by 

[PiPo2], any of the inclusions Ms C Mi+k C M~+2k, or Ni+2k C Ni+k C Ni, i >, - 1, k/> 1, is a 

basic construction, with the appropriate Jones projection obtained from the ej 's  (resp. 

e_j 's) ,  by taking a certain scalar multiple of the word of maximal length in these ej's. 

Also, note that, if MDe~ e-x . . .Dek+lNk-lDNk is a choice of the tunnel up to 
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k then there exists a unique representation of the tower up to k + l  on L2(M, T), N C  

Mc~IM1C...C~k+IMk+I, such that JMN'JM=Mi+I,  JMe-i+lJM=ei+l, l <<.i<~ k (cf. 3.1 

in [Po5]). 

1.3.3. Duality ([PiPol]). If (m~}~ is an orthonormal basis of Mk+l over Mk and 

ei+l elq-2M, 
Mk C Mk+2~Mk+a C ... C M~ C Mi+l C i+a 

is part of the tower, then {Ak--imiek+~ek+3 ... ei+2}~ is an orthonormal basis of Mi+~ over 

Mi+x and if a= [M:N]  then 

a((x~,)) = ~ m~e~+, ... e,+,x~,ei+, ... ek+,m*~ 

defines an isomorphism from the a-amplification of Mi onto Mi+2 carrying the a-ampli- 

fication of the whole sequence of inclusions Mk C Mk+l C ... C Mi, i.e., M~ C ... c M ~ ,  onto 

the sequence of inclusions Mk+2C...cM~+2, i.e., a(M~)=Ml+2, i<<.l<~k. 

1.3.4. The higher relative commutants. Since [Mk:Mt]<cc and [Nt:Nk]<oo, the 

relative commutants M[NMk and N[nNk,  k>l>~l, are all finite dimensional algebras. 

They satisfy the commuting square condition, namely: 

(i) EN~nNkENi=EN~nN,, i>~k. 
(ii) EM'~nM~EM,=EMjnM,, k>~i. 
Since the Jones tower of factors is canonical, the sequence of finite dimensional alge- 

bras of higher relative commutants {M~fqMj}j>i>~o is canonically associated to N C M .  

The tunnel is not canonical, yet the z-preserving isomorphism class of the corre- 

sponding sequence of higher relative commutants {N~fqNl}k>t>~-I does not depend on 

the choice of the tunnel, but just on the initial inclusion N c M  ([Po5]). 

Moreover, by the last remark in 1.2.1 (see 3.1 in [Po5]), it follows that there exists 

a canonical antiisomorphism between (the isomorphism classes of) the two sequences 

{N~lqNt}k>~t>~-i and {M'nMj}j>>.i>~o, carrying N~NNl onto M[+ICIMk+I and e-i  onto 

ei+2. This antiisomorphism is trace preserving if and only if N C M is extremal ([PiPo2], 

[Po5]). 

1.3.5. The standard, or principal graph and matrix of N c M  ([J3], [GHJ]). The 

sequence of consecutive inclusions of higher relative commutants of M, C = M ~ N M c  

M~nM1C...,  is completely determined by just one pointed matrix over Z+, called the 

standard matrix of N c M  and denoted FN,M=(akl)~eK,~eL, koEK, a fact that was first 

noted by Jones in early 1983. Alternatively, FN,M C a n  also be regarded as a bipartite 

(pointed) graph, with the points of the sets K as even vertices and the set L as odd vertices 
and having akt edges from k to l. This graph is called the standard (or the principal) 

13 -945202 Acta Mathematica 172, Imprirn~ te 28 juin 1994 
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graph of N C M and it is still denoted by FN,M with the vertex ko ~ K sometimes denoted 

by .. For the proof of the next properties of FN,M see [PoS]. 

The matrix F is always irreducible, equivalently, as a graph, F is connected. Follow- 

ing [Ocl], [GHJ], if F is finite we say that N c M  has finite depth. 
Let K0={ko}, L~={l~Lla~O,  for some k~K~_l} and K ~ = { k ~ K l a ~ O ,  for some 

l~L~}, i~1, so that K=U~ K~ , L=U~ L~. 
Then the sets of irreducible components of M'~M2i and N2~_~ f~M (resp. M'NM2~+~ 

and N ~ M )  are identified with K~ (resp. L~) and the embeddings K~cK~+I by the 

correspondence between the centers of M'~Mai and M'~M2~+2 given by 

? Z(M~M2i)  ~ z ~-* unique z~ ~ Z(M ~M2~+2), with e2~+2Zl = e2~+2z 

and similarly for L~cL~+~. 
With these conventions, the embedding matrix for M~M2~cM~M2~+~ is I"[K, and 

for M'f'IM2i+ICMtNM2i+2 it is Ft[z,. 
The corresponding inclusions of higher relative commutants in the tunnel are given 

by F for the identification of N~_~NM with M~NMi given by the canonical antiisomor- 

phism. 

Note that by duality (1.3.3) we have FN,M=FN~,,N~_~----FM.,i_~,M.,,, i>~l, but that 

in general FN,M may not be equal to FN~,N (see e.g. [Oc2], [Kal]). The next result 

relates the norm of FN,M with the size of the higher relative commutants. 

PROPOSITION. 

I[I"N,MII2 = lim (dimM~f'lMn) l/n 
lrl.--'~ O 0  

= l i r a  (dim N ' n M n )  ~/" = IIrM,M, II 2 < [M : N]. 
n - - + O O  

Proof. Let T~-FN, MFtN,M . If ~o denotes the vector ~ko=(6kko)keK then, by the 

definition of FN,M, dim(M~nM~n)=]lTn6koll 2, the norm being in 12(K). We thus get 

iimsupn~(dim(M'NM2n))l/2n<~limn]lTnlll/n=][TII. Conversely, let e>0 and let no 

be large enough such that Ko={kEKIk is connected with ko after at most no steps on 

T=rN,Mrk } satisfies IITKo II/> IITll- , where TKo--~KoTIKo is the restriction (on both 
sides) of T to Ko. Since Tn6ko >~(TKo)n6~o and since by the Perron-Frobenius theorem 

we have limn--,~ II(TKo)n~koll~/n=llTKoll, we get ~minfnllTn6koll~/n~ IITKoll >i IITII-~. 
Since ~ is arbitrary, KminfnllTn6koH~/n~llTII. We thus get IITIl~!imsupnllTn6ko 21/~ 

lim infn IIT~ko I1~/n >i IITII, so that I]TII = l imn-~(d im M'NM2n) 1/2n. Also, we have 

IITII 2 = lim(dim(M' nM2n) ) 1/n+1 <~ Hm~nf(dim(M' nM2n+l) ) 1/n+1 

<~ limsup(dim(M'NM2n+l)) 1/n+1 ~ ~m(&m(M'NM2n+~)) 1/n+1 = IITII 2. 
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This shows that limn(dim(M'nMn)) 1/n = IITII = IIFN,MII 2. The inequalities 

IITll 2 = hnm(dim(M'flM2n))l/n+l 

 minf(aim( 'nM2p) /n+  
~< lim sup( cfim( N' n M2n ) ) x / n + a 

~< lim sup(dim(N~ f~M2n)) 1/"+1 
n 

<~ fim sup( dim( M' nM2n+ 2 ) ) 1/n+1 = I]Tll 2 
n 

show that t im. (d im(N'nM~)) l / "= l lT l l  as well. Since dimM'AM.<~[M.:M]=[M:N]" 
(see e.g. [J1]), by the first part we get HTII<~[M:N]. [] 

COROLLARY. Assume N c M, Q c P  are inclusions of type IIl factors with the same 
index and such that dim(MInM21) ~<dim(P'nP2i), Vi. Then [IrN,M l[ ~ [[rQ,p [i- 

Proof. Trivial by the proposition. 17 

Finally note that the standard graph FN,,M of N i c M  is equal to  rN,MFtN,M ..., the 

product taking alternatively FN,M, (FN,M) t, i+1 times in total. So for i odd FN,,M is 

indexed by K on both sides and for i even it is by K to the left and L to the right. As 

a pointed graph, FN~,M has the same koEK (or ,)  as FN,M. 
While F completely determines the algebras M'AMi, N~OM and their consecutive 

inclusions, up to isomorphism, the trace will be determined by: 

1.3.6. The standard eigenvector. There exist unique vectors g=(sk)h~K, t'=(tt)t~L 

such that the trace of the minimal projections of the kth summand of M~OM21 (respec- 

tively the / th  summand of M'AM2i+I) is given by [M:N]-isk (resp. [M:N]'itt). 
- P I _ _  ? Similarly, for N~OM, the traces are described by the vectors s -(s~)k~ K, t '= 

(t~)IEL" 
One has the relations: 

(i) r t=g ,  r f ' = g ' ;  
(ii) rtg=[M:N]~,, Ftg'=[M:N]g'; 

so that, for FF t, rtF they are actually eigenvectors: 

Off) r t r / ' =  [M:N]r, F i r / " =  [M:N]t"; 

(iv) r r ,  g=[M:~q~, r r ,  g '=[M:N]g ' .  

The vectors g, g', f, i "~ are called the standard eigenvectors (or weights) of r .  

The fact that g may be different from g' corresponds to the case when the anti- 

isomorphism from N~OM to MtnMi+l is not trace preserving, i.e., when N c M  is not 

extremal. 
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When N c M  is extremal we have, ~'=~", t '= t '  and (Sk)keK has a remarkable sig- 

nificance: if kEKi and p is a minimal projection in the kth summand of MtfqM2i (or 

N~,_l fqM ) then [pMg.ip:Mp]=s2=[pMp:N2i_lp]. 

We will now show that  even if N c M  is not extremal the local indices will still give 
t an eigenvector for FN,MFN,M, corresponding to a remarkable eigenvalue. 

PROPOSITION. (i) If kEK then for any i for which keK~ and any minimal projec- 
tion p (resp. p~) in the kth summand of M'f3M2i (resp. N~i_xfqM ) we have: 

[pM2~p : Mp] = [p' Mp' : N~i-lp t] = sks' k. 

(i') / f  IEL then for any j for which IELj and any minimal projection q (resp. q') 
in the Ith summand of M'nM2i+l (resp. N~inM ) we have 

[qM2i+lq: Mq] = [q'Mq' : N2iq'] = [M: N]tzt~. 

(ii) l f  vk=(sks~) 1/2, ul=([M:N]ttt~) 1/2 and a=(~-]~ ako,tUt) 2 then we have 

r~=ot l /2~ ,  FtTy= al/2ff, 

F tF f f=  aft, F F t g =  aTY. 

(iii) a coincides with the minimal index of N c M ,  i.e., a = I n d  Emgi 'M ~< [M:N] and 
a= [M: N] if and only if N C M is extremal. 

(iv) IIrN, MIIZ < . 
Proof. (i) and (i') follow trivially from Jones' formula 1.2.5 (i), since r ' (p )=r (p ' ) ,  

"r'(q) =r(q ' ) .  
M1 ,M Direct computation shows that  Emi n is the unique expectation of M~ onto 

MI ,M _'~ M such that  Emi n (t/} are proportional to [qMxq:Mq] 1/2, for qEM'NM1 and that  
M1,M 1 2 (IndEmi n ) / is the factor of proportionality (see [Hi]). Thus, since ~-~qEmin(q)=l, 

one has 

(Ind EMmi~ 'M)1/2 = E (Ind EM~ 'M )1/2 EM~,M(q) 
q 

= E [ q M l q :  Mq]~/:= EakolU, = a  1/2, 
q l 

where the sums are taken over a partition of 1 with minimal projections of M'fqM1. 
M N  The same computation for N C M shows that  Ind Erain -- ~ as well (since [qMlq: Mq] = 

[q'Mq':Nq']--u2). By [L3] EMkn'M=EM~'M...EMmi~'Mk-' and EMkn'MIM,nM ~ defines a 
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Tm q 2 i + l  ol--lTrn q2i--1 , 2 i + 2  --1 2i trace T~ on Uk(M'MM~) with ( l )-- ( l ) T,~(p k )=a 1-,~(p k), for 

_2i=t=1 _2i+2 _2i minimal projections in the corresponding direct sum- kEKi, lELi and qz ,Pk ,Pk 
mands of M'MM2i• M'MM2i, M'MM2i+2. It follows by (i) and (i') that  rm(Pk2i)-- 

�9 t 2iq-1 ~ --i--1/2-. 2i+1  2i O~-ZVk, Tm(ql )~--a ul and we get (ii) by the relations ~ l  aklTm(ql )=rm(Pk ), 
2 / + 2  2i-kl E~ a~,~(Pk )=~(q~ ). 

To show (iv), note that  

IIrN,M II ~ = lim({(r N,Mr~v,~)~hko, 5ko >)l/n 
< ~m(<(rr~)"hko, ~>)'/" = l~(<~ko, (rrt )~>)  1/n 

= ~m((~o, ~n~})l/~ =~ .  [] 

We call the vectors g=(Vk)keK, U~-(Ul)lEL in the above proposition the standard 
vectors of even (resp. odd) local indices in the Jones tower. 

Remark. Note that  the proofs of 1.3.5 and of (iii) in the above proposition show that  

the following holds true: if A is an arbitrary irreducible symmetric matrix operator over N 

with nonnegative entries and ~EI2(N) is a nonnegative vector ~t0, then limn [[A'~H12/'~= 

[JAIl and HAll ~<inf{a>0 [there exists V : ( V k ) k e N ,  V k ~0 not all zero, such that  Ag=aY}. 

Note that  in the finite depth case [IFN,MII~=[M:N] ([J3]), N c M  follows auto- 

matically extremal and the vector ~'--~" coincides with the unique Perron-Frobenius 

eigenvector of FF t normalized so that  Sko = 1 (see e.g. [Poh]). In particular, ~" is uniquely 

determined once FN, M is known. The extremality property is in fact a consequence of 

the relation [[FN, M [[2_ [M:N]. Indeed we have: 

COROLLARY. (i) / f  [[FN,M[I2----[M:N] then N c M  is extremal. 
(ii) If N c M  is not extremal, then: 

lim sup Sk = lim sup s t = lim sup tk ---- lim sup t~ ---- oo. 
k k l 1 

N'M <[M:N]. But Proof. (i) If N c M  is not extremal then a = I n d  Emi n a>~ {[FN,MI[ 2. 

(ii) If {sk) is bounded then there exists c'>O such that  c'~<.g (since ~Y is bounded 

from below by Vko =1). Let c=sup(c'>OIc'K<.g ). Then ~*-c~'~>0 and we have 

0 < r r t ( a - c ~ )  =.a-[M:NlcK=(~(g-([M:Nl/(~)cg). 

Since [M:N]/a>I when N c M  is not extremal, this contradicts the choice of c. 

Similarly, we get that  ~', t, t" are unbounded. [] 
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t 1/2 Further remarks. (1) Since vk=(s~s~) , Ul=([M:N]tlt~) 1/2 are local indices, by 

Jones' theorem vk, ut <2 implies they are of the form 2 cos ~r/n. This observation can be 

used to exclude a number of matrices from being standard matrices of inclusions. 

(2) The result in ([PiPol, 1.7]) translates into the following property of (FN,M, g): if 

N ' n M = C  (equivalently L0=(/0}) then card (keKl l s k= l }=caxd (keKl [ak~O only if 

l=lo}=cardAfMl(M)/ll(M) =card G, where .M'(M)"=M>~ G. In particular, if n denotes 

this number then [M:N]/n<4 implies [M:N]/n=4cos 2 r /n ,  for some n~>3. Also, 1.9 in 

[PiPol] translates into the following: if for some k in K1 we have sk < n +  1 then a~jo ~n.  

In particular, if sk < 2 then akjo = 1. 

(3) If F is an infinite irreducible matrix with an eigenvector ~=(~k)keK, ~k>0, 

lim~k=O, FFt~=[M:N]~, then F cannot be the standard matrix of N C M ,  with N c M  

extremal. Indeed, because otherwise FFts= [M:N]s and sk >1 Sko, Vk, so that there exists 

c>0 such that S-c~>~0 and sk--c~k-----0 for at least one k, but only finitely many. Since 

FF t is irreducible, (FFt)"(s-c~)  has only positive entries for large n and is a multiple of 

s -c~,  a contradiction. 

Note that the same argument shows that if FF t admits an eigenvector ~ with 

lira supk ~k <~1r then (F, k0) cannot be a standard matrix for a subfactor of index IIFII 2. 

1.3.7. The standard invariant (or the paragroup) of N c M .  The standard graph 

(FN,M,*) with its standard weight g do not completely determine the '2ableau" 

of all higher relative commutants and of all their inclusions {M'nMj}j>~i~>0 (or 

{N~nNj}i>~j>~_l) with their corresponding traces, but just the part {M'nMi}~ (resp. 

{N'nM},) .  

Since by the last part of 1.3.4 (see also [PiPo2]) the isomorphism 1.3.3 (see [PiPol], 

[PiPo2]) from the [M:N]-amplification of Mi to M~+2, implements an isomorphism from 

M~AMi onto M~+2nMi+2 , it follows that in fact all the information is contained in the 

sequence of consecutive inclusions {M~ NM~ C M' nMi}i>~l. 

We will call the trace preserving isomorphism class of the sequence of canonical 

commuting squares 

C = M ' n M  c M ' n M ~  c M ' n M 2  c ... c M ' n M ~  c 

u U u 

O=M~nM~ c M~.nM2 c . . .  c M'nM~ c 

the opposite standard invariant of N c M  and denote i t  g~vPM . 

We will call the trace preserving isomorphism class of the sequence of canonical 

commuting sequences 

C = M ' N M  C N ' n M  c N~nM c ... c N ' N M  c 

U u u 
C = N ' n N  c N~nN c ... c N ' n N  c 
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the standard invariant of N C M  and denote it ~N,M. If N ~  ~ is another inclusion, 

then an isomorphism between GN,M and GNo,Mo means a trace preserving isomorphism of 

(J(NfflM) onto U(N~ ~ carrying N~NM onto N ~  ~ and N~f3N onto N~ ~ 

Vj. Similarly for antiisomorphisms. Note that in the case N c M  is extremal, ~N,M is 
op antiisomorphic to GN,M and also antiisomorphic to GIVop,MOD ([Po5]). 

op In the case N C M  has finite depth, ~N,M, ~N,M are uniquely determined by just 

one commuting square: 

M'NMio C M'NMio+I 
U U 

MlNMio C M~NMio+l 

with i0 large enough (e.g. i0/>cardK). Note that if io>/cardK then such a commuting 

square is nondegenerate and [M:N]-LMarkov, the rest of the higher relative commu- 

tants in ~N,M resulting from the basic construction. A finite dimensional nondegenerate 

Markov commuting square which is isomorphic to such a commuting square of higher 

relative commutants is called a standard commuting square. 

In general, the commuting square condition and the standard matrix describing the 

inclusions, are not however sufficient to characterize GN,M. In the finite depth case an 

axiomatization for ~N,M was given in [Oc2] who calls it in this case the paragroup of 

N c M  and uses Connes' correspondences (or bimodule) multiplicative structure ([C6], 

[Po6]) to describe it. 

Ocneanu's idea is to regard ~N,M as the (tensor) category with 2 objects {N, M} 

and with the morphisms given by all Q - P  correspondences ~/, with Q, PE {N, M}, that 

are contained in a correspondence generated (multiplicatively) by L 2 (M), 

7"I C L2(M) |  Pi e ( N , M }  

(only Pi=N are of course sufficient). Also, each ~/is regarded with a weight assigned to 

it, which is given by (dimQ,p 7-/) 1/2, the dimension of 7-/as defined in [Po6]. The principal 

part of the fusion rule matrix of this category coincides with the standard graph rlV,M 

and the above weights with the standard vectors of FN,M. 

Following [Oc2], when regarded in this equivalent way ~N,M will be called the para- 

group of N C M. 

Note that the invariant ~N,M cannot  distinguish one from another the amplifications 
p, op __ ~ o p  of N c M, more precisely, ~JV,M =~No,M ~ , ~ N,M--~" No,M ~ , for any c~>O, where N a c M a 

is defined as N | Mn x n (C) C M | Mn x n (C) for c~ = n and as a reduced of such an inclusion 

by a projection of trace a /n  if n - l < a < n ,  n ~ l .  This fact is trivial by the definitions. 
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1.4. Core  and mode l  inclusions 

The standard invariant of an inclusion gives rise to a natural model inclusion of hyperfinite 

type II1 algebras that we will now describe. 

1.4.1. Definitions. Let M~=UkMk,  the closure being taken in the weak topology 

given by the unique trace on Uk Mk. Mc~ is thus a type II1 factor, called the enveloping 
algebra of N C M. 

Then the (isomorphism class of the) inclusion of algebras M~AMoocM~AM~o is 

called the opposite model of N c M .  The algebras M~AM~, M~nMoo are not factors in 

general. Since {ei}i~>3 C M~ n M~,  they are always of type II1 and they are clearly approx- 

imately finite dimensional (i.e., hyperfinite). The opposite model is uniquely determined 
op 

by ~N,M" 
If {Nk}k>~l is a choice of a tunnel, then the inclusion 

s = U ( N ~ N N  ) C U(N~AM)---R 
k k 

is called the core associated to {Nk}k. By 1.3.5, the isomorphism class of S c R  depends 

only on N c M .  It is called the standard part (or model) of N c M  and it is denoted 

NStcMSt. NStcMSt need not be factors but they are hyperfinite of type II1. The 

standard model with its trace is uniquely determined by ~N,M. 

In case N c M  is extremal, the standard model is antiisomorphic to the opposite 

model (cf. 1.3.5). 

Note that if N c M  has finite depth then all the algebras N st, M st, M~NMc~, 

M'NM~ follow factors and [M:N]=IIFN,MII 2 (cf. [Poh], [J3]). Also, N c M  is then nec- 

essarily extremal (cf. [Poh] or 1.3.6 above). In fact even NStcM st, M~NM~CM'NM~ 

follow extremal. Indeed, since these two inclusions are antiisomorphic (by the extremal- 

ity of NCM),  we only need to prove the extremality of NStCMSt. But the traces of the 

minimal central projections of N/ AM are given by &'n--s" ()~FN,MFtN M)n~ko �9 By the 2n--1 

Perron-Frobenius theorem, as n tends to cx), gn has the entries tending to a multiple of 

s .s --(Sk)ke g. Similarly for N~,~+INN. Using Example 2.2.2 in [PiPo3] it follows by 2.7 

in [PiPo3] that 

lim E(g~,+lnN),n(g~,+,nM)(eo) ---- A1, 

showing that NStc M st is extremal. 

1.4.2. Ergodicity of the core and of FN, M. The factorality of M st (or M~OMoo) is 

strongly related to the ergodic properties of the weighted graph (FN,M, ~). 
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PROPOSITION. The following conditions are equivalent: 
(i) M st is a factor. 

(ii) Up to a scalar multiple, ~ is the unique #-bounded eigenvector of rN,MFtN,M 
corresponding to the eigenvalue [M:N].  

(iii) If P=ASFN,MF~,M s-l ,  s being the diagonal operator given by ~ and A= 

[M:N] -1, then lim,~ ]lP'~fkl - P n h k  o Ill--0, Vkl e g .  

Proof. (ii) and (iii) are known to be equivalent from the general theory of Markov 

chains (cf. e.g. [Or] and [HaG]). If Pl, P2 e N~i AM are minimal projections in the kl resp. 

k2 summands of N~io_ 1AM then the traces of  (PJP~)kEK. corresponding to the summand 

k (EKn), axe given by the vector Ans(FFt)~-i~ Thus (iii) is equivalent to the fact 
p n that  the traces of ( JPk)kEK~ t e n d  to be proportional to the numbers Ski (which are 

proportional to the traces of pj). This is the same as saying that 

lICSN~n_lnM(Pj)--'r(pj)llll ~ 0, 

which is the same as saying that N~n_ 1 A M  tends to a factor. Thus (iii) r (i). [] 

Definition. If N c M  satisfies the equivalent conditions of the preceding proposition 

then we say that N c M  has ergodic core. Also, in case  (FN,M, 8) satisfies condition (iii) 

we say that FN, M is ergodic. Note that in the case N c M  is extremal these conditions 

are also equivalent to the factoriality of M~nMoo (by trace preserving antiisomorphism). 

