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0. Introduction

A subset ACCY is a real algebraic set if it is defined by the vanishing of real-valued
polynomials in 2N real variables; we shall always assume that A is irreducible. By
Areg we mean the regular points of A (see e.g. [HP] or [BCR]). Recall that A.eg is a
real submanifold of C¥, all points of which have the same dimension. We write dim A=
dimg A for the dimension of the real submanifold A;eg. A germ of a holomorphic function
f at a point po€C¥ is called algebraic if it satisfies a polynomial equation of the form

ak(Z2)f¥(Z)+...+a1(Z) f(Z)+ao(Z) =0,

where the a;(Z) are holomorphic polynomials in N complex variables with ax(Z)#0.
A real-analytic submanifold in C¥ is called holomorphically degenerate at po€ M if there
exists a germ at pg of a holomorphic vector field, with holomorphic coeflicients, tangent
to M near pp, but not vanishing identically on M; otherwise, we say that M is holomor-
phically nondegenerate at po (see §1). In this paper, we shall give conditions under which
a germ of a holomorphic map in CV, mapping an irreducible real algebraic set A into
another of the same dimension, is actually algebraic. We shall now describe our main

results.

THEOREM 1. Let ACCY be an irreducible real algebraic set, and po a point in E,
the closure of Areg in CN. Suppose that the following two conditions hold.

(1) A is holomorphically nondegenerate at every point of some nonempty relatively
open subset of Areg.

(2) If f is a germ, at a point in A, of a holomorphic algebraic function in CV such
that the restriction of f to A is real-valued, then f is constant.
Then if H is a holomorphic map from an open neighborhood in CV of py into CV,
with Jac H#0, and mapping A into another real algebraic set A’ with dim A'=dim A,
necessarily the map H 1is algebraic.

We shall show that the conditions (1) and (2) of Theorem 1 are essentially necessary
by giving a converse to Theorem 1. For this, we need the following definitions. If M is
a real submanifold of CV and pe M, let T, M be its real tangent space at p, and let J
denote the anti-involution of the standard complex structure of C". We say that M is
CR (for Cauchy-Riemann) at p if dimgr (T, M NJT, M) is constant for ¢ in a neighborhood
of pin M. If M is CR at p, then dimg T, MNJT,M=2n is even and n is called the CR
dimension of M at p. We shall say that an algebraic manifold M c C¥ is homogeneous
if it is given by the vanishing of N —dim M real-valued polynomials, whose differentials
are linearly independent at 0, and which are homogeneous with respect to some set of
weights (see §3.6).
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THEOREM 2. Let ACCY be an irreducible real algebraic set, and let (1) and (2) be
the conditions of Theorem 1. Consider the following property.

(8) For every po€Areg at which A is CR there exists a germ of a nonalgebraic
biholomorphism H of CN at po mapping A into itself with H{po)=po.
If (1) does not hold then (3) holds. If (1) holds, but (2) does not hold, let f be a
nonconstant holomorphic function whose restriction to A is real-valued. If f vanishes
identically on A, then (3) holds. If f does not vanish identically on A, but A is a
homogeneous CR submanifold of CV, then (3) still holds.

We shall give another version of conditions (1) and (2) of Theorem 1, which will
give a reformulation of Theorems 1 and 2. For a CR submanifold M of C¥, we say that
M is minimal at po€ M if there is no germ of a CR submanifold in CV through py with
the same CR dimension as M at pg, and properly contained in M. A CR submanifold is
called generic at p if

T,M+JT,M =T,C", (0.1)

where T,CV is the real tangent space of C. (See §1.1 for more details and equivalent
formulations.)

For an irreducible real algebraic subset A of CV, we let Acr be the subset of points
in Areg at which A is CR. The following contains Theorems 1 and 2.

THEOREM 3. Let ACCY be an irreducible real algebraic set, and let (1), (2) and (3)
be the conditions of Theorems 1 and 2. Consider also the following conditions.

(i) There ezists p€ Acr at which A is holomorphically nondegenerate.

(ii) There exists p€ Acr at which A is generic.

(iii) There exists p€ Acr at which A is minimal.
Then condition (i) is equivalent to condition (1), and conditions (ii) end (iii) together are
equivalent to condition (2). In particular, (i), (ii) and (iii) together imply the conclusion
of Theorem 1. If either (i) or (ii) does not hold, then (3) must hold. If (iil) does not
hold, and A is a homogeneous CR manifold, then (3) must also hold.

Note that conditions (i), (ii) and (iii) of Theorem 3 are all independent of each other.
The following is a corollary of Theorems 1-3.

COROLLARY. Let MCCN be a connected real algebraic, holomorphically nondegen-
erate, generic submanifold. Assume that there ezists pe M, such that M is minimal at p.
Suppose that A’ is a real algebraic set in CV' such that dimg A'=dimg M and that H
is a holomorphic mapping from an open neighborhood in CV of a point py€ M satisfying
H(M)CA’ such that the rank of H is equal to N at some point. Then H is algebraic.
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If M is a real-analytic CR submanifold of CV and ppe M (with M not necessar-
ily minimal at pp), then by Nagano’s theorem [N] there exists a real-analytic minimal
CR submanifold of M through pg of minimum possible dimension (and the same CR
dimension as M) contained in M. Such a manifold is called the CR orbit of py. We call
the germ of the smallest complex-analytic manifold of CV containing the CR orbit the
intrinsic complexification of this orbit.

Note that if VCC”V is a complex algebraic set, i.e. defined by the vanishing of
holomorphic polynomials, then one can define the notion of an algebraic holomorphic
function on an open subset of V., (see §3.1).

For CR submanifolds which are nowhere minimal, we have the following.

THEOREM 4. Let M be a real algebraic CR submanifold of CN and ppe M. Then the
CR orbit of py is a real algebraic submanifold of M and its intrinsic complexification, X,
is a complezx algebraic submanifold of CV. For any germ H of a biholomorphism at py
of CV into itself mapping M into another real algebraic manifold of the same dimension
as that of M, the restriction of H to X is algebraic.

The algebraicity of the mapping in Theorem 4 follows from Theorem 1, after it is
shown, in the first part of the theorem, that the CR orbits are algebraic. (See Theorem
2.2.1.) We mention here that the algebraic analog of the Frobenius or Nagano theorem
does not hold, since the integral curves of a vector field with algebraic coeflicients need not
be algebraic. It is therefore surprising that the CR orbits of an algebraic CR manifold
are algebraic. In §3.1 we formulate and prove Theorem 3.1.2, a more general result
containing Theorems 1 and 4, which also applies to points in an algebraic set A at which
A is not necessarily CR or even regular, and which, in some cases, yields algebraicity on
a larger submanifold than the one obtained in Theorem 4. (See Example 3.1.5.)

Note that if a germ of a holomorphic function is algebraic, it extends as a (multi-
valued) holomorphic function in all of C¥ outside a proper complex algebraic subset.
This may be viewed as one of the motivations for proving algebraicity of functions and
mappings.

We give here a brief history of some previous work on the algebraicity of holomorphic
mappings between real algebraic sets. Early in this century Poincaré [P] proved that if a
biholomorphism defined in an open set in C? maps an open piece of a sphere into another,
it is necessarily a rational map. This result was extended by Tanaka [Ta] to spheres
in higher dimensions. Webster (W1| proved a far-reaching result for algebraic, Levi-
nondegenerate real hypersurfaces in CV; he proved that any biholomorphism mapping
such a hypersurface into another is algebraic. Later, Webster’s result was extended in
some cases to Levi-nondegenerate hypersurfaces in complex spaces of different dimensions
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(see e.g. Webster [W2], Forstneri¢ [Fo}, Huang [H] and their references). See also Bedford—
Bell [BB] for other results related to this work. We refer the reader in addition to the work
of Tumanov and Henkin [TH] and Tumanov [Tu2] which contain results on mappings
of higher-codimensional quadratic manifolds. See also related results of Sharipov and
Sukhov [SS] using Levi-form criteria; some of these results are special cases of the present
work.

It should be perhaps mentioned that the algebraicity results here are deduced from
local analyticity in contrast with the general “G.A.G.A. principle” of Serre [Ser], which
deals with the algebraicity of global analytic objects.

The results and techniques in the papers mentioned above have been applied to
other questions concerning mappings between hypersurfaces and manifolds of higher
codimension. We mention here, for instance, the classification of ellipsoids in CV proved
in [W1] (see also [W3] for related problems). We refer also to the regularity results for
CR mappings, proved in Huang [H], as well as the recent joint work of Huang with the
first and third authors [BHR]. Applications of the results and techniques of the present
paper to CR automorphisms of real-analytic manifolds of higher codimension and other
related questions will be given in a forthcoming paper of the authors [BER].

In [BR3], the first and third authors proved that for real algebraic hypersurfaces
in CN, N>1, holomorphic nondegeneracy is a necessary and sufficient condition for
algebraicity of all biholomorphisms between such hypersurfaces. It should be noted
that any real smooth hypersurface M CC¥ is CR at all its points, and if such an M is
real-analytic and holomorphically nondegenerate (and N>1), it is minimal at all points
outside a proper analytic subset of M. Hence, the main result of [BR3| is contained
in Theorem 3 above. (In fact the proofs given in this paper are, for the case of a
hypersurface, slightly simplified from that in [BR3], see [BR4].) It is easy to check that
in C, any real algebraic hypersurface (i.e. curve) is holomorphically nondegenerate, but
never minimal at any point. In fact, by the (algebraic) implicit function theorem, such a
curve is locally algebraically equivalent to the real line, which is a homogeneous algebraic
set in the sense of Theorem 3. The conclusion of Theorem 3 agrees with the observation
that, for instance, the mapping Z—eZ maps the real line into itself.

The definition of holomorphic degeneracy was first introduced by Stanton [St1] for
the case of a hypersurface. It is proved in [BR3] (see also [St2]) that if M is a connected
real-analytic hypersurface, then M is holomorphically degenerate at one point if and
only if M is holomorphically degenerate at all points. This condition is also equivalent
to the condition that M is nowhere essentially finite (see §1). In higher codimension
we show in this paper that holomorphic degeneracy propagates at all CR points (see
§1.2). The definition of minimality given here was first introduced by Tumanov [Tul].
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For real-analytic CR manifolds minimality is equivalent (by Nagano’s theorem [N]) to
the finite type condition of Bloom-Graham [BG] (see also [BR1]). Both formulations,
i.e. minimality and finite type, are used in this paper.

The main technical novelty of this work is the use of a sequence of sets, called here
the Segre sets attached to every point in a real-analytic CR manifold. For M algebraic,
the Segre sets are (pieces of) complex algebraic varieties. Another result of this paper, of
independent interest, is a new characterization of minimality (or finite type) in terms of
Segre sets (see Theorem 2.2.1). In fact, it is shown that the largest Segre set attached to
a point po€ M is the intrinsic complexification of the CR orbit of pp. This in particular
proves the algebraicity of the CR orbit when M is algebraic. The first Segre set of
a point coincides with the so-called Segre surface introduced by Segre [Seg] and used
in the work of Webster [W1], Diederich-Webster [DW], Diederich-Fornaess [DF] and
others. Qur subsequent Segre sets are all unions of Segre surfaces. The difficulty in the
present context arises from the fact that the real algebraic sets considered can be of real
codimension greater than one. Indeed, in the codimension one case, i.e. hypersurface,
the Segre sets we construct reduce to either the classical Segre surfaces or to all of CV.

The paper is organized as follows. In §1.1 we recall some of the basic definitions
concerned with real-analytic manifolds in C¥ and their CR structures. The other sub-
sections of §1 are devoted to proving the main properties of holomorphic nondegeneracy,
which are crucial for the proofs of the results of this paper. In §2 we introduce the notion
of Segre sets, as described above; their basic properties, including the characterization
of finite type and the algebraicity of the CR orbits, are given in Theorem 2.2.1. In §3
we prove the main results of this paper, of which Theorems 1-4 are consequences. For
the proof of the most inclusive result, Theorem 3.1.2, a general lemma on propagation
of algebraicity, which may be new, is needed; it is proved in §3.2. The actual proofs of
Theorems 1-4 are given in §3.6. Examples are given throughout the paper.

1. Holomorphic nondegeneracy of real-analytic sets
1.1. Preliminaries on real submanifolds of CV
Let M be a real-analytic submanifold of CV of codimension d and po€ M. Then M near
po is given by g;(Z, Z)=0, j=1,...,d, where the o; are real-analytic, real-valued functions
satisfying
d,Ql(Z, Z)/\.../\dgd(Z, Z) #0

for Z near pgy. It can be easily checked that the manifold M is CR at po if, in addition, the
rank of (8¢1(Z, Z), ...,004(Z,Z)) is constant for Z near po, where of=>%,(0f/0Z;)dZ;.
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Also, M is generic at pg if the stronger condition
001(Z,Z)N...N8pa(Z,Z) #0 (1.1.1)

holds for Z near pg.

For pe M, we denote by T, M the real tangent space of M at p and by CT, M its
complexification. We denote by TI(,)’IM the complex subspace of CT,, M consisting of all
anti-holomorphic vectors tangent to M at p, and by T; M =Re Tz?‘lM the complex tangent
space of M at p considered as a real subspace of T,M. If M is CR, then dimc 7' M
and dimr T; M are constant, i.e. independent of p, and we denote by T9'M and T°M
the associated bundles. The CR dimension of M is then

CRdim M =dimc T)"' M = } dimg TS M.

If M is generic, then dimc TZ?’IM =N-—d for all p. If M is CR, then by Nagano’s
theorem [N] M is the disjoint union of real-analytic submanifolds, called the CR orbits
of M. The tangent space of such a submanifold at every point consists of the restrictions
to that point of the Lie algebra generated by the sections of 7°M. Hence M is of
finite type (in the sense of Bloom—Graham [BG]) or minimal at p (as defined in the
introduction) if the codimension of the CR orbit through p is 0, i.e. if the Lie algebra
generated by the sections of T°M spans the tangent space of M at p.

Note that if M is a real-analytic submanifold of CV then there is a proper real-
analytic subvariety V of M such that M\V is a CR manifold. If M is CR at po then we
may find local coordinates Z=(Z’, Z") such that near pg, M is generic in the subspace
Z"=0. Hence, any real-analytic CR manifold M is a generic manifold in a complex
holomorphic submanifold X of C¥, here called the intrinsic complexification of M. We
call dimc X —CRdim M the CR codimension of M. Hence, if M is a generic submanifold
of CV of codimension d its CR dimension is N—d and its CR codimension is d. In
view of the observation above, we shall restrict most of our analysis to that of generic
submanifolds of CN.

