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1. I n t r o d u c t i o n  

Let H be a simple real Lie group; thus H is the connected part of G(R)  for some simple 

algebraic group G. Let K be a maximal compact subgroup of H,  X = H / K  be the 

associated symmetric space, and let F be a lattice in H,  i.e., a discrete subgroup of finite 

covolume in H.  The lattice F is said to be uniform if H/F is compact, and non-uniforra 

otherwise. We denote by sn(F) the number of subgroups of F of index at most n. The 

study of sn(F) for finitely generated groups F has been a focus of a lot of research in the 

last two decades (see [LuS] and the references therein). Our first result is a precise (and 

somewhat surprising) estimate of sn(F) for higher-rank lattices. 

THEOREM 1. Assume that R-rank(H)>~2 and H is not locally isomorphic to D4(C). 

Then for every non-uniform lattice F in H, the limit 

lim log sn (F) 
n-+c~ (log n)2/log log n 

exists and equals a constant 7(H)  which depends only on H and not on F. The num- 

ber 7 (H)  is an invariant which is easily computed from the root system of G. 

The theorem shows that  different lattices in the same Lie group have some hidden 

algebraic similarity; a phenomenon which also presents itself as a corollary of Margulis 

super-rigidity, which implies that  H can be reconstructed from each F. 

Every conjugacy class of subgroups of F of index n has size at most n (which is 

negligible compared to sn(F)) and defines a unique cover of the Riemannian manifold 

M = F \ X .  Hence Theorem 1 is equivalent to the following theorem. 

THEOREM i t. With the same assumptions on H as in Theorem 1. Let M be a 

non-compact manifold of finite volume covered by X ,  and let bn(M) be the number of 
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covers of M of degree at most n. Then 

lim log b,~ (M) 
n--+oc (log n)2/log log n 

exists, equals 7 (H)  and is independent of M. 

In spite of the geometric flavor of its statement, the proof of Theorem 1 (and 1 ~) is 

based on a lot of number theory. This is due to the fact that  a lattice F as in Theorem 1 

has two properties: 

(i) F is an arithmetic lattice by Margulis' arithmeticity theorem; 

(ii) F has the congruence subgroup property. 

Now (i) and (ii) imply that  counting subgroups of finite index in F comes down to 

counting congruence subgroups in F. In fact, the main result of the current paper is 

the proof of the upper bound of Conjecture 1 below, which was posed in [GLP] (and 

one extension of the lower bounds proved there). To describe our results we need more 

terminology. 

Let G be a simple, simply-connected, connected algebraic group defined over a num- 

ber field k, together with a fixed representation G~-+GLno . 

Let (9 be the ring of integers of k. Denote by Vf and V~ the set of (equivalence classes 

of) non-archimedean and archimedean valuations of k, respectively, and set V=VyUV~. 
For a valuation vEV, let kv denote the completion of k with respect to v, and similarly 

for vEVf define Ov as the completion of O. Let Gv be the group of kv-points of G ( - ) .  

Fix a finite subset S of valuations of k containing V~ and consider Os={xCk I 
v(x)>~O for all v~S}, the ring of S-integers of k. Define F=G(Os):=G(k)AGLno(OS). 
We assume that  Gs : = I ] ~ s  G~ is non-compact, so that  F is an infinite group. 

For every non-zero ideal I in Os,  let F(I)=ker(G(Os)-+G(Os/I)). A subgroup A 

of F is called a congruence subgroup if A contains F( I )  for some ideal I. Let C,~(F) be 

the number of congruence subgroups of F of index at most n. Let 

a+ (F) = lim sup 
n--~ ~o 

logCn(r) 
(log n)2/log log n 

and 

log cn (r) 
a_ (F) -- lim inf 

n - ~  (log n)2/loglog n" 

It was shown in [GLP] that  for r = S L 2 ( Z ) ,  A general 

conjecture was formulated there for the case where G splits over k: 
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Let R=R(G)=IO+]/I , where ~+ is the set of positive roots of the root system 

corresponding to G and l=rank(G), and let 

2 

4R 2 

Then we have: 

CONJECTURE 1. Oz+(F)zol_  ( F ) ~ - 7 ( G ) .  

It was shown in [GLP] that, assuming the generalized Riemann hypothesis for Artin 

L-functions (GRH), indeed a_ (F)>~7(G), and that without assuming the GRH this still 

holds if k /Q is an abelian extension of Q. 

In this paper we prove the upper bound in full, and extend the lower bound result 

of [GLP] to the non-split case. In summary: 

THEOREM 2. Let G be an absolutely simple, connected, simply-connected algebraic 

group over a number field k. Let ~+, l, R(G) and v(G) be the numbers defined above 

for the split form of G. Then: 

(A) ~+(r) ~<~(G). 

(B)(1) Assuming the GRH we have 

( r ) / >  := 
( v / - R - ~  1 ) - R )  2 

4R 2 

Therefore assuming the GRH it follows that a+(F)=a_ (F)=7(G). 

(B)(2) Moreover, (B)(1) is unconditional provided there is a Galois field K / Q  such 

that G is an inner form(1) over K,  and either Gal(K/Q) has an abelian subgroup of 

index at most 4, or deg [K: Q] <42. 

COROLLARY 1. If  G is a Chevalley (split) group and k--Q, then 

~/(G). In particular, 

(~• ( ~  -d)2 
4d 2 

So Conjecture 1 is now fully proved, modulo the GRH (and it is unconditionally 

proved for abelian extensions k/Q).  The case of d--3 of Corollary 1 was also proved 

independently by Edhan [El. The main content of this paper is the proof of Theorem 2 (A). 

Part (B) is just a small improvement over [GLP]. 

The extension to arbitrary k-simple G is important when one comes to the study of 

subgroup growth of lattices in a higher-rank simple Lie group H: 

(1) This term is explained in w 
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As mentioned above, by Margulis' arithmeticity theorem [Ma] every lattice F in H 

is arithmetic. Moreover, a famous conjecture by Serre IS] asserts that  such a group F has 

the 'weak' congruence subgroup property (on the finiteness of the congruence kernel, as 

presented in w of [LuS] for example). This conjecture is by now proved, unless H is of 

type An and F is a cocompact lattice in H. Now, given H we can analyze the possible 

G, k and S such that  G(Os) is a lattice in H = G ( R )  ~ The possibilities are given by 

Galois cohomology and enable us to prove the following result: 

THEOREM 3. Assuming the GRH and Serre's conjecture, then for every non-compact 

higher-rank simple Lie group H = G ( R )  ~ and every lattice F in H, the limit 

log s~ (F) 
lim 

n-~o~ (log n)2/log log n 

exists and equals v(G). In particular, it depends only on H and not on F. 

In fact, we shall prove a more general result about subgroup growth of irreducible 

lattices in all higher-rank semisimple groups of characteristic 0: we refer the reader to 

w and Theorem 11 for definitions and the full statement. The proof also shows that  for 

'most' lattices in simple Lie groups, the conclusion of Theorem 3 holds unconditionally. 

In particular, this applies to the cases treated in Theorem 1. 

Theorem 2 (A) was proved in [GLP] in the special case when G=SL2. (For general 

split G, a partial result was also obtained: a+ (F)< Cv(G) for some absolute constant C.) 

The proof there had two parts: 

(a) a reduction to an extremal problem for abelian groups (w in [GLP]); 

(b) solving this extremal problem (Theorem 5 in [GLP], restated as Theorem 5 

below). 

Part (a) used the explicit list of the maximal subgroups of SL2 (Fq). Such a detailed 

description becomes too long for general G(Fq) with the increase of the Lie rank of G 

and q. 

The main new result in this work relates to part (a) and is the following Theorem 4 

(deduced in turn from its more refined version, Theorem 7 from w below). We need 

some additional notation: 

Let X(Fq) be a finite quasisimple group of Lie type X over the finite field Fq of 

characteristic p>3.  For a subgroup H of X(Fq) let 

h(H) = log [X(Fq): H] 
log [H~>I ' 

where H <> denotes the maximal abelian quotient of H whose order is coprime to p. Set 

h (H)=oo  if [g<>[=l. 
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Let X be the untwisted Lie type corresponding to X (so that  X = ) ( ,  X--2_~ or 

X=3) ( ,  the last case occurring only if -~=D4). Then ) ( ( - )  is a group scheme of a 

split, simple, connected algebraic group. Recall that  R(.~) is the ratio of the number 

of positive roots of the root system of X to its Lie rank as defined before Conjecture 1. 