This fact is actually true in general, but the proof is longer and will not be given here. 

Typically, subfactors with small index have ergodic FN,M: we already pointed this 

out in 1.3.6 for FN, M finite, thus for [M:N] <4. From the previous considerations we can 

deduce here some further ergodical properties. 

COROLLARY. (i) I f  N c M  is extremal then N S t c M s t  is weakly irreducible, i.e., 
Z(NSt)AZ(MSt)=C. Thus Z(NSt),  Z ( M  st) are either both atomic or both diffuse. 

(ii) / f  FN,M coincides with A~  outside a finite set (of vertices) then FN,M is er- 
godic. 

(iii) If [ M : N ] < 2 + V ~  then FN,M is ergodic. 

Proof. (i) If Z(NSt)nZ(MSt)TtC then by antiisomorphism we get Z(M~AM~)N 

Z(M'NM~)TtC, thus Z((M~NM~)'NMoo)NZ((M'NM~)'NM~)7tC. Thus, there ex- 

ists p r  [p,M]=O=[p, M1] and [p, ei]=0, Vi~>2. But vN(Ml,e2,ea,...)=M~ and 

Z(M~)=C1,  a contradiction. 

(ii) Follows from the previous proposition and [HAG]. 

(iii) By [GHJ] all matrices FN,M of norm <~2+x/~ satisfy (ii), are finite, or are of 

the form A~)=A~,~r or T2,~,~ ([GHJ]). But  FN,M=A~ ) implies N'NMTtC so that if 

[M:N]<~2+V~ then NtNM----C 2 and N c M  is necessarily locally trivial, thus ergodic. 
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Since IIT2,=,=II2=2+v~, if [M:N]<~2+V~ and FN,M----T2,ae,ar then [M:N]=2+V~ 
so that  T2,cc,oo(T2,cc,ac)tg=(2+v~)g. But an easy computation shows that  there is a 

unique g satisfying this. (Note that  in fact this unique ~" is square summable so by 

Further remarks (3) at 1.3.6, T2,or cannot in fact be the graph of a subfactor of index 
[] 

1.4.3. Basic construction for cores and models. If SCR is a core corresponding to 

some tunnel M D e o N D  e-~ N1D~-2N2D... then the Jones projection el EM1 implements 

the trace preserving conditional expectation of R onto S and vN(R, el)=spRelR, so 

that  sp RelR= (R, el) = (R, e,) = (R, S). Moreover (R, el) =Uk(N~ NMI) and RC (R, el) 

is the core of McM1 corresponding to the tunnel M1DMDNDN1D .... Furthermore, 

if Sl={eo)'nN then SI=U(N~nNI) and S1CS is the core of N1cN associated to the 

tunnel N D N1 D .... 

All this follows trivially once we observe that  if {mj)j is an orthonormal basis of 

vN{eo, e - l ,  ...) ( c R )  over vN{e_l ,  e-2,  ...) ( c S )  then it is also an orthonormal basis of 

R over S and of M over N. Thus 

U(N  nM ) c (U(N  n l)) = mjel (U(N nM)) 
k j k j k 

= ~ mjelR C sp RelR. 
J 

Also, since ~.  mjm~=[M:N], (NStcMSt)=(ScR) are [M:N]- l -Markov  inclusions. 

As for the opposite model M~NMoocM'NMoo, if N C M  is extremal, then M~aMoo 
CM'MMoo CN'nMoo is antiisomorphic to S c R c  (R, el) with the antiisomorphism car- 

rying el into el, and we have NtnM~=(M~nMoo, el) =(M'nMoo, M~nM~) in the sense 

of 1.1.2. But when N c M  is not extremal el does not implement the trace preserving 

expectation of M~NMar onto M~nMoo. 

1.4.4. Stability of model inclusions. If a > 0  and N ~ c M  ~ is the a-amplification 

of N c M  then we have ((N~)Stc(M~)St)~(gstcMSt) and (M~'NMs cM~'NM~) "~ 
(M~ N M ~  c M ~ n Moo). In fact we already pointed out the existence of such isomorphisms 

for the corresponding standard invaxiants (or paragroups) in 1.3.7. 

In particular it follows that  st st ~ st s t  (M~i_lCM~i)-(g CM ) and that  (M~i+INMooc 
M~iMM~)~-(M~MMoocM'MM~r if i e Z ,  where Mj=N_j_I for j < 0 .  Indeed, this is a 

consequence of 1.3.3 and the above. 

In c a s e  NSt ,M st are factors it is easy to see that  the inclusion N S t C M  st is stable 

(cf. e.g. [Bill, [PoS]). One can in fact easily obtain the same result even if N st, M st are 

not factors: 
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PROPOSITION. If  N ~ M and P is a copy o.f the hyperfinite type 111 factor, or of an 
n x n matrix algebra then ( N"t C M' t  ) "~_ ( N"t | P c M' t  | P ) and ( M ~ n M ~  c M'  n Moo ) ~ 

((M~nMoo)|  Moreover, if MDe~ NDe-~ N1D... is a choice of the 

tunnel, S=Uk(N~ r ' lM)c Uk (N~, N M ) = R  is the corresponding core and P ~  S is a hyper- 

finite factor (finite or infinite dimensional) so that R~176  S ~ 1 7 6  satis~ 
R~176176176 S ~ 1 7 6 1 7 6 1 7 6  then S ~  ~ is also a core, i.e., there exists 

a choice of the tunnel M D N D N~ D ~ D... so that 

R o = U ( ( N ~  S O = U ( ( N o ) ' n N ) .  
k k 

Proof. Both inclusions g s t c  M st and M~ n M~o c M~NMco have the property that 

given any finite number of elements xx, ..., xn in M st (resp. M'nMoo) there exist unitary 

elements u, y e n  ~t (resp. M~ NMoo ) such that u v = - v u  and 

II[u,x,]ll2<E, II[v, zdll~<e, l<.i<~n. 

But then, following McDuif's original argument ([McD]), exactly like in the factorial 

case proved in [Bil], by using the central trace instead of the scalar trace in all the 

estimates, one gets a sequence of commuting 2 x 2 matrix subalgebras {Pj}j in N st (resp. 
in M~NMcr such that pd--e---fvkPk=~kPk satisfies the requirements, proving the first 

part of the statement, 

To prove the last part, let #:(S~PcR~P)~_(ScR) be an isomorphism and denote 

e~174 S~174 where So=S, S~=Ui(N~nNk)=RnNk.  

Note first that S~={e-k+lynSk-1 .  Indeed, S~=N~nSk- l=({e -k+l} 'nNk-1)N  

Sk- l={e-k+l} 'nSk-1 .  Then denote N ~ 1 7 6 1 7 6  k>~l, where N ~  

Since e ~ 1 7 6  ~ and since EN~_~(e~176 (by the commuting 

square relations), it follows recursively that M De~ N D e~ N ~ D... is a choice of the tunnel. 

Also, we have that ( N ~ 1 7 6  by the definitions. 

Since eo is in vN{e0, e - l ,  ...}, and e ~ in vN{e ~ e~ ...}, which are subfactors of R, 

both eo, e ~ have scalar central trace in R so that they are conjugate in R, say by a unitary 

vo, i.e. e~ Then, like in [PiPol], Uo=A-1Es(voeo)ES is a unitary element 

satisfying uoeou o*--eo~ uoSlu~=S o. One obtains in this way recursively some unitary 

elements ui e S  ~ such that Aduiui-1 ... uo(ej)=e ~ O<.j<.i, Ad u, ... uo(N~AM)=N~ 

Ad ui . . .  uo( S~ nR)=S ~ 
It follows that if we denote 

o'o: U(s'~ nR)  ~ U ( ( s ~  ~o(x) = lira Ad u~ ... uo(x), 
3 3 
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then a0 is a trace preserving onto isomorphism and ao(U~(N~nM))_ =Uy((N~ 
Since 

U(S~NR)=R, U(N~NM)=R, 
] J 

we have 

U((S~174 and 
3 

U((N~ c U((S~ = a(R| 
J 3 

Thus 

U((N~ ) :ao (R) :ao(U(S~NR)  ) :U( (S~174  [] 
: : 3 J 

Note that  the proof of the above proposition actually shows the following: 

COROLLARY. If Q c P  is isomorphic to NStCMSt and if it is represented in N c M  

(i.e., as a commuting square), then there exists a choice of a tunnel MDNDN1D.. .  such 

that the corresponding core coincides with Q c P. 

Remark. Note tha t  if N st , M st are factors then N st C M st has the so called generating 

property ([Po5]), meaning tha t  there exists a choice of the tunnel MStDNStDN[tD... 
such tha t  (Y~t)'nM st/ZMSt, in particular (N st cMSt) st =N st c M  st (i.e., the s tandard 

par t  of NStcMst coincides with that  of N c M ) .  Indeed, this is trivial since if M D  

ND. . .  is a choice of a tunnel for N C M  then N~NMC (Y~t)'NM st (with the appropriate  

identifications). The same is true for M~OM~CM'NM~.  

2. Representation theory for subfactors 

Let N C M  be an inclusion of type II1 factors with finite index. Unlike the single von 

Neumann algebras M for which the representations are simply normal embeddings of the 

given algebra M in other von Neumann algebras, e.g. in B(H) for some Hilbert space 

7-/, in the case of inclusions of finite index N c M  one also has to take into account the 

expectat ion EN. Since the morphisms between inclusions are the commuting squares, 

it is natural  to define a representation as an embedding of N c M  into an inclusion of 

arbi t rary von Neumann algebras ArC 2r with a conditional expectat ion C: A/I--*A r which 

is compatible with EN when restricted to M.  A nondegeneracy condition similar to 

1.1.5 has to be imposed as well. Equivalently we only want to consider representations of 

N c M  into inclusions A/'CA/t with the same [PiPol] index as N c M .  Finally, for a finer 

theory, one needs to have some compatibil i ty between the higher relative commutants  of 

A / ' C M  and N C M .  



CLASSIFICATION OF A M E N A B L E  SUBFACTORS OF T Y P E  II 191 

2.1. Def in i t ions  and mot ivat ions  

2.1.1. Definition. Let Afc.hd be arbitrary yon Neumann algebras with g:fl4---~Af a 

normal faithful conditional expectation of A4 onto Af. Assume NcAf ,  MCAA and that 

EIM----EN. We then say that N c M  is embedded or is represented in (Arc.A4), or that 

u U 

N c M 

is a commuting square. The embedding (or representation, or commuting square) is 

nondegenerate if span MAf = AA. 

This condition is quite natural to impose. As we will later see, it is equivalent to 

the fact that the [PiPol] index of AfcE.Ad is equal to that of N c M .  In other words, we 

only consider representations within the category of inclusions with the same index as 

the given one. 

Representation theories are considered in order to get more insight into the structure 

of the represented objects. In our case, for the structure and classification problems for 

inclusions of subfactors N C M, we are interested in getting finite dimensional subalgebras 

Q c P  in N C M  that make a commuting square with N C M  and that approximate some 

given set of finitely many elements in M. The next example shows why such inner 

structure is reflected into our representation theory. 

2.1.2. PROPOSITION. Let Q c P  be subalgebras in N c M  satisfying the commuting 

square condition EllEN = ENEp ~- EQ. If this commuting square is nondegenerate (1.1.4) 

and if 

0 0 

N C M 

is its extension (1.1.4), where .hA=(M, eM), Af=(N,  eM)"~(N,e~) ana~ "c----Z~(N,Q)"(M'P) is the 

amplification o] E~, then it gives a nondegenerate representation of N C M  and IndE= 

[M:N]. Moreover, if Q c  P are finite dimensional and T is its inclusion matrix, which we 
assume irreducible, then the nondegeneracy of the commuting square is equivalent with 

the condition IITII2=[M:N]. Also, in this case, JV'CIt4 are atomic yon Neumann algebras 

with inclusion matrix T (via the identification of the centers of Q and Af, respectively P 
and All). 

Proof. If {mj } is an orthonormal basis of P over Q which is also a basis of M over N 

then [mj, ep M]--0 and ~ mj(sp NeMN)-~sp MeMN--sp ~ M m j e M N ~ s p  MeMM, show- 

ing by density that ~ mjJV'=./t4. If Q c P are finite dimensional then clearly f14 = (M, P) 
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and A/'= (N, Q) are atomic and since M M M M M M ep.A4ep =Pep,  ep Afep =Qep , the inclusion ma- 

trix of A/'CAd is the above T. If spPeMP91 then by [J2] we have IlYll2= (e )-l= 
[M:N]. The converse holds true by [ViPo3]. 

The equality IndE=[M:N] will be proved later in this section for arbitrary non- 

degenerate representations. A different argument works here as well: 

By density and linearity, like in 2.1 of [PiPol], we only need to show that 

(N,Q) 
j i j 

where A=[M:N] -1, x~EP, only finitely many nonzero. By 1.1.5 and the COmmUting 
square condition, this amounts to (EN(Xlx~))~A((xix~)). But if the number of nonzero 

zi's is say n, then by [PiPol], 

Ind EN| = [M@Mnx,~(C): N| = [M: N] = Ind EN, 

T.,,~(M'P)<~[M:N]. But if e0EM is thus the above inequality holds true, showing that ~...--(N,Q) 

a Jones projection, then (M,P) .M _ E(N,Q ) (eo)=EN(eo)-A1, thus we have the equality. [] 

2.1.3. PROPOSITION. An embedding of (NCM) in (AfCA4) is nondegenerate if 
and only if any orthonormal basis {mj}j of M over N is an orthonormal basis of .A4 

over J~f, i.e., Y=~'~.j mjg(m~T), TEA4. 

Proof. Assume spMJV=A4 and let { m j } j  be an orthonormal basis of M over N. 

If T=yX,  with yEM, X EJk f, then Y='Y]'i mjEN(m~y) so that yX--~-~.mjEN(m~y)X= 

E m j s  mjs 
Taking linear combinations and weak closures it follows that T=~-~ mjE(m~T) for 

all TEsp M-----~=J~I. 

The converse is trivial. [] 

2.2. Basic cons t ruc t ion  for represen ta t ions  

2.2.1. LEMMA. Let AfCA4 be arbitrary yon Neumann algebras with a normal faithful 

conditional expectation s and assume A4 has a finite orthonormal basis over Af, i.e., a 

finite set {mj}jCA4 such that T= Y]. mjg(m~T), T E A/[. 
Also assume ~ mjm~=A-11, for some scalar A>0. Let .M be represented normally 

and faithfully on a Hilbert space, M C B(H), such that for some projection el E B(H) we 

have (cf. IT2]): 

[el,At] =0 
elTel =s T E.lt4 

spA4el?/= ?/. 
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Then el and .MI%fvN(.M, e,)=(MU{ex})" saris:U: 
(a) 
(b) A/Ix={~'~ m~Tijeam*. ITij Efi.IV'fj} and q T ~ M c M 1  then 3 

T =  Z miE(m~" Tmi)elm;" 

(c) C~(E,,j-~,T, jelmi)=~E,,~ m,T,~m; defines a n o d a l  Iaithlal conditional ex- 

pectation of ./t41 onto Ad. This conditional expectation satisfies Ex(xely)=Axy, for 
x, yEA, t, so that, in particular, it does not depend on the choice of {m/}j.  

(d) {A- lmie l} j  is an orthonormal basis of Jk41 over .It4, with respect to ~1, i.e., 

TI=A -2 ~ mjelgl(elm;T1), for all T1 e.lt41, and it satisfies Y~j()~-lmjel)(elm;2-1)= 
A-11. 

(e) The probabilistic index [PiPol] of C1 is equal to )~--1, i.e., EI(T)>~AT, TEJt41+ 
and ~ is the best constant for which the inequality holds, in fact gl(el)=A1. 

Moreover, if B is any yon Neumann algebra containing .It4 and a projection e~ such 
that [e~,Af]=0, e~Te]=g(T)e~, V{ue~u*[uEl/(M)}=l then vN(A4,e~) is isomorphic 

to A/t1, by letting x ~ x ,  xE.A/l, e l~e~.  

Proof. (a) follows from sp~4el~/=~/ .  The first part of (b) is trivial. Then, if 

TEJ~4 we have T=TEmje~m;=E~,~ mf.(m~.Tm~)elm~. Clearly ga(c~41)CJvt and if 

T = E  mis e.M then e l (T)=A E mie(m*Tmi)m;  =A E Tmjm;  =T. 
(d) is trivial and the proof of (e) is identical to the proof of the similar statement 

for finite algebras in [PiPol]. [7 

2.2.2. Definition. IfAfcej~4 satisfies the hypothesis of 2.2.1 then Jt4Ce~41 as con- 

structed in 2.2.1 is called the extension of Afc.bt .  One also denotes .A41 =(.bet, el). This 
construction is called the basic construction for AfCeJVl. Since the new inclusion also 

satisfies 2.2.1, one obtains recursively a whole tower of inclusions ArC jr4 C Jt41C.IVl2 C... 

with ~eli+~ = (~4i, ei+l} and gi+l: r Ei+~(T~ei+IT2)=ATIT~, Tx,2fir 

2.2.3. LEMMA. Let 

U t.J 

N C M 

be a nondegenerate embedding. Then Arc.It4 satisfies the hypothesis of 2.2.1 and if 
.MC~*.M~ =(.A//, el) denotes the extension of AI'ceA4 then (M, e l ) ~ f  N(M, e~) is iso- 

morphic to MI = ( M, e N ) via the map x ~ x , x E M , e l l e N ,  and we have the nondegen- 
erate embedding 

A / I ~ . M 1  
U U 

M C M1 
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e.g. sp M1.A/I=A41, g[M~=E M~ . More generally, by iterating the construction one gets 

a tower of nondegenerate embeddings: 
~2 

r ~ M1 c ... 

U U 

M c M~ c . . .  

U 

N c 

Proof. Trivial by 2.2.1. 

2.2.4. 

square) 

[] 

Definition. The nondegenerate embedding (or representation, or commuting 

U U 

M C M1 
is called the extension of 

.M c .M 
u u 

N c M. 

Its construction is called the basic construction. 

The next result shows that any representation comes from a basic construction, in 

other words that we can make the downward basic construction for representations, thus 

getting from the initial AfCsk4 both a tower and a tunnel of representations. 

PROPOSITION. Let Af CeA/I be a nondegenerate representation of N C M and eoEM 
be a Jones projection and put Afld=ef{eoyfqA f, C_I:Af--*A f by ~_ l ( x ) ~r [ M : N]E ( eoxeo ) , 

for xEA/'. Then s is a conditional expectation of IV" onto AZl, A/'l Ce-lAf  is a nonde- 

generate representation of {eo}'NN=N1 c N  and its extension is AI'C.Ad, in particular 

eoxeo=6_l(x)eo, xE]q'. 

Proof. Let {mj} be an orthonormal basis of N over N1, so that {)~-l/2mjeo} is a 

basis of M over N (and thus of A/[ over Af). We want to show that ~ mjAfl =A f, with 

A/'I ={eo}'nA/'. Assume there exists yeeoJV'eo with S_l(y)=0. We then get 6(comfy)el = 

eleom~yel =Eg~ (mj)E-l(y)el =0, so that y=0, or otherwise ~ mjeoAfCAd. 

Let us prove that [~_l(X), eo]=0, xeA/'. We have this if and only if 

[e2eleoxeoele2, eoe2] = 0, 

because for yEjk4, y~-*ye2 is an isomorphism and because e2eleoxeoele2=)~26_1(x)e2. 
But 

eo(e2eleoxeoele2) = A(e2eoxeoele2) = )~(eoxeoe2ele2) 

= )~2(eoxeoe~.) = )~(e2eleoxeoe2) 

= (e eleoxeoe e )eo. 
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Since for xeAfl, clearly g_l(x)=x, we get by Tomiyama's theorem that g-1 is a 

conditional expectation of Af onto Afl and that eoxeo=g-l(x)eo, xEflf, because 

C(eoxeo-C_l(x)eo) = 0 

and the first part of the proof then shows that eoxeo-C-x(x)eo=O. Finally, we have 

Y] mjA/'l =Af if and only if y] mjJkfleoD_Afeo . But 

COROLLARY. If JkfCg.hd is a representation of N C M then Ind g =Ind E N ---- [M :N]. 

Proof. By 2.2.3 the extension of a representation has index [M:N], so the above 

proposition applies. [] 

2.3.1. 

square) 

2.3. Smooth  representations 

Definition. The nondegenerate embedding (or representation, or commuting 

U U 

N c M 

is smooth if AftN.h4kDNtNMk, for all k, equivalently, if and only if Af~NMk=N'nMk, 
for all k. Note that in this case we have )~f3./~kDM~NMk, for all i<~k, and in fact 

fl/[~ NMk = M~ NMk. 

2 . 3 . 2 .  P R O P O S I T I O N .  I f  

is a smooth embedding then 

U U 

N C M 

is also a smooth embedding. 

U U 

M C M1 

Proof. If xEM'nMk then x E N ' n M k c A f ' n M k  and [x, m j ]=O,  for all j ,  where 

{mj}j is an orthonormal basis of M over N. Thus x=)~Y]~mjxm~ and we have for 

14-945202 Acta Mathematica 172. lmprim~ le 28 juin 1994 
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T E JVl , 

Tx= Z Tmjxrn; = Z mie(m~Tmj)xm; 
j i , j  

= Z mixE(m*Tmj)ml 
i ,j  

= ~ mix Z e(m*Tmj)m; = Z m, xm*T= xT. 

2.3.3. Example. (a) Let 

[] 

N c M 

U U 

O c P 

be a nondegenerate commuting square and assume N'nMk cQ'nPk, Vk. Then the rep- 

resentation 
fl/'=(N,Q) C (M,P)=Ad 

U U 

N C M 

is smooth. Indeed, if xENtMMk then xEPk by hypothesis so that  x commutes with 

e Mk =e M. Thus xE(NuieM})'AMk=APAMk. Pk 

The above hypothesis N'AMk cQ'nPk, Yk, is fulfilled if for instance one takes Q c P  
to be a core associated to some tunnel for N c M .  This class of smooth representations 

will play an important  role in the sequel. 

(b) Let P be a type IIx factor and G a discrete group with finitely many generators 

gl,...,gnEG. Let a:G-*AutP/IntP be a faithful G-kernel on P ([J1]). Let O0=id, 

0i EAut  P ,  ~0i =a(g i ) ,  1 ~<i ~<n. Let M a d----efMn+l (C) |  and 

N o de_~ Oi(x)| P C M ~ 

where {eij}i,j is a matrix unit of Mn+I(C) .  For more on this example of subfactors see 

5.1.5. 

Let 79 be a yon Neumann algebra that  contains P and assume there exists a G-kernel 

(not necessarily faithful) 5 on 7 9 with some automorphisms/~i representing 5(gi) such that  

Oilp=O~. Define . s 1 7 6 1 7 4  0 n and A f = { ~ i = o  Oi(X)| IXE79}. Then ~ f ~  ~ 

is a smooth representation of N ~  M a. To see this, note that  the Jones tower and the 

higher relative commutants for the inclusion f l f~  $ are constructed in the same way 

as for NOCM a (see e.g. 5.1.5(4)). Conversely, if Afce~r is a smooth representation 

for NOcM a then APM.A4DNa'fqM a, in particular eii E.IV'~n.]~. Thus, if ~'~-Afeoo, then 

oid--e--f(n+l)E(eoi.eio) is easily seen to define an automorphism of 79DP with/9~lp=0i and 

that  in fact (Afc)cl)_~(Af~ 
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Another important class of smooth representations is given by the embeddings sat- 

isfying the following stronger condition. 

2,3.4. Definition. A representation of NCM into AfcA4 is exact if (M'NJq')VM= 

Jvl. Note that if this condition is satisfied and P=M'AAf, then A4k=PVMk, k~-l. 
This is because [M'nAf, e~]=O, k>~l, so that 

)Pl~ = (]Vl, el, e2, ..., ek) = PV ( (M, ex, e2, ..., ek) ). 

But this implies APAMk=N'AMk ,  Vk, so that the exact representations are smooth. 

