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N o t a t i o n  

We write, as usual, s=a+it and f(s)=f(g). Selberg's class $ consists of the functions 

F(s) satisfying the following conditions. 

(i) (Dirichlet series) For a > l ,  F(s)  is an absolutely convergent Dirichlet series 

a(n) 
F ( s ) =  E n ~ 

n = l  

(ii) (Analytic continuation) For some integer m >~ O, (s-1)mF(s) is an entire function 

of finite order. 

(iii) (Functional equation) F(s) satisfies a functional equation of the form 

&(8) =~c~(1-8) 

The first author was partially supported by the CNR Visiting Professors Program and the K B N  
Grant  2 P03A 02809. 
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where r 
�9 (s) = Qs YI r(Ass+m)F(s) 

j = t  

with Q>0, Aj>0, Repj~>0 and [021=1. 

(iv) ( Ramanujan hypothesis) For every r a( n ) << n ~ . 
(v) (Euler product) For a sufficiently large, 

b(n) 
log F(s)= Z ns 

n = l  

where b(n)=0 unless n is a positive power of a prime, and b(n)<<n ~ for some 0<�89 

We call Q, s #j and 02 in (iii) the data of F(s). Observe that (v) implies that the 

coefficients a(n) are multiplicative. We denote by S~ the larger class of not identically 
vanishing functions F(s) satisfying (i) (iii) above. 

A function F E $  is primitive if F(s)=F~(s)F2(s) with F1, F2ES implies that F~=I 

or F2=1. 

A The weight A of FE 3~ is defined as = ~ j = l  ~J, and the degree deg F=d of FC S~ is 

defined as d= 2A. We denote by Sd and $] the subclasses of F C $ and F C 8~, respectively, 

of given degree d. 

If d=0, i.e., there are no F-factors in the functional equation, we write q=Q2 and 

denote by $~o(q,w) the subclass of FE$0 ~ with given 02 and q. We also write Vo~(q,w)= 
s0 (q,02)u{0}. 

If d= l ,  we use the notation 

l~I r -2aj 27rQ 2 
Z =  ' q =  Z ' 

j = l  j = l  

( ~ ) i ~  1L I -2ilmuj res F(s). 02* = 02e - i 7 r 0 7 + 1 ) / 2  A j  24" ----- 
' 8 = 1  

j = l  

Moreover, we denote by S~(q, 4,02") the subclass of FCS~ with given parameters q, 

and w*, and write V~(q, 4, 02")=S[(q, 4, 02")U{0}. 

If X is a Dirichlet character (mod q), we denote by fx its conductor, and by X* the 

primitive character inducing X. We denote by 02x* and Qx* the 02-factor and the Q-factor 

in the standard functional equation for L(s, X*), i.e., 02x.=T(X*)/i"v~x, where T(X* ) is 

the Gauss sum, a=0 if X ( - 1 ) = l  and a = l  if X ( - 1 ) = - I ,  and Qx.=V~x/Tr.  Moreover, 

we write 
:~(q, 4) = ~ {X (mod q) with X(-1) = 1} if 7/= -1 ,  

( {X (modq) w i t h x ( - 1 )  -1}  ifT/=O. 



ON T H E  S T R U C T U R E  OF T H E  S E L B E R G  CLASS, h 0~<d~<l 209 

As usual, X0 denotes the principal character (mod q). 

The value of an empty sum will be 0, and the value of an empty product will be 1. 

We shall also use the notation 

/c+ioo 

fc) ,; c--ioc ' 
1 if k = 0 ,  

(a)k= a ( a + l ) . . . ( a + k - 1 )  i fk~>l ,  

Ilall = sup IRe 
sCt~ 

for a bounded domain • c C ,  d (n)=number  of divisors of n, [x]= integral part of x, 

{x}= fractional part of x, e(x)=e 2'~i~, IAl=cardinality of the set ,4, and ~(n) denotes 

Euler's function. 

1. I n t r o d u c t i o n  

In [10], Selberg introduced the class $ and made several important conjectures and 

remarks regarding it. On the one hand, he initiated the study of primitive functions 

in S and made the fundamental orthonormality conjecture, see Conjecture 1.1 and 1.2 

of [10]. On the other hand, Selberg raised, amongst others, the problem of characterizing 

the shape of admissible functional equations in S. These two aspects of the structure of 

Selberg's class are probably deeply related. 

It is well known that  the orthonormality conjecture has several interesting impli- 

cations, such as the unique factorization in $ and Artin's conjecture, see, respectively, 

Conrey-Ghosh [3] and Murty [8]. However, very little is known unconditionally about 

primitive functions, as is indeed the case about the structure of admissible functional 

equations, although it is conjectured that  deg F is always an integer. 

From an unconditional viewpoint, the structure of Sd has been completely deter- 

mined only for 0 ~ d < l .  In fact, it follows from work of Conrey Ghosh [3], see also 

Bochner [1], that  $0=(1} and Sd=~ for 0 < d < l .  In the case d=l, it is conjectured that  

the functions FE  S 1 are of the form F(s)=~(s) or F(s)=L(s+iO, X) with some primitive 

Dirichlet character X and 0CR. This has been proved by Conrey-Ghosh [3] in the case 

r = l ,  although related results can be found in papers by Bochner [1], Vign~ras [14] and 

G~rardin Li [5]. 

In this paper we settle the case d = l  in full generality. In fact, it turns out that  this 

case is better understood in the framework of the larger class S~, where Ramannjan's 

hypothesis and Euler's product are dropped. The analytic properties (i)-(iii) alone allow 
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a complete characterization of the functions FE  8[, see Theorem 2 below. The introduc- 

tion of the Euler product axiom (v) imposes an arithmetic condition in S, namely the 

multiplicativity of the coemcients a(n), which, in view of the structure of $[, restricts 

the functions FC S1 to either the Riemann zeta function or shifted Dirichlet L-functions. 

We also show that  Ramanujan's hypothesis plays no role in the case 0 ~ d ~ l ,  in 

the sense that  every function FES~ with 0 ~ d ~  1 already satisfies Ramanujan's hypoth- 

esis (iv). 

In order to state our results, we introduce the notion of invariant of FE  $~. Since the 

form of the functional equation satisfied by a function FE $~ is not unique, the parameters 

depending on the data of F(s) are not necessarily uniquely determined by F(s) itself, 

see, e.g., w of [3]. Therefore, we say that  a parameter, or a set of parameters, is an 

invariant of F(s) if it is uniquely determined by F(s), independently of the particular 

form of the functional equation. 

We start with the description of the structure of $~ in the simpler case 0 ~ d < l .  

THEOREM 1. (i) If O < d < l ,  then S~d=O. If FE$~o, then qEN, the pair (q,w) is 
an invariant of F(s) and $~o is the disjoint union of the subclasses S~o(q,w), with qCN 

and [w[=l. 

(ii) Every FC$~o(q,w), with q and w as above, is a Dirichlet polynomial of the form 

a(n) 
r ( s )  = nS 

niq 

(iii) For q and as above, is a vector space over R and 

direr  VoW(q, w) = d(q). 

Theorem 1 will be proved, essentially, by the argument in Theorem 3.1 of [3]. 

The main part of the paper is devoted to the proof of the following result, which 

completely characterizes the functions FE$~.  We refer to the Notation section for the 

definition of q, ~=~+iO, w* and ~(q, 4). 

THEOREM 2. (i) If FC$~, then qCN and ~E{-1 ,0} .  The triple (q,~,w*) is an 

invariant of F(s), and S~ is the disjoint union of the subclasses 8~(q,~,w*) with qCN, 

~E{-1 ,0} ,  0 c R  and ]~*]=1. Moreover, a(n)n ~~ is periodic with period q. 

(ii) Every Fc$~(q,~,w*), with q, ~ and w* as above, can be uniquely written as 

F ( s ) =  E Px(s+iO)L(s+iO'x*) 
xcX(q,~) 

where PxeSg(q/ fx ,w*~x.) .  Moreover, Pxo(1)=O /f O#O. 
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(iii) For q, ~ and w* as above, V~(q,(,w*) is a vector space over R and 

[ �89 if ~ = - 1 ,  

dimaVl~(q'~'w*)= [ l ( q - 1 - r l ) ]  otherwise. 

A well-known theorem of Hamburger, see w of Titchmarsh [13] with g(s)=f(s),  

gives a characterization of the Riemann zeta function in terms of its functional equation. 

In our notation, Hamburger's theorem may be phrased as dimRV~(1,--1, 1)=1, and 

hence it is an immediate consequence of (iii) of Theorem 2. Moreover, (iii) of Theorem 2 

should be compared with the results of Bochner [1]. 

We also remark that the argument in w see Lemma 8.3 and Proposition 8.2, can be 

easily adapted to show that  the coefficients Aj in any functional equation of F E S~ must 

be rational numbers of the form 1/2m, with m E N .  Moreover, in view of Theorem 2 and 

of the multiplication formula for the F-function 

m--1 

F(S)-----ms-l/2(27r)(1-rn)/2 H P(8~---), m = 2 , 3 , . . . ,  

k=0 

the coefficients s can in fact attain any such value. 