Extend the definition of R to twisted Lie types by setting R ( X ) = R ( - ~ ) .  

THEOREM 4. Given the Lie type X (twisted or untwisted). Then 

lim inf min{h(H)  l H <<. X(Fq)} ~> R ( X ) .  
q--+oo 

The line of the proof of Theorem 4 is the following: We need to minimize h(H)  

among all subgroups of X(Fq). We first show that  among the parabolic subgroups the 

minimum (when q--+oc) is obtained for the Borel subgroup, and there it is equal to R ( X )  

(see Proposition 3 below). We then show that  every H can be replaced by a parabolic 

subgroup P with h(P)<~h(H)+o(1).  The second step itself is divided into two stages: 

the case when H is not contained in any parabolic subgroup (the atomic case), and then 

the general case is reduced to this case. We stress that  in this process H is replaced by 

a parabolic subgroup which does not necessarily contain H (though in many cases it is 

"natural" and possible to choose some P containing H) .  

The proof of Theorem 4 does not depend on the classification of the finite simple 

groups, we use instead the work of Larsen and Pink [LAP] and Liebeck, Saxl and 

Seitz [LiSS] (the latter for groups of exceptional type). 

Once Theorem 4 is proved, one reduces Theorem 2 (A) again to the same extremal 

problem on abelian groups solved in [GLP]: 

THEOREM 5. (Theorem 5 of [GLP]) Let d and R ~  I be fixed positive numbers. 

Suppose that A = C z l  x Cz2 x . . .xCx, is an abelian group such that the orders xl ,x2,  ..., xt 

of its cyclic factors do not repeat more than d times each. Suppose that rlAIn<~n for 

some positive integers r and n. Then as n tends to infinity we have 

sr (A) <~ n ('r+~ log ~/log log n ,  

where ~ / : (  ~ -  R)2/4R 2. 

A few words about the structure of the rest of the paper: 

In w we show how the upper bound, i.e., Theorem 2 (A), is proved using Theorem 7 

below, of which Theorem 4 is an easy corollary. In w we prove Theorem 7. In w we use 

all the previous results and Galois cohomology to prove Theorems 1, 2 (B) and 3. We 

conclude with some remarks in w relating to [BGLM], [LiS] and IMP]. 

The results of this paper are announced in [GLNP]. 
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2. T h e  u p p e r  b o u n d :  r e d u c t i o n  to  T h e o r e m  7 

Notation. All logarithms in the paper are in base 2 unless stated otherwise. Put 

log n (log n) 2 
l(n) = loglogn and A(n)= loglog-------n" 

For functions f and g of integral argument n, we write f ~ g  when f(n)/g(n)--~1 as 

n-+cc, and write f x g  if log f~ logg .  

For a finite group G we denote by Op(G) the largest normal p-subgroup of G, and 

d(G) is the minimal size of a generating set for G. 

The (Prfifer) rank of G is defined to be the maximal of the numbers d(H) as H 

ranges over all the subgroups of G. Note that this use of 'rank' is different from the 

k-rank of an algebraic group H, which is denoted by rkk(H). 

A group G is said to be a central product of its subgroups A, B<<.G, denoted as 

G=AoB, if G=AB and [A, B]=I. 
Put 5:= [k:Q]. 

The reductions. By our assumptions, G is a connected, simply-connected simple al- 

gebraic group defined over k. Therefore there exist a finite extension K of k and an 

absolutely simple group G such that G:lrtg/k (V), G(k)=G(K) and G(Os) is commen- 

surable with G(O~), where (~ is the ring of integers of K and S is the set of valuations 

of K lying above S. Moreover, the congruence topologies of G(Os) and of G(O3) are 

compatible. So for the purpose of counting congruence subgroups we may replace G 

by G, K by k, and thus assume that G is absolutely simple to start with. 

Recall that G is simply-connected and Gs is non-compact. Therefore by the strong 

approximation theorem (Theorem 7.12 of [PR]) the congruence subgroups of F corre- 

spond to open subgroups of the Cartesian product 

H G(O~), 
vevAs 

so we count subgroups of G(Os/I)  for various ideals I<~Os. 
The following result is the generalization of the 'level vs. index' lemma to rings of 

algebraic integers: 

LEMMA 1. ([LuS, Proposition 6.1.1]) Let H be a subgroup of index n in r=G(Os). 
Then H contains F(mOs) for some positive integer m<<.con, where the constant co 
depends on G only. 

We shall repeatedly quote results from the paper [GLP]. In particular, Corollary 1.2 

together with the argument in w there imply that for the upper bound it is enough to 
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prove 

l imsup log sn(G(Os/Io)) << 7(G),  
n-+~:~ , ~ ( n )  

where the ideal Io=mOs with m E N  satisfies m<~con. 
By Corollary 6.2 of [GLP] we can replace I0=(m)  above with its divisor I=~t ... 7rt, 

defined to be the product of all the different prime ideal divisors ~ri of I0. Note that  the 

norm of I is at most ctn ~, where the constant c ~ depends only on the field k and the 

algebraic group G. Also t~< (6+o(1)) l(n) .  

Pu t  
t 

i = 1  

Remark. For a prime ideal ~r of Os belonging to a rational prime p we have that  

Os/~r is a finite field of bounded degree: at most 6= [k :Q] over Fp. Therefore the rank 

of the group G(Os/rc) is bounded by a function r = r ( d i m  G, k) of dim G and ~ alone, 

and independent of ~r, see Proposition 7 of Window 2 from [LuS]. 

Now, for a rational prime p which is not coprime to I (i.e., plm), let M(p) denote 

the set of those ideals from {~rl, ..., 7h} which divide (p). Define 

Gp := H G(Os/Ir); and thus G, = 1-I Gp. 
7rE U (p) plra 

The strategy of the proof follows several steps, in which we gradually reduce the 

possibilities for the subgroup H of GI (each time discounting any contributions less than 
nO(l(n))): 

In the first step we fix the projections Rp of H on each Gp. Then we apply the 

Larsen-Pink theorem to each Rp, which roughly says that  Rp resembles an algebraic sub- 

group. By successive reductions we deal with its unipotent part  and then its semisimple 

part, leaving only the ' toms'  (in our case just an abelian p~-group) as a possibility where 

H can live. This is the point where we are in a position to apply Theorem 5 and finish 

the proof. 

While doing these reductions we need several auxiliary group-theoretic results, and 

in addition we have to keep track of various numerical constants (in particular the change 

of the index of H) ,  resulting in considerable notation overload. 

Step 1. Let Rp be the projection of H<~Gs on the direct factor Gp. We are assuming 

that G is absolutely simple, and therefore for almost all rational primes p the group Gp 

is a product of IM(p)l <~ quasisimple groups G(Os/Tr), ~rEM(p). By the remark above, 

it follows that  the rank of Gp is at most r':=6r. We deduce that  there are at most IGpl ~' 

possibilities for Rp in Gp. 
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Since IGil=O(rndimG)=O(nhdimG), it follows that  the number of choices for the 

projections {Rplplm } is at most 

I I  lapl r ' ;  I GI It'= O(nSr'dim G), 
P 

which is polynomially bounded in n. 

Thus we can assume from now on that  the set of projections {Rplplm } is fixed, and 

estimate the further possibilities for H. 

Step 2. At this stage we use the following modification of a theorem by Larsen and 

Pink [LAP] in [LIP, Corollary 3.1]: 

THEOREM 6. (Larsen and Pink) Let G be a finite subgroup of GLn(F) ,  where F is 
a finite field of characteristic p. Then G has a normal subgroup N>~Op(G) such that 

(1) [G:N]<.C(n), where C depends on n alone; 
(2) N/Op(G) is a central product of an abelian p'-group A and quasisimple groups 

in Lie* (p). 

Here and below Lie*(p) denotes the family of finite quasisimple groups of Lie type 

in characteristic p. 