For a CR manifold M, we define its Hérmander numbers at po€ M as follows. We
let Eo=T; M and p; be the smallest integer 22 such that the sections of T°M and
their commutators of lengths < p; evaluated at pg span a subspace E; of T, M strictly
bigger than Eq. The multiplicity of the first Héormander number p; is then I} =dimg E; —
dimg Eg. Similarly, we define o as the smallest integer such that the sections of of T°M
and their commutators of lengths <us evaluated at py span a subspace Ey of T, M
strictly bigger than E;, and we let l;=dimg F;—dimg E; be the multiplicity of po. We

continue inductively to find integers 2< 1 <p2<...<ps, and subspaces T, M=EqG E; C
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.G E,CTy M, where E, is the subspace spanned by the Lie algebra of the sections of
T°M evaluated at py. The multiplicity I; of each p; is defined in the obvious way as
above. It is convenient to denote by m;<my<...<m, the Hoérmander numbers with
multiplicity by taking m;=mg=...=my, =p1, and so on. Note that if M is generic, then
r=d if and only if M is of finite type at py. More generally, if M is CR, then r coincides
with the CR codimension of M if and only if M is of finite type at po.

Now suppose that M is a real-analytic generic submanifold of codimension d in CVY
and o(Z,2)=(01(Z,2Z), ..., 04(Z, Z)) is a defining function for M near po€ M. We write
N=n+d. We define the germ of an analytic subset V,, CC¥ through py by

Vpo ={Z:0(Z,¢) =0 for all { near pp with o(pg,{)=0}. (1.1.2)

Note in fact that V,y CM. Then M is called essentially finite at po if Vp,={po}.
Recall that by the use of the implicit function theorem (see [CM], {BJT], [BR2])
we can find holomorphic coordinates (z,w), 2€C", weC¢?, vanishing at py such that

near po,
0(Z,Z) =Imw—¢(z, %, Rew),

where ¢(z, z,8)=(¢1(2,%,8),...,04(2,%,8)) are real-valued real-analytic functions in
R?"*4 extending as holomorphic functions ¢(2, x, o) in C?**¢ with

$(2,0,0) = (0, x,0) =0.
Hence, solving in w or @ we can write the equation of M as
w=Q(z,2,@) or @W=Q(2,zw), (1.1.3)

where Q(z,x,7) is holomorphic in a neighborhood of 0 in C?**¢  valued in C¢ and
satisfies

Q(z,0,7)=Q(0,x,7)=T. (1.1.4)

It follows from the reality of the g; and (1.1.3) that the following identity holds for all
z,x, w€C?*4 near the origin:

Q(z,x, Q(x, 2, w)) = w. (1.1.5)

Coordinates (z,w) satisfying the above properties are called normal coordinates at po.
If Z=(z, w) are normal coordinates at pg, then the analytic variety defined in (1.1.2)
is given by
Voo = {(2,0): Q(2,x,0) =0 for all x€ C*}. (1.1.6)
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Remark 1.1.1. If the generic submanifold M is real algebraic, then after a holomor-
phic algebraic change of coordinates one can find normal coordinates (z, w) as above such
that the function @ in (1.1.3) is algebraic holomorphic in a neighborhood of 0 in C?"+¢,
and hence V,, is a complex algebraic manifold. If M is a real algebraic CR submanifold,
then its intrinsic complexification is a complex algebraic submanifold. Indeed, these are
obtained by the use of the implicit function theorem, which preserves algebraicity. (See
[BM] and [BR3]| for more details.)

1.2. Holomorphic nondegeneracy and its propagation

A real-analytic submanifold M of C¥ is called holomorphically degenerate at poe M if
there exists a vector field X =E;.V=1 a;(Z)0/0Z; tangent to M where the a;(Z) are germs
of holomorphic functions at py not all vanishing identically on M. For CR submanifolds,
we shall show that holomorphic nondegeneracy is in fact independent of the choice of the
point po.

PROPOSITION 1.2.1. Let M be a connected real-analytic CR submanifold of CV,
and let p1,p2€M. Then M is holomorphically degenerate at p, if and only if it is holo-
morphically degenerate at p,.

Proof. Since, as observed in §1.1, every CR manifold is a generic submanifold of a.
complex manifold, it suffices to assume that M is a generic submanifold of CV. We shall
be brief here, since the proof is very similar to that of the case where M is a hypersurface,
i.e. d=1, given in [BR3]. We start with an arbitrary point po€ M and we choose normal
coordinates (2, w) vanishing at py. We assume that M is given by (1.1.3) for (z, w) near 0.
We write

Q(Xasz)zzqa(z7w)xa’ (121)

for |z],]x|, |w]<8. We shall assume that é is chosen sufficiently small so that the right-
hand side of (1.2.1) is absolutely convergent. Here q, is a holomorphic function defined
for |z|, |w| <6 valued in C?. We leave the proof of the following claim to the reader, since
it is very similar to the case d=1 proved in [BR3]:

Let (2!, wh)eM, with |2t|,|wl|<b. If X is a germ at (2',w') of a holomorphic
vector field in CV, then X is tangent to M if and only if

n 6 n
X:Zaj(z,w)—ézg and Zaj(z,w)qa,zj (z,w)=0, (1.2.2)
j=1

Jj=1
with a; holomorphic in a neighborhood of (z*,w'), for all multi-indices a, and (z,w) in
a neighborhood of (z',w'), where the qa,., are the derivatives with respect to z; of the

do given by (1.2.1).
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As in {BR3], it easily follows by linear algebra from (1.2.2) that if M is holomorphi-
cally degenerate at a point (z!,w!) as above, then it is holomorphically degenerate at
any point (z,w) in the local chart of normal coordinates. Proposition 1.2.1 then follows
by the existence of normal coordinates at every point and the connectedness of M. O

In view of Proposition 1.2.1, if M is a connected CR manifold in C¥ we shall say
that M is holomorphically nondegenerate if it is holomorphically nondegenerate at some
point, and hence at every point, of M.

1.3. The Levi number and essential finiteness

Let M be a real-analytic generic manifold in C¥, poe M and o(Z, Z) defining functions
for M near pg as in (1.1.1). Without loss of generality, we may assume py=0. For p,
close to 0 we define the manifold ¥£,, by

Ty, ={¢€CY: 0(p1,¢) =0}

(This is the complex conjugate of the classical Segre manifold.) Note that by (1.1.1),
¥,, is a germ of a smooth holomorphic manifold in C¥ of codimension d. Let Ly, ..., Ly,
n=N—d, given by L;=3"1_, a;x(Z,Z)8/3Z, be a basis of the CR vector fields on
M near 0 with the a;; real-analytic (i.e. a basis near 0 of the sections of the bundle
TO1M). If X4,..., X, are the complex vector fields given by ijzlzcv:l ajk(p1,¢)0/ 0k,
Jj=1,...,n, then Xj is tangent to £, and the X; span the tangent space to £, for (€X,,
in a neighborhood of 0, with (p1,()—a;x(p1,¢) holomorphic near (0,0) in C?V. For a
multi-index a=(ay, ..., an) and j=1,...,d, we define ¢;o(Z,p1,¢) in C{Z,p1,¢}, the ring
of convergent power series in 3N complex variables, by

Cja(Z,pl,C)=Xagj(Z+p1,<), j=1,...,d, (131)

where X*=X7" ... X2,

Note that since the X are tangent to X, , we have ¢;q(0, p1,¢)=0 for all (p;, {) near
(0,0) and (€X,,. In particular, ¢;o(0,p1,P1)=0 for p1 € M close to 0. It can be checked
that M is essentially finite at p; if the functions Z—c;a(Z, p1,51), 1<j5<d, €Z], have
only 0 as a common zero near the origin for p; fixed, small. (See [BR2] or [BHR] for a
similar argument in the case of a hypersurface.)

For 1<j<d, a€Z?, let V;, be the real-analytic C/-valued functions defined near 0
in CN by

Via(Z,Z)=L%0),2(Z, Z), (1.3.2)
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where g; z denotes the gradient of g; with respect to Z and L*=L{" ... LT", where
L4,...,L, are as above.

In the sequel we shall say that a property holds generically on M if it holds in M
outside a proper real-analytic subset.

If M is a generic real-analytic submanifold of C¥ as above, we say that M is k-
nondegenerate at Z€ M if the linear span of the vectors Vj,(Z, Z), 1<j<d, |a|<k, is all
of CN. This definition is independent of the choice of the defining functions g and the
vector fields L;.

We have the following proposition.

PROPOSITION 1.3.1. Let M be a connected real-analytic generic manifold of co-
dimension d in CN. Then the following conditions are equivalent.

(i) M is holomorphically nondegenerate.

(i1} There exists py€M and k>0 such that M is k-nondegenerate at p1.

(iii) There exists V, a proper real-analytic subset of M and an integer |=I(M),
1M N —d, such that M is l-nondegenerate at every pe M\V.

(iv) There exists py €M such that M is essentially finite at p;.

(v) M is essentially finite at all points in a dense open subset of M.

We shall call the number /(M) given in (iii) above the Levi number of M.

Proof. We shall first prove the equivalence of (i), (ii) and (iii). It is clear that (iii)
implies (ii). We shall now prove that (ii) implies (i). Assume that M is k-nondegenerate
at p;. We take normal coordinates (z,w) vanishing at p;, so that M is given by (1.1.3)
near (z,w)=(0,0). We can take for a basis of CR vector fields

_ _ o .
Lj:a_zj-*-ZQk’iJ(z,z,w)a_’(ﬂk, _]21,...,77,, (133)
so that the V}, given by (1.3.2) become, with Z=(z,w),

Vja(Z) Z):_Qj‘faz(zvzaw)' (1‘3'4)

The hypothesis (ii) implies that the vectors V;4(0,0), j=1,...,d, |a|<k, span CN. By
the normality of coordinates, this implies that the gja,,(0,0), Ja|<k, where the g;o(z, w)
are the components of the vector g, (z, w) defined in (1.2.1), span C™. This implies, by
linear algebra, that the a;(z,w) satisfying (1.2.2) in a neighborhood of 0 must vanish
identically. Hence M is not holomorphically degenerate at 0, proving (i).

To show that (i) = (iii), we shall need the following two lemmas, whose proofs are
elementary and left to the reader.
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LEMMA 1.3.2. Let fi(x),-.., fa{x) be d holomorphic functions defined in an open
set Q in CP, valued in CV and generically linearly independent in Q. If the 8* Fi(x),
j=1,..,d, a€Zf, span CV generically in (O, then the 8*f;i(x), j=1,...,d, |a|<N—d,
also span CY generically in Q.

LEMMA 1.3.3. Let (z,w) be normal coordinates for M as above, and let h(x, z,w) be
a holomorphic function in 2n+d variables defined in a connected neighborhood in C2n+4
of z=2t, w=w!,x=2, with (2!,w')eM, and assume that h(z, z,w)=0, for (z,w)eM.
Then h=0.

To prove that (i) = (iii), we again take (2, w) to be normal coordinates around some
point pg € M. By the assumption (i) and (1.2.2), it follows that the g;4 . (2, w), j=1,...,d,
all a, span C™ generically. Equivalently, by the normality of the coordinates, we obtain
that the Q) ;22 (0, 2,w) generically span CN. We claim that the Q; z=z(Z, z,w) generi-
cally span CY for (z,w)€M. Indeed, if the @} z2z(Z,2,w) do not span, then all N x N
determinants A(Z, z, w) extracted from the components of these vectors vanish identically
on M and hence, by Lemma 1.3.3, A(x, 2, w)=0 in C?**4¢. In particular, A(0, z,w)=0,
which would contradict the fact that the Q; ;=7 (0, 2, w) generically span CV. This proves
the claim.

Now choose (2%, w%)€M so that A(0, 2%, w®)#0 for some determinant A as above.
We apply Lemma 1.3.2 with f;(x)=Q; z(x, 2%, w®),j=1,...,d, to conclude that there
exists /<N —d such that in the local chart (z,w), the V;o(Z, Z) (see (1.3.4)) for |a|<!
span C¥ generically for Z€ M. Since this property is independent of the choice of local
coordinates, condition (iii) follows from the connectedness of M. This completes the
proof of the equivalence of (i), (ii) and (iii).

It remains to show that (i), (ii) and (iii) are equivalent to (iv) and (v). We show first
that (iii) = (iv). Let py€M be any l-nondegenerate point, i.e., the span of V;,(p1,p1),
1<5<d, Ja|<l, is CN. On the other hand, it follows from (1.3.1) and (1.3.2) that

¢ja,z(0,p1,P1) = Vja(p1, P1).- (1.3.5)

Hence by the inverse mapping theorem the only common zero, near 0, of the functions
Z—c¢jo(Z,p1,01) is 0, which proves that M is essentially finite at p;, hence (iv).

Next, assume that (v) holds. If the rank of the V;,(Z, Z) were less than N generically
on M, then at any point p; of maximal rank near 0 in M, in view of (1.3.5) and the
implicit function theorem, there would exist a complex curve Z(t) through 0 such that
¢ja(Z(t),p1,P1)=0 for all small ¢ and all j,a. Hence M would not be essentially finite
at p1, contradicting (v), since p; can be chosen in an open dense set.

Since (v) => (iv) is trivial, it remains only to show that (iv) = (v). For this we need
the following lemma.
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LEMMA 1.3.4. Let {f;};es be holomorphic in a neighborhood of O in CVN. Suppose
that Z=0 is an isolated zero of the functions f;(Z)— f;(0), j€J. Then there exists 6>0
such that for |Zo| <6, Z=0 is an isolated zero of the functions f;(Z+Zo)— fi(Zo), j€J.