2.3.5. Example. Let N C M  b e a n  inclusion of finite depth and M D N D . . . D N k  be 

a choice of  the tunnel up to k that reaches the depth. Thus Q = N ~ A N c N ~ A M = P  

contains an orthonormal basis of N C M  (cf. w so that by 2.1.2 

A/'--(N,Q) c ( M , P ) = M  

U U 

N C M 

is a nondegenerate representation. More than that, this representation is in fact exact 

and thus smooth. More generally, we have the following: 

PROPOSITION. Let N c M  be an inclusion of finite index and assume there exists 

a subalgebra B c N  such that Q = B ' A N c B ' A M = P  contains an orthonormal basis of 

N C M (equivalently, ( Q c P )  is nondegenerate in ( N c M ) ) .  Then the representation 

A/'=(N,Q> C (M,P)=JV[ 

U U 

N C M 

is exact and in fact M'NA/ '=JBJ,  A f = N V J B J ,  A 4 = M V J B J ,  where B = P ' A N D B .  

Moreover, if P is an atomic algebra (e.g. finite dimensional), then this representa- 

tion is atomic. 

Proof. Note first that e M implements the canonical conditional expectation g =  

E ( M , P )  of 3A= (M, P) onto Af= (N, Q). Indeed, since ( Q c P )  is nondegenerate in (NC (N,Q) 
M), any orthonormal basis {~j}j of N over Q is an orthonormal basis of M over P. 

Thus, the elements of A4 are of the form x=Y]ij ~ipijep~,M �9 with Pij eP. But [e~,~]--O, 
e M x e  M P M * M M [e M, e M] =0 so that N N =Y]i,j ~iE~ (Pij)ep~ e N = s N . 

Thus {eM}'AA4=Af and we have 

M'  n.h/" = M'A{eM}'NAA = J M J n { e M y n j P ' J  

= J ( ( { e M } ' A M ) A P ' ) J  = J ( N n P ' ) J  = JBJ.  

Also, since B ' N M = B ' N M = P ,  we have ( M V J B J ) ' = J ( B ' N M ) ' J = J P ' J ,  so that 

M V  JBJ--A4.  [] 
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2.4. The standard representations 

Roughly speaking, the standard representation of N c M  is defined as the "smallest" 

representation of N C M  which, as a representation of M, contains the standard rep- 

resentation of M as a direct summand. We will now give a constructive and rigorous 

definition of it, and along the line provide a constructive way of getting all possible exact 

representations of N C M. 

Let N c M  be an inclusion of type II1 factors with finite index and let R=[M:N] -1. 

Let P be another yon Neumann algebra (in fact even a C*-algebra would do). Typically, 

P will be M ~ the  opposite algebra of M. Then the closure of N| in M| 
coincides with N| (indeed, since given any cyclic representation lr~ of N| the 

representation ~r~oEN| extends it to all M| We will simply denote this inclusion 

by N|174 We also have an expectation E=EN|  from M| onto N| 
Let further (N| CE**(M| ** be the bidual of this inclusion. It will still sat- 

isfy E**(x)>~Ax, xE(M| Also x = ~ j  mjE**(rnj.x), i.e., {mj} is an orthonormal 

basis of (M| over (N| Indeed, this is easily checked for x in the dense 

*-subalgebra M| by writing M|174 (resp. M|174 
e0 E M being a Jones projection. 

If PN is the maximal projection in N'N(N| such that NpN is a normal em- 

bedding of N in (N| then PN also commutes with P so that pNEZ((N| 
Similarly, the analogue projection PM for (M| belongs to Z((M| Clearly 

pM~7~N. Also, if (x i ) icN,  [[xi[[<~l, and (xi)i converges weakly to x in N, then 

{EN(m~ximl)}i converges in N to EN(m~xrnl), for each k,l. Thus xi ~-'~mkPNm~= 
~,kmlEN(m~ximk)pNm*g converges weakly to ~~.z,kmlEN(rnTxmk)pNm~----x. This 

shows that ~mkPNm~ is supported by PN, thus mk commute with PN so that pNE 

M'N(M| showing that pNEZ((M| Next, if (x~)~ is in M and x ~ x e M  
then xipN=~-]~kmk(EN(m*kxi)pn)---~-~kmkEN(m~x)pN. Altogether this shows that 

PN ~PM as well, so PN :PM =Prior. 

Now take qN, qM to be the atomic parts of (N| respectively (M| By 

[PoWa], qN=qM. Indeed, ifqE(N| is an atom and (Pi)iex is a partition of the unity 

with projections in q(M| then E**(pi)=aiq>~Api. Thus cardI,.<)~ -1, showing 

that (N|174 is finite dimensional, and thus q(M| is atomic. Thus 

qM ~/qg. Also, since E** (qM)-IE** (x)qM is a normal faithful conditional expectation of 

(M| onto (N| we have that (N| is atomic so that qM~qN as 
well, thus qM =qN =qat. 

Since we are particularly interested in studying inclusions of separable type II1 

factors, in fact of separable hyperfinite factors, all that really matters is when each 

simple summand of (M| in which M is normally embedded is separable (e.g. when 
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(N|  

U 

N 

** , E M ~ i , t  h** where E 1 = t  M ~:~ ~-'  " 

P is a separable C*-algebra or when P is a separable von Neumann algebra and we only 

take simple summands on which P is also normally embedded). 

Note that  by construction, N C M  is represented in (N|174  r and 

since {mj}j is an orthonormal basis of (M| over (N| the representa- 

tion is nondegenerate. This is the case also if we cut further with a projection q in 

Z((N|174 which is under Pno~. Furthermore, if N c M c ~ ' M 1 C . . .  is 

the Jones tower for N c M ,  then we have an associated tower of representations: 

E** E~* 
C (M|  (Ml| C ... 

U U 

C M C M~ C ... 

Note that  by construction we clearly have M' q N ( N | P )** q D ( 1 | P ), so that  all such 

representations are exact and thus smooth. 

Note also that  Z((N|174 is an atomic abelian von Neumann 

algebra and that  every atom in Z((M| is majorized by an atom (i.e., minimal 

projection) in this common center. 

2.4.1. Notation. We denote by Af~CeA4 ~ the inclusion of atomic algebras 

N ** ~ *  ** ~ (  | ~ (M|  

the sums being taken over all separable C*-algebras P (so that  each atom in .h4 ~ is a 

B(7-/) with 7-/separable). We denote the corresponding smooth representation of N C M  

by 
AT ~ ~ 34 ~ 

U U 

N C M. 

The next result describes this representation by an intrinsic universality property. 

2.4.2. PROPOSITION. Let ~f cEJ~4 be an inclusion of atomic yon Neumann algebras 

and assume 

U U 

N C M 

is a nondegenerate representation of N c M .  Then this representation is equivalent to a 

direct summand of the representation AfUc.M~' if and only if it is exact. 

Proof. Let 7a=M'NAf. If AfC2r is a direct summand ofAf~c.A4 ~, i.e., (ArC.hal)= 

(A/'~CA4~) for some qeZ(JV'u)NZ(A4u), then 7)DR so that  MVT)DvN(M,P)--A4.  
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Conversely, if PVM--.A4 then we can simply take P=:P ,  or if P is required to be a 

direct sum of separable C*-algebras, then we can take dense parts of ~o. [] 

2.4.3. Definitions. Af u c A4 ~ is called the universal (exact) atomic representation of 

N C M .  If qeZ(Af~)nZ(A4 ~) is the minimal projection majorizing the atom q in Z(A4 u) 

corresponding to the direct summand B(L2(M))CA4 ~, then Af~ C.A4~ is called the stan- 
dard representation of N c M  and it is denoted Afstc A4 st. If ArCe.A4 is a representation 

of N c M  so that  Z(Af)Mz(A4)=C1, then the represenation is called weakly irreducible. 
We see from all the above considerations that  A/st CA4 st is exact (thus smooth) and 

weakly irreducible. 

Let K ~ (resp. L ~') be a labeling of the minimal projections in Z(A4 ~') (resp. Z(AD')). 

Let AUN,M =(akl)keg%teL~ be the multiplicity matrix of the inclusion Af ~ CA4 ~. By the 

inequality (see the considerations above), if B(gCl), resp. 13(7-lk), are the simple direct 

summands of A/"~ resp. A4 u corresponding to the labels IEL ~', kEK",  then 

dim(B(IQ)'AB(~k)) <x )~-1, 

showing that  akl ~<A-1. Thus A ~' is a matrix over Z+. 

The matrix A ~ is called the universal (exact) matrix of the inclusion N C M  and N,M 

can alternatively be regarded as a bipartite graph, called the universal graph of N C M .  

Note that  for each minimal projection q in Z(Af~)AZ(A4 ~) the inclusion matrix of 

AfuqcA4~'q corresponds to an irreducible direct summand of A u and vice versa, each N,M 

irreducible part of A ~' corresponds to such a q, 

To interpret all this more thoroughly in terms of Connes' correspondences, let us 

take in the above considerations P to be separable type II1 factors and let rM EZ(A4u), 

rNEZ(A/"u) be the maximal central projections on which I |  is embedded normally 

in A4 ~, resp. A f~. Clearly rM----rN=r. Note that  any minimal central projection in 

Z(A4U)r (resp. Z(A/'U)r) corresponds to an irreducible M - P  (resp. N-P)  Connes cor- 

respondence, as defined in [Po4]. Thus, if we still denote by K ~', resp. L ~, the sets of 

simple summands (or minimal central projections) of .A4Ur, resp. AfUr, then the matrix 

A ~' (or the graph F ~') is just a generalized function, or correspondence, in the classical 

sense of Hurwitz, between the sets K~,L  u. In turn K ~ (resp. L ~) can be regarded as 

the set of all classes of irreducible M - P  (resp. N-P)  correspondences, in the operator 

algebra sense of Connes. 

Let K ~I, resp. L ~I, be the subsets of K ~, resp. L ~, corresponding to all classes of 

irreducible M - P  (resp. N-P)  correspondences tfk (resp./Q) with finite index, i.e., 

dimM,p ~k  d=ef dimM ~k  dimp T/k < oo, 

dimN,p ]G d=ef dimP ]CI dimN K:t < oo. 
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If 8MEZ(J~ u) is the central projection corresponding to K ~'$ and sNEZ(A[ ~) to L ~'I 

then clearly SM <~SN (since [M:N] <oo in the Jones sense). Let us show that in fact SM= 
SN (see also [PoWa]). Let pE(N'nP')qk, where as is minimal in Z(2~4Ur), with ]t4Uqs= 
B(?-/s), be so  that dimN P~s" dimp p~t~ s < oo. Then dimp 7-/s < oo and Q = P '  n B(Tls) is 

a type II1 factor with the properties NcM~-*Q, peN'nQ, [pQp:Np]<oo, M'AQ=C. 
Assume M~AF(:Hs) is of type IIr162 Then N'NB(7ts) is also of type IIoo and Q' (=P) is 

of type II1 with (Q')'A(M'AB(Tls))=C and pe(Q')'n(g'nB(Tlk)). But p(N'AB(T[s))B 
has finite index over Q'p so that p is a finite projection in N~AB(~k). Since we have 

(Q')'N(M'NB(~ls))=C, the expected value ofp on M'BB(7-/s) (with respect to the trace 

preserving expectation of N'NB(Tls) onto M'NB(~/s)) is a nonzero scalar. This contra- 

dicts the finiteness of p. Thus, M'NB(Tlk) is finite so that dimM~/k<Cr Altogether 

this shows that SN<~SM as well so thatSN----SM. 

2.4.4. Notation. We identify K ~$ (resp. L u]) with the set of isomorphism classes of 

all irreducible M-P (resp. N-P) correspondences of finite index ?'/s (resp./Ct). We put 

~4ul =-~SeK~S B(?-/s) and Af uS =~leL,f B(1G). By the above proof we have A/"~$ C2r ~'f 
uf 

is a unital inclusion and its multiplicity matrix is AN,M, the restriction of A~ N,M to K ~$ 

(or L~'I). Note that/co (=*) is contained in K "I, so that A fst C.hA st is a subrepresentation 
of .J~uf C . j ~ u f .  

From this moment on, it is useful to adopt Connes' philosophy of regarding isomor- 

phism classes of (irreducible) correspondences alternatively either as (irreducible) bimod- 

ules as above, or as isomorphism classes of (irreducible) embeddings (see e.g. [Po4]). 

We denote by is (resp. j~) the inclusion of M in Q=(P~ (resp. of N in 

(P~ which have finite index by hypothesis (since kEK ~f, lEL~f). We denote 

by [is[ (resp. [jt[) the index of M in Q=(P~ equivalently [is[----dimM,p ~s, 
[jl[=dimN,p let. Since B(/Q) has multiplicities as! in B(Tls), it follows that the irreducible 

correspondence jz appears with multiplicity as! in is. Also, by Jones' local index formula 

[J2] (see 1.2.5) we have [Q:N]--~-] 4 ast[j~[/vp(pt) with Pl a minimal projection in N'AQ 
giving the irreducible inclusion jt (i:e., the bimodule/Q). Also, by the product formula 

for indices, [Q:N] = [Q: M][M:N]-- [M:N] [is [. 

Now, if we assume N c M  is extremal (see 1.2.6) then by 1.2.6 NcQ is also extremal 

(since McQ is) so that by [PiPol], [jl[/rQ(pl)2=[Q:g]. Thus [Q:N]l/2=[jt[1/2/Tp(pt) 
and we get that [M:N]I/2[is[1/2--[Q:N]I/2=(~-]~ as~[jt[/r(pl) )/[Q:N]l/2= ~! asl[JtI 1/2. 

Before stating the result that summarizes the main properties of this construction 

let us observe that the M-M (resp. N-M) correspondences labeled by K st (resp. L st) 

are simply the irreduCible inclusions of M (resp. N) in the Jones tower of higher rel- 

ative commutants. To see this recall that the irreducible inclusions of M in M2,~ are 

labeled by Kn (resp. those of N in M2,~ by Ln), by their identification with M'AM2~, 
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via JM~ "JM., with the natural identification of Kn (resp. L,~) as a subset of Kn+l (resp. 

L,~+I) (cf. [P05]). The corresponding bimodules are L2(p~M2nP~o) (resp. L2(q'~M2nP'~o)), 

with kEKn and p~ a minimal projection in M~NM2n, in its kth summand (resp. IEL,~ 

and q~ minimal in the lth summand of N~NM2,~). Note that,  as correspondences (i.e., as 

either inclusions or bimodules), _ 2 n n 2 raM: m ~ k - - L  (pkM2nPko) coincides with L (Pk 2mPko), m>~n 
(and/G=L2(q~M2nP'~o) with L2~-mM'~l 2-~'k0-m )~, m>~n). Also, with all these identifications, 

Ln coincides with the set of irreducible N - M  correspondences that are subcorrespon- 

dences of an irreducible M - M  correspondence labeled by Kn and Kn+t is the set of 

irreducible M - M  correspondences in which some N - M  correspondence in L,~ appears 

as a subcorrespondence. Altogether we get: 

2.4.5. THEOREM. (i)[[A~I,M[[2<.IndEM'nN<~[M:N ]. 
(ii) / f  g=(vk)keI,:~s and g=(u~)leL-t, with vk=[ik[ 1/2 and u~--~[jl[ 1/2, then Ag= 

O/I /27~ ,  where a = I n d  E M'N - - r a i n  " 

(iii) / f  we identify the set of simple summands of irreducible M I - P  correspondences 

with L ~, via the identification of M1 with the [M : N]-amplification o /N ,  i.e., of etA4~el 

with Af ~, then A ~ _~ A ~ ~t and Atg=al/2g,  with a as before. M , M I - - k  N , M !  

(iv) / f  N c M c Q  then AUN,MA~M,Q=A~v,Q. Also AAtg--ag  and AtA~=a~. 
(v) There is a natural identification of A~,N=(akt)keg.~, lEL st with the transpose 

of the standard matrix of N CM,  F t N , M  " 

Proof. (iii) is clear once we observe that  Af"cx~4"CeL41[~ is the (algebraic) basic 

construction (as defined in [Po5]) of J~f~'cZ.s ". The rest is clear, by the above consider- 

ations, with (i) following from (iv) and 1.3.6. [7 

2.4.6. Remarks. (a) The above construction will be of important use in some future 

work. We just  point out here that  it provides a proper set up for a short proof of a recent 

result of D. Bisch ([Bi3]), showing that if N c M C P  are subfactors of finite index and 

N c P  has finite depth then both N c M  and M c P  have finite depth. Indeed, by the 

above theorem, FN,p is just  the connected component of F~v, MF~,p  which contains the 

vertex �9 of FM, P. If this is finite then the connected component of FM,p containing �9 

is finite as well, thus M c P  has finite depth. Also, we have the inclusions PC (P, M)C 

(P, N) with the big inclusion having finite depth, as being the basic construction of N C P.  

Thus, from the above we get that  (P, M ) C  (P, N)  has finite depth. But  this inclusion is 

an amplification of N c M  (e.g. by [Ch]) so that  N c M  has finite depth as well. 

(b) Finally, let us point out that  if N C M  has finite depth, if k is so that  N2k-1 C ... C 

N c M  reaches the depth, and if Q=N~k_INNCN~k_IMM=P,  then the representation 

of N c M  into AfcAz[ of Example 2.3.5 is equivalent to a reduced of the representa- 

tion Af~t C.44~t, more precisely, there exists pEM'Mflf  ~t, with 7'(p)= [M:N] -k such that 
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the representation of N c M  into p.N'Stpcp.MStp i s equivalent to its representation into 

.Mc.,Vt. 

3. Amenabil i ty  for inclusions o f  type II1 factors 

3.1. Definitions and motivations 

The concept of amenability was first introduced in the theory of groups, by a functional 

analytical characterisation: A discrete group G is called amenable if it has a (left) in- 

variant mean, i.e., a state ~0E(I~176 such that  ~o(gf)--~(f), VgEG, VfEl~176 where 

gf(h)~-f(g-lh), hEG. In the quantum theory of yon Neumann algebras, the analogue 

of an invaxiant mean (and thus of amenability) is Connes' concept of a hypertrace. If 

M is a yon Neumann factor and MCA4 then an M-hypertrace on the yon Neumann 

algebra ~ l  is a state ~ on ~/l such that  ~o(xT)=~o(Tx), VxEM, VTE.M. Thus, a single 

yon Neumann algebra M is amenable if given any representation M c J t 4 ,  ,~4 has an 

M-hypertrace.  

In this section we will introduce the concept of amenability and strong amenability 

for inclusions of (type II1) factors of finite index. Like in the group and single algebra 

cases, this means defining the proper concept of invariant means (or hypertraces) for 

N c M ,  which in this case, besides the usual hypertrace properties, will also have to be 

compatible with certain Eg-re la ted  expectations. 

3.1.1. Definition. Let N C M  be an inclusion of finite type II1 factors with finite 

index. N c M  is an amenable inclusion if given any smooth representation (or embedding) 

of N c M  

U U 

N C M 

(i.e., such that  ~[M =EM, sp--p---M~=J~, and Af'nMk =N'MMk), there exists an M-hyper- 

trace ~ on .s satisfying ~ o s  Such a state on .h/[ is called an (NCM)-hypertrace on 

A]'C.M. N C M  is a strongly amenable inclusion if N c M  is amenable and has ergodic 

core (i.e., has ergodic FN,M). 

3.1.2. Definition. Let 
P c M 
u u 

Q c N 

be a nondegenerate commuting square of finite von Neumann subalgebras of the finite von 

Neumann algebra M, i.e., M P f__~(M,P~ E NIP=EQ and sp PN=M (cf. 1.1.4). Let "~--~(N,Q) be the 
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canonical conditional expectation of (M, P ) =  (M, e M ) onto i N, Q)= (N, e~)~_<N, eM)C 
<M, eM). Then N c M  is amenable relative to Q c P  if there exists an (NcM)-hypertrace 

on <Y, Q) c (M, P). 

Note that if we take N=M and P=Q then the amenability of ( N c M )  relative 

to ( Q c P )  reduces to the usual amenability of M relative to P, as defined in single 

von Neumann algebra theory ([Po4]). In particular, if P = Q = C  (and M=N) then this 

reduces to the amenability of M, i.e., existence of hypertraces for M in its standard 

representation on L2(M, "r) (since (U, C)=B(L2(M, v))). 
Note that in case N=M, the core is reduced to the scalars C c C  and the amenability 

of NCM reduces to the amenability of M. The same with strong amenability. 

3,1.3. Examples, (a) Let N c M  be a subfactor of finite index of the amenable 

(thus hyperfinite [C3]) type II1 factor M. Assume there exists an increasing sequence 

of finite dimensional inclusions QncPn in N c M ,  making nondegenerate commuting 

squares and such that (Jn~>l Pn =M (so that (Jn~>l Q n=N too). Let Af=~n(N, Qn)c 
(~)n(M, P~)=A4 and note that N c M  is naturally represented into AfCM and that this 

representation is atomic if QncPn are atomic (e.g. finite dimensional). Then r  f 

limn--.wWr(M,p,)(XeM), XE./~, for w a free ultrafilter on N, is an (NCM)-hypertrace on 

AfcA//. Indeed, ifxePn and YEfl4, then [eMm,x]=0, for m>~n, thus Tr(M,pm)(xYeM)= 
Tr(M, pm)(YxeM), so that r162 for xEUnP,. Also (b(x)=r(x), xEM, so that 

by [C6] r162 VxEM, YElvI. 
(b) If N e c M  a is as in 2.3.3 (b) (see also 5.1.5) for some faithful G-kernel on a type 

II1 factor P, then this inclusion is amenable if and only if the factor P is an amenable 

algebra (i.e. hyperfinite by [C3]) and G is an amenable group. Indeed, by 2.3.3 (b) any 

smooth representation of N ~  ~ is given by some inclusion PCP and an extension 

of the G-kernel a on P to a G-kernel ~ on P. If P is amenable and G as well then 

there exists a P-hypertrace r on P such that r162 XE7 ~, gEG. But then r 

extends trivially to an (N~176 Af~ ~. The converse will be proved 

later (in 5.1.5). 

(c) If QCP makes a nondegenerate commuting square in NCM and if there is a 

partition of the unity in Q with central projections (qi)iex such that Ind(qiQ c qiNqi)< oo, 
ViEI, then NCM is amenable relative to QcP. Indeed, if the set I is finite, then TF{M,p ) 
is finite, so that its normalization gives the desired hypertrace. If I is infinite, one takes 

a Banach limit of such hypertraces. 

3.2. Basic  propert ies  

We first prove some simple properties of the notions we just introduced. 
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3.2.1. PROPOSITION. I f  N c M  is an amenable inclusion then: 

(1) N and M are amenable. 

(2) N C M  is amenable relative to any inclusion Q c P ,  where 

N C M 

U U 

Q c P 

is a nondegenerate commuting square. 

Proof. (2) is trivial by the definitions and (1) follows from the fact that,  for a chosen 

core R, (M, R) is amenable, since it is the commutant of the hyperfinite algebra JMRJM. 

Thus there exists a conditional expectation of B(L2(M, r ) )  onto (M, R) which composed 

with the (NcM)-hypertrace on (M,R)  gives an M-hypertrace on B(L2(M,'r)). [] 

The next result shows that  the existence of (NCM)-hyper t races  is equivalent to the 

existence of norm 1 projections onto ( N C M ) .  

3.2.2. PROPOSITION. Let N c M  be an inclusion of finite yon Neumann alge- 

bras and f l fCJ~ an inclusion of arbitrary yon Neumann algebras with an expectation 

E: fl4---~JY'. Assume N cAf ,  M c2vt and CIM= E M. There exists an M-hypertrace ~o on 

J~ such that ~oog=~o if and only if there exists a conditional expectation r 2V4--+ M such 

that E M r 1 6 2 1 6 3  

Proof. If such a ~b exists then ~o=~-o0 is clearly an ( N c M ) - h y p e r t r a c e  on 54. 