Apply Theorem 6 to each one of the groups RB: they are linear of degree at most 5n0, 

where no is the degree of the linear representation of G. Hence there exist normal sub- 

groups Rp ~  RB 1 of Rp such that  

(1) [Rp:R~ <<.c, where c=c(no, 5) depends on no and 5 only; 

(2) R~=Op(Rp) and R~ where Ap is an abel ian/) ' -group and Sp is 

quasi-semisimple of characteristic p. 

Define R:=yIpRp, Ri:=l-IpRp for i=0 ,  1, S:=l-Ip Sp and A:=YI p Ap. 

Step 3. Consider Rp 1. It is a nilpotent group of nilpotency class at most no (by 

Sylow's theorem every p-group of GLno(Fp~) is conjugate to a group of upper unitrian- 

gular matrices), and has rank at most maxp rank(Gp)~<r'. Lemma 6.1 from [GAP] (also 

Proposition 1.3.3 in [LuS]) says that  given HR1/R 1 <<.R/R ~, the number of choices for H 

is at most 
iRl3(r')2+no/~< (c,n~)~'(3~'+,~o) dim a. 

We are ignoring polynomial contributions to sn(G(Os/I)). Therefore from now on 

we can assume that  H contains R 1 and count the possibilities for H=H/R 1 in R=R/R  1. 

Step 4. The group H projects onto each factor [lp:=Rp/R~>~ApoSp of R. It follows 

that  the non-abelian composition factors of Sp counted together with their multiplicities 

all occur among the composition factors of H. Now Rp/Sp is an abelian p'-group extended 

by a group of order at most c. 
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CLAIM. Provided that all primes p are bigger than c, then H contains each Sp. 

Proof. It follows the proof of Lemma 4.3 in [LIP]: 

Let Z be the center of S. It is enough to show that  H Z  contains S: if so, then 

S - - S N ( H Z ) = ( S N H ) Z ,  and therefore S = S ~ H  because S is perfect. Hence we can 

assume that  H contains Z and work modulo Z from now on. Note that  S /Z  is a direct 

product of its factors (ZSp)/Z and that  they are semisimple groups over distinct fields. 

Consider H~176 Then H/H~176 ~ only has composition factors 

of order at most c. Therefore each simple factor of S/Z  (counted with its multiplicity) 

occurs among the composition factors of H~ and hence among its derived subgroup 

( (H~ <S/Z.  

The order of a group is the product of the orders of its composition factors. It follows 

that  I((H~ >~ IS/Zh and thus S =  (-~~ proving the claim. [] 

So H contains S and is thus determined by its image ~I=H/S in R = R / S .  Define 

~o =RO/S: a quotient of A=l--Ip Ap. 

Step 5. In the remaining steps we shall reduce the problem of counting the possibil- 

ities for H in R to counting subgroups in certain abelian groups E and T (to be defined 

below). 

The key to this reduction is the following generalization of Theorem 4. Recall the 

number R(X) defined in the introduction for each Lie type X ( - )  of simple simply- 

connected algebraic groups over finite fields: R(X) is the number of positive roots of the 

split form )~ of X divided by its rank. 

THEOREM 7. Let G=X(Fq) be a finite quasisimple group of fixed Lie type X over 

a finite field Fq of characteristic p>3.  There exist a finite set 8CQ[x]  of non-constant 

polynomials and constants el, c2, m depending only on X with the following property: 

Suppose that H<~G and that A is an abelian p~-group contained in the centre of 

H=H/Op(H).  Then there exist an abelian p~-group T and a subgroup Ao of A such that 

(1) Ao is a homomorphic image of T and [A:Ao]<~cl; 

(2) l iminf c2+log [G:H] ~>R(X); 
q --4 cxD l o g  ITI 
H~G 

(3) the group T is a direct product of at most m = m ( X )  cyclic groups, each having 

order f(q) for some f E S .  

For each prime ideal ~rEM(p) let R ~ be the projection of R ~ into the direct factor 

G~ := G(Os/Tr). Then 

[cp:n~ I-I 
7rEM(p) 
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and Ap is a subdirect product of its projections A~ into the various G~'s. 

By our assumptions, G is absolutely simple. Hence for all but finitely many primes 7r 

(which we can ignore), G .  is a finite quasisimple group which is a form of the (split) Lie 

type ) (  of G. Over a finite field all the forms of )~ are quasisplit, and it follows that  G~ 

is X(Os/Tc), where X is a (possibly twisted) Lie type corresponding to )~. For example, 

when G has type An then G~ is either SLn+I or SUn+I over finite fields. It is important  

to note that  Theorem 7 gives the same constant R(X)=R()() for all the forms of G. (In 

the example with As above we have R =  �89 ( n + l ) . )  
0 Now Theorem 7 applied to R~ ~G~ for each 7rEM(p) gives that  there is an abelian 

group T.  and a subgroup A~,0 of A~ with the stated properties. In particular, T~ maps 

onto A.,0, and moreover, 

[ G , : R  ~ ) t T ,  I R(a)-~ . 

Put  Ap,o=YIreM(p)A~r,0. It follows that  Ap,O is a homomorphic image of the direct 

product Tp := 1--IteM(p) T~r, and moreover, 

[ap:R ~ ~> IT, I'(G)-~ 

Define R~176 Let EB<~R ~ be the image of Ap,o under the homomorphism 

Ap---~R~ ~ We have that  [R~ (since IM(p)l<~5). Also, Ep is 

a homomorphic image of Tp. Let 

T=I-IT p and E=IIE,. 
P P 

Since [CI: n ~ =H~ [cp: n ~ it now follows that 

[G1 :R ~ ITI R(c)-~ 

Moreover, for any given rational prime p and prime ideal 7r of O8 dividing p, there 

are at most 5 possibilities for the size of the residue field O8/7r. Also, there are at 

most 5 prime ideals 7r dividing p. We conclude that  Tp is a product of boundedly (by 

X and 5) many cyclic groups each having order given by a finite set of polynomials 

in p. A polynomial of degree b>0 cannot take the same value at more than b values of 

its argument. Therefore there exists a number d=d(X, 5) such that  the abelian group 

T is a product of cyclic groups Cx~ and each integer appears at most d times in the 

sequence {xi}. 

Step 6. We need a result which is a slight generalization of Proposition 5.6 from 

[GLP]. It allows us to pass from R down to the abelian group E. We postpone its proof 

to w 
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PROPOSITION 1. Let D=D1 • ... • Ds be a direct product of finite groups, where each 

Di has a normal subgroup Ei of index at most C, and Ei is polycyclic of cyclic length 

at most r. Assume that the (Priifer) rank of each Di is at most r. The number of 

subgroups H <~D whose intersection with E=E1 x ... • E8 is a given subgroup L <.E is at 

most 
IDI4rC2rs2g~ ' 

where K = K ( C )  is the number of isomorphism classes of groups of order at most C. 

Recall that  the rank of each Rp is at most r (  Hence ~0 is an abelian group of rank 

at most r'. We apply Proposition 1 to R=l-IpRp and E=l-IpEp: 

Each Rp/R~ has size at most c and -0 .  [Rp. Ep] <~ c 1. Therefore 

< o < 

say. Thus, given the group H N E  the number of choices for H in R is at most 

]~14r'c2r't2K(co)t < n45r 'd im VcO(~(n)2)KO(l(n)) _-- nO(log n/ ( log log n) 2) = nO(Z(n)). 

Since [R:E]~cto=n ~ it follows that  [ R : E N H ]  and JR:H] differ by at most a 

factor n ~ So we can restrict ourselves to counting the possibilities for H N E .  Thus 

without loss of generality assume that  H ~ E .  

Step 7. To summarize the various reductions so far: we are now counting the possi- 

bilities for H~<E, where E is a homomorphic image of Ao=[Ip Ao,p, which is in turn an 

image of T. In turn, T=CxI • x Cx~, where each integer appears at most d=d(X, 5) 

times in the sequence {xi}. 

Let u=[E:~I]<~[R~ Then 

n ~> [GI :H] -- [GI :R~176 >1 ITIR(G)-~ 

Hence the number of choices for H in E is at most 

s~(E) <~ s~(Ao) <. s~(T). 