Proof. For jelJ, let F;(Z,{)=f;(Z)- f;(¢), which is holomorphic near 0 in C2M.
Let V be the variety of zeros of the F;. We claim that there exists €>0 and 6§>0
such that if |¢p| <&, then the set VN{(Z,¢{)eC?N:|Z|<e, (=(p} is discrete. Indeed, by
assumption there exists >0 such that VN{|Z|=¢, (=0}=@. Therefore by compactness,
there exists §, 0<d<e, such that VN{|Z|=¢, |(|<6}=2. Hence for any |(o|<§, the
set VN{|Z|<e, (=(p} is discrete. Hence the zero Z=(y of F(Z,(p) is isolated, which
completes the proof of the lemma. O

We may now prove that (iv) = (v). Choose normal coordinates Z=(z,w) around
p1EM at which M is essentially finite, and observe that if po=(2°,w°) is in this local
chart, we have

cialZ,po, o) = —Qjxa (2%, 2%, w®) +Qj y= (2°, 2+ 2%, w+wP). (1.3.6)

By Lemma 1.3.4, we conclude from (1.3.6) that M is essentially finite for any pg in a
neighborhood of p;. Property (v) follows by connectedness of M. This completes the
proof of Proposition 1.3.1. O

1.4. Holomorphic nondegeneracy of real algebraic sets

Recall that if A is an irreducible, real algebraic subset of CV, we denote by Acg the set
of points of A.cg at which A, is CR. In this subsection we prove the following result.

PROPOSITION 1.4.1. Let ACCY be an irreducible real algebraic set and p;,ps€ Acr.
Then A is holomorphically degenerate at p; if and only if it is holomorphically degenerate
at D2.

We note that if Acr is connected then the proposition follows immediately from
Proposition 1.2.1. However, even if A is irreducible, A, A;,; and Acr need not be

connected.

Proof. 1t follows from the proof of Proposition 1.2.1 that if M is a real algebraic CR
manifold, holomorphically degenerate at pg€ M, then we can find a holomorphic vector
field

N
X =Zaj(2)a~% (1.4.1)

=1
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tangent to M with a;(Z) algebraic holomorphic near py and not all vanishing identically
on M. Indeed, by Remark 1.1.1, we may assume that the functions Q and g, in (1.2.1)
are algebraic. Since the a;(z,w) in (1.2.2) are obtained by solving a linear system of
equations, we can find a set of solutions which are algebraic.

Assume that Acg is holomorphically degenerate at p;. By the observation above,
we can find X of the form (1.4.1), with the a;(Z) holomorphic algebraic, tangent to
A near p;. Since the a;(Z) are algebraic, they extend as multi-valued holomorphic
functions to CV\V, where V is a proper complex algebraic subvariety of CN with p;¢ V.
Hence ANV is a proper real algebraic subvariety of A. Let U be a connected open
neighborhood of p; in Acr and let pscU\V. (If p2¢V, we may take p3=py.) If d=
codimpg A, then by a classical theorem in real algebraic geometry [HP, Chapter 10], there
exist real-valued polynomials ¢,(Z, Z), ..., 04(Z, Z) with

A={ZeCN:p;)(2,Z)=0,j=1,...,d}

and dpy,...,dog generically linearly independent on A. Let .A be the complexifica-
tion of A, i.e. the irreducible complex algebraic set in C?N given by A={(Z,¢)eC?":
0(Z,¢)=0, j=1,...,d}, and let V=V x CY. We identify CV with a subset of C?N by the
diagonal mapping Z+—{Z, Z), so that 4 and V become subsets of A and V', respectively.
We claim that p; and p3 (considered now as points .A) can be connected by a curve
contained in Areg\f}. The claim follows from the fact that Aregﬁf} is a proper algebraic
subvariety of A and hence its complement in A,¢¢ is connected, by the irreducibility
of A. We conclude that the holomorphic continuation of the vector field (1.4.1), thought
of as a vector field in C2V, is tangent to A at every point along this curve, from which
we conclude that A is holomorphically degenerate at p3. We may now apply Proposi-
tion 1.2.1 to the CR manifold U to conclude that A is also holomorphically degenerate
at ps. O

Remark 1.4.2. For a general real algebraic submanifold M C C¥, not necessarily CR,
it can happen that M is holomorphically degenerate at all CR points, but not holomorphi-
cally degenerate at points where M is not CR, as is illustrated by the following example.
Let M CC* be the manifold of dimension 5 given by

Z3=212, ReZ4=lez+Zgzl.

M is a CR manifold away from Z;=73=0, and M and Mcp are connected. At the CR
points the holomorphic vector fields tangent to M are all holomorphic multiples of the
vector field X=8/622+2Z§/23/6Z4. {Note that here Z;/2=Zl on M.} We conclude
that there is no nontrivial germ of a holomorphic vector field tangent to M at a non-CR
point of M.
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2. The Segre sets of a real-analytic CR submanifold
2.1. Complexification of M, involution and projections

Let M denote a generic real-analytic submanifold in some neighborhood UCCY of
po€M. Let g=(g1,..., 04) be defining functions satisfying (1.1.1) and choose holomor-
phic coordinates Z=(Zi, ..., Zn) vanishing at pp. Embed CV in C*N=CJx C} as the
totally real plane {(Z,{)€C?":({=Z}. Let us denote by pr; and pr, the projections of
C2N onto C¥ and CP, respectively. The natural anti-holomorphic involution f in C2¥
defined by

"2.0)=(.2) (2.1.1)

leaves the plane {(Z,():{=Z} invariant. This involution induces the usual anti-holo-
morphic involution in CV by

CN>Z—pr.(prz'(2))=ZeC". (2.1.2)
Given a set S in C} we denote by *S the set in C} defined by
*S=pr¢(*prz'(8)) ={¢: (€ S} (2.1.3)

By a slight abuse of notation, we use the same notation for the corresponding transforma-
tion taking sets in Cév to sets in CY. Note that if X is a complex-analytic set defined near
Z° in some domain QCCY% by hi(Z)=...=hx(Z)=0, then *X is the complex-analytic
set in *QCCY defined near (°=2Z° by h;(¢)=...=hx(¢)=0. Here, given a holomorphic
function h(Z) we use the notation h(Z )=FZ) The transformation # also preserves
algebraicity of sets.

Denote by M CC?V the complexification of M given by
M={(Z,¢) € C?: o(2,¢) =0}. (2.1.4)

This is a complex submanifold of codimension d in some neighborhood of 0 in C2N.
We choose our neighborhood U in CV so small that U x*UCC?" is contained in the
neighborhood where M is a manifold. Note that M is invariant under the involution §
defined in (2.1.1). Indeed all the defining functions o(Z, Z) for M are real-valued, which
implies that the holomorphic extensions g(Z, () satisfy

8(z,{)=el(, 2). (2.1.5)

Thus, given (Z,¢)€C?*N we have 0(!(Z,())=0(¢, Z2)=08(¢, Z)=0(Z,¢), so ¥{(Z,{)eM if
and only if (Z,()eM.
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2.2. Definition of the Segre sets of M at p,

We associate to M at po a sequence of germs of sets Ny, Ni,...,INj, at po in chN—
henceforth called the Segre sets of M at pg for reasons that will become apparent—defined
as follows. Define No={pp} and define the consecutive sets inductively (the number jo
will be defined later) by

Nj41=pr(MNprs("Ny)) = prz (Mntprz (V). (2.2.1)

Here, and in what follows, we abuse the notation slightly by identifying a germ N; with
some representative of it. These sets are, by definition, invariantly defined and they arise
naturally in the study of mappings between submanifolds (see §3).

Let the defining functions ¢ and the holomorphic coordinates Z be as in §1.1. Then
the sets N; can be described as follows, as is easily verified. For odd j=2k+1 (k=0,1,...),
we have

Nopy1={Z:3Z",..,2%,¢*, ....¢* 0(Z,¢*) = o(ZF,¢F ") = ... = p(Z1,0) =0, (222)
o(Z%,¢*) = o(ZF1, ¢F ) = = 0(21,¢1) = 0} -
note that for k=0 we have
N ={Z:9(Z,0)=0}. (2.2.3)
For even j=2k (k=1,2,...), we have
Now={Z:3Z",..,Z25 ¢, ....¢5:0(Z,¢F) = p(ZF 1, ¢F Y = ... = (2", (V) =0,
o(ZF N, Ky =0(ZF 2, ¢F 1) = ... = p(0,¢?) =0}. (2.2.4)
For k=1, we have
No={Z:3¢*: 0(Z,¢") =0, 0(0,¢*) =0}. (2.2.5)
From (2.2.2) and (2.2.4) it is easy to deduce the inclusions
NoCN;C...CN;C.... (2.2.6)

When d=1 the set N; is the so-called Segre surface through 0 as introduced by Segre [9],
and used by Webster [W1], Diederich-Webster [DW], Diederich-Fornaess [DF], Chern—
Ji [CJ], and others. Here the set N, is the union of Segre manifolds through points ¢;
such that {; belongs to the Segre surface through 0. Subsequent N;’s can be described
similarily as unions of Segre manifolds.

In order to simplify the calculations, it is convenient to use normal coordinates
Z=(z,w) for M asin §1.1. Recall that M is assumed to be generic and of codimension d;
we write N=n+d. If M is given by (1.1.3), it will be convenient to write

Q2 x, 7)=7+q(2,X,7), (2.2.7)
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where
q(2,0,7)=q(0,x,7) =0. (2.2.8)

In C?V, we choose coordinates (Z,¢) with Z=(z,w) and (=(x, ), where z,x€C" and
w,7€C?. Thus, in view of (1.1.3), the complex manifold M is defined by either of the

equations

wzQ(Z,X,T) or T=Q(X,Z,U)). (229)
In normal coordinates, we find that in the expression (2.2.2) for Nog41 we can solve
recursively for wl, 71, w?, 72, ..., w*, 7% and parametrize Najy1 by
CEE+Un 5 (5 21 L 25 %Y, o xXF) = A (2,07 (M) e CV, (2.2.10)
where
V() =75 4q(z, x5, ), (2.2.11)
and recursively
,rl—1+q Zl,xl_l,Tl_l , l>2,
rt=wl4+q(x, 2, w')  with w'= { 0 ( ) l/ ) (2.2.12)

for I=1,2,...,k; for k=0, we have v'=0. Similarily, we can parametrize Ny by
C2n 5 (2,24, ..., 27X L xk) =Ar(z, vzk(A)) eCV, (2.2.13)

where
v* (M) =75 +q(z, x5, ), (2.2.14)

and recursively
r —wl gt A wh) with wf =gl X T, (2.2.15)

for I=1,...,k—1 and 71=0. Define d; to be the maximal rank of the mapping (2.2.10)
or (2.2.13) (depending on whether j is odd or even) near 0€ C'". It is easy to see that
dp=0 and d;=n. In view of (2.2.6), we have dy<d; <d2<ds3<.... We define the number
jo=1 to be the greatest integer such that we have strict inequalities

dp <dy <...<dj,. (2.2.16)

Clearly, jo is a well-defined finite number because, for all j, we have d; <N=n+d and
dj, 2n+jo—1 so that we have jo<{d+1. The d;’s stabilize for j>jo, ie. dj,=dj41=
dj,+2=..., by the definition of the Segre sets.
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So far we have only considered generic submanifolds. If M is a real-analytic CR
submanifold of C", then M is generic as a submanifold of its intrinsic complexification X
(see §1.1). If M is real algebraic then X is complex algebraic. The Segre sets of M at a
point po €M can be defined as subsets of CV by the process described at the beginning
of this subsection (i.e. by (2.2.1)) just as for generic submanifolds or they can be defined
as subsets of X by identifying X near py with CX and considering M as a generic
submanifold of CX. It is an easy exercise (left to the reader) to show that these definitions
are equivalent (i.e. the latter sets are equal to the former when viewed as subsets of CV).

The main result in this section is the following. Let the Hérmander numbers, with
multiplicity, be defined as in §1.1.

THEOREM 2.2.1. Let M be a real-analytic CR submanifold in CV of CR dimension
n and of CR codimension d and po€ M. Assume that there are r (finite) Hérmander
numbers of M at pg, counted with multiplicity. Then the following hold.

(a) There is a holomorphic manifold X of (complex) dimension n+r through po
containing the maxrimal Segre set N, of M at py (or, more precisely, every sufficiently
small representative of it) such that Nj, contains a relatively open subset of X. In
particular, the generic dimension dj, of Nj, equals n+r.

(b) The intersection MNX is the CR orbit of the point pp in M.

(c) If M is real algebraic then X is complez algebraic, i.e. X extends as an irreducible
algebraic variety in CN.

In particular, this theorem gives a new criterion for M to be of finite type (or
minimal) at pg. The following is an immediate consequence of the theorem.

COROLLARY 2.2.2. Let M be a real-analytic CR submanifold in CN of CR dimen-
sion n and of CR codimension d and poe M. Then M is minimal at pg, if and only if
the generic dimension d;, of the mazimal Segre set N;, of M at py is n+d. In particular,
if M is generic, then M is minimal at po if and only if d;;=N.

Ezample 2.2.3. Let M CC? be the generic submanifold defined by
Imw, = |22, Imw;=|z|%

Then M is of finite type at 0 with Hérmander numbers 2,4. The Segre sets N; and N,
at 0 are given by

N1 ={(z, w1, w2) :w1 =0, w2 =0}, (2.2.17)
No={(z,w1,ws) : w1 =2izx, we = 2i2°x?, x € C}. (2.2.18)
Solving for x in (2.1.18) we obtain in this way (outside the plane {z=0})

No={(z,w1,ws) 1 wa = —3iw?}.
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Using the definition (2.2.1), we obtain
N3 = {(z,w1,ws) : Wy =iw; (3w1—22x), x €C}.

We have d3=3; N3 contains C* minus the planes {z=0} and {w;=0}.

Ezample 2.2.4. Consider M C C® defined by
Imw; = 2%, Imwy=Rews|z|*.
Here 2 is the only Hérmander number at the origin. Again, N; is given by (2.2.17), and
No = {(z,w1,ws): 2#0, w2 =0}U{0, 0, 0}.

It is easy to see that subsequent Segre sets are equal to N3. Thus, Ny is the maximal
Segre set of M at 0, d;=2, and the intersection of (the closure of) N; with M equals the
CR orbit of 0.

Let us also note that part (c¢) of Theorem 2.2.1 implies the following.
COROLLARY 2.2.5. The CR orbits of a real algebraic CR manifold are algebraic.

The theorem of Nagano ([N]) states that the integral manifolds of systems of vector
fields, with real-analytic coefficients, are real-analytic. Thus, the CR orbits of a real-
analytic CR manifold M are real-analytic submanifolds of M. However, in general the
integral manifolds of systems of vector fields with real algebraic coefficients are not al-
gebraic manifolds, as can be readily seen by examples. Hence, one cannot use Nagano’s
theorem to deduce that the orbits of an algebraic CR manifold are algebraic. Corollary
2.2.5 seems not to have been known before.

