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1. I n t r o d u c t i o n  

The energy functional for smooth based maps of a surface Z into a smooth manifold 

M and the Yang-Mills functional for connections on a smooth four-manifold X have 

many points in common. Both arise in mathematical physics, the first in the guise of the 

non-linear a-model, the second in gauge theories. Both correspond to borderline cases 

for the analytic conditions for a good Morse functional, and in both cases one can still 

salvage a good deal of information about the critical points. Indeed such information 

has proven extremely useful in the recent work of Donaldson, Sachs-Uhlenbeck, Taubes, 

and Yau, among others. 

There is also a more precise technical sense in which the two are related, in that if 

in the first case, one chooses Z to be the Riemann sphere and M to be a flag manifold, 

then the space of maps from E to M is homotopy equivalent to a space of Yang-Mills- 

Higgs fields on R 3 with appropriate boundary conditions [Tal], and the space of minima 

(in one case, rational maps, in the other, monopoles) of the respective energies are the 

same ([D], [Hur2], IBM]). 

One intriguing aspect of these two problems is a topological stability phenomenon. 

Indeed, they both have associated to them a natural degree, or charge, and one can 

consider the inclusion 

~k: Mink -~ Maps k 
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of the minima of the functional at charge k into the whole based mapping space at 

charge k. In several cases, it has been shown that the inclusions tk induce isomorphisms 

in homology groups Hq or in homotopy groups ~rq for q in a range O<.q<~q(k) where q(k) 
increases with k. In such cases we say that the inclusion is a homology or homotopy 

equivalence through dimension q(k). A reason for desiring such a result is that the 

topology of the full mapping space Maps k is usually fairly easy to describe, so one obtains 

important information about the minima Mink. 

For example, for the case of the Yang-Mills functional for connections on a principal 

SU(2) bundle over S 4, Atiyah and Jones [AJ] conjectured that the inclusion of the moduli 

space J~,4k of based instantons of charge k into the space of connections modulo based 

gauge transformations exhibited just such a behavior. A proof of this conjecture was 

given recently by the authors in [BHMM], where it was shown that the range q(k) was at 

least [�89 -2 .  Recently Y. Wian [Wi] and F. Kirwan [Ki2] have proved the Atiyah-Jones 

conjecture for SU(n) instantons when n>  2. 

In this paper we consider the case when the target manifold M of the maps ~ - * M  

is a generalized flag manifold G/P. Here G is a complex semi-simple Lie group, and 

P is a parabolic subgroup. In this case, the minima of the energy correspond to based 

holomorphic maps. We will denote the space of such maps by Hol(~, G/P), and when 

~ = p 1 ,  by Rat(G/P). For general G/P the components of Rat(G/P) are indexed by 

sequences k of non-negative numbers (each k is called a multi-degree and defined in 

equation (1.3) below). We denote the k component of Rat(G/P) by Ratk(G/P). Again 

for ~ = p 1  the space of based continuous maps is the two-fold loop space ~2(G/P). 
Forgetting the holomorphic structure, one has an inclusion 

i(k): Ratk(G/P) -~ ~(G/P) .  (1.1) 

Occasionally, we need to consider the unbased mapping spaces. These spaces will be 

denoted by writing an 'overtilde', e.g. Rat(M) denotes the space of unbased rational 
maps p1 __, M. 

The space Rat(G/P) was studied extensively by Segal IS], in the case G/P=P n. 
The relevant charge here is just the degree k of the map, and for Z- -P  1, Segal proved, 

THEOREM 1.2 (Segal). The inclusion ~k: Ratk(Pn)-*~2(P n) is a homotopy equiv- 
alence through dimension (2n-1)k.  

Segal conjectured that a similar theorem should hold for any G/P. Indeed, since 

then, for G=SL(n, C) ("classical flags") much has been done: 

(1) Kirwan [Kil] proved the analogous result for Grassmannians Gin, n+m) with 

a range k/(12+3l)-l, where l=min(n,m). This range was later increased in [MM1], 

[MM3] to 2k+l .  



THE TOPOLOGY OF THE SPACE OF RATIONAL MAPS 63 

(2) Guest [Gull proved the analogous result in homology for complete SL(n, C) 

flag manifolds of the form VICV2C...cV,~-ICVmCV,~ with dimVi=i. In this case the 

charge is a multi-degree k and the range of dimensions q(k) tends to infinity as all the 

components ki of k tend to infinity. 

(3) Mann and Milgram [MM2] proved a homology stability result for any classi- 

cal SL(n, C) flag manifold. The range here is an explicit function of the multi-degree; 

cf. [MM2, Corollary B]. 

In this paper we verify Segal's conjecture in full generality for both homology and 

homotopy groups, for any generalized flag manifold G/P.  

To begin recall that the components of ~2(G/P) are labelled by a multi-degree 

k = (k l ,  ..., k , ( , ) )  E ~ 2 ( a / P )  ~ ( ~  Z (1.3) 
j = l  

whose j th  component kj is the intersection number of the image of S 2 with the closure of 

a codimension one Bruhat cell. Equivalently, kj is the degree obtained as the first Chern 

class of the pull-back of a line bundle Op(A~) to px [BE]. Similarly, it can be shown that 

the components of Rat(G/P) are also indexed by these same multi-degrees in (1.3) but 

where all the kj >10. Forgetting the holomorphic structure induces the natural inclusion 

~(k) given above in equation (1.1). Furthermore, while all the components of f l2(G/P) 

are naturally homotopy equivalent, the components of Rat(G/P) are finite dimensional 

complex manifolds whose dimension and homotopy type depends on k. 

In this paper we prove 

THEOREM A. Let G be any complex, semi-simple Lie group and P any parabolic 

subgroup of G. For all k the inclusion L(k) induces an isomorphism in homology with Z 
coe~icients through dimension q(k); i.e., 

(~(k))t: Ht(Ratk(G/P); Z) ~ Ht( f~(G/P);  Z) 

for t <. q( k ) = [min(�89 c( G / P ) ) l ( k ) ] - 1 .  Here Ix] is the greatest integer less than or equal 

to x, c(G/P) is a positive constant, which is defined in Proposition 6.6 and depends only 
on the space G/P,  and l(k)=min(ki). 

Since Ratk(G/P) and ~2(G/P) are not always simply connected, our second main 

result does not trivially follow from Theorem A but rather is proved in w Set 

f q(k), if HI( f~(G/P) )  = rl(f~k(G/P)) is torsion free, 
r(k) 

( q ( k ) - i  otherwise. 
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THEOREM B. Let G be any complex, semi-simple Lie group and P any parabolic 

subgroup of G. For all k the inclusion e(k(G/P)) is a homotopy equivalence through 

dimension r (k)  as defined above. 

We note that  the range of stability increases linearly with the charge. The constant 

c(G/P) reflects, in essence, the singularity structure of the closure of the codimension one 

Bruhat  cells ("the subspace at infinity") in G/P. If this subspace at infinity is smooth, 

then c(G/P) = 1. 

Gravesen [Gr] constructed a stabilization map Ratk(G/P)--~Ratk, (G/P) which in- 

creases every coordinate of the multi-degree and proved a stable result that  showed there 

is a homology equivalence between the direct limit of the Ratk(G/P) and a component 

of 122(G/P). However, his techniques gave no information at any finite level. 

Before explaining how this paper is organized we point out two related results. 

(1) Both Segal and Kirwan's stability theorems cited above extend, in homology, to 

cover the case when the domain is a compact Riemann surface. As yet, our techniques 

do not allow us to prove the full stability theorem for maps from compact Riemann 

surfaces into general G/P. One can, however, obtain a "limit stability" theorem similar 

to Gravesen's theorem in this more general case. 

(2) Guest [Gu2] proved a stability theorem for maps from p1 into toric varieties. 

These toric varieties seem to be a very natural  class of target spaces and would probably 

be well worth further study. 

In order to explain the general strategy used in this paper we give a brief outline of 

the proof of the stability theorem in the simplest case: based holomorphic self maps of 

p1 where the basing condition is given by f(oc)=O. We then explain how this approach 

must be modified to analyze the case for general G/P. Any such map can be written as 

a sum: 

f(z)  ~- (z_zi)k, 
i ~ l  

where each Pi is a polynomial of degree less than ki, p i (0) r  and ~ ki=k is the degree 

of f .  This description allows us to stratify Ratk(P  1) according to the pat tern of the 

multiplicities of the poles of the holomorphic map as follows: Let K=(kl ,  ..., kn) be a 

partit ion of k and set 

SK ----- ( f  E Ratk(P  ~) ] f has poles of multiplicities ki for 1 ~< i < n}. 

SK is a subset of a labelled configuration space; more precisely, it is the space of points 

(zl, ..., zn) in the complex plane where each point is labelled by a polynomial Pi (of degree 

<ki and pi(zi)r The labelling polynomials are parametrized by C*•  C k ' - I  and this 

space of labels is called the kith principal parts space. 



T H E  T O P O L O G Y  OF T H E  SPACE OF R A T I O N A L  MAPS 65 

The complex codimension of SK in Ratk(P 1) is ~-~(ki- 1) so there is only one maxi- 

mal stratum which consists of holomorphic maps with k simple poles at k distinct points. 

The codimension one stratum consists of maps with k - 2  simple poles and one double 

pole and as the multiplicities which index the strata increase so do the codimensions of 

the associated strata. This stratification leads to a Leray spectral sequence converging 

to the homology of Ratk(P 1) where the filtered terms at the E1 level are the homologies 

of the Thorn spaces of the normal bundles of the individual strata. Thus, by the Thom 

isomorphism theorem, the homology of each SK appears in the spectral sequence shifted 

up in dimension by its real codimension. 

There is a stabilization map, first considered by Segal [S], 

i(k, k+l) :  Ratk (P 1) --* Ratk+l (P 1) 

defined by adding a simple pole near infinity with a fixed residue. This stabilization 

map preserves the stratification and is filtration preserving with respect to the Leray 

spectral sequences for the domain and range. Thus, to prove that i(k,k+l) induces 

an isomorphism in homology through a range determined by k we begin by analyzing 

i(k, k+ 1) on each stratum. 

Since each stratum is a labelled configuration space of points in the complex plane 

the homology can be computed by techniques from iterated loop space theory [BHMM]. 

In particular, one can show that if j is the number of simple poles in the stratum SK (so 

that there are j §  1 simple poles in the corresponding stratum of Ratk+l (p1) containing 

i(k,k+l)(SK)), then i(k,k+l) restricted to SK induces an isomorphism in homology 
l j  through dimension [~ ]. 

Thus, the simple poles contribute to the stability result by increasing the range of 

equivalence on each individual stratum while the poles of higher multiplicity contribute 

to the stability result by increasing the codimension of the strata and hence, as mentioned 

above, shifting up the dimension where the homology of the SK appears in the associated 

Leray spectral sequence by the real codimension of SK. A simple calculation shows that 

the smallest possible range of equivalence at the E1 level occurs for the generic stratum. 

Therefore, taking possible differentials into account one may conclude that i(k,k+l) 
induces a homology isomorphism through dimension [�89 Finally, to strengthen 

the stability result to a statement in homotopy, one must analyze the induced map on 

universal covers. Here, the key geometric fact is that 7h(Ratk(P1))~Z is generated by 

a loop which fixes the configuration of the poles and moves a single principal part pE C* 

along the generator of 7h (C*). 