Now we can apply Theorem 5 to the group T, with constant R = R ( X )  and d=d(X, 5), 
giving that  s~(T) ~ n  (~+~ 

This proves Theorem 2 (A) modulo Theorem 5 (proved in [GLP]), Theorem 7 (proved 

in w and Proposition 1. 
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2.1. P r o o f  of  P r o p o s i t i o n  1 

We need the following lemma: 

LEMMA 2. Let A <~B be groups and let C and k be positive integers. The number 

of subnormal subgroups H of B which contain A and for which there exists a subnormal 
series 

H=Ho<3HI<1...<Hk,3B, with [B:Hk]<.C and Hi/Hi-1 cyclic, 

is at most [B:A]kCdK, where d=d(B) and K is the number of isomorphism classes of 
groups of order at most C. 

Proof. There are at most K possibilities for the quotient group U=B/Hk, and then 

at m o s t  ]u[d~c d for the homomorphism B--->U, which determines Hk as the kernel. 

Given Hk there are at most [Hk:A] k possibilities for H=Ho by Lemma 5.5 of [GLP]. [] 

Proof of Proposition 1. We follow the proof of Proposition 5.6 from [GLP]: 

Let Fz=Di•215 and Li=projFL. Put  Li+I=LiAFi+I, so that  Li~< 

Li~Fi. Let Hi=projF ~ H. We shall bound the number of possibilities for the sequence 

H, H2,...,Hs). 

The number of choices fo r / I s  ~< D~ is at most [D~ IT (because every subgroup of Di 

is generated by at most r elements). Now asssume that  Hi+l is given and consider the 

possibilities for Hi. Let X=Hi~Fi+I, Y=projD,(Hi) and Z=Hi•Di. Then H i / X •  

is a subdirect product of Y/Z and Hi+l/X, and Hi is thus determined by Hi+l,  X, Y, Z 

and an isomorphism r Y/Z-+H i+1 iX.  
Since r ank(Di )~r  the number of choices for Y, Z and r is at most lDil ~ each. 

Notice that  the pair of groups Hi+l ~>]-i+1 together with the group X~>Li+I satisfies the 

conditions of Lemma 2: Hi+I/X"~Y/Z, and Y/Z is a section of Di (so [Y/(EiZNY)I~C 

and (EiZNY)/Z is polycyclic of length ~<r). 

Therefore the number of choices for X is at most 

[Hi+I : Li+I]r Cd(H~+I) K. 

Now d(Hi+l) <<. rank(Fi+l)<~ sr and 

[Hi+z : Li+I ]  ~ [Hi+l: Li+ll[Li+l: ]-i+1] ~< C*]Dil, 

because [Hi+l: Li+l] < [H: L] < C s and [Li+I: Li+l] = [proj F,+l (ni): Li n Fi+I] ~< I Di I" 
Thus, given Hi+z the number of choices for Hi is at most IDil4~C2*~K. Multiplying 

from i=s to i=1  we obtain 

IDI4~C2~2K~ 

as required. [] 
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2.2. P r o o f  o f  T h e o r e m  4 

Assuming Theorem 7, then with the help of the Larsen-Pink result, Theorem 4 is an 

easy corollary: 

Suppose that  H is a subgroup of G=X(Fq), and let H ~ and S, A<~H~ be 

the subgroups given by Larsen-Pink's Theorem 6 above. Recall that  by H 5 we denote 

the largest abelian p'-quotient of H. 

Let L be the least normal subgroup of H such that  H/L is an abelian p'-group. Then 

by looking at the composition factors of L we see that  Op(H)<~L, and then L/OB(H) 

must contain S because the latter is a perfect group. Hence H (> is a quotient of H/S, 

whence IH(>I<~ IA[ C(n). 

Apply Theorem 7 to the group H ~ It follows that  for some constants Cl, c2 and an 

abelian group T we have 

l iminf c2+log [G:H ~ /> R(X)  
q~cr log IT[ 
H<~G 

and IAf<lTIcl. 
Clearly [G:H]>~[G:H~ and together with [H<>[<~[T[clC(n) this easily im- 

plies the conclusion of Theorem 4. 

3. P r o o f  o f  T h e o r e m  7: G e n e r a l i t i e s  

Recall that  G=X(Fq) is a finite quasisimple group of Lie type X over a finite field Fq 

of characteristic p>3,  H is a subgroup of G, and A is an abelian p'-group in the centre 

of H=H/Op(H).  

Theorem 7 will follow from the next two propositions: 

PROPOSITION 2. In the situation of Theorem 7 there exist constants cl, c0>0, a fi- 

nite set S _ Q [ x ]  of polynomials (all depending only on the Lie type X) ,  an abelian 

pl-group T and a parabolic subgroup P of G such that 

(1) T--~Ao for some subgroup Ao of A of index at most Cl; 

(2) co [G: HI ~> [G: P] and ITI <. co [Pr where PV denotes the largest abelian p'-image 

of P; 
(3) T is a direct product of at most m = m ( X )  cyclic groups, each having order f(q) 

for some f c S .  

PROPOSITION 3. Let G = X ( F )  be a quasisimple group of Lie type X over a finite 

field F of characteristic bigger than 3. In other words, X ( - )  is an absolutely simple, 

connected algebraic group scheme defined over Fp. 
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Then 

Let P = P ( - )  <~X be a parabolic subgroup and recall the definition 

h(H) . -  log [G:H] where H<G.  
log Ig<>l ' 

lim h(P(F))  >/R(X), 

with equality if and only if P is the Borel subgroup of X.  

Remark. Note that  given the type X ( - )  (an absolutely simple, connected quasisplit 

algebraic group defined over Fp), there are several possibilities for its fundamental group, 

and these give several possibilities for the finite group G--X(F) ,  all of which are covers 

of the same finite simple group G/Z(G). However, a simple argument shows that  once 

Propositions 2 and 3 are proved for any fixed isogeny version of X ( - ) ,  they will follow 

for all the others. Therefore from now on, with one exception, we shall assume that  X is 

simply-connected, and thus that  G is the universal covering group of G/Z. The exception 

is w and the orthogonal group types (X=Bn, X=Dn and X--2Dn), where X will 

be assumed to be one of the classical groups ~t~n or f~2n+l. 

Assuming the above propositions the proof of Theorem 7 is straightforward: Let T 

and P be the groups provided by Proposition 2. Then 

c2 +log [G:H] log [G:P] = h(P), 
log ITI /> log IP*l 

Now Proposition 3 gives that  lim infq~o~ h(P)>~R(X), and we are where c2 = 2R log co. 

done. 

3.1. P r o o f  of  P r o p o s i t i o n  3 

Recall that  1 is the untwisted Lie rank of X and ~+ is the set of positive roots. The 

result is clear if P= G. 

Case A. Suppose first that  X is untwisted Lie type. 

P ( - )  is defined by a subset of the nodes (= the fundamental roots) in the Dynkin 

diagram of X, which is a disjoint union of maximal connected subsets C1, C2, ..., Cn, say, 

of fundamental roots. For example, the following diagram defines a parabolic of AT(F): 

C1 C2 
= ~.-- " )  -" (= = ' 7  
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Let Ei C_ (I)+ consist of the positive roots in the span of r E Ci. Then each set Ei U - E i  

is an irreducible root system with fundamental roots given by Ci and Dynkin diagram 

which is the connected subgraph defined by Ci. 

