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1. I n t r o d u c t i o n  

A zonotope in R n is a special type of a convex polytope; it is defined as a Minkowski sum 

of finitely many  segments. Tha t  is, a zonotope is a set in R n of the form {Xl +x2 +... +Xm : 

XlCI1,...',XmEIm}, where I1,...,Im are segments in R n. A convex body tha t  can be 

approximated by zonotopes arbitrari ly closely is called a zonoid. Several authors have 

recently studied the following question: what  is the minimum number, N,  of summands  

of a zonotope needed to approximate a given zonoid Z in R ~ with error at most ~ (this 

means tha t  ZCAC(I+~)Z ,  where A is the approximating zonotope, and we assume 

tha t  the center of symmet ry  of Z is the origin). Here we consider the dimension n fixed, 

and we investigate the dependence of N on ~ (we assume tha t  n~>3, as the case n = 2  is 

simple---see [4]). 

Previous work. Most of previous work has been devoted to the special case Z = B  ~, 

i.e. to the approximation of the Euclidean unit ball by a zonotope. This question has an 

equivalent formulation as a "tomography" problem (see Betke and McMullen [3]): find 

the minimum number  N of directions Yl,. . . ,YNCS n-1 (where S n-1 is the unit sphere 

in R ~) such that  the surface area of any convex body K in R n can be determined, up to a 

relative error of ~, by the knowledge of the volumes of the ( n -  1)-dimensional projections 

of K on the hyperplanes orthogonal to the Yi. Bourgain, Lindenstrauss and Milman [6] 

proved that  any zonotope approximating B n with error at most ~ has at least 

c(n)c -2+6/ (n+2)  

summands,  where c(n)>O is a constant depending on the dimension. Bourgain and 

Lindenstrauss [4] showed tha t  this bound is tight up to a logarithmic factor, namely, 
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that  for any ~E (0, 1) there exists a zonotope approximating B '~ with error at most E 

and with the number of summands 

N = O(e-2+6/(n+=) (log 1/s)l-a/(n+2)). (1) 

(See also Linhart [12] for earlier, weaker bounds.) For approximating general zonoids, 

they obtained the same asymptotic upper bound in dimension n=3, a bound with a 

slightly worse logarithmic factor in dimension n=4, and for n~>5 the bound of 

O(e-2+4/~(log 1/e)l-2/n), whose exponent is worse than in the bound for Z = B  n. The 

approximating zonotopes in these results are sums of segments of generally distinct 

lengths. Wagner [18] showed that  for n~<6, the upper bound (1) for approximating 

B n can be achieved by zonotopes all of whose summands have equal lengths. This result 

has been extended to an arbitrary fixed dimension n by Bourgain and Lindenstrauss [5]. 

New results. Here we improve and generalize the above-mentioned upper bounds 

in two respects. First, for dimensions n>~5, we prove that  an arbitrary zonoid can be 

approximated up to error e by a zonotope whose number of summands matches, up to a 

multiplicative constant, the above-mentioned lower bound, and whose summands are of 

equal length. For dimensions n = 3  and n=4 the method currently doesn't seem to yield 

improvements over known results. 

Second, we prove a another estimate for approximating general zonoids by zonotopes 

with summands of generally distinct lengths. Compared to the first result, this one gives 

a slightly worse bound (by a logarithmic factor), but  it has two advantages: it works 

for dimensions n=3 ,  4 as well, and it is constructive, in the sense that  if the zonoid is 

given in a suitable "effective" manner, the approximating zonotope can be found by a 

polynomial-time deterministic algorithm (while the first result is nonconstructive). 

To formulate the results precisely and to prove them, we pass to a dual setting. 

Here we deal with the following problem (see [4]): given a probability measure r on the 

unit sphere S d (from now on, we put d = n - 1  for a more convenient notation), find a 

probability measure r '  with an N-point  support, with N=N(e)  as small as possible, such 

that  for any x E S d we have 

~ l ( x , y ) l d r ( y ) - ~ d l ( x , y ) l d r ' ( y  ) <<.e 

(where ( . , .  } denotes the usual scalar product in Rn).  Let us denote the left-hand side 

of this formula by E(x, r, r'). The requirement for the approximating zonotope to have 

all summands of equal length translates into requiring the measure r '  to be uniform, i.e. 

all points of its N-point  support  have measure 1/N. 
The first of the above-mentioned results can be formulated as follows: 
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THEOREM 1. Let d>/4. For any probability measure T on S d and any r �89 

there exists an N-point set Q c S  d, with N ~Cg -2+6/(d+3) (where C=C(d)  is a constant), 

such that for each x E S  d we have E(x ,  T, T ~) ~ ,  where T' denotes the uniform probability 

measure on Q. 

The second result is 

THEOREM 2. For any probability measure T on S d and any ~E (0, 1) there exists a 

probability measure v ~ on S d concentrated on N points, with 

N <~ Cc -2+6/(d+3) (log l / c )  1-3/(d+3) 

(where C=C(d)  is a constant), such that for each x E S  d we have E(x ,  T, T') ~ .  

I f  T is concentrated on No points and is given by a list of weights of these points, 

then T t as above can be computed ( deterministically) in time polynomial in No (assuming 

d is fixed). I f  T = #  is the rotation-invariant measure on S d, a suitable T ~ can be computed 

in deterministic time polynomial in N .  

The proofs of both theorems use methods from geometric discrepancy theory (also 

called "theory of irregularities of distribution"). For Theorem 2, we use the basic idea of 

Bourgain and Lindenstrauss [4], but we transfer it to a discrete setting (which, among 

other things, allows us to make it effective), and we also employ results on partitioning 

point sets introduced by Chazelle and Welzl [10] and further developed by the author [15]. 