This is not the best possible result for self maps of pa as, using a different stratifi- 

cation, [C2M ~] gives the entire homology of Ratk(P1). However, the method described 

5-945203 Acta Mathematica 173. Imprim~ le 5 octobre 1994 



66 C . P .  B O Y E R  E T  AL.  

above does have one great virtue in that  it requires very little knowledge of the principal 

parts spaces (C* x Ck~-z). Most important, all one needs is some knowledge of the codi- 

mensions of the strata that  are indexed by non-simple poles. Consequently, this method 

can be extended to arbitrary G/P. We do so in the following four steps: 

(1) We define suitable principal parts for holomorphic maps f :  p z _ . G / p .  Here we 

follow Segal and Gravesen so that  the based holomorphic mapping spaces Ratk(G/P) 
are again stratified by subsets of certain labelled configurations spaces. We do this in 

w167 and 3. 

(2) We obtain an estimate on the codimension of the strata in terms of their mul- 

tiplicity pattern so that  the "more generic" strata will have more simple poles. In the 

special case described above where G/P=P 1 this is trivial. However, in general this 

step is non-trivial and, in fact, in the end our estimates depend on the resolution of 

singularities theorem. This step is carried out in w 

(3) In w167 7, and 8, we prove Theorem A by applying the techniques of [BHMM]. 

(4) We conclude this paper by proving Theorem B. Here we analyze lrz(Ratk(G/P)) 
and its effect on the associated universal cover. We do this in w using information about 

the multiplicity one principal parts space studied in w 

The authors would like to thank R. Cohen and D. Freed for helpful discussions. 

2. R e v i e w  o f  G/P 

In this section we give a presentation of some facts about G/P. We refer to standard 

references [Hum], [BE] for more details. 

Let G denote any complex semi-simple Lie group, and g its Lie algebra. We fix a 

Cartan subalgebra D of 9 and let u + and u -  denote the positive and negative root spaces, 

respectively, with respect to D- One then has Borel subalgebras 

b+ = [}+u+' (2.1) 
b- = b + u - .  

We consider parabolic subalgebras p obtained by adjoining to b + a certain number of 

negative root spaces. Then, p has a natural complement n -  in g with n - C u -  and b + Cp, 

viz. 

g = p + n - .  (2.2) 

We will denote by B +, P,  U +, and N + the Borel, parabolic, and unipotent subgroups 

of G corresponding to the Lie algebras b +, p, u +, and n +, respectively. 

Let W denote the Weyl group of g. Each element weW has a length g(w), namely 

the minimal number of simple reflections in a wall of a Weyl chamber. W has a structure 
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of a directed graph which is compatible with the length ~(w), and this gives W a partial 

ordering ~< by saying that  w~w' if either w=w ~ or there is a directed path in W with 

g(w)<i(w') .  If we fix a dominant integral weight A(p) for the parabolic subalgebra p, 

then the orbit of A(p) under the right action of W can be identified with a directed 

subgraph W p of W, known as the Hasse diagram of p. The Hasse diagram W p gives rise 

to a double coset decomposition called the Bvuhat decomposition of G: 

G= II U-wP. (2.3) 
wCWP 

(This is not quite the usual convention, but it is more convenient for our purposes.) From 

this we have a cell decomposition of G/P as U- orbits, viz. 

G/P= II U-.(wP). (2.4) 
wEWP 

Let X~ denote the U-  orbit through (wP). The codimension of X~ is the length i(w) 

of w. Each Hasse diagram W p contains the identity e E W and a unique maximal length 

element w0. The "big cell" Xe is determined by the identity e E WP, and the maximal 

element w0 determines the "0" cell X~ o. The closure Z~--Xw of the cell Xw is the 

Schubert variety 

Z~, = II X~,. (2.5) 
w'EWP:w '~w 

Schubert varieties for G/P have been extensively studied, since they freely generate the 

integral homology of G/P. 
Of particular interest are the codimension one cells X~ with g(w)=-1; that  is, those 

w~ E W p corresponding to a simple reflection in the wall Win. These are in one-to-one 

correspondence with the simple root spaces V~ which are not in p. We write these cells as 

Xa and their closure Z~ can be realized as the zero locus of a section so of a holomorphic 

line bundle Op (Am) on G/P so that  the first Chern class Cl (Am) of the line bundle Op (Am) 

is Poincar~ dual to Z~. These Chern classes freely generate H2(G/P, Z) whose dimension 

equals the dimension of the central part of the Levi factor [ of the Levi decomposition 

of p. We shall denote this number by n(p). Thus, elements of H2(G/P, Z), which index 

the path components of ~2(G/P), correspond to multi-degrees k=(k l , . . . ,  kn(p)). Given 

a map f:P1--~G/P, the integer el(f*(O(A~))) is k~. 

A fundamental theorem in representation theory is the Bott-Borel-Weil theorem 

which describes finite dimensional irreducible representations of G in terms of certain 

sheaf cohomology groups. We give only part of this theorem in a version that  is convenient 

for us. 
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THEOREM 2.6 (Bott-Borel-Weil).  H~ Op(A~)) is in a natural way an irre- 

ducible representation of G, and the section s~ is a highest weight vector stabilized by the 

parabolic subgroup P. Furthermore, all other cohomology groups vanish. 

This theorem allows one to map G / P  to P(V~) as a projective algebraic variety in 

such a way that  the image of Za is cut out in P(Va) by the hyperplane at "infinity". 

This motivates the definition: 

Definition 2.7. We denote by infinity the union 

z=uz~,. 

Note that  Z is the complement of the big cell Xe~-N-  in the Bruhat decomposition of 

a/P. 

In the case that  P is maximal parabolic, one has a smooth embedding. That  is, if we 

denote the embedding map by ea, put N = d i m  P(Va) and let p N -1  denote the hyperplane 

at infinity obtained by putt ing the first homogeneous coordinate on P N = p ( v a )  equal 

to zero, we have 

Z~ = ea(G/P)MP N-1. 

Z~ is an algebraic variety of complex dimension dim 9 -  dim p - 1, but  in general it is not 

smooth. Its smooth locus Z~, contains the codimension one Bruhat cell X~, and the cells 

which make up its boundary must have g(w)> 1. In fact, more is true. It was shown by 

Ramanan and Ramanathan [RR] that  Schubert varieties of G / P  are projectively normal. 

But for normal varieties singular sets have complex codimension >/2 ([I, p. 129]). Thus, 

PROPOSITION 2.8. The cells that make up the singular locus of Z~ have complex 

codimension at least 3 in G/P,  i.e., g(w~)~>3. 

We shall be interested in the action of the "opposite unipotent" group N -  C U -  on 

the various s trata  in the decomposition (2.4). In particular, one has: 

PROPOSITION 2.9. N -  acts freely and transitively on the "big" cell Xe. This iden- 

tifies X~ with N -  itself. 

On the other U -  orbits, the action of N -  is far from free. For example, for G / P = P  n, 

the action N -  is trivial on all cells except the "big" cell where it is transitive. It is 

important  to realize that  N -  is compatible with the cell decomposition (2.5); that  is, 

N -  acts on each cell X~ separately. 
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3. Po l e s  a n d  p r i n c i p a l  parts 

In this section we describe the poles and principal parts of based holomorphic maps 

f: p1-~G/P. This picture is due to Gravesen and Segal, and generalizes our description 

of maps from p1 to p1. The basic idea is that  a holomorphic map f : P I - ~ G / P  is 

determined by its poles (i.e., the points mapping to "infinity", the complement of the big 

cell in G/P) along with some extra data concentrated at these poles (the local principal 

parts). 

For any complex analytic set X we let O(X) denote the sheaf of germs of holomorphic 

maps from p1 into X, and O(U, X) denote the holomorphic sections of O(X) over the 

open set U c P  1. If the space X has a base point, O(X) will be a sheaf of pointed 

sets. Recall from Definition 2.7 that  Z denotes infinity of G/P. Then the presheaf of 

meromorphic maps to the opposite unipotent N -  is 

A/t(U) = O(U, G/P)\O(U, Z) (3.1) 

and we let A4 denote its associated sheaf. The natural action of N -  on G/P induces 

a free action of O(U,N-) on .h4(U), which leaves the position of the poles in p1 fixed 

as well as their orders, and the quotient sheaf of principal parts PT~=M/O(N -) is well 

defined. As the action of N -  on the big cell is free and transitive, there is the trivial 

principal part,  corresponding to maps whose image lies entirely in the big cell; other, 

non-trivial principal parts will be defined by maps whose image intersects infinity. Thus, 

we have an exact sequence of sheaves of pointed sets, 

0 --* O(N-)  --~ Ad --* PP -~ O. (3.2) 

A global section in H~  is called a configuration of principal parts. It is 

rather similar to a global section of the sheaf of divisors, in that  it consists of a finite 

number of points ziEP 1 (location of the poles), together with the local principal parts 

data, a non-trivial element in the stalk T~7~z~ "~.Mz~/O(N-)z~ at each point zi. As 7~7)z 

is independent of the point z we denote this space of local principal parts by s p. 
Let us now consider the basing condition. Recall that  122(G/P) is the space of 

continuous based maps. We choose the base point in p l___ S 2_~CU {co} to be the north 

pole {co} and the base point of G/P to be a fixed point bEXe~N- .  This precludes a 

map in Ratk having a pole at co. Let H~ PP) be the subset of H ~  whose 

poles are all located in C-~P 1 -  {co}. Then, exactly as for G / P = P  1, we find: 

THEOREM 3.3. Each element of H~ C, 7~7 p) determines a unique based map, so that 

the space of based holomorphic maps can be identified with the space of configurations of 
principal parts: 

Rat(G/P) ~- S ~  PP). 
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The proof is given in Gravesen [Gr]. The key point is that while N -  is non-Abelian 

in general, by using the fact that it is solvable, we can still show that HI (P  1, O(N-))=O 
and that (3.2) induces an exact sequence of pointed sets 

0 ~ C d --* H~ 1 , • )  ~ H~ 1 , 7>7 >) ~ 0, 

where dimN-- -d  and the first factor C a includes into the k=(0, ...,0) component of 

H~ 1, A4) as the constant maps. (There is only the trivial principal part in degree 0.) 

The basing condition removes the C d ambiguity. 

According to our previous discussion a pole of fERat(G/P) at zoECCP 1 corre- 

sponds to the condition f(zo)EZ. This is preserved by the action of N - .  Also, as 

remarked above, the action of O(N-)  on maps f into G/P preserves the order of van- 

ishing of the sections f*sa which cut out infinity. Thus principal parts have a natural 

multiplicity: 

Definition 3.4. The point Zo is called an a-pole of f if f(zo) lies in the a-component 

Z~ of Z. The a-multiplicity m~ of this pole is the order of vanishing of f*s~ at z0, where 

sa is the holomorphic section of the line bundle Op(Aa) whose zero locus defines Z~. 

The total multiplicity of the pole is the multi-index m=(ml,  ..., m,~(p)). 