Put q= IFI. Let L be the Levi factor of P and let M be the greatest normal subgroup 

of L such that  L / M  is an abelian pl-group. Hence P<>~_L<>=L/M. It follows that  

P<> ~-T/To, where T is a maximal split torus contained in L and To--MN T. Since X ( - )  

is simply-connected, M is a direct product of its simple components, and To is also a 

torus. The dimension of To is y'~.i~=l ICil, and therefore 

IX(F) : P(F)] ~ qle+l-E~=l lEvi 

and 

log0 P~  ] 
~l-2_ lC  I as q cr 

log q i=1 

Notice that  since P is proper parabolic, the Ci are proper subsets, and in particular, 
l n -~-~-i=1 ICil >0" It follows that  

(i) n 
lim h(P)= I § lEvi 

q- oo l - E i \ l  ICil 

Let Xi be the split absolutely simple simply-connected group having as Dynkin diagram 

the connected component Ci. Observe that  levi is the number of positive roots of Xi 

and [Cil is its rank. It follows that  the ratio R(Xi) defined in the introduction is equal 

to IE l/IC l. 
Now it is easy to check that  R(Xi)<R(X)=[~+I/I  for every proper non-empty 

connected subgraph Ci of the Dynkin diagram of X. We now use the following lemma 

and obvious induction: 

LEMMA 3. Suppose that a, b, c and d are positive real numbers such that a>b and 

c>d. Suppose that a/c>b/d. Then (a -b ) / ( c -d )>a/c .  

This shows that  
I'Ll--Ein:_l IE I >. n ( x ) ,  1 n IC l 

with equality if and only if n---O, i.e., when P is the Borel subgroup of X ( - ) .  

Case B. X is twisted. We assume that  the characteristic of F is bigger than 3, so 

the corresponding untwisted type X has Dynkin diagram with single edges, and with the 

exception of 3D4 (which can be treated similarly) )( has a symmetry T of order 2. Also, 

IF I__q2 and F is a quadratic extension of a field F0 of order q. 
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Type of E Root subgroup xE 

A l = { w = w  ~} {xw(t) l tEFo } 
A1 x A1 ={w, u=w ~ } {xw( t)xu(tq) ] tEF} 

A2 ={w, u=w ~, u+w} {x~(t)xu(tq)xu+~(s)lt, sEF and t+t q-ssq=O} 

T a b l e  1 

Then G = X ( F )  is the group of fixed points in )~(F) under the automorphism a:=~-r 

where ~- is the graph automorphism of )~(F) corresponding to the symmetry ~- with the 

same name, and r is the field automorphism of )((F) corresponding to the automorphism 

x~-~xq of GaI(F/F0). 

The type of G is X=2XE{2AI,2DI,2E6}. The root subgroups of G correspond to 

spans Z of orbits of roots of .~ under T, and are 1-dimensionM with the exception of 

E=A2, ocurring for 2A1 with I even. Table 1 lists the possible root subgroups, and 

there is a similar parametrization for the diagonal subgroup of G (see [GLS, Tables 2.4 

and 2.4.7]). 

Observe that (still excluding 3D4) 

where the right-hand side is computed in ,~(F) and the left-hand side x~ is a root 

subgroup of G=X(F) .  It easily follows that 

IGI ~ ~ .  

a parabolic P of a is the fixed points (/5)~, of a parabolic P of X(F)  which is defined 

by a T-invariant subset of the Dynkin diagram of J(. 

Here is an example of a parabolic of ~AT(-): 

c1 c~ ca c[ c ;  
�9 : ( .  \ �9 ] ' )  : �9 ~ | : ( ._, ) 

T 

From the above it easily follows that, in the notation of Case A, 

( i  ~ r~ 
[G: P] ~ V/[,~(F): 25(F)] ~ ql +l-Z-- lEd 

and 

[pO] ~ ~ ~,,qZ-E~=l Ic~l_ as q - + ~ .  
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The rest of the proof is the same as in the untwisted case. 

Finally, the case X =  3D4 is similar to the above, with the difference that  this time 

IF I__q3, Fo is a subfield of order q and we take cube roots of the corresponding values in 

the untwisted group Da(F).  

3.2. P r o o f  o f  P r o p o s i t i o n  2 

3.2.1. Reduction to atomic H.  A subgroup H of GELie*(p)  is called p-local if it nor= 

malizes a non-trivial p-subgroup of G. We shall use the Borel-Tits  theorem, which says 

that  the maximal p-local subgroups of GE Lie(p) are parabolic: 

THEOREM 8. (Borel-Tits [BT], [GLS, Theorem 3.1.1]) Let GELie*(p) be a finite 

quasisimple group of Lie type in characteristic p, and let R be a non-trivial p-subgroup 

of G. Then there is a parabolic subgroup P of G such that R<~Op(P) and NG(R)<.P. 

We shall distinguish between two cases for H depending on whether H is p-local 

or not. We refer to the latter case as atomic. It is the subject of w167 and 3.2.3. 

Assuming that  Proposition 2 is proved in the atomic case, we now complete the proof in 

general. Thus in this section we shall assume that H is p-local. Also, since we are not 

interested in the explicit values of the constants co and Cl, we shall be content to define 

them recursively from the cases of Proposition 2 for type X having strictly smaller Lie 

rank I. 

Now, by the Borel-Tits Theorem 8 above, we have that  H is contained in a proper 

parabolic p/. Choose pi  to be minimal parabolic containing H. Let U=Op(P ~) be the 

unipotent radical of P~, and let L be its Levi factor. 

Recall that  A is an abelian pl-subgroup in the centre of H=H/Op(H) .  Thus Op(H)= 

HAU, and so H~-HU/U. We can replace H by HU: in this way the index of H in G 

decreases, while A and _~ stay the same (up to isomorphism). Let H t be the isomorphic 

image of _H in L~P+/U, and identify A with its isomorphic image in H~<~L. 

The structure of L is explained in detail in Theorem 2.6.5 of [GLS]: 

PROPOSITION 4. Let G - - X ( F )  be a quasisimple group of Lie type, and let PI be a 

parabolic subgroup of G with Levi factor L. Define M to be the largest normal subgroup 

of L such that L / i  is an abelian p'-group (so L / M = ( P ' ) ~ ) .  

Then M is a central product of quasisimple groups L1, ..., La whose types correspond 

to connected subsets of the Dynkin diagram X of G. When G is universal (i.e., when 

X ( - )  is simply-connected), then each Li is universal and M is in fact the direct product 

of the Li. 
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Moreover there is an abelian p'-subgroup T=TL of L such that 
(1) Lo:=MT=MoT is a central product of T and M; 

(2) [L:L0]~<c3 for some constant c3 depending only on the type X; 
(3) T is a direct product of at most m=m(X)  cyclic groups whose orders are given 

by a finite set AC_Q[t] of non-constant polynomials in q, depending on X and P only. 

Now, let HLo=H'NLo and ALo=ANLo . Then [A:ALo]<~c3 and ALo<~Z(HLo). 

Put  HM=MNHLo and HT=HLoAT. Then HLo/HM is a quotient of T, so it is 

abelian, while HLo/HT is a quotient of M, so it is perfect. Therefore HLo=HMHT = 
HM oHT i s  a central product of HM and HT. 

Similarly we have that  ALo=AMoAT, where AM=MNALo and AT----ALoNT. 

For each direct factor Li of M, let Hi and Ai be the projections of HM and AM, 
respectively, in Li. Then Ai is in the centre of Hi, and by the minimality of the para- 

bolic P~, each Hi is atomic in Li. 

The atomic case of Proposition 2 applied to Ai <~ Hi <~ Li now gives that  there exist 

constants c(i), i =  1, 2, ..., k, sets of non-constant polynomials ,Si C_ Q[x] together with an 

abelian pt-group Ti, and a parabolic Pi of Li such that  

(1) Ti maps onto some subgroup Ai(O)<~Ai of index at most c(i) in Ai; 

(2) ITim<~lP~l/c(i) and c(i)[Li:Hi]>~[Li:Pi]; 
(3) Ti is product of boundedly many cyclic groups each having order f(q) for some 

fESi. 
Put  T'=I]~= 1Ti and A(0)=I-I~=I Ai(0)~<D:=I-]/k_I Ai. We have that  AM is a sub- 

direct product of the Ai. Hence AM embeds in D, so we can identify AM as a subgroup 

of D. Put  AM(O)=AMNA(O). Then 

k 

[AM: AM (0)] ~< [D: A(0)] ~< H c(i) =: c~. 
i----1 

Now AM(O)<~A(O), and by Pontryagin duality a subgroup of a finite abelian group 

is also a quotient. Therefore AM(O ) is an image of A(0), hence also an image of T'. 

Recall that  ALo=AMoAT. Therefore ALo is a homomorphic image of AM• 
under a map fl, say. 