Our method for the proof of Theorem 2 is inspired by Linnik's [7] approach to the 

analytic continuation and functional equation of the Dirichlet L-functions by means of 

the analytic properties of the Riemann zeta function. We refer to w for a brief discussion 

of Linnik's and our arguments, and of the role played by the condition d--1. 

By further imposing the Euler product axiom, from Theorem 2 we obtain the con- 

jectured structure of $1. 

THEOREM 3. Let FCS1. If  q = l ,  then F(s)=4(s). If  q>~2, then there exists a 

primitive Dirichlet character X (modq) with a = ~ + l  such that F( s)= L(s + iO, X). 

We explicitly state the following simple consequence of Theorems 1, 2, 3 and of 

Theorem 3.1 of [3]. 

COROLLARY. Every function FES~d with 0 E d ~ l  satisfies Ramanujan's hypothesis. 

Moreover, Selberg's orthonormality conjecture holds for the functions in Sd with O E dE 1. 

The paper is organized as follows. In the next section we outline the proof of 

Theorem 2. In w we prove Theorem 1, and the rest of the paper is devoted to the proof 

of Theorem 2. Theorem 3 is a consequence of Theorem 2, and its proof is given at the 

end of w 

In Part  II of the series, see [6], we fully characterize the invariants of functions in S. 

Moreover, we introduce a basic invariant, the modulus qF defined for every F C S  by 

qF-- ~ , 
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and investigate its relevance with respect to the problem of twisting by Dirichlet charac- 

ters in the Selberg class. 

We wish to thank the referees for a very accurate checking of the manuscript, for 

pointing out several inaccuracies and for suggesting how to improve the presentation at 

several places, especially in w 

2. O u t l i n e  o f  t h e  m e t h o d  

As we have already remarked. Theorem 1 follows by the argument in the proof of Theo- 

rem 3.1 in [3], see w 

The proof of Theorem 2 is based on the study of the analytic properties of the 

additive twists 
Fr  ) _ a(n)~(n) 

n s 
n = l  

of ally given FCS~, where O(n)=-e(-na) with (~ER. 

The analytic properties of F~(s) are established in w We first deal with the ap- 

proximations F~N(S) to FO(s), by expressing F~N(S) in terms of a series involving the 

incomplete Fox hypergeometric function Hg(z, s) at certain points zn, see (7.2). We 

recall here that the function HK(Z, s) is built by means of the data of F(s) ,  and we refer 

to (4.2) below for its definition. Then we let N-+oc,  thus obtaining the meromorphic 

continuations of Fr  to a > 0 .  

In order to justify convergence and limit processes, and to keep track of the analytic 

properties of F~(s) ,  we need a rather detailed study of the incomplete Fox function 

HK(z, s). To this end, in w we obtain the basic properties of the various hypergeometric 

functions which will enter the picture later on. 

In w we obtain an explicit expression for the limit of HK(z, s) as z--+--i/~, see The- 

orem 5.1, which in particular assures that  such a limit, which we denote by HK(--i/~, s), 
is meromorphic for 0 < a < 2 .  In fact, HK(--i/~, s) corresponds to the main part of the 

limit of F~N(S) as N--+oc, see (7.6). Moreover, in w we show that  HK(--i//~, s) has a 
simple pole at s=l-iO, see Theorem 6.1. 

As a consequence of the above properties of the incomplete Fox function H K ( Z  , 8), 
in w we obtain the meromorphic continuation of Fr  to a>0 .  Moreover, we link the 

polar structure of FO(s) at s=l- iO with the coefficients a(n) of F(s) ,  see (7.10) and 

Theorem 7.1. 

In w we exploit the above-mentioned link and the periodicity, with period 1, of the 

characters ~ with respect to the parameter ~ to get the periodicity, with period q, of 
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the sequence a(n)n ~e. As a consequence, we obtain the basic representation of F(s) as a 

linear combination of Dirichlet L-functions over Dirichlet polynomials, see (8.1). 

The finer structure of the basic representation (8.1) is then obtained by comparing 

the functional equations satisfied by the two sides of (8.1), one coming from F(s) and 

the other coming from the Dirichlet L-functions. This comparison requires a careful 

analysis, involving simple linear independence and almost periodicity considerations. 

Such an analysis eventually leads to the proof of Theorem 2. 

As indicated in the introduction, our study of additive twists is inspired by Linnik [7]. 

In fact, in order to obtain the analytic properties of Dirichlet L-functions, Linnik's start- 

ing point is to write L(s, X) as a linear combination of additive twists of ~(s). The 

analytic properties of such additive twists are easily obtained, in Linnik's case, thanks to 

the special form of the functional equation of ~(s), and the required properties of L(s, X) 
follow at once. 

Apparently, Linnik's idea has subsequently been used only by Sprind2uk, see [11] 

and [12], to show that  the Riemann hypothesis for all Dirichlet L-functions is equivalent 

to the Riemann hypothesis for ~(s) plus a certain diophantine property of the imaginary 

parts of the zeros of ~(s). 

We point out here two differences between Linnik's and our approach. First, while 

Linnik's goal is basically the study of additive twists of ~(s), in our case the analytic 

properties of the additive twists of a function FCS~ are applied to get information on 

the function F(s) itself. Moreover, due to the general form of the functional equations 

in S~, in order to study our additive twists we have to derive the properties of a rather 

general class of incomplete Fox functions. 

Apparently, the literature on Fox functions deals only with the behavior in the 

complex variable z, see Braaksma [2]. In our arguments the s-aspect is crucial, and it is 

therefore developed in w167 However, the Fox functions arising from additive twists of 

functions FES~ with d = l  have #=0 ,  where p (defined and discussed in w is the main 

parameter in the Fox functions theory. This fact makes the case d =  1 simpler than the 

general case d > l ,  where the hypergeometric functions associated with additive twists 

have # > 0  and, in fact, present a definitely more complicated behavior already in the 

z-variable. We shall deal with the case d> 1 in a future paper. 

Finally, the proof of Theorem 3 follows from Theorem 2 and Theorem 3.1 of [3]. In 

fact, by Theorem 2 the sequence a(n)n i~ is in this case both multiplicative and periodic 

with period q, and hence F(s) reduces to the product of a Dirichlet L-function times a 

Dirichlet polynomial, see (8.34). Theorem 3 follows then from Theorem 3.1 of [3], since 

it implies that  such a Dirichlet polynomial is trivial. 
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3. The c a s e 0 ~ < d < l  

By Theorem 3.1 of [3] we know that  ,9o={1} and Sd=g if 0 < d < l .  The same argument 

shows that Sd~=g if 0 < d < l .  It also shows that  q is an integer if FE,,q0 ~, and that  F(s) 
is a Dirichlet polynomial of the form 

F(s) = Z 
n s 

n lq  

Moreover, F(s) satisfies a functional equation of the form 

Q*F(s) = coQl-SF( 1 _ s). (3.1) 

In this case the pair (q, co) is in fact an invariant of F(s) ;  this can be easily seen by 

considering the quotient of two functional equations of the type (3.1). Therefore, So ~ is 

the disjoint union of the subclasses $~o(q, co) with Iwl = 1 and q E N. 

For ~EC\{0}  and FES~o(q, co), we have ~FES~o(q, co~/~), and hence Vo~(q,w) is a 

vector space over R. In order to compute its dimension, we write (3.1) as 

con (q,~(q~s, 
Z a ( n ) ( q )  s : ~ _ ~ T a \ n ] x n j  
nlq nlq 

and hence by the identity principle for Dirichlet series we have 

Moreover, if v ~  E N we have 

con a(q)  for nlq. (3.2) 

a ( v ~  ) = c a  with a E R ,  (3.3) 

where c denotes a fixed square root of co. 

Conversely, given q E N and w E C with Ico]= 1, it is easy to see that  if a finite sequence 

of complex numbers a(n), with nlq , satisfies (3.2) and, if x /~EN,  (3.3) as well, then the 

corresponding Dirichlet polynomial belongs to V0 ~ (q, co). 

Hence we can freely choose complex coefficients a(n) for v ~  < n ~< q with n lq, and then 

determine the remaining a(n) by (3.2). Moreover, if x / ~ E N  we define a ( v ~  ) by (3.3). 

Therefore, choosing 5= 1 if v ~  E N and ($=0 otherwise, we have 

dimR V0 ~ (q, w) = 2-�89 (d(q) - (~) + (~ = d(q), 

and Theorem 1 is proved. 
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4. Hypergeometr ic  functions:  basic theory  

In this section we collect the basic definitions and results about hypergeometric functions. 