For a map f ,  the a-degree ks of f (i.e., the a component of k) is the intersection 

number of f(p1)  with Z~. This number is precisely the number of zeroes counting 

i denote the multiplicity of the ith a-pole in Z~ where multiplicity of f*sa. Let ma 

1 <~ i ~r~, and r~ is the number of a-poles (excluding multiplicity). Then we have 
r ~  

Zm =k , (3.5) 
i=1  

for l ~ a ~ n ( p ) .  We can consider all multiplicities at once, so that if one has r poles with 

multiplicity m' ,  for i=1, ...,r; that is, the ith pole has multiplicity m~=(m~, ..., m,~(p))i 
with a-component m~, then equation (3.5) then becomes 

~ m '  = k .  (3.6) 
i = l  

We also define the scalar multiplicity of the ith pole by 

Im't=Z ' too. (3.7) 
Ol---~l 

In particular, the scalar degree is [ k ] = ~  k~. 

In order to understand the local principal parts space s  as well as illustrate our 

point of view we give two examples. The first is very well understood from a classical 

point of view, but it is worth describing from our point of view to set the stage for the 

second more interesting example. 
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Example 3.8. Ratk(P1). We can represent p1 as the coset space SL(2, C)/B where 

B is the Borel subgroup of upper triangular matrices. In this identification the affine 

neighborhood in p1 given in homogeneous coordinates by [1, a] can be represented by 

matrices of the form 

while the "point at infinity" [0, 1] can be represented by 

The cosets gB with geSL(2, C) that are represented by matrices of the form (3.9a) 

describe the "big cell" Xc in SL(2, C)/B, and also viewed as a subgroup of SL(2, C) the 

matrices of the form (3.9a) describe the "opposite unipotent" subgroup N - .  Clearly, N -  

acts transitively on Xe and there is a set identification of Xe with N - .  Thus, there are 

precisely two N -  orbits; the big cell Xe, and the "point at infinity" go~B. The action of 

N -  on the big cell is simply ga(gbB)=ga+bB. 
Now consider a based holomorphic map f :pl_ .~p1 defined by /(z)=[g(z), h(z)], 

where g(z) and h(z) are polynomials in C. We take the base point in the domain p1 to 

be the north pole [0, 1] and in the target p1 to be [1, 1]. This amounts to taking g(z) 
and h(z) to be monic of the same degree. The poles of f are the zeroes of g. In the G/P 
model the base point is represented by the matrix (3.9a) with a=l. Away from the poles 

the corresponding coset in SL(2, C)/B can be represented by 

(1 
As a holomorphic map this is ill-defined at a pole; however, the matrix (3.10) is equivalent 

by an element of the group O(B) of holomorphic maps from C into B to the matrix 

h(z) 

which is well-defined at the pole and equals 

(0 
there. By another transformation in O(B) this is equivalent to "infinity" in SL(2, C)/B, 
namely the matrix go, of (3.9b). 
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To compute the local principal parts space L27'7 ~ we consider a pole of multiplicity 

m at z0 given by g(z)=(Z-Zo) m. According to the exact sequence (3.2) we compute the 

principal parts by normalizing by the right action of O(N-) on the matrix 

1 0 

This action allows us to add to h(z)/(z-zo) m any function holomorphic near z0, and so 

one can reduce h(z) to a polynomial of degree less than m, with h(zo) non-zero. This 

gives the well known classical result that  the local principal parts space/:7~7)m for a pole 

of multiplicity m is just C* x C m-1. 

Example 3.12. Full SL(3, C) flags. Let F be the space defined by 

F = {(V1, V2) e p2 x (p2). I Vie V2}, (3.13) 

or, in words, F is the set of pairs (111,172) where V2 is a projective line in p2 and 111 is 

a point of p2 lying on the line V2. Now F can be realized as the homogeneous space 

SL(3, C)/B where B is the Borel subgroup of upper triangular matrices. The opposite 

unipotent subgroup is 

} N - =  1 a,b,c~C . (3.14) 

b 

We now describe the cell decomposition, (2.4), explicitly for this case. Since P=B a 
Borel subgroup, the Hasse diagram W p coincides with the Weyl group W. The directed 

graph structure is given by Example 4.1.5 of [BE]. We shall adopt the notation of that  

example by using subscripts 1, 2, 12, ... to label the cells instead of elements of W. Then 

the number of subscripts equals the complex codimension of the cells. Thus, we call 

the big cell X instead of Xe. Now let R1 denote the point in p2 given in homogeneous 

coordinates by [0, 0, 1], and let R2 denote the projective line in p2 given in homogeneous 

coordinates by [0, x, y]. Then the big cell is 

X : {(Yl, V2) e F[  VI~R2, RI~ Y2}, 

while the codimension one Bruhat cells X~ are 

X1 = {(V1, V2) E F I V1E R2,Rc~ 7s Vc~}, 

X2 = {(V1, V2) e F I R ,  eV2,R,~ CV,~}. 

The codimension two Bruhat cells are 

X~2 = {(V~, V2) eFIV~=R~,R~. r 

X21= {(V1, V2) E F I V2=R2,RI C V1}, 

(3.15a) 

(3.15b) 

(3.15c) 

(3.15d) 

(3.15e) 
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and finally the  codimension three (0-cell) Bruhat  cell is 

X121 -- {(Yl, V2) e F IYl --R1, R2 --Y2}. (3.15f) 

Infinity is the singular variety X1 [..)X2 and we have the set identifications 

X1NX2 : X12 [ . JX21 ,  X 1 2 A X 2 1  : Z 1 2 1 .  

Now let f E R a t ( F )  have a pole at zo of multiplicity m = ( m l ,  m2). In analogy with 

the previous example this can be represented by a matrix of the form (3.14) where a, b, c 

are now viewed as functions of z with possible poles at Zo. As before, this representation 

is not well-defined at the poles; however, it is equivalent under the right action of O(B)  

to a coset representative which is well-defined at the pole and lies in the complement of 

the big cell. Thus, we need matrix representatives for elements of Z. For example, the 

codimension one Bruhat cell X1 is an N -  orbit that  can be represented by matrices of 

the form (011 1) 
0 0 . 

l(z) re(z) re(z)+1 
In the intersection of the big cell and a suitable neighborhood of X1 (where l(z) and 

re(z) are two of the three coordinates in the neighborhood) we have l(z)=b(z) and 

m(z)=c(z)-a(z)b(z)  where a, b, and c are given in equation (3.14). This representation 

is well-defined at zo as long as b and c-ab axe regular there. Thus a pole in N will give 

an image in X1, away from X2, if b, c-ab remain finite. Similarly, if a, c remain finite, 

one obtains an image in X2, away from X1. Generally, poles of a or c correspond to 

image points in X1, and poles of b or c-ab correspond to image points in X2. Moreover, 

if 

lim a 0 
Z-"~ ZO C 

then z0 corresponds to an image point in X12 whereas if 

b 
lim -- 0 
z--+zo c-ab 

then z0 corresponds to an image point in X21. In this way one sees that  the multiplicity 

m at a pole z0 is given by 

m = (max(-ordzo a, -ordzoc),  max(-ord~ob , -ordzoc-ab)). (3.16) 

It is easy to check that  this is invariant under the action by left multiplication of elements 

of o ( g - ) .  
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Let us now compute the local principal part space s  ~ for three cases, namely, 

poles of multiplicity (1,0), (0,1), or (1,1). A pole of multiplicity (1,0) at zo can be 

normalized (under the action of O(N-)) to an element of the form (1 00) 
~ , / ( z - ~ . )  1 o , (3.1~a) 

0 0 1 

whereas a pole of multiplicity (0, 1) can be normalized to 

(i 0 0) 1 0 . (3 .175)  

~/(Z-Zo) 1 

Here c~,~EC* so that the local principal parts spaces ,CP~(1,o) and s equal C* 

in both cases. Poles of multiplicity (1, 1) corresponding to image points of f in X12 can 

be normalized to the form 0 !) 
1 

~l(z-zo) ~l(z-zo) 
(3.17c) 

whereas poles of multiplicity (1, 1) corresponding to image points in X21 can be normal- 

ized to the form 

( ,  0i) , ~ / ( z - z o )  1 , (3.17d) 

-U(z-zo) o 
where c~, ~EC and ~,EC*. Then the local principal part space s  is given by the 

singular variety 

c *  x ((~, ~) e c 2 I ~  = 0) .  (3.18) 

Let us now return to the general situation of maps fERatk(G/P). 
If elements f and g of Rat(G/P) have no poles in common, then viewing both f and 

g as configurations of principal parts, they can be "added" in a continuous way by consid- 

ering their union fUg as configurations of principal parts in the obvious way. This gives 

Rat(G/P) a homotopy-associative monoid structure by first defining homotopies which 

map the poles o f f  and those of g into disjoint discs in C, and then taking their union as 

configurations of principal parts. This gives rise (up to homotopy) to a continuous map 

Ratk  (G/P) X P~t i  (G/P) "-~ P~tk+l  (G/P), (3.19) 

where k + l  has components ka+la. This "additivity" of principal parts will play a very 

important role in our development. 
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Actually more is true, namely the construction in (3.19) enriches to give 

U Ratk(G/P) 
k 

a C2 operad space structure which is homotopy compatible with the standard two- 

fold loop space structure on f~2(G/P). This fact was used in [BM] and [C2M 2] when 

G/P=P n, and, in a different guise, in [MM2] and [MM3] when G=SL(n, C). 

Finally, recall SPk(X) denotes the k-fold symmetric product of X. Our previous 

analysis implies: 

PROPOSITION 3.20. There is a natural holomorphic projection 

H: Ratk(G/P) --, sp[k[(c) ~-- C [k[ 

which associates to each element of Ratk(G/ P) its polar divisor. 

We refer to H as the "pole location map". Its fibres are subsets of/::PP. 

4. The  Space Rat(G/P) is a s m o o t h  complex  manifold 

In this section we prove that the space Ratk(G/P) is a smooth complex manifold of a 

certain dimension determined by multi-degree k and the dimension of the stabilizer of 

the action of the opposite unipotent group N -  at a smooth point in the closure of the 

codimension one Bruhat cell Z. Explicitly, 

THEOREM 4.1. The space Ratk(G/P) is a smooth complex manifold of complex 
dimension ~ : ~  k~(dims~+l) ,  where so is the Lie algebra of the stability subgroup of 
the point waP of Za. 

Proof. To prove smoothness we apply Kodaira's deformation theory [Ko] to the 

map F: p l_~p1  x G/P with F=( id ,  f) .  First consider the space Rat(P 1, G/P) of un- 

based holomorphic maps from p1 to G/P and the pullback bundle f*T(G/P) over p1. 