Put  Ao=/3(AM(O) • and T=T'xTL.  Then 

[A:A0] <~ [A:ALo][ALo:Ao] <<. c3c~. 

On the other hand, AT is a subgroup, hence an image of TL, and therefore A0 is an 

image of T = T ~ • TL. 
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It is clear that  T satisfies condition (3) of Proposition 2 for the set of polynomials 

S=.AU31U ... U3k. It only remains to define the parabolic P: 

P := {P1, P2,..., Pk, B}, where B is the Borel subgroup of G. 

Then it is easy to see that  as q-+c~, 

k k 

[G:P] ~ [G:P']  1-I[Li:Pi] and IPOl ~ IPTMI 1-I IP~~ �9 
i = 1  i=1  

Also ITLI<~ IPP/MI �9 I Z(M)] with I Z(M)I bounded by a function of X alone (e.g. 21 where 

l is the untwisted Lie rank of G). Together with 

1 [G:P'][L:HLo] [ G : H ] - - [ G : P ' ] [ L : H ' ]  >~ c3 

and 

k 

[L:HLo] >~ M[L,:Hd 
i=1  

this easily gives that  condition (2) in Proposition 2 is satisfied for our choice of P,  T and 

appropriate constant co. 

This concludes the reduction of Proposition 2 to the atomic case, i.e., when H 

normalizes no non-trivial p-subgroup of G. This implies that  every representation of H 

over F is completely reducible. 

3.2.2. The atomic case I: Classical groups. By the remark after Proposition 3, it is 

enough to prove Proposition 2 for any of the isogeny versions of X ( - ) .  In this subsection 

we consider the case when X is a classical type. Thus we may assume that  G = X ( F )  

is one of the classical groups SLd, Sp d, SUd or 12~ acting on its associated geometry 

(V, f )  (see Chapter 2 of [KL] for the relevant definitions). Thus V is a vector space of 

dimension d over the finite field F with a form f :  V x V--+F such that  one of the following 

conditions holds: 

(a) 1=0;  

(b) f is non-degenerate symmetric or skew-symmetric; 

(c) f is non-degenerate Hermitian. 

Recall that  the characteristic p of F is assumed to be bigger than 3. In particular, 

this avoids problems with quadratic forms in characteristic 2. 
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LEMMA 4. Suppose that U<~ V is an irreducible H-submodule. Then either (U, f )  

is non-degenerate, or else U is a totally isotropic subspace for f .  

Proof. The assertion is clear in case (a) when f is identically 0. Therefore we can 

assume that  we are in case (b) or (c). Notice that  U • : = { v E Y i f ( u ,  v)=O for all u E V }  is 

an H-submodule of V, and therefore UA U • is a submodule of U. By the irreducibility of 

U it follows that  either UM U • in which case U is non-degenerate, or else U~< U • 

i.e., U is totally isotropic. [] 

The parabolic subgroups of the classical groups are the stabilizers of (chains of) 

totally isotropic spaces. Therefore the Borel-Tits theorem has the following implication: 

The group H <. G is atomic if  and only if H stabilizes no non-trivial totally isotropic 

subspaee of V. 

In case (a) this means that  V is an irreducible H-module. In cases (b) and (c) from 

Lemma 4 it follows that  all irreducible H-submodules of V must be non-degenerate, and 

then V decomposes as a direct sum 

v l  • v2 • ... • vs 

of pairwise orthogonal non-degenerate irreducible H-submodules. 

Thus we are led to consider the centres of irreducible linear groups preserving a 

non-degenerate form f .  In particular, we have the following lemma: 

LEMMA 5. Let H~<GL(V) be a finite linear group acting on a vector space V of 

dimension n over a finite field F. Suppose that 

(1) H is irreducible over F; 

(2) H preserves a form f: V•  V - + F  such that one of the following cases holds: 

(a) f=0; 
(b) f is symmetric or skew-symmetric, bilinear and non-degenerate; 

(c) f is non-degenerate Hermitian (in which case Aut(F) is assumed to possess 

an involution CT). 

Then there exists a finite extension E of F of degree s, say, such that H is iso- 

morphic to a group H'<~GL(Vt), where V r is an n/s-dimensional vector space over E 

and 

(1) H' is absolutely irreducible over E ,  i.e., CGL(V,)(H')=E*; 

(2) H ~ preserves some foTvn fl: VJx Vt_+ E such that 

(a) f ' = 0 ;  
(b) either (i) f '  is non-degenerate bilinear symmetric or skew-symmetric, or 

(ii) f '  is non-degenerate Hermitian and the involution a 'EAut (E)  fixes F; 

(c) the form f '  is non-degenerate Hermitian, and the involution a~EAut(E) re- 

stricts to a on F. 
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COROLLARY 2. In the situation of Lemma 5 above, let Z be the centre of H. Then 

Z <.E', where the abelian p'-group E I is defined below for each case: 
(a) EI : - -E  *, a cyclic group; 

(b)(i) E ' : = { + I } ;  

(b)(ii) and (c) E' := {xEE* l x~'=x-1}, a cyclic group of order ~X/~ +1. 

We delay the proof of Lemma 5 to w 

Now return to the problem. 

Case (a): G=SLd(q). Let E=EndFH(V) be the splitting field for the irreducible 

H-module V. Then s = d i m f E  divides the dimension d of V. If s - - l ,  take T=I .  

In case s > l ,  take 

T = {x E E* ] det x = (NOrmE/FqX) d/~ = 1} = E*N SL(V), 

a cyclic group of order f~,~(q)=e(q~-l)/(q-1),  where e = ( q - l , d / s ) .  Again, A is a 

subgroup, hence a quotient of T. Set S={f~,~(q)=e(q s - 1 ) / ( q - 1 ) l e  and s > l  divide d}. 

Take Ao=A and define P to be the stabilizer of the chain 

{o}<u~<...<U~_l<V 

of subspaces U~ with dim Ui--di /s, i=l ,  2, ..., s - 1 .  If s = l  then P=G.  

Then logq IP<>l ~ s - 1  and logq[G:P] ,.~ �89 

On the other hand, H<~EndE(V)nSL(V, F), and therefore 

logq[G:H] ~ > d 2 - 1 - ( ~ - 1 ) = d ( d -  d ) .  

Thus [G:H]~[G:P] and ITI/IP<>I=O(1 ) as q-+oc, and we are done. 

Case (b): f is skew-symmetric or .symmetric, and G is either SPd(q ) or Did (q ). 

Lemma 5 the module V decomposes as a sum of irreducible modules 

By 

(yl e. . .  �9 y~) �9 (w1 e.. .  ~wn),  

where each Vi has a splitting field Ei and non-degenerate bilinear (symmetric or skew- 

symmetric) form hi, say, over Ei preserved by H. On the other hand, each Wj carries a 

non-degenerate Hermitian form/t j  over its splitting field Kj. Let Vi p (resp. W~) denote 

Vi (resp. Wj) considered as vector space over Ei (resp. Kj) together with its associated 

non-degenerate form hi (resp. hi). 

Let sj=[Kj:F]. By Lemma 5 (2)(b)(ii), the numbers sj are even, and Kj has an 

automorphism aj  of order 2 fixing F. 
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Then A acts on each irreducible V/' as {+1}, and on each W~ as {xeK] lxx~J=l} ,  
a cyclic group of order f j (q)=q~/2+l.  Therefore it embeds in 

{-F1}mXT, where T:-=fiCfy(q). 
j = l  

We take Ao=ANT,  where T is as defined above. Set S={fl, f2, ...,fd} and a0:2 dimX, 
say. We only need to define the parabolic P: 

Observe that  H embeds in the direct product 

M := X ( V [ ) x  ... x X(V~)  x U(W~)x ... x U(W~), 

where X e  {Sp, ~+ } as appropriate, and logq ]T I ~ �89 (Sl +.. .  + s n ) = s ,  say. 

Let V0 =V1 •... @ Vm and di =dimfq  W/~, i = 1, 2,..., n. Each of the numbers di is even. 

We have that  

I V ( W ' ) l  ~ q ~'/2(d'/~')2= qd~/2~,. 

Clearly M is a subgroup of M':=X(Vo)x  U(W~)x ... x U(W~). 