This approach relies on the fact that  the function y~-*i(x, Y) t is linear on both hemispheres 

(separated by the "equator" ix, y)=0),  and essentially it is a "dual shatter function" 

method (see [14] for explanation of this terminology). 

Theorem 1 is proved by a considerably different method, originating in Beck [2] and 

further elaborated by Spencer [17] and by the author [14]. Here, instead of linearity, we 

use the fact that  for close points x , x ' E S  d, the function y ~ i ( x , y ) i - i ( x ' , y ) l  has a small 

Lipschitz constant on most of S d. The method can be classified as a "primal shatter 

function" one. 

Theorem 2 is proved in w In order that  the presentation of the proof is not burdened 

by algorithmic details, we postpone these into separate parts ("algorithmic remarks") in 

w167 2 and 3. Theorem 1 is proved in w 

Remarks. In the notation f = O ( g )  for asymptotic comparisons of functions, the 

constant of proportionality may depend on the dimension (and possibly other parameters 

declared as constants). The notation f ~ g  means f = O ( g )  and g = O ( f )  at the same time. 

Algorithms are considered in the so-called Real R A M  model of computation, where 

arbitrary real numbers can be stored in memory and the usual arithmetic operations 



58 J. MATOUSEK 

with real numbers can be performed exactly in a single step (see e.g. [11]). The results 

remain valid, however, if we consider algorithms in the Turing machine model (or bit 

model). 

2. Prel iminaries  and auxiliary results 

In this section we introduce some terminology and notation, and we establish two lemmas 

for later use (Lemma 5 and Lemma 6). These are both obtained by simple extensions of 

known methods. 

A great circle is the intersection of S d with a hyperplane passing through the center 

of S d. For a point x E S  d, let x* denote the great circle {yESd: (x, y)=0}.  Let # denote 

the rotation-invariant probability measure on S d (i.e. the usual surface measure suitably 

normalized). We also define a measure #* on great circles by setting 

,*(c) = , ( {x  e s": x'e c}) 

for a set C of great circles. 

We say that  a great circle c crosses a set PC_S d if the points of P lie in both the 

open hemispheres determined by c. Let p, q E S  d be two points; by C(p, q) we denote the 

set of great circles crossing {p, q}, and we set 

C* (p, q) = {x E sd : x*E C(p, q)} = {x  E sd : sgn((x, p)) sgn((x, q)) = --1 }. 

The set C* (p, q) is bounded by the great circles p* and q*, and we call it the small 

slices of p and q. Its/t-measure is proportional to the angular distance between p and q 

(if the angle is measured in radians, the constant of proportionality is 1/7~), which in 

turn is within a constant factor from ]]p-qi], the Euclidean distance of p and q. 

First we need a "cutting lemma" for great circles on the sphere: 

LEMMA 3 (cutting lemma). Let C be a finite set of great circles in S d, w a proba- 

bility measure on C, and r>/1 a parameter. Then S d can be covered by m=-O(r d) sets 

A1, . . . ,A  m such that each Ai  is the intersection of d+ l closed hemispheres, and the w- 

measure of the set of great circles of C intersecting the interior of Ai  is at most l / r ,  for 

each i. 

Proof. This follows from a result of Chazelle and Friedman [9], who proved the 

following analogous result with R d instead of S d (another proof was later given by 

Chazelle [7]): Given a finite set H of hyperplanes in R d, a probability measure w on H,  

and a parameter r> l,  the space R d can be covered by m = O ( r  4) sets A1 , . . . ,Am such 
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that each Ai is a simplex (possibly with some vertices at infinity), and the w-measure 

of the set of hyperplanes of H intersecting the interior of Ai is at most 1/r, for each i. 

(To be precise: Chazelle and Friedman proved this result for the case when w is the 

uniform measure; the (simple) passage to a general w was noted in [13].) 

To derive Lemma 3, we consider S d embedded in R d+l with center at the origin, and 

we embed a d into R d+l as the hyperplane Xl=l .  The central projection of S d to the 

hyperplane Xl=l  maps a given set C of great circles to a set H of hyperplanes in R d. For 

this H,  we apply the result of Chazelle and Friedman, obtaining O(rd)-sets A1, ..., Am 

covering R d. The closure of the preimage of each Ai under the central projection is 

a union of two sets of the form required in Lemma 3. Taking these two pieces of the 

preimage for each Ai yields the desired covering of S d. [] 

Next, we need a simple result about "uniformly distributed" sets of great circles. 

LEMMA 4. Let d be fixed and let N>~I be an integer. There exists a set T2 of great 

circles in S d, whose size is bounded by a fixed polynomial in N,  and such that the following 

holds for any (~N-1 /d :  Whenever p, qES d are two points at distance at least 5, then 

the set {p,q} is crossed by at least 15[T2] great circles of T2. (The constant 1 is not 

important; any sufficiently small positive constant would do.) 

Proof. Such a set T2 can be produced in various ways (the best size one can achieve 

by current methods is about N 1/d log N, but  the size is not important  for us as long as 

it is polynomially bounded). Here is one possible method, which has the advantage of 

providing a simple deterministic algorithm. 

First we construct a uniformly distributed point set U. Starting with the whole 

S d as a single piece, we repeatedly slice each of the current pieces into two new pieces 

of equal measure by a hyperplane perpendicular to one of the coordinate axes (so that  

at any moment the pieces are intersections of rectangular boxes with the sphere). If 

the axes are alternated regularly, the diameter of the pieces goes to 0. Having obtained 

sufficiently small pieces of equal measure, we pick one point of U arbitrarily from each 

piece. 