Considering based holomorphic maps amounts to twisting f*T(G/P) by the tautological 

line bundle O( -1 )  on p1. Now the smoothness of P~tk will follow from [Ko] if we can 

show that 

H 1 (p1, f*T(G/P)(-  1)) = 0. (4.2) 

Furthermore, when (4.2) holds the tangent space TI Rat(P 1, G/P) is the space of holo- 

morphic sections of f*T(G/P)(-1), that is 

Tf Rat(G/P) ~_ H~ 1, f*T(G/ P)(-1) ). (4.3) 
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To prove that (4.2) holds, we note that  the action of N -  on G/P induces a morphism 

of sheaves 

O Ca ~ T ( G / P )  (4.4) 

which is an isomorphism over the big cell. Pulling back via f ,  we have 

r O eg --* f*T(G/P) (4.5) 

which is again an isomorphism over some open set U. Over p1, f*T(G/P) splits as a 

direct sum ~ ( O ( ) ~ ) ) ,  by the Birkhoff-Grothendieck theorem. Since r is a morphism of 

sheaves we have a commutative diagram, 

o e d ( P 1 )  r > ( ~ i  O ( ) ~ i ) ( P 1 )  

o . d ( u )  ,(v) . @, 

(4.6) 

where the vertical maps are the natural restrictions and r is an isomorphism. If one of 

the hi were negative, the map r  on global sections would vanish on this factor. But 

then, by the commutativity of the diagram, the lower map r would not be injective 

which would be a contradiction. Hence, we must have )~i~>0 for all i. Thus, 

H I ( p  1, f*T(G/P)(-1))= H 1 (P1,  ~ O()~i)(-1))  =0 .  (4.7) 
i 

Since generically fERatk(G/P) is given by simple poles at k~ points in the a th  

component Z~ of the closure of the codimension one Bruhat cell (see [Gr]) and the "local" 

principal parts data  is additive, to compute the dimension of the space Ratk(G/P), it 

is enough for dimensional purposes to prove the result for degree one rational maps, 

that  is elements of Rat(G/P) of a-degree one having multi-index k--(0,  ..., 1, ..., 0) where 

the k~ = 1 and all other components of k are zero. This corresponds to a single pole of 

multiplicity one. Thus, we shall prove: 

LEMMA 4.8. The smooth manifold Rat(0 ..... 1 ..... o)(G/P) of rational maps of a-degree 

one has complex dimension dim ~a + 1. 

The first step in the proof of Lemma 4.8 is to reduce to the case when P is a maximal 

parabohc subgroup. This is done in the following 

LEMMA 4.9. There is a complex simple Lie group G and a maximal parabolic sub- 
A A 

group P c G such that 
A 

Rat(o ..... 1 ..... 0) (G/P) ~- Rat1 (G/P). 
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Furthermore, this equivalence is compatible with the cell decompositions, and the stabilizer 
so is isomorphic to the corresponding stabilizer algebra ~ for the action of corresponding 
opposite unipotent group on 0 / 

Proof. For notational convenience let r=n(p) and assume that r > l .  There is a 

parabolic subgroup P '  with P c P ' c G ,  r2(G/P')= Z r-1 such that the fibration 

P'/P ~ G/P Q-~ G/P' (4.10) 

induces the projection 
~0.: Z r "-~ Z r - 1  (4.11) 

on the second homotopy groups given by forgetting the a th  coordinate of the domain. 

Thus, any map f in Rat(0 ..... 1 ..... o)(G/P) projects to a map of degree zero, which must 

be constant and, since the map is based, it lies in the fibre Rato(P'/P). It follows that 

Rat(0 . . . . .  1 . . . . .  0) (G/P) ~- Ra% (P'/P). 

But the quotient P'/P can be rewritten as G/P,  with G both simple and a summand of 

the Levi factor of P',  and/3 maximal parabolic in G. This proves the first statement. 

The second statement follows from the fact that the cell decomposition (2.4) of any G/P 
is determined by the Hasse diagram of P, and the Hasse diagram W ~ of P c G  is the 

relative Hasse diagram Wp p, (see [BE]). [] 

Proof of Lemma 4.8. By the previous lemma we can assume that P is a maximal 

parabolic subgroup. Recall from w that there is a projective embedding 

I: G/P--*P(V~) = p N  (4.12) 

such that the intersection of I(G/P) with the pN-1 at infinity is Z. Here Z=X1UX>I 

is the complement of the generic cell Xe in the Bruhat decomposition (2.4), where X1 is 

the codimension one cell and X>I is the union of the codimension greater than one cells. 

Now, if f E a a t l ( G / P )  with f(co) the base point in Xe and f(0)E Z then the composition 

i o f : p1  __, G/ p__~ pN (4.13) 

must pull back the pN-1 at infinity to a single point in the Riemann sphere. This 

forces the composition Iof  to be linear. Thus, we have that elements fERatl(G/P) are 

determined (up to reparametrization of p1 by elements of SL(2, C) fixing co) by the point 

in Z that they intersect, as the line is determined by f(0) and f(co). Therefore, the local 

degree one principal parts space, s which is equivalent to the set of fERatl(G/P) 
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with ] ( 0 ) E Z ,  maps to points in Z with fiber the automorphisms of p1 fixing 0 and c~; 

that  is, C*. This means we have a principal fibration 

C* --* s  --* n (4.14) 

where the base space L is the "line space" of points in Z that  are hit by elements of 

Ratl(G/P). 

Define the quotient sheaf Q over p1 corresponding to the action of N -  by the exact 

sequence 

0 ---* 0 Cd ~ I*T(G/P) ---* Q ---* O. (4.15) 

In some sense, the dimension of Q, which is supported over a point, counts the dimension 

of the stabilizer algebra of that  point, with the proviso that  if a vector field in s vanishes 

to order k along the image of the map, it gets counted k times. By twisting with O ( - 1 )  

and taking the long exact sequence in cohomology it follows that  

g ~  1, f*T(G/P)(-1))  ~- g ~  1, Q ( -  1)), (4.16) 

and since the quotient sheaf Q ( - 1 )  is supported at a single point we have 

h~  1, f*T(G/P)(-1))  = dim Q. (4.17) 

Furthermore, as f ( p 1 )  is a line in pN, there is an exact sequence 

0 --~ 0(2)  = T ( P  1) --* f*T(P N) ---* O ( 1 )  ~ N - 1  --* 0 (4.18) 

with the stabilizer algebra ~ mapping injectively to f*T(P N) over the open cell. There 

are then two possibilities: 

(1) There is an element Y of s giving a section of T(p1) ,  in which case Y vanishes 

to order 2 at z=0 .  All elements of s in a subspace complementary to the subspace (Y) 

generated by Y vanish to order 1 at z=0 ,  and are nowhere else tangent to p1. In this 

case, dim Q = dim s +  1. 

(2) All elements of s vanish to order 1 at z=O, and are nowhere else tangent to 

f ( p1 ) .  In this case, dim Q : d i m s .  

Now, instead of viewing H~ as infinitesimal deformations of 

holomorphic maps P1---*G/P that  send o c E P  1 to the base point in G/P, we can fix 

xCZ and view H~ as infinitesimal deformations of holomorphic 

maps P1--~G/P that  send 0 E P  1 to xEG/P. One then has an inclusion of sheaves 

corresponding to the action of s 

O$ dim(s) __~ f* T(G/P)(- 1) (4.19) 
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with a corresponding inclusion on the level of global sections, as a subspace of sections 

of f*T(G/P) vanishing only at z=O. However, there is a section of f*T(G/P) which 

vanishes at two points, corresponding to the action of C* on p1. Thus, the two sheaves 

in (4.19) have spaces of sections of different dimension, and so case (1) above holds. This 

proves Lemma 4.8, and thus finishes the proof of Theorem 4.1. [] 

Remarks 4.20. (1) One can show that  the line space L is isomorphic to the quotient 

of the smooth locus of Z by the action of N - .  

(2) There is a filtration of the Lie algebra n - :  (Y)c~Cn-  corresponding to the 

order of vanishing at infinity. 

Finally, returning to an arbitrary parabolic subgroup P we have 

C* --~/:P:P~ --* L (4.21) 

for every ~ between 1 and n(p). Furthermore, we have 

LEMMA 4.22. For all (~ the local principal part space f~7~7~ is smooth and connected. 

Proof. Smoothness follows from the decomposition of the space of maps of degree 

one into a product  C•  From (4.21) a local principal part  is determined by its 

point of intersection with Z and its normal derivative along Z. Given any two local 

principal parts  (p(0), a(0)) and (p(1), a(1)) corresponding to points p(i) in the smooth 

locus Z* of Z and normal data  a(i)E C*, we can find a family of germs g(t) corresponding 

to (p(t), a(t)), tE [0, 1] interpolating between the two, as Z* is connected. 

5. R a t s  a n d  j e t s  

A key ingredient in the proof of our topological theorems will be the fact that  the set of 

maps in Ratk(G/P) with a pole of multiplicity greater than m has a codimension which 

is bounded below by some linear function of m in Ratk(G/P). This section is devoted to 

proving this result. We proceed in two steps: the first reduces the problem from proving 

the theorem for the space of rational maps to proving a similar result for the space of 

jets of maps from C into G/P, and the second is to show that  the result does indeed 

hold for these spaces of jets. 

Let J r ( C ,  M) denote the space of r-jets "centered at 0" of holomorphic maps from 

C to the variety M that  send 0EO to any point of M; alternatively, J r ( C ,  M) can be 

thought of as the space of maps from the r th  formal neighborhood of the origin in C 

into M. Let M=G/P,  and consider a component Z~ of Z which is represented as the zero 

set of a section s~ of the holomorphic line bundle O p ( ~ )  on G/P. For fERatk(G/P) 
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with an a-pole at z=0 ,  the multiplicity m~ of this pole is the order of vanishing of f*s~ 

at 0. This places obvious constraints F ~  1 . . . . .  F'~-I=O on the m-jet j m f  at 0, 

where F i is simply the i th derivative. In general there are m constraints, but  depending 

on the explicit form of so these may or may not be independent. The question arises 

whether independent constraints on Jm(C,  G/P) pull back to independent constraints 

on Ratk(G/P) under the natural evaluation map. 

For each z E C and each r we have the natural  map 

*" Ratk --~ J * ( O ,  G/P) e z �9 
(5.1) 

defined by sending fERatk (G/P)  to its r-jet at z; i.e., e~( f )=f f f ( z ) .  

PROPOSITION 5.2. Let Fil,..., F i", for all ij <<. k be functionally independent near p 

on Jk(C,  G/P),  with F~ . . . . .  Fk (p )=0  then 

(ek)*Fil,..., (e~)*F ~'~ 

are functionally independent near the inverse image of p in Ratk(G/P) where k=k~ is 

the a component of k. 

Proof. For notational simplicity we consider only one component Z~ of Z. Consider 

the rational map f0 represented by a principal part P0 consisting of a pole at z0 of order k. 

Using the additivity of principal parts, we can add to Po fixed principal parts P1, ..-, Ps 

of order kl, ..., ks, at points zl, ..., zs, respectively. This gives a commutative diagram 

RatK 

Ratk , Jk(C, G/P) 

(5.3) 

k is a submersion where K=)-~i=o ki and ko=k. If we can show that  the diagonal map ezo 

at the rational map f determined by Po, P1,..-, Ps, then, by the local additivity property 

RatK--~Ratk x R a t g - k ,  the result will follow for these particular constraints when they 

take the value zero. Thus, it suffices to show: 

LEMMA 5.4. eko is a submersion at f . 