Conversely if~o is an (NcM)-hypertrace on 54 then 

.h4 9 T,  , ~o(-T) 6 M* 

gives a positive linear application r from .h4 into M* which takes 1 into the trace r .  By 

the positivity of �9 and by the faithfulness of T it follows that  if 0 ~< T~< 1 then 0 ~< (I)(T)~< % 

so that  r  is a normal functional in M,  and  in fact r  corresponds to the Radon-  

Nikod:~m derivative of ~',r for some t 6 M ,  0~<t~<l. By identifying M with 

its image in M, via Radon-Nikod@m derivatives of r ,  it follows that  r can be regarded 

as an application from .h4 onto M. (I! is clearly an M - M  bimodule map and leaves M 

fixed. Thus it is a conditional expectation and we have 

r E(T) ) = ~o(. E(T) ) = to(e(. E(T)))  

= ~o(e(-)g(T)) = ~o(C(-)T) = ~o(EM(. )T) = EM(+(T)) [] 
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3.2.3. PROPOSITION (Hereditarity). Let 

Po c P c M 
u u u 

Q o c Q c N  

be nondegenerate commutin9 squares. 

(i) If qEQ is a projection with q, 1-q of central support 1 in Q then qNqCqMq is 
amenable relative to qQqcqPq if and only if N c M  is amenable relative to Q c P .  

(ii) Assume that there exists an orthonormal basis (m)~ of N over Q which is either 

finite or so that EQ(~}*~h)EQo , Vi. Then N c M  is amenable relative to QocPo if and 
only if N c M  is amenable relative to Q c P  and Q c P  is amenable relative to QocPo. 

(iii) If pEN is a nonzero projection then N c M  is amenable if and only if pNpC 
pMp is amenable. Also, if P ~ is an n x n  matrix algebra then N c M  is amenable if and 
only if N | ~ C M | ~ is amenable. 

(iv) N c M  is amenable if and only if McM1 is amenable. 

Proof. (i) I f N C M  is amenable relative to Q c P  and ~o is the corresponding (NCM)- 
hypertrace on (M, ep M) then we have (qUq, qPq)~_(qMq, eMq)C (M, P), so we may just 

define ~Oq on (qUq, qPq) by ~q(x)=r(q)-l~o(x), xE (qMq, eMq) which will clearly be a 

(qNq C qMq)-hypertrace. 

Conversely, assume qNqCqMq is amenable relative to qQqcqPq. We claim that,  

since the central support of q in Q is one, there exists an orthonormal basis of N over 

Q, (~i)i, such that  [m, q] =0. Indeed, just take (~/~)i to be an orthonormal basis of qNq 
over qQq and (7/~')i to be an orthonormal basis of (1-q)N(1-q)  over ( 1 - q ) Q ( 1 - q )  and 

define ~}i=~/~+~}~'. Thus 

q(M,P)q { ',J M . E P } q  = q Z ~lipijeprlj Pij 

=(~. . T}:qPi, q(epMq)zl~*lqP,jqEqPq } 

= (qMq, eMpq) = (qUq, qPq). 

Thus, if ~q denotes a conditional expectation of (qMq, qPq) onto qMq satisfying the 

commuting square condition 3.2.2, then (I'q can be regarded as defined on q(M, P)q. 
Since the support of q in Q is 1, there exists an amplification of {I,q to a conditional 

expectation �9 of (M, P) onto M, satisfying ~(vqxqw*)=V~q(qxq)w*, for all xE(M, P), 
v, weQ, w*w,v*v<..q (see for example [St]). Then �9 clearly satisfies 3.2.3 and thus 

N C M is amenable relative to Q cP .  
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(iN) If N c M  is amenable relative to QoCPo and if To is an (NCM)-hyper t race  on 

(M, Po) then ~a=~OI(M,p) is clearly an ( N c M ) - h y p e r t r a c e  on (M,P).  If O?i)i is finite 

then ~ao(e~o)r and so the normalization of ToJ(p,e~) will be a (QcP) -hyper t r ace  on 

((Q, epUo)C (P, eMpo))~--((Q, ePo) C (P, ePo )). 

Next assume that 0?,)i is such that EQ(y*~?i)EQo , for all i. Since eM(M, Po)eMp= 

(P, Po)eMp, @I(N, Qo)eMp = (Q, Qo)eMp, by denoting 

O e M  * 0 

= ~iqijepr]j 

0 M �9 

J e Q} = (N, Q), 
Jq,~ EQo}, 

it follows that 

is an amplification of 

['o c c (M, Po) 
U U U 

Q,o c Q, c (N, Qo) 

Po~Poe M C peM~--P C (P, Po)~--eM(M, Po)eMp 

U U U 
Qo ~- Qoe~ c Qe M ~' Q c ( Q ,  Qo)  N M M _ e p  ( M ,  Qo)ep. 

Then the (NCM)-hyper t race  ~ao on (M, Poi is clearly a (QcP) -hyper t race ,  so 

( ~ c P  is amenable relative to Q)oC-P0. By (i) it follows that q c P  is amenable rela- 

tive to Qo c P0- 

Conversely, if Q c P is amenable relative to Qo c Po and N C M is amenable relative to 

Q c P then, again by (i), Q c P is amenable relative to ~)o C P0, so there exist conditional 

expectations r (M, Po) --~ P =  (M, P) and r (M, P)--~M so that r 1 6 2  ~162 satisfies the 

appropriate commuting square. 

(iii) If N c M  is amenable and 

Af c Ad 

U U 

N |  ~ C M |  ~ 

is a smooth embedding for N | 1 7 6 1 7 4  ~ then it will be also a smooth embedding for 

N c M  so there exists an (NCM)-hyper t race  ~ on 2~1. But then averaging ~ over b/(P ~ 

gives a hypertrace for N | 1 7 6 1 7 4  ~ Conversely if N | 1 7 6 1 7 4  ~ is amenable and 
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( N C M )  is smoothly embedded in AfCAd then N | 1 7 6 1 7 4  ~ is smoothly embedded 

in A f | 1 7 6 1 7 4  ~ and any ( N | 1 7 6 1 7 4 1 7 6  on . M |  ~ gives an ( N C M ) -  

hypertrace when restricted to 34. 

If pEN is a projection and pNpCpMp is amenable then let vi EN be partial isome- 

tries such tha t  v*v i <.p, Y~ viv ~ = 1 and let (N C M) be smoothly embedded into A f c  34. In 

particular pNpCpMp is smoothly embedded into p.h/'pCp34p. Let ~Oo be a (pNpCpMp)- 
hypertrace on p34p and define ~p(x)=~'(p)~,i r on 34. Then ~o is trivially an 

(NcM)-hypertrace on 34. Thus N c M  follows amenable. The converse implication 

follows by first amplifying with some po and by using the above first part. 

(iv) By (iii) and by using that  N c M  is the reduced of the inclusion MICM2 

([PiPol]) it follows that  it is sufficient to prove one implication. 

Assume McM1 is amenable. Let (NCM) be smoothly embedded into A r c 3 4  and 

let (MCM1) be smoothly embedded in 34C341 by the usual extension (see w Then 

there exists an (McM1)-hypertrace r on 341. Define ~o on 34 by ~0=~o1[~4. Note that  

for T E 34 we have 

~o(T) = ~Ol(T) = A-l~Ol (~l(Tel)) = A-l~ol(Tel) = )~-l~ol(elTel) 

= A-l~Ol (s = A-l~ol(s163 = ~o1(s = ~o(~(T)). 

Also, if xEM then 

~o(xT) = )~-l~ol (elxT) = )~-l~ol (TelX) = )~-l~ol (~l (TelX) ) 

= ~Ol (Tx) = ~o(Tx). [] 

3.2.4. PROPOSITION. If N c M  is amenable relative to one of its cores (respectively 

has ergodic core) then: 
(i) Nk c M  is amenable relative to one of its cores (respectively has ergodic core) for 

any k and any choice of the tunnel up to k. 
(ii) pNpCpMp is amenable relative to one of its cores (respectively has ergodic core), 

for any projection pEN. 

Proof. (i) By conjugating if necessary by a unitary element in N, we may as- 

sume N C M  is amenable relative to a core S c R  so that  the tunnel {N~ with 

U((N~ coincides with Ni up to k, i.e., N~ for l<,.k. Let ~:(M, eMI= 

(M, R)-- ,M be the conditional expectation of 3.2.2, satisfying (I)(T) c N  for TE (N, eM). 

But ~(e-i)=e-i,  l<~i<.k-1, e-i being the Jones projections of the tunnel. Since 

�9 ((Nk,eM))ci~((N, eM))cN and since [(Nk,eM),e-,]=O, l<.i<~k-1, it follows that  

[r eM)), e-i]=O, so that  ~((Nk, eM))cNk. 
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(ii) By 3.2.3, if N C M  is amenable relative to the core S C R  and if P is a finite 

subfactor of S c N  such that  pEP and such that  S=S~174  R=R~174  with S ~  ~ still 

a core inclusion (cf. w then pNpCpMp is amenable relative to S~176 [] 

4. Approximation of  amenable inclusions by higher relative commutants  

The structure theorem for amenable groups is F01ner's characterisation as those groups 

that  locally behave like finite permutations (approximately). The operator algebra ana- 

logue of the F01ner condition for amenable factors was discovered by Connes ([C3]). The 

structure theorem for amenable factors is a much more precise result though, stating that  

a factor is amenable if and only if it is hyperfinite, i.e., approximable in the strong opera- 

tor topology by its finite dimensional subalgebras. This is Connes' fundamental theorem 

([C3]), which in fact, in its original proof, does not use much the F01ner condition. The 

later proof of this result in [Pol0], though, uses in a crucial way the Fr condition 

of [C3] to obtain the finite dimensional approximation in a rather direct way. In this 

section we will first prove a F01ner-type chaxacterisation of the amenability for inclusions, 

in the same spirit as Connes' single algebra case. Then we will use the same techniques 

as in [Pol0] to show that  amenable inclusions can be approximated by the finite dimen- 

sional algebras of higher relative commutants. This finite dimensional approximation of 

amenable inclusions by higher relative commutants, resulting into a complete classifica- 

tion of such inclusions by their standard inwariant, is the main technical result of this 

paper. It can be regarded as the analogue of Connes' theorem to the case of inclusions 

of algebras. 

4.1. Statement of  results 

We now state the main theorems of this section: 

4.1.1. THEOREM. Let N c M ,  N r M be type IIx factors with finite index. Consider 

the following conditions: 

(i) N c M  is amenable. 

(ii) N C M  is amenable relative to any of its cores. 

(iii) N c M  is amenable relative to one of its cores. 

(iv) N C M  satisfies the Fr condition in ( N , e ~ ) C ( M ,  eM), where S c R  is one 

of the cores of N c M ,  i.e., Ve>0 and all unitary elements ul, ..., um EM, there exists a 

finite projection pE ( N, e M) such that Iluipui* --pll2,Tr <eilPll2,Tr. 

(v) N c M  can be locally approximated by higher relative commutants, i.e., Vc>0, 

VX l , ..., xn E M, 3m and a continuation of the tunnel up to m, M D N D N13... D Nm, with 
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a projection s E N ' n N  such that 

II[s, xdll2 < ellsll2, 

IIE~N~,mM~(SXiS)-- sx sll= < ellsll2- 

(vi) Ve>O, Vxi, . . . ,x ,  EM, 3m and a continuation of the tunnel, M D N D N i  D...D 

NmD..., with a projection soEN'~nN, a projection foEN, n n R  of scalar central trace 

in Z(NmAR) and a central projection zoEZ(Rf lN) ,  where R = U ( N ~ A M ) ,  such that 

S=Sofo satisfies: 

II[s, xdll2 < ellsll2, 

IIE N' Ms(SX S)--Sx slI2 < ellsll , 

Ilso-zoll2 < ellsoll2- 

Then we have (i) =~ (ii) ~ (iii) r (iv) r (v) r (vi). 

4.1.2. THEOREM. Let N C M ,  N ~ M ,  be type II1 factors with finite index. Then 

the following conditions are equivalent: 

(i) N c M  is strongly amenable. 

(ii) N C M is amenable relative to one of its cores and it has ergodic core. 

(iii) N c M  can be globally approximated by higher relative commutants, i.e., V6>0, 

Vxl, . . . ,xnEM, there exist an rn and a continuation of the tunnel up to m, MDND. . .D  

Nm, such that 

][EN-nM(Xi)--xiiI2 < ~, Vi. 

If in addition M is separable then they are also equivalent to: 

(iv) N C M  has the generating property, i.e., there exists a tunnel MDNDN1D. . .  

such that U(N~MM)=M. 

(v) N C M  is isomorphic to its standard part NStcMSt (as defined in 1.3.7). 

(vi) (a) U is amenable; 

(b) M satisfies the bicommutant condition in Mcr i.e., ( M ' A M ~ ) ' M M ~ = M .  

Our purpose in this section is to prove these theorems. More precisely we will prove 

(iii) r (iv) of 4.1.1 in w (iv) r (v) r (iv) of 4.1.1 in w then (ii) ~ (iv) of 4.1.2 in 

w and (iv) :~ (iii) ~ (vi) ~ (i) of 4.1.2 in w The  implications (i) ~ (ii) ~ (iii) of 4.1.1 

and (i) :=~ (ii), (iv) ::~ (v) of 4.1.2 are of course trivial. We mention tha t  the implication 

(iii) ~ (i) of 4.1.1, which would make all the conditions in 4.1.1 equivalent is also true, 

but  it will be proved elsewhere. 
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4.2. A Fr type condition: proof  of  (iii) <=> (iv) in Theorem 4.1.1 

From the (N C M)-hypertraces we will obtain now vector subspaces of M which are finite 

dimensional relative to the core, make appropriate commuting squares with N c M  and 

are almost invariant to a given finite set of elements in M. This will be our Folner type 

condition for inclusions, in the spirit of Connes' single algebra case ([C3]). 

4.2.1. THEOREM. N C M is amenable relative to Q c P  if and only if given any finite 

set of unitary elements i n  M,  ul,... ,  un, and any e > O, there exists a finite projection p 
in (N, e M) such that 

T-pllm  < EIIPll ,rr. 

~ . _  I~(M, P) Proof. Let ~o0 denote an (NCM)-hypertrace on MI=(M,  P). Let also =--=(N,Q) : 

Mz =(M, P)--~(N, Q) be the canonical conditional expectation satisfying E(eM)=e M, 

E(x)=E~(z) ,  for x e P .  

Step 1 (Day's trick). Let 

s  { ( r 1 6 2 1 6 2 1 6 2  . . . , r 1 6 2 1 6 2  a state in M1.}. 

T h e n / :  is a bounded convex set in (M1.) n+l. Since the states CEMz.  are a(M~,M1) 
dense in M~ it follows that  the a ( (M~)n+z (M1)n+l) closure ~ of 1: contains any (n+  1)- 

tuple (~o(E(.))-~o(.),~o(u~.uz)-~o(.), ...,~o(u*.un)-~o(.)) with ~o a state in M~. In par- 

t i c u l a r / ~  contains (~o0 ( E ( - ) ) -  ~Oo(. ), ~Oo (u~ .Uz)-too (-), ..., ~Oo(U* "un)-~Oo (-)) = (0, ..., 0), 

~Oo being the (NcM)-hypertrace. But since (0, ...0) is in (/141.) n+l and the dual of 

(M1.) '~+z is (M1) n+z it follows that  the a((M1.) "+1, (Mz) n+z) closure of s in (M1.) n+l 

is equal to the norm closure o f / :  and thus that  (0, ..., 0) is norm adherent to s It follows 

that  given any ~f > 0 there exists some element b in the dense subspace (M1 n L I(Mz, Tr))+ 

of LZ(MI,Tr)+ such that  Tr(b)=l  and such that  

II Tr(E(. )b)-Tr(.b)ll < �89 
16 II Tr( (ui.u )b)-Wr(.b)ll < 3 , l <. k <. n. 

Thus we get: 

!6 II T r ( . E ( b ) ) - T r ( - b ) l l  < 3 , 

!6 
II < 3 , 

so that  

l <~ k ~ n ,  

16 IIE(b)-blll, T~ < 3 , 

! ~f l ~ k <~ n. Ilu  ;-bll ,  < 3 , 

15 -- 945202 Acta Mathematica 172. lmprim~ le 28 juin 1994 
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By replacing b with E(b) in the second set of inequalities, we get an element bo = 
E(b) 6 N1 = (g,  e M/, bo/> 0, Tr(bo) = 1, satisfying 

Ilukboui-bolll,~ < 6, 1 ~< k ~< n. 

Step 2 (Powers-StCrmer's inequality). Let a=blo/2 6 (N, eMI. By the Powers-Stormer 
inequality and Step 1 we have: 

If we denote II(xl,...,x,)ll2,~=(Ek ilxkll~,w~) 1/2, for xl, . . . ,x,  EM1, and if we put 
5=(a .... ,a), ?~=(Ul,...,u,~)e(M1)", then we get 

~ ~  - - *  - -  2 

Step 3 (Connes' trick). By 1.1 in [C1] there exists a probability measure space 
(X,#) with two functions h, k6L~(X,#)  such that given any Borel functions f ,g on 
R+, continuous at 0 and vanishing at 0, we have 

IIf(~h~*)-g(5)l122,~ = IIf(h)-g(k)ll 2. 

Step 4 (Connes-Na.mioka's trick). We then have 

~>o (~afi*) - (5)112,~ ds IIE[81/2 E[~I/2 

=_/~>o llE[~.~ o~)(h)-E[~.~,oo)(k)ll] d~ 

= __/>0 llS[~'~176176176 ds 

=/8>0 ( I x  IX[~'~)(h2(x))-X[s'~176 d#(x)) ds 

= f x  (f~>o IX["'~)(h2(x))-X[~'~176 

= / ~  Ih2(x)- k2(x)[ dp(x) = Ilh 2 -k2[]1 

<. IIh-kll211h+kll2 <. 2]]fihfi*-a112,~115112,~ 

25~/211a11~'~ = 26'/2 f~>o IIE[~/2,~)(a)l]~ ds. ~< 

Thus, there exists some s>0 such that ~----E[~,/2,oo)(5) and fi/~=fiE[8,/2,~)(h)fi= 
E[~,/~,~)(fiafi*) satisfy the inequality 

II~*-~I12,~ < 2~u211~I12,~. 
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But 

E[81/2,~ ) (a, ..., a) = (E[sl/2,~)(a), ..., E[sl/2,~)(a)) 

so that  if we define p=E[s~/2,oo)(a ) then p is a finite projection in (N, e M) and 

[[UkPU*k--P[[2,Tr < 261/2n[[p[[2,Tr, 1 <. k <. n. 

Thus, if we take 6 so that  261/2n~e then we are done. 

Conversely now, let (H~)iel be the family of all finite sets of unitaries in M. For 

each i let Pi be a finite projection in (N, e M) such that  

1 
llup u*-p ll2,  <  llpll2, , ueU,. 

Let w be a free ultrafilter on I and put ~oo(T)=hm,,,Tr(Tpi)/'lY(pi). Then ~Vo is 

clearly a (NcM)-hyper t race .  [] 

We can now prove (iii) r (iv) of Theorem 2.1.4, which for convenience we restate 

here: 

4.2.2. THEOREM. N C M is amenable relative to one of its cores if and only if given 

any e>0  and any finite set of unitary elements ua, ...,un in M there exists a core S C R  

for N c M  and a finite projection p in (N,e M) such that 

IIuipu;-Pll2,T~ < eIIPII2,T~, 1 ~< i ~< m.  

Moreover, the core S C R and the projection p can be chosen such that the value of 

the generalized trace of (N, e M) on the projection p is an integer multiple of a central 

projection. Thus one can write P = ~ P i  with Pi projections such that pi~eMz for all i 

and some common central projection zEZ(R) .  

Proof. The first part is just a particular case of the previous theorem. 

By the first part of the theorem there exists a finite projection Pl in (N, e M) such 

that  

[lu,plu  -p1112,~ <  llpx Ib,T,. 
. i  

By the stability of the core it follows that  given any n • n matrix subalgebra P in 

S there exists another choice of the tunnel {N~ such that  SO= U((N ~  R ~  

U ( ( N ~  satisfies R = R ~ 1 7 6 1 7 4  S = S ~ 1 7 6 1 7 4  Note that  Z((N,  eM))= 

Z((N,  eMo)) and that  if CTr<N,~g>, C Tr<N,r denote the generahzed central traces on 

(N,e M) respectively (N, eRMo)then 

C Wr(N,eM ~ ) (Pl) : n2 C Wr(N,eM > (Pl). 
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More generally 

CTr(N,eMo)(x ) =n2CTr<g,eM>(X), V x e  <N, eM> C <N, eMo>. 

Let Zl=CWr(N,eMo>(Pl). Given any ko there exists n such that  if z0 is the spec- 

tral projection of zl corresponding to [ko+l ,  cr then lip1 -PlZ0ll2,w~< (1/Sm)ellpzoll2,~. 
Then we still have: 

Ilu,(pazo)u;-pxzol l2 ,a~ < ~m ellpxzoll2,a~- 

Write zo as a sum of central projections z o = z l + z 2 + . . . + z  t, z i E Z ( ( N ,  eMo)) such 

that  zozl-~':~ cizi<~6 for some scalars ci~>ko-t-1 (by spectral decomposition of ZoZl). It 

follows that  we have 

I[(Ztj(PlZo)Zt; __PlZo)Z i 2 = --PxZoII2,~2 Ih,~ Ilur 
i 

1 2 1 2 
i 2 II(p,~o)z I1~,~- 

It follows that  for some i we have 

- p ~ z  I]~,~ < ~ Ilp~ ]12,a~, vj. II~J(p~z')~/ ' ~ z ' 

Moreover CTr (p l z i )=CTr (p l ) z i=z l z  i and O<<.zzzi-cazi<~6, ci>~ko+ l. Now since 

(M, R ~ is of type II it follows that  there exists a finite projection p'e (N, eMo) such that  

CTr(p ' )=noz  ~ where no is the integer part  of ci. 

Since noz ~ <~ ci z i <~ zl z i = C  Tr(pl z ~ ) it follows that  p' is majorized by pl z i. Let p<<.pl z i 

be so that  p',~p. We thus get liP1 z ~ --Pll~,Wr ~<(1 + 6) Tr(zieMo) so that  we have the estimate 

Ilujp~/-pl[~,~ -< 2((1 +6) W~(z'e~'o))l/: + �89 ll~,~ 
.< 2((1+6) a~(z 'e~o))I /~+~((l+6) a~(z~e~o))~/~+ �89 Vj. 

Since 2 ]]Pll2,T~=no Tr(zieMo), it follows that  if no (and thus ko) and 6 are chosen such 

that  2((1-4-6)/no)l/2-4-e((l+6)/no)l/2< le  then we get 

Ilujp~/-pll2,a~ < ~llpll~,a~ 

and C Tr(p)=noz ~, where no is an integer and z ~ is a central projection of {N, eMo). Then 

Z=JMZiJM and p satisfy the requirements in the last part of the theorem. [] 
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4.2.3. COROLLARY. Let N c M  be an amenable inclusion. Given any finite set of 

unitary elements 14o in M and any E > O, there exists a continuation of the tunnel up to 

some m, MDNDN1D. . .DNm,  and a finite set of elements {xi)l<<.i<~n in N such that: 

(1) Eg--nM(X*Xj)=Cijf with f a central projection of N ~ M g  satisfying ]lf -z i l2< 

ciifil2 for some central projection z E Z ( S )  where S c R  is the core associated to some 

continuation of the tunnel {Nk )14k<~m. 
(2) 2n~(f)-2 ~,~ IIEN-n~(X, vxl)lh~<~n~(f) for all VeUo. 
Moreover, if in addition N c M  has ergodic core then the tunnel {Nk}l<~k<<.m and 

{Xi)l<<.i<~nCN can be chosen so that: 

(1') E~-nM(x;x~)=6~. 
(2') 2n-Y']~i, j IIEN;.nM(X*VXj)II2 <Cn, VeUO. 

Proof. Let S c R  be the core and pE (N, e M) be the finite projection given by 4.2.2, 

such that 

INp~*-plI2,~ <~IIPII2,T~, u~H0, 

and such that p=  ~ pc for some projections p3 with p3 ~ eMz for some projection z ~ Z (S )  

and all j .  