It is easy to see that  if /3 is the maximum diameter of the pieces used ibr this 

construction of the set U c S  d, then for any p, qCS d we have 

UI lUnG* (P, q) l -~ (C*  (p, q)) = O(~) 

(this means that  the set U has a small discrepancy with respect to small slices of the 

form C*(p, q)). If we set ~ = c N  -1/d with a sufficiently small constant c>0,  we get that  

any small slice C*(p, q) with ]]p-q][=5>~N -1/d contains at least ~lU]5 points of U. For 
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the desired T2, we may thus take the set {u*:uEU}. (This method has the advantage of 

providing a simple deterministic algorithm for finding T2.) [] 

The following lemma (the first of the two main results of this section) is a slight 

modification of a theorem of [15], which in turn is a generalization of a result of Chazelle 

and Welzl [10]. 

LEMMA 5 (partition lemma). Let P be an N-point set in S d, and s>~2 an inte- 

ger constant. Then there exist disjoint s-point subsets P1, P2, ..., P t c P ,  which together 

contain at least �89 points of P, and with the following properties: 

(i) Each great circle cCS d crosses at most O(N 1-1/d) sets among the Pi. 

(ii) Each Pi has diameter at most O(N-1/d). 

Proof. The proof follows [15] closely (an extra ingredient compared to that  proof is 

that  we have to watch the diameter of the Pi's). For the reader's convenience, we give 

a self-contained proof (thus repeating parts of arguments from previous papers almost 

literally). 

First we choose two "test sets" of great circles. 

Let us say that  two great circles are equivalent if they cross the same set of pairs of 

points of P.  It is easily seen that  there are O(N d) equivalence classes. Choose one great 

circle from each equivalence class, obtaining a set T1 of great circles. 

Next, we choose a set T2 of great circles as in Lemma 4. Moreover, we may assume 

that  T1NT2=O. 

We now describe the construction of the sets P1, ..., Pt. The idea is to fix these sets 

one by one. In each step we want to take an s-point subset of the remaining points which 

is crossed by possibly few great circles of the "test set" T1UT2. Moreover, the great circles 

of T1 which already cross many of the sets constructed so far should be considered more 

important  (because they have already used up a great part of their quota for crossed 

sets). To capture this, we assign a weight to each great circle of T1, which penalizes the 

crossing of the previously constructed Pi. 

The algorithm is as follows. Suppose that  P1,..., Pi have already been constructed, 

and that  the set Pi=P\(PIU.. .UPi) still has at least 1 N  points. For a great circle cET1, 

let x~(c) be the number of sets among P~, ..., Pi crossed by c, and set ~ ( c ) - - 2  ~(c) (this 

is the weight expressing the penalization idea). Further, let Wi=)--~ceTlffJ~(c). Then we 

set T=T1UT2, and for cET we define 

{ - w~(c)/2tWi I for ceT1, 

wi(c)= 1/2]Tul for cET2. 

We apply the cutting lemma (Lemma 3) for the collection T and probability measure wi, 

with the parameter r ~ N  1/d, where the constant of proportionality is chosen in such a 
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way that the value of m in Lemma 3 (the number of the sets Ai) is at most N/2s. Since 

we have more than �89 remaining points in/~i and at most N/2s sets Ai, there exists 

some A~ containing at least s points of ~5. We take some s such points belonging to 

a single set Ai as the set Pi+l. This finishes the description of the construction of the 

sets Pi. 
The interior of each Ai is, in particular, intersected by at most 21T21/r = O(IT21/N 1/d) 

great circles of T2. By the choice of T2, this implies that the diameter of Pi+l is 

O(N-Wd). This shows property (ii). 

Property (i) is obtained by estimating the total weight 

Wt=  ~ 2 ~<<(c) 
cET1 

after the final step. For each cET we have xt(c)~<log 2 Wt; hence, part (ii) will be proved 

if we show 

log 2 Wt = O(N1-Ud). (2) 

Since IT~I is polynomial in N, we get log 2 W0 =O(log N). Next, we estimate the ratio 

Wi/Wi-1. By passing from @i-1 to @i, the weight of the great circles crossing the set 

Pi is doubled, while the weight of the other great circles remains unchanged. The total 

@i-weight of the great circles of T1 crossing Pi is O(~ri_l/N 1/d) by the construction, 

and hence we get 

Wi~ i-l-]-Ot-~-~) =~ri--l( )" 
From this we have 

- -  - -  [ 1  0 ( 1 )  Nt 

t 
and a routine calculation yields the estimate (2). [] 

Algorithmic remark. In the sequel, we will need an algorithmic version of Lemma 5, 

namely that given an N-point set P c S  d, the subsets P1, ..., Pt as in Lemma 5 can be 

computed in deterministic polynomial time. For Lemma 3, a deterministic polynomial- 

time algorithm for computing the sets Ai was given by Chazelle and Friedman [9] (for a 

faster algorithm see Chazelle [7]). The set T1 can be found by standard computational 

geometry techniques (constructing the arrangement of the great circles p*, pEP), see 

e.g. [11]. The set T2 can be obtained by the procedure outlined in the proof of Lemma 4. 

The construction of the Pi according to the above proof can clearly be accomplished in 

polynomial time. 

Next, we prove a lemma on the existence of suitable "dense enough" sets in the 

sphere. 
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LEMMA 6. Let P c S  d be an N-point  set, and let 5E(0, 1) be given. Then there exists 

a set APES d of size 0 ( 5  -d) such that for any point x E S  d there exists a qEAf  which is 

"close" to x in the following sense: 

(i) ] ]x-qH<5 and 

(if) ]PMC*(x, q)[<~SN, that is, the small slices of x and q contain at most 5N  points 

of P.  

Proof. Let T1 =P* be the set of great circles determined by the points of P.  Choose 

another set T2 of great circles as in Lemma 4. Define a probability measure w on T- -  

TI(JT2 by 
1/61T11 for c e T 1 ,  

w ( c ) =  5/61T21 for cET2.  