Proof. Identifying the tangent space to Ratg with the sections s of the twisted 

pullback bundle H ~  1, f*T(G/P) ( -1 ) )  as in (4.3), we see that  the differential of e~o at 

f is 

Dek~o (f)(s) = jks(zo). (5.5) 
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We will have a submersion at f if given any element in the tangent space of j k ( C ,  G/P) 

it can be realized as the k-jet of a section s E H ~  1, f*T(G/P)(-1)) .  Certainly, this will 

hold if we can show that  f*T(G/P) ( -1 )  splits as the sum of line bundles O(ji) with ji >~ k 
for all i=1 ,  ..., n=dim(G/P).  To show that  this is indeed the case we choose f c R a t K  so 

that  we add to Ratk a single pole of order k + l  at Zl with target point p E G / P  that  is 

stabilized by all of N - .  (Such points always exist, for example, the point corresponding 

to the 0-cell of the Bruhat decomposition.) Recall that  the action of N -  on G / P  gives 

a sheaf morphism (4.5) which is an isomorphism on an open set. But, by construction 

in our current case, the image of r is generated by sections which vanish to order k + l  

at Zl. This gives a generically bijective map 

O(k) --+ f*T(G/P) ( -1 )  (5.6) 

corresponding to "removing the zero" at Zl, and, as with diagram (4.6), this forces the 

pull back bundle f*T(G/P) ( -1 )  to split as 

I*T( G / P)( -1)  ~_ ( ~  O(ji)  (5.7) 
i 

with all Ji >~k. This finishes the proof of Lemma 5.4 and thus of Proposition 5.2. [] 

We are interested in configurations of principal parts which have one of its poles at a 

fixed point which, for convenience, we take at z=0 .  By the above, to show that  multiple 

poles occur with increasing codimension, it will suffice to prove the analogous result for 

jets. Let M be a smooth variety, and Z a (not necessarily smooth) reduced hypersurface 

in M, cut out by s=0 ,  where s is a section of some line bundle. Let Jr(M)=JT(C,  M), 

and let JT(1, M) be the subvariety of those jets f such that  the pull-back f*s vanishes 

to order at least l; that  is, sof=(sof) '  . . . . .  ( sof) ( t -1)=0.  

PROPOSITION 5.8. I f  Z is smooth, then the codimension of J*(l, M) in Jr(M) is I. 

Proof. It suffices to compute in local coordinates xi, with Z cut out by Xl =0. [] 

We now turn to handling the singular set. Our method of controlling the codimension 

relies on Hironaka's resolution of singularities theorem [I]. There is a finite sequence of 

blowing up: 
M m > M m-1 ~ ...... " M ~ = M 

Z m > Z m - 1  )~ "'" " Z O = Z  

where each pair (M i, Z i) is obtained by blowing up along a smooth di-dimensional sub- 

manifold V i of Z i, Z i is the proper transform of Z i-1, and Z m C M  m is smooth. Let Z i 

be cut out by s(i)--0. We set Jk' i=Jk(Mi) and Jk'i(l)=Jk(l, Mi). 

6--945203 Acta Mathematica 173. lmprim6 le 5 oetobre 1994 
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PROPOSITION 5.10. There are constants ca > 0 and ~ >>, 0 both independent of k and l 

such that the codimension of jk,i(/)  in jk, i  is at least ca.l-c~ for all i. 

Proof. We will proceed by descending induction on i. By Proposition 5.8, the result 

is t rue for i=m,  with c m = l  and c ~ = 0 .  Now suppose that  the result holds for Jk'i(l). 

It is sufficient to work locally. Choose coordinates x 1, ...)x '~ on M i-1 such that  locally 

the subvariety V = V  i-1 is given by x 1 . . . . .  xn-d=o with d = a  u-1. In these coordinates, 

blowing-up along V is given in one coordinate patch by 

yl __ X 1) 

X 2 y 2 = ~ _  

yn-d  ---- xn--d 
X 1 ) 

yJ = xJ ~ 

(5.11) 

for j = n - d +  1, ..., n; where the yJ are then coordinates on the blow-up M i. We stratify 

the jets into M i-1 according to their degree of osculation of the variety V. Let a~> 1 be 

the degree of this osculation (if a = 0  then the jet  is not on V) and there is nothing to 

prove). We then consider a jet  f E J  k'i-1, with f (O)EV.  In coordinates we have: 

x~ of(z)  = a , , j z"  +a, ,+l jz  "+1 +... (5.12) 

for j = l ,  ..., n - d  and a#,150. By reparametrization in C we can take x l ( z ) = z %  Lifting 

the jet  f to a jet  ] on M i gives in coordinates on M i, 

y i o ] ( Z ) = Z a ,  

y2 o](z )  ---- aa,2 +aa+l,2Z+ ...) 
(5.13) 

yn-d o f ( z )  = aa,n-d+aa+l,n-dZ"]-..., 

and yJ o] (z )=xJof ( z )  for j = n - d + l ,  ..., n. Now suppose that  the section s (i-1) vanishes 

to order r on V, so the proper transform Z i of the divisor Z i-1 is given by is(O) -- 

( (xl)-rs( i -1)) .  So we have 

]* s ( i ) ( Z ) -  f*8(i-1)  (5.14) 
zar ) 

and this implies 
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LEMMA 5.15. The first m>/ar derivatives of f*8 (i-l) vanish if and only if the first 

m - a r  derivatives of f*s  (i) vanish. 

Let us now examine what this implies for our codimensions. The jets on i i-1 in 

our s tratum correspond to the jets on M i whose first coordinate vanishes to order 0: 

this is a subspace W~ of codimension 0 in the space of all jets. By hypothesis, the space 

Jk'i(l~) has codimension in jk,i bounded below by cil t-c~. Its intersection with W~ then 

has codimension at least 

m&x(O,cd ' - c~-a ) .  (5.16) 

In M i-1, these correspond to jets in Jk'i-l(1), where by Lemma 5.15, 

l = ra+l'.  (5.17) 

The stratum of jets osculating V to order a is of codimension ( n - d ) o  in jk,i-1 (note 

that  (n-d)/>2), and inside this stratum, those that  belong to Jk'i-l(l) have codimension 

bounded by (5.16). Thus, we have a lower bound on the codimension inside the whole 

jet  space jk, i-1 of 

max((n - d)a, c i l -  c~ + ( n -  d -  cir - 1)o). (5.18) 

It is then an easy exercise to check that  this can be bounded below by 

Ci_ll--c~_ 1 (5 .19)  

for some ci-1 > 0  and C~_ 1/~0 both independent of s. This completes the proof of Propo- 

sition 5.10. [] 

We close this section by summarizing how the results of Proposition 5.10 apply to 

our maps. Let us fix the Schubert variety Zs with corresponding a-degree ks. We let 

Ratk,k, (G/P) denote the subspace of Ratk(G/P) of those maps with only one a-pole of 

multiplicity ks. More generally, for any subvariety V C Z s ,  we define Ratk,k~(G/P,V) 

to be the subset of Ratk ,k~  (G/P) consisting of those maps f whose a-pole lies in V. 

In particular, we axe interested in the cases when V-=Z*, the smooth locus at infinity, 

or V=Z~ = Z s - Z ~ ,  the singular locus at infinity. Also, if k is a multi-index, we let 

Ratk,k(G/P) be the subvariety of Ratk(G/P) with only one pole of multiplicity k, i.e., 

one pole whose a-multiplicity for each a = l ,  ..., n(p) is ks. Let s be the subspace of 

Ratk,k(G/P) with the pole at 0, so that  Ratk,k(G/P)-~7~7~k X C. 

THEOREM 5.20. Taking "codimension" to mean codimension in Ratk(G/ P), 

(i) there are constants 0 < Cs <. 1 and C~ >i 0 depending only on a and G / P  such that 

the codimension of Ratk,k~ (G/P) is bounded below by C s k s -  C~; 



84 C . P .  B O Y E R  E T  AL.  

(ii) the codimension ofRatk,k,(G/P, Z*) is k ~ - l ;  

(iii) the codimension of aatk,k,(G/P, Z~) is bounded below by max{C~k~-C~, 2}; 

(iv) there are constants 0 < C < I  and C'>~O depending only on G/P such that the 
codimension of Ratk,k( G / P) is bounded below by CIkI-C'; 

(v) if Ikl>2, the codimension of Ratk,k(G/P) is ~>2; 

(vi) if Ikl=2, the codimension of Ratk,k(G/P) is 1. 

Proof. Proposition 5.10 gives a linear lower bound on the codimension of jets van- 

ishing to a given order. This lower bound is realized in terms of constraints on the jet 

space J~(G/P), and Proposition 5.2 says that  these constraints remain independent when 

pulled back to Ratk(G/P). Thus, since k~ is precisely the order of vanishing of f*s~, the 

first result holds. Statement (ii) follows immediately from Propositions 5.2 and 5.8. To 

prove (iii) we exhibit for each map f with f(O) EZ~, a two parameter family ft,x of maps 

with fo,o=f such that  the only map in the family meeting Z~ is f .  By Proposition 2.8 Zas 

has codimension 3 in G/P. As G acts transitively on G/P, the map ~: p1 • G__,p1 • G/P 
sending (z,g) to (z,g.f(z)) is a submersion, and so the inverse image LO-I(p1 • ga s) is 

of codimension 3, and its projection onto G is of codimension 2. Hence, by general po- 

sition arguments there exists a two parameter holomorphic family g(x, t) of elements of 

G, g(0,0)=Id,  such that  the graph {(z ,g(x , t ) . f (z)) lzEp1}Cp I x G / P  only intersects 

p1 x Y  if (x,t)=(O,O). Of course, the map g(z,t) . f(z)  does not respect the base point, 

but one can use the action of N -  to correct this. There is a unique holomorphic family 

{n(x, t)} with n(x, t )EN-  for each (x, t) such that  n(x, t)f(c~)=g(x, t)f(oo). One then 

sets, 

fx,t(z) = n(x, t)--lg(x, t)f(z). (5.21) 

We remark that,  as the action of N -  preserves the Bruhat cells, it cannot move us back 

into Z~ for (x, t ) r  0). This proves (iii). 

Part (iv) is obtained in exactly the same way as part (i), except that  one considers 

intersections of the image of the map with [.J~ Z~ instead of just one Z~. For (v), one 

has for a map in Ratk,k(G/P) that  either: 

(i) The map meets the singular set of one of the Z~. 

(ii) The map meets a triple intersection of the Z~. 

(iii) The map meets just two of the Z~, but in a codimension >2 cell of the Bruhat 

decomposition. 

(iv) The image of the map meets just two of the Z~, at a transverse point of their 

intersection, on a codimension two cell of the Bruhat decomposition. 

In cases (i) to (iii), the argument given to prove (iii) applies, to give a lower bound of 

2 for the codimension. Case (iv) can be studied explicitly, by taking a coordinate system 



T H E  T O P O L O G Y  O F  T H E  S P A C E  O F  R A T I O N A L  M A P S  85 

in which the two Z~'s correspond to coordinate planes. 

The proof of (vi) is similar to that  of (v). [] 

6. The stratification o f  R a t ( G / P )  

In order to stratify Ratk(G/P) we consider a collection of multi-indices 

Ad = { m l , . . . , m  r } (6.1) 

satisfying the constraint (3.6). For any given collection ~4 we denote the number of poles 

r by IMI. 

Definition 6.2. Let S ~  be the subset of all elements of Ratk(G/P) that  have r poles 

at the distinct points Zl, ..., zr of C such that  the multiplicity of the pole at zi is m i. 

