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0. Introduction

A central problem arising in the theory of subfactors, after Jones initiated it in the early
80’s, is the classification of subfactors NCM of finite index of the hyperfinite (or ap-
proximately finite dimensional) factors M. Besides its intrinsic interest, the classification
of subfactors provides a natural approach for the problem of classification of actions by
groups of automorphisms on (single) von Neumann algebras as well. Further motiva-
tions towards solving this general problem comes from low dimensional quantum field
theories ([L1], see also {FRS), [F¥]), as the main problems in the theory of superselection
sectors ([DHR]) can be formulated in terms of the classification of endomorphisms of
finite statistics (= index'/2) of the hyperfinite factors. The physically relevant invariant
for a subfactor, that can be “observed” in practice, is the lattice of its higher relative
commutants {M!NM;}; ; in the Jones tower NCM CM, ... ([Po5], [GHJ], [J3]). We will
call this invariant the standard invariant of NCM and denote it Gy . The inclusions
between these higher relative commutants are described by Jones’ principal (or standard)
graph T'n ar ([J3]). An abstract characterisation of the invariant Gy, is given in [Oc2]
as the paragroup of all irreducible correspondences (bimodules, see [C3]) generated under
Connes’ composition (or fusion) rule by NCM, and 'y, as its “fusion rule matrix” (a
Cayley-type graph).

We prove in this paper that for a large class of subfactors, that we call strongly
amenable, this invariant is a complete invariant. All the examples of subfactors com-
ing out this far from quantum field theories and polynomial invariants for knots ([J3],
[Wel], [We2]) are strongly amenable. Also, the classical problems of classifying actions
of amenable discrete groups and compact Lie groups on hyperfinite factors were given
equivalent formulations in terms of classification of certain subfactors that are strongly
amenable ([Po6], [PoWa]). Our result is in some sense the most general that can be ob-
tained, as we show that strongly amenable subfactors give the largest class of subfactors
which can be reconstructed (generated) in a direct way from their standard invariants.

We now state in more details the main results of the paper.

A main concept that we introduce here for studying subfactors is that of represen-
tation of inclusions. This provides both the proper set-up for defining a conceptually
suitable notion of amenability and the tools for proving the classification results. While
for a single von Neumann algebra M a representation is simply an embedding M C B(H),
for some Hilbert space M, for an inclusion of type II; factors N CM we define a repre-
sentation as an embedding of N C M into an inclusion of von Neumann algebras N'CéM,
with NCN, MCM and with £: M—N a conditional expectation of M onto N that
restricted to M agrees with the trace preserving expectation of M onto N. Typically,
both N/ and M are direct sums of algebras of the form B(H). In particular, the suitably
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defined standard representation N**C M®t of NCM is of this type and the inclusion
(or multiplicity) matrix of A**C M coincides with I'y s, a fact that justifies our ter-
minology. The inclusion N CM 'is called amenable if whenever represented smoothly in
some N CEM there exists an M-hypertrace ¢ on M (in the sense of [C3]) satisfying
@=¢o°E. This is equivalent to the existence of a norm one projection of N'CM onto
NCM. NCM is strongly amenable if in addition the graph 'y a is ergodic. Our first
result gives alternative numerical characterizations of these notions.

THEOREM 1. Let NCM be an extremal inclusion ([PiPol], [PiPo2)) of finite index
of factors of type II,. Then NCM is strongly amenable if and only if M is the hyper-
finite type I1; factor, |Tn,m||>=[M:N] and Ty as is ergodic. Also, if T'n . is ergodic,
then NCM is strongly amenable if and only if NCM has a hypertrace in its standard
representation. In particular, if M is the hyperfinite type .Hl factor and if NCM has
finite depth, i.e., if Ty u is finite, or if [M:N|<4 then N CM is strongly amenable.

For the subfactors associated to actions of finitely generated discrete groups.G in
[Po6] the graph I'y » coincides with the Cayley graph of the group G and the above
condition ||T'n,a]|>=[M:N] becomes Kesten’s characterisation of amenability for G. We
will in fact introduce the notion of (strong) amenability for a standard invariant (or
paragroup) Gy u, one equivalent characterisation of which is “||T'w, ap||?=[M:N] (and
I'n,m ergodic)”. The above theorem thus states that NCM is strongly amenable if and
only if M is amenable and Gn, s is strongly amenable.

To state the next theorem we denote by N3t C M®* the canonical model coming from
the invariant Gy u, i.e., from the higher relative commutants.

THEOREM 2. N C M is isomorphic to N** C M®t if and only if it is strongly amenable.
In particular the isomorphism class of such an inclusion is completely determined by its
standard invariant Gy u.

Since we will prove that the strong amenability of the standard invariant (or of the
paragroup) is equivalent to the entropic condition “H(M®*|N*)=H(M|N)”, the above
theorem states that a subfactor of the hyperfinite type II; factor is isomorphic to its
canonical model if and only if it has the same entropy as its model.

Theorem 2 can be regarded as the analogue to the case of inclusions of factors of
Connes’ classification result for (single) amenable factors of type II ([C2]). To prove
Theorem 2 we will first use the amenability condition to prove an appropriate Fglner-
type condition, in the spirit of {C2], by “decodifying” the hypertraces of NCM into
almost left invariant finite dimensional vector spaces that are right modules over the
higher relative commutants. These finite dimensional vector spaces have no multiplicative
structure, but by a “local quantization” method, similar to the one we used in ([Po3]), one



166 S. POPA

converts these vector spaces into genuine finite dimensional algebras of higher relative
commutants, locally approximating the inclusion. Thus, through this technique, the
amenability condition is used to recover the structure of the space of representation into
the initial algebras, by means of the norm one projection (or hypertraces). Thus, in the
single algebra case M CB(H)=M, the projection of B(H) onto M takes the matricial
structure of B(H) back into M, while in the case of representations of NCM into N'=
@D B(K:) CP B(Hi)=M the projection of N'CM onto N C M gives rise to inclusions of
finite dimensional commuting squares of algebras inside N C M, having the same inclusion
matrix as NCM. In particular, in the case A'CM is the standard representation of
N CM these finite dimensional inclusions come from Gy .

Before commenting on the use of the above theorems for genuine subfactor problems,
let us note that they give alternative proofs to some of the classical results in single von
Neumann algebras and can be used to derive some new ones as well. For instance,
Theorem 2 applied to N=M CM with M an amenable type II; factor, implies Connes’
fundamental theorem on the uniqueness of the amenable type II; (and thus type II)
factor. Taking M to be the hyperfinite type II; factor, p€ M a projection,

a:pMp=(1-p)M(1-p)

an isomorphism and N={z®a(z)|z€pMp} one obtains Connes’ theorem on the classi-
fication, up to outer conjugacy, of single automorphisms of the hyperfinite type II; and
II, factors. A similar construction for actions of discrete groups with 0 entropy ([A],
[KaiVe]), such as groups with subexponential growth, gives the uniqueness, up to cocy-
cle éonjugacy, of outer actions of such groups on the hyperfinite type II factors, more
generally the classification of G-kernels on such factors, i.e., [J1] and part of the general
such result in [Ocl]. Also, Theorem 2 is used in [PoWa] to obtain the classification of
minimal actions of compact Lie groups.

While Theorem 2 gives a complete classification of strongly amenable inclusions of
type II, in terms of their standard invariants, for the actual listing of all such subfactors
one still has to solve the graph theoretical problem of enumerating all such invariants, say
for a given index. In this direction, for type II; subfactors, the best set-up until now is the
formalism of Ocneanu ([Oc2], [Kaj, {IzKa]), who used it to give a full list of paragroups
of index <4. The physically motivated point of view in [L1] of investigating the tensor
category generated by an endomorhism of range N regarded as a Connes correspondence
(bimodule), proved to be useful as well (cf. [Iz]). In some situations ad hoc arguments
work out ([GHJ], [Po6]). Altogether the following exhaustive list of possible invariants
coming from subfactors of index <4 can be obtained:

For type II; factors and index less than 4, the graph I'y s is of one of the forms A,
n21, Dy, n>2, Eg, Eg and there is a unique possible paragroup (standard invariant)
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for each of the graphs A, (cf. [J2]), a unique one for each D, and two for each E¢, Eg
(cf. [Oc2], see also [Kal, [Iz], [SuVa]). If [M:N]=4 then I'y, u is of the form A<2t3—1 (with
n possible paragroups), n>1, or AL (with one paragroup), or Eél), Eél), él) =Eg (one
for each), or DM (n—2 for each), n>4, or Aw, Do (with one paragroup each). (All
this, by using {GHJ], [Oc2], [Po6], [IzKa].)

From Theorem 2 we thus have:

CoROLLARY 1. The above is the complete list of subfactors of index <4 of the
hyperfinite type 11, factors. In particular, the Jones subfactor of index 4 cos® w/(n+1),
ng oo, is the unique subfactor with graph T'=A,, of the hyperfinite type II; factor, i.e.,
with higher relative commutants generated by the Jones projections.

The Jones subfactors come from positive Markov traces on representations of Hecke
algebras (or Braid groups). Their construction, in turn, is strongly related to the poly-
nomial invariant for knots ([J3]). The general construction along these lines, which uses
the general Markov traces on Hecke algebras ([Ocetal]), is obtained in [Wel], [We2]. The
associated subfactors have index larger than 4 but were shown to have finite depth at
roots of unity ([We2]) and strongly amenable in general ([Wa2], [PoWa]). By Theorem 1
it follows that one can recognise them by merely “observing” their invariants.

COROLLARY 2. The subfactors associated to positive Markov traces on representa-
tion of Hecke algebras of type A, B, C, D of [Wel], [We2] are completely determined by
their standard invariants.

Finally, let us mention that a number of results have been recently obtained in [H]
on the first possible subfactors with finite depth beyond 4 and on the accumulation point
of their indices. The previously known subfactor with finite depth and smallest index
but larger than 4 was Jones’ subfactor of index 3++/3 (cf. [GHJ], [Ok]).

Like in the single von Neumann algebra case, by using the decomposition methods
of [C1], [CT], the classification of inclusions of hyperfinite type III) factors, 0<A<]1,
reduces (cf. [Lo]) to firstly classify the associated inclusion of type II, which is solved by
Theorem 2, and secondly to classify trace scaling actions on it. This second problem, of
classifying properly outer actions on strongly amenable subfactors of type 11, is solved in a
parallelly circulated paper ([Po9]) thus showing that strongly amenable subfactors of type
III,, 0<)A<1, are completely classified by their appropriately defined standard invariant
as well. A similar result holds true for subfactors of type III; (paper in preparation).

Part of the results in this paper have been announced by the author in a number
of lectures during 1989-1991 and in a C. R. Acad. Sci. Paris note in 1990 ([Po7]). A
preliminary form of the paper has been circulated since the summer of 1991 and was
the subject of a one year course at UCLA in 1990-1991. The final version of the paper
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was completed during the author’s one year stay at IHES. He wishes to greatfully ac-
knowledge the kind hospitality and the stimulating atmosphere that were extended to
him throughout this period.

1. Basics of the theory of subfactors
1.1. General inclusions

The generic notation for finite von Neumann algebras, i.e., von Neumann algebras which
have a faithful normal tracial state, will be N, M, and 7 will usually denote the trace. The
Hilbert norm given by 7 on M is denoted ||z||2=7(z*z)'/?, z€ M, and the completion
of M in this norm is denoted by L?(M,7). When regarded as vectors in L?(M,7)
(D M) the elements z€M are denoted by &. Note that M acts on L2(M,7) by left and
right multiplication. We identify M, as an algebra, with its action on L2(M,7) by left
multiplication. If Ja: L2(M,7)—L%(M,7) is defined by Jp(2)=3*, then JzJ is the
operator of right multiplication by z* and we have M e s MI=M !, the commutant
of M in B(L?(M,7)). Ju is called the canonical conjugation on L?*(M,7). Note that
the elements of L2(M, 7) can be identified with the square summable operators affiliated
with M. Similarly, the predual of M, M, can be identified with L1(M, 7), the summable
operators affiliated with M.

1.1.1. Conditional expectations. A major feature of the von Neumann subalgebras
of a finite algebra is the existence of nice expectations onto them. If NCM is a von
Neumann subalgebra of M then we denote by Ex the unique 7-preserving conditional
expectation of M onto N. eyn:L?(M,7)—L?(N, ) denotes the orthogonal projection
onto L2(N, 7), the closure of N in the norm || - ||, in L2(M, 7). Then en(3)=En(z) and
en, En are related by the following important algebraic relations:

(a) enzen=En(z)en, T€M.

(b) N={zeM|[z,en]=0}.

(c) beN, bey=0= b=0.

(d) [JM,eN]=O.

One still denotes by Ey the extension of the conditional expectation of M onto N
to an N-N bimodule projection from the summable operators of L1(M,7) (=M,) to
LY(N,7) (=N,), i.e., when regarded as elements in M., Ex(¢)(z)=¢(En(z)).

1.1.2. FEztensions by subalgebras. The von Neumann algebra generated by M and
en in B(L?(M, 7)) is denoted by (M, N) or (M, en) and it is called the extension of M
by N. The construction of (M, N) is typically quantum theoretical, since even if N, M
are abelian, (M, N) is not abelian, unless N=M and it is abelian.
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We have the following important properties:

(a) (M,N)=vN(M,en)=5p"{zeny|z,yeM}=JuN'Jpy.

(b) eN(M, N)eN=NeN.

(c) There exists a unique faithful normal trace, Tr(p,n), on (M, N) such that
TI‘(M,N)(:L‘CN)=T($), zeM.

(d) NnM>z—Jyz* e M'N(M, N) is an antiisomorphism which takes the cen-
ter of N, Z(N), onto the center of (M, N). If z€ Z(N) then 2'=Jp2*Jp is the unique
element of Z((M, N)) such that zey=z'en. Since Z(N), Z({M, N)) are commutative,
z—2' is an isomorphism, called the canonical isomorphism.

The construction of (M, N) with the trace Tr(as vy is called the basic construction
({32}, [Ch), [SK]). We write it NC M C®~¥(M, N). This proves to be a very powerful tool
of investigation in the theory of inclusions of algebras. Note that properties (a), (b), (c)
describe (M, N) abstractly, in the sense that, if B is a von Neumann algebra containing
M and a projection e such that B=5p MeM and with a trace Tr such that [e, N]=0,
eze=En(z)e, Tr(ze)=7(z), €M, then one has B={M, ex), with e corresponding to ey .

1.1.3. Orthonormal bases. We have the following general facts:

(a) There always exists a family {£;};c; CL?(M, 7) such that

1) En(&;€;)=06if;, with f; projections in N.

Such a family is called an orthonormal basis of M over N. The orthonormal basis
is unique, in the sense that if {;};cs is another basis of M over N with En(njn;)=
g; €P(N) then vdéf(EN(&" nj))ied, jeJ is a unitary element from @;¢; fiL?*(N,7) onto
D,cs 9;L*(N,7) satisfying n=~£v, where n={;}, £={&}, ie.,, =2, &EN(EN)),
J€J. Also, 37, Ctn(fi)=3_, Ctn(g;), where Cty is the central trace on N and 3, £,£ =
> j 7/,'77;-

() X &N=L*(M,7) and £=3; & En(E;€), VEELA(M, 7).

(b) If N, M are factors then the family {£;}.cr can be chosen such that in addition
one has:

(i) If (M, N) is an infinite (still semifinite) factor then

En(&€)=1, forall iel.

(ii) If (M, N) is a finite factor then I is finite and one has En(£]€;)=1 for all i€l
but possibly one. Moreover in this case all §; follow automatically bounded operators,
thus ;€ M.

The proof of (a) is trivial by a maximality argument. To prove part (i) of (b), let
{&}ier, be a maximal family such that En(£]¢;)=6ij, i,j€lo. If Y_;cp EN#L*(M,T)
then let {£;}jer, be a family in L*(M, 7) such that 3., &N + Y ,c;, §;N=L*(M,T)
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and such that En(£7€;)=6;;f;, if j€h, i€lpUl. If 3 ., 7(f;)>1 then there exists
some partial isometries v; € N such that v;v} <f; and 3, vju;=1. Let {=3_,§;v;. Then
En(€*¢)=1 and En(¢*£;)=0 for all i€y, contradicting the maximality of {&}ics,- U
2 7(f5)<1 then we can take the above v; so that v;v;=f; and thus get {=3_§;v; so
that 3, &N + EN=L?(M, ). Thus I, is infinite (otherwise (M, N follows finite). So,
there exists a countable infinite set I,Cl. Let f=FEn(£*¢) and label the set of indices
Ir by {1,2,..}. For i€l put nj=&(1—f), ni'=&f. Let £§§=€+n] and & =n, ;1 +ny,
n22. Then clearly {&:}icro\z,U{€n}ner, Satisfies the requirements.

By [PiPol], part (ii) of (b) is now clear.

Let us finally note that orthonormal bases can be used to give a very intuitive
description of (M, N) as some amplification of N. To this end, note that if £€ L?(M, 7)
is regarded as a (possibly unbounded) operator affiliated with M, then En(£*€) is a
projection if and only if exé*£en is a projection and if and only if {en is a partial
isometry. Note that this partial isometry must then be in (M, N).

(c) If {&}:CL?*(M,1) is an orthonormal basis of M over N like in (a) then any
element & in (M, N) can be uniquely written as 57:2.‘,]' §irijeng;, where z;; € f;Nf; and
where in fact z;; is the unique element x of N such that zey=en§;T;en. Moreover,
if an infinite sum 3. ; Eizijen€], with z;;€ N, defines a bounded operator on L3 (M, 7),
then that operator is in (M, N). In particular, ), £&;en§? =1(pm,N)-

(d) The canonical isomorphism z+ 2’ of 1.1.2(d), from Z(N) onto Z({M,N}) co-
incides with the application 2 Y LienzEl, ie., Y EienzE} is the unique element 2’ in
2Z((M, N)) such that 2'ey=zen.

1.1.4. Markov traces on the extension algebra. If M has a finite orthonormal basis
over N, {&:}ier, card I<oo, then (M;N) is clearly a finite von Neumann algebra and
Tr(ar,ny is a finite trace on (M, N). In fact we have the following:

(a) (M, N) is finite if and only if ), Ctn(f;) is a densely defined (but possibly
unbounded) operator affiliated with Z(N'), where Cty is as in 1.1.3 the central trace on
N and fi=En(§}E;), {&i}icn being an orthonormal basis of M over N.

This is trivial if one regards £;en€&} € (M, N) as the cyclic projection {¢; N] of L*(M, )
onto {,_N_

(b) The following conditions are equivalent and if they are satisfied then Tr s n) is
finite:

(i) If {&}ier is an orthonormal basis of M over N then ), Ctn(f;) is a bounded
operator in Z(N), where f;=En(§}§;), i€1.

(ii) M has a finite orthonormal basis over N.

(iii) (M, N)=sp MenM.

Indeed, (iii) = (ii) by the Gram-Schmidt algorithm and the rest is trivial by (a) and
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by 1.1.3.

() If Tr(ps, Ny is finite and we denote by A=Tr(p ny(1(pm,ny) ! and by T1=T(M,N)q_if
AT¥(p,ny, its normalization, then the following conditions are equivalent:

() nlm=7.

(') There exists an extension 7 of the trace 7 to (M, N) such that 7(zen)=X1(z),
Ve M, some N eC.

(ii) If E1=E$4‘N) is the 7 -preserving conditional expectation of (M, N) onto M
then Ej(en)=cal is a scalar multiple of the identity.

(ii’) There exists a conditional expectation E of (M, N} onto M such that E(e N)=
o'l, o' €C.

(iii) There exists an orthonormal basis {£;} of M over N with ), &£ =01, BER,.

Moreover, if the above conditions are satisfied then A=A =a=a'=0""! and given
any orthonormal basis {n;} we have }_ i n;fzz\‘ll. And then 7 is the unique trace on
(M, N) satisfying (i’) and E; is the unique expectation satisfying (ii’).

Indeed, by the definition of 71, (i} = (i) with #=7; and A'=A. Clearly (') = (ii’), by
taking E to be the unique 7-preserving expectation and o’=)'. Since for any orthonormal
basis {£;} we have Y &enél=1, by (it') we get (iii) with 3=o/~t. If (iii) is satisfied
and €M then z=x )", {;en&; so that mi(x)=) Ti(xéientl)=A> 7(x€;€)=107(x), so
that A3=1 and 71|p=7. Thus (iii) = (i) and (iit) = (ii). If E1(en)=al then r(enz)=
Aty (z)=A7(z), so that A=a and (ii) = (i).

An inclusion N CM with a trace 7 for which the above equivalent conditions (c) are
satisfied is called a A-Markov inclusion and T(p ny=71 a A-Markov trace.

Note that by [J2] a finite dimensional inclusion NCM with irreducible inclusion
matrix T is Markov if and only if the trace on M is given by the unique Perron-Frobenius
eigenvector of TT*.

Note that if (NCM, 1) is a A-Markov inclusion and {;}; is an orthonormal basis
of M over N then {A‘l/zfieN} is an orthonormal basis of M;={(M, N) over M and
(M CM,,n) is a Markov inclusion. One can thus obtain by iteration a whole tower of
inclusions NCM C** M, C®2M,C... and a trace 7o on | M,,, where e, 41 =eﬁ:_1 s Mogr=
Sp Mpent1 Mp={(My, M,_1), T(ens12)=A7(z), ZEM, and in fact epeny1€n=2>Xen. It is
called the Jones tower associated to the Markov inclusion NCM.

1.1.5. Commuting squares. We now define the suitable notion of morphism between
the objects that we study here, namely between inclusions of algebras. So, let NCM
and QC P be inclusions of finite von Neumann algebras such that PCM, QCN. Then

N ¢ M
U U
Q c P
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is called a commuting square if ENEM =EMENM =E}. Note that for this relation to
hold true it is sufficient to have EM(P)CQ or E¥(N)CQ. This concept was initially
introduced in [Po3] to study the various mutual position and normalization properties of
subalgebras of a type II; factor. It later proved to be extremely important for the theory
of subfactors as well ([PiPol}, [Wel], [HSc]). The key observation that makes commuting
squares appear naturally whenever we consider subalgebras of a von Neumann algebra
is the following:

Ezample ([Po3]). If BCNCM are finite von Neumann algebras then

N ¢ M
U U
B'nN c B'nM

is a commuting square.

The type of “morphisms” that we are interested in are the commuting squares

N c M
U U
Q C P

in which M is somehow minimally generated by N and P. For instance, if Q=P then we
would like to only consider embeddings of Q C P=Q into some NCM for which N=M.
We thus define a commuting square as above to be nondegenerate if P generates M as a
right N module. We actually have:

PROPOSITION. The following conditions are equivalent:

(i) supp{zelfy|z,ye Py=\/{uelfu* |ucl(P)}=1.

(ii) V{veMv*|veU(N)}=1.

(iii) Any orthonormal basis of P over Q is an orthonormal basis of M over N.
(iv) Any orthonormal basis of N over Q is an orthonormal basis of M over P.
(v) spPN=M (i.e., the commuting square is nondegenerate).

(vi) spNP=M.

Proof. If ue P then ueMu* is the orthogonal projection onto uN C L3(M, 7). Taking
§=u—E}f(u)=u—E§(u) it follows that £€P and that ueMu*ve¥ =[IN]®[¢N]. By
replacing £ with §E5(£*€)~"/? it follows that we may also assume EN(E*)=E§(£°€)=f,
where f is a projection in Q. More generally, if {£;}:c1€ L?(P, 7) is an orthonormal basis
of P over Q and Ho=Y,&N and if Ho#L?*(M,7) then it follows that there exists
u€P such that uN¢Z Y &N. Let =u—Y; EM(¢u)=u-Y, E§(§;u)€L*(P,7). Then
£#0 and €€L%(P,7), €LY &N, in particular £1) &,Q, a contradiction. This proves
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(i) = (iii). Clearly (iii) = (i), because (iii) means the existence of {£;}CL?(P,7) such
that £;eX¢; are mutually orthogonal projections with 3° ¢;eM¢r=1.

Let {n;};es CL?(N,T) be an orthonormal basis of N over @ and {; }:cs an orthonor-
mal basis of P over ) which is assumed to be also an orthonormal basis of M over N. By
the commuting square relation n; are orthonormal with respect to P as well. Assume n¢
L*(M, ) is so that LY, n; P, so that n LY, . n;£:Q. Since Q@ 3. £&Q=) &:Q=L*(P,7)
and 3 7,Q=L?(N, 1), it follows that 7L NP. Thus n* LP*N*=PN and so n* LY &N.
Thus 7=0. Thus (iv) follows from (iii). Clearly (iv) is equivalent to (ii) the same way
(i) & (iii).

Clearly (iii) = (v) and (iv) = (vi). Conversely, if say (v) holds true and if {¢;};C
L?(P,7) is a maximal orthonormal system for M over N so that Z—jgj—ﬁ#Lz(M ,T)=
sp PN (the last closure is taken this time in L2(M, 7)) then there exists z€ P such that
¢ m But then the projection of # onto the Hilbert space W, Ps~¢.n(%), lies in
L*(P,1) (since Py ¢, n(£)=Y &En(€z)=Y € Eq(£]x)), and thus &—Ps ¢, n(£)#0 is
in L?(P, ) and it is orthogonal to 3~ ¢; N, thus contradicting the maximality of {¢;};. O

COROLLARY. Let
R c P cCc M

U U U

S Cc Q@ C N
be commuting squares. Then the two small commuting squares are nondegenerate if and
only if the big commuting square is nondegenerate.

Proof. Assume the big commuting square is nondegenerate. Thus M =sp NR=sp NP
and P=Ep(M)=sp QR, so that the two small commuting squares follow nondegenerate.
Conversely, if P=spQR, M =sp NP then M=sp NQR=sp NR. O

1.1.6. Basic construction for commuting squares. A main feature of the nondegen-
erate commuting squares is their well behavior to extensions:

PROPOSITION. Let

P c M
U U
Q C N

be a nondegenerate commuting square. Let PCM Ceg(M, P)=(M,eM) and QCN ced

(N,Q)=(N, eg ) be the basic constructions for the horizontal inclusions. If (N,eM) de-

notes the von Neumann algebra generated in B(L*(M,7)) by N and e¥ then we have:
(1) If {&} is an orthonormal basis of N over Q then

V,elf) = { ol | sy 1,
i,
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(2) There ezists a unique isomorphism 8 of (N,eM) onto (N, eg y=(N, Q) satisfying
0(z)=z, TN, (e} )=€l. 0 can be defined by O(}_ &izije¥ £5)=3 &izije€; and it is
trace preserving, i.e., ’I‘L'(N,Q)00=T}<M,p)|(N,eg)

(3) The application E((II:,'I,’QP)): (M, P)=(M,eM)—(N,eM)~(N,Q) with

M,P . .
(v (Z &%ij elgfj) =D &EG(zi)er &,
isj
is a normal faithful conditional expectation, and it is trace preserving on (M,eM), i.e.,

(4) E((ﬁ,lm) satisfies the commuting square relation E((N ’é’) IM =EM.