Use the cutting lemma (Lemma 3) for the collection T and the measure w, with r =  1/6~i. 

This yields a covering of S d by O(~ -d) spherically convex sets A1, ..., Am such that  

the interior of each Ai is intersected by at most 5IT1 i great circles of T1 and by at most 

~IT2i  great circles of T2. Form the set AT by choosing one point in the interior of each Ai. 

It is easy to check that  such an Af has the required properties. [] 

3. P r o o f  o f  T h e o r e m  2 

In Theorem 2, we may assume that  the given measure ~- is concentrated on finitely 

many, No, points (in particular, for the case 7=#,  we can produce a suitable discrete 

approximation of # with error at most e in time polynomial in c -1 easily). Th eo rem  2 

is then proved from the following proposition: 

PROPOSITION 7. Let P C S  d be an N-point  set, and let T be a probability measure 

on P.  Then there exist a subset P ~ C P  of at most  ~ N  points and a probability measure 

~-~ on P~ such that for any x E S  d we have 

S,. I/x,y)i..-(,,)-/.>, i/x,y)i d,-'(y) (.) 

A suitable T ~ can be found deterministically in time polynomial in N .  

Given a 7 with an N0-point support  as in Theorem 2, we apply Proposition 7 repeat- 

edly, obtaining measures concentrated on ~No, (~)2No, ... points, and we continue until 

a number of points ~ N is reached. It is easy to see that  the errors of these successive 

approximations form a geometric progression, with the last term being the dominating 

one, and Theorem 2 follows. 

For the proof of Proposition 7 we need the following lemma, which is a "finite 

version" of considerations of Bourgain and Lindenstrauss [4]. 



I M P R O V E D  U P P E R  B O U N D S  F O R  A P P R O X I M A T I O N  B Y  Z O N O T O P E S  63 

LEMMA 8. Let Q c R  n be a set of s ~ n +  l points, and let a be a given probability 

measure on Q. Then there exist probability measures 61, ...,as, on Q and probabilities 

Pl , . . . , P s, summing up to 1, where st <~ s - n , such that the following holds: 

(i) Each ai is concentrated on at most n + l  points of Q. 

(ii) (Linear functions are integrated exactly.) For any linear function h: R'~--*R, 

and for any ai, we have 

/ Q h d a = / Q h d a i .  

(iii) (For arbitrary functions, the integral has the right expectation.) I f  i is a ran- 

domly chosen index in {1, 2, ..., sl}, each i being chosen with probability Pi, then for any 

function f: Q--~R the expectation (with respect to the random choice of i) of fQ f dai is 

equal to fQ f da. 

Proof. One proof can be given using the method of [4] (for that  method to work, one 

needs to replace n + l  by n + 2  in (i), but for our application of the lemma this difference 

does not matter).  Here is another, perhaps more natural proof. Let E be the set of all 

probability measures ~ satisfying conditions (i) and (ii), that  is, ~ is concentrated on at 

most n + l  points of Q and fQ hd~=fQ hda holds for any linear function h. The latter 

condition is equivalent to ~ having the same center of gravity as 6; in other words, if 

c : E q E Q  a(q)q denotes the center of gravity of a and cj denotes its j t h  coordinate, ~ has 

to satisfy the n linear conditions of the form EqcQ ~(q)qJ :Cj  for j = l ,  2, ..., n. 

We want to prove that  a can be expressed as a convex combination of at most 

s - n  elements of E, i.e. there exist 61, ..., as, EE and nonnegative real numbers Pl, ...,Ps' 
8 t 

summing up to 1, s ly<s-n ,  such that  a = ~ j = l P j a  j (it is easy to see that  such a j ' s  

and pj's satisfy the condition (iii) of the lemma). We prove the following statement by 

induction on k, the number of nonzero components of 6: If  a is supported at k points 

of Q, k>/n+ l, then there exist 61, ..., a k - n EE  and nonnegative real numbers Pl, ...,Pk-n 
k--n summing up to 1 such that a - - - ~ j = l  pjaj .  The case k = n +  l is clear, so let k > n +  l and 

let Ql={qEQ:a(q)>O} be the k-point support of 6. For each point qEQ ~, introduce a 

variable xq, and consider the following system of n + l  linear equations: 

E Xq=l, 
qEQ' 

E xqqj=cJ'  j = l , 2 , . . . , n .  
qEQ' 

Any nonnegative solution to this system can be interpreted as a probability measure on 

Qt satisfying the condition (ii) of the lemma. The measure a determines one nonnegative 

solution to this system. By basic results of the theory of linear inequalities, this system 
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also has a basic nonnegative solution, in which the number of nonzero components is no 

larger than the number of equations, i.e. at most n §  1. Let a* E E be such a basic solution, 

and define p*=max{p>~O:pa*(q)<a(q) VqEQ'}. Put  a'=(a-p*a*)/(1-p*) (this is well- 

defined since p * < l ) .  This a '  is a probability measure on Q' with the same center of 

gravity as a and with at most (k -1 ) -po in t  support. By induction, we can express 
• %-~k--n--i / ( 7  it as a convex combination a =?--~j=l pj j ,  a j e E ,  and then we get the expression 

k - - n  a=~-'~j= 1 pjaj, with pj=(1-p*)p~ for j = l , 2 , . . . , n - k - 1  and p,~-k=p*, an-k=a *. [] 