Before we prove Theorem 2.2.1 (in §2.5) we first discuss the homogeneous case
because the proof of the theorem will essentially reduce to this case. We first consider
the case where the CR dimension is 1 (§2.3) and then give the modifications needed to
consider the general case (§2.4).

2.3. Homogeneous submanifolds of CR dimension 1

Let 1 <...<un be N positive integers. For t>0 and Z=(Z,..., Zy)€CV, we let §,Z=
(t*1 Zy,..,t*N Zx). A polynomial P(Z,Z) is weighted homogeneous of degree m with
respect to the weights p1, ..., un if P(6:Z,6,Z)=t™P(Z, Z) for t>0.
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In this section and the next, we consider submanifolds M in C¥, N=n+d, of the

form ( Wy =w1+Q1(z,2),

wj =W;+q;(2, Z, Wy, ..., TWj—1),

) _ _ _ 2.3.
wr:wr+q7‘(z7zaw17"'aw’r‘—l)a ( 3 1)

Wrt1 = Wr41,

\ Wd = Wd,

where 0<r<d is an integer (r=0 corresponds to the canonically flat submanifold), and
each g;, for j=1,...,r, is a weighted homogeneous polynomial of degree m;. The weight
of each z; is 1 and the weight of wy, for k=1,...,r, is mg. Since the defining equations
of M are polynomials, we can, and we will, consider the sets Ny, ..., N;, attached to M
at 0 as globally defined subsets of CV. Each N; is contained in an irreducible complex
algebraic variety of dimension d; (here, an algebraic variety of dimension N is the whole
space CIV). The latter follows from the parametric definitions (2.2.10) and (2.2.13) of
N; and the algebraic implicit function theorem.

We let 7, for j=2,...,d+1, be the projection m;: C*+%— C"*7~1 defined by

73 (2, W1, o, wa) = (2, W1, .o, Wy—1)- (2.3.2)

We define M7 CC™* ! to be m;(M). By the form (2.3.1) of M, it follows that each M7
is the CR manifold of codimension j—1 defined by the j—1 first equations of (2.3.1).
Throughout this section and the next, we work under the assumption that M satifies the
following.

CONDITION 2.3.1. The CR manifold M7, for j=2,...,t+1, is of finite type at 0.

For clarity, we consider first the case where the CR dimension, n, is one, i.e. z€C.
The rest of this section is devoted to this case. The purpose of the following proposition
is to relate the integer jo, defined in (2.2.16), to the integer r in Condition 2.3.1, and to
give, by induction on j, parametrizations of a particular form of open pieces of Ny, ..., Nj,.

PROPOSITION 2.3.2. Let M be of the form (2.3.1) with CR dimension n=1 and
assume that M satisfies Condition 2.3.1. Let Ny, Ny,...,N;, be the Segre sets of M
at 0, and let do,d,...,dj, be their generic dimensions. Then jo=r+1 and d;=j, for
0<j<r+1. Furthermore, for each j=O0,...,7+1, there is a proper compler algebraic
variety V;CC? such that N; satisfies

N;N((C7\V;)x C¥7+ )

. ‘ , (2.3.3)
- {(z,wl, ...,wd) S ((C]\%) xC‘i‘9+l) LW = fjk(z,wl, ...,’w_?'._l), k=3, ...,d},
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where each fi, for k=3,...,r, is a (multi-valued) algebraic function outside V; and where
fi#=0 for k=r+1,...,d. We write b, for the number of holomorphic disjoint branches
of fjkx outside V;.

Proof. Clearly, the first statement of the proposition follows from the last one. Thus,
it suffices to prove that, for each j=0,...,7+1, there is a proper algebraic variety V; such
that (2.3.3) holds. The proof of this is by induction on j.

Since Ng={0} and N;={(z,w): w=0}, (2.3.3) holds for j=0,1 with Vo=V, =2. We
assume that there are Vp, ..., V;_; such that (2.3.3) holds for j=0,...,I-1. By (2.2.1), we
have

Ni={(z,w):3(x, ) €*"Ni_1, (2, w,x,T) E M}. (2.3.4)

ASSERTION 2.3.3. The set of points (z, w1, -~-,7-Ul—1)€CZ such that there exists
(wi, -, wy) € Cd-+1 4nd (x, 7)€ *(Nl—lﬂ(vl—l x Cd—l+2))

with the property that (z,w,x,T)EM is contained in a proper algebraic variety A;C Cl.

Proof of Assertion 2.3.3. Let S be the set of points (2, wy,...,w;—1)€C* described
in the assertion. Then (2, wy,...,w;_;)€C! is in S if

Tj=wj+¢jj(x,z,w1,...,wj_1), i=1..,1-1, (235)

for some (x, 71, ..., Ti—1) € *(m(N;— 1 )N(Vi—1 x C)). (Recall the two equivalent sets of defin-
ing equations, (2.2.9), for M. The operation * here is taken in C', i.e. mapping sets in
L !
C(szlv-uywt—l) to C(Xﬂ‘l -----
gebraic variety A;CC!. To see this, note first that (2.3.3) (which, by the induction
hypothesis, holds for N,_;) implies that m;(V;_;) is contained in a proper irreducible

n_l)') We claim that the set S is contained in a proper al-

algebraic variety in C'. Let Py(x, 71, ..., T1—2) be a (nontrivial) polynomial that vanishes
on *V;_;CC!! and let Py(x,71,...,7i—1) be a (nontrivial) irreducible polynomial that
vanishes on *m;(N;_1). Thus, if (z,w1,...,w;_1)€S then there exists a xy€C such that

ﬁl(x,z,wl, e wi—g) = Pr{x, w1+q1 (X, 2)s oy Wi—2+Gi—2(X, 2, w1, ..., wi—3)) =0, (2.3 6)

ﬁz(X,Z,U}h ...,'(.U[_l) ::PQ(Xvwl +(11(X7 Z), --~7wl—1+(?l—1(X, 2, W1, -.-,'U)l_g)) :07

i.e. E(z, wy, ..., w;_1) =0 if we denote by R the resultant of 131 and 132 as polynomials in x.
The proof will be complete (with 4;=R~1(0)) if we can show that R is not identically 0,
ie. }31 and ﬁz have no common factors (it is easy to see that neither }31 nor 132 is
identically 0). Note that, for arbitrary 1, ..., 7;_1, we have {(cf. (2.2.9))

P?(X? Z,M +Q1(Z, X)y ey T1-1 +ql—1(z9 X>T1, "'77-[—2)) = P‘Z(X7 T1y ey Tl_]). (237)
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It follows from this that }32 is irreducible (since P, is irreducible). Thus, 131 and ﬁg
cannot have any common factors because ﬁg itself is the only nontrivial factor of f’z and,
by the form (2.3.3) of N;_4, P, is not independent of w;_;. This completes the proof of
Assertion 2.3.3. O

We proceed with the proof of Proposition 2.3.2. Let us denote by B;CC!~! the
proper algebraic variety with the property that (z,wr,...,w;_3)€C'~1\ B, implies that
the polynomial P; (X, z,wy, ..., wi—2) defined by (2.3.6), considered as a polynomial in X,
has the maximal number of distinct roots. Let C;C C! denote the union of 4; and B; x C.
For (z,w1, ..., w;—2) fixed, let §2(z, w1, ..., w;—2) CC be the domain obtained by removing
from C the roots in X of the polynomial equation

Pl(X,Z,wl,...,wl_Q)ZO. (238)

In view of Assertion 2.3.3 and the inductive hypothesis that (2.3.3) holds for N;_q, it
follows from (2.3.4) that

NN((CA\C) xCH ) = {(2, w1, ..., wa) € ((C\C) x CH7H7):

(2.3.9)
HX € Q(Z,’U.)l, "~7wl—2) - Ca Wy :glk(X’szla oy wk—l)a k=l_11 '“7d}7

where

glk(sz»wh '-'3w/€—1)
= fl—l,k(X: w1 +q1 (X7 Z)y sy WE—2 +‘71—2(X, 2, W1 «evy ’U)l_3)) (2310)
+qk(z’X7wl +(71 (X1 Z), "'7wk—1+qk—1(Xa 2, Wy, ...,UJk_Q)),

for k=[—1,...,d. Note that each gy, for k=I—-1,...,7, is a (multi-valued) algebraic func-
tion such that all branches are holomorphic in a neighborhood of every point (x, z,w)
considered in (2.3.9), and g;; =0 for k=r+1,...,d.

Now, suppose that g;;—1(x, 2, w1, ...,wi—2) actually depends on Y, i.e.

091,11

ax (Xaszla-"awl—2)¢0' (2311)

Then, for each (x°, 2%, w?,...,w? _,,wf ;) such that one branch g of g;;_; is holomorphic
near (x%,2%,w?,...,w ,) with
17)
2930, 2w,y w)_p) #0 (2.3.12)
dx
and
w1 =g(x°,2°% wl, ..., w]_y), (2.3.13)
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we may apply the (algebraic) implicit function theorem and deduce that there is a holo-
morphic branch 6(z,wy, ..., w;_1) of an algebraic function near (2%, w, ..., w?_,) such that

w1 —g(0(z, w1, ., Wi—1), 2, W1, ..., wi—2) = 0. (2.3.14)

Since ¢;,;—1 is an algebraic function, which in particular means that any two choices of
branches g at (possibly different) points (x°, 2%, w?, ...,w?_,) can be connected via a path
in (x, 2, wr, ..., wi—2)-space avoiding the singularities of g; ;1 and also avoiding the zeros
of 8gy1—1/8x, it follows that any solution € of (2.3.14) near a point (2%, w?,...,w{_,) can
be analytically continued to any other solution near a (possibly different) point. Thus,
all solutions # are branches of the same algebraic function, and we denote that algebraic
function by ;. As a consequence, there is an irreducible polynomial Ri{X, z, w1, ..., wj_1)
such that X =6,(z, w1, ..., w;_1) is its root. Let D;CC' be the zero locus of the discrimi-
nant of R; as a polynomial in X. Outside (C;UD;) x C4~!*1CC4*! we can, by solving
for x=6,(z,ws,...,w;—1) in the equation

w1 =gl,l_1(x,z,w1,...,wl_g), (2315)
describe NV, as the {(multi-sheeted) graph
wi = fue(z, w1, ..., wi—1):=gu(0i(z, Wy, ..., w;—1), W1, .oy Wh—1), (2.3.16)

for k=l,...,d. Clearly, we have f;;=0 for k=r+1,...,d. By taking V; to be the union
of C;UD; and the proper algebraic variety consisting of points where any two distinct
branches of fj;, coincide (for some k=1, ..., d), we have completed the proof of the inductive
step for j=! under the assumption that g;;_,(x, z, w1, ..., wi—2) actually depends on x.

Now, we complete the proof of the proposition by showing that Condition 2.3.1
forces (2.3.11) to hold as long as [ —1<r. Assume, in order to reach a contradiction, that
a1,1-1(X, 2, Wi,...,w;—2) does not depend on x. It is easy to verify from the form (2.3.1)
of M that the sets mi(N;), for j=0,...,k, are the Segre sets of M* at 0. Let us denote
these sets by N,;(M*). Now, note that if we pick (2°,w?,...,w? ;)€ M! then

(2% W +@ (2%, 20), s wl_ + @1 (2%, 20 wh, s wlp)) = (20,0, ]y). (23.17)
Thus, if we pick the point (20, w?,...,w{ ;)€ M! such that it is not on the algebraic
variety C; (which is possible since the generic real submanifold M cannot be contained
in a proper algebraic variety; C;\M' is a proper real algebraic subset of M!) then, by
construction of Cy, the point

(2%, wd+1 (2%, 2%), o wl o+ G2 (20, 2% w?, . wp 5)) = (2%, @0, ..., @0 ,) (2.3.18)
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is not in *m;(V;_;). By the induction hypothesis, m;(N;_;)=N;_;(M") consists of a
b;—1,1-1-sheeted graph (each sheet, disjoint from the other, corresponds to a branch of
fi—1,—1) above a neighborhood of the point (2%,w9?,...,w{_,). Since g;;—1 is assumed
independent of y, we can, in view of (2.3.18), take x=7 in the defining equation
Wi—1 =gri—1(X, 2, W1,y .oy Wy—2) (2.3.19)
for Nj(M?), near the point (2%, w9, ...,w?_,). From the definition (2.3.10) of g;;_1 and
(2.3.18) it follows that N;(M') also consists of a b-sheeted graph, with b<bj_;,;_; (each
sheet corresponds to a choice of branch of f_; ;1 at (2%, @9, ..., w?_,)), above a neighbor-
hood of the point (2%, w?,...,w} ,). Since N;_;(M')CN;(M?), we must have b=b;_1 ;1
and, moreover, for each branch fF ;;_, there is possibly another branch i 1,1—1 such
that for every (z,wy, ..., w—2) the following holds:
FEru-1(zywps e wisg)
=f_lk_/1,l,1(2, w1 +§1(Z,2), .oy Wi_2+G1—2(Z, 2, w1, ..., w;—3)) (2.3.20)
+qi-1(2, Z, w1 +q1(Z, 2)y -, wi—o+di-2(Z, 2, w1, ..., wWi—3)).
Since all the sheets of the graphs are disjoint, the mapping k—k’ is a permutation. We

average over k and k’, restrict to points (2, wy, ..., w;—3)EM'~1, and obtain, by (2.3.18)
and (2.3.20),

1 bi—1,1-1
bl—ll—l Z flk—l,l—l(z7w17"'7wl—2)
= (2.3.21)
bioyi-a
Z E 1,0-1(Z, 01, s Wi—2) +@-1(2, Z, W1, ..., Wi—2).
T b L-1 52
Let us denote by f the holomorphic function near (z°,w?,...,w{_,) defined by
bi_1,i-1
flz,wy, . wi_g) = Z fr 11-1(z, Wi, wi—g), (2.3.22)

bilil

and by K C! the CR manifold of CR dlmensmn 1 defined near

(2% w?, .. wd,, F20, 00, . w? y)

by

K:={(z,w1,...,wi_1): (z,w1, ..., w_2) € M wiiy = f(zawi, .., wi—2) ) (2.3.23)
The equation (2.3.21) immediately implies that K CM‘. By Condition 2.3.1, M' is of
finite type near 0. Note that, by the form (2.3.1) of M, the condition that M is of finite
type at a point is only a condition on (z,w, ..., w;—2) (i.e. not on w;_1). Thus, by picking
the point (2% w?,...,wl ,)€e M'~1 sufficiently close to 0 (which is possible since, as we
mentioned above, C;M! is a proper real algebraic subset of M!), we reach the desired
contradiction. This completes the proof of Proposition 2.3.2. a
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2.4. Homogeneous submanifolds of arbitrary CR dimension
We prove here the analog of Proposition 2.3.2 for arbitrary CR, dimension n.