We start with the definition of the incomplete Fox hypergeometric functions. Let 

z,s, wEC, K be a positive integer, Aj and #j,  j = l , . . . , r ,  be as in axiom (iii) of the 

Selberg class and 

~(w, s) = f I  
r ( ~ ( 1 - s ) + ~  ~ ~ j W ~ 

j=l F(,~js+~+,X~w) , h ( w , s ) = ~ ( w , s ) r ( w ) .  (4.1) 

The incomplete Fox hypergeometric function associated with the above data is formally 

defined by the Barnes integral 

1 f(_K_l/2)h(w ' HK(z, s) = ~ i  s)zW dw' (4.2) 

where 

z w = e ~t(z) (4.3) 

and l(z) denotes the branch of logz on C \ ( - o c ,  O] satisfying ]Iml(z)l<Tr. Moreover, 

let 

] z = 2 E ) U - - 1  = d - 1 .  (4.4) 

Our treatment of the incomplete Fox functions HK(Z, s) is inspired by Braaksma [2], 

where a general theory of Fox hypergeometric functions H(z) is developed. The Fox func- 

tions H(z) are defined by means of Barnes integrals similar to (4.2), and [2] contains a 

systematic investigation of the analytic properties of such functions in the z-variable. 

When s is fixed, our functions HK(Z, s) become essentially special cases of the func- 

tions H(z). 
We remark that  the parameter p in (4.4), defined in w of Braaksma [2] for every 

function H(z), is very important in the theory of Fox functions. In particular, the 

case p = 0  is somewhat simpler than the general case, since it allows an extensive use of 

Stirling's formula to obtain the convergence properties of the involved Barnes integrals. 

Moreover, when p > 0  the behavior of the functions H(z) is definitely more complicated. 

In view of (4.4), this clarifies the role of condition d = l  in our argument. 

Let us consider the domains 

A= { z e C  :Rez >O}, 

B~ = {z e C:  I~1 < 1 / /3} \ ( -1 /~ ,  0], 

c ~  = {z ~ c :  Izl > 1//3}, (4.5) 

D~ = AUB~ UC~. 

The analytic properties of the incomplete Fox functions HE (z, s) are given by 



216 J. K A C Z O R O W S K I  AND A. P E R E L L I  

THEOREM 4.1. Let d = l ,  12cC be a bounded domain, and K>I]~II be a positive 

integer. Then the Barnes integral (4.2) is absolutely and uniformly convergent on compact 

subsets of A x ~, and HK( z, s) has holomorphic continuation to D~ • ~ as a single-valued 
function. Moreover, for (z, s)cC~ • ft we have 

( -1)k  h( -k ,  s)z -k, (4.6) Z k! 
k = K + l  

the series being absolutely and uniformly convergent on compact sets. 

Proof. The proof is based on repeated applications of Stirling's formula and of 

Cauchy's integral theorem, hence we give only a sketch of it. We refer to Theorems 1 

and 2 of Braaksma [2] for further details, in the case of s fixed. We write w=u+iv ,  

s=a+i t  and use the synthetic expression total convergence to denote absolute and uni- 

form convergence on compact sets. 

Observe that  if K>l[gtiI then the set of w-poles of h(w, s), sC~,  lies to the right of 

the line u = - K - 1 ,  and has positive distance from it. Moreover, the function h(w, s) is 

This observation will be holomorphic for sEgt for any fixed w on the line u = - K - ~ .  

tacitly used at several places in what follows. 

We start with the convergence properties of the Barnes integral defining HK(Z, s). 
Recalling (4.3), from condition d = l ,  

IzWl--Izl'*e -vImz(z) (4.7) 

and Stirling's formula in the form 

lr(w)l=v/271vlU-1/%- N/2(l+O(1/Ivl)) as Iv l -+o< uniformly for ul<~u<<.u2, 

1 for w running on the line u = - K - ~  we have 

h(w,s)zW ~ N-~ l z l -K-1 /2  e -1vl(~/2-1Imz(z)[) as lvl ---~ oo, (4.8) 

uniformly for (z, s) in any compact set )~cAxl2 ,  where the implicit constant depends 

on kj, #j, K and ]C. The Barnes integral (4.2) is therefore totally convergent on A x ~ ,  

and hence HE(Z, s) is holomorphic on A x ~. 

For (z ,s )EBz x~t, we consider the contour C consisting of the vertical segment 

[ - K  - I~-zV,-K-~" 1 +iV] and of the two horizontal half-lines [ - K - I  •  +oo=t=iV). 

Here V>O is a sufficiently large constant such that  the absolute value of the imaginary 

part of each w-pole of tz(w, s), sE~,  is at most V - 1 .  In order to deal with the integral 

1 fch(w,s )zWdw Hc(z, s) = 
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we use (4.7), the identity 

and Stirling's formula 

71" 
r ( , w ) r ( 1 - w )  - . (4.9) 

s i n  7t 'w 

logF(w+a)=(w+a-�89189 as Iwl-+oc,  (4.10) 

uniformly for largwl~<Tr-e and a in a compact  subset of C, where e > 0  is fixed. Thanks 

to our condition d =  1, for w running on C we have 

h(w,s)zW<<(~lzl)Uu ~-1 as u--++oo,  (4.11) 

uniformly for (z, s) in any compact  set ~ c B z  x ft, where the implicit constant depends 

on Aj, #j ,  C and K;. The integral Hc(z, s) is therefore totally convergent on B# x D and 

represents a holomorphic function. 

Now we observe that  HK(z, s)=Hc(z, s) for (z, s) E (ANBz) x ft. This follows from 

Cauchy's  theorem applied to the two closed contours obtained by joining the half-lines 

[ -K-  �89 +iV, - K -  �89 +ioo) and I -K-  �89 +iV, +oo+iV) by two arcs of the circle Iwl = R, 

R--+oc. In fact, an argument based on (4.9) and (4.10), similar to those leading to (4.8) 

and (4.11), shows that  the integral over such arcs tends to 0 as R ~ o c .  Since Hc(z, s) is 

holomorphie on BZ x ft, in this way we obtain the holomorphic continuation of HI< (z, s) 

to (AUB~) x f~. 

Finally, again by a Stirling's formula est imate similar to (4.11), we have that  the 

series on the right-hand side of (4.6) is totally convergent on C~ x ft, and thus it represents 

a single-valued holomorphic function. Moreover, once again by an argument similar to 
1 those leading to (4.8) and (4.11), for (z, s)E (AnC~)x ft we can shift the line u=-K-~  

to - o o  and apply the residue theorem to show that  (4.6) holds on (AAC~) x ~. This gives 

the holomorphic continuation of HK(Z, s) to a single-valued function on (AUC~) x ft, and 

Theorem 4.1 follows. [] 

We explicitly remark that ,  although the Fox functions H(z) are in general multi- 

valued functions, see Braaksma [2], in our case HK(Z, s) is single-valued on the domain 

DZ x Q. This is due to the special form of our function h(w, s) in (4.1), and in particular 

to its factor F(w). This fact is also reflected by the form of the series on the right-hand 

side of (4.6), which is in fact a power series in z -1. 

Now we turn to the Gauss hypergeornetric functions, see w of Erd~lyi-Magnus-  

Oberhett inger Tricomi [4]. Given a, b, c E C with 

c ~ 0 , - 1 ,  ..., (4.12) 
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the Gauss hypergeometric function is formally defined by 

(a)k(b)~ ? .  (4.13) F ( a ' b ' e ' z ) = E  (c)kk! 
k = 0  

The series in (4.13) is absolutely and uniformly convergent on compact sets for I zl < 1, 

and hence F(a, b, c, z) is holomorphic for Izl <1, see w of [4]. Moreover, F(a, b, c, z) 
has analytic continuation to C \ [1, ~ )  as a single-valued holomorphic function, see w 

of [4]. On C\[0 ,  cx~) we consider the determination of z with larg(-z) l<rr .  

We have the following formulae. If a - b ~ Z ,  c satisfies (4.12) and z E C \ [ 0 , ~ )  we 

have 
F(a, b, c, z) = F(c)F(b-a) (_z)_~F(a ' 1-c+a,  1-b+a,  z -1) 

r(b)r(c-a) (4.14) 
r(c)r(a-b) (_z)_bF(b, 1-c+b, 1-a+b, z-i), 
r(a)r(e-b) 

see (17) of w of [4]. Moreover, if c satisfies (4.12) and zEC\ [0 ,  ~ )  we have 

Z 
F(a, b, c, z ) =  ( 1 -  z)-aF(a,  e - b ,  c, z -  1 ) '  (4.15) 

see (22) of w of [4]. 