Proof of Proposition 7. First we give a rough outline of the proof. Our goal is to 

take about a quarter of the points of P and replace them by fewer points of the same 
1 total weight. So we partition about z N  points of P into groups P1,-.-, Pt by s - -2(d+2)  

points. Each Pi is then replaced by some of its (d+2)-point  subsets with some appropriate 

point weights. For each Pi, we have several "candidate" (d§ subsets, together 

with certain measures q~i) on them. Each such candidate a~ i) has a certain probability 

p~i) assigned, and the actual replacement for Pi is chosen at random according to these 

probabilities (with independent choices for different groups Pi). The candidates _(i) oj are 

constructed according to Lemma 8, hence each of them integrates any linear function 

in exactly the same way as the original measure on Pi did. For a nonlinear function, 

the integral by aJ i) generally differs from the integral by the original measure, but  the 

expectation of the deviation, for a random choice of the candidate, is zero. If we fix some 

x E S d and consider the total error made in the integral of the function y H  I / x, Y) I, nonzero 

contributions come only from the Pi's such that  the function yHl(x, Y)I is not linear on 

them, and these can be only the Pi's crossed by the great circle x*. By a careful choice 

of the groups Pi, we achieve that  for each x, only relatively few Pi 's are crossed (this is 

the main new feature in our proof, which allows us to deal with arbitrarily distributed 

measures). The contribution of the crossed sets to the error is a sum of independent 

random variables with zero expectation. A tail estimate (Bernstein's inequality) then 

shows that  too large an error for any fixed x has exponentially small probability. Since 

it clearly suffices to consider only polynomially many "test" points x, the overall bound 

follows. 

We now give a quantitative and more formal proof. Given an N-point  set P C S  d and 

a probability measure T on P,  we first select a s u b s e t / S C P  of at least 1 N  points such 

that  any point pE/~ satisfies T(p)~2/N (this is possible by Markov's inequality). Then 

we apply Lemma 5 for ~5, with s=2(d§ We obtain a collection of disjoint s-point 

subsets P1, P~, ..., PtC ~) covering at least �88 points of P,  with diameter O(N-1/d), and 

such that  any great circle crosses at most O(N 1-1/d) of the Pi's. 

For each Pi, apply Lemma 8 with Pi in the role of Q and with ~- restricted to Pi and 

appropriately normalized (divided by the factor 7(Pi)) in the role of a. Let a~i),..., a~ ) 
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and (i) (i) Pl , ...,Ps, be as in Lemma 8 and pick a random index jiE(1, 2, ..., s t} taking each 

j with probability p~i). Make such a random choice independently for each i=l, 2, ..., t, 

and define the probability measure T' on P as follows: 

a~)(q)T(Pi) for qEPi, 
T'(q) = 

(T(q) for q lying in no Pi. 

This yields a probability measure on P whose support has no more than ~ N points. 

Next,  we want to estimate the left-hand side of (3). Set e=N -3 (say) and fix a 

set AlES d of size polynomial in N,  which is e-dense in S d, i.e. such that  for any xES d 
there exists a n  x ' E S  d with ]]x-x'll<~r (the existence of such an Af of s ize  O(e -d) is 

well-known, and it also follows from Lemma 6). If x, x~ES d are two points at distance 

,.<e, the functions y~--~l(x,y)l and y~--~l(x',y)] differ by at most e at any point. Hence it 

suffices to show the error estimate (3) for all x EAr. 

Fix one x E.h/'. Let I=I(x) denote the set of indices i E { 1, 2,..., t} such that  the great 

circle x* crosses the set Pi- The function y~--~l(x,y)l is linear on each Pi with ir and so 

we have fp~ [(x, Y) I dT(y) = fp~ ](x, Y) I dT'(y) for such i ~ I by (ii) of Lemma 8. On the other 

hand, for ieI,  the difference Xi=Xi(x)= fp~ I(x, y)] dT(y)-- fp~ ](x, Y)I dT' (y) is a random 

variable. Its expectation is 0 (by (iii) in Lemma 8). The diameter of Pi is O(N-1/d), the 

function yH(x, y) (with Ilxn =1)  is 1-Lipschitz, and we have T(gi)<~2s/N=O(N-1), so 

we get IXil=O(N-l-1/d). 
We have 

Ex = /p ] (x, y) l dT(y)-- /p ] (x, y) [ dTt (y) = E Xi. 
iEI 

The Xi are independent random variables with zero expectation, uniformly bounded by 

B=O(N-1-Ud), and their number is III <~m=O(N1-Wd). Bernstein's inequality in such 

a situation gives the tail estimate 

Prob[[E~[ > A B v ~ ]  < 2e -~2/2. 

Choosing A such that  the right-hand side is smaller than l/[A/I, i.e. A ~ v / ~ g N ,  gives 

that  with a positive probability, no xEA/" has error Ez larger in absolute value than 
O( ABvrm )=O( N-U2-3/2dy'~og N ). [] 

Algorithmic remarks. We want to show that  pr and r ~ as in Proposition 7 can be 

computed in polynomial time. We have already seen that  the sets Pi can be found 

in polynomial time. The measures aj and the probabilities pj as in Lemma 8 can be 

computed in polynomial time as well-- the proof shown yields an efficient procedure. 

The e-dense set Af can also be found in polynomial time; one easy explicit construction 

(giving a suboptimal size) has been described in algorithmic remarks in w 
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Finally we need a suitable choice of the index ji  for each Pi. A polynomial-time 

randomized algorithm is immediate (make a random choice and check if it works for all 

xEAf). This can be derandomized using a generalization of the unbiased greedy algorithm 
of Chazelle [8] (which can be seen as an instance of Raghavan's and Spencer's method of 
pessimistic estimators; see [1]). In the algorithm, the indices j i  E {1, ..., s'} as in the proof 

are chosen one by one. Assuming that  j l ,  ..., jk have already been fixed to values j l ,  ..-, 3k, 

respectively, jk+l is set to a value Jk+l minimizing the expression F ( j l ,  ...,jk,jk+l), where 

F(jl'""Jk)=x~ [ H (l+aXi(x,ji))+ H (1-aXi(x, ji))]. 
i<.k i<.k 

iel(x) ieI(x) 

Here I(x) is the set of indices i for which x* crosses the set Pi, 

and 

Xi(x,j)=/p~ I(x, y)l dT(y)-~'(Pi)/p~ I(x, y)l daJi)(Y) 

x/ln(2lJ~l) 

~ =  B v ~  ' 

with B=O(N -1-1/a) being the uniform bound for all the Xi(x,j) and m=O(N 1-1/a) 
bounding the maximum cardinality of I(x). 