(5) If zeQ'NP then T &eM 2€; is the unigque element z'€ (N, Q) N(M, P) such that

Z'eM=zeM and 2+—2' is an isomorphism of Q'NP onto (N, Q) N(M, P), which coincides

with the canonical isomorphism of Z(P) onto Z({M, P)), resp. of Z(Q) onto Z((N,Q))
when restricted to Z(P) resp. Z(Q).

Proof. (1), (2), (3), (5) follow trivially from 1.1.2, 1.1.5. To prove (4) note that for
€M we have =z Y £;e¥ &= & EM(£1x€;)el € so that:
Eina)(@) =Y &EM(E 2€;)ed
=) &EY(ENE x@))e
=Y &EY(& Efv‘(r)ﬁj)ep 3
=) LEY(E EN(2)E;)eb &

—Z(Z & EN(E BN ))eé‘e;

=Y EN(z)¢;el € = EX(2). m
J

The construction of the inclusions
P c M c (MP)
U U U
Q C N c (NQ)

with the conditional expectation EM
ing square

(N Q) is called the basic construction for the commut-

P Cc M
U ] (1)
Q C N
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and the commuting square

M c (M,P)
E¥ U U B S (2)
N C (N,Q)

is called the extension of the commuting square (1).
Note that (N, Q) C (M, P) is an amplification of QC P and that the whole construc-
tion can be regarded as a Takesaki type duality for inclusions.

1.1.7. The probabilistic index of an ezpectation ([PiPol]). We will adopt the point of
view in [PiPol] for defining the index of an inclusion of arbitrary von Neumann algebras
N CEM, with a normal conditional expectation £ of M onto . The index will in fact
be attached to the expectation £&. We thus put Ind £=(max{\>0|&(z) > Az|ze M })!
and call it the index of £.

If N'NM=C (so that in particular ', M are factors) then there exists a unique
normal conditional expectation of M onto N (cf. [C1]) so we may as well denote

M:N]Emde.

If Ind £ <00 and we denote B=N'NN'=Z(N), A=N"NM, then £(A)=B and from £z >
Az, z€ A4, A=(Ind€)~*>0 and the abelianness of B one sees that .A must be of the
form @ _, Ax with A, homogeneous of type I, with supny finite (cf. e.g. [PoWa]). By
[T2] we also deduce that if dim N NM <oo then any other normal faithful expectation
of M onto N will also have finite index. We then say that A/'C M has finite index in the
sense of [PiPol]|. By using the weak compactness of the set of expectations with finite
index, it has been shown in [Hi] that if A’CM has finite index then there exists a normal
expectation Epyi, 50 that Ind £in=inf{Ind £|£: M—N}. In the case either M or N is
a factor von Neumann algebra there exists a unique such normal expectation, called the
expectation of minimal index.

It is an easy exercise to show that if N'C .M are atomic algebras with finite inclusion
(multiplicity) matrix T' then Eni, is the unique conditional expectation of M onto N
preserving the trace with the weights given by a Perron-Frobenius eigenvector of I'T*.

Note also that (by 2.1 in [PiPol]) if (NCM, ) is a A-Markov inclusion like in 1.1.5
then M C (M, N) is also Markov and Ind E{y"™) =1,

1.2. Subfactors of finite index

If NCM are type II; factors then (M, N) is either of type II; or type Il. If dimy K
denotes the Murray and von Neumann coupling constant of N when acting on the Hilbert
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space K, then the Jones indez of an inclusion of type II; factors NCM is by definition
dimy L?(M, 1), and it is denoted by [M:N]. We actually have:

1.2.1. (a) [M:N]=dimy K/dimp K, for any representation of M on a Hilbert space
K with dimps K <oo.

(b) If dimps K< oo then [M:N]<oo if and only if (M, N) (or N’} is a type I, factor.

(c) If PCNCM then [M:P]=[M:N][N:P].

(d) If [M:N]<oo then NCM is an {M:N]~!-Markov inclusion.

1.2.2. The probabilistic characterization of the indez ([PiPol]). [M:N]=Ind Ey,
with Ind Ey defined in 1.1.6, i.e., [M:N]~!'=max{c2>0|En(z)>cz,z€ M, }, and with
the convention 0~1=00. Moreover, if [M:N]<ooc, then there exist projections eg€ M
such that Ex(eo)=[M:N]~1-1. Such projections on M are called Jones projections and
they have a remarkable significance.

1:2.3. The downward basic construction ({J2], [PiPol]). Any Jones projection eo€ M
satisfies the following: if Ny=NN{eg}’' then M is the basic construction for NyCN, i.e,,

(i) epzeo=En,(z)eg, z€M,

(i) M=sp{zeoy|z,yeN},

(iii) there exists a trace preserving *-isomorphism of (N, N;) onto M carrying N as
a subalgebra of (N, N1) identically onto N as a subalgebra of M and ey, into eg.

Moreover, e is unicjue up to conjugacy by a unitary element in N (cf. [PiPol]), i.e.,
if e €M is another Jones projection, i.e., so that Ey(e})=[M:N]~1-1, then e} =ueou*,
for some ueU(N).

The construction of a subfactor N; CN with a projection eg€M as above is called
a downward basic construction for NC M. Unlike the usual basic construction, which
is unique and canonical, we see that the downward construction is unique only up to
conjugacy by unitaries in NV.

1.2.4. Relative commutants ([J2]). If NCM has finite index then N'NM is finite
dimensional and in fact we have:

(i) [M:N]=[pMp:N,]/7(p)7'(p), for any projection p€ N'NM, 7’ being the unique
normalized trace on N’.

(ii) [M:N]=Y;[p:Mp;:Np;]/7(p:), for any partition of the unity {p;} with projec-
tions in N'NM.

1.2.5. Exztremal inclusions ([PiPol]). The inclusion NCM is called ertremal if
En'nm(eg)€C1 for one (and thus alll) Jones projection eg€ M. We have:

(i) ([PiPol]) NCM is extremal if and only if the antiisomorphism N'NM3z—
Juz* M EM'N{M,N) is trace preserving, equivalently if 7(p)=7'(p), VpeN'NM, 7'
being the normalized trace on (M, N)}=JN'J.
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(ii) ([PiPol]) NCM is extremal if and only if
[pMp: Np)=[M:Nlr(p)?>, VpeP(N'nM).

(iii) ([PiPo2]) NCM is extremal if and only if M C(M, N) is extremal.

(iv) NCP and PCM are extremal if and only if NCM is extremal.

(v) NCM is extremal if and only if Ex coincides with the expectation of minimal
index (1.1.7).

Property (iv) was recently proved in |L3] for arbitrary factors; we give here our in-
dependent proof in the type II; case for the sake of completeness. If NCM is extrem-
al then H(M|N)=In[M:N}=In[M:P}+In{P:N] and H(P|N)<ln[P:N], H(M|P)<
In[M:P),H(M|N)SH(M|P)+H(P|N) forces HM|P)=In[M:P], H(P|N)=In[P:N].
Conversely, assume NCP, PCM are extremal. Let e€ P be a Jones projection for the
inclusion NC P, i.e., such that Ex(e)=[P:N]™'1. Let also f €eMe be a Jones projection
for the inclusion ePeCeMe, i.e., f<e, Eepe(f)=Ep(f)=[eMe:ePele=[M:P]~le. We
then have

En(f)=ENEp(f)=[M:P|*Exn(e)=[M:P]"}[P:N]"1.

Let Ny={e}'NN, then Nje=ePe. Since PCM satisfies the extremality condi-
tion, it follows that ePeCeMe is still extremal so that E(cpeyneme(f)=[M:P] te.
It follows that there exist unitary elements uy,...,u, €ePe such that ||(1/n) 3 u; ful—
[M:P] e||s<e1. Since ePe=N,e we can find unitaries v; € N; such that v;e=u;. Thus
v;f=u;f and we get

”%Ev,-fv’{—[M:P]"le

<E€j.
2

Since N C P is also extremal, there exist unitaries w,, ..., wn € N such that

1 * -1
HEijewj——[P:N] 1
i

< €3.
2

Altogether we get:

1 *, % -1
%;jwjv,-fv,-wj—[M:N] 1

<E1+[M:P]_1€2
2

letting €1 2 —0 it follows that N C M is extremal. O
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1.3. The standard invariant

Throughout this subsection NCM will be an inclusion of type II; factors with finite
index.

1.3.1. The tower of factors ([J2]). Denote by My=(M, N), e1=en, the projection
and the II; factor obtained from the basic construction for NCM. Since NCM is an
[M:N)~1-Markov inclusion and M; is a type II; factor, we get [M;:M]=[M:N]<oo,
and one can repeat this construction to get My={(M;, M), ez=ep. More generally, by
iterating the construction, one gets an increasing sequence of type II; factors, called
the Jones tower of factors, NCMCM,C..., with projections e, e, ..., so that M; ,C
M;C®+1 M, is the basic construction for M;_; CM;, for each i>1 (where M_;=N,
My=M). Thus, {M;,e;}i>_, satisfy:

(i) [Mi:M;_1|=[M:N]=1(e;)!, i21.

(ii) eiy1z€ir1=En,_, (z)eir1, € M;. In particular e;1€ieir1=[M:N]te;y. Also,
eieir1e;=[M:N]~'e;. Moreover M;1=sp Mie;11 M;.

(i) ej41€M]_;NM;4;. In particular [e;,e;]=0, for [i—j|>2, and e, €141, ..., €k €
M|_,NM;, 1<ILk.

(iv) 7(zeit+1)=[M:N]"1r(z), zeM;.

1.3.2. The tunnel of factors ([PiPol], [GHJ], [Po5]). Similarly, by iterating the
downward basic construction, one obtains a decreasing sequence of type II; factors,
M>DNDON;DN;3D..., called e tunnel of factors, with corresponding projections ep,e_1,
€-2,.... They satisfy the conditions:

(i) [Ni:Niz1]=[M:N}=7(e-i)71, i20.

(it'") e_ire_i=En,,,(T)e_;, TEN;, i>0. Moreover Ni=spN;j1e_i1N;41, i2-1.

(iii") e_;€N{  NN;_1, €g,e_1,...,e_xEN; ,NM.

(iv') T(ze—;)=[M:N|"17(z), zeN,.

As mentioned in 1.2.4, each step of this construction is unique up to conjugacy by
a unitary element in the last chosen subfactor. If we iterate this construction say up to
Ni, we call it a choice of the tunnel up to k, and denote it M D0 N D Ny D...D-k+!
Ni_1 D Np. Note that this means that the projection e_ (€ Nk—1), which would uniquely
determine one more subfactor, Ny 1 ={e_x}' NN, has not been chosen.

Note that by the product rule 1.2.1 (c) ([J2]) for indices of consecutive inclusions one
has [My:M;)=[M:N]*~!<oo and similarly for the inclusions in the tunnel. Moreover by
[PiPo2], any of the inclusions M; C M1 C Mitak, of Niyopr CNiyr CN;, i2-1, k21, is a
basic construction, with the appropriate Jones projection obtained from the e;’s (resp.
e—;’s), by taking a certain scalar multiple of the word of maximal length in these ¢;’s.

Also, note that, if M D% ND®-1...D%+1 Nj_; DNy is a choice of the tunnel up to
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k then there exists a unique representation of the tower up to k+1 on L%(M,7), NC
McCer M, C...C%+ M} .1, such that JMN,;’JM=M,'+1, Jue—iviJm=eir1, 1<i<k (cf. 3.1
in [Po5]).

1.3.3. Duality ([PiPol]). If {m,}, is an orthonormal basis of M), over Mj and

€i41 €42

€k41
M CMpy1 C Mo C...CM; C My C Miyo

is part of the tower, then {\*~*m;ex42€x+3 ... €;42}; is an orthonormal basis of M, over
M;.y and if a=[M:N] then

U((iL'.,-s)) = Z Mr€r+2 ... €;42Tpg€iy2 ... ek+2m;
r,8
defines an isomorphism from the a-amplification of M; onto M, carrying the a-ampli-
fication of the whole sequence of inclusions My C Mp41C...C M;, i.e., MZ C...C M§, onto
the sequence of inclusions My42C...C Mi42, ie., o(MP?)=M12, i<I<k.

1.3.4. The higher relative commutants. Since [Mj:M;]<oo and [N;:Nx]<oo, the
relative commutants M;NM; and N/NNg, k>1>1, are all finite dimensional algebras.
They satisfy the commuting square condition, namely:

(i) EninnEn.=Enian,, 12k

(ii) EM]’.nM,,EM.-=EMJ'.nM.-, k>i.

Since the Jones tower of factors is canonical, the sequence of finite dimensional alge-
bras of higher relative commutants {M]NM;};>;>0 is canonically associated to NCM.

The tunnel is not canonical, yet the 7-preserving isomorphism class of the corre-
sponding sequence of higher relative commutants {N;NN;}x>i>-1 does not depend on
the choice of the tunnel, but just on the initial inclusion NC M ([Po5]).

Moreover, by the last remark in 1.2.1 (see 3.1 in {Po5]), it follows that there exists
a canonical antiisomorphism between (the isomorphism classes of) the two sequences
{NiNN}epiz-1 and {M]NM;};»ixo, carrying N NN; onto Mj,;NMp,1 and e_; onto
ei+2. This antiisomorphism is trace preserving if and only if N CM is extremal ([PiPo2],
[Po5]).

1.3.5. The standard, or principal graph and matriz of NCM ([J3], [GHJ]). The
sequence of consecutive inclusions of higher relative commutants of M, C=M'NMC
M'NM,C..., is completely determined by just one pointed matrix over Z,, called the
standard matriz of NCM and denoted I'n pm=(aki)rek,icL, ko€ K, a fact that was first
noted by Jones in early 1983. Alternatively, I'v s can also be regarded as a bipartite
(pointed) graph, with the points of the sets K as even vertices and the set L as odd vertices
and having ay; edges from k to [. This graph is called the standard (or the principal)

13945202 Acta Mathematica 172. Imprimé le 28 juin 1994
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graph of NC M and it is still denoted by 'y, » with the vertex ko€ K sometimes denoted
by *. For the proof of the next properties of 'y, p see [Po5).

The matrix I is always irreducible, equivalently, as a graph, I is connected. Follow-
ing [Ocl], [GHJ), if T is finite we say that N CM has finite depth.

Let Ko={ko}, Li={l€L|ax#0, for some k€ K;_ } and K;={k€ K | ax; #0, for some
IGL,'}, 121, so that K=Ui K;, L=U‘~ L;.

Then the sets of irreducible components of M'NMj; and Na;_ ;N M (resp. M'NMz;41
and Nj;NM) are identified with K; (resp. L;) and the embeddings K;CK;;; by the
correspondence between the centers of M’'NM>; and M’'NMpz;,2 given by

Z(M'ani) 5 z+— unique 2; € Z(M'ani.,.z), with eg;4221 =€3:422

and similarly for L;CL;y;.

With these conventions, the embedding matrix for M'NM,; C M'NM2;4, is Tk, and
for M'N Mo 1 CM'NMs; 5 it is Pt|L'..

The corresponding inclusions of higher relative commutants in the tunnel are given
by T for the identification of N]_;NM with M’'NM; given by the canonical antiisomor-
phism.

Note that by duality (1.3.3) we have I'y p =T Ny, Nai_y =T Myi_1,Ms;» 121, but that
in general I'y » may not be equal to 'y, v (see e.g. [Oc2], [Kal]). The next result
relates the norm of I'y ps with the size of the higher relative commutants.

PROPOSITION.
I~ ml? = lim (dim M'NM,)Y/"™
n—oo
= lim (dim N'NM,)*" = [|ITam,pm, ||> < [M : N].
n—00

Proof. Let T=Cn,mTY 5. If &k, denotes the vector 6x,=(8kko)kek then, by the
definition of T'n a7, dim(M'NMjz,)=||T™6k, |2, the norm being in I?(K). We thus get
lim sup,, . (dim(M’NMz,))Y/2" <lim, | T™||//*=||T||. Conversely, let £>0 and let no
be large enough such that Ko={k€ K |k is connected with ko after at most ng steps on
T=TnN,mT% p} satisfies || T, || >||T|| ¢, where T, =6k, T |, is the restriction (on both
sides) of T to Ky. Since T"8,>(Tk, )"0k, and since by the Perron-Frobenius theorem
we have limn—.co [[(Tico)"drollY " =Ty l, We get liminfo |76, I3/ > [ Tico 2 T} —.
Since ¢ is arbitrary, liminf,.llT”&koué/"?HTll. We thus get ||T||?limsupn||T"6ko||;/"?
lim inf, || T8, ||/ 2 IT||, so that ||T||=limp_co(dim M’NMa,)!/2". Also, we have

I = Bm(dim(M’' N M3a))"/*" < lim inf(dim(M’ N Mzn 1))/ ™+
< lim sup(dim(M’ N Mzpn11))Y/ ™! < im(dim(M’ N Mag42))/ ™+ = || T2
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This shows that lim,(dim(M'NM,))/"=||T||=|IT~,m||?>. The inequalities

IT|1? = lim(dim(M’ N Mazn))*/*+!
< limninf(dim(N'ﬁ]\lzft))1/"“-1
< limsup(dim(N'N M)+
<lim sup(dim(N] NMpn)) /™!

< lim sup(dim(M' N My, 42)) /" = || T
n

show that lim, (dim(N’NM,))!/*=||T|| as well. Since dim M’'NM, <[M,:M]=[M:N]"
(see e.g. [J1]), by the first part we get [|T}|<[M:N]. a

COROLLARY. Assume NCM, QCP are inclusions of type 11, factors with the same
indez and such that diim(M'NMy;)<dim(P'NPy;), Vi. Then [Ty mlj<|ITq,pll-

Proof. Trivial by the proposition. (]

Finally note that the standard graph Ty, » of N;CM is equal to Ty 5, T% ..., the
product taking alternatively I'v ar, (F'n,ap)%, i+1 times in total. So for ¢ odd I'y;,n is
indexed by K on both sides and for i even it is by K to the left and L to the right. As
a pointed graph, I'y, ps has the same ko€ K (or #) as 'y .

While I' completely determines the algebras M'NM;, NJNM and their consecutive
inclusions, up to isomorphism, the trace will be determined by:

1.3.6. The standard eigenvector. There exist unique vectors §=(sp)rek, t=(t)1eL
such that the trace of the minimal projections of the kth summand of M’'NMp; (respec-
tively the Ith summand of M'NMy;,,) is given by [M:N]~%s; (resp. [M:N]~*t;).

Similarly, for N/NM, the traces are described by the vectors 5'=(s} )ik &=
(thier-

One has the relations:

(i) Tf=s, Ti"'=35",

(i) I'*s=[M:N]i, I'*5'=[M:N]5";
so that, for I'T*, I'*T" they are actually eigenvectors:

(iii) T*T{=[M:N]i, I'Tf' =[M:N}i";

(iv) IT*5=[M:N]5, IT*3'=[M:N]5".

The vectors 5, 57, §, i’ are called the standard eigenvectors (or weights) of T.

The fact that § may be different from 5’ corresponds to the case when the anti-
isomorphism from N/NM to M'NM;,, is not trace preserving, i.e., when NCM is not
extremal.
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When NCM is extremal we have, §=5", {=t’ and (sx)rcx has a remarkable sig-
nificance: if k€ K; and p is a minimal projection in the kth summand of M'NMy; (or
N};_1NM) then [pMa;p: Mp]|=s2=[pMp:Na;_1p].

We will now show that even if NCM is not extremal the local indices will still give
an eigenvector for I'y I}y 5, corresponding to a remarkable eigenvalue.

PROPOSITION. (i) If k€K then for any i for which k€ K; and any minimal projec-
tion p (resp. p') in the kth summand of M'NMy; (resp. Ny;_;NM) we have:

[pMaip: Mp)=[p'Mp' : Noi_1p'} = si.5},.

(i") Ifl€L then for any j for which l€L; and any minimal projection q (resp. q')
in the lth summand of M'NMy;4, (resp. Nj;NM) we have

[@Maiv19: Mq)=[q'Mq : Nyig'| =[M : NJtit;.
(ii) If vi=(skst)?, w=([M:Nt;t;)'/? and a=(}_ ax, w)? then we have
1/2

Ti=a'/?3, TI'v=al/?q,

I"Ti=o#, IT'i=ab.

(iii) a coincides with the minimal index of NCM, i.e., a=Ind E‘]X;f <[M:N] and
a=[M:N] if and only if NCM is extremal.

(i) ITwml?<e

Proof. (i) and (i') follow trivially from Jones’ formula 1.2.5 (i), since 7'(p)=7(p'),
m(g)=7(¢).

Direct computation shows that Eﬁ;M is the unique expectation of M; onto
M such that Eﬁ:’ii}’M(q) are proportional to [gMg:Mq]*/2, for ge M'NM; and that
(Ind Eﬁ;M )1/2 is the factor of proportionality (see [Hi]). Thus, since > Emin(@)=1,
one has

(Ind EpisM)/2 = 3" (Ind EXLM)Y2ER M (g)

min min min

q
= leMig: Mg * =) aggur=0'’?,
q 1

where the sums are taken over a partition of 1 with minimal projections of M'NM;.

The same computation for N C M shows that Ind Eﬁ’nN=a as well (since [qMiq:Mgl=

[¢M¢':Nq'|=u2). By [L3] EM-M_pMiM  pMoMia pq pMe

M
min min min min |M/an defines a
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trace 7m on U, (M'0OM;) with Tm(g? ) =a  1m(¢? 1), Tm(®@F*?)=a 17 (p¥), for
k€K;, leL; and ¢7**',p**+2 p2i minimal projections in the corresponding direct sum-
mands of M'NMa;11, M'NMy;, M'NMy; 2. It follows by (i) and (i') that 7, (p2')=
o g, T (@7 )= "1 /2y; and we get (ii) by the relations 3, ap17m (g2 ) =7m (p3),
T, Qi T (022) =T (g2Y).

To show (iv), note that

v, w1 = Hm({(T w, e T, a0) " 6o 610)) ™
<lm(((CT*)"6k,, 8))"/" = lim((dk,, (CT*)"5))*/

=lm((6x,,"7)) /" =a. O

We call the vectors U=(vg)kek, @=(u)icL in the above proposition the standard
vectors of even (resp. odd) local indices in the Jones tower.

Remark. Note that the proofs of 1.3.5 and of (iii) in the above proposition show that
the following holds true: if A is an arbitrary irreducible symmetric matrix operator over N
with nonnegative entries and §€12(N) is a nonnegative vector 0, then lim, ||A"8]|}/ "=
[l A}l and || A}|<inf{a>0|there exists ¥=(vk)ren, vk =0 not all zero, such that Av=ad'}.

Note that in the finite depth case |y m||2=[M:N] ([J3]), NCM follows auto-

- =7

matically extremal and the vector §=5’ coincides with the unique Perron—Frobenius
eigenvector of I'T? normalized so that sx, =1 (see e.g. [Po5]). In particular, § is uniquely
determined once I'y ps is known. The extremality property is in fact a consequence of

the relation ||T'y,a||2=[M:N]. Indeed we have:
CoROLLARY. (i) If |[Tn m||2=[M:N] then NCM is extremal.
(ii) If NCM is not extremal, then:

lim sup s, =lim sup s}, =lim sup t; = lim sup ¢| = oco.
k k ! 1

Proof. (i) If NCM is not extremal then a=Ind Eﬁi’flw<[M:N]. But o> ||T %

(ii) If {sx} is bounded then there exists ¢’ >0 such that ¢/5<# (since ¥’ is bounded
from below by vg,=1). Let c=sup{c’>0|c'§<7}. Then v—c5 >0 and we have

0 <ITH7—c8)=ai—[M: N]c§=a(7—([M : N]/a)c3).

Since [M:N]/a>1 when NCM is not extremal, this contradicts the choice of c.
Similarly, we get that &,%,% are unbounded. O
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Further remarks. (1) Since v =(sis})'/2, w=({M:N]t;t})}/? are local indices, by
Jones’ theorem vy, 4; <2 implies they are of the form 2 cos 7 /n. This observation can be
used to exclude a number of matrices from being standard matrices of inclusions.

(2) The result in ([PiPol, 1.7]) translates into the following property of (I'x,ap, §): if
N'NM=C (equivalently Lo={lp}) then card{k€ K} ]|s,=1}=card{k€ K, | axi#0 only if
I=lp}=card Np,(M) /U(M)=card G, where N(M)"=MxG. In particular, if n denotes
this number then [M:N]/n<4 implies [M:N]/n=4cos? n/n, for some n>3. Also, 1.9 in
[PiPol] translates into the following: if for some k in K, we have sy <n+1 then ax o <n.
In particular, if sx <2 then az,=1.

(3) If T is an infinite irreducible matrix with an eigenvector é=(éx)rek, & >0,
lim & =0, IT*¢=[M:NJ¢, then ' cannot be the standard matrix of NCM, with NCM
extremal. Indeed, because otherwise 'T*s=[M:N]s and s > sk,, Vk, so that there exists
¢>0 such that s—c£2>0 and s; —c£ =0 for at least one k, but only finitely many. Since
I'T* is irreducible, (I'T*)"(s—c£) has only positive entries for large n and is a multiple of
s—cé, a contradiction.

Note that the same argument shows that if I'T* admits an eigenvector ¢ with
lim supy, €k <&k, then (T, kg) cannot be a standard matrix for a subfactor of index ||[']|.

1.3.7. The standard invariant (or the paragroup) of NCM. The standard graph
(Tw,m,*) with its standard weight 3 do not completely determine the “tableau”
of all higher relative commutants and of all their inclusions {M]NM;};>i>0 (or
{N{NN;}i>j>~1) with their corresponding traces, but just the part {M'NM;}; (resp.
{N;nM}).

Since by the last part of 1.3.4 (see also [PiP02]) the isomorphism 1.3.3 (see [PiPol],
[PiPo2]) from the {M:N]-amplification of M; to M;,,, implements an isomorphism from
M]ani onto MJ’ +2NM; 9, it follows that in fact all the information is contained in the
sequence of consecutive inclusions {M;NM; CM'NM;}i>;.