Let t =  1 (dl -t-...-t-dn) and consider the chain 

{0} =Uo < UI< ... < Ut < V 

of t totally isotropic spaces in V, each Ui having codimension 1 in U i +  1 . Let P be the 

parabolic in G which is the stabilizer of this chain. Then IPO[~qt>~qS,.~[TI, and we 

claim that  [PI~>[M'[: 

It is easy to see that  P has a group isomorphic to X(Vo) as a quasisimple component 

of its Levi factor. Moreover, by its construction the unipotent part  of P has dimension 

at least equal to the number of positive roots in a root system of type Dt, i.e., t ( t - 1 ) .  

Hence 

IfJ/> JX(Vo)l.JP<>lq t(t-~) >1 JX(Vo)lq t~. 

On the other hand, IM'I=IX(Vo)I l-]i~l IU(W~')I. Together with 

n T t  

l~ [U(W/~)[ < ~ �88 < t 2 
i = l  i=1  

this justifies the claim, and we are done. 

Case (c): f is non-degenerate Hermitian and G=SUa(q). The d-dimensional F- 

vector space V decomposes as an orthogonal sum V=VI•  ...-l-Vm of irreducible mod- 

ules V/. By Lemma 5 there are finite fields E / such  that  each V/is an absolutely irreducible 
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EiH-module  Vi ~ which has a non-degenerate Hermitian form hi over Ei, preserved by H.  

Thus H embeds in 
m 

SL(V) nH 
i = 1  

Define Gi=U(Vi ~) for i = l , 2 , . . . , m .  Let Hi and Ai be the projections of H and A, 

respectively, into Gi. Then H < S L ( V )  nl-Im_l Hi and A <S L(V )  NHiml Ai. 

Let di =dimF V~ and si----dimF Ei. Note that  by Lemma 5 (c) M1 the si must be odd. 

Recall that  in this case F is a quadratic extension of a field F0 of order q. Let a~ be the 

unique automorphism of order 2 of Ei, and for i=1 ,  2, ..., m set 

Ti = {xE E~ l x~=x-1}, 

a cyclic group of order qS~ + 1. 

that  Ai <~ Ti. Therefore 

Since Vi is absolutely irreducible by Corollary 2 we have 

m 

A < M= SL(V)N I-I Ti. 
i = l  

When i=m and 8m:1 set I = 1 ;  if 8m>l then set 

I= {xeE*  l x ~  -1 and d e t x =  (NOrmE,~/F(x))d'~/~m= 1}. 

It is a cyclic group of order fe,~m(q):=e(q~m+l)/(q+l), where e=(q+l,d/sm). The 

index of the group IF*NTm in Tm is at most d, and therefore by passing to a subgroup 

of index ~ d  in A we may assume that  

A <  M ' : :  SL(V) A (T1 x ... xTm-1 x ( /oF*)) .  

Let A0 be the image of A under the projection ~r: M'-+T1 • x Tm-1 • I. Then we have 

IkerTrAA[<[F*AIl<~d , and so IAo[>~IAI/d. Therefore A0 is isomorphic to a subgroup 

of A of index at most d which embeds in 

T := TI • • I. 

As in case (a) it follows that  each Hi has size at most qd[/~{, and hence logq IHI~< 

(~-:~=1 d~/si)- 1. We set T as above and 

S={qS+l,e(q~+l) t } 
- -  s and e divide d, and s is odd . 

q + l  

Thus T is a product of at most m ~< d cyclic groups whose orders are given by poly- 

nomials from S, and moreover, logq ITI ~ (~-~iml Si)--1. The only thing remaining is to 

find an appropriate parabolic P satisfying condition (2) of Proposition 2. 
m m �9 

Set v=~i=l si. Clearly v<~-~i= 1 d i : d = d l m F  V. 

Now, consider the following chain of [�89 totally isotropic spaces in V: 

{0} = Uo < U1 < U2 < ... < U[v/2], (1) 

where each Ui has codimension 1 in Ui+l. Let P be the parabolic stabilizing the chain (1). 
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Now, if v=l then P=G=SUd(q), and we are done. Below we assume that  v ) 2 .  

Then 

logq IP~l ~ 2[�89 ) v -  1 ,-~ logq [Tl, 

and it is easy to see that  

logq IPI/> �89189 

Now use the following easy result: 

LEMMA 6. Given positive integers d and v, the maximum of the expression 

m d~ Z -  
i = l  8i 

where si,diEN are subject to si]di, d=dl +...+dm and v=sa +...+Sm, is 

(d - (v -1) )2+v-1 ,  

and this maximum is achieved for di=si=l for all i=2 ,3 ,  ...,m. 

It follows that  logq IHl<~(d-(v-1))2+v-2. Thus, in order to prove that  IPI>~IH] 

we need to check that  

(d - ( v -1 ) )2+v-2  <. �89 

which is in turn equivalent to (v-2)d>~�89 and this inequality holds because d~> 

v~> 2 by our assumption. 

This completes the atomic case for the classical groups. 

3.2.3. The atomic case II: Exceptional groups. In this subsection we assume that  

G = X ( F )  is a finite quasisimple group of exceptional type in characteristic bigger than 3, 

so XE{E6, E7, Es, 2E6,304, G2, F4} (note that  2/)4 is not regarded as exceptional since 

it represents the orthogonal group f ~ ) .  

We shall need some information on centralizers Cc(x) of (non-central) semisimple 

elements of G. The general structure theory of such centralizers is given in [GLS, The- 

orem 4.2.2]. In our case, the Lie rank X of G is relatively small (at most 8), so the 

possibilities for the components of Ca(x) are quite limited. In fact, every such cen- 

tralizer is contained either in a parabolic, or in a maximal subgroup M of G listed in 

Tables 5.1 and 5.2 of [LiSS] (the so-called groups of maximal rank). 

Recall that  in the atomic case A is a subgroup of the centre of H.  Provided IAI 

is big enough (i.e., IAI>K for some constant depending on X only), then A contains a 
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semisimple element x outside the center of G. Then A lies in a maximal torus T I of G 

and H<~Cc(x). Now, in general, Co(x) is either contained in a parabolic of G, or else it 

is contained in a reductive subgroup of maximal rank of G, see Theorem 4.2.2 of [GLS]. 

However, the former possibility is excluded in the atomic case. 

The (maximal) subgroups of maximal rank of the exceptional Lie groups have been 

described by Liebeck, Saxl and Seitz, and the list can be found in Tables 5.1 and 5.2 

of [LiSS]. Thus we can assume that  H<~Cc(x)<.M, where M is one from the lists in 

Tables 5.1 and 5.2 of [LiSS]. 

(a) ]M]=O(IBI). Observe that  if IM I is less than a constant times the order of the 

Borel subgroup B of G, then we can take the torus T = T  ~ as the required abelian group T 

and set A=Ao: We have A ~ T ,  whence A is also an image of T and ]Tl~q z as q-+oo. 
Moreover, T is a direct product of at most 1~8 cyclic groups each having order fi(q), 

where fi  is from some finite set S of monic polynomials depending only on the type X 

of G. 

Clearly H ~ M ,  and if IMI~calBI for some constant c3, then [G:H]>~[G:B]/ca and 

B <> is isomorphic to the split maximal torus of G, hence IB<>]~ITr I as IGI--+oc. 

Therefore T and B satisfy the requirements in Proposition 2 for appropriate con- 

stants Co and Cl. 

(b) IMI >/]B]. The cases where M is larger than the Borel subgroup B are very few: 

for example, the possibilities for M in [LiSS, Table 5.2] are normalizers of maximal tori 

and have order bounded by cq z for some absolute constant c (and l is the Lie rank of G),  

easily giving that  IMI <IBI. 

By examining Table 5.1 of [LiSS] we list in Table 2 the possibilities for the structure 

of those M (up to eonjugacy). Recall that  q= IF01, and let d, e and h denote appropriate 

integers (explicitly defined in [LiSS], but  we only need that  they are all bounded by an 

absolute constant). As usual A . B  denotes an extension of B by A, and a is a cyclic group 

of order a. The asymptotic ,-~ in the last column means that  as q--+oc the quantity tends 

to the constant specified. 