It is clear that  the functions F(jl, ...,jk) can be evaluated in polynomial time; we 

need s evaluations for the choice of one index j~. It remains to show that  the indices 

found by this algorithm actually guarantee the error bound as in Proposition 7. 

If j1,..., jk are arbitrary and jk+l is chosen at random (according to the distribution 
(k+l) (k+l) ,  given by Pl , ...,P8 ), then for each xEAf the expectation of Xk+l(x, jk+x) is 0, 

and hence the expectation of F(j1,...,jk,jk+l) is F(j1, . . . , jk) .  Therefore a choice of 

3k+1 with F(j1, ...,3k+l)~<F(j1, .-.,3k) always exists, and thus the algorithm guarantees 

F ( j l ,  ...,jt)<~F(31, ...,fft-1)<~... <~F(31)<.F( )--21JVl. 
Let xEJV" and let us write Ez=Y~iex(x) X i (x ,  j i ) .  We derive an upper bound on Ex 

(a lower bound follows symmetrically). We have F(jl,...,jt)>~rii~x(x)(l+aXi(x,jO). 
As one may check by elementary calculus, the inequality l+z~e z-z2 holds for all zE 

1 1 [ -5 ,  5]" We use it with z=aXi(x,30 for each factor in the product (we always have 

In this way we get 

2IAfI~>F(j1,...,j,)~> 17[ (l+aXi(x,3i)) >~exp(aEx-a2 E Xi(x,3i) 2) 
iEI(x) iEI(x) 

/> exp(aE~ -a2mB 2) >1 exp(aE~ - ln(2[Af[)). 
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From this, we obtain Ex <<.2Bv/m ln(21A/I) = O ( N - 1 / 2 - 3 / 2 d ~ )  by calculation. The 

lower bound for E~ follows symmetrically. This proves the algorithmic part of Theorem 2 

(note that  we have essentially re-proved the simple form of Bernstein's inequality we 

needed in the existence proof). [] 

4. P r o o f  o f  T h e o r e m  1 

The proof has a quite similar structure as the proof in [14]. Theorem 1 is derived from 

the following proposition. 

PROPOSITION 9. Let d~2 and let P c S  d be an N-point set, with N suj]iciently large 

(larger than a prescribed constant). Then there exist a subset P* C P of N* >~ ~N points, 
with N* even, and a subset Q c P* of size 1 �9 ~N , such that for any x E S  d we have 

I(x, y) l -2  I(x, y) l = o(gl/2-3/2d) �9 
yEP* yEQ 

Proof of Theorem 1. We prove the following "halving" claim from Proposition 9. 

CLAIM. Let P C S  d be an N-point set, d>~4, N even. Then there exists a set P I c P  

of size �89 such that 

~ ,(x,y)l--2 ~-~ l(x,Y)lt=O(N1/2-S/2d ). 
y E P  I 

Once this claim is proved, Theorem 1 follows easily. We may assume that  the mea- 

sure T given in Theorem i is the uniform measure on a finite set p(0), where IP(~ = N  (~ is 

a power of 2. We apply the claim with p__p(0) producing a set p(1) of size N 0 ) =  �89176 

then we again apply the claim with p = p 0 ) ,  etc., until we reach a set of a suitable size N. 

Similarly as in the proof of Theorem 2, the errors of these successive approximations form 

a geometric progression, with the error committed in the last halving being the domi- 

nating one, and this yields Theorem 1 (note that  the error in Proposition 9 and in the 

claim is rescaled by a factor of N compared to Theorem 1). 

The claim is proved by an iterated application of Proposition 9. We start with the 

set P0 = P .  Proposition 9 yields a set P~ of at least ~N points of P0 and its subset Q0 of 

exactly half the size of P~. We set PI=Po\P~,  and we apply Proposition 9 on P1, etc. 

We continue until a set Pk of size smaller than a suitable constant is reached, and at this 

moment we let P~--Pk, and Qk is chosen as an arbitrary subset of Pk of size llPk I. The 

set PI as in the claim is then P~=QoUQ1U...UQk. For the error we get 

Y)' k ~c~P~ * k I<x,y>l-2 }--]..l<x, ~ < ~  I(x,y>I-2 ~ I(x,y>l =~_,O(IP~l~/2-S/2d). 
y E P  ~ i = 0  �9 yEQI i = 0  
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Since I Pi] <~ 7 i (5) N, and since we assume that  d~>4, the sum in the last expression is 

dominated by the first term, and we obtain the claim. In this way, Theorem 1 is implied 

by Proposition 9. [:] 

Remark. As we saw, the assumption d>~4 (or n~>5) in Theorem 1 was needed to 

derive the "halving claim" from Proposition 9, namely, we needed that  the error bound 

in Theorem 1 multiplied by N (i.e. the error for the case when the points have unit 

weights) is a sufficiently fast increasing function of N. Such an assumption is not a pure 

artifact of our proof: the "halving claim" is not true for dimension d=3,  say. Indeed, if 

P consists of N -  1 points clustered in a very small region of S 3 and one point at angular 

distance �89 away from the others, then the error made by selecting half of the points 

and doubling their weights will be at least half of a point weight, and this is much more 

than what the bound we are aiming at allows. Therefore, to apply a similar approach as 

ours, one would need to assume at least some uniform distribution condition for P.  