PROPOSITION 2.4.1. Let M be of the form (2.3.1) and assume that M satisfies Con-
dition 2.3.1. Let No, Ny, ..., N;, be the Segre sets of M at 0. Then, for each j=1,..., jo,
there is a partition of the set {1,2,...,r} into I;={i1,4,...,4q,} and K;={ky, ko, ..., kp;}
such that

6=NGLELEG .G, ={12 .7}, (2.4.1)

and there is a proper algebraic variety V;CC"t% such that N, satisfies

N;N((C™%\V;) x CY x C¥=") = {(2, w1, ..., wg) :

(24.2)
wk“:fjku(z,wil,...,wiaj), p=1,..,b;; we=0k=r+1,..,d}.

Here (z,wil,...,wiaj)GC"*'“J’ and (wkl,...,wkbj)ecbf. Each fjk,, for k=1,..,b;, is a
(multi-valued) algebraic function with b;i, holomorphic, disjoint branches outside V; and,

moreover, each fjx, is independent of w;, for all i,>k,.

Proof. We emphasize here those aspects of the proof which are different from that
of Proposition 2.3.2. We proceed by induction on j. The statement of the proposition
holds for j=1 with V; =@ and each fix, =0. Assume the statement holds for j=1,...,{-1.
Let us for simplicity denote the numbers a;_; and b;_; by a and b, respectively. The
representation (2.3.4), with z in C™ rather than C, still holds. Let Q(z,w)CC™ be the
complement of the algebraic subset of x such that, for fixed (z,w)eCn*¢,

(X!w’il +Qi1 (X,Z,UI1, "'7wi1—1)9 -~-7wi(,,+qiu (X7 z,wq, "'7wia—1)) € *‘/l—l~ (243)

We describe a part 1\~/l of N; as follows

Ny ={(z,w) € C"*t%: Iy € V(z,w) C C™,

(2.4.4)
Wk,, = Gk, (Xa %y Wi, "'7wk#—1)a H= 1, 7ba wg =0, k=7‘+1, "'7d}7

where

ik, (X7zawla '“awk,_,—l)
=f_'l—l,k,‘ (Xawil +q_i1 (szawlv "'7wi1—1)a ~--7wia+‘za (X7 2, Wy, "-awia—l)) (245)
+qk,‘ (Z7X7 wl+ql(Xaz)a "'awku—l'}'qku—l(X?Zawl’ "‘7wku—2))'

The fact that w,=0 for k=r+1,...,d follows from (2.4.2) with j=I—1 and the form
(2.3.1) of M. Note also that, by the induction hypothesis, fi_1, is independent of
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w;, for i,>k,. Let w'=(w;,,..,w;,) and w'=(wg,,...,ws,). Note that, for generic
(2, w")€C™*®, the mapping from C™*¢ into itself given by

(X’ w,) — (X?wh +qz1 (Xv Z, Wi, ees wil-l)) “‘)wia'+6ia (X) Zy Wiy eeey wia—l)) (246)

has generic rank n+a (indeed, it has rank n+a near the origin for z=0). Thus, the set of
w’€C? for which (2.4.3) holds (with small z and w” arbitrary) for all xeC" is a proper
algebraic variety. Restricting (), w’) to the complement of the set where (2.4.3) holds,
we consider the mapping (2.4.6) with

Wk, = Jiky (X?‘Z?wl)"'awkl—l) (247)

instead of wy, fixed. Again, one verifies that this mapping has generic rank n+a for
generic (2, Wy, ..., Wk, ) (e.g. with z small), and thus the set of w’ for which (2.4.3)
holds (with wy, given by {(2.4.7)) for all x is a proper algebraic variety. By proceeding
inductively, substituting gz, for wg, in the mapping (2.4.6), we find that we can take
for N, (for brevity, we write W' =(wyi1, ..., Wq))

Ny={(z,w', 0", w") € (C"**\C;) xC* xC*"; (248)
Iy e Uz, w') C C, wi, = Gi, (X, 2, W), p=1,...,b; w" =0}, o
where C; CC™*¢ is a proper algebraic variety, ﬁ(z, w’)CC™ is the complement of a proper
algebraic variety in C", and where g, =gix, and subsequent gk, are obtained from gz,
by substituting
wk-,,:é{k-,(X, Zyw’)) ’)’=1yyﬂ_1 (249)
Thus, each gk, is a function only of those w;,, ..., w;, for which i, <k,.
As in the proof of Proposition 2.3.2, we assume first that the map

C¥Ha 3 (x, z,w') = (Gik, (0 20 W)y ey ik, (X, 2,0")) =: G(x, 2,w') € C° (2.4.10)
actually depends on ¥, i.e.
0
Gx(X,Z,w')i=5§(X,Z,w')¢0- (2.4.11)

Denote by m>1 the maximal rank of G, and by G'=(G", ..., G') the m first com-
ponents of G such that G’;( has generic rank m (thus, the set {¢i,....,t,,} is a subset
of K;—y). Note that this does not necessarily need to be the first m components of G,
but any component G*, with ¢, <t<t,41 for some a€{l,...,m—1}, has then the property
that

o
G;(X,z,w')_———_ch(x,z,w')Ggg (x, z,w"), (2.4.12)
i=1
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for some functions ¢1,...,c,. We may assume, by an algebraic change of coordinates
in the x-space if necessary, that G’,, where x'=(x1, ..., xm), has generic rank m and
that G is independent of the last coordinates x”:=(xm+1,-, Xn)- Now, solve for x'=
6i(z,w',wy,, ..., wy,,) in the equations

wy, =G (x, z,w'), j=1,.,m. (2.4.13)
The solution 8; is a (multi-valued) algebraic function. By substituting
X =0(z,w  wyy, ..y wy,)

in the remaining equations for N, (and remembering that, by the choice of m and x/,
these equations are independent of x”’) we find, denoting by K;:={u1,...,up_,} the
complement of the set {t1,...,t,} in Kj_1,

wuj =§luj (6[(2, ?1)/, Wty yoeny wtm)a X“a 2, ’LU,)

. (2.4.14)
=: fru; (2, W, wey ooy wy,),  G=1,..,0—m.

Since N is a dense open subset of Nj, the equations (2.4.14) imply that N is indeed of
the form (2.4.2), with K;GK;_; as defined above and I;,={1,...,7}\ K;, and where we
let V,C C™"*ta+™ be a suitable proper algebraic variety containing the singularities of the
algebraic functions fy,; (j=1,...,b—m). To finish the proof (under the assumption that
the mapping G actually depends on X), we need to show that each f;, is independent
of w; for t>u,. Recall that

fru, (oW wyy oy wy ) =G (0i(2, 0, wey oy wy,, ), X 2, w0'). (2.4.15)

Let 1<a<m~1 be the number such that ¢, <u, <t,41 (unless there is such a number
there is nothing to prove), and differentiate (2.4.15) with respect to w;, where t>u,,.
Using (2.4.12), we obtain (using vector notation; recall that G%~ (¢, z,w’) is independent

of wt)

frug =GO, = ;G200 . (2.4.16)
j=1

Now, by the definition of 8;, G* (i (z, W', wy,, ..., ws,, ), X", 2, w') =w,, and so G;’}Ol‘wt =0,
if t>t;. Thus, since t>¢; for j=1,...,q, it follows from (2.4.16) that fiu, w,=0. This
proves the induction hypothesis for j=! under the assumption that the mapping G ac-

tually depends on Y.
As in the proof of Proposition 2.3.2, we are left to show that Condition 2.3.1 implies
that G actually depends on x as long as I, ;5{1,2,...,7}. Assume, in order to reach a
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contradiction that G does not depend on x. In particular then, the function G, =g,
does not depend on x. Since, by the induction hypothesis, gi, (X, 2, w’) does not depend
on w; for j>k;, we can consider the projection 7, and proceed exactly as in the con-
clusion of the proof of Proposition 2.3.2. We leave the straightforward verification to the
reader. The proof of Proposition 2.4.1 is now complete. ]

2.5. Proof of Theorem 2.2.1

By the remarks preceding the theorem, we may assume that M is generic throughout
this proof. We start by proving (a). Since the Segre sets of M at py are invariantly
defined, we may choose any holomorphic coordinates near pg. Let mi<...<m, be the
Hoérmander numbers of M at py. By [BR1, Theorem 2], there are holomorphic coordinates
(z,w)€C™x C? such that the equations of M near py are given by

{ w; =W;+q;(2, Z, W1, ..., Wj—1) + R;(2,2, @), j=1,..,r 251)

wk=Ek+Z;i=T+1 frilz, 2, @)wy, k=r+1,..,d,
where, for j=1,..,r, g¢;(z, %, @1,...,W;—1) is weighted homogeneous of degree m;,
R;(z,Z,w) is a real-analytic function whose Taylor expansion at the origin consists of
terms of weights at least m;+1, and the fi; are real-analytic functions that vanish at
the origin. Here, 2 is assigned the weight 1, w; the weight m; for j=1,...,r and weight

m,+1 for j=r+1,...,d. Moreover, the homogeneous manifold M°CC¥ defined by
w,; =W;+q;(z,z,W1,....,0;-1), j=1,...,7
j i +45( 1) (2.5.2)

Wi = Wy, k=r+1,...,d,

satisfies Condition 2.3.1. For £>0, we introduce the scaled coordinates (z,w)eCn+¢
defined by

{ z=2z(%€) =€z, (2.5.3)

w; = wj([ﬁ; E) 2617’{5]‘, ] =1,.., d,
where [;=m; for j=1,...,r and [y=m, +1 for k=r+1,...,d. We write fkl for the function
ry -~ = = 1 ~ iy~ — ~
fr(3 2, w;e) = Efkl(z(z; €), z(%;€), w(w; €)), (2.5.4)
and similarly,

, W €)= (2(%;¢), 2(2; ), w(w; €)). (2.5.5)

ISy

R;(z, A1
Note that both fi(3, Z,w;€) and R;(Z, 7, W;¢) are real-analytic functions of (Z,@;€) in
a neighborhood of (0,0;0). In the scaled coordinates, M is represented by the equations

@j=1§j+qj(2,§,1:61,...,15j_1)+6§j(2,§,u—7;5), ji=1,..nmn (256)
W, =17)k+5221=r+1 fkl(i,i,ﬁ;s)ﬁl, k=r+1,..,d. o
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Now, let #/(A; ) be the mapping C/™—C? described in §2.2, such that the Segre set N;
of M at pg is parametrized by

C"s3A (53 (A;e))eCN (2.5.7)

in the scaled coordinates (Z,®@) (cf. (2.2.10)-(2.2.12) and (2.2.13)—(2.2.15) to see how
the map (2.5.7) is obtained from the defining equations (2.5.6)). Note that ©#/ depends
real-analytically on the small parameter €. The generic dimension d; of the Segre set
N, is the generic rank of the mapping (2.5.7) with €#0, and is in fact independent
of €. By the real-analytic dependence on ¢ there is a neighborhood I of e=0 such that
the generic rank of (2.5.7), for all e€I\{0}, is at least the generic rank of (2.5.7) with
£=0. For e=0 the mappings (2.5.7) parametrize the Segre sets N]Q of the homogeneous
manifold M defined by (2.5.2). By Proposition 2.4.1, applied to the Segre sets N} of
M? at 0, we deduce that the generic dimension of the maximal Segre set of M? at 0 is
n+r. Thus, dj, >2n+r, where d;, is the generic dimension of the maximal Segre set of M
at po. On the other hand, if we go back to the unscaled cordinates (z,w), we note from
the construction of the Segre sets that each NN; is contained in the complex manifold
X={(z,w):wry1=...=wqg=0}. Thus d;,<n+r, so that we obtain the desired equality
dj,=n+r. This proves part (a) of the theorem.

It follows from (2.5.1) that the CR vector fields of M are all tangent to MNX=
{(z,w)e M:w;=0, j=r+1,...,d}. Thus, the local CR orbit of py is contained in MNX.
Also, since there are r Hormander numbers, the CR orbit of py has dimension 2n+r.
Since the dimension of MNX is 2n+r as well, it follows that the local CR orbit of pg is
MnX. This proves part (b) of the theorem.

Finally, to prove part (c) of the theorem we note that if M is real algebraic then
each Segre set N; is contained in a unique irreducible complex algebraic variety of dimen-
sion d;. Since Nj, contains a relatively open subset of X, this relatively open subset of
X coincides with a relatively open subset of the unique algebraic variety containing Nj.
Hence, X is complex algebraic. This completes the proof of Theorem 2.2.1. O

3. Algebraic properties of holomorphic
mappings between real algebraic sets

3.1. A generalization of Theorems 1 and 4

We denote by On(po) the ring of germs of holomorphic functions in CV at pg, and by
An{pp) the subring of On(py) consisting of those germs that are also algebraic, i.e. those
germs for which there is a nontrivial polynomial P(Z, )€ C[Z,x] (with ZeCN and z€C)
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such that any representative f(Z) of the germ satisfies
P(Z, f(Z))=0. (3.1.1)

In particular, any function in An(po) extends as a possibly multi-valued holomorphic
function in CV\V, where V is a proper algebraic variety in CV. We refer the reader
to e.g. [BR3, §1] for some elementary properties of algebraic holomorphic functions that
will be used in this paper. If UCCY is a domain we denote by On(U) the space of
holomorphic functions in U.