The behavior of F(a,b,c, z) at z = l  is given by 

LEMMA 4.1. Let c satisfy (4.12), Re(c-a-b)>O, c - a - b r  l,2, ..., and p>0.  Then, 
uniformly for r 1 6 2  we have 

r(c) r(c-a-b) 
lira F(a, b, c, l + 0 e  ~r = r(c-a)r(c-b) 

~---,0 + 

Proof. Writing z=l+pe  ir we have z / ( z -1 )=l+e- i~ /p .  Hence by (4.15) and (4.14) 

we have 

e - i ~ b  
F(a, b, c, z ) =  ( -pe~r  (a, c-b,  c, 1 + ) 

\ Q / 

P 
=(l+~ F ( a ' l - c - a ' l + a + b - c '  p+e-i~)  (4.16) 

+~c--a-b(_e~*)--a(_0-- e-~r 

r(c)r(a+b-c) F(c-b, l-b, l -a-b+c,  ~ ~. 
x F(a)F(b) p+e -i------~) 

Since Re(c-a-b)>O, we have Ipc-a-bl-~O as p--+O +. Moreover~ F(a, b, c, 0)=1 provided 

c satisfies (4.12). Hence the lemma follows letting p--+0 + in (4.16). [] 
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We remark that  if c satisfies (4.12) and Re(c-a-b)>O, the series in (4.13) is in fact 

absolutely convergent for Izl ~<1, see w of [4]. Moreover, in this case Gauss' formula 

F(a,b,c, 1)= r(c)r(c-a-b) 
r(c-a)r(c-b) 

holds, see last formula of w of Whit taker-Watson [15]. 

For a, br189 v--0, 1, ..., we consider the function 
OG 

C(a,b,z) = r ( a+ �89  k 
k=0 

the series being absolutely and uniformly convergent on compact sets for Izl < 1 by Stir- 

ling's formula. The relation between the function G(a, b, z) and the Gauss hypergeometric 

function is given by 

LEMMA 4.2. Let a,b#-�89 v=0,  1,�9 and let z e C \ { ( - o c , - 2 ] U [ 2 , + o c ) } .  Then 
G(a, b, z) is a single-valued holomorphic function and satisfies 

3, ~z )+zr(a+~)r(b+~)F(a+�89 �88 G(a, b, z) = F(a)F(b)F(a, 5, 1 1 2 1 1 1 3 

Proof. Assume first that  Iz l<l .  For 1EN we have 

(21+l)!=41l!(3) t ,  (2l)!=41l!(�89 and F(a+l)=F(a)(a)l. 

Hence 

and 

z 2t Ffa~F(b~(a)l(b)ll~)l ( 2 1 ) ! r ( a + l ) r ( b + l ) =  , , , , , (1~  
o-t~]l 

Z2/+1 
(21+l),F(a+�89189 =zC(a+�89189 (a+ �89  I/z2~ t 

�9 l~(1), t 4 ) '  
and hence the result follows easily if I~1 <1. Lemma 4.2 follows then by analytic contin- 

uation. [] 

5. Hypergeometr i c  funct ions:  behavior  at z:-- i /~ 

From now on we assume d = l .  Let ft be a bounded domain contained in the strip 0 < a < 2  

and let K be a sufficiently large integer�9 For s C~ write 

HK(-i//~,s) = lira HK(z,s), (5�9 
z-+-il~ 

where the limit is taken along a path where Re z>0.  Moreover, let 

a =  � 8 9  1 - 1 1 ~ S + ~  = ~ ,  b=  and A(s) E(Aj (1-2s) -2 i Imt t j ) log2Aj .  
j = l  

In this section we prove 
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THEOREM 5.1. Let d----1. For sEf~ the limit (5.1) 
path, and is meromorphic. Moreover, 

k:0k! 
r(a+l)r(b-a-1) } +v~ r(a+�89 a-�89 - i v ~  +fl(~) 

r(-a)r(b)r(�89 r(�89189 

where fl(s) is holomorphic for 0<a<2 .  

In particular, the expression in Theorem 5.1 provides the meromorphic continuation 
of HK(-i//3, s) to the strip 0<a<2 .  

We start the proof of Theorem 5.1 by the following key lemma. 

LEMMA 5.1. Let d = l  and R e w = - K - � 8 9  Then 

F(a+�89189  h(w, s) = eA(s) r(b+ �89 + �89 

where f(w, s) is holomorphie for 0<~r<2 and satisfies 

f(w, s) = O(1/]wl) as lwl--+ oe, 

uniformly for 0 < (r < 2. 

Proof. Writing c~j=)U(1-s)+[z j and /3j=)~js+pj we have a=ES=l(c~j- �89 b= 
r Z T E,=l (95-1), (s)=E~=l(~j-Zj)log 2aj and 

I'(c~j-Aju,) 
h(w, s) -- I I  r(9~+a~w) 

j = l  

Hence, by Stirling's formula, for 0 < a < 2  and R e w = - K - � 8 9  we have 

r 

log tt(w, s) = Z { (a J -  )~jw-1)l~189 w) +(c~J-)Uw-�89 l~ )~jw+�89 log 27r } 
j = l  

- ~  { ([3j+ )~jw-�89 log(�89 + (/3j+ )~3w-�89 2)~j- )Uw+�89 } 
j = l  

+fl(W, 8) 
---- ( a -  �89 w)log(-�89 w) + �89 w+ �89 log 27r- { (b+ lw)log( �89 w ) -  �89 w+ i log 27r } 

+ w log (1~) + a(s) + fa (w, s) 
=logF(a+�89189189189 fl)+a(s)+ f2(w,s), 

exists, does not depend on the 
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where fl(w, s) and f2(w, s) are holomorphie for 0 < a < 2 ,  and satisfy 

f~(w, ~) = o (1 / Iw l )  as Iwl-+ ~ ,  i = 1, 2, 

uniformly for 0 < a < 2 .  Writing f(w,s)=eS~(~,~)-l, the result follows immediately. [] 

By Lemma 5.1, for sCf~ and zEA, where A is defined in (4.5), we have 

Htc (z, s) - e~(s) f( r(a+l-�89 
27ri - -K- - l /2 )  r(b+�89189 r(w)(�89 

e A(s) ~(( F(a-F�89189 r(w) 1 w 
+�89 (~z) f(~., ~) ~. +~-~i -K-l/2) r(b+~ 

= H(~)(z, s)+H(~)(z, s), 

(5.~) 

say. From Lemma 5.1 and Stirling's formula, we see that  the integrand in H~)(z, s) is 

O(Iw1-1-~) on the line R e w = - K - � 8 9  uniformly for 0 < a < 2  and z r  with l arg z I ~< �89 

Hence H~)(z,s) is holomorphic for 0 < a < 2  and z r  with largzl 1 ~< 77r. Observe that,  in 

this case, the values arg z=:k�89 are allowed. Therefore, writing 

f l(s)  = lim H(~)(z, s) (5.3) 
z-+-{/Z 

with the above convention about the path, we see that  fl(s) is holomorphic for 0 < ~ < 2 .  

In order to deal with H(~)(z, s), we observe that  

H~i(z, s) = e-A(S) H(~)(2z/~, s) (5.4) 

is also an incomplete Fox function, with 

~(w, s )=  r ( a + � 8 9  lw) d = l ,  (5.5) 
r(b+l+�89 ' 

and having the ~-parameter equal to 2. Hence, in view of Theorem 4.1, for sEft  and 

[z I > �89 we write 

K 
. ( -1)  k r(a+�89189 ) 

H~(z's)=-~2 k! r(b+�89189 
k=0 

(5.6) 

with 

H*(~,s)=~Z_. (-1)k r(a+�89 Z -k. 
k! F(b+ 1 k=0 ~- �89  

(5.7) 
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Now we express the series in (5.7) in terms of Gauss hypergeometric functions. 

This step is important in our argument, since it will allow the explicit computation of 

H~:(-i/~,s). Observing that 

1 e iTrb e -i~rb 

r(b+�89189 2~ r( �89 r(�89189 

from Lemma 4.2 we have 

l-b,�89 -1/4z 2) H*(z,s)=C~189 , 
(5.s) 

sin 7rb - - - r ( a +  l)r(1-b)F(a+ l, l-b, a, _ l / 4 z  2) 
7rz 

for sEf~, ]z]>~l and a+5, ~1 1-b#-�89 v=0,  1, . Moreover, observing that, in view 

of the properties of Gauss hypergeometric functions, (5.8) holds for z e C \  [-�89 �89 by 

analytic continuation, from (5.6) and (5.8) we get 

K * ( _ l ) k  1 1 

HK(z's)=- Z k! r(b+�89 lk ) z 
k=0 

+cos,~br(a+�89 �89 _l/4z2 ) (5.9) 
7r 

sinrrb F(a+ l )F(1-b)F(a+ l, l-b, a , -1/43)  
7rz 

for s e a ,  z c C \ [  - ~ "  a + � 8 9  , U '  �89 and 1-br189 v=0,  1 .....  

Since for z-+-li with R e z > 0  we have that - 1 / 4 z  2 is of the form 1+pc  ir with 

0 ~ 0  and r from (5.9) and Lemma 4.1 we obtain 

1 1 ( ~ )  K 1 F ( a + 7 + T k  ) -k 
lim H;dz ,* ) - - -~  k~ r (b+l- lk)  

z-+-- i /2  k=0 

~)r(~-b)r(b-a-~) (5.10) cos~rb F ( a +  1 1 + 
v~ r(-a)r(b) 

. sinTrb r(a+l)r(1-b)r(b-a- 1) 
v~ P(�89189 

for sEf~ with a > l ,  a+�89 1 1 -~-bT~-~v, v=0,1 , . . . ,  and s - 1 + 2 i l m { : f i 1 , 2 , . . . .  Since the 

right-hand side of (5.10) is a meromorphic function, the left-hand side is also meromor- 

phic, and hence (5.10) holds, in particular, for sEf~. 