We will call the trace preserving isomorphism class of the sequence of canonical
commuting squares

C=MnM c MnM; C MNM, C..C MnNM C
U U U
C=M{nM; C M{NM; C ..C MnNM; C
the opposite standard invariant of NCM and denote it g;:}j M-
We will call the trace preserving isomorphism class of the sequence of canonical
commuting sequences
C=MnNnM Cc NNM C NNM C..C NNM C
U U U
C=N'nN Cc N\NN cC..cCc NNN cC
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the standard invariant of NCM and denote it Gy, ar. If N°CM? is another inclusion,
then an isomorphism between Gy, m and Gyo o means a trace preserving isomorphism of
U(N/NM) onto J(NY'NMP) carrying N;AM onto N¥NM° and NjNN onto NY'NN®,
V4. Similarly for antiisomorphisms. Note that in the case NCM is extremal, Gy ar is
antiisomorphic to Gy ), and also antiisomorphic to Gyor,mer ([P05]).
In the case NCM has finite depth, Gn M, g;’,;j am 8re uniquely determined by just

one commuting square:

M'nMio C M’nM,‘O+1

U U
MinM;,, C MiNM; 4

with ig large enough (e.g. ip>card K). Note that if io>card K then such a commuting
square is nondegenerate and [M:N]~!-Markov, the rest of the higher relative commu-
tants in Gy, a resulting from the basic construction. A finite dimensional nondegenerate
Markov commuting square which is isomorphic to such a commuting square of higher
relative commutants is called a standard commuting square.

In general, the commuting square condition and the standard matrix describing the
inclusions, are not however sufficient to characterize Gy . In the finite depth case an
axiomatization for Gy » was given in [Oc2] who calls it in this case the paragroup of
NCM and uses Connes’ correspondences (or bimodule) multiplicative structure ([C6],
[Po6]) to describe it.

Ocneanu’s idea is to regard Gy »r as the (tensor) category with 2 objects {N, M}
and with the morphisms given by all Q—P correspondences H, with Q, P€{N, M}, that
are contained in a correspondence generated (multiplicatively) by L?(M),

HC L2(M)§>L2(M)§L2(M) ., Pie{N,M}

(only P;=N are of course sufficient). Also, each H is regarded with a weight assigned to
it, which is given by (dimg, p #)/2, the dimension of  as defined in [Po6]. The principal
part of the fusion rule matrix of this category coincides with the standard graph I'y as
and the above weights with the standard vectors of Iy as.

Following [Oc2], when regarded in this equivalent way Gn a will be called the para-
group of NCM.

Note that the invariant Gy, p cannot distinguish one from another the amplifications
of NCM, more precisely, Gy pr=Gna Mo, g?{M=gffa,Ma, for any a>0, where N*C M*
is defined as N@ M, xn(C)C M @M, «»(C) for a=n and as a reduced of such an inclusion
by a projection of trace a/n if n—1<a<n, n>1. This fact is trivial by the definitions.
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1.4. Core and model inclusions

The standard invariant of an inclusion gives rise to a natural model inclusion of hyperfinite
type II; algebras that we will now describe.

1.4.1. Definitions. Let M =W;, the closure being taken in the weak topology
given by the unique trace on |J, Mi. My is thus a type II; factor, called the enveloping
algebra of NCM.

Then the (isomorphism class of the) inclusion of algebras M{NMe CM'NMy is
called the opposite model of NC M. The algebras M]NMu,, M'NM, are not factors in
general. Since {e;};>3C M]{NMu, they are always of type II, and they are clearly approx-
imately finite dimensional (i.e., hyperfinite). The opposite model is uniquely determined
by g?\;fM-

If {Ni}£>1 is a choice of a tunnel, then the inclusion

s=UN{AN) < UIN{nM) = R

is called the core associated to {Ni}x. By 1.3.5, the isomorphism class of SC R depends
only on NCM. It is called the standard part (or model) of NCM and it is denoted
NstC M=, NS*CM* need not be factors but they are hyperfinite of type II;. The
standard model with its trace is uniquely determined by Gy .

In case NCM is extremal, the standard model is antiisomorphic to the opposite
model (cf. 1.3.5).

Note that if NCM has finite depth then all the algebras N®¢, M®, M{NM,
M’'NMy follow factors and [M:N]=|Tn,um||? (cf. [Po5], [J3]). Also, NCM is then nec-
essarily extremal (cf. [Po5] or 1.3.6 above). In fact even N**C M, M{NM. CM'NMy
follow extremal. Indeed, since these two inclusions are antiisomorphic (by the extremal-
ity of NCM), we only need to prove the extremality of N5t C M. But the traces of the
minimal central projections of Nj,_;NM are given by &, =5-(Al'n,mT 7)™k, By the
Perron-Frobenius theorem, as n tends to oo, &, has the entries tending to a multiple of
§-5=(8?)rcx- Similarly for N}, . ,NN. Using Example 2.2.2 in [PiPo3] it follows by 2.7
in [PiPo3| that

im En;  ~nyn(wy,,,nm)(€0) =Al,

n—00

showing that Nt C M*t is extremal.

1.4.2. Ergodicity of the core and of T'n a. The factorality of M® (or M'NMy) is
strongly related to the ergodic properties of the weighted graph (I, u, §).
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PROPOSITION. The following conditions are equivalent:

(i) M®t is a factor.

(ii) Up to a scalar multiple, 5 is the unique 5-bounded eigenvector of Tn,mTY pr
corresponding to the eigenvalue [M:N].

(i) If P=)\sI‘N,MI‘§V,Ms‘1, s being the diagonal operator given by § and A=
[M:N]71, then limy, ||P"6x, — P"0k,l|l1 =0, VK1 €K.

Proof. (ii) and (iii) are known to be equivalent from the general theory of Markov
chains (cf. e.g. [Or] and [HaG]). If p1, p2 € Nj;NM are minimal projections in the k; resp.
k2 summands of Ny; _;NM then the traces of (p;p} )ik, corresponding to the summand
k (e Ky,), are given by the vector A*s(TT*)*~%§, . Thus (iii) is equivalent to the fact
that the traces of (p;jp})ick, tend to be proportional to the numbers si; (which are
proportional to the traces of p;). This is the same as saying that

ICtny, M (pi)—T(p)1fl1 =0,
which is the same as saying that N}, _;NM tends to a factor. Thus (iii) < (i). d

Definition. If NCM satisfies the equivalent conditions of the preceding proposition
then we say that NCM has ergodic core. Also, in case (I'y a, §) satisfies condition (iii)
we say that I'y as is ergodic. Note that in the case NCM is extremal these conditions
are also equivalent to the factoriality of M'NM,, (by trace preserving antiisomorphism).
This fact is actually true in general, but the proof is longer and will not be given here.

Typically, subfactors with small index have ergodic I'y,p: we already pointed this
out in 1.3.6 for 'y a finite, thus for [M:N]<4. From the previous considerations we can
deduce here some further ergodical properties.

COROLLARY. (i) If NCM is extremal then N3*C M is weakly irreducible, i.e.,
Z(NS)NZ(M**)=C. Thus Z(N*®), Z(M*) are either both atomic or both diffuse.

(ii) If T'n,m coincides with A outside a finite set (of vertices) then Iy ar is er-
godic.

(iii) If [M:N]<2++/5 then Ty p is ergodic.

Proof. (i) If Z(Ns)NZ(M®)#C then by antiisomorphism we get Z(M{NMy)N
Z(M'NMy)#C, thus Z((M{NMo)' NMx)NZ(M'NMyx) NMy)#C. Thus, there ex-
ists p¢C1, [p, M]=0=[p, M;] and [p,e;]=0, Vi>2. But vN(M,e;,€3,...)=M and
Z(My)=C1, a contradiction.

(ii) Follows from the previous proposition and [HaG].

(iii) By [GHJ] all matrices Ty pr of norm <2++/5 satisfy (ii), are finite, or are of
the form Agﬁ,)ono,oo or T 00,00 ((GHJ]). But I‘N,MzAg,) implies N'NM#C so that if
[M:N]<2+4+v/5 then N'NM=C? and N CM is necessarily locally trivial, thus ergodic.
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Since ||T2,00,00/|12=24V5, if [M:N]}<2+v/5 and T'n,p=T2,00,00 then [M:N]=2+5
50 that T3 00,00(T2,00,00):8=(2+V5)5. But an easy computation shows that there is a
unique § satisfying this. (Note that in fact this unique § is square summable so by
Further remarks (3) at 1.3.6, T3 00,00 cannot in fact be the graph of a subfactor of index
2++/5.) 0

1.4.3. Basic construction for cores and models. If SCR is a core corresponding to
some tunnel M D% N DO¢-1 N; D¢-2 N, D ... then the Jones projection e; € M; implements
the trace preserving conditional expectation of R onto S and vN(R,e;)=sp Re;R, so
that sp ReyR=(R, e;)=(R, e,)=(R, S). Moreover (R, e:)={J,(N[NM;) and RC(R, e;)
is the core of M CM; corresponding to the tunnel M; DM DNDN;D.... Furthermore,
if S;={eo}'NN then 5, =WIW) and S CS is the core of N; CN associated to the
tunnel NON;D....

All this follows trivially once we observe that if {m;}; is an orthonormal basis of
vN{eo,e_1,...} (CR) over vN{e_;,e_2,...} (CS) then it is also an orthonormal basis of
R over S and of M over N. Thus

UvinM) >_mserEu (—[’g(N,'c_n'M' 1) =3_mjer (_Lk)(N_,;nM))
= Z mje R Csp Re R.
Jj

Also, since ) m;m}=[M:N], (N*CM*)=(SCR) are [M:N]~!-Markov inclusions.

As for the opposite model M]NMy CM'NMu, if NCM is extremal, then M]{NMy
CM'NMy CN'NM,, is antiisomorphic to SCRC(R, e1) with the antiisomorphism car-
rying e; into ey, and we have N'N My =(M'NMy, 1) =(M'NMy, M{N M) in the sense
of 1.1.2. But when NCM is not extremal e; does not implement the trace preserving
expectation of M'NMy, onto MjNM.

1.4.4. Stability of model inclusions. If >0 and N*CM* is the a-amplification
of NCM then we have ((N®)**C(M®)*)~(N*CM*) and (M} NMSCM*NMg )~
(M{NMx CM'NMy,). In fact we already pointed out the existence of such isomorphisms
for the corresponding standard invariants (or paragroups) in 1.3.7.

In particular it follows that (Mgt , C M5i)~(N®*CM**) and that (Mj;, NMyC
MMMy )~(M{NMx CM'NM,,), if i€Z, where M;=N_;_; for j<0. Indeed, this is a
consequence of 1.3.3 and the above.

In case N, M®* are factors it is easy to see that the inclusion N CM** is stable
(cf. e.g. [Bil], [Po8]). One can in fact easily obtain the same result even if N*¢, M are
not factors:
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PROPOSITION. If N#M and P is a copy of the hyperfinite type I1; factor, or of an
nxn matriz algebra then (N**CM**)~(N*@PCM*QP) and (M{NMx CM'NM, )~
(M{NMx)@PC(M'NMy)®P). Moreover, if MD% ND®-1N1D... is a choice of the
tunnel, S={J,(N;NM) CU,(N/NM) =R is the corresponding core and P°C S is a hyper-
finite factor (finite or infinite dimensional) so that R®=(P°)'NR, S°=(P°)'NS satisfy
R®P°~R°VPO=R, S'QP°~S0VvP0=S, then S°C R® is also a core, i.e., there exists
a choice of the tunnel MDNDNYDND>... so that

R'= LkJ((N,?)’ﬁM), 0= l,.cJ((N;?)'ﬂN)-

Proof. Both inclusions N**CM** and M]{NMe CM'NMy have the property that
given any finite number of elements z;, ..., z, in M*® (resp. M'NM,,) there exist unitary
elements u,v€ N** (resp. M{NMou) such that uv=—vu and

w,zill2 <&, llv,zi]llz<e, 1<ign.

But then, following McDuff’s original argument ([McD}), exactly like in the factorial
case proved in [Bil], by using the central trace instead of the scalar trace in all the
estimates, one gets a sequence of commuting 2 x 2 matrix subalgebras {P;}; in N®* (resp.
in M{NM,) such that pY
part of the statement.

To prove the last part, let 0:(S®P C R®P)~(SCR) be an isomorphism and denote
e y=0(e_x®1), SY=0(Sk®P), where So=S5, Si=U,(N/NN¢)=RNNs.

Note first that Sy={e—k+1}'NSk_1. Indeed, Sx=NiNSk_1=({e—k+1}' NNk-1)N
Sk—1={e_k+1}'NSk—1. Then denote NP={e®, ., }'NNL_,, k=1, where N{=No=N.
Since €2, €SPCNY and since Eyo (e2;,,)=Ess (€244,)=A1 (by the commuting

VkPk=®kPk satisfies the requirements, proving the first

square relations), it follows recursively that M D% N 52N 95... is a choice of the tunnel.
Also, we have that (N2)'NM C(S2)'NR, by the definitions.

Since e is in vN{eg,e~1, ...}, and €3 in vN{e3,e?,, ...}, which are subfactors of R,
both eg, € have scalar central trace in R so that they are conjugate in R, say by a unitary
vp, i.e. eJ=voeguo. Then, like in [PiPol], uo=XA"'Es(voeo)€S is a unitary element
satisfying uoeoud=e, uoS1u§=S7. One obtains in this way recursively some unitary
elements u; € S such that Ad u;u;—1 ... uo(e;)=e?, 0<j<i, Adu; ... uo(NjNM)=N)NM,
Adu; ... uo(S;NR)=SYNR.

It follows that if we denote

a0 :U(S;NR) —» U((S]YNR), oo(z)=lim Adu; ... uo(),
J j *
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then o0¢ is a trace preserving onto isomorphism and ao(U]-(NJ’-ﬂM )) =U;(N?YnM).
Since

U(S;NR)=R, U(N;NM)=R,

J J

we have

7

U((SY)NR)=0(R®1) and U((NJ‘?)’OM) C U((S;?)’OR) =0(R®1).

Thus

VY2 M) = oo (UTNG ) = a0(R) = oo(US;0R)) = U R = o (Ra1). O

Note that the proof of the above proposition actually shows the following:

COROLLARY. If QCP is isomorphic to N**C M®* and if it is represented in NCM
(i.e., as a commuting square), then there exists a choice of a tunnel MDNDN;D... such
that the corresponding core coincides with QCP.

Remark. Note that if N°t, M5t are factors then N5t C M** has the so called generating
property ([Pob]), meaning that there exists a choice of the tunnel M*DNS*ON5tD...
such that (N§')’'NM® ”M®, in particular (N®*CM=t)5*=N*tC M** (i.e., the standard
part of N*CM®* coincides with that of NCM). Indeed, this is trivial since if M D
ND...is a choice of a tunnel for NCM then N;NM C(N5t)NM*®* (with the appropriate
identifications). The same is true for M]NMy CM'NMy.

2. Representation theory for subfactors

Let NCM be an inclusion of type II; factors with finite index. Unlike the single von
Neumann algebras M for which the representations are simply normal embeddings of the
given algebra M in other von Neumann algebras, e.g. in B(H) for some Hilbert space
‘H, in the case of inclusions of finite index N C M one also has to take into account the
expectation Ey. Since the morphisms between inclusions are the commuting squares,
it is natural to define a representation as an embedding of NCM into an inclusion of
arbitrary von Neumann algebras A'C M with a conditional expectation £: M—N which
is compatible with £y when restricted to M. A nondegeneracy condition similar to
1.1.5 has to be imposed as well. Equivalently we only want to consider representations of
N CM into inclusions N'C M with the same [PiPol] index as NCM. Finally, for a finer
theory, one needs to have some compatibility between the higher relative commutants of
NCM and NCM.
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2.1. Definitions and motivations

2.1.1. Definition. Let NCM be arbitrary von Neumann algebras with £&: M—N a
normal faithful conditional expectation of M onto . Assume NCN, M CM and that
E|pm=En. We then say that NCM is embedded or is represented in (N CM), or that

N E M
U U
N c M

is a commuting square. The embedding (or representation, or commuting square) is

nondegenerate if span MN =M.

This condition is quite natural to impose. As we will later see, it is equivalent to
the fact that the [PiPol] index of N'CéM is equal to that of NC M. In other words, we
only consider representations within the category of inclusions with the same index as
the given one.

Representation theories are considered in order to get more insight into the structure
of the represented objects. In our case, for the structure and classification problems for
inclusions of subfactors N C M, we are interested in getting finite dimensional subalgebras
QCP in NCM that make a commuting square with N C M and that approximate some
given set of finitely many elements in M. The next example shows why such inner
structure is reflected into our representation theory.

2.1.2. PROPOSITION. Let QCP be subalgebras in NCM satisfying the commuting
square condition EpEx=ENEp=Egq. If this commuting square is nondegenerate (1.1.4)
and if

&
N Cc M
U U
N Cc M
is its estension (1.1.4), where M=(M,e}f), N=(N,e})~(N,ef) and £=E<(£,4”QP)) is the

amplification of Ef, then it gives a nondegenerate representation of NCM and Ind £=
[M:N]. Morebver, if QC P are finite dimensional and T is its inclusion matriz, which we
assume irreducible, then the nondegeneracy of the commauting square is equivalent with
the condition ||T||>=[M:N]. Also, in this case, N CM are atomic von Neumann algebras
with inclusion matriz T (via the identification of the centers of Q and N, respectively P
and M).

Proof. If {m;} is an orthonormal basis of P over @} which is also a basis of M over N
then [m;,eM]=0 and 3" m;(sp Ne¥N)=sp Me¥N=sp 3 Mm e N=sp Me¥M, show-
ing by density that 3~ m;N =M. If QC P are finite dimensional then clearly M= (M, P)
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and N'=(N, Q) are atomic and since e¥MeM =Pe¥, eM Ne¥ =Qe}¥, the inclusion ma-
trix of NCM is the above T. If sp Pe¥P>1 then by [J2] we have |T|2=7(e}f)'=
[M:N]. The converse holds true by [PiPo3].

The equality Ind £=[M:N] will be proved later in this section for arbitrary non-
degenerate representations. A different argument works here as well:

By density and linearity, like in 2.1 of [PiPol], we only need to show that

My
E{Na) (5‘_, &izizlel ;) 22 iziels;,
iJ iJj

where A=[M:N}~!, z;€P, only finitely many nonzero. By 1.1.5 and the commuting
square condition, this amounts to (En(z:z}))>M((zix}))- But if the number of nonzero
z;'s is say n, then by [PiPol),

Ind En ®ipn = [M®Mpxn(C) : N® Myxa(C)] = [M : N|=Ind Ey,

thus the above inequality holds true, showing that Ind E((fv'!,bp)) <[M:N]. But if eg€M is

a Jones projection, then Eé%’&(e@:E},‘,’(eg):)\l, thus we have the equality. (]
2.1.3. PROPOSITION. An embedding of (NCM) in (N'CM) is nondegenerate if
and only if any orthonormal basis {m;}; of M over N is an orthonormal basis of M

over N, i.e., T=3, m;E(m;T), TEM.

Proof. Assume sp MN'=M and let {m;}; be an orthonormal basis of M over N.
If T=yX, with yc M, X €N, then y=3; m;En(m]y) so that yX=3 m;En(mjy)X=
Y miE(miyX)=3 m;E(m;T).

Taking linear combinations and weak closures it follows that =3 m;£(m;T) for
all Tesp MN =M.

The converse is trivial. O

2.2. Basic construction for representations

2.2.1. LEMMA. Let NCM be arbitrary von Neumann algebras with a normal faithful
conditional expectation £ and assume M has a finite orthonormal basis over N, ie,a
finite set {m;};CM such that T=) m;E(m;T), TEM.

Also assume Y m,-m}:)\‘ll, for some scalar \>0. Let M be represented normally
and faithfully on a Hilbert space, MCB(H), such that for some projection e; € B(H) we
have (cf. [T2]):

[el,N] =0
elTel =£(T)€1, TeM
spMetH="H.
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Then e, and My SVN(M, e;)=(MU{e1})" satisfy:
(a) Y mjeymi=1.
(b) M1={2 mil}jelm;flfl’,-,-efi/\ffj} and if TE M CM,; then

T= Z m;E(m;Tm;)eym;.

() &u(3; jmiTijerm;)=AY, . mT;;m; defines a normal faithful conditional ez-
pectation of M; onto M. This conditional ezpectation satisfies £ (ze1y)=Azy, for
z,y€EM, so that, in particular, it does not depend on the choice of {m;};.

(d) {*"imje1}; is an orthonormal basis of My over M, with respect to &, i.e.,
Ti=X"2 Y mjei&r(exm;Ty), for all Ty € M, and it satisfies Zj(/\‘lm,-el)(elm;)\"l)=
A7,

(€) The probabilistic index [PiPol] of &1 is equal to A7, i.e., £1(T)2 AT, TeEMy4
and X is the best constant for which the inequality holds, in fact £1(e1)=A1.

Moreover, if B is any von Neumann algebra containing M and a projection e} such
that [}, N']|=0, eiTei=E(T)e}, VV{ueju*|uclU(M)}=1 then vN(M,e}) is isomorphic
to My, by letting x—z, ze M, e;—e].

Proof. (a) follows from sp Me;H=M. The first part of (b) is trivial. Then, if
TeM we have T=T2mje1m}‘=2i,j mi€(m;Tm;)eym;. Clearly £&(M1)CM and if
T=3 m;f(m}Tm;)eym; €M then £;(T)=A Y miE(m;Tm;)m;=A3 Tm;m;=T.

(d) is trivial and the proof of (e) is identical to the proof of the similar statement
for finite algebras in [PiPol]. o

2.2.2. Definition. If N CEM satisfies the hypothesis of 2.2.1 then M C%*M; as con-
structed in 2.2.1 is called the eztension of N'C M. One also denotes M1 =(M, e;). This
construction is called the basic construction for N C°M. Since the new inclusion also
satisfies 2.2.1, one obtains recursively a whole tower of inclusions NCMCM;CM;C...
with M 1=(M;, ei1q) and Eip1: Miji =M, Ei1(Thei 1 T2)=AT1T2, T1 2EM,;.

2.2.3. LEMMA. Let £
N c M
U U
N c M

be a nondegenerate embedding. Then N CM satisfies the hypothesis of 2.2.1 and if
MCEM;=(M,e;) denotes the extension of NCEM then (M, el)d=°va(M, €1) is iso-
morphic to M;=(M,en) via the map z—z, €M, e; —en, and we have the nondegen-

erate embedding ¢
M E M
V) U

M c M
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e.g. sp MiM=M,, €| Ml:Eﬁ‘. More generally, by iterating the construction one gets
a tower of nondegenerate embeddings:

£ £
N EME M 2.
U U U
N ¢ M ¢ M C..
Proof. Trivial by 2.2.1. O

2.2.4. Definition. The nondegenerate embedding (or representation, or commuting

square) .

M C M
U J
M c M
is called the extension of
M c M
u U
N c M.

Its construction is called the basic construction.

The next result shows that any representation comes from a basic construction, in
other words that we can make the downward basic construction for representations, thus
getting from the initial A'C M both a tower and a tunnel of representations.

PROPOSITION. Let N CEM be a nondegenerate representation of NCM and eg€M
be a Jones projection and put Ny {eg}' NN, E_: NN by £_1(z) =M :N)E(eozen),
for zEN. Then £_; is a conditional ezpectation of N onto Ny, N1Cé-1 N is a nonde-
generate representation of {€0}) NN=N,CN and its extension is N CM, in particular
eoxeg=E_1(z)eg, TEN .

Proof. Let {m;} be an orthonormal basis of N over N;, so that {)\‘1/ 2mj€()} is a
basis of M over N (and thus of M over ). We want to show that >~ m;N; =N, with
Ni={eo}’NN. Assume there exists y€egNeg with £_,(y)=0. We then get £ (eom;y)el =
ereom}yer=EN (m;)€_1(y)e1=0, so that y=0, or otherwise Y mjeqN'#M.

Let us prove that [£_1(z), eo}=0, z€N. We have this if and only if

lesereqzeger 2, egea] =0,
because for ye M, yr—ye; is an isomorphism and because eze;egrege;ea=M2E_1(z)es.
But
eg(ezerepzeperer) = A(ezepreperex) = A(epzepeze;es)
= A2(egzeoez) = Meze1€0Ze0€2)

= (ege;e0zep€1€2)€D-
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Since for z€N;, clearly £_;(z)=z, we get by Tomiyama's theorem that £_; is a
conditional expectation of A onto N; and that epreo=E_1(z)eg, zEN, because

S(eoxeq -&.1 (IE)eo) =0

and the first part of the proof then shows that epzeq—&-1(x)eg=0. Finally, we have
Y. m;Ni=N if and only if 3" m N e0DNeo. But

ijN1€0=ij€oNeo= (ijeoN)eo = Meg DNeo. 0

COROLLARY. If NCEM is a representation of NC M then Ind £=Ind Ex=[M:N].

Proof. By 2.2.3 the extension of a representation has index [M:N], so the above
proposition applies. O

2.3. Smooth representations

2.3.1. Definition. The nondegenerate embedding (or representation, or commuting

square) .
N c M
u U
N c M

is smooth if N'NM D N'N M, for all k, equivalently, if and only if N'NM=N'NM;,
for all k. Note that in this case we have MiNM;DM/NMj, for all i<k, and in fact
M;an=M{an.

2.3.2. PROPOSITION. If

N & M

U U

N c M
s a smooth embedding then .

M C M

U U

M c M

s also a smooth embedding.

Proof. If ze M'NM}, then xe N'NM;CN'NM; and [z,m,]=0, for all j, where
{m;}; is an orthonormal basis of M over N. Thus z=\Y m;zm]} and we have for

14--945202 Acta Mathematica 172. Imprimé le 28 juin 1994
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TeM,
Te= Z T'mjzm; = Z m;E(m;Tm;)zm;
J iJ
= Z mxE(m;Tm;)m;
i’j
=Zm,~xZ£(m’;ij)m; =Zm,~xm:T=xT. O
i j i
2.3.3. Ezample. (a) Let
N c M
U U
Q c P
be a nondegenerate commuting square and assume N'NM; CQ'NPy, Vk. Then the rep-
resentation
N=(N,Q) C (M,P)=M
U U
N C M

is smooth. Indeed, if z€ N'NM; then z€ P, by hypothesis so that z commutes with
eAP'{"‘ =eM. Thus ze(NU{e¥})NMr=N"NM;.

The above hypothesis N'NM;. C Q' N Py, Vk, is fulfilled if for instance one takes QC P
to be a core associated to some tunnel for NCM. This class of smooth representations
will play an important role in the sequel.