The strata SM are thus the sets of maps with a fixed pat tern of multiplicities. We 

let D P r ( C )  denote the deleted r-fold product; that  is, the space of r distinct unordered 

points in C. This is a smooth complex manifold of complex dimension r. The pole 

location map of Proposition 3.8 restricts to a locally trivial fibration 

II~: S.M --+ DP~(C)  (6.3) 

with fiber 

/i 
i = 1  

Note that  S ~  is not necessarily smooth, 

is, however, a variety, as it is cut out of 

locally defined analytic functions, and so 

PROPOSITION 6.5. There is a finite 

tion 

s  (6.4) 

as the s are not necessarily smooth. S ~  

Ratk(G/P) by the vanishing of derivatives of 

well-ordered set ( J-~-J~, 4) and a decomposi- 

jcJ 

where S~, j  is a smooth complex variety for each A4,j which satisfies the following con- 

ditions: 

(i) d imS~ , j<d imS~ , i  only if i<j,  

(ii) S~ , i cSM, j  only if j ~ i .  

This decomposition can be done in a way which is compatible with similar decom- 

positions of the s  While we have not computed the complex codimension of S]~,j 

explicitly, Proposition 6.5 and Theorem 5.20 together with the additivity of principal 

parts imply 
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PROPOSITION 6.6. For each G/P there is a positive constant c(G/P), which is 

independent of the stratum indices fl4,j and the multi-degree k, so that the complex 

codimension of S~, j  in Ratk(G/P), 

codim(A4, j ;  k) -- codim(S~, j  C Ratk(G/P)) 

is bounded below by 
c(G/P) Z ( [ m i [  - 1) = c(G/P)([k I-r) 

i 

where r is the number of poles. 

The smooth locus of S ~  is denoted by S~,0 and corresponds to the index j=OE 
J ~ .  With this in mind we write cd(2vt, k)=codim(.A4, 0; k) and generally cd(Azi,j, k ) =  

codim(J~4, j;  k) as the complex codimension of S~ , i  in Ratk(G/P). 
Next we show that  the stratification of Ratk(G/P) by the S~,j  gives an L-strati- 

fication as used in [BHMM] and [MM1], [MM2], [MM3]. For completeness we recall 

Definition 6.7. A smooth manifold M is L-stratified if there is a decomposition of 

M into disjoint smooth submanifolds M(K) such that: 

(L.1) The index set ]C={K} is finite with a given fixed well ordering ~<. 

(L.2) If K0 is the smallest element in (K:, ~<) then M(Ko) is an open dense subset 

of M. 

(L.3) For all KE]G the union of the submanifolds of same or smaller order 

Z(K)= [3 M(K') 
K'<~K 

is an open dense submanifold of M. 

(L.4) For all KEIC the normal bundle, v(K), of M(K) in M, is orientable. 

We denote a particular L-stratification of M by {M(K),  1G}. 

Given any smooth L-stratified manifold M the submanifolds Z(K), as defined in 

(L.3), give an increasing filtration of M by open dense submanifolds 

Definition 6.8. 

.~K[M]=Z(K)= U M(K'). 
K'<.K 

Notice that  condition (L.3) implies v(K) is contained in Z(K) and that  the successive 

quotients of this filtration of M are Thom spaces 

ZK /ZK- 1 ~---- T(v( Zg - Zg-1) ) ~- T(v( K) ). (6.9) 
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Hence, given any such filtration and any coefficient ring A there is an associated homology 

Leray spectral sequence with E 1 term isomorphic to 

( ~  H,(T(v(K)); A) ~- H.(~(K)(M(K))+; A). (6.10) 
KE]C 

Here "r(g)  is the real codimension of M(K) in M and the last isomorphism follows from 

condition (L.4) of Definition 6.7 and the Thom isomorphism theorem, Furthermore, 

since the index set ]C is assumed to be finite, the spectral sequence must converge to a 

filtration of H . (M;  A). 

Let Zk denote the index set consisting of all sets of multiplicities given by (6.1) 

satisfying ~-~i~1 m i = k  together with the sets J ~  defined in Proposition 6.5. Then the 

set {S~,j} of all s trata of Ratk(G/P) of Proposition 6.5 is indexed by 2-k. We begin by 

dividing l k  into two subsets. Let :t-~ be the subset consisting of all (Js with j~,Im 
i__ where for every c~ there is some i such that  m s - l ,  i.e., a simple pole of type c~ (recall 

l ~ c ~ n ( p ) )  and let I 2 be the complement of 27~ in Ik.  We shall now give Ik  a well 

ordering ~<: 

Definition 6.11. First if (J~ci,j)EI~ and (A&,j ' )e~ then ( j~4, j )<(f l4 ' , j ' ) .  The 

ordering within each 27~r is identical. So within a given/7~ we set: 

(1) (A4, j )  < (jV4', jr) if the caxdinalities satisfy card(M) > card(.A4'). 

(2) If card(J~4)>card(J~A'), and if the multi-indices m i, m 'i comprising ~A and A/V 
�9 i ,i  i f  m ~  are listed in declining lexicographical order (so that  m~> m '~ means m 1 > m 1 or = 

ti <mtl m 1, then i ti ( m l = m  tl and nl2<nlt2),  m 2 > m 2, and so on), we set Az/< j ~  if m 1 or 

and so on. 

(3) If AA=J~4t (all multi-indices are equal), then the well-ordering is that  of J ~ .  

We denote Ratk(G/P) with this stratification by the triple (Ratk(G/P), S ~ j , I k ) .  

The main result of this section is: 

THEOREM 6.12. For every G/P and each k, the well-ordering on Ik defined in 
Definition 6.11 gives an L-stratification for (Ratk( G / P), S~,j ,Ik ). 

Proof. First we notice that  condition (L.1) of Definition 6.7 is satisfied. Perturba- 

tion of an element of S~,j inside Ratk(G/P) either (1) keeps one inside the stratum, or 

(2) keeps the number of poles fixed, and hence leaves the multiplicities unchanged, but 

moves one from S ~ , j  to S~,j,, with J<S, or (3) increases the number of poles, which 

moves us onto a lower stratum, and so condition (L.3) is verified. For (L.2), the low- 

est s tratum consists of maps with only simple poles (]mi]--1) and j=O. Then (ii) of 

Theorem 5.20 together with additivity of principal parts tells us that  this is open dense. 

(L.4) follows by the fact that  one has a stratification by complex varieties. [] 

Thus, we have 
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COROLLARY 6.13. For each k and all coei~cient rings A, there are homology Leray 

spectral sequences Er (Ratk( G / P ) ; A) converging to filtrations of H.(Ratk( G / P ) ; A) with 

EI(Ratk(G/P); A) ~- ( ~  H.  (E2 cd('~as'k)(S~,j)+; A) 
zk 

where 2cd(Jbi , j ,k)  is the real codimension of S2a,j in Ratk(G/P). Furthermore, the 
inclusions 

t(k, k'): Ratk(G/P) --* Ratk, (G/P) 

induced by adding poles and principal parts all of scalar multiplicity one induce maps of 
spectral sequences 

~(k, k')(r): Er(Ratk(G/P); A) --* E~ (Ratk , (elF); A). 

Proof. The fact that  the Leray sequence exists and is of the stated form is immediate 

from Definitions 6.8, 6.11, and Theorem 6.12. Also, it is clear that  the stabilization map 

t(k, k') is filtration preserving with respect to the filtration defined by Corollary 6.13 

and this implies that  the induced map L(k, k')(r) must be a map of associated spectral 

sequences. [] 

7. The stabil i ty of  the  principal parts space 

We now prove our first main stability result by analyzing Corollary 6.13 in some detail. 

We begin by examining each term in the E 1 term of the Leray spectral sequence con- 

structed there. Recall, from Theorem 6.12, that  the individual strata S ~ , j  of Ratk(G/P) 
are indexed by the multiplicity multi-sequences At[ given in Definition 6.2 and jEJ~a. 

In addition, recall that  we have inclusions of any component of Rat(G/P) into another 

component of higher total multiplicity induced by adding (possibly repeated) poles at 

new configuration points. We shall be especially interested in one specific such stabiliza- 

tion which is obtained as follows: First, fix one local principal part of multiplicity one 

for each of the n(p) components in the Bruhat decomposition and then add each of these 

principal parts at a new pole configured far away from the previously given data. In all 

that  follows we will denote this particular stabilization by 

t(k, k'): Ratk(G/P) ---* Ratk, (G/P). (7.1) 

Using both Theorem 6.12 and the Thom isomorphism theorem we may rewrite 

EI(Ratk(G/P); A) in Corollary 6.13 as 

g ._2  cd(~,j,k)(S~,j;  A) (7.2) 
Ik 
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in Ratk(G/P). Similarly, we may rewriteEl(Ratk,(G/P); A) in Corollary 6.13 as 

H.-2cd(~,j,k,)(S~,y; A)@~ H . - 2  c d ( ~ d , k ' ) ( S ~ j  ; A). (7.3) 

Note that  a class in H . - 2 c d ( ~ j , k ) ( S ~ , j ;  A) surviving in (7.2) or (7.3) to E ~176 represents 

a class in H.(Rat(G/P); A). It is fundamental to keep track of this dimension shift in 

what follows. Next, recall that  the strata indexed by elements in I 1 contain the image of 

the stabilization map (1.3) which increases the multiplicity in every Chern component. 

Furthermore, Theorem 6.12 implies that  the stabilization map (7.1) restricted to each 

s t ra tum is covered by a bundle map 

S~,j ~(~ '~ ' )  ~ S~,,j, 

(7.4) 

where t(M, M') denotes the restriction of the stabilization map of (7.1) to the s t ra tum 

S~,j. Notice that  the index j does not change under stabilization. This is because the 

index set J ~  is determined by the vanishing of derivatives of locally defined analytic 

functions, and stabilization involves adding simple poles where derivatives do not vanish. 

Although we have computed only a lower bound on the codimension of each s t ra tum in 

Ratk(G/P), it follows again from the fact that  (7.1) adds only generic multiplicity one 

type principal parts at new configuration points and the local analysis given in sections 

three and four that  

cd(L4, j ,  k) -- cd(J~4', j ,  k').  (7.5) 

Hence, r M ' )  is not just a fibrewise injection but actually a fibrewise isomorphism; 

that  is, r A/V) is the inclusion of the pull-back 

4 M ,  • ' )*  = ). (7.6) 

Therefore, at the E 1 level, the induced map t(A4, A4')(1) maps (7.2) into the first sum- 

mand in (7.3), taken over I I ,  , precisely via the map t(A/t, 2~4')., and maps to zero in the 

second summand in (7.3), taken over I2, .  

Before proceeding we need one more bit of notation. Recall from Definition 6.2 

where the index that  the multiplicity m i of the i th pole consists of n(p) components m s 

i runs from 1 to r. For each c~ let s~ be the number of a-poles with I m l = l  and let 

s(A/0 =min(s l ,  ..., Sn(,)). 

The following technical result, which was proved in [BHMM] for Zp coefficients, is 

fundamental in our analysis. 



90 C P. BOYER ET AL. 

LEMMA 7.7. Let p be a prime and Fp be the finite field of p elements. For all 
k and Ad the natural inclusion t(k, k') of (7.1) restricted to the Sj~,j stratum induces 

isomorphisms in mod(p) homology 

(t(r162 fld'))t: gt(s .~, j ;  Fp) -~ g t ( s~ , , j ;Fp)  

for t~<q(A4, A4')= [�89162 

Proof. The proof given in [BHMM] goes through word for word here as the fact that 

the multiplicity one label space in [BHMM] SO(3) is replaced by the multiplicity one 

principal parts spaces in each component in the Bruhat decomposition here is irrelevant 

to the argument. [] 

We are now able to prove our first main stability result. 