If XCC¥ is an algebraic variety with dim X=K, Po€ Xreg, and f is a holomor-
phic function on X defined near pp then we say that f is algebraic if, given algebraic
coordinates

CKs¢m2zZ(¢)eCN (3.1.2)

on X near pp with Z(0)=py (i.e. each component of (3.1.2) is in Ak (0)), the function
h=f-Z is in Ak (0). The transitivity property of algebraic functions (e.g. [BM] or [BR3,
Lemma 1.8 (iii)]) implies that this delinition is independent of the choice of algebraic
coordinates. If f is algebraic on X near pg and X is irreducible, then f extends as a
possibly multi-valued holomorphic function on X,e\V, where V is a proper algebraic
subvariety of X,e. (Note that X,e, is a connected manifold.) We denote by Ox(po) the
ring of germs of holomorphic functions on X at pg, and by Ax(po) the subring of germs
that are algebraic.

Also, given two points po€C" and pjeCV " we denote by Hol(po, pj) the space of
germs of holomorphic mappings at pg from CV into CV’ taking po to Dy We denote by
Alg(po, pj) the subspace of Hol(py, pj)) consisting of those germs for which each component
of the mapping is algebraic. Similarly, given an algebraic variety X in CV with pp€ X eq,
we denote by Holx (po,pj) the space of germs of holomorphic mappings at py from X
into CN’ taking po to pj, and by Algx (po,ph) the subspace of germs with algebraic
components.

Before we present the main results, we state the following lemma, whose proof is
straightforward and left to the reader.

LEMMA 3.1.1. Let M be a generic real-analytic submanifold in CK and let ppc M.
Suppose that there is h=(h1,...,hq)€(Ok (po))? such that the following holds.

(1) h(po)=0 and OhyA...AOhq#0 in a neighborhood of pg.

(i) h|as is valued in RY.
Then MNSy, where So={Z:h(Z)=0}, is a generic submanifold of Sy near pq.

We are now in a position to formulate one of the main results in this paper.
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THEOREM 3.1.2. Let M be a real algebraic, holomorphically nondegenerate, CR
submanifold in CVN, let VCCN be the smallest complex algebraic variety containing M,
and let po€M be a reqular point of V, where M is the closure of M in CN. Assume that
there is h=(h1, ..., hq)E(Av(po))? satisfying the following.

(i) h(po)=0 and OyhiA...AOvhge#0 in a neighborhood of po.

(i) h|a is valued in RY.

Let U be a sufficiently small neighborhood of py in CV and denote by S, for c€ C? with
le] small, the algebraic manifolds

S.={ZeVNU:h(Z)=c}. (3.1.3)

Assume that the generic submanifold M N\ Syy) is minimal at p for some pe MNU. Then
if A" is a real algebraic set in CN' with dimg A’=dimg M, phe A’, and HcHoly(po, ph)
satisfies H(M)C A’, with generic rank equal to dime V, there exists >0 such that H|g,
is algebraic for every |c|<é.

Note that M is not required to be closed in Theorem 3.1.2. Since M is real algebraic,
it is contained in a real algebraic set A of the same dimension in C¥ such that A, in
turn, is contained in the complex algebraic variety V. Thus, the point po€M is a point
on the real algebraic set A, and the only thing required of pg is that it is a smooth point
of V; if e.g. M is generic then, of course, V is the whole space CV and, hence, nothing
at all is required of po€ M. The point py could be a singular point of A, a regular point
where the CR dimension increases, or a point across which M extends as a CR manifold.

Specializing Theorem 3.1.2 to the case g=0 we obtain the following result.

COROLLARY 3.1.3. Let M be a real algebraic, holomorphically nondegenerate, CR
submanifold in CV, let V be the smallest complex algebraic variety that contains M,
and let pg€M be a regular point of V. Assume that there exists p€ M, such that M is
minimal at p. If A’ is a real algebraic set in CN' such that dimg A'=dimg M, phe A’,
and HeHoly(po,py) satisfies H(M)CA' with generic rank equal to dimcV, then He
Algy, (po, Py)-

Specializing again in Corollary 3.1.3 to the case where M is generic, we obtain the
corollary announced in the introduction.

Ezample 3.1.4. Consider the generic holomorphically nondegenerate submanifold

M C* given by
Imw; = |z|* +Re wa|2|?,

Im wq = Re ws|z|*, (3.1.4)

Imws =0.
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The function hq(z, w)=ws is real on M, and MN{(z,w):ws=c} is clearly minimal near
(z, w1, w2)=(0,0,0) for all real c#£0. Thus, Theorem 3.1.2 implies that any holomorphic
mapping H: C*—>CY’ near 0, generically of rank 4, such that H (M) is contained in
a 5-dimensional real algebraic subset of CN' is algebraic on the leaves {ws=c}, for all
sufficiently small c€C. This result is optimal, because it is easy to verify that the
mapping H:C%—C*%, defined by

H(Z7w15w27w3) = (zeiw37w17w27w3)7

is a biholomorphism near the origin, and maps M into itself. Moreover, H is algebraic
on each {ws=c} but not in the whole space C*.

It is interesting to note that the only Hormander number at 0 is 2, and that the
maximal Segre set of M at 0 is No={(z,w):wp=w3=0}. Thus, the dimension of the
maximal Segre set at 0 is smaller than the dimension of the leaves on which H is algebraic.
For generic points pe€ M though, the maximal Segre set of M at p coincides with one of
these leaves.

Ezample 3.1.5. Consider the real algebraic subset ACC* defined by
{ (Im w1)2 =Re w2(|21 |2+|22|2),

3.1.5
Imw, =0. ( )

It is singular on {(z1, 22, w1, w2)=(0,0, 51, s2): 81,526 R}, but outside that set it is a
generic holomorphically nondegenerate manifold M. The function h;(z,w)=w, is real
on M, and MN{wy=s2} is minimal everywhere for all real s37#0. Theorem 3.1.2 implies
that any holomorphic mapping H:C*—CV " near 0, generically of rank 4, such that
H(M) is contained in a 6-dimensional real algebraic subset of CV' is algebraic on the
leaves {we=c}, for all sufficiently small c€ C. Again, this result is optimal, because the
biholomorphism
H(z1, 22, w1, w2) = (2162, 29, w1, wo)

maps the set A into itself. This map is only algebraic on the leaves {wz=c} and not in
the whole space.
Ezample 3.1.6. Consider the submanifold of C* defined by
Rew; =|21/?,
Imw; = |22)?, (3.1.6)
Imw, =0.
Note that this submanifold is not generic (nor is it CR!) on the set {(21, z2, w1, w2)=

(0,0,0,s2):s2€R}. However, outside that set the manifold (3.1.6) is a generic holo-
morphically nondegenerate manifold M. The function h(z,w)=w, is real on M, and
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MnN{wy=s2} is generically minimal for all s;€R. As above, Theorem 3.1.2 implies that
any holomorphic mapping H: C*—C¥N " near 0, generically of rank 4, such that H(M)
is contained in a 5-dimensional real algebraic subset of CV' is algebraic on the leaves
{wa=c}, for all sufficiently small ceC. We invite the reader to construct an exam-
ple, e.g. similar to the ones considered above, to show that one cannot have a stronger

conclusion.

We can also formulate a result that holds at most, but not necessarily all, points of
the algebraic set.

THEOREM 3.1.7. Let ACCY be an irreducible, holomorphically nondegenerate, real
algebraic set, and let V be a complex algebraic variety in CV that contains A. Then either
of the following holds, for all points p€ A,eg outside a proper real algebraic subset of A:

(i) There is he Ay(p) such that h is not constant and h|4 is real-valued.

(ii) All mappings HeHoly(p,p'), where p' eCN' is arbitrary, such that the generic
rank of H equals dimg V and such that H(A) is contained in a real algebraic set A', with
p €A’ and dimg A=dimg A4’, are algebraic in V, i.e. HE Ay(p,p’).

Before we proceed with the proofs of Theorems 3.1.2 and 3.1.7 (§3.3 and §3.4), we
need a result on “propagation of algebraicity” that we establish in the next subsection.

3.2. Propagation of algebraicity

We assume that we have an algebraic foliation of some domain in complex space, and a
holomorphic function f whose restriction to a certain sufficiently large collection of the
leaves is algebraic. We shall show that the restrictions of f to all leaves in the domain
are also algebraic, provided that the domain has a nice “product structure” with respect
to the foliation. This will be essential in the proof of Theorem 3.1.2. This result may
already be known.

LEMMA 3.2.1. Let f(z,w) be a holomorphic function in UxV, where UCC? and
VCCl are domains. Assume that there is a subdomain VoCV and a nontrivial poly-
nomial P(z, X;w)€e0y(Vp)[2,X], i.e. P is a polynomial in z=(z1,...,24) and X with
coefficients holomorphic in Vg, such that

P(z, f(z,w);w) =0, z€U,welp. (3.2.1)
Then there is a nontrivial polynomial P(z, X;w)€Oy(V)[z, X | such that

P(z, f(z,w);w)=0, z€U,weV. (3.2.2)
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Proof. Pick any point w®€V,, and consider P=P(z, X;w) as an element of
Oy(w?)[2, X]. We order the monomials z* by choosing a bijection i: 2% —Z,, and write

P
P(z, X;w) =2pk(z;w)X’°, (3.2.3)
k=0
where each pi(z; w)€Oy(w®)[2] is of the form
pr(zw)= Y ab(w)*, (3.2.4)
(o) <ak

with a® €O,(w’). We choose p,qi,...,¢, minimal such that P can be written in this
form with the leading terms in (3.2.3) and (3.2.4) not identically 0. We may assume
that the numbers p and g, are minimal in the sense that if P’ is another polynomial in
Op(w®)[z, X], with corresponding numbers p’ and g/, such that (3.2.1) holds then p<p/
and if p=p’ then quq;,,. The polynomial P is then unique modulo multiplication by
elements in Oy(w®) in the sense that if P’ is as above with p’=p and 4y =Gp then there
are germs c; (w), c2(w) €Op(wP), not identically 0, such that

c1(w)P(z, X;w) = co(w)P' (2, X; w). (3.2.5)

Since p is minimal, the function pp(2; w) is not identically 0, and thus there is a coefficient
a2, (w) which is not identically 0. The equation (3.2.1) can then be written in the form

Qlz, f(z,w); w) = —ad (w)z, (3.2.6)

with Q(z, X; w)€Op(uw®)[z, X]. Now, the uniqueness of P in the sense of (3.2.5) and the
fact that al #0 imply that the coefficients of Q(z, X; w) satisfying (3.2.6) are actually
unique. After dividing (3.2.6) by —a_(w), we find Q’(z, X; w)e My (w®)[z, X] satisfying

Q' (2, f(z,w);w) = 2%, (3.2.7)

where Mp(w®) denotes the field of germs of meromorphic functions at wg.

We order the set of indices (k, ), for k=0, ..., p and i(a) < ¢k, minus the index (0, ag)
in some way, e.g. the “canonical” way induced by the ordering i=i(a). We hence obtain a
bijection (k, a)— j(k,a) from this set of indices to the set of numbers {1,2, ..., 4}, where
4 is the number of elements in this set of indices. We introduce the C#-valued functions
A(z;w) defined by letting the jth component be

Ay(mw) =2 f(zw)t, for j=j(k,a), (3.2.8)
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and b(w) defined by

ak (w)
b;(w) —ad ()’ for j=4j(k, ) (3.2.9)
Then (3.2.7) can be written
Az w)-b(w) = 2%°, (3.2.10)

where - denotes the usual dot product of vectors in C#. Moreover, the vector-valued
meromorphic function b(w) is the unique meromorphic solution of (3.2.10). Consider the
(@ x p)-matrix-valued holomorphic function B(zi,...,2,,w) (of au+b variables) defined
by letting the matrix element B;;(21, ..., 2, w), for ¢,j=1, ..., u, be

Bij(21, ..y 2u5w) = Aj (235 w). (3.2.11)

We claim that the determinant of B(zy, ..., 2,; w) is not identically 0. Indeed, if it were,
then we could find a vector-valued holomorphic function c¢(w), not identically 0, such
that A(2;w)-c(w)=0, which would contradict the uniqueness of the solution b(w) of
(3.2.10). Thus, we can find fixed values 29, ...,z such that A(w), the determinant of
B(2],...,23;w) as a function of w, is not identically 0. We can then solve for b(w) as
the unique solution of the system obtained from (3.2.10) after substituting successively
29,...,2) for z. Since the matrix B(z{,...,20;w) has entries holomorphic in all of V,
by Cramer’s rule it follows that the solution b(w) thus obtained is in M;(V). Hence
Q' (2, X;w)eMy(V)[z, X]. After clearing denominators we obtain (3.2.2) from (3.2.7).

This completes the proof of Lemma 3.2.1. O

3.3. Proof of Theorem 3.1.2

First, since all assumptions and conclusions in the theorem are related to V, and poeV
is a regular point of V, it suffices to consider the case where V=C¥ and M is generic;
we will assume this for the rest of the proof. By assumption (i) in the theorem, we can
find algebraic coordinates (u,v)€CN~9x C9, vanishing at pg, in a neighborhood U; of
po such that h;=v; for j=1,...,q. We may assume U;=A, X By, where A,CCN-9 and
B;cC4. It follows from the assumptions that M NSy, is minimal at p for p outside
a proper real algebraic subset of MNU;. Similarly, M is /(M )-nondegenerate outside a
proper real algebraic subset of M, where {(M) is the Levi number defined in §1.3. Also,
the mapping H attains its maximal rank outside a proper complex-analytic subset of CV
near pg, and since M is generic it is not contained in any proper complex-analytic set.
Thus, H attains its maximal rank at points on M outside a proper real-analytic subset
of M. Finally, for each j, the jth Segre set N;(p) of M at p (defined in §2.2) has maximal
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generic dimension for p outside a proper real algebraic subset of M. Hence we can find
p1 € MNU, such that

(a) MNSh(p,) is minimal at p;,

(b) H has rank N at p,

(c) M is I(M)-nondegenerate at p1,

(d) for each j, the generic dimension d; of N;(p;) is maximal.
We will prove Theorem 3.1.2 by first showing that there is a neighborhood of p; in CV
such that H|s, ,, is algebraic for every p in that neighborhood, and then applying Lemma
3.2.1 to deduce the full statement of the theorem. For this, we claim that we may assume
that the target A’ is contained in CV and that H is a mapping into CV. Indeed, there is
a neighborhood U, CU; of the point p; such that Y'=H(U,) is a complex submanifold
of dimension N in CV’ through the point pj=H(p1). Since M is generic and H is a
biholomorphism of U, onto Y”, it follows that A’ is a generic submanifold of Y’ near pj.
Denote by M’ a piece of A’ near pj and choose it such that M’ is a generic submanifold
of Y’. Then, M’ is real algebraic and its intrinsic complexification V' c CV "is a complex
algebraic manifold near p}. Since both Y’ and V'’ contain M’, and M’ is generic in both
manifolds, it follows that Y'=)’. We can therefore choose algebraic coordinates in a
neighborhood U} of p) in CV', vanishing at p}, such that H =(ﬁ ,0) in these coordinates
and H maps MNU, into M'NU,CY’2CV. In what follows, we assume that CN'=CV
and we take H as our mapping H.