Moreover, 

cos rob " 1 V @ sin rrb . x/-ff (5.11) 
~ -  F ( 7 - b ) - F ( � 8 9  and ~ F ( 1 - b ) - ~ ( b ) ,  

and hence Theorem 5.1 follows from (5.2), (5.3), (5.4), (5.10) and (5.11). 
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6. Hypergeometric functions: behavior at s = l - - i O  

Let d = l  and write 

g(s, ~) = e -A(~) HK ( - i /~ ,  s). (6.1) 

In this section we detect the behavior of g(s,~) at s=l - iO.  From Theorem 5.1, for 
0 < a < 2  we have 

K 1 F ( 1 1  1 1 ( ~ ) - k  

g(s,~) = -  ~-~. ~ F ( l ( s + l ) _ ~ k + ~ ) l  1 
k=0 

r(1-�89189 
1 1 1 I ~  ) 

F(�89 �89  l +iO) 

= gl  (8, ~) -~-g2 (8, ~) ~-g3 (8, ~) Jr- f2 (S), 

(6.2) 

say, where f2(s) is holomorphic for 0<or<2. 

We need the following 

LEMMA 6.1. Let mCN.  For m>~2 we have 

m - - 1  (2m+2/-3)! 
rl(?n) = Z (-1)1 (2/)! ( re+l -2) !  ( m - l - i ) !  

/=0 

= 2(-1)m+14 m-2 ' 

and for m ~  1 we have 

m - -  1 

E2(m) = Z (-1)1 ( 2 m + 2 / -  1)! 
(2l+1)! ( re+l -1) !  ( m - l - l ) !  

l=0 

= ( -  1)m+14 m-1 

Proof. We use the following identity, see equation 64 on p. 620 of [9]: 

[~/2] 
Z( -1) t (~) (2a-2 / )=2~( : ) \2a-n]  
/=0 

for non-negative integers a and n. 

Choosing a = n = 2 m - 3  we get 

~, - -  2 

E ( _ 1 ) z ( 2 m - 3 " ~ { 4 m - 2 1 - 6 " ~  
\ l ] \  2 m - 3  ] = 2 " 4 m - 2 '  

/=0 

(6.3) 

(6.4) 
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and choosing a = 2 m - 3  and n = 2 m - 2  we have 

m - - 1  

E ( - l ) Z ( 2 1 - 3 ) ( 4 m - 2 1 - 6 ~ = 4 m - l ( 2 m - 3 ~ = O .  (6.5) 
z=0 \ 2 m - 4  I \2rn-2] 

From (6.4) and (6.5) we obtain 

m-1 (2m+21-3) (  2m-3 ~ 
E l ( m ) = E ( - 1 ) t \  2 m - 3  ] \ m - I - l /  

/=0  

m-1 z(2m_3)(4m_21_5~ 
=(-1)  1 \ 2m-3 ] 

/=0  

rn--1 
=(--1)m+1 E ( _ l ) l ( 2 1 - 3 ) { 4 m - 2 1 - - 6  ~ 

t=0 \ 2 m - 4  ] 

rn - -2  
+ ( _ l ) m + l E ( _ l ) l ( 2 m l - 3 ) ( 4 m - 2 l - 6  ~ 

z=o k 2 m - 3  ] =2(-1)m+14m-2,  

which proves the first assertion of Lemma 6.1. The second assertion follows arguing in a 

similar way, using (6.3) with the two choices 

a = n = 2 m - 2  and a = 2 m - 2 ,  n = 2 m - 1 .  [] 

The behavior of g(s, ~) at s=l- iO is given by 

PROPOSITION 6.1. Let d = l .  The function 9(s,~) has a simple pole at s=l-iO, 
with residue 0(~) given by 

_ ~ e-,~i~12 

= 

if r / > - I  or ~ Z ,  

if r / = - 2 m + l  and r e = l , 2 , . . . ,  

if q? = - 2 m  and m = 1, 2, .... 

Proof. It is easy to see that  g(s,~) has at most a simple pole at s=l-iO. Moreover, 

the F-factors other than F(s-l+iO) in the numerators of (6.2) may become polar at 

s=l- iO only in the cases 

r/------2m+l and r / = - 2 m ,  for r n = l , 2 , . . . .  

Since f2(s) is holomorphic at s=l-iO, with obvious notation we write 

~(~)-----Ql(~)+O2(~)+Q3(~)- (6.6) 
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We also write 

and hence 

and 

rk = res F(1 1 1 1 - - ~ + ~ k + ~ ) ,  
s=l - - iO  

I I i __ r k r  if and only if ~+-~?]+~k--v for some v = 0,1, ... (6.7) 

1 ( 1 0 -k  

k=O 

(6.8) 

We prove Proposition 6.1 by actually computing the value of 0(~), thus showing that  

always ~(~)r If ? ] r  and ? ] r  with r e = l ,  2, ..., we have 0ff~)=0, 

sin(l ?]) 
r(-�89 

and 

17] 

Hence Proposition 6.1 follows in this case from (6.6), since 0(~)r 

Suppose now that  ? ] = - 2 r n + l  for some m = l ,  2, .... From (6.7) we have that  r k r  

for k=21 with O<~l<.m-1, since we may assume K to be sufficiently large. Therefore, 

from (6.8) we get 
m--1 (_1 )  / 41 

~1(~)=- ~ (20! I'(~-m-l) r2t. 
/ = 0  

Since 

and 

r2l = - 2  ( - 1 ) m - z - 1  

( m - l - l ) !  

r ( ~ - m - l )  = 7r _ ~r 4 "~+z-1 r ( m + / - 1 )  
( - 1 ) r e + t - i F ( m + / - 1 )  ( -1 )  m+z-1 2 v ~  F ( 2 m + 2 / - 2 ) '  

for m~> 2 we have 

42_ m m-iN -~ (_1)1(2m+2/_3)  ! 
OI(~)-- 

V ~ ~ ( 2 0 ! ( ' ~ + I - 2 ) ! ( ' ~ - I - 1 ) ! '  

and for m =  1 we have 
2 

a ( ~ ) = v ~ -  
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Hence, if r / = - 2 m + l  from Lemma 6.1 we get 

Q I ( ~ )  = ~-ff (--1) re+l- (6.9) 

Assume now that 7 / = - 2 m  for some r e = l ,  2, .... From (6.7) we have that r k~0  for 

k = 2 1 + l  with O ~ l ~ m - 1 .  By the same argument used above we get 

m - - 1  2i41-m ( -  1)Z(2rn+2l - 1)! 
gl({) = ~ E (2/+1)! ( m + / - 1 ) !  ( m - l - i ) ! '  

l = 0  

and hence from Lemma 6.1, in this case we obtain 

01(~) = ~ ( -1 )  m+l. (6.10) 

A simple computation shows that if r / = - 2 m + l  for some r e = l ,  2, ..., then 

sin(�89 cos(�89 (6.11) 
02(~) -- V@ and 03(~) = - i  ~ , 

and if r l = - 2 m  we have 

sin(�89 cos(�89 (6.12) 
Q2(() = -  v@ and Q3(~) = i  x/~ 

Proposition 6.1 follows by a computation from (6.6) and (6.9)-(6.12), since g(~)#O 

in all cases. [] 

The analytic properties of HK(--i//3, s) are summarized by 

THEOREM 6.1. Let d = l .  The function HK(--i//3, s) is meromorphic for 0 < a < 2 .  

It has a simple pole at s = l - i O  and, if 0#0, is holomorphic at s = l .  

Proof. This follows from (6.1), (6.2) and Proposition 6.1, observing that if 050 ,  

then g(s, ~) is clearly holomorphic at s =  1. [] 

7. A d d i t i v e  tw i s t s  

Given a E R ,  we consider the additive character ~ = - ~  defined by ~(n)=e(-n(~). For 

F E $~ and (7 > 1 we form the additive twist 

a(n)r 
F*(s)---- E nS 

n = l  
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Let N > 2  and K be a sufficiently large positive integer. For 0 < a < 2  and a fixed 

c~>0, a standard argument shows that 

(2<:) 

FeN(S) = E a(n) e_~(1/N+2,~i~) = 
n s 

n = l  

1 f(2) F ) ( 1  )-w 27ri (s+w)F(w +27cic~ dw 

K 

=RN ~(s)+ E (-1)k 
' k !  

k=0 

1 k 

+ 2@~ ~(_K_1/2)F(s+ w)F(W) ( N +27ria) -~dw, 

where 
1 --w 

RN,~(s) :reS_s(F(s+w)r(w)(~+27ric~) ) .  