In particular Pi are all cyclic projections so there exist ~1,-.-, ~,~EL2(N, T) such 

that pi=[~iR] (the orthogonal projection onto ~iR). By replacing if necessary ~i by 

~i(~*~i) -1/2 we may assume EM(~*~i)=z for all i. By the mutual orthogonality of Pi 

we also have EM(~*~j)=0 if i # j .  Moreover pi= [~iRl=~ieM~ * so that, p = ~  ~ieM~ and 
EM(~*r , equivalently M * M _ _  M e R ~ i  ~ j e R  - - S i j z e  R �9 R \  i~31  

Let {Nk}k~>l be the choice of the tunnel such that R=(JI:(N~NM ), S=lJk(N~MN)= 

RMN. Since N~MMcR,  EN~nM(~*~j)=O, for all k , i # j .  Moreover by the definition of 

Tr we have for all vEb/0: 

M * * 2 ,Tr  

i i , j  

~ 2  Z M * M M * * M * M 

i i , j  

= 2 ~ T r ( E M ( ~ , ~ , ) e M ) _  y ~  M �9 �9 M �9 M 
i i , j  

= 2 Ill. 
i , j  

Thus we get 

2nT(z)--2 Z E M {*v 2 en'r(z). II R(~ G)II2< 
i , j  
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Since N ' M M T R  and [IEM,.nR(X)--EM(x)I[2~O, x6M ,  for m large enough we ob- 

tain a projection f ' 6 Z ( N ' M N )  such that  [[z-f'li2<6l[f'[I2 and such that  we still have 

for all vEllo: 
2nT(f')--2 ~ < saT(if). 

i,j 
Now each {i6L2(N, T) can be approximated arbitrarily well by some z~=z~f'eN, 

-xiH2<61,  l<~i<~n, with 61 chosen small independently of all the choices before, 

e.g. N' f3M,  etc. Taking 1 , 1. 1 -1 /2  , X l = X l f  ENI.nM(X 1 Xl) f e N  and fl=EN--nM(X~Xl)6 
N ' M N ,  we will still have [l~I--X1[12<61, lIff--flile<61llffll with 61 depending on 611 
and 61--+0 as 6~-+0. By the Gra/n-Schmidt orthogonaiization method one can then 

find 27~16N such that EN&nM(27~1*271)=O and II~-27~ 111 <61, with 6~ depending on 61, 
61, but so that 621--+0 as 6~-+0. Again, since N'MM is finite dimensional, by taking 

_ 1 1  t 11t 11--1/2 P 272--272 f EN'C']M(X2 25 ) f ~ N  we still have II~1-272[12<62, wi th  62--+0 as 61--~0, 

bu t  also EN--nM (27~271)----0, * P EN, nM(272272)=f~6N'MN. Recursively, we obtain this way 

some elements Xl,..., x ,  6 N  such that  

EN:. n M (27" 27j ) = 6ij fj ,  

with fn<~fn-l<....<~fl<~f ' in N ' M N ,  ]]fn-f'H2<6n[[f'[I, [1~i-27i[[2<6i, l<~i<~n, with 

6 -+0 as 
But since NtmNM is finite dimensional, the II �9 112 topology on N~nMM coincides with 

the weak operator topology and since 27i--+~i in the norm [[ �9 [12 implies EN~nM (27~VXj)----+ 
EN--nM(~*V~j) in the weak operator topology (by the Cauchy-Schwartz inequality), it 

follows that  IlEN, nM(X~VXj)ii2-+ilEN-nM(~v(j)ll~ for all v6Ho, so that  for 61 small 

enough we will still have, for f = f ,  and 27i replaced by 27if=27if,, the estimates: 

2nv(f)  - 2 ~ l[ EN,., f3M (27* VXj)II 2 2 < ~n'r(f), 
i,j 

ENa nM( 27~ Xj ) = 6ij f , 

Ilz-f l l2  < 611zllz. 

In the ergodic core case by the previous theorem it follows that  we can choose all 

the ~iEL2(N,~ -) such that  z = E M ( ~ i ) = l ,  i.e., 

En(~j)=6ij, l <~ i , j  <~ n, 

and then the first part of the proof gives the m and the xi 6 N such that  

E N ' n M  (X*Xj) ---- 6ij, 
* 2 

i,j 
[] 
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4.3. Local approximation: proof  o f  (iv) r (v) r (vi) of  Theorem 4.1.1 

We will use now the Rohlin type theorem in A.1 to translate the Folner conditions in w 

into local approximation by higher relative commutants .  Here the te rm "local" means 

under a projection (typically of very small trace) which is almost invariant to the given 

finite set of elements. This way we will prove the equivalence of the conditions (iv), (v), 

(vi) of Theorem 4.1.1. For convenience we restate them here. 

4.3.1. THEOREM. Let N c M  be an inclusion with N~tM.  Assume N c M  satisfies 

the Fr condition relative to one of its cores. If Y c M  is a finite set of elements and 

e>O, then there exist a continuation of the tunnel up to some m, M D N D N x  D...DNm, 

and a projection sE N ~ A N  such that 

ll[y,s]ll2 < ~llsl12, yeY, 

IIE~(N~nM)8(sys)--sysII2 < EilSli~, y e Y. 

Also, there exist an m, a continuation of the tunnel MDND. . .DNmD. . .  and pro- 

jections f0eN'nN, soENmnR,  zoEZ(S) ,  where R = U ( N ~ A M ) ,  S = R A N ,  such that 

if s=sofo then we have 

II[y, s]ll: < ~llsll:, 
IIEsn-nMs(sys)--sysll2 < ellsll, 

llfo-zoll2 < Ell/oil2. 

y~Y,  

If  in addition N C M  has ergodic core then we may take f o=zo=l  (so that s-~soE 

NmNR).  

Conversely, if either of these local approximation properties holds true then N c M  

satisfies the Fr condition relative to any of its cores. 

Proof. By writing each y as a linear combination of uni tary elements we see tha t  

we may assume y E Y  are all unitary elements. By 4.2.3 there exist some m0~>l, a 

choice of the tunnel M D N D N ~ D... D N~ elements xl ,  ..., xn E N and projections f E 

Z(  ( N ~  J AN),  zE Z (R~  where R~176 such tha t  

[ I f -z[I2 < ~l]fl]2, 

E(NOo)'nM(X* Xj) =~ijf ,  1 <. i , j  <~ n, 

�9 2 �89 2nr( f ) -2  ~ IIE(Noo),nM(x, yxj)ll~ < 
z,3 
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By A.1, given any (5 (independently, at this point, on all elements chosen before, in 

particular on l[xill) there exists a projection q �9176  such that  

Ilqx~yxjq--E(Noo)'nM(X*yx3)qlIz < (511q112, Y �9 Y, 

* (5 Ilqxixjq- ~jfqll2 < (sllqll2. 

By A.2 there exist some partial isometries v i � 9  (the ambient algebra of the xi's) 

such that  

v i vj = (5ijfq, 

IIv* yv~ - E(NO ~ )'NM (x~yzj)qll e < f((5)Ilqll 2, 

Ilxiq--v, ll2 < f@l lq l l2 ,  

for all y e Y ,  where f((5)--*0 when (5--*0. Let m be large enough such that  ( N ~ 1 7 6  o 
e 0 . .  contains an n•  matrix algebra po with matrix unit { ij}l<.l,3<~n a n d  H1Po-lMll2< 

(511q112, Since N~ ~ is of type IIi, there exists a projection s ~ 1 4 9 1 7 6  ~ such that  

T(sO)T(eOi)=T(q ). Denote s~176176 and oO~O _~ o l <<.j<~n. Since N~ is a factor there 

exists a partial isometry weN~  such that  ww* =q, w*w=q ~ Let v--- ~-] i v{wv ~ and let 

V � 9  be a unitary element that  extends the partial isometry v, i.e., v=Vv*v. Denote by 

Nk=VN~V* and R = ~ ( N ~ N M ) .  Denote f o=V f V  *, zo=VzV*, so=Vs~ *. Note that  

fo �9 Z(N~mo NN), 

vi = Vv~ �9 Vs~ R~176176 *= soRANmo So, 

so = Vs~ �9 RfqNm, 

q=Vq~ and zoEZ(RNN) .  

Moreover, if we let S=sofo, we have: 

II[s, y]ll 2 = Ilysy* - s l l  2 = 2~-(s)-2~-(ysy*s) 
V* *V ~1" 

i,3 

2 ~ , ( f ) T ( q ) - 2 ~  v* v 2 = II j y  ,Ih 
i,j 

<. 2n~'(f)T(q)--2 ~ IIE(No),nM(x~yxj)ll2 + 2na f@allqll 2 
i,j 

< �89 

<~r(s ) - -~ l l s l l~  
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if/5 is chosen small enough to have 2 n 2 f ( ~ ) 2 ( n T ( f ) ) - l <  �89 Also we get: 

IIE~oSoN'~nM So~o(SYS)-- sYslI~ = IIEv: s(N~ S :V*( SYS)-- syslI~ 
* * 2 = IIE::(No),nM::(v yv)--v yvll2 

0 * * 0 0* * * 0 ---- ~_# IlEsof(No),nMlsO(V i W vi y v j w v j ) - - v  i W v i yv jwvj  I}22 
i,j 

<<. ~ IIE: zr : : ( ~  * v; yv~w)-w*:  y~wlIN + 2'~211I po -- I~,IIN 
i,j 

~ .  * * * *  2 2 2 I IE : : (~ ) ,~ : : (~  E(Noo),~(~yxj)qw)-w ~yvj~lh+,~ f(~)llqlh 
i , j  

~ .  * 0 * *  2 2 IIE:/(No ),nMs:(E(NOo),nM(xiyxj))q --w v~ yv: lh  +n/(,~)llsll2 
i , j  

= ~ IIE(N~o)'nM(X*yxj)q--v~yvj 112+nf(6)lfsl122 < 2nf(~)llsllg. 
i,j 

Finally, we get: 

I lzo-  foll~ = IlVzV* - v f v *  112 = IIz-  t'112 < ell fit2 = ~ l l V f V *  112 = ~IL foil- 

This proves the last par t  of the statement.  The first par t  and the case when R is a 

factor follow now trivially. 

Conversely, let S c R  be a core for N c M .  Let ul,  . . . , unEM be some uni tary el- 

ements and E>0. By local approximation there exist a choice of the tunnel M D N D  

�9 .. D Nm and a projection s E N ~  A N  such tha t  

I1[~,, ~]{12 < ~llsll, 

Let y E N  be a unitary element such that  vRv* D N ~ N M ,  vSv* DN~mAN. Define 

p e (M, R) = (M, eR> 

by p=svenv*--vel:tV*S. Then we have 

< 3 E ~ ( ~ ) + 2 1 1 ~ - ~ : u T  1122 < 5E~(s) = 541pl12m. [] 
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4.4. Global approximation: proof  of  (ii) =~ (iv) in Theorem 4.1.2 

We will now use a maximality argument to obtain from the local approximation in the 

previous w the actual (global) approximation by higher relative commutants.  Under 

the assumption that  NCM is amenable relative to a core and has ergodic core, we will 

prove first that: 

( . )  Given any E>0 and any finite set of elements Y in M and any choice of the 

tunnel up to some ko, MDNDNID...DNko, there exist m>ko and a continuation of the 

tunnel up to m, Nko_IDNkoD...DN,~ such that ]IEN~nM(y)--YII2~, yEY. 

Let T be the set of all the finite continuations of the tunnel 

T=(MDNDNx D...DNkoD...DNv). 

For such a tunnel T denote l(T)=p and N(T)=Np. Let S = { ( T ,  s)ITET, sEP(N(T)), 
s C0}. Let J be the set of all the families (Si)iel  of couples S i=  (Ti, si) in S, with (si)ier 

mutually orthogonal and such that  if s = ~ si then 

E~,(N(T~),nM)~,(siysi)--(y--(1--s)y(1 <  11 11 , vyeY.  

The set f f  with the order given by inclusion is clearly inductively ordered. Let 
S O ( J)jeJo be a maximal element of J and let S~176 Assume s ~ 1 7 6  Let 

f=l-s~ . By w fNkofCfM f is also amenable relative to a core and has ergodic 

core. By applying w to fMfDfNkof it follows that  there exist a continuation of 

the tunnel up to some mo>ko,  MDNDN1D...DN~oD...DN,~o, with fEN, no, and a 
projection so E Nmo, 0 r so ~< f ,  such that  

IIE, o(N'onM)8o(8OYSO)--(fyf--(f--aO)Y(f--80))ll~ < ~118o11~, y e Y. 

Denote To--(MDND...DMmo), So=(To, so) and J=JoO{O). Then (Sj)jej, with 

s j -  - s j  o for jEJo, is an element of J .  Indeed, for s=s~ we have: 

i~ejEs,(g(T~),nM)8,(siysi)--(y--(1--s)y(1--S)) : 

i~j ~ o o _(y_(l_sO)y(l_sO))ll 2 
= EsO(N(TO),nM)sO (8i YSi ) 

2 

-i-IIEso(N(To),nM)so (SOySO) -- (fyf -- (f -- So)y(/-- SO))ll~ 

<  II: + II o =  llsll - 
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This contradicts the maximality of (S~ thus showing that  E s~ Since 

~-(s0)r for all j (because s~16 2  it follows that  Jo is countable and that  we can find 

a large finite subset sO, ..., s~ among the s ~ jeJo, such that  T(~ik=l S0)/>I - &  Let 

m=maxl<<.j<<k l(Tj~ We claim that  there exists a continuation of the tunnel up to 

~ l<,i<~k, and such that  s i N j s  i ~  o= m, M D N D N I  D.. .DNkoD.. .DNm, such that  s i 
o o o <~I(T~ l<~i<~k. s i Nj  (T~)si, j 

To see this let MDND. . .DNko  DN~o+I D. . .DN 1 be any continuation of the tunnel 

up to m and let 1 t s~ e N~  be mutually orthogonal projections such that  r ( s  1)=~-(s~ Let U 

be a unitary element in Nko such 1 �9 o 1 t 1 �9 0 o o that  Us i U = s i and such that  Us i N~ s i U = s i Nk (T~ )s i 

(this is possible because by [PiPol] any two choices of the tunnel _o ~ _ 0 ~  ~sON s o ~i Jvl ~i - - ) ' ' ' - )  i k i 

axe conjugate). Then Nk=UN~U* satisfies the requirements. 

Since s ~ l<~i~k, axe mutually orthogonal projections and since the core is of type 

II1, there exists a continuation of the tunnel NmDNrn+I~. . .DNk such that  N~NNm 

o It follows that  the algebra B o = ~  o ~ o ~fl-contaius all the s i . s i (N~nnM)s i + C ( 1 - ~  s ~ is 

almost contained in N ~ N M  so that  if ~i 1 is small enough we get 

IIEN;n.(Y)-Ylf  < IIEBo(y)- H +  

" i = I  2 

This ends the proof of (*). 

Let then {xn}n be a I1" 112-deuse sequence in M. We construct recursively some 

integers kl < ks <.. .  and some choices of the tunnel M D N D... D Nkl ~.. .  D Nk2 D... such 

that  

IIEN; nM(Xj)--X II=<2 l <.j<~i. 

Suppose we made the choice up to some i. By ( , )  it follows that  there exists m>ki  

and a continuation of the tunnel MDND. . .DNk~ D.. .DNm such that  

IIEN~,nM(Xj)--XjII2<2 - i -1 ,  l <~j~iq-1. 

Taking ki+l : m  we axe done. 

But then R :  U(N~NM) satisfies 

ER( x~ ) : 1 ~  Elvs nM( Xy ) = xj  

so that  M = R  by density. [] 
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Let us finally mention some global properties of the amenable inclusions that  follow 

from 4.1.1 and from a similar maximality argument like the one used above. Note that  

part (2) of the next theorem contains Connes' fundamental theorem. Note also that  in 

case N C M  comes from an action of a group G like in [Po6] then condition (3) states 

that  the Cayley matrix of the group G has maximal spectral radius, i.e., Kesten's charac- 

terization of amenability. This condition will be investigated in more detail in Section 5 

where it will be shown that  conversely, if rg,M is ergodic, [[FN,MH2=[M:N] and M is 

amenable then N c M  is strongly amenable. Also, in a forthcoming paper we will show 

that  I}FN,MII2=[M:N] and M amenable implies N c M  amenable. 

4.4.1. THEOREM. If  N c M  is an amenable inclusion then: 

(1) If N ~ M , N c M can be globally approximated by finite dimensional commuting 

squares which come locally from higher relative commutants, i.e., Ve>0, Vxt, ... xnEM,  

3Q c P finite dimensinal subalgebras satisfying the commuting square condition, Ep E N = 

EQ, such that [[ Ep(x j  ) - x j  [[2<~, l <~j <~n, and there exist a finite set Io and or each i e Io 

a continuation of the tunnel up to some ki, MDNDNi lD . . .DN~ ,  and some projections 

s iE(N~,) 'NN such that ~ s i = l  and 

E s' Q, E s = si((Ni, ) NM) i=P .  

(2) If  N,  M are separable, then both N and M are isomorphic to the hyperfinite 

type II1 factor and ( N C M)~_( N | P c M | where P is a copy of the hyperfinite type 

II1 factor. 

(3) I~ N c M  is extremal then IlPlV,Mll2=[M:g]. 

Proof. (1) The proof is identical to the one for (ii) =~ (iv) of Theorem 4.1.2 completed 

at the beginning of this subsection, by using 2.1.7 for the hereditarity of amenability to 

reduced algebras. 

(2) If N c M  is amenable then, by w N and M are amenable, so that  NcM2•  

and MCM2• are obviously amenable and have ergodic cores. By (i) =~ (iv) of 4.1.2, 

N, M follow isomorphic to the same hyperfinite type II1 factor. Moreover, if xl ,  ..., xn E M 

and ~ > 0 and if N i ~,, si are as in part (1) above, then let ui, viEN~, be unitary elements 

such that  uiv i=-v iu i  and define u = ~ u i s i ,  v = ~ v i s i .  It follows that  u,v are unitary 

elements in N, u v = - v u  and 

II[u, xdll2 < 2~+ll[u, Ep(x~)]ll2 = 2~. 

By [Bi2], [Po8], it follows that  ( N C M ) ~ _ ( N | 1 7 4  

(3) By [PiPo2] we see that  (1) implies llrN,Mll2=[M:N]. [] 
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4.5. B icommutant  condit ion and exis tence  o f  hypertraces: end of  the proof  

of  4 .1 .2  

We now prove the  remaining  implicat ions in T h e o r e m  4.1.2. 

4.5.1. Proof of (iv) ~ (iii) ~ (vi) of  4.1.2. T h e  first impl ica t ion is trivial.  To prove 

the  second, let M D ~~ N D : - I  N ~ ~ ... ~ N ~ be a choice of  the  tunnel  up to some k let 6 > 0 

and  let {u~}l<~j<~nCNi be un i t a ry  elements  such t ha t  

By  (iii) there  exist m and a choice of the  tunnel  up  to m, M3~~ ~...DNm, 
such t h a t  u~,e~ O<~i<~k, l<~j<~n. Fix some ko. Since {e~ {e-i}i~>o 

genera te  factors  (by Jones '  t heo rem [J2]), there  exists k large enough such tha t  the  central  

t race  of eo ~ ..., eO_ko in Alg{1, eo ~ ... eOk}, respect ively  of eo, ..., e-ko in h lg{  1, eo, ..., e-k} C 
N~MM, is as close to A1 as we please. I t  follows tha t  there  exists a un i t a ry  woEN~MM 
such tha t  Ilwoeow~-e~ Taking  v~=.~-iEN(woeo)=)~-lEN--nN(woeo) it follows 

by  [PiPol]  t ha t  ' ' * -  * ' ' * -  ' '* EN(e~ voeov o --woeow o so t h a t  )~vov o --EN(Voeov o ) is close to  

Thus  V'oEN'mMN is close to  a uni tary.  By  pe r tu rb ing  v~ if necessary we get a un i t a ry  

voEN'MN so t h a t  

IIv~e~ ~< f0(6) 

where f0(E)--*0 when E-*0.  But  then  �9 o , �9 0 {eo}'MN=N1 {VoeoVo} MN=voNl v o is close to  

(in the  dis tance defined in [Ch]) so t ha t  v~e~ EN expects  close to  A1 on N1. Like 

before, it follows t h a t  there  exists a un i t a ry  Vl E N ' M N 1  such tha t  

IIv~v3e~ e-a  I1~ < fa (6) 

with f1(6)---*0 as 6--*0. Recursively, we get un i t a ry  e lements  viEN~MNi such tha t  

* * . . . V ' n 0  V . . .  [IViVi--1 0~--i 0Vl vi--e-ill2<s ), 
* * * i . . * * i 

]lvi Vi-- 1 ,.. V o U j V o  ".. V z - I V ~ - - E N ' n N ~  (V  i ...  V 0 U j V o  .. .  V i ) [ I  2 < f i ( 6 )  

for O<~i<.ko, l<~j<~n, where  fi(E)--~0 as e--*0. 

I t  follows tha t  

IIEfN'~nN,)'nN,_~ (e-i)--EN~n~v,_~ (e-,)II2 < f(6) 

for 0~<i~k0,  where  f(6)--~0 as 6--*0. 
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Thus, letting ~--~0, we get that  

E(RnN~),n(RnN~_~)(e-i) = EN'nN,_~ (e-i). 

Now, if N c M  is extremal it follows that  E(RnND,n(RnN~_~)(e_i)----)tl , SO that  by the 

antiisomorphism in [Poh], E(M~nMcc),nMoc(ei+l)-=~l for all i~>0. It follows that  for 

xeM~+l=spMiei+lMi we have EM,(X)----E(M~nM~),AM~(X ). Applying this n times it 

follows that  for xEMi+n we have 

EM, (x) = E(M~AM~),nMr E(M~+lnM~),AMoo ... E(M~+=_IAM~),nM ~ (X) 

: E(M~nM~),AM ~ (X). 

Thus, we get 

EM(X)----E(M,nM~),nM~(x), x 6 U M i ,  

and by weak continuity for all xEMo~, so that  M=(M'NMoo)'AMo~. 

For general N C M  (not necessarily extremal) one first takes the 2-step inclusion 

N 1 C M  as N c M  then for this N C M  one replaces the projections e_i, e~ by the canon- 

ical projections e'_, EN'+a nNi -a ,  (e~ (N~176 x defined in [PiPol] which still 

implement conditional expectations (not necessarily trace preserving though) but satisfy 

EN~nN~_~(e'_i)=)tl , E(No),nNo_l((eO_i)')=A1 (instead of EN~(e_i)=)tl, ENo(e~ 
Arguing like above we get that  E(N&nNd,nN~_~(et~) is close to ),1. By [Po12], there ex- 

ists a trace preserving antiisomorphism of N "  nNi-1 onto M'NMm+l carrying N ' N N i  

onto M'+INMm+x and e'_i onto ei+2. We thus obtain that  

E(M~nM~),AM~(ei+I)=)tl, i>~O, 

like before. The same argument then shows that  M=(M'QMoo)'QMo~. [] 

The argument already used above twice is due to Skau (unpublished, see also [GHJ]). 

Since it will be of later use as well, we display it here, in a more general form: 

LEMMA. Let N C M CelM1C e2... be the Jones tower of factors and let B C M'QMoo 

be a yon Neumann subalgebra such that Bk=BM( M~ NMor satisfy the commuting square 
relations 

and so that 

EBEM~AMo~ ---- EBb, 

EB,knM~(ek+l)-----)tl , k>~O. 
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Then B' NMOO-= M. 

Proof. Ifx=~-~i le 2 y~EMj, Yi j+lYi EMj+I, where then 

EB,nM~ (X) = EB,nM EB,#nM~ (x) 

= E,'nM~o (A ~ y~Y~) E E,'nMoo(Mj). 
i 

Thus EB, nMoo(Mj+I)CEB,nMoo(Mj), j>.O, so that 

EB'AMoo( U Mj) CEB,nM~o(M)=M. [] 
j>~l 

4.5.2. Proof of (v) ~ (i) of 4.1.2. Let 

U U 

N C M 

be a smooth embedding of N C M. Let JV'cEjVt Celia41 = (M, el) C... be the associated 

tower. Let ~b be a faithful normal state on Af extending the trace of N and still de- 

note by r the state r162163 for TEAd~, and thus for 

T E U n M n .  Let (~rr162162 be the GNS construction for r and UnA4n, and denote 

A4oo=Tr~(U,~A4,~ ). Note that if p is the orthogonai projection of 7-/r162162 

onto Ir,(U~M,~)~, then [p,~rr and in fact rcr Since M is 

amenable M2k are all amenable (as amplifications of M) so that M ~  is also amenable. 