(b) Let P be a type II; factor and G a discrete group with finitely many generators
g1,-,9n€G. Let 0:G—Aut P/Int P be a faithful G-kernel on P ([J1]). Let fp=id,
6;€Aut P, €6;=0(g;), 1<i<n. Let M?® d=efM,..H(C)®P and

N¢ d=ef{z 0,-(:1:)@6,'.'

=0

a:eP}cM",

where {e;;}: ; is a matrix unit of M,+1(C). For more on this example of subfactors see
5.1.5.

Let P be a von Neumann algebra that contains P and assume there exists a G-kernel
(not necessarily faithful) & on P with some automorphisms 6; representing &(g;) such that
0;|p=6;. Define M?=M,,1(C)®P and N?={3 ", 0;(X)®ei;| X €P}. Then N?c M?
is a smooth representation of N®C M?. To see this, note that the Jones tower and the
higher relative commutants for the inclusion A % M?® are constructed in the same way
as for N°C M? (see e.g. 5.1.5(4)). Conversely, if N'C*M is a smooth representation
for N® Cc M? then N'NMDN®NM?, in particular e;; EN'NM. Thus, if P~Neqo, then
6; q—gf(n+ 1)E(ep:-ei0) is easily seen to define an automorphism of PO P with 0;|p=0; and
that in fact (N'CM)~(N?cMf).
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Another important class of smooth representations is given by the embeddings sat-
isfying the following stronger condition.

2.3.4. Definition. A representation of NC M into N'CM is ezact if (M'NN)VM=
M. Note that if this condition is satisfied and P=M'NN, then My=PV My, k>-1.
This is because [M'NN, ex]=0, k>1, so that

M= (M, €1,€2,..., ek) = PV((M, €1,€2, ...y ek)).
But this implies N'NM;=N'NM,, Vk, so that the exact representations are smooth.

2.3.5. Ezample. Let NCM be an inclusion of finite depth and MDND...DNj, be
a choice of the tunnel up to k that reaches the depth. Thus Q=N.NNCN.NM=P
contains an orthonormal basis of NCM (cf. §1.3) so that by 2.1.2
N=(N,Q) C (M,Py=M

u u

N C M
is a nondegenerate representation. More than that, this representation is in fact exact
and thus smooth. More generally, we have the following:

PROPOSITION. Let NCM be an inclusion of finite index and assume there exists
a subalgebra BCN such that Q=B'NNCB'NM =P contains an orthonormal basis of
NCM (equivalently, (QC P) is nondegenerate in (NCM)). Then the representation
N=(N,Q) Cc (M,P)=M
U U
N C M

is ezact and in fact M'N\N'=JBJ, N=NVJBJ, M=MVJBJ, where B=P'NN>B.
Moreover, if P is an atomic algebra (e.g. finite dimensional), then this representa-
tion is atomic.

Proof. Note first that e’,{,’f implements the canonical conditional expectation £=
E((%bp)) of M=(M, P) onto N=(N, Q). Indeed, since (QC P) is nondegenerate in (N C
M), any orthonormal basis {£;}; of N over Q is an orthonormal basis of M over P.
Thus, the elements of M are of the form 2=}, ; &ipijee;, with p;; € P. But [e}, £]=0,
[eN el 1=0 so that eNael =3, ;& EL (pij)eMerel =E(z)e.

Thus {e¥¥}'NM=N and we have

M'ON =M n{e¥YnM=IMIn{eXd}YnIP'J
= J(({eMYNM)NP')J = J(NNP')J = JBJ.

Also, since BNM=B'NM=P, we have (MVJBJ)=J(B'NM) J=JP'J, so that
MVJBJ=M. m
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2.4. The standard representations

Roughly speaking, the standard representation of NCM is defined as the “smallest”
representation of NCM which, as a representation of M, contains the standard rep-
resentation of M as a direct summand. We will now give a constructive and rigorous
definition of it, and along the line provide a constructive way of getting all possible exact
representations of NC M.

Let NCM be an inclusion of type II; factors with finite index and let A=[M:N]~1.
Let P be another von Neumann algebra (in fact even a C*-algebra would do). Typically,
P will be M°P, the opposite algebra of M. Then the closure of NQP in M ®maxP
‘coincides with N ®max P (indeed, since given any cyclic representation 7, of N®P, the
representation .. gy gid €xtends it to all M @ nax P). We will simply denote this inclusion
by N9 PCM®P. We also have an expectation E=Ey ®id from M ®P onto NQP.

Let further (N®P)**CE""(M®P)** be the bidual of this inclusion. It will still sat-
isfy E**(z) > Az, z€(M®P)Y. Also =3 m;E**(m;-z), i.e., {m;} is an orthonormal
basis of (M®P)** over (NQP)**. Indeed, this is easily checked for z in the dense
*-subalgebra M ®P, by writing MQ®P=(sp NegN)®P (resp. M®P=(} m;N)®P),
eo €M being a Jones projection.

If pn is the maximal projection in N'N(N®P)** such that N, is a normal em-
bedding of N in (N®P)** then py also commutes with P so that py € Z(N®P)**).
Similarly, the analogue projection pas for (M ® P)** belongs to Z((M®P)**). Clearly
pmM<Pn. Also, if (2;);CN, |lz;]|<1, and (z;); converges weakly to z in N, then
{En(mjzimi)}; converges in N to Ex(mjzmy), for each k,l. Thus z; Y mipymy=
21 MuEN(m{zimy)pymy converges weakly to 3, , muEn(mizmi)pymi=z. This
shows that ) mgpym} is supported by py, thus m; commute with py so that py€
M'N(M®P)**, showing that py € Z((MQP)**). Next, if (z;); is in M and z;—zeM
then z;py=), me(En(mizi)pn)— Y meEn(miz)pn. Altogether this shows that
PNSPM as well, S0 PN =PM =Pror-

Now take gn,gm to be the atomic parts of (N®P)**, respectively (M ®P)**. By
[PoWa}, gy =qu. Indeed, if g€ (N ® P)** is an atom and (p;)ic; is a partition of the unity
with projections in ¢(M®P)**q then E**(p;)=a;q>Ap;. Thus card I<A™!, showing
that (N®P)' Ng(M ® P)**q is finite dimensional, and thus ¢(M ® P)**q is atomic. Thus
aMm =gn. Also, since E**(gar) 1 E**(z)qm is a normal faithful conditional expectation of
(M ®P)*qp onto (N®P)**q)s, we have that (N® P)**qxs is atomic so that gy <qn as
well, thus gy =gy =¢as-

Since we are particularly interested in studying inclusions of separable type II;
factors, in fact of separable hyperfinite factors, all that really matters is when each
simple summand of (M ® P)** in which M is normally embedded is separable (e.g. when
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P is a separable C*-algebra or when P is a separable von Neumann algebra and we only
take simple summands on which P is also normally embedded).

Note that by construction, NCM is represented in (N®P);* C(M®P);  and
since {m;}; is an orthonormal basis of (M®P);* over (N®P); . the representa-
tion is nondegenerate. This is the case also if we cut further with a projection ¢ in
Z((N®@P)*)NZ((M®P)**) which is under pyor. Furthermore, if NCMC** M, C... is

the Jones tower for N C M, then we have an associated tower of representations:

Et* E"
(N®P)* © (MeP); & (Mi®P); C
U U U
N - M - M C

where Ef*=(Ei®id)**.

Note that by construction we clearly have M’'gN(N®P)**¢D(1®P), so that all such
representations are exact and thus smooth.

Note also that Z{(NQ@P)*)INZ((M QO P)** )p.o.quc
algebra and that every atom in Z((M ® P)**pnor) is majorized by an atom (i.e., minimal
projection) in this common center.

is an atomic abelian von Neumann

2.4.1. Notation. We denote by N'* CEM® the inclusion of atomic algebras

PP, ... C PMEP) .

the sums being taken over all separable C*-algebras P (so that each atom in M* is a
B(H) with H separable). We denote the corresponding smooth representation of NCM
by

N & Me
U U
N ¢ M.

The next result describes this representation by an intrinsic universality property.

2.4.2. PROPOSITION. Let N'CEM be an inclusion of atomic von Neumann algebras

and assume £

N ¢ M
U U
N ¢ M

is a nondegenerate representation of NCM. Then this representation is equivalent to a
direct summand of the representation N* C M if and only if it is ezact.

Proof. Let P=M'NN. If NCM is a direct summand of N*C M, i.e.,  NCM)=
(NFC M) for some ge Z(N*)NZ(M¥), then PDP so that MVPDOVN(M, P)=M.
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Conversely, if PVM =M then we can simply take P=P, or if P is required to be a
direct sum of separable C*-algebras, then we can take dense parts of P. O

2.4.3. Definitions. N'* C M* is called the universal (exact) atomic representation of
NCM. If g€ Z(N*)NZ(M™) is the minimal projection majorizing the atom ¢ in Z(M*)
corresponding to the direct summand B(L*(M))CM*, then N* C M} is called the stan-
dard representation of NC M and it is denoted N®*C M®t. If N CEM is a representation
of NCM so that Z(N)NZ(M)=C]1, then the represenation is called weakly irreducible.

We see from all the above considerations that A'®* C M*® is exact (thus smooth) and
weakly irreducible.

Let K" (resp. L*) be a labeling of the minimal projections in Z(M?*) (resp. Z(N'*)).
Let A% pr=(axi)rek, iz« be the multiplicity matrix of the inclusion NtCM*. By the
inequality (see the considerations above), if B(K;), resp. B(H}), are the simple direct
summands of N'* resp. M¥ corresponding to the labels l€ L%, k€ K*, then

dim(B(K;)' NB(Hx)) S AL,

showing that ax;<A~!. Thus A is a matrix over Z,.

The matrix A}, ,, is called the universal (exact) matriz of the inclusion NCM and
can alternatively be regarded as a bipartite graph, called the universal graph of NC M.

Note that for each minimal projection ¢ in Z(N*)NZ(M*) the inclusion matrix of
N¥qC M*¥q corresponds to an irreducible direct summand of A} u and vice versa, each
irreducible part of A* corresponds to such a g.

To interpret all this more thoroughly in terms of Connes’ correspondences, let us
take in the above considerations P to be separable type II; factors and let rys € Z(M*),
rn€Z(N*) be the maximal central projections on which 1Q P is embedded normally
in M¥, resp. N*. Clearly ryy=ry=r. Note that any minimal central projection in
Z(M®)r (resp. Z(N*)r) corresponds to an irreducible M-P (resp. N-P) Connes cor-
respondence, as defined in [Po4]. Thus, if we still denote by K*, resp. L, the sets of
simple summands (or minimal central projections) of M®*r, resp. A'*r, then the matrix
A® (or the graph I'*) is just a generalized function, or correspondence, in the classical
sense of Hurwitz, between the sets K*, L*. In turn K* (resp. L*) can be regarded as
the set of all classes of irreducible M—P (resp. N-P) correspondences, in the operator
algebra sense of Connes.

Let K*f, resp. L*/, be the subsets of K“, resp. L*, corresponding to all classes of
irreducible M—P (resp. N-P) correspondences Hy (resp. K;) with finite index, i.e.,

dim s, p Hi % dim ps Hy dimp Hy, < o0,

dimy p K; & dimp K; dimy K; < oo.
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If spr € Z(M™) is the central projection corresponding to K%/ and sy€Z(N*) to L*f
then clearly sy <sy (since [M:N]<oo in the Jones sense). Let us show that in fact spr=
sn (see also [PoWa)). Let pe (N'NP’')qy, where gj is minimal in Z(M¥r), with M¥g,=
B(Hy), be so that dimy pHj-dimp pHi <0o. Then dimp Hi<oo and Q=P’ﬂB(Hk)/ is
a type II; factor with the properties NC M —Q, pe N'NQ, [pQp:Np]<oco, M'NQ=C.
Assume M'NB(Hy) is of type I1o,. Then N'NB(Hy) is also of type I, and Q' (=P) is
of type II; with (@) N(M'NB(H;))=C and pe(Q'Y N(N'NB(Hx)). But p(N'NB(Hx))p
has finite index over Q'p so that p is a finite projection in N'NB(H;). Since we have
(Q')'N(M’'NB(Hi))=C, the expected value of p on M'NB(Hy) (with respect to the trace
preserving expectation of N'NB(H;) onto M'NB(Hy)) is a nonzero scalar. This contra-
dicts the finiteness of p. Thus, M'NB(H;) is finite so that dimys Hy <oo. Altogether
this shows that sy <sps as well so that sy=sps.

2.4.4. Notation. We identify K*f (resp. L“f) with the set of isomorphism classes of
all irreducible M—P (resp. N-P) correspondences of finite index H (resp. K;). We put
M =@, gour B(Hi) and N*F =@, ;s B(K;). By the above proof we have N'*f c M¥f
is a unital inclusion and its multiplicity matrix is A';,f M the restriction of A% 5, to K uf
(or Lf). Note that ko (=+) is contained in K*7, so that A"** C M®* is a subrepresentation
of N*fc M¥f.

From this moment on, it is useful to adopt Connes’ philosophy of regarding isomor-
phism classes of (irreducible) correspondences alternatively either as (irreducible) bimod-
ules as above, or as isomorphism classes of (irreducible) embeddings (see e.g. [Po4]).

We denote by iy (resp. ji) the inclusion of M in Q=(P°?)' NB(Hx) (resp. of N in
(P°P)’NB(K;)), which have finite index by hypothesis (since k€ K“f, l€ L*f). We denote
by |ix| (resp. |ji|) the index of M in Q=(P°P)'NB(K,;)) equivalently |ix|=dimps,p Hs,
¥l =dim'N, p Ki. Since B(K;) has multiplicities ax; in B(Hy), it follows that the irreducible
correspondence j; appears with multipﬁcity ag in i;. Also, by Jones’ local index formula
[J2] (see 1.2.5) we have [Q:N]=>", anlji|/7o(p1) with p; a minimal projection in N'NQ
giving the irreducible inclusion j; (i.e., the bimodule K;). Also, by the product formula
for indices, [Q:N]=[Q:M][M:N]=[M:N]|ik|.

Now, if we assume N C M is extremal (see 1.2.6) then by 1.2.6 N CQ is also extremal
(since M CQ is) so that by [PiPol], |5i|/7o(pi)?=[Q:N]. Thus [Q:N]/?=|5|/2?/7o(m)
and we get that [M:N]"2[it|/2=[Q: N1Y2= (¥ awliul/7(p)) /1Q: N2 =X, aral ol /2.

Before stating the result that summarizes the main properties of this construction
let us observe that the M—M (resp. N~M) correspondences labeled by K*® (resp. L**)
are simply the irreducible inclusions of M (resp. N) in the Jones tower of higher rel-
ative commutants. To see this recall that the irreducible inclusions of M in M,, are
labeled by K, (resp. those of N in My, by L,), by their identification with M’'N My,
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via Jur, - Ju, , with the natural identification of K, (resp. L) as a subset of Ky +1 (resp.
Lp11) (cf. [Po5)). The corresponding bimodules are L2(pf Manpy, ) (resp. L?(gf* M2np},)),
with k€ K,, and p} a minimal projection in M'N Mz, in its kth summand (resp. leL,
and ¢ minimal in the /th summand of N'NM,,). Note that, as correspondences (i.e., as
either inclusions or bimodules), Hi=L*(pf Manp},) coincides with L2(pf* Mampj ), m2n
(and K;=L2(g]* Manp},) with L2(g]" Mampy ), m>n). Also, with all these identifications,
L, coincides with the set of irreducible N-M correspondences that are subcorrespon-
dences of an irreducible M—M correspondence labeled by K, and Ky is the set of
irreducible M~M correspondences in which some N-M correspondence in L, appears
as a subcorrespondence. Altogether we get:

2.4.5. THEOREM. (i) [|AY p|?<Ind EX:N <[M:N].

min
(ii) If 7=(vi)kexws and @=(w)cpus, with ve=|ix|!/? and w=|ji|'/?, then Ad=
al/2§, where a=Ind Enﬂﬂ;lN.

(iii) If we identify the set of simple summands of irreducible M, P correspondences
with L*, via the identification of M, with the [M:N)-amplification of N, i.e., of exMte;
with N'*, then A%y o, =(Alk p)t and AtT=a'/?d, with o as before.

(iv) If NCMCQ then A% 4 AYy o=A% - Also AA'T=ai and A’Ad=od.

(v) There is a natural identification of A%y y=(axi)kex=, €L with the transpose
of the standard matriz of NCM, T'% -

Proof. (iii) is clear once we observe that N'*CM*C** MY is the (algebraic) basic
construction (as defined in [Po5]) of N* CEM®U. The rest is clear, by the above consider-
ations, with (i) following from (iv) and 1.3.6 . O

2.4.6. Remarks. (a) The above construction will be of important use in some future
work. We just point out here that it provides a proper set up for a short proof of a recent
result of D. Bisch ([Bi3]), showing that if NCM CP are subfactors of finite index and
N CP has finite depth then both NCM and M CP have finite depth. Indeed, by the
above theorem, I'y,p is just the connected component of I'}; ,/I'y; p Which contains the
vertex * of I'ys p. If this is finite then the connected component of I'ys p containing *
is finite as well, thus M C P has finite depth. Also, we have the inclusions PC (P, M)C
(P, N) with the big inclusion having finite depth, as being the basic construction of N C P.
Thus, from the above we get that (P, M)C (P, N) has finite depth. But this inclusion is
an amplification of NCM (e.g. by [Ch]) so that N CM has finite depth as well.

(b) Finally, let us point out that if N CM has finite depth, if k is so that Nax—1 C...C
N C M reaches the depth, and if Q=N;,_;NNCNj,_,NM=P, then the representation
of NCM into NCM of Example 2.3.5 is equivalent to a reduced of the representa-
tion N*t C M=t, more precisely, there exists p€ M'NN®, with 7/(p)=[M:N]~* such that
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the representation of NCM into pN**pCpM®p is equivalent to its representation into
NcM.

3. Amenability for inclusions of type II; factors
3.1. Definitions and motivations

The concept of amenability was first introduced in the theory of groups, by a functional
analytical characterisation: A discrete group G is called amenable if it has a (left) in-
variant mean, i.e., a state € (I°°(Q))* such that p(,f)=¢(f), Vg€G, Vf€l*(G), where
of(R)=f(g7'h), h€G. In the quantum theory of von Neumann algebras, the analogue
of an invariant mean (and thus of amenability) is Connes’ concept of a hypertrace. If
M is a von Neumann factor and M CM then an M-hypertrace on the von Neumann
algebra M is a state ¢ on M such that p(zT)=p(Tz), VeeM, VT'€ M. Thus, a single
von Neumann algebra M is amenable if given any representation M CM, M has an
M-hypertrace.

In this section we will introduce the concept of amenability and strong amenability
for inclusions of (type II;) factors of finite index. Like in the group and single algebra
cases, this means defining the proper concept of invariant means (or hypertraces) for
NCM, which in this case, besides the usual hypertrace properties, will also have to be
compatible with certain Ey-related expectations.

3.1.1. Definition. Let NCM be an inclusion of finite type II; factors with finite

index. NCM is an amenable inclusion if given any smooth representation (or embedding)
of NCM

N & M
U U
N ¢ M

(ie., such that £|pr =EY, sp MN =M, and N'N M, =N'NM;), there exists an M-hyper-
trace ¢ on M satisfying o€ =¢. Such a state on M is called an (N CM)-hypertrace on
NCM. NCM is a strongly amenable inclusion if NC M is amenable and has ergodic
core (i.e., has ergodic 'y ar).

3.1.2. Definition. Let

P c M
U U
Q C N

be a nondegenerate commuting square of finite von Neumann subalgebras of the finite von

Neumann algebra M, i.e., ENf|p=E} and sp PN=M (cf. 1.1.4). Let 8=E((fv'{bp)) be the
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canonical conditional expectation of (M, P)=(M,eX) onto (N,Q)=(N,ef)~(N,e})C
(M,eM). Then NCM is amenable relative to QC P if there exists an (N C M)-hypertrace
on {N,Q)C{M, P).

Note that if we take N=M and P=Q then the amenability of (NCM) relative
to (QCP) reduces to the usual amenability of M relative to P, as defined in single
von Neumann algebra theory ([Po4]). In particular, if P=Q=C (and M=N) then this
reduces to the amenability of M, i.e., existence of hypertraces for M in its standard
representation on L%(M, ) (since (M, C)=B(L*(M,1))).

Note that in case N=M, the core is reduced to the scalars CC C and the amenability
of NC M reduces to the amenability of M. The same with strong amenability.

3.1.3. Ezamples. (a) Let NCM be a subfactor of finite index of the amenable
(thus hyperfinite [C3]) type II; factor M. Assume there exists an increasing sequence
of finite dimensional inclusions Q,,C P, in NCM, making nondegenerate commuting
squares and such that m_—.M (so that W=N t00). Let N=@,(N,Qn)C
@, (M, P,)=M and note that N C M is naturally represented into A'C M and that this
representation is atomic if Q,C P, are atomic (e.g. finite dimensional). Then ¢(X )d-—e-f
limn_quM,pn)(Xe%'), X €M, for w a free ultrafilter on N, is an (N C M)-hypertrace on
N CM. Indeed, if € P, and Y € M, then [} ,z]=0, for m>n, thus Tr(y p,,)(zY e} )=
Tr(u,p,.) (Y ze} ), so that ¢(zY)=¢(Y z), for z€,, Pn. Also ¢(z)=7(z), z€M, so that
by [C6] ¢(zY)=¢(Y ), VzeM, Y eM.

(b) If N°C M? is as in 2.3.3(b) (see also 5.1.5) for some faithful G-kernel on a type
II, factor P, then this inclusion is amenable if and only if the factor P is an amenable
algebra (i.e. hyperfinite by [C3]) and G is an amenable group. Indeed, by 2.3.3 (b) any
smooth representation of N® C M? is given by some inclusion PCP and an extension
of the G-kernel o on P to a G-kernel & on P. If P is amenable and G as well then
there exists a P-hypertrace ¢ on P such that ¢(64(X))=¢(X), X€P, g€G. But then ¢
extends trivially to an (V% C M?)-hypertrace on N/ 8 M0, The converse will be proved
later (in 5.1.5).

(¢) If QC P makes a nondegenerate commuting square in NCM and if there is a
partition of the unity in Q with central projections (g;)icr such that Ind(¢;:Q C¢; Ng;) <oo,
Vi€I, then N C M is amenable relative to QC P. Indeed, if the set I is finite, then Tr(ps, p)
is finite, so that its normalization gives the desired hypertrace. If I is infinite, one takes
a Banach limit of such hypertraces.

3.2. Basic properties

We first prove some simple properties of the notions we just introduced.
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3.2.1. PROPOSITION. If NCM 1is an amenable inclusion then:
(1) N and M are amenable.
(2) NCM is amenable relative to any inclusion QC P, where

N c M
U U
Q C P

is a nondegenerate commuling square.

Proof. (2) is trivial by the definitions and (1) follows from the fact that, for a chosen
core R, (M, R) is amenable, since it is the commutant of the hyperfinite algebra Jas RJ .
Thus there exists a conditional expectation of B(L?(M, 7)) onto {M, R) which composed
with the (N C M)-hypertrace on (M, R) gives an M-hypertrace on B(L%(M,1)). a

The next result shows that the existence of (N C M)-hypertraces is equivalent to the
existence of norm 1 projections onto (NCM).

3.2.2. PROPOSITION. Let NCM be an inclusion of finite von Neumann alge-
bras and N CM an inclusion of arbitrary von Neumann algebras with an ezpectation
EM—-N. Assume NCN, MCM and E|y=EY. There ezists an M -hypertrace ¢ on
M such that o=y if and only if there exists a conditional expectation : M— M such
that EY ®=®¢.

Proof. If such a & exists then p=7® is clearly an (N CM)-hypertrace on M.
Conversely if ¢ is an {N CM)-hypertrace on M then

M3T+——o(-T)e M*

gives a positive linear application ® from M into M* which takes 1 into the trace 7. By
the positivity of ® and by the faithfulness of 7 it follows that if 0<7'<1 then 0 ®(T) <,
so that ®(T') is a normal functional in M, and in fact ®(T") corresponds to the Radon-
Nikodym derivative of 7, ®(T)=7(-t), for some te M, 0<t<1. By identifying M with
its image in M, via Radon-Nikodym derivatives of 7, it follows that ® can be regarded
as an application from M onto M. @ is clearly an M-M bimodule map and leaves M
fixed. Thus it is a conditional expectation and we have

(E(T)) = ¢(-£(T)) =w(E(-E(T)))
=@(E(-)E(T)) = p(E(-)T) = (EN(-)T) = EN(2(T)) s
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3.2.3. PROPOSITION (Hereditarity). Let

P ¢ P C M
U U U
Q C @ C N

be nondegenerate commuting squares.

(i) If geQ is a projection with q,1—q of central support 1 in Q then gqNqCqMgq is
amenable relative to ¢qQQqCqPq if and only if NCM is amenable relative to QCP.

(ii) Assume that there exists an orthonormal basis (n;); of N over Q which is either
finite or so that Eq(nfn;)€Qo, Vi. Then NCM is amenable relative to QoC P, if and
only if NCM is amenable relative to QCP and QC P is amenable relative to Qo C Fo.

(iii) If p€ N is a nonzero projection then NCM is amenable if and only if pNpC
pMp is amenable. Also, if P is an nxn matriz algebra then NCM is amenable if and
only if N@ P°C M®P? is amenable.

(iv) NCM is amenable if and only if M C M, is amenable.

Proof. (i) If NCM is amenable relative to @ C P and  is the corresponding (N C M)-
hypertrace on (M, eM) then we have (¢Mq, gPq)~(qMq, eMq) C(M, P), so we may just
define 4 on (gMg,qPq) by p.(z)=7(g) (), z€(gMq,eMq) which will clearly be a
(gNqCqMq)-hypertrace.

Conversely, assume gNgCqMgq is amenable relative to ¢gQqCqPq. We claim that,
since the central support of ¢ in @ is one, there exists an orthonormal basis of N over
Q. (mi)i, such that [n;,g]=0. Indeed, just take (n}); to be an orthonormal basis of gNg
over ¢Qg and (n'); to be an orthonormal basis of (1—¢)N(1—g) over (1-¢)Q(1—¢q) and
define n;=7;+n;’. Thus

g(M, P)g= q{z nipijepn; | pij € P}q
i’j
= {Z nigpi;a(epa)n; | apija € qPq}
i’j

=(gMgq, e}q) = (¢gMq, qPq).