By the functional equation of F(s) we get, with the notation of w that 

K k 

FON(s)=RN'~(s)+E(-1)kF(s-k)(N+2~ic~)k' 
k=O 

wQt-2~ F(1-s-w)h(w, s) +27ric~Q 2 dw. 
-I- 2 7 r - - ~  - K - - l / 2 )  

(7.1) 

By the absolute convergence of both the Dirichlet series of F ( 1 - s - w )  and the 
integral in (7.1), for - l < a < K + � 8 9  we may replace _P(1-s -w)  by its Dirichlet series 
and interchange integration and summation. Hence by the convergence properties of the 

Barnes integral HK(Z, s) in Theorem 4.1 we get 

(1 (-1)k F(s-k) 
k=0 

a(n) ( n +wQi-2~ E ~ HK 
n = l  Q2  ( 1 / N n -  27ric~) 

(7.2) 

Write n~=qc~ and define 

{ a(n~) i f n ~ E N ,  

a(nc~) = 0 otherwise. 

If n~n~, by Theorem 4.1 we have that 

N-+~ \Q2(1 /N+2~i~)  ~ ' 
(7.3) 
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/ 
H K  ~-- -- - -  

uniformly for s C ~. 

and HK(--in/~qa, s) is holomorphic on a given bounded domain t) contained in the strip 

0 < a < 2 .  Moreover, if n>na we use (4.6) in Theorem 4.1 to control the n-dependence of 

the right-hand side of (7.3). Indeed, since 

1 = /~jS'~-pj-Ajk sin(Tr(Ajs+pj-Ajk))F(Ajk-Ajs-pj), 
F( Ajs-~-#j - /~jk ) 7r 

a Stirling's formula estimate similar to those used in the proof of Theorem 4.1 gives 

~ , s  = (-1)kh(-k'S)k---(--. - ~-~ <<n -K (7.4) 
H = K + I  

By the trivial bound a(n)<<n 3/2, say, from (7.3) and (7.4) we have 

N-~lim wQ 1-2s ~ ~a(n) (,~ ~ / - -  ) HK ~211/~--+27ria~,s = f3(s), (7.5) 
n ~ l  

n~no 

where f3(s) is holomorphic on fL Since K depends only on [[ft[[, we see that  fs(s) is in 

fact holomorphic for 0 < a < 2. 

Now we deal with the crucial case n=no. In view of (5.1) and Theorem 5.1, if n=n~ 
and n~ E N we have 

Y--~oclim HK HK ~ s , (7.6) a(1/~-+27ria), s = _ , 

and Hg(-i//3, s) is meromorphic for 0 < a < 2 .  

Further, it is clear that 

R . ( s ) =  lim RN,.(s)= res (F(s+w)F(w)(27ria) -w) (7.7) 
N-+~ w=l--s 

is a meromorphic function for 0 < a < 2 .  

Since for a > 1 

lira FCu(s)= Fr 

from (7.2) and (7.5)-(7.7) we get 

K 

f ~ b ( 8 ) - - R a ( s ) ~ - E  ( - - 1 ) k F ( s - - k ) ( 2 7 r i ~ ) k - ~ ~  -~ 1--s ( 7 . 8 )  

k=0  n a  

for 1 < a < 2. Since the right-hand side of (7.8) is meromorphic for 0 < a < 2, it provides the 

meromorphic continuation of Fr  to 0 < a < 2 .  We summarize the properties of FO(s) 
so far obtained by 
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LEMMA 7.1. Let FES~, a>O and na=qa. 
meromorphic continuation to a > 0  and satisfies (7.8) for 0 < a < 2 .  

Choose now a = l .  Hence Fr and from (7.8) we have 

K (--1)kF(s--k)(27ci)k wO ~-2~a(nl) ( - -~ , s ) - - f3 ( s ) .  R (s) = -  Z k! - 
k=l n l  

Then the additive twist Fr  has 

(7.9) 

From (7.9) and Theorem 6.1 we see that  R~(s) has at most a simple pole at s = l .  There- 

fore, from (7.7) with a = l  we deduce tha t  F(s) itself has at most a simple pole at s = l .  

Hence for a given a > 0 we have 

Ra = xF(1-s)(27ric~) s-l ,  

and hence 

( ) res R~(s)+ F(s-k)(2~ria) k 
s=l k! 

k = 0  

Moreover, it is clear that  

= - x + x = 0 .  

K 
( -1)k k 

k~ 
k = 0  

is holomorphic for t~0 .  Therefore, writing (7.8) as 

Fr J -  ~ n~-T:~- H K ( - ~ , s ) + h ~ ( s ) ,  (7.10) 

we see that  ha(s) is holomorphic for 0<or<2.  

By (7.10) and Theorem 6.1, we may summarize the analytic properties of F~(s) as 

follows. 

THEOREM 7.1. Let FE,S[, a > 0  and n~=qa. Then the additive twist Fr has 
meromorphic continuation to a>O and satisfies (7.10) for 0 < a < 2 .  Moreover, F~(s) 
has a simple pole at s = l - i O  if and only if n~EN and a(na)r 

We remark tha t  the argument  used in the proof of Theorem 7.1 can be suitably 

modified to provide the meromorphic continuation of Fr to the whole complex plane. 

However, this is not necessary in the proof of Theorem 2, and having Theorem 2 such 

a meromorphic continuation already follows from the known properties of the additive 

twists of ~(s). 
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8. T h e  case  d = l  

We begin by establishing the following basic properties of the functions F E 8[. 

THEOREM 8.1. Let FE$[. Then q is a positive integer, the sequence a(n)n ~~ is 
periodic with period q and 

F ( s ) =  E Px(s+iO)L(s+iO'x*)' (8.1) 
X (rood q) 

where the Px(s) are Dirichlet polynomials. 

Proof. Let h E N  be such that  a(n)r and apply Theorem 7.1 with ct=n/q, thus 

getting that  F~(s) has a simple pole at s =  1 -  iO. Choosing ~ ' =  y)~+~ we see that  Fe'(s)= 
Fr has a simple pole at s=l- iO too. Therefore, from Theorem 7.1 we obtain that  

( c~+ l )q~N,  and hence qCN,  since c~qEN. 

Given n E N ,  let r a n d  ~ t = ~ ( n q _ q ) / q .  Since HK(-i/fl ,  s) has a simple pole at 

s=l- iO by Theorem 6.1, we have res,=l-~0 HK(--i/fl, s ) r  Hence from (7.10) we get 

res FW(s)=wQ 2i~ res HK( i ) _  ,s 
s=l - - iO 7l iO s = l - - i 0  

and 

res ( i ) res HK - s . 
s = l - i O  ( i tq_q) iO  s = l - i O  f l '  

Since Fr162 the periodicity of a(n)n i~ follows at once. 

Write c(n)=a(n)n i~ For ~r>l we have 

n s n s 
n = l  dIq n = l  dlq n = l  

(n, q) =d (n, q/d) = 1 

Since the function 
c(nd) 

ee(n) = 0 

is periodic with period q/d, we may write 

if (n, q/d) = 1, 

otherwise 

X (rood q/d) 

(8.2) 

(8.3) 
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with certain Ca, xr Denoting by x*(modfx ) the primitive character inducing X 

(rood q/d), from (8.2), (8.3) and the properties of Dirichlet characters we get 

dlq X (rood q/d) 

dlq x(modq/d) Pl(q/dfx) 

= 

X (mod q) 

where X* (rood fx) induces X (rood q) and Px(s) is a suitable Dirichlet polynomial. The 

proof of Theorem 8.1 is complete. [] 

Now we enter the finer structure of the representation (8.1). To this end, in the 

following lemma we prove that  the Dirichlet L-functions are linearly independent over the 

Dirichlet polynomials. We say that  the Dirichlet characters X1,-.., XJ are non-equivalent 
if ?(~, ..., X~ are all distinct, where Xj is the primitive character inducing Xj. 

LEMMA 8.1. For j = l , . . . , J ,  let Pj(s) be Dirichlet polynomials and Xj be non- 
equivalent Dirichlet characters such that 

J 

E PJ (s) L(s, Xj) = 0 identically. (8.4) 
j = l  

Then Pj=O for j = l ,  ..., J .  

Proof. Write Pj(S)=~-~n<~N aj(n)n -s and suppose that  not all the Pj(s) are identi- 

cally zero. Let no be the smallest integer n such that  aj(n)~O for some j ,  and let J0 be 

the smallest such j .  Let p>N be a prime number, and consider the (n0p)th coefficient of 

the left-hand side of (8.4). By the identity principle for Dirichlet series such a coefficient 

is zero, and hence 
J hop 

E E a j ( d ) x j ( ~ ) = 0 .  
j = l  dlnop 

But aj(d)=O for d<no and for d>N, and therefore 

J 

E aj(no)Xj(p) = 0. (8.5) 
j = l  

Let k be the least common multiple of the moduli of the Xj, and let ~j (rood k) be 

the character induced by Xj. Hence Xj(P)=Xj(P) for p>k, and the characters ~j are all 
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distinct. Multiplying by XJ0 (P) both sides of (8.5) and summing over max(N, k)<p~x, 
by a standard argument in prime number theory we get 

J x ( x )  
O = E a j ( n ~  E XJ(P)XJo(P)=ajo(n~ +~ 

j = l  max(  N , k  ) < p<~ x 

as x--+cc. Therefore aj0(n0)=0 , and the lemma follows. 