Let (2, w)€C™ x C*=CP", where n is the CR dimension and d the codimension of M,
be (algebraic) normal coordinates for M, vanishing at p;, i.e. M is defined near p;
by (1.1.3) and similarly for the target M’ (denoting the function defining M’ by Q').
We write (z, w)=(z{u,v), w(u,v)) to indicate the relationship between the local normal
coordinates (z,w) near p; and the coordinates (u,v) in U;. Thus, we can write the
mapping H as H=(f, g), where f(z,w)€C"™ and g(z,w)€C¢, such that

§=Q'(f,f.9) (3.3.1)
holds for points (z, w)€M near p; =0. By complexifying, we obtain
g0 ) =Q' (F(x, 1), flz,w), gz, w)), (3.3.2)

for all (z,w, x,T)EM near 0. We define the holomorphic vector fields £; in C?V tangent
to M (and resulting from the complexification of the CR vector fields of M) by

<~ o .
Cj-%‘F;Qk,Xj(sz’w)é?kr i=1,.,n. (3.3.3)

J



ALGEBRAICITY OF HOLOMORPHIC MAPPINGS 261
We shall also need the following vector fields tangent to M,

0 8
LJ:B_zj-'_ZQk’zj(z’X’T)@—m’ .7=1;"',n

2 Q (x,z,w)a j=1,..,d, (3.3.4)

H
M

z]zx, T, 7=1,..,n

Note that the coefficients of all the vector fields given by (3.3.3) and (3.3.4) are algebraic
functions of (z,w, x, 7).

ASSERTION 3.3.1. There is a neighborhood UsCUs such that, for all (2w, ,7)€
MN(Us x*Us) and all multi-indices y=(v',~"),
ol fi

where §,k=1,...,n, 1=1,....d, ||, |B|<I(M), 2|, |8%|<|¥"], |&3],18%|<|Y|, and the
\II;Y are algebraic holomorphic functions of their arguments.

(2,0) = 0] (o, VT LY Fo(x,7), o VETO L Gi(x, ), ), (3.3.5)

Proof. We apply the operators £; to the identity (3.3.2), and use the fact that the
matrix L£f at (z,w,x,7)=(0,0,0,0) is invertible (since H is a biholomorphism at p, =0)
to deduce that there are algebraic functions F}; such that, for points on M near 0,

Qs (f, f,9)=F;(Lf, L3). (3.36)

We repeat this procedure, using in the next step (3.3.6) instead of (3.3.2) and so on.
Since H is a biholomorphism at p;, M’ is [(M)-nondegenerate at pj. Hence (see §1.3)

span{Q, ,(0,0,0):]a| <I(M)} =C". (3.3.7)

It follows from the algebraic implicit function theorem and from (3.3.7) that, for all
(z,w, x, 7)€M near the origin,

Fi(zow) =Yy L2 PO )y oy LPGXG T, )y G=1, 00y, (3.3.8)

where k=1, ...,n, =1, ....d, |of,|6|<I(M), and the ¥; are algebraic holomorphic func-
tions of their arguments (cf. e.g. [BR4, Lemma 2.3]). Now, since f(z,w) is a function of
(z,w) only, we have, for any multi-index y=(v',v"),

oM §;

V'Y’Tr”f(z,w)— 577 Do 7,,( ,w).

(3.3.9)
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The assertion follows if we apply VYT to (3.3.8), which is possible since the V; and T;
are tangent to M. U

We now proceed with the proof of Theorem 3.1.2. From (3.3.2) we have

91(2,w) =Qi(f(z,w), f(x, 7), §(x, 7)) (3.3.10)
for (z,w,x,7)€M and I=1,...,d. If we apply V7' T7" to this equation we obtain

3|v|gl

davowr )

a[all+la21f 2 L s L (3311)
=¢’7 (...,W(sz)""avﬁ Tﬁ fj(X,T),...,V“ T” gk(X’T)a'">v

where j=1, .,m, k,1=1,....d, |a], 8], |i| <", |02}, [62], [u2|<[', and where &7 are
algebraic holomorphic functions of their arguments. Using (3.3.5), we obtain

oMlg

W(z,w)=E?(...,V"3T"‘2£“1f_j(x,r),...,VﬂsTﬁzﬁﬂlgk(X,r),...), (3.3.12)

where j=1,...,n, k,I=1,...,d, |a}|, |8} |<UM), |&?],|8%|<|Y'|, |&®], |83|< ||, and the E]
are holomorphic algebraic functions of their arguments. For notational brevity, we use
the notation Z=(z,w) and (=(x, 7). If we denote by (H,(Z), ..., Hy(Z)) the components
of H in an arbitrary algebraic coordinate system near the point pj =H (p;) then it follows
from (3.3.5) and (3.3.12) that we have

o H 85°H.
aka (2)=9] <Z, ¢, acff «©), > (3.3.13)

where j, k=1, ..., N, v arbitrary, |a|<|y|+I(M), and ©] are holomorphic algebraic func-
tions of their arguments for (Z,{)€M near (py, D).

ASSERTION 3.3.2. For ZeM near p1, let N;(Z) denote the jth Segre set of M at
Z and d; the generic dimension of N;j(p1). For some j, 1<j<jo—1, let

Ch4 xCN3(s,2)—((s,Z)eCN (3.3.14)

be an algebraic map, holomorphic near (0,p1). Suppose that s—((s,p1) has generic
rank d;, and ((s,Z)€*N;(Z) for ze M. Then there is an algebraic map

Chi+1xCN3(t,Z)— (I(t, Z), s(t)) e CVx C¥Y, (3.3.15)
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holomorphic near (0,p1), such that (IL(t, Z), ¢(s(t), Z)) €M, the mapping t—1I1(t, Z) has
generic rank d;y1, and II(t, ZYEN;11(Z), for all ZEM near p;.

Remark. If ((s, Z) is algebraic anti-holomorphic in Z rather than algebraic holomor-
phic then the same conclusion holds with “holomorphic” replaced by “anti-holomorphic”.

Proof. Note first that by assumption (d) in the choice of p;, d; is also the generic
dimension of N;(Z) for Z near p;. We write the map ¢(s, Z) in the normal coordinates
as (x(s,2),7(s,Z)). For Ze M fixed near p; consider the map

C"xC% 35 (z,8)— (2,Q(z,x(s,2),7(s,Z))) e C" xC¢=CN. (3.3.16)

Note that (2,Q(z,x(s, Z),7(s,Z)),x(s,Z),7(s,Z))eM. Since N;j;1(Z), for ZeM, is
defined as {(z,Q(z,x,7)):3(x,7)€*N,;(Z)}, and the mapping s—((s, Z)€*N;(Z) has
rank d;, which is also the generic dimension of *N;(Z), it is easy to verify that the map
(3.3.16) has generic rank d;;,. Thus, by the rank theorem, there is an algebraic map

Ch+t1 "5t s 5(t') € CH (3.3.17)
such that
C"xCHH "5 (2, t") =t (2,Q(z, x(s(t), Z), 7(s(t'), Z))) e CV (3.3.18)
has rank d;41. The proof of Assertion 3.3.2 follows by taking t=(z,t'), s(t)=s(t') and
(¢, Z) = (z,Q(z, x(s(t'), Z), 7(s(t"), Z))). (3.3.19)
O

Now, define the map IIy(Z)=Z and the map (3(Z)=Z. The latter, thought of as a
map C°x CVN—C¥ | satisfies the hypothesis of Assertion 3.3.2 above with j=0 (see the
remark following the assertion). Thus, we get an algebraic map, anti-holomorphic in Z,

ChxCN>(t,2)—~1,(t,2Z)eCV, (3.3.20)

of rank d; in t for Z near p; €M, such that (II;(t, Z), Z)eM, and II, (¢, Z)€ N1 (Z) for
ZeM. Defining the map (1(t, Z) by

Gi(t, 2)=1(¢, 2) (3.3.21)

we obtain a map into *N;(Z) that satisfies the hypothesis of the assertion with j=1
(this time the map is holomorphic in Z). Applying the assertion again and proceeding
inductively, we obtain a sequence of algebraic maps

HO(Z)anl(tla Z)a "'71_[]'0 (tjoa Z)aCO(Z)’Cl(Sla Z)» ""<j0—1(3j0—17 Z)
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(either holomorphic or anti-holomorphic in Z) with ¢;€C%, s;€C%, and accompanying
maps $1(t2),...,8jo—1(tjo) such that the maps t;—1II;(¢;, Z) and s;—(;(s;,Z) are of
rank d;, map into N;(Z) and *N;(Z) respectively for Z€ M, and satisfy

(Wj+1(tj41, 2), G (85 (ti+1), Z)) €M, (3.3.22)

for =0, ..., jo—1. Morever, we have the relation

Cilsi, Z2)=11;(5;, Z). (3.3.23)
ASSERTION 3.3.3. For each j=1,..., jo,

el H, okl E, )

el
3 Hk: . 8Za ’7—6_&—E—(Z)’

0z

(IL(t5, 2)) = Fj (tj,Z, Z,. (3.3.24)
holds for Z€ M near p1, where k,I=1,..,N, |a|, 18I <Y +7H{M), and F;’k are holomor-
phic algebraic functions of their arguments.

Proof. The proof is by induction on j. For j=1, we prove the statement by taking
Z to be I;(t1,Z) and ¢ to be (o(Z)=Z in (3.3.13) (using (3.3.22)). Assume now that
(3.3.24) holds for j=1,...,4 (with i<jo). By (3.3.23) we have

o H _ _ Al H, P H,
ac,yk(Ci(siaz)) =F]7k <5j7Z7Za cery W Z yerey W(Z), . )

(3.3.25)

Now (3.3.24) follows for j=i+1 from (3.3.25) by taking Z to be 1,1 (t;+1,Z) and ¢ to
be C¢(3§(ti+1), Z) in (3313) O

We now complete the proof of Theorem 3.1.2. For p near p; it follows from Corollary
2.2.2, since M NSy p) is minimal, that the maximal Segre set N, (p) is contained in and
contains an open piece of Sy(,). Since M is generic, it is easy to see that h(M) contains
an open neighborhood of ¢! =h(p;) in R?. Thus, by the rank theorem, and using the
coordinates (u,v) in Uy, there is a real algebraic injective map R?3>c— (u(c),c)eM, for
c near ¢!, which can be complexified to an algebraic injective map v+ (u(v),v), for v
in a neighborhood of ¢! in C9. Now, let Z be the point Z(c)=(z(u(c), ), w(u(c),c))
where c€RY is some arbitrary point near c'. Applying Assertion 3.3.3 with this choice
of Z, v=0 and j=7jy, we deduce that each component H; is algebraic on S, and satisfies
there a polynomial equation with coefficients that depend real-analytically on ¢ (we
may take t;, as algebraic coordinates on Sc). In terms of the coordinates (u,v) with
H(u, v)=H(Z(u,v)), there are polynomials P,(u, X;c) in (u, X)eCN-7xC, I=1,..., N,
with coefficients that are real-analytic functions in c, for ¢ close to c!, such that

Py(u, ﬁl(u,c);c) =0 (3.3.26)
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(u are also algebraic coordinates on S, and it is easy to see that the algebraic change of
coordinates u=u(t;,) on S, depends real algebraically on c). Extending the coefficients
of the polynomials to be complex-analytic functions of v in a neighborhood By of c!
in CY, we obtain polynomials P,(u, X;v)€O4(Bs)[u, X] such that

Py(u, Hy(u,v);v) =0 (3.3.27)

holds in A; x B;. Since I:Tl(u,v) is holomorphic in A; x B, there is, by Lemma 3.2.1,
possibly another polynomial P;(u, X;v)€Oq(Bi)[u, X] such that

Py(u, Hy(u,v);v) =0 (3.3.28)

holds in U; =A; x By. This completes the proof of Theorem 3.1.2 with U=U7, and §>0
being any number such that the ball of radius é centered at v=0 is contained in B, (recall
that Bj is a neighborhood of v=0). The proof of Theorem 3.1.2 is now complete. a

3.4. Proof of Theorem 3.1.7

Put M =A,¢. First, note that if M is contained in a proper complex algebraic subvariety
of V then (i) holds for all points pe M. If M is not contained in a proper algebraic
subvariety of V then M is a generic real algebraic submanifold of Vi at p, for all p
outside some proper real algebraic subvariety of M. Thus, as in the proof of Theorem
3.1.2, we may assume that V=C" and that M is a generic holomorphically nondegenerate
submanifold in CN. Let po€ M be a point whose CR orbit has maximal dimension. If M
is minimal at pg then (ii) holds with p=po, by Corollary 3.1.4. Moreover, if M is minimal
at pg then M is minimal for p outside a real algebraic variety and therefore (ii) holds
at such p. Thus, the theorem follows if we can show that M is minimal at py unless (i)
holds at py. The proof of Theorem 3.1.7 will then be completed by the following lemma.

LEMMA 3.4.1. Let M be a generic real algebraic submanifold in CV, and let pg be a
point in M with CR orbit of mazimal dimension. Then M is mintmal at pgy if and only
if there is no nonconstant h€ An(po) such that hjp is real-valued. More precisely, if the
codimension of the local CR orbit of py in M is q then there are hy, ...,hg€ An(po) such
that hj|a is real-valued for j=1,...,q and

Ohi1(po)A...ABhg(po) #0. (3.4.1)

Remark. Lemma 3.4.1 implies that the decomposition of M into CR orbits near pg
is actually an algebraic foliation, because the CR orbit of a point p; near pg must equal
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{peM:h;(p)=h;(p1), j=1,...,q}. If Corollary 2.2.5 is viewed as an algebraic version of
the Nagano theorem (for the special class of algebraic vector fields that arise in this
situation; see the paragraph following Corollary 2.2.5) then this lemma is the algebraic
version of the Frobenius theorem.