Test functions. We start  proving Proposition 9. We need to assure a bound holding 

for all points x E S  a simultaneously. Similarly as in the proof of Theorem 2, we introduce 

a suitable finite collection of the x's, such that  it will be sufficient to bound the error for 

these. Here we need a more complicated hierarchical structure, however. 

For i= l ,  2, ..., k, where 2 k ~ N  2 (say), we set 6 i=2 - i .  We apply Lemma 6 for P 

and 6i, obtaining a "~i-dense" set Afi as in the lemma, with [.hfi[=o(2di). Moreover, we 

introduce mappings lrl,lr2, ..., ~rk: Sa---}Afi. Informally, lri(x) is the nearest point of Af~ 

to x. More precisely, we require that  q=lri(x)EAfi is a point of Afi satisfying conditions 

(i) and (ii) in Lemma 6 (we have [[x-q[[ ~<Si and the small slices of x and q contain at 

most 6iN points of P) .  

We also introduce systems ~'1,.--, Jrk of functions. We let Jri = {~i,q:qEAfi}, where 

~i,q: sd---+R is defined by 

{ I(q,y)l for i= l ,  

~i'q(Y)= I(q,y)l-l(~r~_x(q),y)l for i > 1 .  

The following properties of the functions ~i,q are easy to check from the definition. 

OBSERVATION 10. (i) I  ,q(y)l=O(2 for all yES  d. 
(ii) Let qEAfi, and let L~q, L~q be the two "large slices" of the points q and ~ri-l(q), 

i.e. 

~r__ sd Li,q-- ( y e  : (q,y) >10 and (~ri-l(q),y) ~>0), 

n~q = (y E sd: (q, y) <~ 0 and (ri-l(q), y) <~ 0). 

The function ~i,q is C-Lipschitz on L. + and on L~q with C=O(2-i) .  ~,q 
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(iii) For any x E S  d we have 

k 

y) l = (4) 
i=l  

for all y e s  d, where qk=~k(X) and qi_l=~ri_l(qi), and ]r~(y)]=O(N-2). 

Let us set u=log2(N 1/d) and 

A i _-- 

[] 

K N1/2_3/2d ' 
1 + ( u - i ) 2  

where K is a suitable (sufficiently large) constant. Our goal is to select sets P*cP, 
P*>~N, and QcP* as in Proposition 9 in such a way that  for each i,q the error 

yCP* yEQ 

is at most Ai in absolute value. Having guaranteed this, the expansion (4) and the fact 

that  X-'k A.--O(N1/2-3/2d~ imply that  P* and Q are as required in the proposition. A-~i=l z - - v l  ] 

Colorings and partial colorings. In order  to produce P* and Q, we first apply 

Lemma 5 for P with s=2. In this way, we get disjoint pairs P1,P2,...,Pt of points 

of P,  with P=PIU...UPt having at least �89 points, such that  each pair Pj has diameter 

O(N-Wd) and each great circle crosses at most O(N 1-1/d) pairs (this is a matching with 
a low crossing number in the terminology of [10]). Let us choose one of the two points 

of Pj arbitrarily and denote it by uj,  and denote the remaining point by vj. 

Let X: {1,2, . . . , t } - -*{+l , -1}  be a mapping (called a coloring). Such a X encodes a 

choice of one point from each of the pairs Pj: if x(i)=+l, select uj,  and if x ( i ) = - I ,  

select vj. Let Q(X) denote the subset of P=P1U...UPt selected in this way. We define 

errors for X as follows: 

t 

Ei,q(X)= Z ~i,q(y)-2 ~ ~i,q(Y)= ~-~x(J)[~i,q(vJ)-~i,q(uJ)] �9 
y e P  yeQ(x )  j-~l 

If X is chosen at random, say, these errors will typically be much too large, so such a 

random choice is not good enough. We use a more subtle strategy (apparently invented 

by Beck [2]). We show that  there exist two mappings X1, )i2, which differ on sufficiently 

many components, but  for which 

IEi,q(X1)-Ei,q(X2)I ~< 2Ai (5) 
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holds (for all i and q simultaneously). Then we define a new mapping X: {1, 2, ..., t}--* 

{ + 1 , - 1 , 0 }  by setting X=I(~(1--~(2) (such a ~ is called a partial coloring). We let D be 

the set of indices jE{1, . . . , t}  for which :~(j)#0 (i.e. where X1 and X2 differ). We put 

P*=[-Jj~D PJ and we select QCP* according to the mapping :~ (taking uj if 2 ( j ) = l  and 

vj if ~ ( j ) = - l ) .  For each i and q we have 

E,,q = E 2(j)[qOi,q(Vj)-qo,,q(uj)] 
jED 

= E l(xl(J)-x2(j))[q~176 
jED 

t t 

----5 
j--1 j=l 

= l(Ei,q(Xl)-Ei,q(X2)). 

Therefore, if (5) can be guaranteed for X1,X2, we get [Ei,qt<~Ai for all i,q. Thus, for 

proving Proposition 9, it is enough to find X1, X2 for which D>>. l t>~lN and for which 

(5) holds. 

The distribution of the errors. Suppose that  the coloring X: {1,2, ..., t} -+{+l ,  -1}  

is chosen at random (all 2 t possible colorings have the same probability). We are now 

interested in distribution of the errors E~,q (X). Let us call a pair Pj good for i, q, if Pj C L+q 
or Pj c L~.q, where L + , ~,q, L~q are the large slices as in Observation 10 (ii). Otherwise Pj 

is bad. We let Ji,q be the set of indices j of all bad pairs. 