Thus, if ®; denotes a conditional expectation of {(gMgq,qPgq) onto gMgq satisfying the
commuting square condition 3.2.2, then ®, can be regarded as defined on ¢(M, P)q.
Since the support of g in Q is 1, there exists an amplification of ®; to a conditional
expectation ® of (M, P) onto M, satisfying ®(vgzquw*)=v®,(qzq)w*, for all z€(M, P},
v, WEQR, w*w,v*v<q (see for example [St]). Then ® clearly satisfies 3.2.3 and thus
N CM is amenable relative to QCP.
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(ii) If NCM is amenable relative to Qo C Pp and if g is an (N CM)-hypertrace on
(M, Po) then w=o|(p,py is clearly an (N CM)-hypertrace on (M, P). If (1;); is finite
then po(ef; )#0 and so the normalization of wolp ) will be a (QC P)-hypertrace on

(Q eP°>C<P eP(,)) (Q, 6P0>C(P en,))
Next assume that (7;); is such that Eg(n}n;)€Qo, for all i. Since eX(M, Py)eM =

(P, Po)e¥, ep{N,Qo)e} =(Q, Qo)e}, by denoting
P= {Z??:‘P«‘jegfi;‘ pi; € P} =(M, P),
P ={}:mp?]e¥n; ?jéPo},
Q= {Z migizepn; | gij € Q} =(N,Q),
Qo= {Z mgsepn; | 45 € Qo},

it follows that ~

P, ¢ P c (MP)
U U U
Qo C @ C (N,Qo)

is an amplification of

Py~PyeM < PeM~P c (P, P)~eM{M, Py)e¥
U U U
Qo~Qoe¥ C Qe¥~Q C (Q,Qo)~e¥ (M, Qo)e¥

Then the (NCM)-hypertrace ¢o on (M, Py} is clearly a (QCP) hypertrace, so
QCP is amenable relative to QoCP). By (i) it follows that QCP is amenable rela-
tive to Qo C Py.

Conversely, if Q@ C P is amenable relative to Q¢ C Py and N C M is amenable relative to
Q CP then, again by (i), QC P is amenable relative to QOCIBO, so there exist conditional
expectations 11: (M, Py) —P= (M, P) and v9: (M, P)— M so that ®=130¢, satisfies the
appropriate commuting square.

(iii) If NC M is amenable and

N C M
U U
N®P® ¢ M®P°

is a smooth embedding for N® P°C M ® P® then it will be also a smooth embedding for
N C M so there exists an (N C M )-hypertrace ¢ on M. But then averaging ¢ over U(P?)
gives a hypertrace for N® P°C M@ P°. Conversely if N@ P°C M ® PP is amenable and
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(NC M) is smoothly embedded in NCM then N@ P°C M® P° is smoothly embedded
in N® P°C M®P° and any (N® P°C M ® P°)-hypertrace on M® PP gives an (NCM)-
hypertrace when restricted to M.

If peN is a projection and pNpCpMp is amenable then let v; € N be partial isome-
tries such that v}v; <p, 3_ v,v7 =1 and let (N C M) be smoothly embedded into NCM. In
particular pNpC pMp is smoothly embedded into pNpCpMp. Let ¢g be a (pNpCpMp)-
hypertrace on pMp and define p(z)=7(p))_; po(v;Tv;) on M. Then ¢ is trivially an
(N CM)-hypertrace on M. Thus NCM follows amenable. The converse implication
follows by first amplifying with some P° and by using the above first part.

(iv) By (iii) and by using that NCM is the reduced of the inclusion M;CM;
([PiPol)) it follows that it is sufficient to prove one implication.

Assume M C M, is amenable. Let (N C M) be smoothly embedded into N'C M and
let (M CM,) be smoothly embedded in M CM; by the usual extension (see §1.4). Then
there exists an (M C M, )-hypertrace ¢; on M. Define ¢ on M by p=¢p1|sr. Note that
for Te M we have

o(T)=1(T) = A"2p1(E1(Ter)) = A" o1 (Ter) = A o1 (er Tey)
=A"1p1(E(T)er) = A" p1(E1(E(T)er)) = p1(E(T)) = p(E(T)).

Also, if ze M then

o(zT)=2"1p(e12T) = A" 1p1(Terz) = A 1 (E1(Ter))
=¢1(Tz) = p(Tx). o

3.2.4. PROPOSITION. If NCM is amenable relative to one of its cores (respectively
has ergodic core) then:

(1) NrcM is amenable relative to one of its cores (respectively has ergodic core) for
any k and any choice of the tunnel up to k.

(i) pNpCpMp is amenable relative to one of its cores (respectively has ergodic core),
for any projection peN.

Proof. (i) By conjugating if necessary by a unitary element in N, we may as-
sume NCM is amenable relative to a core SCR so that the tunnel {NP};>1 with
U((N?YNM)=R coincides with N; up to k, i.e., N’=N; for I<k. Let ®:(M,e¥)=
(M, R)— M be the conditional expectation of 3.2.2, satisfying ®(T)C N for T€(N,e¥).
But ®(e_;)=e_;, 1<i<k—1, e_; being the Jones projections of the tunnel. Since
®((Ni,e¥))CP((N,e¥))CN and since [(Nk,e}),e_;]=0, 1<i<k—1, it follows that
[®({Nk,e¥)),e—:]=0, so that ®((Ni,e¥))C Ni.
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{(ii) By 3.2.3, if NCM is amenable relative to the core SCR and if P is a finite
subfactor of SC N such that pe P and such that S=S°® P, R=R°® P, with S°C R? still
a core inclusion (cf. §1.4), then pNpCpMp is amenable relative to S°pC R%p. O

4. Approximation of amenable inclusions by higher relative commutants

The structure theorem for amenable groups is Fglner’s characterisation as those groups
that locally behave like finite permutations (approximately). The operator algebra ana-
logue of the Fglner condition for amenable factors was discovered by Connes ([C3]). The
structure theorem for amenable factors is a much more precise result though, stating that
a factor is amenable if and only if it is hyperfinite, i.e., approximable in the strong opera-
tor topology by its finite dimensional subalgebras. This is Connes’ fundamental theorem
([C3]), which in fact, in its original proof, does not use much the Fglner condition. The
later proof of this result in [Po10], though, uses in a crucial way the Fglner condition
of [C3] to obtain the finite dimensional approximation in a rather direct way. In this
section we will first prove a Fglner-type characterisation of the amenability for inclusions,
in the same spirit as Connes’ single algebra case. Then we will use the same techniques
as in [Po10] to show that amenable inclusions can be approximated by the finite dimen-
sional algebras of higher relative commutants. This finite dimensional approximation of
amenable inclusions by higher relative commutants, resulting into a complete classifica-
tion of such inclusions by their standard invariant, is the main technical result of this
paper. It can be regarded as the analogue of Connes’ theorem to the case of inclusions
of algebras.

4.1. Statement of results

We now state the main theorems of this section:

4.1.1. THEOREM. Let NCM, N#M be type I1; factors with finite indez. Consider
the following conditions:

(i) NCM is amenable.

(ii) NCM is amenable relative to any of its cores.

(iif) NCM is amenable relative to one of its cores.

(iv) NCM satisfies the Folner condition in (N,eM)C(M,e¥), where SCR is one
of the cores of NCM, i.e., Ve>0 and all unitary elements uy,...,un €M, there exists a
finite projection pe (N, eM) such that ||lu,pu} —pll2 1 <e||pll2,T-

(v) NCM can be locally approximated by higher relative commutants, i.e., Ve>0,
Yxy,...,2n €M, Im and a continuation of the tunnel up to m, MDNDN;D...DNy,, with
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a projection s€ N, NN such that

Ills, z:llz <elisl2,

| Esn:, nms(sTi8) —szisll2 < ells]|2-

(vi) Ve>0, Vz1,...,2, €M, 3m and a continuation of the tunnel, MDNDN1D...D
NpD..., with a projection so€N! NN, a projection fo€ NmNR of scalar central trace
in Z(NnNR) and a central projection zo€ Z(RNN), where R=J(N,N\M), such that
s=spfo satisfies:

s, z:]ll2 <ellsll2,
|Eon: nms(szis)—szis||2 <e€lls]l2,

lls0—zoll2 < ellsoll2-

Then we have (i) = (ii) = (iil) & (iv) & (v) © (vi).

4.1.2. THEOREM. Let NCM, N#M, be type I1; factors with finite index. Then
the following conditions are equivalent:

(i) NCM is strongly amenable.

(ii) NCM is amenable relative to one of its cores and it has ergodic core.

(iii) NCM can be globally approzimated by higher relative commutants, i.e., Ve>0,
Vzq,...,Ln EM, there exist an m and a continuation of the tunnel up tom, MDODND..D
N,., such that

|En: nm(zi)—zillz <e, Vi

If in addition M is separable then they are also equivalent to:
(iv) NCM has the generating property, i.e., there exists a tunnel MDNDN;D...
such that W:M .
(v) NCM is isomorphic to its standard part N**C M** (as defined in 1.3.7).
(vi) (a) M is amenable;
(b) M satisfies the bicommutant condition in My, i.e., (M'NMu) NMoo=M.

Our purpose in this section is to prove these theorems. More precisely we will prove
(iii) ¢ (iv) of 4.1.1 in §4.2, (iv) & (v) & (iv) of 4.1.1 in §4.3, then (ii) = (iv) of 4.1.2 in
§4.4 and (iv) = (iii) = (vi) = (i) of 4.1.2 in §4.5. The implications (i) = (ii) = (iii) of 4.1.1
and (i) = (ii), (iv) = (v) of 4.1.2 are of course trivial. We mention that the implication
(iii) = (i) of 4.1.1, which would make all the conditions in 4.1.1 equivalent is also true,

but it will be proved elsewhere.
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4.2. A Fglner type condition: proof of (iii) < (iv) in Theorem 4.1.1

From the (N C M)-hypertraces we will obtain now vector subspaces of M which are finite
dimensional relative to the core, make appropriate commuting squares with NCM and
are almost invariant to a given finite set of elements in M. This will be our Fglner type
condition for inclusions, in the spirit of Connes’ single algebra case ([C3]).

4.2.1. THEOREM. N CM is amenable relative to Q C P if and only if given any finite

set of unitary elements in M, uy, ..., Uy, and any €>0, there ezists a finite projection p
in (N,e¥) such that
llwipu; = pll2,m <ellpliz, -

Proof. Let ¢ denote an (N CM)-hypertrace on M1 =(M, P). Let also E=E((]I:,{’c;):
M;=(M, P)—(N,Q) be the canonical conditional expectation satisfying E(eM)=e¥,
E(x)=E5(w), for zeP.

Step 1 (Day’s trick). Let

L={E()) %) 9] -u)=9(-); .., Y(up-un) —9(-)) | a state in My, }.

Then £ is a bounded convex set in (M;,)"t!. Since the states ¥ €M, are o(M;, M,)
dense in M7 it follows that the o((AS7)™*1, (M1)™*?) closure £* of L contains any (n+1)-
tuple (p(E(-))—¢(-), o(ui uy) —@(+), -, @(ur - un) —p(-)) with ¢ a state in M7. In par-
ticular £* contains (po(E(-)) ~po(-), po(u -uy)=@o(-)s -y Po(us “n)—0(-))=(0, .., 0),
o being the (NCM)-hypertrace. But since (0,...0) is in (M;.)"*! and the dual of
(My,)™*1 is (My)™*! it follows that the o((My,)"+?, (M;)"+?) closure of £ in (Mj,)"H!
is equal to the norm closure of £ and thus that (0, ..., 0) is norm adherent to £. It follows
that given any §>0 there exists some element b in the dense subspace (M;NL (M, Tr))+
of L'(My, Tr)+ such that Tr(b)=1 and such that

| Te(E())~Tr(-b) < 36,
| Te((uf w0 ~Tx(B)l| < 36, 1<k<n,

Thus we get:

| Te(- B() ~Tx(-5)] < 36,
| Te(ugbui) - Te()l < 36, 1<k<n,

so that

E®)—bll1,x < 36,
Nugbug—bll, <36, 1<k<n.

15945202 Acta Mathematica 172. Imprimé le 28 juin 1994
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By replacing b with E(b) in the second set of inequalities, we get an element by=
E(b)eN1=(N,e¥), bp>0, Tr(by)=1, satisfying

“’U.kbo'u;-—bo"l,'pr<6, ISkSn.

Step 2 (Powers—Stgrmer’s inequality). Let a=b(1)/ 2e(N, e¥). By the Powers-Stgrmer
inequality and Step 1 we have:

llugaug —all3 1 < lurbour —boll, 1 < 6 =6llall3 -

If we denote ||(z1, ..., Zn)ll2,n =(T lzkllZ )/2, for z1,..., 2, €M, and if we put
a=(a,...,a), a=(uy, ..., un)€(My)", then we get

|aaa® —ali3,.. <éllal?,..

Step 3 (Connes’ trick). By 1.1 in [C1] there exists a probability measure space
(X, p) with two functions h,k€L>(X, u) such that given any Borel functions f,g on
R., continuous at 0 and vanishing at 0, we have

|| f(@aa*)—g(@)|13,. = | F(R)—g(k)II3-
Step 4 (Connes-Namioka’s trick). We then have
"E 81/2 oo ('i:l‘a‘i:l".‘)_E‘31/2 ) (a’)ng ~ds
0 [ ) [s1/2,00) ,
8>
= ”Esl/z,w)(h)_E[sl/z,oo)(k)”g ds
(

8>0

= [ 1Bl ()= By () s
$>0

= [ ([ o4 =t (P dic)) s
>0 X

= [ ([ o)~ xte e (D) d) )
X >0

- /X I1?(2)— k2 (2)| dpa(z) = |12 — 2

< |h—kl2llh+ k|2 < 2/[@aE" —all2,~ 1|2~

<2l =26 [ Bipn (@) .
>

]

Thus, there exists some s>0 such that p=FE;1/2 o,)(a) and Gpi=0E,/2 )(8)d=
Eig1/2 o) (1a0*) satisfy the inequality

lapa* —pllz,~ < 26"2|1Bll2,~-
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But
E[sx/z’w)(a, @)= (E[suz,w)(a), ey E[sl/Z,oo)(a))

so that if we define p=FEj,1/2 ) (a) then p is a finite projection in (N,e}f) and
lugput —pllz <26 *nlplla, e, 1<k<n.

Thus, if we take § so that 26'/?2n<e then we are done.
Conversely now, let (U;);c; be the family of all finite sets of unitaries in M. For
each i let p; be a finite projection in (N, e¥) such that
N 1
llupiw” —pill2,m < mllpllzm, u€l;.

Let w be a free ultrafilter on I and put ¢o(T)=lim,, Tr(Tp;)/Tr(p:). Then ¢o is
clearly a (N C M)-hypertrace. g

We can now prove (iii) < (iv) of Theorem 2.1.4, which for convenience we restate
here:

4.2.2. THEOREM. NCM is amenable relative to one of its cores if and only if given
any €>0 and any finite set of unitary elements uy, ..., u, in M there exists a core SCR
for NCM and a finite projection p in (N, eM) such that

luspu; —pllz e <ellplle, e, 1<i<m.

Moreover, the core SCR and the projection p can be chosen such that the value of
the generalized trace of (N,e}) on the projection p is an integer multiple of a central
progection. Thus one can write p=Y_ p; with p; projections such that pi~eMz for all i
and some common central projection z€ Z(R).

Proof. The first part is just a particular case of the previous theorem.
By the first part of the theorem there exists a finite projection p; in (N,e¥) such

that

1
lluipru; —pill2, e < meupl |2, Tx-

By the stability of the core it follows that given any nxn matrix subalgebra P in
S there exists another choice of the tunnel {N2},, such that S°={J((NQ)'NN), R°=
U((N2YNM) satisfies R=R°VP=R°®P, S=S°VP=8°QP. Note that Z((N,e¥})=
Z({N,eM,)) and that if C Tr(n,ery, CTr¢ Noe¥,) denote the generalized central traces on
(N,eM) respectively (N, eM) then

CTr(yem(p1)= n?C Tr(y cary (p1)-
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More generally
—n2 M M
C’I‘I‘(N,ellt:o)(l') =n CTE['(N,CI;{)("E), Yz e (N, €n ) C (N,CRO).

Let 2;=C Trn eMo)(pl). Given any ko there exists n such that if zp is the spec-
"R
tral projection of z; corresponding to [ko+1,00) then ||p1 —p120l|2,1r <(1/8m)e||p2oll2, x-
Then we still have:

1
llwi(p120)u; —Pr20ll2,x < %6”17120”2,1&-

Write zp as a sum of central projections zg=z'+2z2+...+2!, 2°€ Z((N,eM)) such
that zp21— Y ¢;2° <6 for some scalars ¢; >ko+1 (by spectral decomposition of zp21). It
follows that we have

D i (pr20)u} —p120)2* 13 2 = lluj (Pr20)u} —pr20li3 7o

1
1 2 1 2 .
< (me) ol = (5°) S lrew)=

It follows that for some i we have
llwj(p12°)u; —p12* 2,1 < 3elPr2 |2, V5

Moreover C Tr(p;2¢)=C Tr(p; )z =2,2* and 0< 212 —¢;2' <6, ¢; > ko+1. Now since
(M, R®) is of type II it follows that there exists a finite projection p’ € (NN, e} such that
C Tr(p')=noz* where ng is the integer part of c;.

Since noz* <z < 212'=C Tr(p; 2*) it follows that p’ is majorized by pzt. Let p<p12*
be so that p/ ~p. We thus get ||p12* —p||3 1, <(1+6) Tr(z’e};) so that we have the estimate

llwjpul —pll2, o < 2((1+68) Tr(z'e¥0)) /2 + Le|Ip12* |21
<2((1+6) Tr(z'eX0)) /2 +e((146) Tr(2'e}o)) > + Lellpllay, V5.

Since ||pl3 1, =m0 Tr(2%e}p ), it follows that if ng (and thus ko) and é are chosen such
that 2((146)/n0)*/2+&((146)/no)*/2< e then we get

lw;pu; —pll2,m <ellpllz,m

and C Tr(p)=noz*, where no is an integer and z* is a central projection of (N, e},). Then
z=Jpz'Jy and p satisfy the requirements in the last part of the theorem. ]
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4.2.3. COROLLARY. Let NCM be an amenable inclusion. Given any finite set of
unitary elements Uy in M and any >0, there exists a continuation of the tunnel up to
some m, MDNDN;D..DNy, and a finite set of elements {z;}1<igcn in N such that:

(1) Enynm(ziz;)=0if with f a central projection of Nj,N\N satisfying ||f —z|l2<
el fllz for some central projection z€ Z(S) where SCR is the core associated to some
continuation of the tunnel { Ny cigm-

(2) 2n7(f)-2%, ; | Enynm(@ivz;)|If <ent(f) for all velly.

Moreover, if in addition NCM has ergodic core then the tunnel {Ni}i<kgm and
{zi}1<ixn CN can be chosen so that:

(1) Eninm(ziz;)=bij-

(2) 2n—2i,j ||EN;nnM(.’L':U$j)||%<€n, vEUp.

Proof. Let SCR be the core and pe (N, e¥) be the finite projection given by 4.2.2,
such that

lupu® —pll2, <ellpll2,mx, u€Uo,

and such that p=}_ p; for some projections p; with p; ~e¥z for some projection z€ Z(S5)
and all j.

In particular p; are all cyclic projections so there exist {1,...,§n€L2(N, 7) such
that p;=[&R)] (the orthogonal projection onto &R). By replacing if necessary ¢; by
£,(£:¢,)7Y/? we may assume EM(£7¢;)=z for all i. By the mutual orthogonality of p;
we also have EM(£1¢,)=0 if i#j. Moreover p;=[¢; R]=¢,eM¢} so that, p=Y" £,eM¢;r and
EM(£1¢;)=6ij2, equivalently e¥¢ ¢;eM =6;;2e¥.

Let {Ny}x>1 be the choice of the tunnel such that R=J,(N.NM), S=J, (N NN)=
RNN. Since NyNMCR, En;nn(§7€;)=0, for all k,i#j. Moreover by the definition of
Tr we have for all veldy:

”’U(Z 51'611\245:)”* _Zfie% i i

2, T

—2Z’I‘r(§,eR ;)= 22'&({163 fvEjeRE v

=2 Z Tr(eMeréed )—2 Z Tr(ex( ;v*gi)e%(ffvﬁj)ef{)

~2Zﬂ(E%(£§ ¥)- Z"ﬁ(Eé‘{( 70" &) ER(E v€))ek)

%3

=2n7(z)-2)_ | EX(&vE)3-
i’j
Thus we get
2n7(2)-2) _ || EY(& ;)13 <ent(2).

i!j
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Since N;, "M 1R and |EY, z(z)~Ef{(z)ll2—0, z€M, for m large enough we ob-
tain a projection f’€ Z(N! NN) such that ||z— f'|l2<é||f'||2 and such that we still have
for all veldy:

anr(f)=2 ) I\ EN, ane(&vEs)II3 <ent(f).
i

Now each &;€L%(N, ) can be approximated arbitrarily well by some z}=zlf'€N,
¢, —xl|, <6}, 1<i<n, with 6} chosen small independently of all the choices before,
e.g. Nj,NM, etc. Taking z,=z}f En; nm(z}*zl) ™ /2f'€N and fi=En;nm(ziz,)€
N!.NN, we will still have ||&; —z,|l2<61, ||f'— filla<81|lf'|| with &, depending on &}
and 6;—0 as 61 —0. By the Gram-Schmidt orthogonalization method one can then
find z3' €N such that Ey; num(z3!*21)=0 and ||€;—x3'|| <63, with 63 depending on &,
61, but so that 6} —0 as 61 —0. Again, since N,NM is finite dimensional, by taking
za=23' f'En: nm(3'z3) "2 f €N we still have ||€; —22||2 <62, with §,—0 as §'—0,
but also En: am(232,)=0, En; nm(z325)=f2€N,,NN. Recursively, we obtain this way
some elements x4, ..., 2, € N such that

En; nm(TiTi) =65 15,
with fr,<foo1 <. <AKS in NLON, [fa=Fll2<|FNl, |€i—zill2<8:, 1<i<n, with
8;,—0 as 6] —0.

But since N/ N M is finite dimensional, the | - ||2 topology on N;, NM coincides with
the weak operator topology and since z; —§; in the norm || - || implies En: np(2}vz;)—
En: nm(€}v€;) in the weak operator topology (by the Cauchy-Schwartz inequality), it
follows that |[En; aam(zivz;)l|la— | Eny.nm (6] vE5)II3 for all vello, so that for 6] small
enough we will still have, for f=f,, and z; replaced by z;f=z; f,, the estimates:

2n7(£)—2 ) | Ensam (@i vz;)|3 <ent(f),
i’j
En; nm(zizi)=6i5f,
lz—£llz <ellz]|2-
In the ergodic core case by the previous theorem it follows that we can choose all
the &€ L?(N, 1) such that z=E¥(£7¢,)=1, i.e.,
ER({:EJ)=6U’ lsiajsn’

and then the first part of the proof gives the m and the ;€N such that

En: nm(zizi)=6ij,

2n—2 | Enyam(eivz;)|; <en. U
6.3
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4.3. Local approximation: proof of (iv) & (v) < (vi) of Theorem 4.1.1

We will use now the Rohlin type theorem in A.1 to translate the Fglner conditions in §4.2
into local approximation by higher relative commutants. Here the term “local” means
under a projection (typically of very small trace) which is almost invariant to the given
finite set of elements. This way we will prove the equivalence of the conditions (iv), (v),
(vi) of Theorem 4.1.1. For convenience we restate them here.

4.3.1. THEOREM. Let NCM be an inclusion with N2M. Assume NCM satisfies
the Fglner condition relative to one of its cores. If Y CM is a finite set of elements and
€>0, then there exist a continuation of the tunnel up to some m, MDNDN;D...DNp,
and a projection s€ N),\N such that

iy slllz <elisllz, yeY,
N Esnr nnnys(sys) —syslla <ellsliz, y€Y.

Also, there ezist an m, a continuation of the tunnel MDOND...DNpyD... and pro-
jections fo€ N;, NN, so€NyNR, 20€Z(S), where R={J(N;NM), S=RNN, such that
if s=s0fo then we have

Ny, slll2 <ellsllz,
NEsne nms(sys)—syslla <ellsll, ye€Y,
| fo—zoll2 < €ll foll2-

If in addition NCM has ergodic core then we may take fo=29=1 (s0 that s=s¢€
N,.NR).

Conversely, if either of these local approzimation properties holds true then NCM
satisfies the Falner condition relative to any of its cores.

Proof. By writing each y as a linear combination of unitary elements we see that
we may assume y€Y are all unitary elements. By 4.2.3 there exist some mp=1, a
choice of the tunnel MDNDN{’D...DN,?,O, elements x,,...,, €N and projections fe€
Z((N2,)NN), z€ Z(R°NN), where R®=|J({N?)'NM), such that

I f —zllz <&l fll2,
Eng, yom(ziz;)=6iif, 1<i,j<n,

2n7(£)=2 3 1B vy, yraa(@iya;) I3 < henr(f).
i’j
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By A.1, given any 6§ (independently, at this point, on all elements chosen before, in
particular on ||z,||) there exists a projection g€ N3, such that

leziyziq—Eng, ynm(ziyz;)allz <6bliqllz, y €Y,
llgz; x;4—6:; fall2 < ligll2-

By A.2 there exist some partial isometries v;€ N (the ambient algebra of the z;’s)
such that

’U:’Uj = 6iija
lviyv; —E(Ngo)'nM(xfyxj)4||z < f(6)llqll2s
lzig—villz < £(8)llall2,

for all yeY, where f(§)—0 when §—0. Let m be large enough such that (N2 )'NNY,
contains an nxn matrix algebra P with matrix unit {C?j}lgi,_jgn and |[1p, —1all2<
6ligllz- Since NONRC is of type IIi, there exists a projection s°€ NJ,NR? such that
7(s%)7(e%)=7(g). Denote 5%, =¢° and 5%, =v?

exists a partial isometry we NS, such that ww*=q, w*w=¢°. Let v=}_, v,wv{* and let

, 1<j<n. Since N}, is a factor there

V EN be a unitary element that extends the partial isometry v, i.e., y=Vv*v. Denote by
Ni=VNJV* and R=J(N,NM). Denote fo=V fV*, 2o=V2zV*, 0=V 3sV*. Note that

fo€ Z(N,,,NN),
v; = VolV*e Vs®(R°NNY,, )s°V ™= 5o RN Npm, 50,
50=Vs’V*€ RNNp,
¢=V¢®V*€ RNN,,, and zo€ Z(RNN).