Proof of Lemma 3.4.1. Assume that there is a nonconstant h€ Ay (pg) such that
h|nr is real. Then, by Lemma 3.1.1, MN{Z:h(Z)=h(p)} is a CR submanifold for all
pE€M near pg such that dh(p)#£0. Since h is real on M all CR and anti-CR vector fields
tangent to M annihilate h; hence the submanifold MN{Z:h(Z)=h(p)} has the same
CR dimension as M. Thus, M is not minimal at p. Since this is true for all p€ M near
po outside a proper real algebraic subset, M is not minimal anywhere. This proves the
“only if” part of the first statement of the lemma. The “if” part will follow from the
more precise statement at the end of the lemma, which we shall now prove.

We choose algebraic normal coordinates (z,w)€C¥, vanishing at pg, such that M
is given by (1.1.3) near pp. Denote by Wy the CR orbit of ps=0, and by Xj its intrinsic
complexification. By Theorem 2.2.1, N;,(po), the maximal Segre set of M at po, is
contained in and contains an open piece of Xo. The complex dimension of Xg is dj,,
the generic dimension of N, (py). Since the codimension of W, in M is g, the complex
codimension of its intrinsic complexification Xp is also g, i.e. d;,=n+d—q. Let r=d—q.
By a linear change of the w coordinates, we may assume that the tangent plane of Xy
at 0 is {(z,w):wr41=...=we=0}. We decompose w as (w’,w"”)eC"xCi=C?. Note
that at the point p=(0, s)e M, where s=(s',s")eR"xRY, (%, w)=(z,w—s) are normal
coordinates vanishing at p and M is given by

W=Q(2,2,W+s)—s. (3.4.2)

We denote by W~ the local CR orbit of (0,0,s"”), by X,~ its intrinsic complexification,
and by Nj,(s") the maximal Segre set at (0,0,s”). Since the CR orbit at py has maximal
dimension, all Wy, X, and Nj,(s”) have dimension d;, =n+r for s” near 0 in R?. Using
the parametrizations (2.2.10), (2.2.13) and writing A=(z, A’), we can express N;,(s") in
the coordinates (z,w) by

w=1v"°(z,A";s"), (3.4.3)

where A’€ CU~D", Since the defining equations (3.4.2) of M at (0,0,s") depend alge-
braically on s”, it follows that v%(-;s") also does (cf. (2.2.10)—(2.2.12) and (2.2.13)-
(2.2.15)). At a point (2,A’;0) where 9v’°/OA’ has maximal rank r=d;,—n, we may
assume (by a change of coordinates in the A’-space if necessary) that A’=(A1,As)€
C" xCU—Dn=r 4jo is independent of Az, and dv7°/AA; has rank r. Since the tangent
plane of Xy at 0 equals {w”=0}, it follows from the implicit function theorem that we
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can solve for A in the first r equations of (3.4.3). We then substitute this into the last
q equations and find that we can express N;,(s”), for s” close to 0, as a graph

w”’ = f(z,w';s") (3.4.4)

near some point (21, w?, f(2!,w'; ")) with f(z,w’; s’} holomorphic algebraic in a neigh-
borhood of (21, w?!;0). Now, since all the CR orbits near py have the same dimension, it
follows from the Frobenius theorem that they form a real-analytic foliation of a neigh-
borhood of pg in M (as we have noted before, the Frobenius theorem does not imply
that the orbits form a real algebraic foliation even though the vector fields are algebraic).
Thus, there are ¢ real-valued, real-analytic functions k=(k1,...,kq) on M with linearly
independent differentials near pg such that every local CR orbit near this point is of the
form {(z,w)eM: k(z,w)=c} for some small ceR? (we may assume that k(0)=0). Since
(0,0, s")eWsn, we have

Wen ={(z,w',w")) € M: k(z,w',w")=k(0,0,5")}. (3.4.5)

Clearly, these functions are CR and, hence, they extend, near 0 in C¥, as holomorphic
functions which we again denote by k. It follows that each X,», for real s” close to 0, is
given by

X ={(z,w',w")) € CN: k(z,w',w") = k(0,0,5")}. (3.4.6)

Since the tangent plane of Xy at 0 equals {w” =0}, it follows that there is a holomorphic
function g(z, w’, ") near (0,0,0) with (0,0, s”}=s" such that X, for real s” close to 0,
is given by

w" = g(z,w', s"). (3.4.7)

The maximal Segre set Nj (s”) coincides with X,» on a dense open subset of the latter.
Consequently, the algebraic representation (3.4.4) of Nj (s"”), which is valid near the
point (21,0, f(2!,w'; s")), implies that the holomorphic function g(z,w’, s”) in (3.4.7)
is in fact algebraic. (The point (z!,w’) can be taken arbitrarily close to 0.) Hence

the algebraic function f(z,w’;s"”) can be continued to an algebraic holomorphic function

near (0, 0;0).
Now, as we noted above, we have the identity f(0,0;s”)=s" and hence
of

Hence, we may solve the equation

w"” = f(z,w'; ") (3.4.9)
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for s near the base point (z,w’,w"”,s")=(0,0,0,0). We obtain a C%valued algebraic
function h(z,w’,w"), holomorphic near (0,0, 0), satisfying

w” = f(z,w'; h(z, 0", w")) (3.4.10)

with h(0,0,s”)=s". It follows that the restriction of h(z,w’, w") to X~ is constant and
equals s”. In particular, since the CR orbits Wy»=MNX,~ (for s” €RA close to 0) cover
a neighborhood of 0 in M, the restriction of h to M is valued in R9. Indeed, we have

h|pr=8" and, as a consequence, we also have
Bh1(0)A... Ak (0) # 0. (3.4.11)

The proof of Lemma 3.4.1 is complete. O

3.5. An example

Consider the 5-dimensional real algebraic submanifold M CC* defined by
ReZ3=0, ImZ;=|Z1|?, ImZ,4=|Z,)° (3.5.1)

On the set {(0,Z2,0,X4+1i|Z2|%): Z,€C, X;€R}, M is neither generic nor CR, but
outside that set M is generic and holomorphically nondegenerate. The function hi(Z)=
—iZzisreal on M, but MN{Z:hy(Z)=c}, for real ¢>0, is not minimal anywhere. Indeed,
MN{Z:hi(Z)=c} is given by

|Z\2=c, Zs=ic, ImZy=|Z,|? (3.5.2)

which is not minimal since it is a product of a circle and a 3-dimensional surface. We
leave it to the reader to check that there is no germ at 0 of an algebraic holomorphic
function h which is real on M and such that 8h(0) Adh;(0)7#0.
Hence, we cannot apply Theorem 3.1.2 with pg=0. However, a straightforward
calculation reveals that the function
Z%—iZ;
ho(Z)= 2" 5.
2(2)=— 7 (3.5.3)
is real on M, since hy(Z)|pr=Re Z;. Near any point p;=(ir,0,ir?,0)€ M, with reR,
the leaves {Z : hi1(Z)=c1, ho(Z)=ca}, for c=(c1,c2)€C? close to (r?,0), are equal to

{Z:Z1 =c2+V C%—Cl,Zg :icl}, (354)
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where the square root is chosen so that v/—1=4. Assume now that there is a holomorphic
map H:C4—CN near 0, generically of rank 4, such that H (M) is contained in a 5-
dimensional real algebraic subset of CV . If we choose the point p; as above with r#0 to
be in the domain of definition of H then we may apply Theorem 3.1.2 in a neighborhood of
p1 since MN{Z:hy(Z)=c1, h2(Z)=c,} is minimal for Z near p;, and c€R? near (r%,0).
Theorem 3.1.2 implies that H is algebraic on the leaves

{Z:hl(Z)=Cl,h2(Z)=Cz}, (355)

which are the same as the leaves defined by (3.5.4). More precisely, the proof of The-
orem 3.1.2 implies that there are polynomials P(Z2, Zy, X; Z1,Z3) in (Z2, Z4, X)€C?
with coefficients that are holomorphic functions of (Z1, Z3) near (ir, ir?) such that (with
H=(Hy,...Hn'))

P(Zy,Z4,H|(Z); Z1,2Z5)=0 (3.5.6)

holds for Z near (ir,0,ir?,0), for [=1,..., N’. Since H is holomorphic in a neighborhood
of 0, we can now apply Lemma 3.2.1 to conclude that H is algebraic on the leaves
{Z:2,=2Y, Z3=29} for all (Z9, Z3) in a neighborhood of (0,0). Note that, as mentioned
above, we could not apply Theorem 3.1.2, as it is formulated, directly to this example at
po=0.

It should be noted that there exists a nonalgebraic mapping H which is holomorphic
outside {Z; =0}, maps M into itself, has generically full rank, and which is algebraic on
the leaves {Z:2,=27, Z3=23}. Indeed, we may take

H(Zy, 22, 23, Z4) = (e'h? (20 2)=i8a/2 7, (7, e™*23 75 74). (3.5.14)

3.6. Proofs of Theorems 1 through 4

We begin by proving Theorem 1. Since pOEA_m; and Acr is dense in Ay, We can
find a real algebraic CR submanifold M, as an open piece of Acg, such that po€M.
Condition (1) and Proposition 1.4.1 imply that M is holomorphically nondegenerate,
and condition (2), together with Lemma 3.4.1 imply that M is generic and minimal at
some point. Now Theorem 1 follows from Theorem 3.1.2 by specializing in that theorem
to ¢=0 and M generic.

For Theorem 4, we note first that Theorem 2.2.1 states that the CR orbits and their
intrinsic complexifications are all algebraic. The rest of the proof of the theorem follows
from Theorem 1, since any biholomorphism must map a CR orbit onto a CR orbit.

Now we shall prove Theorems 2 and 3. By Proposition 1.4.1, condition (1) of The-
orem 1 is equivalent to condition (i) of Theorem 3. That (2) of Theorem 1 is equivalent
to (i) and (ii) of Theorem 3 follows easily from Lemma 3.4.1.
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PROPOSITION 3.6.1. Let A be an irreducible real algebraic subset of CN. If either
(i) or (ii) of Theorem 3 does not hold, then (3) of Theorem 2 holds.

Proof. Assume first that (i) does not hold and let pgp€ Acr. By Proposition 1.4.1,
the definition of holomorphic degeneracy, and the observations in the proof of Proposi-
tion 1.4.1, there exists a nontrivial holomorphic vector field X of the form (1.4.1) tangent
to A with coeflicients algebraic holomorphic near py. Without loss of generality, we may
assume X (po)=0. The proof now is essentially the same as that of the hypersurface case
([BR3, Proposition 3.5]). We take the complex flow of the vector field X or, if necessary,
of fX, where f is a germ of a nonalgebraic holomorphic function at pg to find the desired
germ of biholomorphism satisfying (3). See [BR3] for details.

Assume now that (ii) does not hold, and let pg€ Acr. Since A is not generic at po,
there exists an algebraic holomorphic proper submanifold in C¥ containing Acr. After
an algebraic holomorphic change of coordinates, we may assume that pp=0 and that
A is contained in the complex hyperplane Zn=0 near 0. To prove that (3) holds, it
suffices to take the mapping H;(Z)=Z;, j=1,..,N—1, and Hy(Z)=ZyeZ". This proves
Proposition 3.6.1. O

We now prove the last statement of Theorem 3. A homogeneous submanifold M of

CV of codimension d is given by
M={ZecCV:0;(Z,Z)=0,j=1,...,d}, (3.6.1)
where the g; are real-valued polynomials weighted homogeneous with respect to the

weights 11 <...<vy (see §2.3). Let m<...<ry be the degrees of homogeneity of the
polynomials o1, ..., 04, i.e., for >0,

0;(t" Zy,  tNIN)=tT0;(2,2Z), j=1,..,d. (3.6.2)

We also assume that
do1(0)A...Adp4(0) #0. (3.6.3)

LEMMA 3.6.2. Let M be a homogeneous generic submanifold of CN which is not
minimal at 0. Then there exists a holomorphic polynomial h in CN, with h|p noncon-

stant and real-valued.

Proof. The homogeneous manifold M is generic (at 0 and hence at all points) if, in
addition to (3.6.3), we have
801{0)A...ADpa(0) #0. (3.6.4)

The reader can easily check that if M is a generic homogeneous manifold of codimension d,
after a linear holmorphic change of coordinates Z=(z,w), M can be written in the form

w=Q(2,%,@), with Q;(z,2,@)=T;+q¢;(z, %, @1, ..., W;j_1), (3.6.5)
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j=1,...,d, with g¢; a weighted homogeneous polynomial of weight r;. Here Q is complex-
valued and satisfies (1.1.5). After a further weighted homogeneous change of holomorphic
coordinates, we may assume that the coordinates (z,w) are normal, i.e. (1.1.4) holds.
As in §2, we let M* be the projection of M in C"**~1 k=2 . d+1. Fach M*
is defined by the first k—1 equations in (3.6.5). If the hypersurface M2CC"*! is not
minimal at 0, then necessarily ¢1(z,2)=0, and we may take h{z, w)=w. If not, we let
1<d be the smallest integer for which M! is minimal at 0, but M'*! is not minimal at 0.
Then the CR orbit W of 0 in the generic manifold M'*! is a proper CR submanifold of
M1 of CR dimension n. It must be a holomorphic graph over M! in C**!, That is, W
is given by (3.6.5) for 1<j<I—1 and w41 =f(z,w1,...,w;_1). Since W M'*! we must
also have Im f (2, w1, ..., wi—1)|p =(1/24)q (2, Z, @1, ... W1 )| m. The reader can check that
this implies that f(z,ws,...,wi—1) is independent of z and is a weighted homogeneous
holomorphic polynomial, and the function k{z,w)=w;— f(2,w1,...,w;_;) satisfies the
conclusion of the lemma. The following proposition concludes the proof of Theorem 3. O

PROPOSITION 3.6.3. Let M be a homogeneous generic submanifold of CV which is
not minimal at 0. Then for any po€ M, there exists a nonalgebraic holomorphic map H
from CN into itself with H(po)=po, H(M)C M, and Jac H(py)#0.

Proof. By Lemma 3.6.2, there exists a nonconstant holomorphic polynomial h with
h|ar real. We may also assume h(po)=0. The reader can easily check that the map defined
by

Hj(Z)=e""2@ 7z, j=1,..,N,

satisfies the desired conclusion of the proposition. ]
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