Thus, there exists a conditional expectation ~oc of Moo onto Moo CjV~oo. Since M'nMk 
cA~nJ~4k, the embedding being smooth, it follows that [M,M~AMoo]=O so that 

[~oo(A4), M'nMoo]=O. Thus r Also [r N'nMoo] 
=0 so that we have [~o~(Af), elf=0. Thus r But then Tor is an ( Y c M ) -  

hypertrace (see w [] 

5. Classif ication by s tandard invariants 

We can now restate more explicitly the classification result following from the approx- 

imation by higher relative commutants in the previous section. This will be applied to 

classify various classes of subfactors that check the amenability conditions. Also, we will 

give combinatorial characterizations of the amenality that are easy to check and, along 

the line, will introduce the concept of strongly amenable paragroup. Throughout this 

section, M will be a separable type II1 factor, NCM a subfactor of finite index. 
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5.1. T h e  m a i n  resul t  

5.1.1. THEOREM. N c M is strongly amenable if and only if N C M is isomorphic to its 

standard model NStc M st . If  in addition N C M is extremal then it is strongly amenable 

if and only if it is antiisomorphic to its opposite model M~ N Mcr C M ~ NMoo. In particular 

strongly amenable subfactors N C M are completely classified by their standard invariants 

(or paragroups) ~N,M. 

Proof. If N C M  is strongly amenable then for some choice of the tunnel {Nk}, 

M=Uk(N~NM ) so that  N = y k ( N ~ n g  ) and thus (NCM)~_(gstcMSt) .  Conversely, 

if (NCM)~_(N 8tCM a) then N c M  has the generating property, since the inclusion 

NStcMSt can be recaptured from ~N,M (cf. Remark 1.4.4). The rest is trivial. [] 

For inclusions of type IIo~ factors N ~ C M ~176 of finite [PiPo] index we will adopt the 

simple minded point of view of defining the (strong) amenability by requiring the (strong) 

amenability of the type II1 inclusion ( N c M ) = ( p N ~ p c p M ~ p )  obtained by reducing 

with finite projections in N ~ .  By Section 3 this does not depend on the projection p 

and, by 1.3.7, neither ~N,M does depend on p. So we can define the standard invaxiant of 

def~ (for all this see also [Pog]). We thus get from the above N~176 cM~176  as ~NOO,MOO .~- ~N,M 

theorem: 

COROLLARY. An inclusion of type I I~  factors N ~ c M  ~176 is strongly amenable if 

and only if it is isomorphic to (NStcMSt)|  In particular, such inclusions are 

completely classified by their standard invariant. 

5.1.2. Finite depth and index 44.  As we will now point out for low indices and finite 

depth subfactors the strong amenability is automatic. Stronger results in this direction 

will be proved in w 

COROLLARY. Let M be the hyperfinite type II1 factor and N c M  a sub]actor with 

finite index. 

(i) If  [M:N] <~ 4 then N C M is extremal and strongly amenable. 

(ii) If N c M  has finite depth, i.e., FN,M is finite, then N c M  is extremal and 
strongly amenable. 

Thus, in all these cases (NcM)~_(NStCMSt)~(M~NM~CM~NM~)  and N C M  

is completely classified by its standard invariant (or paragroup) ~N,M. 

Proof. If N C M  has finite depth then 1.4.1 shows that  M ~ N M ~ c M ' n M ~  is an 

extremal inclusion of factors. But then M c M 1  also has finite depth (since 

EM( Z( NI~nM~ ) ) c Z( NI~nM) 
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and by the [PiPol] inequality), so that M~nMoocM~nMoo is also extremal. By trace 

preserving isomorphism we then have  E(M~nMoo), ( e k + l )  = [M:N]- l l  for all k and Skau's 

lemma in 4.5.1 shows that the bicommutant condition holds, thus N c M  is strongly 

amenable. 

If [M:N]~4 and Pk=vN(ek,ek+l,...) with ek the Jones projections in the tower, 

then by [J2] P~nPk_I=C so that Ep~np~_l(ek_l)=[M:N]-ll and again we find that 

(M'NMoo)'NMoo =M by the lemma in 4.5.1. So N C M  is strongly amenable in this case 

as well. [] 

We mention that the finite depth case of the above result has been previously proved 

in [Po5] (see also [Oc2]), by using a completely different approach. The proof in [Po5] 

however, while quite simple and very elementary, cannot be adapted to work beyond the 

finite depth case. 

5.1.3. Subfactors coming from representations of Braid groups. An important class 

of subfactors that are hyperfinite and check the finite depth condition are the Jones sub- 

factors and their generalisation, the so-called Wenzl subfactors ([Wel], [We2]), coming 

from certain unitary representations 7r of the Braid group on infinitely many genera- 

tors go, gl, ... that admit positive Markov traces. These are representations that factor 

through representations of Hecke algebras of type A, B, C, D (at roots of unity) and they 

have been shown by Wenzl to produce finite depth subfactors by using the same method 

used in [J2], i.e. by taking N=Tr(Alg{gl, ...}) CTr(Alg{g0, gl, ...})=M. In the simplest case 

of type A and certain additional relations, they coincide with the Jones' subfactors [J2]. 

5.1.1 shows that they can be recognized by merely observing their invariants. 

COROLLARY. The subfactor8 of [Wel], [We2] are uniquely determined by their stan- 
dard invariants (paragroups ). 

5.1.4. Subfactors coming from actions of compact groups. Already in [J2] it has 

been pointed out that the Jones subfactor of index 4 and standard graph A~, which 

on one hand can be constructed like in 5.1.3 when the value of the parameter (roots 

of unity) tends to 1, can also be obtained as an inclusion of fixed point algebras of 

a product type action of SU(2). This type of construction of subfactors was further 

exploited in [GHJ] to produce more examples of subfactors of index 4. In an independent 

work, Wassermann generalized this to arbitrary minimal actions of compact groups as 

follows ([Wa2]): let P be a copy of the hyperfinite type II1 factor and a: G--*AutP a 

faithful minimal action of G on P (i.e., so that the fixed point algebra pG is irreducible 

in P, (PC)'NP=C). Let 7r: G--~EndV be a unitary representation of r on the finite 

dimensional Hilbert space V. Then N=PCC(P| V)C=M is an inclusion of type 

II1 factors of index (dim V) 2 which is irreducible if and only if 7r is irreducible and 

1 6 -  945202 Acta Mathematica 172. Imprim6 le 28 juin 1994 
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whose standard graph FN,M equals the multiplicity matrix of ~r (as the Jones tower is 

just pG C (P|  V) G C (P| V| V) G C ..., and the higher relative commutants 

N'  nMk =(End V| V ...)G=(?r| G)' NEnd(V | V ...)). 

These subfactors were checked to be strongly amenable in [PoWa], by using the 

invariance principle ([Wa2]) to show that they have the same higher relative commutants 

as their cores (standard parts). Note that in the case G is a semisimple compact Lie 

group the subfactors have infinite depth. 

COROLLARY. The subfactors pG c (P|  V) G of [Wal] are uniquely determined 
by their paragroups. 

We note that such subfactors were further investigated in [PoWa], where it is shown 

that if one takes appropriate (large) finite dimensional representations ~r of G then the 

isomorphism class of such a subfactor determines uniquely the class of the action a. As 

the corresponding paragroups do not depend on a, the uniqueness of the minimal actions 

of G on P is obtained ([PoWa]). More precisely, if one takes End V to contain the trivial 

representation of G and a finite set of irreducible representations that generate (via tensor 

product) all other finite dimensional irreducible representations of G, taken with distinct 

multiplicities, then two outer minimal actions al,  a2 of G on P are conjugate if and only 

if their associated subfactors are isomorphic. Also, the subfactors are strongly amenable 

and their standard invariants only depend on G not on a ([PoWa]). 

5.1.5. Subfactors coming from actions of discrete groups. Let P be a von Neumann 

factor and O0=id,0x,02, ... some m + l  (not necessarily distinct) automorphisms of P, 

where m may be finite or infinite. Denote by P~ where 12(m+l) is the 

(m+l)-dimensional Hilbert space (so that P~ if m is finite) and by 
0 {eij }ij>/0 its canonical matrix unit. Let M ~ = P |176  and N ~ = {~]i~>0 0i(x)e~ I x 6 P}. We 

call N~ C M  ~ the inclusion associated to (Si)i>~o. It is trivial to note that N~ c M  ~ has 

finite [PiPol] index (1.1.7) if and only if m is finite, in which case IndEmin=l / (m+l) .  

More than providing examples of subfactors (of finite index), such inclusions have the 

important feature of translating problems on classifications of actions by automorphisms 

into problems on classification of subfactors. Indeed, the isomorphism class of N o c M ~ 

"encodes" the outer conjugacy class of 8 due to the following facts, reminiscent of Connes' 

2 x 2 matrix trick: 

Facts. (1) {e~ are minimal projections in ( N~ N M  ~ and _o ,~_o ~i ~jj in (N~ s if 

and only if there exists a unitary element vijEP~'_P| such that ~i--AdvijOj. In this 

case vije~176176 This is trivial, by the definition of N O c M  a. 

(2) If 9'--(0~=id, 0~, ...) is another (m+l)-tuples of automorphisms of P then 0' is 

conjugate to 0 (i.e., there exists aEAut P such that aO~a-l=ai, Vi) if and only if there 



C L A S S I F I C A T I O N  O F  A M E N A B L E  S U B F A C T O R S  O F  T Y P E  I I  229 

exists ~r:(NO CMe)~-(NO' CMm) and " o _ o 9' �9 a(eii)--e~ , Vi,j. Also, is outer conjugate to 0 

(i,e., there exists a � 9  P such that asia -1 =~i mod Int P,  Vi) if and only if there exists 

~:(NmcMa')~_(NecMa) and " 0 _ 0 a(e~)-e~i, Vi. Again, this is a simple consequence of the 

definition. 

(3) If (ao=id, al, ...) is a set of k + l  distinct automorphisms, k<.oo, (a~o=id, a~l, ...) 
k+ 1 other automorphisms and {n~}~>0 a set of k+  1 distinct multiplicities then let 9= 
(0o,0~, ..., O,n), 0'=(0~o, 0~, ..., 0~m): be the two (m+l)-tuples obtained by repeating each 

a~ (resp. a[) n~ times, where m §  Then (N~'CM~')=(NScM~) if and only if 

there exists a e A u t  P such that aa[a -~ =a~ mod Int P, Vi. This is trivial by (1) and (2). 

(4) Let m be finite and O=(Oo,Ot,...,Om)cAutP. For an automorphism a � 9  

we convene to still denote by a the automorphisms a@l on M S = P |  ~ M~=P|  
pO@p~, ..., where P~-M(,~+t)x(m+t)(C), Vi, and with matrix unit {e[~}~,~>~oCP ~. De- 

fine the embeddings M~ C M]+ z by 

Er~ 
--Z 2 j + l  M2~ B x ~ E 9, (x)e u �9 Mg~ - - j +  1 ,  

i = 0  

i 

and put ej+l.--(1/(m+l)) ~']~i,i' '-'ii"-'ii' '~j ,~j+l ~'"j-{-l" ~ aZ0 Then 

N~ c M ~  M~ ~ M~... 

is the Jones tower of factors for N O C M e with the expectation Emin (for which Emin(ei~ )~ __ 
1/( re+l ) ,  Vi). In general, if the expectation E from M e onto N e is given by E(e~ 
then E2i(e~{)=t~, 2j+l r -1 E2j+l(eii )= t i= t i  /~-~k tk -1 and the Jones projections are given by: 

i , i  ~ 

e2i+2 = E  ~ e 2 i + L ' 2 j + 2  Y ~i t ' i  I i i  j ~ ' i i  I ' 

and _ - 1 _  p - l _  t - 1  Ind E - ~  t~ - ~  t~ - ( t j t j )  , Vj. All this follows by using the abstract charac- 

terization of the basic construction and Jones projections in [PiPo2] and 2.2.2, and by 

direct computation. Note that if pEN ~ then the tower for pN~176 is obtained by 

reducing the tower for NeC M ~ 

(5) Let G be a discrete group and a: G--*Aut P / In t  P a free G-kernel, i.e., an injective 

group morphism. Assume G is finitely generated, say by go-e ,  gl, ...,g~, with g~tgj if 

i~tj. Let no, nl, ..., nk/> 1 be some fixed multiplicities and let 9= (0o, ~z, ..., 0m) with m = 
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ni be such that  0o=01 . . . . .  0no =id,  0no+l . . . . .  0no+n1 a lifting in Aut P of a(gl), ..., 

0no+...+nk_l+l . . . . .  0m a lifting of a(gk) in Aut P (thus, each lifting of a(gi) is repeated 

ni times). 

Thus we may regard the sub]actors associated to an ( m +  1)-tuple of automorphisms 

of P as associated to a G-kernel. By (3), if the multiplicities are properly chosen then 

N ~  ~ determines the conjugacy class of the G-kernel a. 
~'e I e 2 J (6) ~ ili~ i2i2 "'" ei~i~}o<~i,i2,..,ij<<m are minimal projections in M ' N M j  and we have 

e I .2 e~ . ~ e  1 ,., e j . . . . .  i' in M' n Mj if and only if 0~ 10i 2 . . . .  Ad uO~lOi,2..., for some 
i l i 1 ~ i 2 i 2  "'" z j ~ j  ~lZl  s t j 

u e P  (product of k alternative terms 0~-1,0i). In this case ue~ile~2i~ ... e~ji, j e M ' n M j  

and such partial isometries generate M ' n M j .  

(7) If G is the group generated by 0o,01,...,0,, in A u t P / I n t  P,  then FNO,MO= 
(ahg)h,gea, where *=e and ahg= the number of times gEG can be obtained as O~lh, 

O<.i<m. Also FM,M1 =(a'hg)h,gea , where . = e  and a~g= the number of times g e G  can 

be obtained as Oih, O<.i<~m. If E--Emi,  then E[Uk(M,nMk ) is a trace with all the min- 

imal projections in M ' A M k  having equal trace. In general Eoo[[J~(M'nMk) is a trace, 

where Eoo =EE1E2 ..., if and only if there exists a group morphism/~: G--*R~_ such that  

Sg=~3(g). Indeed, the first part is clear by (9). Also, if ~" is given like this and g-- 
. . . . . .  _k N e 1 0~10i2 =0~10i,2 . . . .  g' mod Int P,  (equivalently e=e~il  eikik r "'" ek'~i'k =e'), then 

/~(g)=/3(g') so that  Ecc(e)=Eoo(e'). The converse follows by showing recursively on 

generators that  (sg) defines a morphism. 

PROPOSITION. (i) Let P be a type II factor and G a discrete group with finitely many 

generators gl, ..., gk. Let a, a' be two free cocycle actions of G on P with Mod a = M o d  or'. 

Let O= (id, 01, ..., 0m), 0'= (id, 0~, ..., 0~) with Oi e {a(gj)}j ,  0~ e {a'(gj)}j appearing with 

the same multiplicity ni >1 1. Then GN o,Mo ~--GNO,,MO,. 

(ii) More generally, if a,a'  are free G-kernels of Aut  P / I n t P  and (Oba, Mo d a ) =  

( O b a ' , M o d a ' )  (see [C3], [J1], [Ocl], [Su]) then gNO,MO=~NO,,MO,. 

Proof. If ~, or' are genuine actions then (i) is trivial. Then the rest of the statement 

follows by direct computation. [] 

We can deduce now the classification of actions of [J1] and, for most amenable groups 

(such as groups with subexponential growth), of [Ocl] as well: 

COROLLARY. Let P be a type II factor and G a discrete finitely generated group. Let 

go=e, gl, . . . ,gk~G be a fixed set of generators and no,n l , . . . ,nk  ) l some multiplicities. 

Let a: G--*Aut P / I n t  P be a free G-kernel and N~ c M  ~ the inclusion associated to a, 

(gi)i and (ni)i as in (5) before. Then we have: 

(i) N o C M ~ is amenable if and only if  P is amenable and G is amenable. 
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(ii) N ~ C M 8 is strongly amenable if and only if P is amenable and G has 0 entropy 

with respect to the measure # on it given by (ni)i and by the morphism 13: G--*R~_, 

/~(g)=Mod(r(g) ([C1]). This condition is satisfied/or any choice of (gi), (nj) and any 13, 

in case G has subexponential growth. 

(iii) If  P is hyperfinite of type II, G satisfies (ii) (e.g. if it has subexponential growth) 

and the multiplicities (ni)i are all distinct, then two free G-kernels a, a' are outer conju- 

gate if and only if (N~ CM~176 cM~ if and only if (Oba, Mod a )=(Oba ' ,  Mod a'). 

In particular, any two properly outer actions of G (with the same Mod function in the 

type II~ case) are outer conjugate and any 2-cocycle vanishes. 

Proof. (i) follows by 4.4.1, by Kesten's characterization of amenability of G and by 

3.1.3(5). 

(ii) is clear by w and 4.1.2 (or 5.1.1). 

(iii) is then a simple consequence of the previous proposition and (3). [] 

5.2. A list of  sub/actors of  index ~<4 

A list of all possible matrices F over Z+ of norm ~2 has been obtained in [GHJ]: for index 

<4 these are the Coxeter graphs As, D~, E6, Er, Es and for index =4 the Coxeter-type 

graphs A(~ 1), 2~<n~<c~, D(~ 1), n~>4, A~, Doo, E6 (1), Er (1), E~I)=Eg. It is already implicit 

in [J2] that for each n~< c~ there exists a unique possible standard invariant with standard 

graph A,~, given by the so-called Jones sub/actor of index 4cos 2 7r/(n+l).  An example 

of sub/actor (thus paragroup) with graph E6 was obtained in [BN] and with graphs E~ 1), 
E (1), E (1), 0 (1) in [GHJ], 

The complete list of all possible paragroups with index < 4 was then obtained by 

Ocneanu ([Oc2], see also [Kal] for details of the proof), showing that there exist no 

paragroups with graph D2,~+1 or Er (for simpler proofs see [Iz], [SuVa]) and that for 

each n/> 2 there exists a unique one with graph D2n while for each of E6 and Es there 

are actually two. 

For each E~ 1), E (D, E (1) there is a unique paragroup ([Kal]). For ,a(1).2n_1, n>~l, 

there are n, as they are in bijection with the number of elements in H3(Z/nZ,  T), i.e., 

of the n-roots of unity, and there is only one for A~ ) (all this by 5.1.5 and [C2], [C6]). 

Any other graph of square norm equal to 4 must be of the form D (1). It was shown in 

[Po6] that such paragroups are in one to one correspondence with the elements of the 

subgroup of H3(Dm, T), 2~<m~<c~, that vanish on the two generators, where Dm is the 

dihedral group with generators a, /3, ~2=t32=1 and with the period of a/3 being m. 

Thus, these sub/actors are classified by some well understood classical objects as well. 

The relation between these paragroups and their corresponding graphs has been obtained 
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in [IzKa] where it is shown that for finite n there are n - 2  paragroups corresponding to 

D O) and they correspond to the elements in H3(Dn_2, T) considered above and that 

there is a unique paragroup with graph D~ ,  corresponding to the fact that the subgroup 

in H3(Doo, T) is trivial. 

By Theorem 5.1.1 we can now deduce that the above list coincides in fact with the 

list of all subfactors of index ~< 4. 

5.2.1. COROLLARY. The following is a listing of all subfactors of index <<.4 of the 

hyperfinite type II1 factor: 

standard graph number of subfactors 

An, n>~2 1 

D2~, n>>.2 1 

E6 2 
Es 2 

E 0) 1 

E 0) 1 

E 0) 1 

A (1) n>>.l n 2 n - - l l  

D O), n>~4 n - 2  
A ( i ) _ a  1 

A~ 1 

Dor 1 

5.2.2. Detecting Jones' irreducible subfactors. From the above we can now formulate 

more explicitly some simple criteria for detecting the Jones subfactors. 

COROLLARY. Let N c M  be hyperfinite type II1 factors with [M:N]~<4. 

(i) If  N'NM~=Alg{1,el , . . . ,e~},  Vk, then N c M  is isomorphic to the Jones sub- 

factor R ' c R  of index s=[M:N] (i.e., R=vN{fi}i~>0, RS=vN{fj}j>>.l, where {fi}i~>0 

are the Jones projections of trace ~'( f i )=[M:N]-l=s-1).  
(ii) If  [M:N]=4cos 9 ~r/(2n+l) then N C M  is isomorphic to the Jones subfactor of 

index 4 cos 2 ~r/(2n+ 1). 

(iii) If  [M:N]=4cos 2 7r/(2n+2) and N 'NMn- I  =AIg{1, el, ...,en-1} then N C M  is 

isomorphic to the Jones subfactor of index 4cos 2 lr/(2n+2). 

(iv) If  [M:N]=4 and N 'nMs=sp{1 ,e l , . . . , e s}  then N C M  is isomorphic to the 

Jones subfactor of index 4. 

Proof. (i), (ii) are reformulations of part of 5.2.1 and (iii), (iv) follow because of the 

shape of graphs of that norm. [] 
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5.2.3. Connes' uniqueness of trace scaling automorphisms and detection o] Jones' 
locally trivial subfactors. If s>4,  the Jones sub]actors R 8 c R  of [J2] were proved to be 

locally trivial in [PiPol], i.e., of the form RS={x~a(x)lxEpRp}, R being the hyperfi- 

nite type II1 factor and a: pRp'~(1-p)R(1-p) a surjective isomorphism, where peP(R),  
T(p)r(1--p)=s -x. It has also been shown that if N ~ c M  is locally trivial as above, 

then (N~tCMSt)~-(RScR) and an explicit representation of all higher relative commu- 

tants (= standard invariant) was obtained, showing that GN~,M=~R,,R and FN~,M = 
FR~ From that representation we also see that E(R,nRoo),nRoo(el)EC. Thus 

also E(M,nMoo),nMoo(el)eC and E(N,onMoo),nMoo(el)EC. Thus (M'NMoo)'nMoo=M, 
by Skau's lemma, and N c M  follows strongly amenable. By 5.1.1 one thus get both 

the uniqueness of Jones' sub]actors of index >4 (by their graphs) and the uniqueness 

of the locally trivial sub]actors. Since isomorphism of locally trivial sub]actors N~tcM, 
N~2CM amounts to outer conjugacy of al ,  er2, (like in 5.1.5) which in turn are easily seen 

to come from t/(1-t)-scaling auto-morphisms al,  az of R@B(lZ(N)), where t (1- t )=s  -1, 
one also obtains Connes' uniqueness of trace scaling automorphisms up to outer conju- 

gacy ([C3]). 

It is easy to see that to detect such sub]actors little information is needed: 

COROLLARY. (i)  If [M:N]=s>4, then N C M  is a locally trivial sub]actor with 
N ' n M = C  2 if and only if FN,M=A-e~,oo and if and only if Ind(Emin)=4. 

(ii) N c M  is locally trivial if and only if H ( M I N ) = - t b a t - ( 1 - t ) l n ( 1 - t  ) and if 
and only if N 'NM=Cp+C(1 -p),  where t(1--t)=T(p)7"(1 -p)=[M:N] -1. 

(iii) Any locally trivial sub]actor of index s>4  and dim N~nM=2 of the hyperfinite 
]actor is isomorphic to the Jones sub]actor of index s. 