Moreover, if we let s=sg fo, we have:

15,4113 = lysy” =513 = 2(s) ~2(ysy"s)
<omr(fr(@) =2 Y rlyovivv)
- 2nr(f)r(q)~2§3 Iogel3
<2m(f>r<q>—2i s,y (2ys) 13+20% £ (6)2
< Setmr()r @)+ 20716 (1) ()70

<er(s)=ellsll3
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if § is chosen small enough to have 2n? f(8)2(n7(f)) "1 < 3e. Also we get:

| Eso fo N, M foso (535) = sysll3 = | Evso (o, yna psov- (sys) — sysll3
= [|Eso p(wo, ynaa 0 (v*yv) —v*yol3

=Y _Ew sovgynmpoo (0" v] yowed) — v w* v} yo,wol |3
1,3

<D NEso pnvg, i po0 (w* vl yvsw) —w* vl yosw§+2n2(| 15, — a3
i’j

< Z ”Esof(N,Dn)’anso (w*E(Ng,o)'nM(waj)qw) —w*v;"yvjwllg +n2f(5)"¢1||%
i3

= 1B snaynmsso By, yom (25yz;))a° —w vl ywsw§+nf(8) 153
i?j

=Y B, yom(@iye;)g—viyv;|3+nf(8)lsll3 < 2nf(6)s|3-

i’j

Finally, we get:
20— folla=V2V* =V V2 = llz— flla <ell fllz =€V V{2 =eli foll.

This proves the last part of the statement. The first part and the case when R is a
factor follow now trivially.

Conversely, let SCR be a core for NCM. Let uy,...,u, €M be some unitary el-
ements and €>0. By local approximation there exist a choice of the tunnel MDOND
...D Ny, and a projection s€N), NN such that

l{us, s]ll2 <ellsll,

WEsn: ms(suis)— suislfz < elfslfa.
Let vEN be a unitary element such that vRv* DN} NM, vSv* DN} NN. Define
pe(M,R)=(M,ep)
by p=sverv*=vegv*s. Then we have

”uzpu: —P”g,"m = 2T(s) _2”E80Rv*s(suis) ”g
< 3e7(s)+2||s—uisul||2 < 5e7(s) = 5e|lp|l2, - ]



220 S. POPA

4.4. Global approximation: proof of (ii) = (iv) in Theorem 4.1.2

We will now use a maximality argument to obtain from the local approximation in the
previous §4.3, the actual (global) approximation by higher relative commutants. Under
the assumption that N C M is amenable relative to a core and has ergodic core, we will
prove first that:

(*) Given any £>0 and any finite set of elements Y in M and any choice of the
tunnel up to some ko, M DN DNy D...D Ny, there exist m >k and a continuation of the
tunnel up to m, Niy,—1 DNy D...D Ny, such that |[En: nm(y)—yll2<e, y€Y.

Let 7 be the set of all the finite continuations of the tunnel
T=(M>DNDN;D..DNi, D...DNy).

For such a tunnel T' denote I[(T)=p and N(T)=N,. Let S={(T,s)|T€T,seP(N(T)),
s#0}. Let J be the set of all the families (S;)ies of couples S;=(T;, s;) in S, with (s;)ier
mutually orthogonal and such that if s=) s; then

2

<ellsll, VyeY.
2

3" By vizyonys (5:y8i) — (y—(1-s)y(1~s))
i€l

The set J with the order given by inclusion is clearly inductively ordered. Let
(59);e4, be a maximal element of J and let S9=(T7,s}). Assume s®=3" s}#1. Let
f=1-5%€Ny,. By §3.2, f Ny, f C fM f is also amenable relative to a core and has ergodic
core. By applying §4.3 to fMfD fNy,f it follows that there exist a continuation of
the tunnel up to some mg>kg, MDONDON;D...DNg,D...DNp,, with fENy,,, and a
projection s € Ny, 0#s0< f, such that

”Eso(N:"onM)so(SOySO)—(fyf_(f_so)y(f“SO))llg <e|soll3, yev.

Denote To=(MDN3...DMmO), So=(T0,So) and J=JOU{0}. Then (Sj)je], with
s,-:sg for jeJy, is an element of 7. Indeed, for s=s%+ sy we have:

2

Z Es.-(N(T.-)'nM)s.-(Sini) —(y—(1-s)y(1-s))
i€

2

> Eoveroynmnse (57359) — (y—(1-s")y(1-5%))
i€y

N Eao (N (To )80 (S080) = (Fyf — (f —50)y(f — 0)) I3

<ells°[I3 +ellsollz =ellsll3-

2
2
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This contradicts the maximality of (57)jes, thus showing that > s}=1. Since
7'(5?)760 for all j (because 32760) it follows that Jy is countable and that we can find

a large finite subset s?,..., s} among the sJ, j€Jo, such that r(oF 9)>1-6. Let

i=15:
M=Max; <k i(T]p). We claim that there exists a continuation of the tunnel up to
m, MDNDN1D...DNgyD...D Ny, such that s?€N,,, 1<i<k, and such that sIN;s0=
sgNj(Tio)S% jgl(TiO)’ I<igk.

To see this let MDND...DNg, DN ,,D...D Ny, be any continuation of the tunnel
up to m and let s! € N}, be mutually orthogonal projections such that 7(s})=7(s?). Let U
be a unitary element in Ni, such that Us}U*=s and such that Us}! N}s!U*=s? Ni.(T?)s?
(this is possible because by [PiPol] any two choices of the tunnel s?Ms9>...Ds?Nysd
are conjugate). Then Ny =UNLU* satisfies the requirements.

Since s, 1<i<k, are mutually orthogonal projections and since the core is of type
II;, there exists a continuation of the tunnel Np, D Npt1D...DNi such that N{NNp,
§'-contains all the s. It follows that the algebra Bo=Y_ s?(N.,NM)s?+C(1-3"s?) is
almost contained in N,NM so that if §! is small enough we get

IEnnm(y) —yllz < || EBo (y) - yll2+e
> Eoomnas(833s9) - (v- (1-3 )y (1-3- 7))
=1

+”1—Z s?”2||y||+s < 3e.

<

This ends the proof of (*).

Let then {z,}, be a || - ||2>-dense sequence in M. We construct recursively some
integers ky <k2<... and some choices of the tunnel MDND..DNy, D...ODN, D... such
that

| Eng, nn(25) |2 < 27 1<K

Suppose we made the choice up to some i. By () it follows that there exists m>k;
and a continuation of the tunnel M DN D...DNg,D...DN,, such that

“EN;nnM(:L'j)—.’l’:j"z(z_i—l, 1<j <41

Taking k;,1=m we are done.
But then R=J(N,NM) satisfies

Ep(z;) =lim En;nm(z;) =2;

so that M =R by density. O
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Let us finally mention some global properties of the amenable inclusions that follow
from 4.1.1 and from a similar maximality argument like the one used above. Note that
part (2) of the next theorem contains Connes’ fundamental theorem. Note also that in
case NCM comes from an action of a group G like in [Po6| then condition (3) states
that the Cayley matrix of the group G has maximal spectral radius, i.e., Kesten’s charac-
terization of amenability. This condition will be investigated in more detail in Section 5
where it will be shown that conversely, if Ty a is ergodic, |Tn,m||>=[M:N] and M is
amenable then N CM is strongly amenable. Also, in a forthcoming paper we will show
that ||l'n ar)|2=[M:N] and M amenable implies N CM amenable.

4.4.1. THEOREM. If NCM is an amenable inclusion then:

(1) If N#M, NCM can be globally approzimated by finite dimensional commuting
squares which come locally from higher relative commutants, i.e., Ve>0, Vxq,...2, €M,
IQ C P finite dimensinal subalgebras satisfying the commuting square condition, EpEn=
Eq, such that | Ep(z;)—z;l|l2<e, 1<j<n, and there exist a finite set Iy and for each i€ Iy
a continuation of the tunnel up to some ki, MDN DN{D...DNL, and some projections
8:€(NL )'NN such that 3 s;=1 and

> s((NE)NN)si=Q, D si((Ni,)NM)s;=P.

(2) If N, M are separable, then both N and M are isomorphic to the hyperfinite
type I1; factor and (NCM)~(NQPCM®P) where P is a copy of the hyperfinite type
I1; factor.

(3) If NCM is extremal then |y p|?=[M:N].

Proof. (1) The proof is identical to the one for (ii) = (iv) of Theorem 4.1.2 completed
at the beginning of this subsection, by using 2.1.7 for the hereditarity of amenability to
reduced algebras.

(2) If NC M is amenable then, by §3.2, N and M are amenable, so that N C Max2(N)
and M C Mz« 2(M) are obviously amenable and have ergodic cores. By (i) = (iv) of 4.1.2,
N, M follow isomorphic to the same hyperfinite type II; factor. Moreover, if z;,...,z, €M
and £>0 and if N,‘;',, s; are as in part (1) above, then let ui,viENii be unitary elements
such that u;v;=—v;u; and define u=y_ u;s;, v=y_ v;s;. It follows that u,v are unitary
elements in N, uv=—vu and

[, 2]tz < 26+ ([, Ep(:)]ll2 = 2¢.

By [Bi2], [Po8], it follows that (NCM)~(N®RCMQR).
(3) By [PiPo2] we see that (1) implies |T'n a||2=[M:N]. 0
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4.5. Bicommutant condition and existence of hypertraces: end of the proof
of 4.1.2

We now prove the remaining implications in Theorem 4.1.2.

4.5.1. Proof of (iv)=>(ili) = (vi) of 4.1.2. The first implication is trivial. To prove
the second, let M > N >21 N?3...D NP be a choice of the tunnel up to some k let £>0
and let {u}}, ¢ ¢, CN; be unitary elements such that

-71; Z u;eo_iuj-* —E(N?),QM(e(ii) . <e.
j

By (iii) there exist m and a choice of the tunnel up to m, MDD NON;D...D Ny,
such that u},e‘liegN,’nﬁM, 0<i<k, 1<j<n. Fix some ko. Since {e‘li}izo, {e=i}izo
generate factors (by Jones’ theorem [J2]), there exists k large enough such that the central
trace of ef, ...,e%, in Alg{1,eg,...e%, }, respectively of eg, ..., e_, in Alg{1,eq,...,e_}C
N;.NM, is as close to Al as we please. It follows that there exists a unitary wo€ N}, NM
such that ||woeqwg —ef|lo < f(€). Taking vy=A"*En(woeo)=A"1En; nn(woeo) it follows
by {PiPol] that vjeouy =woeowy so that Avjvl =En(vheovl) is close to En(ed)=A1.
Thus vyeN;, NN is close to a unitary. By perturbing v} if necessary we get a unitary
vo€N,,NN so that
llvg e6vo —eoll2 < fole)

where fo(¢)—0 when e—0. But then {v}edvy,} NN=v} NPy, is close to {eo}'NN=N;
(in the distance defined in [Ch]) so that v}e® v, €N expects close to A1 on N;. Like
before, it follows that there exists a unitary v; € N, N; such that

lvivgel 1vgvi —e-1l2 < fa(e)

with fi{e)—0 as e—0. Recursively, we get unitary elements v; € N/, N N; such that

lvfvi_y ... v3e® ;v001 ... vs—e_ill2 < file),

lofv;_; - vgubvo ... vimqvi— Eny i, (0] . vguive ... v)ll2 < file)

for 0<igko, 1<j<n, where fi{e)—0 as e—0.
It follows that

Bz, oy, (6=i) = Eninni_, (e-i)ll2 < f(€)

for 0<i<ko, where f(£)—0 as e—0.
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Thus, letting e —0, we get that

E(RnNi)’n(RnN,-_l)(e—i) = EN;r‘lN‘-_l (e—s).

Now, if NCM is extremal it follows that E(rnn,yn(rnnN:_,)(€-i)=Al, so that by the
antiisomorphism in {Po5], E(MiNMu)nMo, (€i+1)=A1 for all i>0. It follows that for
T € Mii1=sp Mie;11M; we have En, (2)=E(M:nM,.)nM(Z). Applying this n times it
follows that for € M;,,, we have

Moo} NMos (Z)

Emi(7) = E(vinMoy Mo My, oMoy Mo - Euz,

= B(M!n\Moo) nMoo (T)-

Thus, we get
Em(z)=Eppomeynm.(2), TEUM,;,

and by weak continuity for all z€ My, so that M=(M'NMu) NMx.

For general NCM (not necessarily extremal) one first takes the 2-step inclusion
N1 CM as NCM then for this N CM one replaces the projections e_;, €% ; by the canon-
ical projections e’ ;EN/,;NN;_1, (2,) €(N2,)YNN?_ ; defined in [PiPol] which still
implement conditional expectations (not necessarily trace preserving though) but satisfy
Eninn,_1(€2)=A1, Eoynns ((€2;))=A1 (instead of En,(e-i)=Al, Epno(e2;)=)).
Arguing like above we get that E(n: ~n,ynn;_,(€-;) is close to A1. By {Pol2], there ex-
ists a trace preserving antiisomorphism of N),NN;_; onto M]NMp, 4, carrying N, NN;
onto M;,,NMp, ., and €', onto e;12. We thus obtain that

EminMaynMo(€i41) = AL, 120,

like before. The same argument then shows that M =(M'NMy)' NM. O

The argument already used above twice is due to Skau (unpublished, see also {GHJ]).
Since it will be of later use as well, we display it here, in a more general form:

LEMMA. Let NCM C® M;C®... be the Jones tower of factors and let BCM'NM,
be a von Neumann subalgebra such that By=BN(MNM) satisfy the commuting square
relations

EBEM”EI"!M& =EB;‘)
and so that
Ep nMy(ex+1)=ALl, k>0
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Then B'NMy=M.
Proof. If z=Y, yle; 1y? € M1, where y) € M;, then

Epnm, (x)= EB’nMwEB;an (z)

=EpnMe, (Z Yi EBirmo, (€541)47 )
i

=EBnM., (/\ douyl ) € Epnm., (M;).

Thus EB/an(Mj+1)CEBInMw (Mj)y 320, so that

EB’ﬂMm(U Mj)CEB'nMw(M)=M. |
izl

4.5.2. Proof of (v)= (i) of 4.1.2. Let
£

N c M
U U
N ¢ M

be a smooth embedding of NCM. Let NCEMCEM;=(M,e;)C... be the associated
tower. Let ¢ be a faithful normal state on N extending the trace of N and still de-
note by v the state Y(T)=y(E(...En—2(En1(En(T)...)))), for TEM,,, and thus for
TelJ, Mn. Let (my,Hy,Ey) be the GNS construction for ¢ and |J, Mn, and denote
Mm=m. Note that if p is the orthogonal projection of Hy =m
onto 7y, (U, M,.)€y, then [p, 7y (U, Ma)]=0 and in fact 74 (U, M, )p~Me. Since M is
amenable My are all amenable (as amplifications of M) so that M is also amenable.
Thus, there exists a conditional expectation ®, of M, onto My, C M. Since M'NM;,
CM’'NMy, the embedding being smooth, it follows that [M, M'NM]=0 so that
[@o0(M), M'NMao)=0. Thus ®oo(M)C(M'NMoo) NMoo=M. Also [Beo(N), N'N M)
=0 so that we have [®.,(N), e1]=0. Thus ®,,(N)CN. But then T7o®u|r is an (N CM)-
hypertrace (see §3.2). a

5. Classification by standard invariants

We can now restate more explicitly the classification result following from the approx-
imation by higher relative commutants in the previous section. This will be applied to
classify various classes of subfactors that check the amenability conditions. Also, we will
give combinatorial characterizations of the amenality that are easy to check and, along
the line, will introduce the concept of strongly amenable paragroup. Throughout this
section, M will be a separable type II; factor, NCM a subfactor of finite index.
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5.1. The main result

5.1.1. THEOREM. N CM is strongly amenable if and only if NCM is isomorphic to its
standard model N**C M®t. If in addition NCM is extremal then it is strongly amenable
if and only if it is antiisomorphic to its opposite model M{N My CM'NMy. In particular
strongly amenable subfactors NCM are completely classified by their standard invariants

(or paragroups) Gy m.

Proof. If NCM is strongly amenable then for some choice of the tunnel {N:},
M=U,(N.NM) so that N={J_(NLNN) and thus (NCM)~(N*tC M**). Conversely,
if (NCM)~(Ns*CM*t) then NCM has the generating property, since the inclusion
N=tC M** can be recaptured from Gy ps (cf. Remark 1.4.4). The rest is trivial. O

For inclusions of type Il factors N C M of finite [PiPo] index we will adopt the
simple minded point of view of defining the (strong) amenability by requiring the (strong)
amenability of the type II; inclusion (NCM)=(pN>pCpM>p) obtained by reducing
with finite projections in N*°. By Section 3 this does not depend on the projection p
and, by 1.3.7, neither Gy pr does depend on p. So we can define the standard invariant of
N®CM®™ as Gnoo poo q—fng,M (for all this see also [Po9]). We thus get from the above
theorem:

COROLLARY. An inclusion of type 1, factors N® CM™ is strongly amenable if
and only if it is isomorphic to (N**CM®*)®B(H). In particular, such inclusions are
completely classified by their standard invariant.

5.1.2. Finite depth and index <4. As we will now point out for low indices and finite
depth subfactors the strong amenability is automatic. Stronger results in this direction
will be proved in §5.3.

COROLLARY. Let M be the hyperfinite type II, factor and NCM a subfactor with
finite indez.

(i) If [M:N]<4 then NCM is extremal and strongly amenable.

(i) If NCM has finite depth, i.e., Ty p is finite, then NCM is extremal and
strongly amenable.

Thus, in all these cases (NCM)~(N®*CM*)Z(M!NM.,CM'NMy) and NCM
is completely classified by its standard invariant (or paragroup) Gy um.

Proof. If NCM has finite depth then 1.4.1 shows that M{NM.,CM'NM,, is an
extremal inclusion of factors. But then M C M, also has finite depth (since

Em(Z(NLNMy)) C Z(NLOM)
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and by the [PiPol] inequality), so that M]NM, CMj;NM is also extremal. By trace
preserving isomorphism we then have E(s; nn,, ) (€x+1)=[M:N |71 for all k and Skau’s
lemma in 4.5.1 shows that the bicommutant condition holds, thus NCM is strongly
amenable.

If [M:N]<4 and P,=vN(eg,€k+1,...) with e the Jones projections in the tower,
then by [J2] PtNP,_;=C so that Ep/qp,  (ex—1)=[M:N]~'1 and again we find that
(M'NMy)' NMy=M by the lemma in 4.5.1. So N CM is strongly amenable in this case
as well. O

‘We mention that the finite depth case of the above result has been previously proved
in [Po5] (see also [Oc2]), by using a completely different approach. The proof in [Po5]
however, while quite simple and very elementary, cannot be adapted to work beyond the
finite depth case.

5.1.3. Subfactors coming from representations of Braid groups. An important class
of subfactors that are hyperfinite and check the finite depth condition are the Jones sub-
factors and their generalisation, the so-called Wenzl subfactors ([Wel], [We2]), coming
from certain unitary representations 7 of the Braid group on infinitely many genera-
tors go, gi,..- that admit positive Markov traces. These are representations that factor
through representations of Hecke algebras of type A, B, C, D (at roots of unity) and they
have been shown by Wenzl to produce finite depth subfactors by using the same method
used in [J2], i.e. by taking N=n(Alg{gi,...}) Cn(Alg{go, g1, ...})=M. In the simplest case
of type A and certain additional relations, they coincide with the Jones’ subfactors [J2].
5.1.1 shows that they can be recognized by merely observing their invariants.

COROLLARY. The subfactors of [Wel], [We2] are uniquely determined by their stan-
dard invariants (paragroups).

5.1.4. Subfactors coming from actions of compact groups. Already in [J2] it has
been pointed out that the Jones subfactor of index 4 and standard graph A, which
on one hand can be constructed like in 5.1.3 when the value of the parameter (roots
of unity) tends to 1, can also be obtained as an inclusion of fixed point algebras of
a product type action of SU(2). This type of construction of subfactors was further
exploited in [GHJ] to produce more examples of subfactors of index 4. In an independent
work, Wassermann generalized this to arbitrary minimal actions of compact groups as
follows ([Wa2]): let P be a copy of the hyperfinite type II; factor and o:G—Aut P a
faithful minimal action of G on P (i.e., so that the fixed point algebra P is irreducible
in P, (PG)YNP=C). Let m G—EndV be a unitary representation of m on the finite
dimensional Hilbert space V. Then N=P¢C(P®End V)®=M is an inclusion of type
II; factors of index (dimV)? which is irreducible if and only if 7 is irreducible and

16945202 Acta Mathematica 172. Imprimé le 28 juin 1994
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whose standard graph I'y s equals the multiplicity matrix of 7 (as the Jones tower is
just P C(P®EndV)®C(P®End V®End V)¢ C..., and the higher relative commutants
N'NM;=(End V®EndV ...)¢=(7®%®...)(G)NEnd(V®V ...)).

These subfactors were checked to be strongly amenable in [PoWa], by using the
invariance principle ([Wa2)]) to show that they have the same higher relative commutants
as their cores (standard parts). Note that in the case G is a semisimple compact Lie
group the subfactors have infinite depth.

COROLLARY. The subfactors PS C(P®EndV)C of [Wal] are uniquely determined
by their paragroups.

We note that such subfactors were further investigated in [PoWa), where it is shown
that if one takes appropriate (large) finite dimensional representations 7 of G then the
isomorphism class of such a subfactor determines uniquely the class of the action . As
the corresponding paragroups do not depend on o, the uniqueness of the minimal actions
of G on P is obtained ([PoWa]). More precisely, if one takes End V' to contain the trivial
representation of G and a finite set of irreducible representations that generate (via tensor
product) all other finite dimensional irreducible representations of G, taken with distinct
multiplicities, then two outer minimal actions o;, 02 of G on P are conjugate if and only
if their associated subfactors are isomorphic. Also, the subfactors are strongly amenable
and their standard invariants only depend on G not on o ([PoWa).

5.1.5. Subfactors coming from actions of discrete groups. Let P be a von Neumann
factor and 6p=id, 6,0, ... some m+1 (not necessarily distinct) automorphisms of P,
where m may be finite or infinite. Denote by P°=B(I2(m+1)), where [?(m+1) is the
(m+1)-dimensional Hilbert space (so that P®=M;,11)x(m+1)(C) if m is finite) and by
{ed;}i,j>o0 its canonical matrix unit. Let M®=P®P° and N?={3" ., 6:(z)el;|z€ P}. We
call N°C M? the inclusion associated to (0:)i>0. It is trivial to note that N' 9 M? has
finite [PiPol] index (1.1.7) if and only if m is finite, in which case Ind Ep;n=1/(m+1).
More than providing examples of subfactors (of finite index), such inclusions have the
important feature of translating problems on classifications of actions by automorphisms
into problems on classification of subfactors. Indeed, the isomorphism class of N¢ c M*
“encodes” the outer conjugacy class of § due to the following facts, reminiscent of Connes’
2x 2 matrix trick:

Facts. (1) {e);}; are minimal projections in (N?)'NM? and el;~e?; in (N?Y N M? if
and only if there exists a unitary element v;;€ P~P®1 such that §;=Adv;;0;. In this
case v;je); €(N?)'NM?®. This is trivial, by the definition of N®C M?.

(2) If 6'=(6p=id, 61, ...) is another (m+1)-tuples of automorphisms of P then 8’ is
conjugate to 6 (i.e., there exists o€ Aut P such that 08,0~ =0;, Vi) if and only if there
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exists G:(N®CM?)~(N¥CM?¥) and 5(e);)=¢);, Vi, j. Also, ¢ is outer conjugate to 6
(i.e., there exists 0 € Aut P such that 06/0~1=6; mod Int P, Vi) if and only if there exists
&:(N% c M?)~(N9c M?) and 5(el;)=el;, Vi. Again, this is a simple consequence of the
definition.

(3) If (69=id, 01, ...) is a set of k+1 distinct automorphisms, k< o0, (0y=id, 01, ...)
k+1 other automorphisms and {n;};>o a set of k+1 distinct multiplicities then let 8=
(06,01, ...,0m), 8'=(6;,61,...,0,,) be the two (m+1)-tuples obtained by repeating each
o; (resp. o)) n; times, where m+1=Y_n;. Then (N¥CM?¥)=(N?cM?®) if and only if
there exists a€ Aut P such that ao}a~!=0; mod Int P, Vi. This is trivial by (1) and (2).

(4) Let m be finite and 6=(6y, 01, ...,0m)CAut P. For an automorphism o€Aut P
we convene to still denote by o the automorphisms ¢®1 on M?=P®P°, M{=Pg
P°®P!, ..., where P'~M(mi1)x(m+1)(C), Vi, and with matrix unit {e}; };x»0CP". De-
fine the embeddings M{ Cc M7, , by

sz Sz Z 07 (x)e2it e €M,
i=0

Mzg lamHZO(m)e 21,

and put e;4+1=(1/(m+1)) 3, » eu,e’“GMJ‘-’H. Then
NecMOE MEE ML

is the Jones tower of factors for N® C M?® with the expectation Eq;y, (for which Enyin{el;)=
1/(m+1), Vz') In general, if the expectation E from M? onto N is given by E(e?)=t;,
then Eg;(eX)=t;, Eyjy1(e!)=t}=t7Y/ T, t; ! and the Jones projections are given by:

27 2j+1
eajer = Vit €
1,3/
T3 ,27+1 2542
62]4.2—2: tt’eﬁ" i;" ’

4,3’

and Ind E=Y, t7 =Y, ;" =(t,;)~", V4. All this follows by using the abstract charac-
terization of the basic construction and Jones projections in [PiPo2] and 2.2.2, and by
direct computation. Note that if pc N¢ then the tower for pN°pCpM?p is obtained by
reducing the tower for N9c M?.

(5) Let G be a discrete group and o: G— Aut P/Int P a free G-kernel, i.e., an injective
group morphism. Assume G is finitely generated, say by go=e, g1, -.., gk, With g;#g; if
i#j. Let ng,ny,...,nk 21 be some fixed multiplicities and let 8=(8p, 61, ...,0n) with m=
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>-n; be such that =01 =...=0,,=id, Opy+1=...=0ny4n, a lifting in Aut P of 0(g1), ...,
Ono+t...+nx_1+1=-.-=0p, a lifting of o(gx) in Aut P (thus, each lifting of o(g;) is repeated
n; times).

Thus we may regard the subfactors associated to an (m+1)-tuple of automorphisms
of P as associated to a G-kernel. By (3), if the multiplicities are properly chosen then
N?c M? determines the conjugacy class of the G-kernel o.

(6) {e} i €2, - e{jij Yoiiz,....i;<m 2T minimal projections in M’'NM; and we have
€1iy €5y - €1, Ne},li,l efgi; in M’'NM; if and only if 6;,'6,, ...=Adu6’i7110i,2 ..., for some
u€P (product of k alternative terms 6; ',6,). In this case uej i efzi,z ...efj i eM'NM;
and such partial isometries generate M'NM;.