From Theorem 8.1 and Lemma 8.1 we have that for a given FES~, 

[] 

0 is an invariant of F(s) ,  and the representation (8.1) is unique. (8.6) 

We shall need the following simple lemma about almost periodic functions. 

LEMMA 8.2. Let Ao(s) and Aj(s), gj(8), j=l, . . . ,J ,  be meromorphic functions 
on C. Assume that for j = l  .... , J and for some croER, the functions Ao(ao+it) and 
Aj(ao+it) are almost periodic in t, and gj(s)=o(1) as H-+oc, uniformly for 5~<args~< 

7c-5 with some small 5>0. If 

J 

E Aj (s)gj (s) = Ao (s) 
j = l  

identically, 

then Ao=0.  

Proof. Assume that  Aor  and hence Ao(ao+ito)=c~O for some to. By ahnost 

periodicity we find a sequence t,`--+oc such that  for every n, 

IAo(ao+itn)l>~I�89 and IAj(ao+itn)l=O(1), j=l , . . . ,J .  

Therefore 
J 

E Aj (ao +it,`)gj (ao +it,,) = o(1) 
j = l  

a s  n ---~ c ( ~  

a contradiction. [] 

The Dirichlet polynomials P~(s) in (8.1) can be characterized as follows. 

PROPOSITION 8.1. Let F(s)ES~. Then the Dirichlet polynomials P~((s) in (8.1) 

 elong to for eve  )/ (modq). 

Proof. Denote by Dl(q) and D2(q) the set of X (modq) with X ( - 1 ) = 1  and 

) / ( - 1 ) = - 1 ,  respectively. By (8.1) and the functional equation of the Dirichlet L- 
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functions we have 

r(l(1-s-iO)) 
F(s)= r(�89 E c~176 (s+io)L(1-'s-iO'5(*) 

x 6 D I ( q )  

r(�89 wx*Qx. Px(s+zO)L(1-s-iO,~*) +r(�89 ~ 1 - - 2 s - - 2 i 0  . 

xcD2(q) 

r(�89 r(�89 
: p(�89 Pq(s)+r(�89 22(s), 

say. On the other hand, from (8.1) and the flmctional equation of F(s) we get 

(8.7) 

F(s) = coQ 1-2s I I  r(Aj(1--s)q-fzj) 
j=l r ( A j s + # j )  

= fi r ( A a ( 1 - s ) + # j )  

E Px(1-s-iO)L(1-s-iO'x*) 
X (rood q) (8.8) 

say. 

Writing 

P(l(1-s-iO)) r(Ajs+/~j) 
ZXx(s)= r(l(~+io)) f I  F(Aj(1-s)+#j) 

j = l  

and 

r(�89 I:I r(~*+~5) 
A2(s) = r(l(s+l+iO)) r(,~(1-s)+#r 

j = l  

from (8.7) and (8.8) we obtain 

Ax(s)r~l(*)+ A2(*)~2(s) = <a(*). (8.9) 

Assume that  5<~args<<.Tr-5 for some small 5>0. Hence -Tr+5<~arg(-s)<~-a and 

a r g ( - 1 ) = - r r .  By a computation, which we omit, based on Stirling's formula and similar 

to that  in the proof of Lemma 5.1 we get 

logAl(s)=al+bls+O(1/[sD as Isl --+ o~, (8.10) 

where 

T 

a l =  �89 1)+log ~ +log2 i~ +log I I  ~z  Im #j 
j = l  

and 
2 

bl = log T. 
P 
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In a similar way we also get 

log As(s) = as +bs s+ O(1/Isl) 

with certain constants a2 and b> 

But 
Al(s)  _ r( �89 - l(s+iO))r(}+�89 
A~(s) r(�89189 

=tan(�89 

(8.11) 

9j(s)=O(1/Isl) as Isl--+oc, j = l , 2 ,  

where gj (s) are meromorphic functions. Hence (8.9) takes the form 

aebSEl(S) (1 Tel (s)) +aebsE2 (s)(1 +g2 (s)) = Ea (s). (8.14) 

Since aeb~El(s), aeb'E2(s) and Ea(s) are almost periodic in t for ~<0,  from (8.14) 

and Lemma 8.2 with J = 2  we obtain 

aeb~El(s)+aeb~Es(s) = Ea(s), (8.15) 

where a and b are given by (8.13). 
Since Q=(/3q/2rr) l/s, Qx.=(fx/rc)l/S and b=log(2//3), substituting s+iO by s we 

may rewrite (8.15) in the form 

E 1 iO --s a(~)  Cox.Qx.fx Px(s)L(1-s,5(*)= 
X (mod q) 

Hence by Lemma 8.1 we get 

/ 1 ~iO 
a~lJ) wx.Qx.fx~Px(s) 

for every X (modq): 

E coQl+:i~ 
X (rood q) 

=wQl+2i~ q-*Px(1-s ) (8.16) 

uniformly for 5 ~< args  ~< r r -  5 we have 

Aj(s)=aeb~(l+gj(s)) and 

j=l 

and hence 

log & ( s ) - l o g  ZX2(s) = log tan(�89 = O(1/1,1) as t im sl -+ oo. (8.12) 

From (8.10)-(8.12) we see that  al=az and bl=b2. Therefore, writing 

a = eirr(rl+l)/2 V / ~ 2 i 0  ~I/~j2ilmttJ 2/3 and b = l o g  ~ (8.1a) 
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From (8.16) and (8.13), for every X (modq) we have 

(~__), ( f q ) l  ( ~ X - ~ I - - 2 S j  COC~2X * Q1+2i0 "O /2 q / 

p (s) Px ( 1 - s )  
a (~x* 

/ r---- \1--2s 

and Proposition 8.1 is proved. [] 

Since by (8.6) the Dirichlet polynomials Px (s) are uniquely determined and by The- 

orem 1 the pair (q/fx,co*~x.) is an invariant of Px(s), we have that  

q and co* are invariants of FC $~. (8.17) 

We shall need the following lemma about Dirichlet series. 

LEMMA 8.3. 

gence, and let sk 

Assume that 

Let Dj(s), j = 1 , 2 ,  be Dirichlet series with finite abscissa of conver- 

be a sequence of complex numbers with Resk--+co, A>0 and cEC. 

D k l(Sk)q-cot(--Tr~+c)D2(sk) = 0  

for k sufficiently large. We have 

(i) if  =1/2m with  s o m e  . eN, then  

(8.18) 

Dl(S)+cot(c)D2(s) =0 identically; 

(ii) if ;~r for every mCN, then DI=D2=O. 

Proof. We shall repeatedly use the following well-known property of Dirichlet series: 

every non-zero Dirichlet series with finite abscissa of convergence has a zero-free right 

half-plane. 

We first observe that  we may assume that  s=-Trk/2)~+c is not a pole of cot(s) for k 

sufficiently large. Otherwise, D2=0 by the above-mentioned property and hence D I = 0  

too by the same property, and therefore both (i) and (ii) would follow. 

Assume that  A = l / 2 m  for some mEN.  By the periodicity of cot(s), (8.18) becomes 

Dl(sk) + cot(c) D2 (sk) = 0, 

and (i) follows by the above property of Dirichlet series. 

Assume now that  ;~#l/2m for every m e N ,  and write k/2;~= [k/2,~] +{k/2A}. Hence 

cot(-Trk/2A+c)=cot(-Tr{k/2A}+c) and, by our assumption, {k/2A} is not constant. 
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Moreover, by a well-known elementary result in diophantine approximation, {k/2A} does 

not tend to a limit as k-+oc. Therefore 

k 
lim inf cot ( -T r - -  +c~ r lim sup cot (-Tr k + c ) .  

k--+~ \ 2A ] k--+oc \ 2A 
(8.19) 

For k sufficiently large we may expand the Dirichlet series in (8.18), thus getting, 

with obvious notation, that 

~--~al(n)n sk +cot(_7~+c) ~a2(n)  sk (8.20) 
n = l  n = ]  

Let nj, j = l ,  2, be the least integer n such that aj(n)7~O. If nl=n2=no, say, from (8.20) 

we obtain 

al(no)+o(1)+cot(-Tr ~--~+c)(a2(no)+o(1))----O 

as k-+oc, and hence from (8.19) we get al(no)=a2(no). This contradiction shows that 

DI=D2 =0 in this case. 