Proof. (ii), (iii) are trivial by the above discussion and [PiPol]. Then FN,M =A-oo,oo 
implies N~NM=Cp+C(1-p).  If [pMp:Np]r and pl=JMpJMeM'NM1, then NpplC 

pMppl Cppl Mlppl is a basic construction, so that (Nppl)~Nppl Mlppl ~ C (since the 

index 51). But this means that N'nM1 has more than Alg{p, pl, 1} on its diagonal, 

c o n t r a d i c t i n g  ['N,M = A-oo,oo. [] 

5.3. Strong Amenability for standard invariants and paragroups 

The (strong) amenability condition introduced in this paper is conceptually and tech- 

nically best suited but it has the disadvantage of being (lift]cult to check. In practical 

situations one does not have enough aprioric knowledge of the representation theory for 

N c M  to be able to decide on the existence of N C M  hypertraces. Also the amenability 

relative to a core assumes the knowledge of the higher relative commutants (via the core), 
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which anyway are needed afterwards to actually distinguish the subfactor by its invariant 

~N,M. So, one needs characterizations of the strong amenability of an inclusion N c M ,  
in terms of the behavior of its higher relative commutants. We will do this in the present 

paragraph. As it turns out, the amenability of N c M  splits into 2 complementary no- 

tions: the amenability (thus hyperfiniteness) of M and a growth property of its standard 

invariant (the paragroup), analoguous to the strong amenability for groups as defined in 

[Po6] and that  we will now introduce in several equivalent forms. 

5.3.1. THEOREM. Let N CM be an extremal inclusion of type II1 factors with finite 

index. The following conditions are equivalent: 
(i) dim N st IAMSt =d im N'AM.  

(ii) N st, M st are factors and ~N,t Mmt iS isomorphic to ~N,M. 

(iii) If MDNDNID. . .  is an arbitrary choice of the tunnel, S C R  is the associated 

core and Sk=SANk then S'kNSj=N~ANi, k>~j~-l ,  where N_I=M,  S_I=R. 

(iv) (M'nMoo)'nMoo=M and (N'nMoo)'nMoo=N. 

(v) (M'nMoo)'nMoo=M. 

(vi) IIFN,MII2=[M:N] and FN,M is ergodic. 
(vii) N st C M st /8 an extremal inclusion, i.e., ENO,,nM.t (eo) 6 C1, e0 being the Jones 

projection. 

(viii) g ( M l Y ) = g ( M s t l y s t ) = l i m k g ( N ~ n M l N ~ n Y ) .  In this case one also has 

H(MIN) =limk H(M'NMk+I ]M'NMk). 

Proof. (i)=~ (iv). Assume that  (i) holds true. Since S ' A R D N ' A M  it follows that  

S 'QR=N'AM.  By expecting on N and using the commuting square relation we get 

Es,ns ~- EsEs,nR = EsEN,nM = EsENEN,nM = EsEN, nN = Ec. 

Thus S 'NS=C and S is a factor. Also, by [PiPol] e0 cannot commute with 

the nontrivial projections in N'NM, which shows that  none of the central projections 

of N ' N M = S ' N R  can be central projections of R. Thus R is also a factor. More- 

over, [R:S]=[M:N], since the probabilistic index [PiPol] of S in R is )~-----[M:N] -1. 

But if pES 'NR=NrNM is a minimal projection then by the formula of the trace pre- 

serving conditional expectation of pMp onto Np, ENp(pxp)=T(p)-iEN(pxp)p, it fol- 

lows that  the probabilistic index of SpcpRp is majorized by that  of NpCpMp, so that  

[pMp:gp] ~ [pRp:Sp]. By Jones' formula we thus have: 

JR: S] =  [pRp: Spilt(p) ~< ~ [ p M p :  Np]/r(p) = [M: N/=  JR: S]. 

Thus [pRp:Sp]=[pMp:Np] for each pEN'NM=S'AR.  By the formula of EM, nMI(el) 

in [PiPol] it follows that  EM,nMI(el)----ER, nR~(el). 
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Thus RCR1 is extremal. But then, by [PiPo2], SCR is also extremal. By trace 

preserving isomorphism (since NCMcM1 are extremal) it follows that M~NM~C 
M' N M~ C N' M M~ are extremal inclusions of factors. Thus all M~ N M ~  C M~_ 1 n M ~  

are extremal and by Skau's lemma 4.5.1 we get (iv). 

(iv) => (ii). If (M'NM~)'NM~=M and (N'NM~)'AM~=N then in particular 

MtNM~ and N~NMcr are factors so by 1.3.9 M~NM~ are all factors. By anti- 

isomorphism, N st, M st are factors. We have (M~NM~)'N(M~AM~)=MkN(M~NM~)= 
M~OMk, so by antiisomorphism we get (ii). 

(iii) ~ (ii) is trivial. 

(ii) ~ (iii) follows since we always have, by definitions, S'kNS j DN~ONj, k>>.j>.-1. 
(iv) => (v) is trivial. 

(v) ~ (i) (M'NM~)'NM~ =M implies that  M'NMo~ is a factor and that 

(M'NM~)'O(N'MM~)=N'NM 

so that, by antiisomorphism, 

d im(N st ' A M  st) = d im(M st 'AM[ t) = dim((M'NM~)'N(N'NM~)) = dim N'AM. 

(ii)=>(vi) is trivial, since by (ii) we get that N~tcM~t is extremal and FN,M= 

FN~hM~, and since IIFN~hM~ 112=[M:N] (for instance by [PiPo3], or by 4.4.1). 

(iv) Since (1.3.5), if  IIFN, MII2=[M:N] then IIFN~,MII2= 
[M:N1]. Also, since FN, M is ergodic FN1,M is ergodic (as M st is the same for N1CM 
and NcM). By Corollary 1.3.5, since N [ t c M  st has larger higher relative commutants 

than N1 c M ,  we get 

IIrN~,MII 2 < IIrNr,M" II 2 ~ [ Mst :  N[t ] = [M: Nil = ITN~,MII 2, 

t h u s  IiPN[tMstii2-~[Mst:g[t]. By Corollary 1.3.6, N [ t C M  st is extremal, so that  all 

N~+ICN~+I are extremal by duality. By antiisomorphism, M~i+2AM~cM~AM~ 
are all extremal, so that  by Skau's lemma, (M'AMoo)'AM~=M. 

(iii) => (vii) ~ (viii) are trivial (by [PiPol]). IfNStCMSt would be factors, by [PiPol], 

[PiPo2] we would get from (viii) that  N st C M st, M st C M[ t are extremal and Sl~u's lemma 

applies. If we do not assume this (apriorically), then let {e~}keK~ be the the minimal 

central projections of N~iNN and {f/}leL~ the minimal central projections of N~iAM 
(note that  the inclusion matrix of N~iNNCN~NM is given by (akl)keg',leL~ where  
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(akt)ker',leL,=rNa,N). By [PiPol], [PiPo3], 

H(N~nM I NC~nN) = ~ TCe~f~) InCa~trCe~)rC f~)/rCe~f~) 2) 
k,l 

l " k 

l " k 

= ln(Ind l:iT'N2inM'~ < In [M: N]. 

where the above inequalities follow by first using that In is convex and then that it 

is increasing. By hypothesis (viii) the first sum tends to ln[M:N]. It follows that 

if e>0, 3i0 such that if i>~io then $~={leL~[[M:N]-~a~lT"(e~k)/r(eikf~)<~} satisfies 

)-'~'~tes, r(fti)>/1-�89 Also, for i large enough we may assume SiCL~_ 1 (since by [Poh], 

~"~teL, f~=supp(N~ifqN)eo(N~iON), eo being the Jones projection). There exists an 

orthonormal basis {m~}j of N~ifqM over N~fqN1 such that 

'" 2 EN~,nN1 (mjmj ) -- ---" 0 as i ---* o0, 

where feT)(N1). By [Poh], f~=~'~i Tt'lJ Jli .r j'*, VleL~. Thus if 

then for IES~ and kEK~ with akt#O we have 

r(.f~)/7(e~.f~) = (dim(N~,nM)f~ / dim(N~,nN)e~k) 1/2 

<~ (dim(N~nM)f~ / dimCN~inN1).f~-') 1/~ <<. A- ' ( I+z) ,  

by using that the trace of a minimal projection under f~ is ~ times the trace of a minimal 

projection under f~-l .  

From the above inequalities involving the convexity of In we thus get that there 

exists " akl~'(ek)r(f ~ )/T(ekf ~) are close to A -1, Vk with S~ C S~ such that for each lE S~', 9 ~ ~ i i 2 

akl#O, and ~'~ses~' r(f~) close to 1. Let OS~'={leS~'I31'~L~\S ~' such that aklakv#O for 

some keK~}={lcS~'[ql'eL~\S~' with T(f~,f~-l)#o}. Since by the [PiPol] inequality 

T(f~,f~-l)>1.X2~'(f~ -1) and for each l' the number of l's with T(f~,f~-l)#o is bounded by 

)~-1, we get that ~{r(f~-l)lleOS~ '} is small for large enough i. Finally, note that since 
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the central support  of e0 in MSt= Ui (N~inM)  is 1, for i large the central support of e0 

in NC.iAM is close to 1, so that  we may assume [v(eof~)-Av(f~)[<z~(f~), VIeS~'\OS~'. 
Altogether, if we denote Ti=S~'\OS~ ~, we get that  for large i, 

(a) v er r(T,), Vk with a~t~0; 

(b) I (eofi)-  (fi)l WET,; 

(d) 
In the inclusion N~ A NI c N~ AN C N~i n M the Jones projection e0 is represented so 

that  there exist projections q~k e At~ such that  E s~ ( q~k ) = 1/ a~t 1A~ = E B~ nA~ ( qlk ) and 
e~f~ f~-leoe~f~ f~-l=Aa~ls~/tlqkle~f ~ f~-l,  where 

r i i i--1 t i i--1 t i i--1 i A~k=(Ni~nNlekf~f  ~ )ne~cf~ Ni~nMe~f ~ f~ 

and 
t i i i - - 1  ! i - - 1  t i - - 1  i i B k-(N  nNxe /i$  )nf  ekf . 

It follows that  if m~=dimN~inMf~ and i _ �9 , i n k -d im  N~inNe k then we have 

i i--1 i i i 
E ( N ~ n N ) ' O ( N ~ A M ) ( e o f i  ) = ~-~(rft  I / n k ) ( ) ~ S k / t l ) f  ~ ek 

k 

~ " ~ / a  m i - 1 ) ~ _  ~ 2 / _ 2  / n i  8 ~ / m i - l t  ~ t i e i  
= Z . ~  kl t ~k)  lUktk  k k)~ t ~LI~ k 

k 

--  ~ T[$ i - - l e i  ~21a2 T / $ i - l ~ T / e i  ~Siei  
- - / ~  ~Jl k) / kl ~Jl ] ~ k)J l  k" 

k 

(.) 

Similarly we get 

i i 2  2 i i i i - - 1  E(N~inM),n(N~,nM,)(el ) = ~ l"(f~ ek) /akl~'(f; )T(ek)f~ e k . 
k 

(**) 

(a) above then shows that  (**) is close to A1. Since "f(f[)=~m~/m~-l'f(f~-l), by 
(c), we also get that  (*) is close to A1. Altogether we obtain that  Eg,.tnM.t(eo)= 
A1, E M, ,t nM~ (el) = A1. By antiisomorphism and duality 

E(M~nM~o),nMo~(ej+l)= )~l, V j ~ 0 ,  

and Skau's lemma applies to give (M'OM~)'OM~c=M, i.e., (viii) =~ (v). 

A similar statement holds true for nonextremal inclusions as well. 

[] 
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5.3.2. THEOREM. If N c M  is not extremal (so that a=IndEmin <[M:N]) then the 
following are equivalent: 

(i) dim N st InMst  =d im NtNM. 
(ii) N st, M st are factors and ~gst,MBt ~-~N,M" 
(iii) If S c R  is the core for the tunnel {Nk} then S~kASj---N~NNj, Vk,j>~-l. 
(iv) (M'NMo~)'AMo~=M, (N'nMoo)'nMoo=N. 
(v) (M'nMoo)'NMoo=M. 
(vi) ENst 'NMSt ( e 0 )  = E N ' A M  (eo) and EMst ,NM[t (e0) = E M , A M I ( e l  ). 

Moreover, the condition 
(vii) IIFN,MII2=IndE~; M and FN,M ergodic, 

implies any of the above conditions (i)-(vi). 

Proof. The proof of (i)=:~ (iv) in 5.3.1, which does not depend on N c M  being 

extremal, shows that if S c R  is a core and if one assumes (i) then S, R are factors, 

S 'AR=N'AM,  the local indices for ScR ,  N C M  coincide and ER, nR,(el)=EM,nMI(el). 
But by Jones' formula 1.2.5, the local indices for RcR1 will also coincide and by the 

same argument as for el we get ER, AR2(e2)=EM~AMI(e2). This shows ( i ) ~  (vi). By 

the stability of the core EM~t_,IAM~t(ej)=EM~_lnM~(ej) , Vj. If et_j are the projections 

in [PiPol, 2.2] for which EN;nN~_~(e~_j)EC, constructed by modifying e_j (but still, 

e~jEN~+INNn_I, e~_jVe_jEN~+INNj_I), then it follows that Eg~t,nlv~L~(e~_j)EC. By 

[Po12], there exists a trace preserving (noncanonical!) isomorphism of N~i_IAM onto 

M'NM2i carrying N~i_INN1 onto M~AM2i and e'_l e~e'o -2e'-1 onto e3e2e4e3 (which is 

the Jones projection for 2142 C Ma. Thus: E(M~AMoo),AM~o (e3e2eae3)EO and by duality 

E(M~inMoo),NMoo ( f i ) E C ,  where fi are the Jones projections for M2i c M2i+2. By Skau's 

lemma (M'nMoo)'nMoo =M. Thus (vi) ~ (v). But 

(N'NMoo)'NMoo = ({el}U(M'NMoo))'DMoo : { e ~ } ' n M  = N, 

so that  (v) ~ (iv). 

Suppose (iv) holds true. Then the same argument as in (vi) =~ (v) above shows that 

Es~nR(e'_i)EC. If Roo=Uk(N~flMoo)=Uk,j(N~nMj), then Skau's lemma applied to 

M'flMoocN'nMoo shows that S~flRoo=N~flMoo. Thus, by projecting on Sl, S~kNSl= 
N~NNI, and we get (iv) =~ (iii). Next, (iii) @ (ii) =~ (i) are trivial. 

To prove (vii)=~ (v), note that  FN~,M--FN,MFN, M and thus IIFN1,MII2=HFN,MI]4= 
Ind M , N  2 _..1 E'vN N1 Emi n ) =luu ~m;n T -- ~ M  N ~ . r~M, N1 In(1/~Jrnin =][no. ~min . By 1.3.5 we have 

M st ,N st M,N1 
[[FN1,M [[2 < [[Fg[t,M.t [[2 < Ind Emi n " 1 < Ind Emi n ~-- [[FN,,M [[2. 

Thus M st,NIt M, N1 Ind Emi n --Ind Emi n which by the formula of the Jones projection for N1 C 

M in [PiPol, 4.4] shows that EMs,,nM~ (f~)=EM'nM~ (fl), where f~----[M:g]e~e2eoel is 
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the Jones projection for M c M 2 .  By the previously proved equivalence of (vii) and (v), 

applied to N 1 c M ,  we get that  (M'NM~) 'NM~o=M. [] 

We mention that  condition (vii) in 5.3.2 is in fact equivalent to (i)-(vi), but the 

proof of the converse (i)-(vi) ~ (vii) will be detailed elsewhere. 

5.3.3. Definition. The standard invariant (or paragroup) 6lV, M of an extremal (rasp. 

nonextremal) inclusion N C M is strongly amenable if any of the equivalent conditions 

(i)-(vii) of 5.3.1 (rasp. (i)-(vi) of 5.3.2) is satisfied. 

Note that  if we define ~N,M t o  be ergodic if both N st, M st are factors (i.e., FN1,N, 
FN, M ergodic) ~-'~ ,~st def~ r~st aeI~ (for ergodic ~N,M) then conditions ~litt kiN, M ~ ~Ns t  Mst ,  ~N,M : I Nst,Mst 

(i)-(iii) (in 5.3.1, 5.3.2) can be reformulated, for ergodic G-----gN,M, as follows: 

5.3.4. G is strongly amenable if  and only if ~=G s~ if and only if F---F st and in fact 

if and only if F st, has the same number of edges starting at * as F does. 

The entropic condition (viii) in 5.3.1 can be regarded as a Shanon-McMillan- 

Breimann type condition, analogous to the entropic characterization of strongly amenable 

groups of Avez and Kaimonivici-Vershik ([A], [KV], [Po6]). Our formulation is in terms 

of conditional entropies, more suitable in the noncommutative operator algebra setting. 

If one considers the random walk on the graph FN, M OFtN,MOFN,M .. . .  (the composition 

means simply glueing the bypartite graphs F, F t at vertices with the same label) starting 

at * and with probabilities determined by the weights ~', t', then H(M'AMk+I IM'NMk) 

gives the conditional entropy from step k to step k-t-1 of the random walk. As this 

entropy is always majorized by H(Mk+ItMk)---H(MIN ) ([PiPoll), one can interpret 

condition (viii) in 5.3.1 as follows: 

5.3.5 C A Shanon-McMillan-Breimann type condition). ~ is strongly amenable if and 

only if it has maximal entropy, H(~) (d=eflim H(N~NMIN~NN) )=H(MIN) ,  i.e., if and 

only if the associated random walk tends to have maximal entropy, at infinity. 

Finally, condition (vi) in 5.3.1 coincides in the case of subfactors associated with 

actions of finitely generated discrete groups with a characterization of amenability by 

Kesten, showing that  such a group G is amenable if and only if its Cayley graph has 

maximal norm ([Ke]). So, for extremal N C M  with N st, M st factors we have: 

5.3.6 (A Kesten type condition). ~N,M strongly amenable r IIFN,MI[2-=[M:N] r 

HF~,MII2=[M:N]. 

At this point we should note that  while in general the two conditions FN,M ergodic 

and [IFN,Mll2=[M:N] are complementary, it is shown in [Po6] that  for the locally trivial 

subfactors N ~ c M  ~ coming from actions of groups the first condition implies the second! 

The next result clarifies this relation. 
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5.3.7. COROLLARY. Let N c M  be an extremal inclusion and assume the weight 
vector g is bounded (equivalently, the set of all indices at irreducible inclusions in the 

Jones tower is bounded). Then GN,M is strongly amenable if and only if F N,M is ergodic 

if and only if F I~a,N is ergodic. 

Proof. By Corollary 1.3.6, if N ~ t c M  st is not extremal and ~' denotes its s tandard 

weights, giving the traces of the minimal projections in MSttnM~t,  then supk, rk ,=oo.  

But since M~OMj C M st IN M~t, any sh is a sum of some rk,, so sup sk =oo,  a contradic- 

tion. By 5.3.1 we are done. [] 

Along these lines, in order to introduce some nice sufficient conditions for paragroups 

to be strongly amenable we now consider one more concept. 

5.3.8. Definition. Let N c M  be extremal. GN,M has subexponential growth if 

lim,~(~':~kel~V~)lln=l, where Kn c K  has the usual significance of the set of even vertices 

of FN, M that  can be reached after n steps, starting f r o m . ,  and g=(vk)keK is the stan- 

dard vector of even local indices in the Jones tower (see 1.3.6). Recall that  rr tg=a~,  
T 1 ~ M , N  where a = m a ~ m i  n and that  a=[M:N], ~=g, when N C M  is extremal. 

The next result is analogous to the well known similar statement for groups, where 

however the ergodicity condition is redundant (see also 5.4.6). 

C O R O L L A R Y .  If r N,M is  ergodic and ~ N , M  has  subexponential growth then ~ N , M  is  

strongly amenable. 

Proof. Let ffK, =(Vk)keK,. Then llm(~-~keK v ~ ) l / " = l  implies that  

nminf IIvK.II2 _ 1. 

But if B = F F  t then (B~K.)K._I=Ct~K,~_I SO that  alIgK~_~II2<~IIBgK~[I2 showing 
T ~ r~M,N 

that  IIBII =c~, where a = m a  ~ m i n  " [ ]  

5.4. F u r t h e r  c h a r a c t e r i z a t i o n s  o f  ~ m e n a b i l i t y  for  inc lus ions  

With Theorems 5.3.1 and 5.3.2 we can now divide the strong amenability of an inclu- 

sion into two separate properties: the amenability of M on the one hand and the strong 

amenability of ~N,M on the other. Also, we can now deduce that  the existence of hyper- 

traces for the standard representation of N c M  is sufficient to ensure its amenability. 

5.4.1. THEOREM. N c M  is strongly amenable if and only if M is the hyperfinite 
type II1 factor and GN,M is strongly amenable. If N c M  is extremal then N C M  is 
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strongly amenable if and only if there exists an ( N CM)-hypertrace o n  j~stcj~st (the 
standard representation of N c M )  and F N,M iS ergodic. 

Proof. The first part is a consequence of 4.1.1 and 5.3.1. If N c M  is extremal and 

J~fstc.~st has a (NCM)-hypertrace, then by 4.4.1 the inclusion graph of J~*stcj~st, 
Ft N,M, has norm [[FtN,MI[2=[M:N]. By 5.3.1, this and the ergodicity of FN,M imply the 

bicommutant condition which by Section 4 implies the strong amenability of N c M .  [] 

In a future paper we will prove a result similar to 5.3.1 for characterizing the 

amenability of GN,M only (i.e., without assuming ergodicity properties on FN,M and 

the core), in which one of the equivalent conditions is [[FN,M[[2=[M:N]. Also, we will 

prove that N c M  is amenable if and only if M is amenable and ~N,M is amenable (i.e., 

[[FN,M[I2=[M:N]). We point out that in fact there exist no examples up to now of 

irreducible subfactors N C M  for which [[FN,M[I2=[M:N] but FN,M is not ergodic. In 

fact, the only examples of amenable subfactors which are not strongly amenable are the 

locally trivial subfactors in [Po6] associated to actions of finitely generated amenable, 

but not strongly amenable groups. Examples of such groups are given in [KaiVe]. Let us 

mention here the following: 

5.4.2. Problem. Is the amenability equivalent to strong amenability for irreducible 

subfactors? Such examples must have infinite depth, i.e., FN,M infinite. One should 

point out that, up to now, there are no other examples of irreducible strongly amenable 

subfactors with infinite depth other than Wassermann's subfactors ([Wa2]) (see 5.1.3) 

or tensor products of such subfactors with finite depth ones. In particular, there are no 

examples of irreducible amenable subfactors of infinite depth with index 4< [M:N] <8. 

The next problems seem of even more interest: 

5.4.3. Problem. If fla={[M:N] INCM irreducible, amenable} then is j a  a closed 

set? Is it countable? Can it contain an interval? Is the set of isomorphism classes 

of strongly amenable subfactors, or at least the one of subfactors with finite depth of 

the hyperfinite factor, countable? Note that by the main result of this paper (4.1.1 or 

5.1.1), this amounts to evaluate the number of distinct strongly amenable, or merely 

finite depth, paragroups. To evaluate cardinality one needs to show that only countably 

many paragroups may exist with the same standard graph. (It has been pointed out to 

us by A. Ocneanu that this problem is not solved even in the finite depth case.) Note 

that in fact any information on the set j a  would be interesting to know. Haagerup seems 

to have recently found a candidate for the first limit point al  of j a  with ~ l>aO=4 and 

proved that a l  ~tJa! There are no examples of limit points "from above" in fla. A more 

approachable problem along these lines seems to be to show that if there exists a strongly 

amenable subfactor with infinite graph F then there exist finite depth subfactors with 
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graphs Fn such that Ilrnll < Ilrll and IIF]i=lim IIFnII (or even r=l imr. ,  asymptotically). 

In some situations (that should be understood!) this may even be possible by taking Fn 

to be the restrictions of F to Kn. Equivalently, one can formulate this question by asking 

whether indices of infinite depth strongly amenable subfactors can be isolated points in 

j a .  Note that conversely, if (rn, gn) are weighted graphs of finite depth subfactors that 

tend (in an appropriate sense) to a weighted graph (F,F) and if IIrlI=lim.IIr.ll and 

if (F, ~7) is ergodic, then r is the graph of a (strongly) amenable subfactor. Indeed, if 

/V = 1-L Nn C 1-I,, Mn = /~ ,  then r~,~=l im",  r~ = r  so that if r is ergodic then N =  (/Y)St C 

(M)St=M has FN,M=F. 