(7) If G is the group generated by 6p,01,...,0mm in Aut P/Int P, then I'ye pro=
(@ng)n,gcc, where *=€ and apg= the number of times g€G can be obtained as 07 h,
0<i<m. Also I'ng,m, =(a},)p, o> Where *=e and aj, = the number of times g€G can
be obtained as 6;h, 0<i<m. If E=Ey;, then E|y, (m/np,) is a trace with all the min-
imal projections in M’'NM} having equal trace. In general E°°|Uk( M'nM,) 1S a trace,
where E=FEE1Fj ..., if and only if there exists a group morphism §: G—RY such that
sg=/0(g). Indeed, the first part is clear by {9). Also, if § is given like this and g=
01'_1191‘2 "'201'_'1191"2 ...=¢' mod Int P, (equivalently e=e] ; ...efkikNe},li,l ef;ci;c=e'), then
B(g)=8(g') so that Ey(e)=FEx(e'). The converse follows by showing recursively on

generators that (sg) defines a morphism.

PRrROPOSITION. (i) Let P be a type Il factor and G a discrete group with finitely many
generators gy, ..., gk- Let o,0’ be two free cocycle actions of G on P with Mod c=Mod ¢’.
Let 9=(id, 0y, ...,0), 6'=(id, 01, ...,0.,) with 0;€{o(g;)};,0:€{0'(g;)}; appearing with
the same multiplicity n;>1. Then Gyo proe =Gnor pror.

(ii) More generally, if o,0" are free G-kernels of Aut P/Int P and (Obo,Modo)=
(Obo’,Mod o) (see [C3], [J1], [Ocl], [Su]) then Gyes rro =Gnor are-

Proof. If 0,0’ are genuine actions then (i) is trivial. Then the rest of the statement
follows by direct computation. u

We can deduce now the classification of actions of [J1] and, for most amenable groups
(such as groups with subexponential growth), of [Ocl] as well:

COROLLARY. Let P be a type Il factor and G a discrete finitely generated group. Let
g0=6,9i,...,9k€G be a fized set of generators and ng,ny,...,nx =1 some multiplicities.
Let 0:G—Aut P/Int P be a free G-kernel and N® CM? the inclusion associated to o,
(9:): and (n;); as in (5) before. Then we have:

(i) N®cM? is amenable if and only if P is amenable and G is amenable.
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(i) N9c M? is strongly amenable if and only if P is amenable and G has 0 entropy
with respect to the measure p on it given by (n;); and by the morphism B:G— R,
B(g)=Mod o(g) ([C1]). This condition is satisfied for any choice of (g;), (n;) and any (G,
in case G has subexponential growth.

(iii) If P is hyperfinite of type 11, G satisfies (ii) (e.g. if it has subezponential growth)
and the multiplicities (n;); are all distinct, then two free G-kernels o, o' are outer conju-
gate if and only if (N® C M%)~ (N®% c M?) if and only if (Obo,Mod 0)=(0Obo’,Mod ¢’).
In particular, any two properly outer actions of G (with the same Mod function in the

type o case) are outer conjugate and any 2-cocycle vanishes.

Proof. (i) follows by 4.4.1, by Kesten’s characterization of amenability of G and by
3.1.3(b).

(ii) is clear by §1.4 and 4.1.2 (or 5.1.1).

(iii) is then a simple consequence of the previous proposition and (3). a

5.2. A list of subfactors of index <4

A list of all possible matrices I" over Z, of norm <2 has been obtained in [GHJ]: for index
<4 these are the Coxeter graphs A,,, D,,, Eg, E7, Eg and for index =4 the Coxeter-type
graphs AL 2<n<00, DY, n>4, As, Doo, ESV, BV, BV =E,. It is already implicit
in [J2] that for each n< oo there exists a unique possible standard invariant with standard
graph A, given by the so-called Jones subfactor of index 4cos®> w/{(n+1). An example
of subfactor (thus paragroup) with graph Eg was obtained in [BN] and with graphs Eél),
M, EY, DY in [GHY).

The complete list of all possible paragroups with index <4 was then obtained by
Ocneanu ([Oc2], see also [Kal] for details of the proof), showing that there exist no
paragroups with graph D, or E7 (for simpler proofs see [Iz], [SuVa]) and that for
each n>2 there exists a unique one with graph D, while for each of Eg and Eg there
are actually two.

For each Eél), Ef,l), Eél) there is a unique paragroup ([Kal}]). For Agln)_l, nxzl,
there are n, as they are in bijection with the number of elements in H3(Z/nZ, T), i.e.,
of the n-roots of unity, and there is only one for A% (all this by 5.1.5 and [C2], [C6]).
Any other graph of square norm equal to 4 must be of the form Dg). It was shown in
[Po6] that such paragroups are in one to one correspondence with the elements of the
subgroup of H3(Dy,, T), 2<m< 00, that vanish on the two generators, where D,;, is the
dihedral group with generators o, 3, o®=£%=1 and with the period of a3 being m.
Thus, these subfactors are classified by some well understood classical objects as well.
The relation between these paragroups and their corresponding graphs has been obtained
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in [IzZKa] where it is shown that for finite n there are n—2 paragroups corresponding to
S,l) and they correspond to the elements in H 3(Dn_2, T) considered above and that
there is a unique paragroup with graph Dy, corresponding to the fact that the subgroup
in H3(Dy, T) is trivial.
By Theorem 5.1.1 we can now deduce that the above list coincides in fact with the
list of alt subfactors of index <4.

5.2.1. COROLLARY. The following is a listing of all subfactors of index <4 of the
hyperfinite type II; factor:

standard graph number of subfactors
A, n>2 1
Dy, n22 1
Es 2
Eg 2
E(M 1
EM 1
EM 1
Agi,)_l, nx1 n
S;l), nz>4 n—2

AR = Ao o 1
A 1

Doo

5.2.2. Detecting Jones’ irreducible subfactors. From the above we can now formulate
more explicitly some simple criteria for detecting the Jones subfactors.

COROLLARY. Let NCM be hyperfinite type 11, factors with [M:N]<4.

(i) If N'nM,=Alg{l,ey,...,ex}, Vk, then NCM is isomorphic to the Jones sub-
factor R*CR of indez s=[M:N] (i.e., R=vN{f;}iz0, R*=vN{f;}j>1, where {fi}izo
are the Jones projections of trace T(f;)=[M:N] !=s71).

(i) If [M:N])=4cos?>n/(2n+1) then NCM is isomorphic to the Jones subfactor of
indez 4 cos® w/(2n+1).

(iii) If [M:N]=4cos® 7/(2n+2) and N'NM,_,=Alg{l,e1,...,en_1} then NCM is
isomorphic to the Jones subfactor of index 4cos® w/(2n+2).

(iv) If [M:N]=4 and N'NnM;s=sp{l,e1,...,e5} then NCM is isomorphic to the
Jones subfactor of indez 4.

Proof. (i), (ii) are reformulations of part of 5.2.1 and (iii), (iv) follow because of the
shape of graphs of that norm. O
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5.2.3. Connes’ uniqueness of trace scaling automorphisms and detection of Jones’
locally trivial subfactors. If s>4, the Jones subfactors R*CR of [J2] were proved to be
locally trivial in [PiPoll], i.e., of the form R*={c®o(z)|z€pRp}, R being the hyperfi-
nite type II; factor and o: pRp~(1—p)R(1—p) a surjective isomorphism, where pe P(R),
7(p)T(1—p)=s"1. It has also been shown that if N,CM is locally trivial as above,
then (N3*C M®)~(R®*CR) and an explicit representation of all higher relative commu-
tants (= standard invariant) was obtained, showing that Gy, »r=Gg: g and 'y, M=
TRs,r=A_o0,00- From that representation we also see that E(rnr_)ynr. (€1)€C. Thus
also E(M’nMw)'an(el)EC and E(N{,nMoa)’ﬂMoo(el)EC- Thus (M'ﬂMoo)'ﬂMw=M,
by Skau’s lemma, and NCM follows strongly amenable. By 5.1.1 one thus get both
the uniqueness of Jones’ subfactors of index >4 (by their graphs) and the uniqueness
of the locally trivial subfactors. Since isomorphism of locally trivial subfactors N, CM,
N,,C M amounts to outer conjugacy of o1, o2, (like in 5.1.5) which in turn are easily seen
to come from ¢/(1—t)-scaling auto-morphisms &, of R®B(I2(N)), where t(1-t)=s"1,
one also obtains Connes’ uniqueness of trace scaling automorphisms up to outer conju-
gacy ([C3]).

It is easy to see that to detect such subfactors little information is needed:

CoROLLARY. (i) If [M:N]=s>4, then NCM is a locally trivial subfactor with
N'NM=C? if and only if Tnm=A—w 00 and if and only if Ind(Emin)=4-

(ii) NCM is locally trivial if and only if HM|N)=—tlnt—(1—-t)In(1—-t) and if
and only if N'NM=Cp+C(1-p), where t(1-t)=7(p)r(1—p)={M:N]~1.

(i) Any locally trivial subfactor of indez s>4 and dim N'NM =2 of the hyperfinite
factor is isomorphic to the Jones subfactor of indez s.

Proof. (ii), (iii) are trivial by the above discussion and [PiPol]. Then 'y y=A_c0,00
implies N'NM =Cp+C(1—p). If [pMp:Np|#1 and p; =JupJm € M'NM;, then Npp, C
PMpp, Cpp1 Mipp, is a basic construction, so that (Npp:) Nppi Mi1pp1#C (since the
index #1). But this means that N'NM; has more than Alg{p,p;,1} on its diagonal,
contradicting I'y p =4 0,00 O

5.3. Strong amenability for standard invariants and paragroups

The (strong) amenability condition introduced in this paper is conceptually and tech-
nically best suited but it has the disadvantage of being difficult to check. In practical
situations one does not have enough aprioric knowledge of the representation theory for
NCM to be able to decide on the existence of N C M hypertraces. Also the amenability
relative to a core assumes the knowledge of the higher relative commutants (via the core),
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which anyway are needed afterwards to actually distinguish the subfactor by its invariant
Gn M- So, one needs characterizations of the strong amenability of an inclusion NC M,
in terms of the behavior of its higher relative commutants. We will do this in the present
paragraph. As it turns out, the amenability of NC M splits into 2 complementary no-
tions: the amenability (thus hyperfiniteness) of M and a growth property of its standard
invariant (the paragroup), analoguous to the strong amenability for groups as defined in
[Po6] and that we will now introduce in several equivalent forms.

5.3.1. THEOREM. Let NCM be an extremal inclusion of type 11, factors with finite
indezx. The following conditions are equivalent:

(i) dim N3*’ NM**=dim N'NM.

(i) N*t, Mt are factors and Gyse pse is isomorphic to Gy um-

(iii) If MDONDN;1D... is an arbitrary choice of the tunnel, SCR is the associated
core and Sy,=SNN; then S;NS;=N;NN;, k>j>—1, where N_;=M, S_,=R.

(iv) (M'NMu)'NMy=M and (N'NMy) NMx=N.

(v) (M'NMy)NMo=M.

(vi) |ITn,m||2=[M:N] and TN, is ergodic.

(vil) Ns*CM*® is an eztremal inclusion, i.e., Enstnpst(e0) €Cr,ep being the Jones
projection.

(viii) H(M|N)=H(M®|N*)=lim; H(N;,NM|N,NN). In this case one also has
H(M|N)=limy H(M'NMj4+1|M'NM}).

Proof. (i)=>(iv). Assume that (i) holds true. Since S'NRON’'NM it follows that
S’NR=N'NM. By expecting on N and using the commuting square relation we get

Esng=EsEsinr=EsEnny =EsEnEnnm =EsEnnn = Ec.

Thus $'NS=C and S is a factor. Also, by [PiPol] ey cannot commute with
the nontrivial projections in N'NM, which shows that none of the central projections
of NNNM=S'NR can be central projections of R. Thus R is also a factor. More-
over, [R:S]=[M:N], since the probabilistic index [PiPol] of S in R is A=[M:N]~L.
But if pe S‘NR=N'NM is a minimal projection then by the formula of the trace pre-
serving conditional expectation of pMp onto Np, En, (pxp)=T(p)~'En(pzp)p, it fol-
lows that the probabilistic index of SpCpRp is majorized by that of NpCpMp, so that
[pMp:Np|>[pRp:Sp). By Jones’ formula we thus have:

[R:S1=Y [pRp:Spl/7(p) <D _[pMp: Npl/r(p)=[M : N]=[R: S].

Thus [pRp:Sp]|=[pMp:Np] for each pe N'NM=S5'NR. By the formula of Errna,(€1)
in [PiPol] it follows that Eprna(e1)=Ernr,(€1).
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Thus RCR,; is extremal. But then, by [PiPo2], SCR is also extremal. By trace
preserving isomorphism (since NCM CM,; are extremal) it follows that Mj{NM C
M'NM., CN'NM,, are extremal inclusions of factors. Thus all M;NM CM;_;NMy
are extremal and by Skau’s lemma 4.5.1 we get (iv).

(iv)=(ii). If (M'NMy)NMyx=M and (N'NMs)' NMo=N then in particular
M'NMy and N'NM,, are factors so by 1.3.9 M;NM,, are all factors. By anti-
isomorphism, N®t, M** are factors. We have (MyNMo, ) N(M;NMy)=MpN(M;NMy)=
MMM, so by antiisomorphism we get (ii).

(iif) = (i) is trivial.

(ii) = (iii) follows since we always have, by definitions, S;NS; DN;NN;, k2j>—1.

(iv) = (v) is trivial.

(V)= () (M'NMx)' NMo=M implies that M'NM, is a factor and that

(M'NMx) Q(N'NMy)=N'NM
so that, by antiisomorphism,
dim(N*'NM®*) = dim(M**' N M$*) = dim((M'N M) N(N'NMy,)) = dim N'NM.

(ii) = (vi) is trivial, since by (ii) we get that NS*CM® is extremal and I'y py=
T nst,pmt, and since [T st ars0]|2=[M:N] (for instance by [PiPo3], or by 4.4.1).

(vi) = (iv) Since T'n,, i =Tn,mTl ps (1.3.5), if [T, m|?=[M:N] then ||Tn, um|*=
[M:N;]. Also, since I'y,u is ergodic Ty, is ergodic (as M®* is the same for NyCM
and NCM). By Corollary 1.3.5, since N5*C M*®* has larger higher relative commutants
than Ny C M, we get

TN, 2 ]I? < IIT wse agoel[® < [M®: N§*] = [M: Ni] = T, eI,

thus [T et pre||?=[M**:N§*]. By Corollary 1.3.6, Nf*CM* is extremal, so that all
N3¢, CN§t , are extremal by duality. By antiisomorphism, Mj,; ,NMe CMj,NM,
are all extremal, so that by Skau’s lemma, (M'NMy ) NMy=M.

(iii) = (vii) = (viii) are trivial (by [PiPol1]). If N**C M®* would be factors, by [PiPol],
[PiP02) we would get from (viii) that Nt C M*t, Mt C M$® are extremal and Skau’s lemma
applies. If we do not assume this (apriorically), then let {e}},. K be the the minimal
central projections of Ny;NN and {f{},. L, the minimal central projections of Nj,NM
(note that the inclusion matrix of Ny;NNCNyNM is given by (ax)rek,1cr; Where
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(axt)kek e =T n,,n)- By [PiPol], [PiPo3),

H(N3;nM | N;nN) =Y r(ei f) In(alim (e )r(f)/7(ei fi)?)
k.l

=5 ) (3 ek V() ) e ) (e )
l k
<ty L dhrteb)/reis))
] k
<tumpe(Y ahir(eh)/(eb )
k

=In(Ind EN:M) < in[M: N].

3NN

where the above inequalities follow by first using that In is convex and then that it
is increasing. By hypothesis (viii) the first sum tends to In[M:N]. It follows that
if £>0, Fip such that if i>ip then S;={l€L!|[M:N]-% aZ;7(e})/(eLf})<e} satisfies
Yies. T(f})=1—1e. Also, for i large enough we may assume S;CL/_, (since by [Po5],
Yler:_, fi=supp(IN};NN)eo(N};NN), eo being the Jones projection). There exists an
orthonormal basis {m}}, of N;;NM over N;;NN; such that

ZEzv;..nn,(m;'.m;'.*)_(n+-r(f))1“ —0 asi— o0,
J 2

where f€P(N1). By [PoS5], fi=3, m} fi "'eomi*, VIEL]. Thus if

Si={teSi|lr(f)—r(f I <er(f71)}
then for [€S] and k€ K| with ar;#0 we have

T(f)/(eLf}) = (dim(Np;N M) f{ / dim(N3; N N)e})'/?
< (dim(Nj;NM) £/ dim(N3;\Ny) £ 712 < A (1 +e),

by using that the trace of a minimal projection under f{ is A times the trace of a minimal
projection under f{"l.

From the above inequalities involving the convexity of In we thus get that there
exists S}’ C.S! such that for each 1€ SY, a,7(ei)7(f)/7(ek f})? are close to A1, Vk with
ax#0, and 3=, g0 T(ff) close to 1. Let 0S}'={l€ 5|3’ € L\ S;' such that ariary #0 for
some ke K[}={lC S| eL;\S! with 7(f{f{~')#0}. Since by the [PiPol] inequality
(£} fi71)2N2r(fi 1) and for each I the number of I's with 7(f} fi~1)#0 is bounded by
A1, we get that 3 {7(f;~')|1€8S!"} is small for large enough i. Finally, note that since
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the central support of ep in M’ St=W is 1, for ¢ large the central support of eg
in Nj;NM is close to 1, so that we may assume |7(eof})—AT(f})|<er(f}), V€SI \DS! .
Altogether, if we denote T;=S!'\0S}, we get that for large ¢,

(a) la2,(el)T(F1)/T(ek fH)2— A" <e, VIETI(T,), Vk with ax #0;

(b) Im(eofi) = Ar(f)|<eT(f}), VIET;

(©) Ir(F)—r(Fi ) <er(f), VIeT;

(d) zzeT,-"'(fzi)>1"€-

In the inclusion Nj;N Ny CN3;NN C N3N M the Jones projection eq is represented so
that there exist projections gix € Ay such that Ep, (qix)=1/axila,, =Ep: na, (qx) and
et fifi ek LT = Nanise /tugriel fi fi !, where

A =(Nzlrianeifzifzi_l)'neif:_lNéenMezfzv-lﬁ-
and

B = (Ny:N\Nyei f1 ;1) Nfi T Ny NN fi el fi
It follows that if mj=dim N3;N\Mf;} and nj=dim N3;NNej then we have
E(ngnnynvoan(eofi) =Y (miYni)(Ase/t) fiek
k
=) (aum{ ™ Ase)? /g, (nksk)(m; ' t1) fiek (x)

k
=Y (it afr (i )r(ed) fiek-
k
Similarly we get

Evgnmynvgnm)(e1) = Y 7(Fiek)? [akir(fi)r(el) fiei™ (xx)
k

(a) above then shows that (*) is close to Al. Since 7(ff)=Ami/mi 'r(f{™"), by
(c), we also get that () is close to Al. Altogether we obtain that Enssqpee(eg)=
AL, Eppraiqpse(€1)=A1. By antiisomorphism and duality

Einmynm (€j41) = AL, Vj20,

and Skau’s lemma applies to give (M'NMy)' NMo=M, i.e., (viii) = (v). O

A similar statement holds true for nonextremal inclusions as well.
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5.3.2. THEOREM. If NCM is not extremal (so that a=Ind Epmi, <[M:N]) then the
following are equivalent:

(i) dim N*'NM®=dim N'NM.

(i) N°*, M** are factors and Gys: pse =GN M.

(iii) If SCR is the core for the tunnel {Ny} then S NS;=N_ NN;, Vk,j>~1.

(iv) (M'NMso) NMoo=M, (N'NMos)NMop=N.

(v) (M'NMx)YNMy=M.

(vi) Ensinms(eo)=Ennm(eo) and Eppscinpze(€0)=Emnm(e1).

Moreover, the condition

(vii) ITwn,ml2=Ind EN:M and Ty ergodic,
implies any of the above conditions (i)-(vi).

Proof. The proof of (i)=-(iv) in 5.3.1, which does not depend on NCM being
extremal, shows that if SCR is a core and if one assumes (i) then S, R are factors,
S'NR=N'NM, the local indices for SCR, N CM coincide and Er/nr,(e1)=Emnm,(e1).
But by Jones’ formula 1.2.5, the local indices for RC R; will also coincide and by the
same argument as for e; we get Eping,(e2)=Em;nm,(€2). This shows (i)=(vi). By
the stability of the core EM;:_IIQM;:(ej)=EM;_lnMJ_ (e5), Vj. If e_; are the projections
in [PiPol, 2.2] for which EN]r_an_l(e’_ ;)€C, constructed by modifying e_; (but still,
e ;EN; 1NN, _y, e ;Ve ;€N; NN, _,), then it follows that Ens/nys (e ;)€C. By
[Po12], there exists a trace preserving (noncanonical!) isomorphism of Nj;,_,NM onto
M’'NMjy; carrying N, NN; onto MiNM,, and e’ epe’ 5e’_; onto ezezeses (which is
the Jones projection for M> CMy. Thus: E(aynm,,)nM., (€3€2¢4€3)€C and by duality
E(M;.n Mo )M, (fi)EC, where f; are the Jones projections for Ma; C M. By Skau’s
lemma (M'NMy ) NMy =M. Thus (vi) = (v). But

(N'NMwx)' NMo = {61 }JU(M'NMy)) NMe ={e1 Y NM =N,

so that (v) & (iv).

Suppose (iv) holds true. Then the same argument as in (vi) = (v) above shows that
Esinr(el;)€C. If Roo=Uy(N;NMoo)=Uy ;(NxNM;), then Skau’s lemma applied to
M'NMy CN'NMy shows that SN Ro=N]NM,,. Thus, by projecting on S, S;NS,;=
N;NN,, and we get (iv) = (iii). Next, (iii) <> (ii) = (i) are trivial.

To prove (vii) = (v), note that FNI,M=FN,‘MF§V,M and thus [T, m]2=|Tn,uml|*=
(Ind EM:N Y =1nd EN:V Ind EMN =Ind EM;M. By 1.3.5 we have

min min min min

Mst,Nst ,
IT 5y, 2 1% < T wvge pgoe II* < Tnd By ™ < Ind B = ||T vy e .

Th M*=t N§* M,N, . s e
usInd E =Ind E which by the formula of the Jones projection for Ny C

min min

M in [PiPol, 4.4] shows that Epgecinps(f1)=Emnn,(f1), where fi=[M:Nleiezeoey is
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the Jones projection for M C M;. By the previously proved equivalence of (vii) and (v),
applied to N; CM, we get that (M'NMy )’ NMs =M. a

We mention that condition (vii) in 5.3.2 is in fact equivalent to (i)-(vi), but the
proof of the converse (i)-(vi) = (vii) will be detailed elsewhere.

5.3.3. Definition. The standard invariant (or paragroup) Gn,um of an extremal (resp.
nonextremal) inclusion N CM is strongly amenable if any of the equivalent conditions
(i)-(vii) of 5.3.1 (resp. (i)—(vi) of 5.3.2) is satisfied.

Note that if we define Gn ar to be ergodic if both N®t, M* are factors (ie., I'n,,n,
I'n,m ergodic) and G} Mé—gf Gnsemsv, T, MdzefI‘ ~se pse (for ergodic G, ar) then conditions
(i)-(iii) (in 5.3.1, 5.3.2) can be reformulated, for ergodic G=Gn, u, as follows:

5.3.4. G is strongly amenable if and only if G=G* if and only if [=T*" and in fact
if and only if T** has the same number of edges starting at * as I' does.

The entropic condition (viii) in 5.3.1 can be regarded as a Shanon-McMillan—
Breimann type condition, analogous to the entropic characterization of strongly amenable
groups of Avez and Kaimonivici-Vershik ([A], [KV], [Po6]). Our formulation is in terms
of conditional entropies, more suitable in the noncommutative operator algebra setting.
If one considers the random walk on the graph Ty aeI' pyeL'n p0... (the composition
means simply glueing the bypartite graphs I', I'* at vertices with the same label) starting
at * and with probabilities determined by the weights §,#, then H(M'NMy41|M'NM})
gives the conditional entropy from step k to step k+1 of the random walk. As this
entropy is always majorized by H(Mi4+1|Mi)=H(M|N) ([PiPol}), one can interpret
condition (viii) in 5.3.1 as follows:

5.3.5 (A Shanon-McMillan-Breimann type condition). G is strongly amenable if and
only if it has mazimal entropy, H(G) (£'lim H(N/NM|N,NN))=H(M|N), i.e., if and
only if the associated random walk tends to have mazimal entropy, at infinity.

Finally, condition (vi) in 5.3.1 coincides in the case of subfactors associated with
actions of finitely generated discrete groups with a characterization of amenability by
Kesten, showing that such a group G is amenable if and only if its Cayley graph has
maximal norm ([Ke}). So, for extremal N CM with N5¢, M®* factors we have:

5.3.6 (A Kesten type condition). Gy ar strongly amenable < |I'y m||®?=[M:N] &
ITS 2 l1?=[M:N).

At this point we should note that while in general the two conditions I' y a ergodic
and ||['n,m|[?=[M:N] are complementary, it is shown in [Po6] that for the locally trivial
subfactors N? C M coming from actions of groups the first condition implies the second!
The next result clarifies this relation.



240 S. POPA

5.3.7. COROLLARY. Let NCM be an extremal inclusion and assume the weight
‘vector § is bounded (equivalently, the set of all indices at irreducible inclusions in the
Jones tower is bounded). Then Gn M is strongly amenable if and only if T'n m 13 ergodic
if and only if 'y, n is ergodic.

Proof. By Corollary 1.3.6, if N§*C M*® is not extremal and  denotes its standard
weights, giving the traces of the minimal projections in M®*’ r‘lM;-", then supy, 7, =00.
But since M’'NM; CM“’OM;‘, any s; is a sum of some r,, 50 sup sy =00, a contradic-
tion. By 5.3.1 we are done. 0

Along these lines, in order to introduce some nice sufficient conditions for paragroups
to be strongly amenable we now consider one more concept.

5.3.8. Definition. Let NCM be extremal. Gn n has subexponential growth if
Uma () ek, v2)!/"=1, where K, CK has the usual significance of the set of even vertices
of 'y, p that can be reached after n steps, starting from *, and 7= (vx)rex is the stan-
dard vector of even local indices in the Jones tower (see 1.3.6). Recall that I'T*v=a7,
where a=Ind EM'N and that a=[M:N), #=5, when NCM is extremal.

min
The next result is analogous to the well known similar statement for groups, where
however the ergodicity condition is redundant (see also 5.4.6).