THEOREM 7.8. For all k and Fp coefficients, the inclusion 

t(k, k'): Ratk (a /P)  --* Ratk, (G/P) 

induces an isomorphism in homology with Fp coe.O~cients 

(e(k, k'))t: Ht(Ratk(G/P); Fp) ~ Ht(Ratk, (G/P); Fp) (7.9) 

f o r  

t <. q = q(k, k') = [rain(�89 c(G/P))l(k)] - 1. 

Here [x] is the greatest integer less than or equal to x, c(G/P) is the positive constant 

given in Proposition 6.6 and l(k )= min( kl , ..., kn(p ) ). 

Proof. We begin by noting that for a given configuration of multiplicities ,M, the 

degree j of the subconfiguration of multiple poles satisfies the inequality Ij]~> l(k) - s  (JM). 

As each multiple pole has scalar multiplicity at least two, we have from Proposition 6.6 

that the real codimension of Sj~,j is at least 2c(G/P)[�89 
Returning to the E 1 terms associated to Corollary 6.13 for both Ratk(G/P) and 

Ratk,(G/P) we first note that as s(~M')=O for the strata in I2,, all non-trivial homol- 

ogy classes in the second summand in (7.3) occur in dimension greater than q (k ,k ' )+ l  

and thus can be ignored in the proof. Next, by Definition 6.8, Theorem 6.12, and the 

Thom isomorphism theorem, the homology of the stratum S~, j  and its image appears in 

(7.2) and (7.3) respectively suspended 2 cd(],4, j, k) i> 2c(G/P) [�89 (l(k) - s(]~4) + 1)] times 

(recall Proposition 6.6). Thus, Corollary 6.13 and (7.6) imply that the size of the real 

codimension of each S]~,j in Ratk(G/P) and the number of stabilizing degree one prin- 

cipal parts, lj, together ensure that 
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~(k, k')(1): EI(Ratk(G/P); Fp) --* EI(Ratk,(G/P); Fp) 

is an isomorphism through dimension q(k ,k ' )+ l .  That is, the statement of the the- 

orem holds at the E 1 level for t~q(k, kr)+l .  Since differentials in Corollary 6.13 are 

natural, the only non-trivial differentials in Er(Ratk,(G/P)) that do not appear in 

Er(Ratk(G/P)) must leave classes of dimension at least q(k,k ' )+2 and from this fact 

the result follows. [] 

COROLLARY 7.10. Theorem 7.8 holds with Z as well as Fp coe~cients. 

Proof. This follows from the general fact that if f: X--*Y is any map that induces 

isomorphisms in homology with Zp coefficients for all primes p where X and Y both have 

finite type then f induces isomorphisms on the p-primary parts of the integral homology 

groups as well. Clearly ~(k, k') has this property through the stated range. [] 

Finally, one can take the direct limit induced by repeated apphcation of (7.1) to 

obtain the inclusion 

~(k): Ratk(G/P) --* ~ Rat(G/P) TM R A T ( G / P ) .  (7.11) 

Theorem 7.8 immediately implies 

COROLLARY 7.12. The inclusion given in (7.11) induces an isomorphism of homol- 

ogy groups 

L(k)~: H~(Ratk(G/P)) --~ H~(RAT(G/P))  (7.13) 

for t less than the function q(k ,k ' )+ l  in Theorem 7.8. Recall that, as the minimum of 

the kj's tends to infinity so does q(k ,k ' )+ l .  

In the next section we will combine Theorem 7.8 and Corollary 7.12 with the stabi- 

lization theorem of Gravesen [Gr] to prove Theorem A of the introduction. 

8. T h e  G r a v e s e n  s tab i l i za t i on  and  T h e o r e m  A 

When G=SL(n, C), so that G / P  is then the flag manifold of complex subspaces in- 

side C n, Gravesen [Gr] studied the space of poles and principal parts considered in w 

Yhrthermore, Gravesen proved that the components of the mapping telescope formed 

obtained from repeated application of maps similar to (7.1) to his spaces has the same 

homology as the components of the double loop space ~2(G/P). We now show how to 

modify his analysis to finish the proof of Theorem A. 
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First of all note that  Gravesen's restriction to the case where G=SL(n,  C) is un- 

necessary. That is, replacing the beginning of [Gr, w with w here one sees that  his 

entire analysis holds word for word for the more general case when G is any complex 

semi-simple Lie group and P is any parabolic subgroup. 

THEOREM 8.1 (Gravesen). Let G / P  be a complex flag manifold. There are stabi- 

lization maps 

~(k, k'): a a t k ( G / P )  --* Ratk, ( G / P )  

increasing the multi-degrees in each component so that passing to the direct limit 

li_~m Ratk ( G / P)  = R A T ( G / P )  

yields an induced map into the direct limit of the components of ~2 (G /P)  

Q: R A T ( G / P )  --~ [2 2 (G /P)  

so that Q. induces an isomorphism in homology 

H , ( R A T ( G / P ) )  = ~ H,  ( ~ 2 ( G / P ) )  

Thus, there is an isomorphism 

H. ( i22(G/P)  ) ~- H . ( P ( G / P ) )  (8.2) 

where ~ (  G / P)  is the mapping telescope of the Gravesen stabilized principal part space. 

We note that  Gravesen's analysis extends to mapping spaces where the domain 

Riemann sphere is replaced by a compact Riemann surface Zg and in this more general 

analysis one must also consider the principal parts space where the complex structures 

on Zg are allowed to vary. However, we need not concern ourselves with this fact here. 

We now examine the Gravesen mapping telescope ~ ( G / P )  more carefully. "P(G/P) is 

defined to be the union of all pole and principal parts spaces of all finite multiplicities 

with topology induced by the same topology as determined by local holomorphic data. 

Thus, the stabilization maps (7.1) extend to give a self-map of 7~(G/P) and we have the 

following commutative diagram: 

R a t k ( G / P )  > R a t k , ( G / P )  ~ ... )- Ra tk , , (G/P)  , ..- 

1 l l 
P ( G / P )  ~ 7:'(G/P) , ... , "P(G/P) , ... 

(8.3) 
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where all the horizontal maps are the stabilization maps (7.1) and the vertical maps are 

inclusions of labelled configuration spaces. This induces a natural map on the mapping 

telescope level 

Q(G/P): nAT(G/P) ~ "P(G/P) (8.4) 

where nAT(G/P) is the mapping telescope of the top row in (8.3). 

But for t~q(k, k') we have the isomorphisms: 

~It(aatk(G/ P) ) ~- ~ ~I~(aatk(G/P) ) ~- ~It(nAT(G/P) ). (8.5) 

Hence, Theorem A of the introduction follows immediately from the fact that  the 

pole and principal part  description of Ratk(G/P) form a cofinal subset in "P(G/P) under 

the stabilization maps (7.1). That  is, nAT(G/P)) is a componen t  of ~(G/P). 

Remark 8.6. In [BHMM, w we gave a proof that  the Taubes stabilization for in- 

stantons on S 4 is homotopy equivalent to the stabilization map given by the addition 

of a fixed jumping line and used this fact in our proof of the Atiyah-Jones conjecture. 

The argument given here, suitably modified, can be used to combine [BHMM, 6.17] with 

[Gr, 7.8] to give an alternate proof of [BHMM, 6.20]. 

9. H o m o t o p y  theorems  

The proof of Theorem B of the introduction will require two preliminary steps. First, 

we show, for k sufficiently large in all entries, that  7rl(Ratk(G/P)) is Abelian. Com- 

bined with Theorem A this implies, again for k sufficiently large in all entries, that  

7h(Ratk(G/P))=Trl(~t2(G/P)). Second, we show that  the action of ~Cl(Ratk(G/P)) on 

~rt(aatk(G/P)) is simple for t<q(k )  where, once again, k is sufficiently large in all entries. 

The geometric basis for these facts is that  one can "shove" representatives for generators 

of the fundamental group into the multiplicity one principal parts spaces. 

Let Rat'k(G/P ) be the open subset of Ratk(G/P) consisting of those maps whose 

image does not meet the singular subset of any of the Z~, and whose poles are all either 

simple, or of multiplicity (0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0) or (0, ..., 0, 2, 0, ..., 0). 

PROPOSITION 9.1. ~rl (Rat'k(G/P)) =~h (aatk(G/P)). 

Proof. We show that  the difference aatk(G/P)\Rat'k(G/P ) is of complex codimen- 

sion two. By construction aatk(G/P)\Rat'k(G/P ) consists of poles that  either meet the 

singular set of one of the Z~'s or has a pole with scalar multiplicity I m] >2. So the result 

follows from Theorem 5.20 and the local additivity of principal parts. [] 
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PROPOSITION 9.2. Let 
H: Ratk(G/P) --* C Ikl 

be the pole location map of Proposition 3.20. Then H has a "generic homotopy lifting 
property" for loops; that is, any loop in Ratk(G/P) can be homotoped into the generic 
fiber of H. 

Proof. First, by Proposition 9.1, it suffices to consider loops in Rat~k(G/P). As the 

locus of maps with multiple poles is of complex codimension one, we can suppose that  

our loop to be deformed consists of maps with only simple poles. Since the range of H 

has trivial fundamental group and H is clearly a fibration when restricted to the locus 

with distinct poles (the generic stratum) we are reduced to showing that  we can "shove" 

a path in Ratk(G/P) through H-I(DL),  where DL is the discriminental locus, for poles 

of the same type or through H -1 (FD), where FD is the fat diagonal, for poles of different 

type. To do this, we construct contractible loops in Rat~k(G/P) which project to small 

circles surrounding DL or FD. For DL, let f(z) be a map with a pole of multiplicity 

(0,...,0, 1,0,.. . ,0) at z=O. The composition f (z2-a)  gives a map with a double pole 

when a--0, and two simple poles otherwise. Setting 

go(z) = f(z  2-rei~ /~ e [0, 2r], (9.3) 

gives us the desired loop, after adding in fixed principal parts to bring the charge up 

to k. To construct the loop g~ "around F D ' ,  let p be a point where the smooth loci of 

Z~ and Z~ intersect transversely (one checks directly that  such points always exist). If we 

intersect with a suitable transverse two dimensional surface D, we find that  in suitable 

coordinates (x,y) on the surface that  Z~nD and Z~ND are the graphs of functions 

y=f~(x), y=f~(x), with f~(x)=fQ(x) only when x=0.  Now consider the germs of maps 

C--*D given by r  (re i~ z). This defines a contractible loop in the space of principal 

parts, and so after adding suitable fixed principal parts, the desired loop g~ in Rat~k(G/P). 
We now write A for either DL or FD and Gt for either gt or g~, One can deform 

the loop p(t)e~rl(Ratk(G/P)) so that  H(p(to))=II(Go), for some to, as the loop p lies in 

the generic locus. Recall that  Lemma 4.22 showed that  the local principal part spaces 

/:~7)~ axe path connected. Hence, there is a path 

h: [0, 1] --* Ratk(G/P), (9.4) 

with Hoh constant, connecting p(to) and Go. Hence, we can homotope p in a small neigh- 

borhood of to into the path h.G.h -1, effectively "shoving" p through A. In this manner 

we can continuously homotopy any path p to Pl so that  II(pl) does not wind around A 

and is thus contractible in the image of the generic set under H. This construction allows 
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one to get around A and thus homotope the "pole path", i.e., the image of p under H, 

into a constant path of distinct poles of multiplicity 1. [] 

Thus, ~l(Ratk(G/P)) is a quotient of 

~ ( ( ~ 7 , 7 , ~ ) ~  •  • (L~,~,I (p))~~ = (~1 (L~'7 ' i))kl  • • ( ~  (~7,7,~(p)))~o(~) 

where EPT)~ is the space of local principal parts of multiplicity one in the ath component 

and multiplicity zero in the j th  component for all jr An element of 7rl(Ratk(G/P)) 
can then be written as 

a n(p) ~ (9.5) a I ), (a~, a~2),-.., (ai  (p),-.', k~(~)-- ((a~,...,  k~ ..., 

Geometrically, this means that loops can be thought of as moving in the principal parts 

space over fixed poles. The next proposition shows that these loops can be placed above 

the pole of one's choice amongst the poles of the same type. 