Let us mention that for subfactors of small index and ergodic graphs, nonamenability 

automatically entails the trivality of the higher relative commutants: 

5.4.4. COROLLARY. / f 4 <  [M:N] < (1+x/2)2 =3+2Vt~, GN,M is ergodic (i.e., FN,M, 

F N1,N ergodic) but not strongly amenable (i.e., for extremal N c M,  [[F N,M[[2 < [M :N]), 
then F N,M=Aoo, i.e., the higher relative commutants are generated by the Jones projec- 

tions only. Also, if N c M  has infinite depth, 4 < [ M : N ] < 2 + v ~  and N ' A M = C ,  then 

F N, M = Aoo. 

Proof. If 4< [M:N] < (l+x/~)2 then either N c M  is locally trivial with N ' N M = C  2 

or N ' N M = C  (cf. [PiPol]). Since locally trivial subfactors are strongly amenable, we 

must have that N ' N M = C .  Since NStcMSt  are factors of index [MSt:NSt]--[M:N]< 
(lq-x/r2) 2, again, either y s t t n M s t = C  or  YsttnMst=C 2 and NStcMSt is locally trivial. 

In the first case, by 5.1.1 N c M  would be strongly amenable. The second case means 

that Nt n Mk = Alg {1, el, ..., ek } , meaning that F N,M = Aoo. 
If [M:N]~<2+V~ then by Corollary 1.4.2, GN,M is ergodic (i.e., rN,M,['NI,N are 

ergodic) so that if III'[I<[M:N] then the first part applies to get FN,M=Aoo. If [[F[[= 

[M:N] then by 1.3.6, Further Remarks 3, we get a contradiction. [] 

We mention that Haagerup announced a result along this line, showing that in fact 

any irreducible subfactor of index 4< [M:N] <4.3 has graph Aoo. 

As for the ergodicity of FN,M v e r s u s  FM,M1, we note: 

5 . 4 . 5 .  COROLLARY. If  either [M:N]~5 or [[FN,M[I2=[M:N], then FN,M is ergodic 

if and only if r M,M1 iS ergodic. 

Proof. If IIFN,MII2=[M:N], then [[r'M,M , [[2=[[FN, MII2=[M:N]=[MI:M] so that by 

5.1.1,  FN,M is ergodic r  ~N,M is strongly amenable r  ~M, M1 is strongly amenable ~=~ 

FM,M1 is ergodic. 

By considering M c M 1  instead of N c M ,  it is sufficient to prove FNI,N (=FM,M1) 
ergodic :=~ FN,M ergodic. By w  is a A-Markov inclusion of [PiPol] 
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index equal to A-I=[M:N].  If Q is a factor then by [PiPol], ~-(p)~>A, for pEZ(P). We 

need the following: 

LEMMA. If O c Pm~n=I Pi i8 an inclusion with Q, Pi factors of type II1 then there 
exists a projection eoeP of central trace A=(IndE~) -1 such that E~(eo)=A if and only 
if ~j[Pj:Q]=[Pi:Q]/T(pi)=A -1, Vi, where pi=lp~ EP, if and only if Q c P  is A-Markov. 
In addition, EQ,np(eo)=)d if and only if QcPi is extremal, Vi. 

PX P~ Proof. If f E B  then EQ(fpi)<.Eq(f). Since EO( ipi)=E O (Xi)T(pi) it follows that 

(IndE~)-l=min[Pi:Q]-lr(pi) and the first two conditions follow equivalent. An ortho- 

normal basis {ink} for P over Q can be obtained as {T(pi)-l/2m~pi)i,j, where {rn~)j 

is a basis of Pi over Q. Then )-~k mkm~=~i, j  T(P~)-lm~m~*Pi=~-~i[Pi:Q]/T(pi)P~ and 

the second equivalence follows. The last part is trivial by the representation of e0 EP 

with Ctr(e0)=A and EQ(eo)=(IndE~)-l: let f~eQ be projections with )--]~fi=l and 

T(fi)=T(pi). Let e~ be Jones projections for f iQfipicfiPif i .  Then e0-~-  ei0 

satisfies E~(e0)=A1 and Eq,np(eo)=)d if and only if Ey, qAp~nApj,(e~ 
[Pi:Q]-~pifi if and only if jQQfipicfiPifi (thus QcP~) are all extremal. [] 

End of the proof of 5.4.5. If MSt =P=)-~ Pi with Pi factors and [Pi:Q]<~4, Vi, then 

NStCMSt follows extremal by the previous lemma and then 5.1.1 implies that GN,M 
is strongly amenable, thus M st is actually a factor. So, in order for M st not to be a 

factor when N st is, it is necessary that M st-t2~n /9 with n~>2 and at least one P~, - -  MlJi=I  ~ 

say /91, has index [P~:QI>4. But then [M~t:N~tl=[P~:Q]/r(p~), Vi, and summing up 

[Mst:gst]= ~-~i[Pi :Q] / ~-:~ i T(pi)= )--]~i[Pi :Q]>4 + l=5. [] 

Note that the above proof shows that if N st is a factor but M st is not and if [M: N] < 6 

then (N st cMSt)=(QcP1oP2) with Qp2=P2 and with Qp~ cP1 a locally trivial Jones 

subfactor. Recently Haagerup constructed a subfactor N C M of index 8 cos 2 7r/5 = 3+ v/5 

and ergodic FN,M but with FN~ ,N nonergodic, by taking appropriate inclusions N C P C M 

with [P:N]=2, [M:P]=4cos 2 7r/5. From the above comments, since 3+v/-5<6, we see 

that N st c M st must be of the form described above. 

5.4.6. Problem. The known examples of subfactors N c M  of infinite depth and 

subexponential growth ~N,M (5.3.8) are the subfactors N ~ c M  ~ coming from actions a 

of discrete groups G with subexponential growth (5.1.5) and Wassermann's subfactors 

(5.1.4). In all such cases the ergodicity of F N ,  M follows automatically. Does it follow, in 

general, that ~N,M with subexponential growth implies ~N,M strongly amenable? Does 

this follow at least when one also assumes SUPk 8k<OO? We should mention that there 

are no known examples of subfactors with bounded vector ~" which have infinite depth 

and are strongly amenable (thus, with ergodic FN,M by 5.3.7) other than those of the 

17-- 945202 Acta Mathernatica 172. Imprim6 le 28 juin 1994 
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form (N~cMa) |  depth, in particular there are no examples of irreducible such 

subfactors. 

5.4.7. Problem. As we will show in another paper, the standard invariant ~N,M 
determines completely N C M  even if one only assumes N c M  amenable (thus, FN,M 
not necessarily ergodic). It seems possible that  the class of amenable inclusions is as 

much as the standard invariants can uniquely determine. It would be important to prove 

(or disprove) that  given any non-amenable subfactor N C M of the hyperfmite type II1 

factor (for extremal N C M  this means IIFN,MII<[M:N]) there exists another subfactor 

P c M  so that  gN,M~P,M but (NcM)~k(PcM) .  

Appendix 

A.1. A local quantization principle 

The type of result that  we will discuss now proves to be very useful in exploiting the 

noncommutative ergodic phenomena specific to the theory of type II1 factors (see [Poll, 

[Po2], [Po4], [Po5], [Pol0]). Such results allow obtaining from an almost invariant finite 

dimensional vector space T/0, an (almost) invariant matrix algebra by taking T/0qT-/~, 

with q an "infinitesimal" projection satisfying qT-l~7"loq~,Cq. The proof of this result 

is essentially contained in [Poll, [Pol0] but we will give it here anyway, for the sake of 

completeness. 

A.I .1 .  LEMMA. Let BcB1  be finite yon Neumann algebras with a normal finite 

faithful trace r. Let X CBa be a finite set of elements such that EBv(B,nB1)(x)=O, for 
all xEX.  Given any 6>0, there exists a partition of the unity {Pi}i with projections in 
B such that 

~-~pixpi] <~, VxEX.  
i 2 

Proof. Step 1. We first prove that  if xEB1 is SO that  EBvB,nBa(X)=O then there 

exists veU(B) such that  ]]vxv*-xil2>~iixH2. Let K be the weak closure of the set of 

Dixmier averagings of x, i.e., K=~-5~~ which is a w-compact convex 

subset in B1. Since K is weakly compact, by the inferior semicontinuity of the norm 

I]" I]2 it follows that  there exists an element yoEK such that  

IlY0]]2 = inf{llY]12 l Y e K}. 

Since I] �9 iI2 is a Hilbert norm and K is convex, it follows that  Yo is the unique element 

in K with this property. But vKv*EK for all vElt(B), in particular vyov*EK. Since 
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(tvyov*ll2=HyoH2, by the uniqueness of Yo it follows that vyov*=yo so that [v, yo]=0, for 

all vebl(B). Thus yoeB'nB1. But EBv(B,nB1)(x)=O implies EBv(B,nB,)(VXV*)=O, for 

v E B, so that by weak limits EBv(B, nB~)(yo)=0. This is in contradiction with Yo ~B'  NB1, 

unless Yo =0- 

This proves that 0EK. 

Suppose now that Dlvzv*-xll2<<. Ilz[[2 for all veil(B). Thus 

Ilvzv*-xll~ = Ilvzv*ll~+llzll~-2Rer(z*vxv*) <<. Ilxll~ 

so that 2Rer(z*vzv*)>~llxll~, for all v, and thus, by taking convex combinations and 

weak limits, 2Re(x*y)~>llxll~ for an y e K .  In particular, for yo=0, we get 0~>llxll~ a 
contradiction, unless x=0. 

Step 2. We now prove that if xEB1, x#O, is so that EBv(s,ns~)(x)=O and if 

{p~  ) is a given finite partition of the unity with projections in B, then there 

exists a finite partition of the unity (p~)jCP(B), refining (pi ~ such that 

To do this, we apply Step 1 to Xl =~.,p~176 (instead of x), ~,p~176 (instead of B), 

by taking into account that (~-~p~176176 ~ so that 

E(~"]~ pO Bpo)v(~ pO BpO),oBI ( Xl ) -: E~-~ pO( Bv B,NB, )po ( Z ) 

= E E V?(SvB,nB,)p?EBvB,nB~(X) = O. 

We thus get a unitary element VlEIA(E p~176 such that IlVlXlV~-Xl [[9. > IlXlll2. Let 

ei be some spectral projections of Vl so that ~ e i= l  and so that for suitable scalars Ai, 

IAil =1, we have H ~ )t~ei-vlll small enough to ensure that 

Using the mutual orthogonality, with respect to the scalar product given by the 

trace, of the elements {eixlei}~,j and the inequality 2~>]$iAi-1], we get: 

2 2 

4 E  411xll, -4tlE e'xle t[2 = e'Xle ll 2 

E ( / x i ~ j - - 1 ) e i x l e j  2 2 

--II Ill 
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From the first and last terms of the inequality we get: 

i -< 
Taking (p~) to be the projections (elp~ we get 

: 1 1 2 pl.xpl 12 ~-~.pjxlpj 2 ~< 3][X11]2 ~< 3[IxI]2"  
J 3 2 

Step 3. By applying recursively Step 2 k times for each xEX,  with k so that  

(3)k </f2, we get the required partition. [] 

A.1.2. THEOREM. Let B c M  be type II1 factors. Given any ~>0 and any finite set 
of elements Y CM, there exists a projection qEB such that [Iqyq-Es,nM(y)qli~<EiiqlI~, 
for all y E Y. 

Proof. For each yEY let Y'=EBv(B'nM)(Y) and y"=y-y ' .  
Let c>6cardY6o>0.  For each y' as above there exists some finite number of ele- 

ments bEB, b'EB'AM such that  

bb' (0) 

Denote by S the finite set of all such elements b, corresponding to all y' coming from 

yEY. 
We claim that  there exists a separable subfactor BoCB such that  SCBo. Indeed, by 

Dixmier's theorem, given any countable set TC B, there exists a countable set of unitaries 

L/(T) such that  T(y)lE~-5~{vyv*ivEbl(T)), for all yET. Thus, by defining recursively 

To:SUS*, Ti+l :U(Ti)UL/(Ti)* and by taking B o : v N ( U  i T~), it follows that  B0 has the 

Dixmier property and thus has a unique trace. Thus Bo is a factor and by construction 

SCBo and Bo is separable (having a faithful trace and being countably generated). 

But if Bo is a separable type II1 factor then we claim that  there exists a hyperfinite 

subfactor RCBo such that  R'MBo:C (cf. [Po4]). Indeed, if {xn)n is a countable subset 

of Bo, dense in Bo in the norm ]] �9 ]]2, then one constructs recursively mutually commuting 

matrix subalgebras Ni~-Mk~xk,(C), i>~l in B0 such that,  if M,~:NIV...VNn, then 

IIEM, nBo(Xi)--T(xi)li]2<2 -~, l<<.i<<.n. 

For suppose we made the construction up to n. Let AcM'MBo be a maximal 

abelian subalgebra, so that  A~M(M'MBo)=A. By taking an "approximation" of A by 

finite dimensional subalgebras, it follows that  there exists an abelian finite dimensional 

subalgebra A0 C A such that  

IlEAgn(M, nSo) (EM'nSo (Xi)) -- EAo (EM, nBo (x~))I1= < 2-n-1 
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for all l<~i~<n+l, and so that all the minimal projections of A0 have the same trace. Let 

then Nn+l be a matrix subalgebra of M'MBo having A0 as a diagonal. Then we have 

for Mn+l =Mn VNn+I, 

IIEM:~+~Bo(X~)--~-(x~)IlI2 = IIEN'§ 

<<. IIE~,§ EM, ~Bo(X~) ) ) - ~ ( ~ ) I l I ~ +  U -n-~ = 2-~-~. 

Now, by taking R = U M  ~ it follows that ER, nBo(Xi)=r(xi)l, for all i, so that, by 

density ER, nBo(X)=T(X), for all xEBo. 
Let now R be represented as an infinite tensor product R=--~geS ~ (M2• with 

the countable index set S~ being the infinite symmetric group (the finite permutations of 

{1, 2, ...}). It follows that S~ acts on R by shifting the indices, i.e., for gES~, (~ Xh ER, 
we put a(g)((~h Xh)----(~h Xgh. This action is easily seen to be ergodic, i.e., if a(g)(x)=x 
for all gES~ then xECl.  

Let P~=R s'~ be the fixed point algebra of R under the restriction of this action a 

to SncSoo. Clearly [~nRn-:C1 (by the ergodicity of a) and R~VIR=C for each n (since 

the action of S~ by a is properly outer). From Rn~C1 it follows that 

limllER,~(x)-T(x)lll2=0, VxEM. 
n 

Thus, for no large enough, 

IIER,~o(b)-T(b)IlI2 < 5, Vbe  5;. (1) 

Since R~o MR=C, by A.I.1 there exists a finite dimensional abelian subalgebra A1 C 

R~ o such that 

]]EA,~nR(Ea(b)-ERno(b))]]2 <5, VbES. (2) 

Moreover, since SCBo and R'MBo=C, by A.I.1 there exists a finite dimensional 

abelian subalgebra A2 c R, with A2 D A1, such that 

IIEA,2nBo(b-ER(b))I]2 < 5, Vb6 S. (3) 

Putting together (1), (2), (3) we get: 

[[EA'2 nB (b) - T(b)1 [[2 : [I EA'2nBo (b) - T(b)1112 

6+IIEA'~nBo(ER(b))-T(b)III2 

= 5+ IIEA, nR(ER(b)--ER,~o(b))+EA,~na(ER,~o(b)- ~-(b) 1) 112 

<~ 25+IIEA, nR(E,(b )-ERno(b))]12 <~ 35. 
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Now, going back to (0), it follows that if ~ is chosen from the beginning very small 

(e.g. ~<80 (4~  IiU[I+l) -1 will do), then we get: 

~< 280+~--~ IIb'llllEa'~nM(b)-r(b)Xll2 
~< 2~0+36 ~ IIb'll < e/2 card Y. 

Finally, by applying A.I.1 to the inclusion B c M  and to the finite set of elements 

y" (which are orthogonal to B v ( B ' A M )  by construction) we get a refinement A 3 c B  of 

A2, i.e., Aa abelian, finite dimensional, such that 

I]EA,snM(Y")ll2 < ~/2 card Y, 

Thus we get 

~ t y l l  �9 

II EA+ n M (Y) -- ES,nM (Y)II 2 < e/card Y 

for all yEY.  If {qi} are the minimal projections of As then this yields: 

Z = 
i II i 112 

= IIEA'snM(y)--EB'nM(Y)II] < (e/card y)2 

= E ( s . / c a r  d y)211,J,,lll. 
i 

So, there exists some q=qi for which 

IlqYq--EwnM(Y)qll2 < EIIqlI2, Vye Y. [] 

The importance of A.1.2 will become clear through the following consequence, that 

can be regarded as a local quantization principle, as it gives the possibility of obtaining 

local algebras from vector spaces: 

A.1.3. COROLLARY. Let B C M  be type IIt factors and assume B ' A M  is finite 

dimensional. Let 7-/oCM be a finite dimensional vector space such that ~o is a B ' A M  

right module, i.e., ?- /oB'nM=~o,  and such that it is in fact a free B 'OM module, 

i.e., 7-/o~(B'AM)" as modules, for some n. Given any e>0  there exists a projection 

qEB such that 7"loqT"l~ is eT(q)-close to a finite dimensional algebra Bo of the form 

Mnx . (B 'AM) .  

Proof. Let xiE~/0 be so that 7-lo=~'~=lxiB'nM. Then, by the Gram-Scbmidt 

process, replacing xl by XlEB,nM(X~Xl) -1/2, we may assume EB,nM(X~Xl)=I and more 
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generally that EB,NM(X;Zj)----6ij. Apply A.1.2 to {x[zj}i,j and to 6>0 to get a projection 

q e B  such that ][qx*xjq-6ijqIl2<61]qH2. By using the perturbation result proved next, 

one can then find partial isometries (v~)icM such that 

v* vj = 6ijq, 

IIx~q-v~ll2 < f(6)llql12 

where f(6)--*O when 6--*0. By taking Bo-~, i , jv~B NMvr and 6 very small, the state- 

ment follows. [] 

Let us finally point out a more general similar result, that can be obtained in the 

nonfactorial case: 

A.1.4. THEOREM. Let B C M  be type II1 yon Neumann algebras (not necessarily 
factors). Let xl , . . . ,x ,~EM and e>0. There exists a projection qEB such that 

Ilqx~q--EB,nM(x)qll2 < ellqll, 1 ~< i ~< n. 

Proof. The only change that has to be made in the proof of Theorem A.1.2 to get 

this nonfactorial version is the proof of the fact that given a finite set of elements Y in B 

and 6>0 there exists a partition of the unity {Pi} in B such that I] ~piypi-r(y)]]2 <6. 
The first step in proving this was the construction of a hyperfinite subfactor R c B  in 

any separable type II1 factor B such that R 'nB0=C.  The second step consisted in 

constructing a decreasing sequence of type II1 subfactors P~ C R with P~ l C, R" f3 R= C. 
This second step does not depend on B, M or B0 being factors. The first step has to be 

changed into the existence of a hyperfinite factor R with R'NBo=Z(Bo).  The existence 

of such an R is proved in [Poll]. The rest of the proof is identical. [2 

A.2. A perturbation result 

We will prove now a perturbation result needed when applying Theorem A.1.2 (cf. A.1.3). 

Namely, that if {xij } is a finite set of elements that almost satisfies the axioms of a matrix 

unit then {xij} is close to a matrix unit. Results of this type appeared first in the work 

of Murray and von Neumann, in the context of von Neumann algebras and in the work 

of Glimm, in the context of C*-algebras. It has become since then a standard technique 

in operator algebra. 

A.2.1. LEMMA. Let E>0 and (Yi )l <<.i<<.n a finite set of elements in the type II1 factor 
M,  with n>~l and 6<~ l /n.  Assume 

Ily~yj -6ijql12 < ~llq{12 
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for all l <~ i, j <~ n and some projection q. 

Then there exist partial isometries (vi)i<~i<~n such that if we denote by 

00 = 3 max{ 1, IlYl Ih .-., Ily-II} 

and we put _ 4 2 ,~-2 ~o--0o(0o+1 ) , then: 

v* v3 = 5~jq, 

IIv~-y~l[2 ~</~0ellqll2 for all 1 <. i <~ n. 

Proof. Assume first n =  1 and put el =e.  By taking Ylq instead of yl we may assume 

that  s(y~yl)<~ q. If l > a > 0  then the spectral projection of Y~Yl corresponding to the 

interval ( 1 - o ,  l + a ) ,  P=E(t-~,I+a)(Y~Yl) will satisfy 

(1--a)2T(q--p) <~ Hy~yl-qll 2 ~< e2 IIqll2 2 = e2T(q) �9 

1 * - - 1 / 2  Let v l = y l ( y l y l )  E(1-~,I+~)(y~Yl). Then we have ~,1.o 1 Vl -1 : P  and the estimates 

IIv~ - Yl II ~ = r(p) +r(YTYx) - 2v(lyl IP) 
<. 2r(p)(1-o) 1/2 

so that  by the Cauchy-Schwartz inequality we get 

<~ T(p)+T(q)+~'((y~yl--q)q)--2T(p)(1--a)  1/2 

<~ T(p)+ T(q)+e2T(q) -  2v(p)(1--O) 1/2 

~< 2Y(p)(1--(1- O)1/2)+e2(1+ ( 1 -  o)-2)7"(q) 

 T(q) 

w h e r e / 3 = 2 ( 1 - ( 1 - o ) U 2 ) + e 2 ( l + ( 1 - o ) - 2 ) .  So, by taking a = e  2, we get ~<2e2+2e  ~= 

4e 2. Thus, if we take Vl to be any partial isometry which extends v~ and yl(y~yl)  -1/2 

to all q, then 

Hv1-Y11122 = I lv l l -y lp l122+l l (v1-yx) (q -p)H22  

<~ 5e2T(q)+'r(q--p)+T(y~yl(q--p))  

~< (Te 2 + 2s 2)T(q) --= 9e 2 T(q). 

This proves the statement for n = l .  

Assume we proved that  there exist partial isometries vl,  v2,..., Vk such that  

v* vj =Sijq, l <~ i , j  ~ k, 



C L A S S I F I C A T I O N  OF A M E N A B L E  S U B F A C T O R S  OF T Y P E  I I  251 

1 k , for some c/>0, l<~i<~k, where r162 Let Yk+l=(1--~-~/=ivivi )yk+~. Note that we have: 

k 

1 ,  1 * V * Iluk+lUk+x--qll2 --< EIIqll2 +~--~ IlYk+x /vi Yk+lll2 
i=1  

�9 V ~<cllqll2+llyk+~ll ~ Ilyk+l /112 
i 

<.ellqll2+Hyk+lll ( ~ .  liy~+l(v/-yi)ll2+Z/Ily~+ly/]12) 

k 

~ellqll2+llyk+lll~llqll2 ~-.'. c/+kE = z~+xllqll2. 
i=1 

1 ,  1 By the proof of step n = l  it follows that we can find first v~+ 1 so that VkTlVk+ 1 <~q 
and 1, =0 and Vk+lVi 

V 1 1 II k + l - - Y ~ + l l l 2  -< 2~L~llql12. 

Since v (1 -  ~ - 1  v/v[)>~ (n-k)v(q) (because v(q)< l/n) it follows that we can extend 
, _ . ~ v - ~ k  , 

vk+11 to a partial isometry Vk+l such that Vk+lVk+ 1 - q  and Vk+lVk+ 1 ..r 1 - - 2 - , / = 1  ViVi and 
such that Vk+lYk+ 1 .  1 />0. By the step n=l we have 

v 1 II ~+~-yk+l l l2  <~ 3~+11lq112. 

Thus we get 

Ilvk+l -Yk+1112 < 3E~+1 Ilql12 § ~ IIv*y~+~ I1~ 
i 

k 

~< 3e~+~ Ilql12 + kellqll2 + IlYk+~ II ~ eillqll2 
i = 1  

k 

= (4(k+t) +(3,  +lJl2+lJy +lll) IIqJl2_ 
k 

~< (3 max{llyk+i II, 1}) 2 ~ ~,llqll~ = ~k+~ Ilqll~- 
i = l  

By induction, it follows that if we put c~0=3max{1, I lyl l l ,  ..., I ly~ll} then gl~<O/2~, 
2 4 ~2~<aoel~<~0e, ek+l~<ao 2 k �9 ", ~-']~i=1 ei~<C~o4(C~o2-t-1) k-le and the statement follows. [] 
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