COROLLARY. If T'y p is ergodic and Gy M has subezponential growth then Gy u is
strongly amenable.

Proof. Let ¥k, =(vk)kek,. Then im(3 ek vi)'/"=1 implies that

el

n lvk,_slle
But if B=IT! then (Bx, )k, ,=0ik,_, so that a|ik,_,|l2<||Bik,|: showing
that || B||=ca, where a=Ind EM:V, O

min

5.4. Further characterizations of amenability for inclusions

With Theorems 5.3.1 and 5.3.2 we can now divide the strong amenability of an inclu-
sion into two separate properties: the amenability of M on the one hand and the strong
amenability of Gy ps on the other. Also, we can now deduce that the existence of hyper-
traces for the standard representation of N C M is sufficient to ensure its amenability.

5.4.1. THEOREM. NCM is strongly amenable if and only if M is the hyperfinite
type 11, factor and Gn m is strongly amenable. If NCM is extremal then NCM is
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strongly amenable if and only if there exists an (N C M)-hypertrace on N5t C M®* (the
standard representation of NCM) and I'y p is ergodic.

Proof. The first part is a coﬁsequence of 4.1.1 and 5.3.1. If NCM is extremal and
N C M5t has a (NCM)-hypertrace, then by 4.4.1 the inclusion graph of NSt C M5,
%y ar» has norm ||T% »/[|>=[M:N]. By 5.3.1, this and the ergodicity of I'y, s imply the
bicommutant condition which by Section 4 implies the strong amenability of NCM. O

In a future paper we will prove a result similar to 5.3.1 for characterizing the
amenability of Gy ps only (i.e., without assuming ergodicity properties on I'y,ar and
the core), in which one of the equivalent conditions is ||I'n m||2=[M:N]. Also, we will
prove that N CM is amenable if and only if M is amenable and Gy, is amenable (i.e.,
IT~,ml|2=[M:N]). We point out that in fact there exist no examples up to now of
irreducible subfactors NCM for which ||Ty,m||2=[M:N] but Ty a is not ergodic. In
fact, the only examples of amenable subfactors which are not strongly amenable are the
locally trivial subfactors in [Po6) associated to actions of finitely generated amenable,
but not strongly amenable groups. Examples of such groups are given in [KaiVe]. Let us
mention here the following:

5.4.2. Problem. Is the amenability equivalent to strong amenability for irreducible
subfactors? Such examples must have infinite depth, i.e., I'y ps infinite. One should
point out that, up to now, there are no other examples of irreducible strongly amenable
subfactors with infinite depth other than Wassermann’s subfactors ([Wa2]) (see 5.1.3)
or tensor products of such subfactors with finite depth ones. In particular, there are no
examples of irreducible amenable subfactors of infinite depth with index 4<[M:N]<8.
The next problems seem of even more interest:

5.4.3. Problem. If J°={[M:N]|NCM irreducible, amenable} then is J* a closed
set? Is it countable? Can it contain an interval? Is the set of isomorphism classes
of strongly amenable subfactors, or at least the one of subfactors with finite depth of
the hyperfinite factor, countable? Note that by the main result of this paper (4.1.1 or
5.1.1), this amounts to evaluate the number of distinct strongly amenable, or merely
finite depth, paragroups. To evaluate cardinality one needs to show that only countably
many paragroups may exist with the same standard graph. (It has been pointed out to
us by A. Ocneanu that this problem is not solved even in the finite depth case.) Note
that in fact any information on the set J* would be interesting to know. Haagerup seems
to have recently found a candidate for the first limit point a; of 72 with o3 >ag=4 and
proved that a; ¢ 72! There are no examples of limit points “from above” in J¢. A more
approachable problem along these lines seems to be to show that if there exists a strongly
amenable subfactor with infinite graph I' then there exist finite depth subfactors with
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graphs I', such that ||,]|<|IT|| and ||T||=lim ||T|| (or even I'=1lim T',,, asymptotically).
In some situations (that should be understood!) this may even be possible by taking I's
to be the restrictions of ' to K,,. Equivalently, one can formulate this question by asking
whether indices of infinite depth strongly amenable subfactors can be isolated points in
J®. Note that conversely, if (I',, #,,) are weighted graphs of finite depth subfactors that
tend (in an appropriate sense) to a weighted graph (I',7) and if ||T'||=lim,|»|| and
if (T',%) is ergodic, then I is the graph of a (strongly) amenable subfactor. Indeed, if
N:Hw N.CIL, M, =M, then Iy z=1lim,T'n=T so that if T is ergodic then N=(N)*c
(M)**=M has Ty y=T.

Let us mention that for subfactors of small index and ergodic graphs, nonamenability
automatically entails the trivality of the higher relative commutants:

5.4.4. COROLLARY. If4<[M:N]<(14v2)'=3+2v2, Gn,u is ergodic (i.e., Tn,m,
Ty, n ergodic) but not strongly amenable (i.e., for extremal NCM, |Tnu|?<[M:N]),
then T'n p=Awo, i.e., the higher relative commutants are generated by the Jones projec-
tions only. Also, if NCM has infinite depth, 4<[M:N]<2++/5 and N'NM=C, then
PN,M =A..

Proof. If 4<[M:N|< (1+\/§)2 then either NC M is locally trivial with N'nM=C?
or N'NM=C (cf. [PiPol]). Since locally trivial subfactors are strongly amenable, we
must have that N'NM=C. Since N C M are factors of index [M**:N*|=[M:N]<
(1+\/§)2, again, either N5t*/NM3t=C or N**/NM**=C? and N C M** is locally trivial.
In the first case, by 5.1.1 NCM would be strongly amenable. The second case means
that N'NMp=Alg{1,ey, ..., ex}, meaning that I'y p=Aco.

If [M:N]<2++/5 then by Corollary 1.4.2, Gn,u is ergodic (i.e., 'nam, v, N are
ergodic) so that if ||| <[M:N] then the first part applies to get Iy m=Ac. If [|T||=
[M:N] then by 1.3.6, Further Remarks 3, we get a contradiction. O

We mention that Haagerup announced a result along this line, showing that in fact
any irreducible subfactor of index 4<[M:N]<4.3 has graph A..
As for the ergodicity of I'y ar versus I'ar,um, , We note:

5.4.5. COROLLARY. If either [M:N]<5 or |y m||>=[M:N], then T'n u is ergodic
if and only if T'n p, is ergodic.

Proof. If ||ITn am||?=[M:N], then |Tas,ar, |2 =T N, m||*=[M: N]=[M;: M] so that by
5.1.1, Ty u is ergodic < Gy, p is strongly amenable <> G, u, is strongly amenable <
I'a,m, is ergodic.

By considering M C M; instead of NCM, it is sufficient to prove I'n,,n (=T'm,nr,)
ergodic = T'y a ergodic. By §1.4,Q=N**CM*=P is a A-Markov inclusion of [PiPol]
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index equal to A~'=[M:N]. If Q is a factor then by [PiPol], 7(p) =), for p€ Z(P). We
need the following:

LeEMMA. If QCP=@}_, P; is an inclusion with Q, P; factors of type 111 then there
exists a projection eg€ P of central trace A= (Ind Eg )~1 such that E5(60)=)\ if and only
if 3°;[P;:Q=[Pi:Q)/7(pi)=A"1, Vi, where p;=1p, € P, if and only if QC P is A\-Markov.
In addition, Eg:np(eg)=Al if and only if QCP; is extremal, Vi.

Proof. If f€P then Eq(fp;)<Eq(f). Since ES(z:pi)=Eg (z:)7(p:) it follows that
(Ind E5)~'=min[P;:Q] "' 7(p;) and the first two conditions follow equivalent. An ortho-
normal basis {m} for P over Q can be obtained as {r(p;)~*/>m}p;}i;, where {mi},
is a basis of P; over Q. Then 3, mymi=3", ; 7(p:) " 'mimi*pi=3",[P;:Q]/7(pi)p; and
the second equivalence follows. The last part is trivial by the representation of eg€ P
with Ctr(eg)=X and Fg(eg)=(Ind Eg)‘lz let f;€Q be projections with > f;=1 and
7(f)=7(p:). Let eX€ f;P;f; be Jones projections for f;Qf;p;C f;P,fi. Then eg=Y e?
satisfies E5(eo)=A1 and Eqinp(eo)=A1 if and only if Ef, g5y, P 1, (€3)=A/7(pi)pifi=
[P;:Q]'p; fi if and only if f;Qfip;C fi P;f; (thus QCP;) are all extremal. O

End of the proof of 5.4.5. If Ms*=P=Y%", P, with P; factors and [P;:Q]<4, Vi, then
NtCM** follows extremal by the previous lemma and then 5.1.1 implies that Gy m
is strongly amenable, thus M3 is actually a factor. So, in order for Mt not to be a
factor when N** is, it is necessary that M**=@_, P; with n>>2 and at least one P,
say Py, has index [P;:Q]>4. But then [MSt:N%|=[P;:Q]/7(p;), Vi, and summing up
(Mt N =5 [PoiQ)/ Xy 7(pi) =X, [Pi:Q] > 4+1=5. O

Note that the above proof shows that if N5t is a factor but M®* is not and if [M: N]<6
then (N*CM*)=(QCP,®P,) with Qp;=P, and with Qp; CP,; a locally trivial Jones
subfactor. Recently Haagerup constructed a subfactor N C M of index 8 cos® m/5=3+ V5
and ergodic I' v »s but with 'y, » nonergodic, by taking appropriate inclusions NCPCM
with [P:N]=2, [M:P]=4cos?> /5. From the above comments, since 3++v5<6, we see
that N C M** must be of the form described above.

5.4.6. Problem. The known examples of subfactors NCM of infinite depth and
subexponential growth Gy s (5.3.8) are the subfactors N° C M7 coming from actions ¢
of discrete groups G with subexponential growth (5.1.5) and Wassermann’s subfactors
(5.1.4). In all such cases the ergodicity of T'y » follows automatically. Does it follow, in
general, that Gn ar with subexponential growth implies Gy pr strongly amenable? Does
this follow at least when one also assumes sup;, sy <oco? We should mention that there
are no known examples of subfactors with bounded vector § which have infinite depth
and are strongly amenable (thus, with ergodic I'y »s by 5.3.7) other than those of the

17-945202 Acta Mathematica 172. Imprimé le 28 juin 1994
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form (N°CM?)®finite depth, in particular there are no examples of irreducible such
subfactors.

5.4.7. Problem. As we will show in another paper, the standard invariant Gy am
determines completely NC M even if one only assumes NCM amenable (thus, I'n
not necessarily ergodic). It seems possible that the class of amenable inclusions is as
much as the standard invariants can uniquely determine. It would be important to prove
(or disprove) that given any non-amenable subfactor N CM of the hyperfinite type II;
factor (for extremal N CM this means ||y, p|| <[M:N]) there exists another subfactor
PCM so that Gy m~Gp p but (NCM)#£(PCM).

Appendix
A.l. A local quantization principle

The type of result that we will discuss now proves to be very useful in exploiting the
noncommutative ergodic phenomena specific to the theory of type II; factors (see [Pol],
[Po2], [Po4], [Po5], [Po10]). Such results allow obtaining from an almost invariant finite
dimensional vector space Hy, an (almost) invariant matrix algebra by taking HogqHy,
with ¢ an “infinitesimal” projection satisfying gH{Hog~Cgq. The proof of this result
is essentially contained in [Pol], [Po10] but we will give it here anyway, for the sake of
completeness.

A.1.1. LEMMA. Let BCB; be finite von Neumann algebras with a normal finite
faithful trace . Let X CB; be a finite set of elements such that Epy(p'np,)(z)=0, for
all ze X. Given any 6>0, there ezists a partition of the unity {p;}; with projections in

B such that
> piap;
i

Proof. Step 1. We first prove that if z€B; is so that Egypnp, (2)=0 then there
exists vEU(B) such that |lvzv*—z|]2>|jz|2. Let K be the weak closure of the set of
Dixmier averagings of z, i.e., K=co¥{vzv*|veU(B)}, which is a w-compact convex

<6, VzelX.
2

subset in B;. Since K is weakly compact, by the inferior semicontinuity of the norm
|| - ll2 it follows that there exists an element yo€ K such that

llyollz =inf{llyll2|y € K}

Since || - ||2 is a Hilbert norm and K is convex, it follows that y, is the unique element
in K with this property. But vKv*€ K for all vel(B), in particular vyov*€ K. Since
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[lvyov*[|2=]|yoll2, by the uniqueness of yq it follows that vyov*=yo so that [v,yo]=0, for
all vel(B). Thus yo€ B'NB;. But Egy(p'ns,)(z)=0 implies Epy(p/np,)(vTv*)=0, for
v€ B, so that by weak limits Egy(p/np,)(y0)=0. This is in contradiction with yo€ B'NB;,
unless y=0.

This proves that 0€ K.

Suppose now that |jvzv*—z||;<||z]|2 for all veU(B). Thus

llvzv*~z|3 = lvzv*|3 +||zll3 - 2Re 7(z"vav*) < [lz]I3

so that 2Re7(z*vzv*)>||z||3, for all v, and thus, by taking convex combinations and
weak limits, 2 Re(z*y)>||z||3 for all ye K. In particular, for yo=0, we get 0>||z|3 a
contradiction, unless z=0.

Step 2. We now prove that if z€B;, ¢#0, is so that Epy(gnp,)()=0 and if
{p?},CP(B) is a given finite partition of the unity with projections in B, then there
exists a finite partition of the unity (p}); CP(B), refining (p) such that

13 piap}, < 3lala-

To do this, we apply Step 1 to z1=Y_ p?zp (instead of z), 3 p?Bp? (instead of B),
by taking into account that (3 p?Bp?Y'NB; =Y p?(B'NB;)p? so that

E(y 0 800)v(s 50 By n B, (T1) = By 0(Bv BBy )2 (7)
= Ey p9(BvB'nBy ) EBvEnB, (T) =0

We thus get a unitary element v, €U(Y_ p? Bp?) such that |[v1z1v{—z1[|2>||z1]]2. Let
e; be some spectral projections of v; so that ) e;=1 and so that for suitable scalars A;,
|Ai|=1, we have ||} A;e; —v1|| small enough to ensure that

[( re)= (X Xses) -aal], 2 lmale

Using the mutual orthogonality, with respect to the scalar product given by the
trace, of the elements {e;z1€;}; ; and the inequality 2>]A¢5\,~—l|, we get:

2 2
dealf—a| S e =4S ewaie
i 2 i#j 2
2
2 Z(/\i)\j—l)eixlej
i#j 2

2
2 flal3-
2

- “ (Z )\,—ei)xl (; x,-ej) o
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From the first and last terms of the inequality we get:

” E €;T16€4

) to be the projections (eipy); ; we get

2 2
“Zp}mp}Hz = ”Zp}xlp}”z < 3leall3 < 3llll3-

Step 3. By applying recursively Step 2 k times for each r€X, with k so that

2
<l

Taking (p;

(3)F <62, we get the required partition. O

A.1.2. THEOREM. Let BC M be type II; factors. Given any >0 and any finite set
of elements Y C M, there exists a projection g€ B such that |lqyg— Epnm (y)all2 <ellq]l2,
for all yeY.

Proof. For each yeY let y'=Epgy(pnm(y) and y'=y—y'.
Let e>6card Yé,>0. For each 3’ as above there exists some finite number of ele-
ments b€ B, b€ B'NM such that

y - Z bb’

Denote by S the finite set of all such elements b, corresponding to all y’ coming from
yeyY.

We claim that there exists a separable subfactor By C B such that SC By. Indeed, by
Dixmier’s theorem, given any countable set 7'C B, there exists a countable set of unitaries
U(T) such that T(y)leco® {vyv*|vel(T)}, for all yeT. Thus, by defining recursively
To=8US*, T; 11=U(T;)UU(T;)* and by taking Bo=vN({J; T:), it follows that By has the
Dixmier property and thus has a unique trace. Thus By is a factor and by construction

R < bg. (0)

SC By and By is separable (having a faithful trace and being countably generated).
But if By is a separable type II; factor then we claim that there exists a hyperfinite
subfactor RC By such that R'NBo=C (cf. [Po4]). Indeed, if {z,}, is a countable subset
of By, dense in By in the norm || - ||2, then one constructs recursively mutually commuting
matrix subalgebras N;>~Mj, «k,(C), i>1 in By such that, if M,=N;V...VN,, then

| Em:nge(xi)—7(z:)1]l2 <27, 1<i<n.

For suppose we made the construction up to n. Let ACM;NBy be a maximal
abelian subalgebra, so that A’'N(M/NBy)=A. By taking an “approximation” of A by
finite dimensional subalgebras, it follows that there exists an abelian finite dimensional
subalgebra AgC A such that

I a1(m,0 o) (Enz,nBo ()~ Eao (Enzngo (2i))ll2 <2777
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for all 1<i<n+1, and so that all the minimal projections of Ag have the same trace. Let
then Ny, be a matrix subalgebra of M/ NB, having Ay as a diagonal. Then we have
for Mn+1 =Mn VNn+1,

1Enm, 8o (i) —T(2:) |2 = | Enr,,, nBo (B agnmy,aBe (Emynge (i) = 7(2i)1l2

SNEN:,,nBo(Eao(Enming, (i) — (i)l +27" =277,

Now, by taking R=UW it follows that Egnp,(zi)=7(x;)1, for all i, so that, by
density Ernp,(z)=7(z), for all z€ By.

Let now R be represented as an infinite tensor product R=&) geS. (Max2(C))g with
the countable index set So, being the infinite symmetric group (the finite permutations of
{1,2,...}). It follows that S, acts on R by shifting the indices, i.e., for g€ S, @ znER,
we put o(g)(®)}, zn)=@Q),, £4x. This action is easily seen to be ergodic, i.e., if o(g)(z)=1z
for all g€ S, then z€Cl.

Let R,=RS~ be the fixed point algebra of R under the restriction of this action o
t0 S, CSe. Clearly (), R, =C1 (by the ergodicity of o) and R, NR=C for each n (since
the action of S, by o is properly outer). From R, | C1 it follows that

lim | g () - 7(z)1[2=0, VzeM.
Thus, for ng large enough,
|Er, (b)—T(b)1]}2 <6, VBES. (1)

Since R;, ,NR=C, by A.1.1 there exists a finite dimensional abelian subalgebra A; C
R, such that
| Ea;nr(ER(b)—ER, (b))2 <8, VbES. (2)

Moreover, since SCBg and R'NBy=C, by A.1.1 there exists a finite dimensional
abelian subalgebra A; CR, with A2D A,, such that

| Eaznp,(b—Er(b))ll2 <6, VbeS. (3)
Putting together (1), (2), (3) we get:

| Eaynp(®)—7(b)1ll2 = | EaynB, (6) —T(b)1ll2
<6+|Eaynp, (Er(8))—T(0)1]l2
=6+||Eaynr(ER(b)— ERr, (b)) +Eaynr(ER,,(0) —T(0)1)]]2
<26+ ||Eainr(ER(D)—ER, (b))ll2 < 36.
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Now, going back to (0), it follows that if § is chosen from the beginning very small
(e.g. 6<bo(4Y_|Ib']|+1)~! will do), then we get:

I Eaynm¥') = Epom(@ )2 < 250+”EA',nM (Z bb') —Epnm (Z bb’) U2
<260+ Y_ IVl Eagnne (8) ~7(B)1l2
<260+38 ) _ ||b[| <e/2cardY.

Finally, by applying A.1.1 to the inclusion BCM and to the finite set of elements
y" (which are orthogonal to BV(B’NM) by construction) we get a refinement A3 C B of
Aa, i.e., A3 abelian, finite dimensional, such that

| Eaynm(y" iz <e/2cardY, Vy".

Thus we get
NEaynm(¥)—Epnm(y)ll2 <e/cardY

for all y€Y. If {¢;} are the minimal projections of A3 then this yields:

2
2

5 oy~ Eorone )l = | 2 sty Esrone)e

= | Eayrm(¥)— Epam(®)ll < (¢/card Y)?
=2 (e/card Y laill.

So, there exists some g=g¢; for which

leyg— Epnm(v)allz <cellallz, VyeY. a

The importance of A.1.2 will become clear through the following consequence, that
can be regarded as a local quantization principle, as it gives the possibility of obtaining
local algebras from vector spaces:

A.1.3. COROLLARY. Let BCM be type 11, foctors and assume B'NM is finite
dimensional. Let HoCM be a finite dimensional vector space such that Hy is a B'NM
right module, i.e., HoB'NM=Hg, and such that it is in fact a free B'NM module,
i.e., Ho=(B'NM)" as modules, for some n. Given any £>0 there exists a projection
g€B such that HogH{ is e7(q)-close to a finite dimensional algebra By of the form
Muxn(B'NM).

Proof. Let x;€Hy be so that Ho=)_._,z:B'NM. Then, by the Gram-Schmidt
process, replacing x; by z1 Epna(z3z,)~1/2, we may assume Ep/ny(z}z,)=1 and more
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generally that Ep/nas(2;z;)=06;5. Apply A.1.2 to {z}z;}:; and to 6>0 to get a projection
g€ B such that ||gz;z;9—0;;ql|2<6llgll2. By using the perturbation result proved next,
one can then find partial isometries (v;); C M such that

v;v; =64,
lzig—wvill2 < £(6)llall2

where f(6)—0 when §—0. By taking BO:Zi,j v;B'NMvj and § very small, the state-
ment follows. O

Let us finally point out a more general similar result, that can be obtained in the
nonfactorial case:

A.1.4. THEOREM. Let BCM be type II; von Neumann algebras (not necessarily
factors). Let 1, ...,2,€M and £>0. There exists a projection g€ B such that

lgzig—Epnm(z)gll <ellgll, 1<i<n.

Proof. The only change that has to be made in the proof of Theorem A.1.2 to get
this nonfactorial version is the proof of the fact that given a finite set of elements Y in B
and 6>0 there exists a partition of the unity {p;} in B such that ||} p;yp; —7(y)|l2<6.
The first step in proving this was the construction of a hyperfinite subfactor RCB in
any separable type II; factor B such that R'NBy=C. The second step consisted in
constructing a decreasing sequence of type II; subfactors R,,C R with R, |C, R, NR=C.
This second step does not depend on B, M or By being factors. The first step has to be
changed into the existence of a hyperfinite factor R with R'NBy=Z(Bg). The existence
of such an R is proved in [Pol1]. The rest of the proof is identical. O

A.2. A perturbation result

We will prove now a perturbation result needed when applying Theorem A.1.2 (cf. A.1.3).
Namely, that if {x;;} is a finite set of elements that almost satisfies the axioms of a matrix
unit then {z;;} is close to a matrix unit. Results of this type appeared first in the work
of Murray and von Neumann, in the context of von Neumann algebras and in the work
of Glimm, in the context of C*-algebras. It has become since then a standard technique
in operator algebra.

A.2.1. LEMMA. Let >0 and (yi)1<ign 0 finite set of elements in the type I1; factor
M, with n>1 and e<1/n. Assume

ly; vi —bijall2 <eligll2
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for all 1<, j<n and some projection q.
Then there exist partial isometries (v;)igign such that if we denote by

Qo = 3ma.x{1, "yllla ey "yﬂ”}
and we put Bo=0f(ad+1)""2, then:

* —
v;v; =bi5¢,

[lvi—yilla < Boellgllz2 for all 1<i<n.

Proof. Assume first n=1 and put ¢; =¢. By taking y:q instead of y; we may assume
that s(y}y;)<q. If 1>a>0 then the spectral projection of yjy, corresponding to the
interval (1—a,1+a), p=E_q,14+a)(y1y:1) will satisfy

(1-a)*r(g—p) < vy, —all3 < 2llgll3 =27 (q).

Let vi=y,(41%1) " V2E(1_a1+a)(1%1). Then we have v}*v} =p and the estimates

llv ~91l13 = 7(p)+7(yiv1) —27(lv1|p)
<1(p)+7(win) - 2r()(1-)'/?
so that by the Cauchy—Schwartz inequality we get
<7(p)+7(g) +7((Wiv —9)9) - 2r(p)(1 @)/
<r(p)+1(q)+e*r(q) —2r(p)(1~a)'/?
<27(p)(1-(1-a)/)+e*(1+(1~-a)"?)1(g)
<Br(q)

where 8=2(1—(1-a)'/2)+e2(1+(1—a)~2). So, by taking a=¢2, we get 8<2e%+2¢*=

4¢2. Thus, if we take v; to be any partial isometry which extends v} and y, (y}y;) /2

to all ¢, then

o1 =w1l% = lvi —y1pl3 +11(v1— 1) (g—D)II3
< 5e27(g)+7(g—p)+7(¥ v (2—D))
< (762 +2e%)1(q) = 9<% 7(q).

This proves the statement for n=1.
Assume we proved that there exist partial isometries vy, v, ..., vx such that

v;‘vj :6¢jq, léi,jgk,

lvi—will2 <eillgllz,



CLASSIFICATION OF AMENABLE SUBFACTORS OF TYPE II 251

for some €;>0, 1<i<k, where £;=3¢. Let y_ , =(1 — ¥ 90! )y Note that we have:

k
191941 —all2 < 5||¢1”2+Z ¥k +1%i%; Yrqall2

i=1

<ellallz+lgerall Y Iggavilla
i

<ellgllz+lyr+all (Z Iy 42 (wi=y)llz+) ”yI:+1yi“2>
i i

E
<ellallz+lyrrlPllallz Y ei+ke =€l allallz-
i=1
By the proof of step n=1 it follows that we can find first v}, so that vi} vi,;<q
and vp*,v;=0 and

“'Ult+1 _yllc+1 ll2 < 2511c+1 llq]l2-

Since 7(1~ Ele v;u}) > (n—k)7(q) (because 7(g)<1/n) it follows that we can extend
iy to & partial isometry vg41 such that v}, v, =qand v, v5,, él—Zle v;v] and

such that v§,y;,,>0. By the step n=1 we have

llvg41 _yI%:+1 llz < 3511c+1 llgll2-

Thus we get

lok+1=yrrallz < 3ekiallalla+ D 07 gerall2

1

k
< 3ekpallallzt+kellgllz+ llyerall Y e:llalla

=1

k
- (4(k+1>e+<3uyk+1u2+uymu) Z) Il

i=1
k

< Bmax{|lyx+1ll, 117 Y eillallz = exriliglla.

=1

By induction, it follows that if we put ag=3max{l, |ly1]|,-, lynll} then e1<ade,
ea<ader<ade, .., ex1<0E Y, £:<of(0f+1)*1¢ and the statement follows. O
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