PROPOSITION 9.6. With suitable identifications due to the choice of base points, in 

the notation of (9.5), the loop 

a j - -  

is homotopic in ~rl(Ratk(G/P)) to the loop 

i _ ~ a' if i=io and j - - j1 ,  

bj - ~ 1 otherwise. 

i] i=io and j = jo, 
(9.7) 

otherwise, 

(9.8) 

Pro@ It suffices to prove the proposition in the case when n(p)=l ,  and there are 

only two poles, located, say, at •  Once again recall that / :PT~ is path connected, 

Lemma 4.22, and that the loop go of (9,3) defines principal parts P+(0) located at 

• ~~ with P• Notice that varying 0 from 0 to 2r  interchanges the 

poles. We choose as base point P• for the principal parts over the  poles re i~ and 

set Vo(t), tE[0,0] to be the path in Rat2(G/P) obtained by fixing the poles at =l=re i~ 

and letting the principal parts move along the path P• Let a(t) be a loop in 

P7)1, with base point P+(0), and let ho(t) be the loop in Rat2(G/P) with fixed poles 

at :t=re i~ and principal parts act ) over re i~ and staying at P - (0 )  over - r e  ~~ In the 

notation of the statement of the theorem, ho(t) is the path (a, 1), whereas (and this is 

what is meant by identification due to change of base point) V2~.h2~.V~ 1 represents 

(1, a). Now we remark that ho(t) is homotopic to the composition is(t) of: 
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(1) the path gt, tE [0, 2~rs]; 

(2) the path V2~8(t), t e  [0, 2rs]; 

(3) the loop h2~8; 

(4) the inverse of the path in 2; 

(5) the inverse of the path in 1. 

When s=l ,  this is the composition g.V2,.h2~ .V~ 1 .g-1. But, as g is null homotopic, 

we are done. [] 

COROLLARY 9.9. lrl(Ratk(G/P)) is Abelian, for k = ( k l ,  ..., kn(p)) whenever all the 

ks >12. 

Proof. In the notation given above, this simply reflects the fact that  (ab, 1)=(a,  b)= 

(ba, 1). 

Now assume that  G is simple. 

fibration 

[] 

Using the long exact sequence in homotopy for the 

P -+ G -* G / P 

and the fact that  P retracts onto its Levi factor (which up to a finite cover is a product 

of C*'s and simple groups we have the short exact sequence 

Z ~(p) ~ Z ~ r3(G/P) ~ O. (9.10) 

Furthermore, the image of ~. is computable in terms of ratios of longest roots (cf. [AHS, 

p. 455]) and it follows that  rt( f l2(G/P))  must be one of the following four groups: Z 

(when P is a Borel subgroup), or 0, Z2, or Z3 (when P is not a Borel subgroup). 

Combining Theorem A and Corollary 9.9 with the observation that  q(k)>0 implies 

that  all ks~>2 (Theorem 7.8), we have 

PROPOSITION 9.11. For all G, P, and all k such that q(k)>0, 

71" 1 (Ratk (G/P)) ~ ~1 (~2 (G/P)) ~- ~r3 (G/P). (9.12) 

Recall that  w gives a description of the multiplicity one principal part spaces as 

principal fibrations C*--~s Our next step is to show that  the fundamental 

group of Ratk(G/P) is "carried" by the images of ~rl(C*). 

PROPOSITION 9.13. There is a positive k for which r l (Ratk(G/P)  ) is generated by 

the loop fo(z)=f(ei~ OE[0,2~r]. Here positive means that each ks is >10 and not all 

are equal to O. 

Proof. There is a surjection r3(G)--*r3(G/P). In turn, r3(G) is generated by a 

subgroup SU(2)--*G, (see, e.g. [AHS, p. 455]), and this projects to a holomorphic map 
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i : p I=sU(2 ) /S I - .G /P ,  of positive multi-charge k, again inducing a surjection on ~r3. 

This reduces our problem to the case of maps of degree 1 from p1 to p 1  with f the 

identity map, where it is evident. [] 

This proposition in fact gives us just what we need to show that  the images of ~rl(C*) 

"carry" ~h(Ratk(G/P)) .  In the case when ~h=Z (when P is a Borel subgroup) the local 

principal part space L:7)7)~ ' is just C*, as the group G of w is SL(2, C) [HM2], and so 

there is nothing to prove. When ~rl is Z2 or Z3, one can choose the k to be of the form 

(0, ..., 0, 1,0, ..., 0). Referring to our geometric description in w of the maps, the rotation 

action leaves fixed the element in the line space L, and describes the standard generator 

~/of r l (C*) .  

PROPOSITION 9.14. The element ~, acts trivially on ~rr( ~TYP~ ). 

Proof. This follows easily from the fact that  the fibration of ~7)7~ is principal, 

which gives us a natural way of moving elements of rr(s  along % [] 

To prove Theorem B for the cases when the fundamental group is non-trivial it 

suffices to show that  

L(k),: Ht(Ra~tk(a/P); F , )  --* H,(5~(G/P); Fp) 

is an isomorphism through the dimension r(k) for all primes p (this reduction to Fp 

coefficients follows from the fact that  the integral homology groups of Ratk(G/P) and 

~ ( G / P )  are finitely generated). Here )(  is the universal cover of X. When ~rl is Z or 

Z2 this follows essentially as in IS] and [BHMM], respectively; in the Z2 case one loses a 

dimension in going from homology to homotopy. When 1rl ~ Z3 (and this happens only 

when G=G2 and P is a nilpotent extension of SL2(C)x C*) the argument is somewhat 

different so we present it here. 

We want to verify that  the homology map L(k), is an isomorphism through a range 

when restricted to the universal cover over strata in Ratk(G2/P)  indexed by 27~. Using 

Corollary 9.9 and Proposition 9.14 we see that  we are considering the commutative 

diagram of C* fibrations 

C* > S ~ j  > W 

IZ3 I~" Iid 
C* ) S~, j  > W 

where C* carries ~rl (Ratk(G2/P)). Thus, by the argument of [BHMM, w away from the 

prime 3 the homology of this Z3-cover is acted on simply by Z3, and a direct comparison 

theorem gives the result. 

7-945203  Acta Mathematica 173. Imprimd le 5 octobre 1994 
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At the prime 3 we consider the mod(3) homology structure of the 3-fold cover. 

To understand this consider the relative pair i X, )()  where )(  is any Z3-cover over X. 

This can be replaced by the mapping cylinder of 7r:)f---,X and we have a fibration 

Mcyl(Tr)--*X with fibre over each point the "propeller" space given by the mapping 

cone of {1,2,3}--**. Here the action of T E Z  3 just  rotates the propeller. The natural 

inclusion )(--*Mcyl(Tr) has associated mapping cone MC(Tr) homotopy equivalent to the 

quotient space Mcyl(Tr)/)f. There is a (relative) Serre spectral sequence converging to 

/~.(MC(Tr); F3)--H.(Mcyl(Tr), )~; F3) with E 2 term 

H . ( X ,  7/ .  iFMcyl(Tr), f)~; F3))- 

Here 7-l. represents homology with twisted coefficients. 7/.  iFMcyl(~r), F)?; F3) is obtained 

from the exact sequence of F3(Z3) modules 

0 ) 7-/I(FMcyI0r),F~;F3) " 7-/o(F~;F3) ,7/O(FMcyl(~r);F3) > 0 

0 > 7/I(FMcyI0r),F~;F3 ) , F3iZ3) e , F3 > 0 

and hence 

7/. (FMcyl(Tr), F~  ; F3) = { ; 

where 27 is the augmentation ideal 

27 ---+ F3 (Z3) "-~F3 

when * ~ 1, 

when * = 1, 

E c~ : E 2 =- H. iX;27 ) = H,+I  ( iX , 2); F3). 

We analyze these homology groups as follows. First, F3 (Z3)-- F3 [x]/(x 3) where x-- T-- 1. 

Second, 27cF3(Z3) corresponds to the ideal (x) under this isomorphism. Third, there is 

a short exact sequence of F3(Z3) modules 

0---~ F3 ~-~27----~ F3 ---*0 (9.15) 

where j includes F3 into 27 as x2F3[x]/ix3). Thus, while i9.15) does not split and 27 is 

not a trivial F3(Z3) module, (9.15) does give a long exact sequence 

...--, H.iX;F3)---. H.iX;Z)---, H.(X;F3)---, H._I(X;F3)--*... (9.16) 

with ~ ( E  n i t  i) = E  ni. 

In other words the Serre spectral sequence converging to the homology of the map- 

ping cone has exactly one non-zero row, E.2A, so 
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that  is clearly natural with respect to Z3-covers. In particular, if we have a map f :  X--*Y 
which induces isomorphisms in Irl and in homology through degree m, then naturality of 

the Serre spectral sequence and (9.16) imply that  the relative spaces (Mcyl(X),)()  and 

(Mcyl(Y), Y) representing the mapping cones also map isomorphically under f .  through 

dimension m as well because the relative complex increases the dimension by 1. 

Next, f :  X--*Y also induces the following commutative diagram 

> H . ( X ; F 3 )  > H.(X,X;F3) ) H . - I ( -~ ;F3)  ) H , - I ( X ; F 3 )  > 

) H . (Y;F3)  " H. (Y,Y;F3)  " H . - I ( Y ; F 3 )  - H , - I ( Y ; F 3 )  ~'" 

Thus, we can now apply the five lemma with X--Ratk(G2/P) and Y=~2(G2/P) to the 

spaces, their two Z3-covers, and the associated relative spaces to obtain isomorphisms in 

homology for the Z3-covers through dimension m - l = q ( k ) - l = r ( k ) .  This finishes the 

proof of Theorem B when G is simple in this last case. 

Returning to the general case when G is semi-simple, we use the fact that  G/P 
splits into a product of "simple" summands [Bo], giving a corresponding decomposition 

for both the Rat spaces and the mapping spaces. One then applies the above in each of 

the simple summands. This concludes the proof of Theorem B for the general case. 

Finally, as noted in w Rat(G/P), thought of as the disjoint union of its components, 

has a natural C2 operad structure induced by the obvious C~ operad structure on the 

position of the poles. Thus, Theorem B implies that  the natural inclusion 

t: Rat(G/P) ~ fl2( a /  P) 

is a group completion; more precisely, that  

moB ( LJ Ratk(G / P) ) --* fl~(G/ P) (9.17) 
k 

is a C2 operad equivalence of two-fold loop spaces. 

[AHS] 

[AJ] 

[BE] 
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