We have ]Ji,q[=O(Nl-1/d+2-iN). Indeed, each bad pair is either crossed by the 

great circle q* (and there are O(N 1-1/a) such pairs by Lemma 5 (i)), or has at least one 

point inside the small slices of the points q and 7ri_l(q), and there are O(2- iN)  points 

there by the choice of the Afi (using Lemma 6 (ii)). 

Define random variables Xi,q,j=x(j)[qOi,q(Vj)--~i,q(Uj)]. For a bad pair Pj we have 

[Xi,a,jI=O(2-i) by Observation 10 (i). For a good pair Pj we get [Xi,qj[=O(2-ig -1/d) 
by Observation 10 (ii). All the Xi,q,j have zero expectations. 

We obtain a tail estimate for the random variable Ei,q(X) using Bernstein's inequal- 

ity. First we split Ei,q(X) into the contribution of the good pairs and of the bad pairs, 

i.e. Ei,q(X)=EGq(X)q-EiB, q(X), wi th  EBq(X)=-~jej..qXi,q,j and  EGq(X)=~-~.jq~j~,qXi,q,j. 
For the good pairs we have at most N independent random variables, each bounded by 

B~=O(2-iN-1/d), so Bernstein's inequality gives 

Prob[EiC, q(X) >~ aB~ v/-N ] <~ e -~'2/2 

(and symmetrically for the negative deviation of EiC, q(X)). Similarly for bad pairs, we 

have at most mi=O(Nl-1/d+2-iN) independent random variables, each bounded by 
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B~ =O(2- i ) ,  so we get 

Prob[E2q(X) >~ c~BgvZ-~] <. e-~2/2. 

Setting M~=Bgv'N+Bgv~7=O(2-~N1/2-1/2e+2-a~/2NI/2), altogether we get 

Prob[Ei,q(X) >/c~Mi] ~< e -~2/2 and Prob[E/,q(X) ~< -c~Mi] ~< e -~2/2. (6) 

Estimating the entropy. Let us summarize the current situation. We have a random 

mapping X: { 1, 2, ..., t} ~ { + 1, - 1 } and random variables Ei,q (X) which are functions of X 

and satisfy the tail estimates (6). We want to find values X1, X2 of X which differ at 

many (at least �88 places, but for which tE~,q(X1)--Ei,q(X2)I<.2A~ for all i, q. We define 

auxiliary functions b~,q=b~,q(X ) by letting b~,q(X ) be the nearest integer to the number 

Ei,q(X)/2Ai (ties are broken by rounding up, say), and we let b(x) be the vector (bi,q(X), 
i=l, 2, ..., k, qeAfd. With this notation, it is enough to require that  b(x1)=b(x2) for 

some X1,X2 differing in at least �88 components. To this end, it suffices to show that  

there is a value b of b(x) with Prob(b(x ) =b) sufficiently large; then many different values 

of X are assigned the same b(x), and there are two values differing in sufficiently many 

components among them. 

For quantitative bounds, we use an approach via entropy estimates. We only sketch 

the main points; details can be found in [1] or [16]. We recall that  the entropy H(X) of 

a discretely valued random variable X is 

g ( x ) = Z - p v l o g 2 ( P v ) ,  
V 

where pv=Prob(X=v) and the summation is over all values v possibly attained by X. 

Entropy is subadditive, that  is, if X=(X1, ..., Xm) then H(X)<~m=~ H(X~). 
The application of entropy for obtaining suitable X1, )/2 in our situation is based on 

the following lemma. 

LEMMA 11. Let X:{1 ,2 , . . . , t } -*{+ l , -1}  be a random coloring, let b(x) be a func- 
tion of X, and suppose that H(b(x))<~ it.  Then there exist colorings X1, X2, differing in 
at least �88 components, for which b(x1)=b(x2). 

With the explicit constants given here, this appears in [16], but very similar ideas 

and calculations can be found in [1] as well. 

By this lemma, it is enough to show H(b(x)) <~ i t  for the vector function b(x) defined 

above. We have H(b(x))<~i,q H(bi,q(X)). For estimating the entropy of the bi,q, we may 

use the following (crude) bounds, calculated in [16]: 
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LEMMA 12. Let E be a real random variable satisfying the tail estimates 

Prob[E/> c~M] ~< e -a2/2, Prob[E ~< - a M ]  ~< e -~2/2, 

for some parameter M > 0  and all ~>~0. Let b=b(E) be defined as the nearest integer to 
E/(2AM), where A > 0 / s  another parameter. Then H(b)<~G(A), where we define 

{ Coe -x~/9 if A >>. 10, 

G(A)= Co if 0.1~<A~<10, 

C O ln(/~ -1) i f  ~ < 0.1, 

with Co being a su1~iciently large absolute constant. 

We want to apply this lemma to estimate the entropy of b~,q(X), with Ei,q(X) in the 

role of E. By (6) we can choose 

M = Mi = O(2-iN1/2-1/~d+2-3i/2N1/2). 

Further we have Ai in the definition of bi,q(X) in the role of AM, from which we calculate 

Ai C1 ( 2 i 2 3i/2 "~ 
A=),~ = ~ / >  1+(u_i)2  min N--i-/d, N--5-~], 

with C1 a constant which can be made as large as we wish by choosing the constant K 

in the definition of A~ sufficiently large. Therefore, we have 

k k k 
H(b(x)) <~ ~ ~ H(bi,q) <~ Z I~lG(,xd = ~ o(2di)G(Ai). 

i=1 qE.IV'i i=1 i=l 

A routine calculation, which we omit, shows that if K is chosen large enough, the last 

expression can be bounded by ~0N~< ~t as required. This concludes the proof of Propo- 

sition 9. [] 
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