A similar argument shows that D I = D 2 = 0  in the case nl~n2 too, and hence 

Lemma 8.3 is proved. [] 

The nature of (8.1) is further clarified by 

PROPOSITION 8.2. Let FES[. Then ~ = a - 1  and (8.1) takes the form 

F(s)= E Px(s+iO)L(s+iO' x*)" 

Proof. With the notation in (8.7) write 

By(s)= E Px (s+iO)L(s+iO'X*)' j = l , 2 .  
xcDj(q) 

From (8.1), the functional equation of the Dirichlet L-functions and Proposition 8.1 we 

get 

F(s) = =* (q hl/2-s-~0 f r(} (1- s-i0)) ~1(1-s)+ r(�89 (2- s-io)) B~(1-~)} 
\~r] [ F(�89 F(�89 

On the other hand, from (8.1) and the functional equation of F(s) we have 

F(s) = wQ 1-2s fi r(,\j(1-s)+#j) {Bl (1 - s )+B2(1 - s )} .  
j=X F(Afi+#j)  

(8.21) 

(8.22) 
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Comparing (8.21) and (8.22) we get 

r(�89 p(�89 
F(�89 J~l(1-s) ~- r(�89 B2(1-s) 

=WCo,(q)zO(�89 ~i P ( A j ( 1 - s ) q - / ~ , ) { B I ( 1 - s ) q - B 2 ( 1 - s ) } .  
j = l  P(Ajsq-pj) 

(8.23) 

The right-hand side of (8.23) vanishes a t  8k=-(kq-ttj)/.~j, k = l ,  2, ... and j = l ,  ..., r. 

Since the zeros of F(�89 (s+iO)) -1 and those of F(�89 (s + 1 +i0))  -1 are disjoint, fixing a j =j0 

we have either 

Case I. There exists an infinite subsequence of k's such that  sk is a zero of 

F( �89 -1 but not of P(�89 -1, or vice versa, 

or 

Case II. For k sufficiently large, sk is not a zero of both F(�89 -1 and 

r ( �89  -1 
Suppose that  Case I holds and that  sk is a zero of F(�89 -1 but not of 

F(�89 -1. Since F ( � 8 9  is regular at sk, from (8.23) we find that  

B 2 ( 1 - s k ) = 0  along a subsequence sk with Resk--+oo. Therefore B2=0 by the prop- 

erty of Dirichlet series stated at the beginning of Lemma 8.3. Clearly, B I = 0  in the 

opposite situation. 

Suppose now that  Case II holds. Hence from (8.23), for k sufficiently large we have 

r (1- �89 (sk +i0)) r (�89 (sk +ie)) 
o = Bl(1-sk) + r(l+�89189 B2(1-sk) 

= Bl(1-sk)q-cot(-7~q-c)B2(1-sk), 
(8.24) 

where A=Ajo and c=-rC#jo/2Ajoq-iO. 
If A = l / 2 m  for some mGN,  by (8.24) and Lemma 8.3 we get 

B l ( S ) + c o t ( c ) B 2 ( 8 )  --  0 iden t i ca l ly ,  

and hence B I = B 2 : 0  by Lemma 8.1, a contradiction. If A%1/2m for every m E N ,  by 

(8.24) and Lemma 8.3 we have BI=B2--O, again a contradiction. 

Therefore, either B I = 0  or B2=0. Moreover, from (8.23) and Stirling's formula we 

get 

~-~.(#j 1 ) = � 8 9  
j=l 

Hence r / = a - 1  and Proposition 8.2 follows. [] 
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From Proposition 8.2 we have, in particular, that q is an invariant of F(s), and 

Pxo(1)=0 if 0r  Hence from (8.6) and (8.7) we have that  

the triple (q, 4, w*) is an invariant of FCS~, and Px0(1) = 0  if 07s (8.25) 

Parts (i) and (ii) of Theorem 2 follow now from Theorem 8.1, (8.6), Proposition 8.1, 

Proposition 8.2 and (8.25). We state part (iii) as 

PROPOSITION 8.3. For qCN, 71E{-1,0}, 0 c R  and [w*[=l, V~(q, 4, w*) is a vector 
space over R. Its dimension is given by 

[�89 if 4 = - 1 ,  
dimR V~l (q'4'w*)= [�89 ( q - l - r / ) ]  otherwise. 

Proof. The same argument as in the proof of Theorem 1 shows that  V~(q,4, w*) is 

a vector space over R. 

Assume first that  4 r  with 0r Writing 

r(f ,  4) = [{X E ~(q, ~): fx = f}l, 

by (iii) of Theorem 1 and Proposition 8.1 we have 

d( q ) ( ~ )  dimRV~(q, 4, w* )= Z -~x = E r(f,~)d = E Z r ( f '4 )  
xEs~(q , ( )  flq d[q lid 

(8.26) 

= ~ 1 if 4 = - 1 + i 0  with 0 r  
6~ ( 0 otherwise, 

from (8.26) we get 

d ime V~(q, 4, w*) = Z Z r(f, 4)-6~ 
dlq fld 

in the general case. 

Now we compute the right-hand side of (8.27). It is easy to see that  

{ �89 if d>2, 
f~ld r ( f ,  4) = 1 if d ~ 2 ,  r] = - 1 ,  

0 if d ~< 2, 7/= 0, 

(8.27) 

If ~ = - 1 + i 0  with 0r  we have to take into account the condition Pxo(1)=0. This con- 

dition imposes a linear dependence on the coefficients of Pxo(s), and hence the dimension 

of the resulting vector space decreases by 1. Therefore, writing 
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and hence Proposition 8.3 follows by a simple analysis from the well-known relation 

~dlq ~(d)=q. [] 

The proof of Theorem 2 is now complete. 

Theorem 3 is a simple consequence of Theorem 2 and Theorem 5.1 of Conrey-  

Ghosh [3]. However, since we cannot follow the argmnent in the last paragraph of the 

proof of Theorem 5.1, see p. 688 of [3], we give here an essentially self-contained proof of 

Theorem 3, using instead Conrey-Ghosh's  [3] result that  80={1}. We remark that  the 

argument below also provides the missing details in the proof of Theorem 5.1 of [3]. 

If FE$~,  then the coefficients a(n) are multiplicative. Hence, by (i) of Theorem 2, 

c(n)=a(n)n i~ is both multiplicative and periodic with period q. Therefore, there exists 

a Dirichlet character X (rood q) such that  

c(n) = x(n) for (n, q) = 1. (8.28) 

In fact, let (ran, q)=1 and, by the Chinese remainder theorem, let a be such that  

(m+aq, n ) = l .  Then 

c(mn) = c( (m +aq)n) = c(m +aq)c(n) = c(m) c(n), 

and hence c(n) is completely multiplicative on the n's with (n, q ) = l ,  and (8.28) follows. 

From (8.28), for o > 1  we have 

F(s- iO) = ~plq ( ~ o  C(pm)p-'~S) L(s, x ). (8.29) 

For a fixed Plq, let d=0,  . . . , p -1  and write Ad={mcN:p'~-d (modq)}. Hence by 

the periodicity of c(n) we get 

p--1 

-ms-- Z p-m  (8.30) 
m = 0  d=0  racAd 

Writing q=p~qt with (p, q~)=l, we see that  Ad is the set of the solutions m of the system 

{ p'~ = d (rood q'), 

pm- d (modpa) .  

For a fixed d, the solutions of the first congruence, when they exist, are rn=a+k~p, 
where ~p is the order of p modulo q~, a is a certain integer and k c N .  In order to treat 

the second congruence we write d=p~d ~ with (p, d t )= l ,  and consider the two cases ~>~ct 
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a nd /~<a .  In the first case the solutions are m~>a, while in the second case either there 

are no solutions or there is only the solution m=/3. 

Therefore, either Ad is a finite set or Ad={m=-a+kpp with k E N  and m~>a}; denote 

by ko the least such k. Accordingly, the Dirichlet series ~mEA~ p-m~ is either a Dirichlet 

polynomial or 
p-(a+kovp)s 

E p-m~ 
1 - p - ~  

rn~Ad 

We may therefore write 

p - 1  

Z c(d) E P - '~ -  Qp(s) (8.31) 
1-  p-V~ ' 

d = 0  mEAd 

where Qp(s) is a Dirichlet polynomial. Hence from (8.29)-(8.31) we have 

r(s) = P(s+iO) H ( 1 - p - ~ ' ( s + i e ) ) - l L ( s + i 0 ,  X*), 
plq 

(8.32) 

where P(s) is a Dirichlet polynomial. Comparing (8.32) with the expression for F(s) in 

(ii) of Theorem 2 and multiplying both sides by 1-Iplq(1-p -~(~+ie)) we obtain 

E H (1-p-~'(~+i~ px(s+iO)L(s+iO ' X*) = P(s+iO)L(s+iO, X*), 
xE~(q,~) Plq 

(8.33) 

where the Dirichlet polynomials Px(s), XEX(q, ~), belong to S0 ~. 

From (8.33) and Lemma 8.1 we see that  XEgC(q,~), 

P(s+iO) yi(1-p-'~(~+i~ = px(s+iO) 
Piq 

and PxES~o . Hence (8.32) becomes 

F(s) = Px(s+iO)L(s+iO, X*). (8.34) 

By (8.34), the coefficients of Px(s) are multipticative, therefore PxESo, and hence 

by Theorem 3.1 of [3] we see that  Px=l. Consequently, (8.34) becomes 

F(s) = 5(s+ie ,  x*), 

and since q is an invariant of F(s) we have q=fx" Hence X=X* and Theorem 3 is proved. 
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