The rest of the argument proceeds on a case-by-case basis: 

(1) Suppose that  a=F4(q) and M=d.B4(q). Thus M is a classical quasisimple 

group. By the argument in w applied to H<~M we can find groups A0 and T, and 

a parabolic P0 of M, such that  the conclusion of Proposition 2 is satisfied for H and P0 

in M. For example, c[M:H]>.[M:Po], ITl~<clP0~l, etc. We use the same groups A0 

and T, and we just need to find a parabolic P of G=Fa(q) such that  

IPoI=O(IPI) and IPo~I=O(iP<>I) as q--->~. 
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G 

F4(q) 
E6(q) 

2E6(q) 

E7(q) 

Es(q) 

M logq IM] ~,- logq [B I,-~ 

d.B4(q) 
h.(Db(q) x (q-  1)/h).h 
h.(2Db(q) x (q+ l )/h).h 

e.(E6(q) x (q-1)/e).e.2 
e.(2E6(q) • (q+ l )/e).e.2 

d.(A1 (q) • ET(q)).d 

36 

46 

46 

79 

79 

136 

28 

42 

42 

70 

70 

128 

T a b l e  2 

Now, there are not many possibilities for the parabolic P0 in M--B4(q), and clearly 

if [Po[=O([B[) then P=B, the Borel subgroup of G will do. It turns out that  there is 

just one parabolic P0 which fails to have order less than the Borel subgroup, and it is 

the largest parabolic Pmax of M which has order about q29. However, ]P~max[=O(q), and 

therefore in this case we can take P to be the parabolic of maximal size in G (which has 

dimension 37 as an algebraic group, and IP<>[,,,q). 
(2) The rest of the cases for M are even simpler: In all of them, M has a subgroup 

of 'small' (--absolutely bounded) index which is an extension J-+M-+C x D of a direct 

product of two groups C and D by a 'small' central subgroup J.  By going to a subgroup 

of small index in H and then factoring J ,  we may assume that  H<~C• Moreover, 

D is a reductive group of rank 1 (either a torus or A1), and C is one of the simple groups 

Db, ~Db, E6, 2E6 and E7 over F. 

Let Hc and Ac be the projections of H and A, respectively, into C. If Ac#I ,  
then He is contained in Nc(Ac), which is a subgroup of maximal rank of C. Therefore 

[C:Hc]>~i(C), where i(C) is the smallest index of a subgroup of maximal rank of C, 

and IHI <~e ICI. IDI/i(C) for some absolute constant e. Now the numbers i(C) for C=E6, 
C=2E6 and C=E7 are easy to find from Table 5.1 of [LiSS], and for C=D5 and C=2D5 

lower bounds for i(C) can be found in [C]. Direct computation then shows that  IHI= 

o(]BI), so we are in the same situation as in case (a). 

Therefore we can assume that  the projection of A<~Z(H) into C is trivial. It follows 

that  A is a bounded extension of its intersection A(D)--A N D with D, which is contained 

in a 1-dimensionM torus T1. 

Thus we can select a subgroup A0 of small index in A, which is an image of T1, and 

for P we take the parabolic of maximal size in G. It is certainly larger than M, and P<> 

is 1-dimensional, i.e., logq ]P<>[~I, and so P satisfies the conditions of Proposition 2. 

This completes the proof of Proposition 2 in the atomic case. 

Theorem 7 has now been proved in full. 
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3.2.4. Proof of Lemma 5. This is well known, but we were unable to find a reference 

for it in the literature, and we provide the following ad hoc proof. 

Recall that  an FH-modu le  V is called absolutely irreducible if CGL(v)(H)=F*, or 

equivalently, if V stays irreducible over the algebraic closure of F. 

Let E=EndFH(V). By Schur's lemma, E is a finite division ring, and so it is a field. 

Say that  s = [ E : F ] .  Then V becomes a vector space V' over E of dimension n/s, and 

G<~GL(V'). Moreover, V' is an absolutely irreducible EG-module .  

Case (a) is now finished by setting f'=O. For cases (b) and (c) we need to work 

more: 

The non-degenerate form defines an ant iautomorphism A~-~A* of End(V)  of order 2 

given by 

f (Au,  v) = f(u, A'v)  

so tha t  A* is the adjoint of A with respect to f .  It  is easy to see that  E is stable under 

the adjoint map, and hence it induces an automorphism a' of E of order at most 2. In 

case (b), a' fixes F, while in case (c), a'lF=a. Moreover, as H preserves the form f we 

have that  g . = g - i  for all gEH. 

Set ~--1 unless f is skew-symmetric bilinear when we set ~ = - 1 .  

LEMMA 7. In the situation of cases (b) and (c) there are a non-degenerate forth 

f': Y'xY'--+E and an F-linear functional h: E--+F such that h(x~')=~h(x) ~ and f =hof'. 
The form f '  is bilinear (symmetric or skew-symmetric) if a '=l ,  and Hermitian or skew- 

Hermitian if a ' r  l. More precisely we have 

f ' (v,u) =~f '(u,v)  ~'. (2) 

Proof. Fix vEV and define h(x):=f(xv, v). I t  satisfies the requirements of the 

lemma. Now, for any pair of vectors u, w E V  there is a scalar A(u, w ) E E  such tha t  

f (xu,  w)=h(A(u,w)x)  for a l l x e E .  

Then A(w, u)=~A(u, w) ~'. 
Let vl,  v2, ..., vk be a basis for V=V'  over E (so k=n/s).  Define f '  by 

k k 

- -  j = l  l<i,j•k 

Then (2) is satisfied, and it is easy to see tha t  f=hof ' .  [] 

We claim tha t  H preserves the form f ' :  
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For a fixed g E H consider another form f~': V'• V ~----~E defined by 

f"(u, v) = f'(gu, gv)- f ' (u ,  v). 

It is of the same type (bilinear or Hermitian) as f', and 

hof"= f(gu, gv)-  f(u, v) = O. 

Thus f "  (V', V t) q ker h < E giving that  f "  = 0. This proves the claim. 

To finish the proof of Lemma 5 observe that  when s = - 1  and a ~  1, the form f~ is 

skew-Hermitian. But we may consider instead the form #f~, where # ~  and this 

form is Hermitian. (Recall that  the characteristic of E is odd, and therefore such # c E  
always exists.) [] 

4. T h e  lower b o u n d  

In this section we return to the notation from the introduction. Thus G denotes a simple, 

simply-connected, connected algebraic group defined over a number field k. As explained 

at the beginning of w we can further assume that  G is absolutely simple. Fix a linear 

representation of G, and let F be an arithmetic subgroup of G. 

The group G is called k-quasisplit if G contains a Borel subgroup defined over k, 

and G is k-split if it contains a maximal k-toms which is k-split. 

Recall that  in [GLP] the lower bound from Conjecture 1 was stated and proved for 

split G. Below we show that with a little modification the same proof applies to the case 

when G is not necessarily split. 

We shall need several basic results from Galois cohomology, which can be found 

in [PR, w Let Go be the split form of G (so Go is a Chevalley group of type X, 

say). Given Go, the possibilities for the k-isomorphism type of G are parametrized 

by Hl(Gal(k/k),Aut~(Go)), the first cohomology group of the absolute Galois group 

Gal(k/k) with values in Aut k (Go), which is usually written as H I (k, Auto(G0)). 

In turn, Auto(G0) is a semidirect product of G=G/Z(G)=Ga, the adjoint form of 

G by Sym(X), the group of symmetries of the Dynkin diagram of X preserving edge 

lengths: 

> Aut~ (G0) > Sym(X). 

This gives rise to the exact sequence of (non-commutative) cohomology 

Hi(k, G) ~ Hi(k ,  Autk(G0) ) %.~ Hi(k, Sym(X)). 
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The group Gal(k/k) acts trivially on Sym(X),  so that  the last term is simply the 

conjugacy classes of homomorphisms of Gal(k/k) into Sym(X).  We observe that  when 

Sym(X) is non-trivial, it is usually a cyclic group of order 2, with the exception of X =  D4, 

when it is $3. 

The preimage of the trivial homomorphism from Hl(k,  Sym(X))  by c~ inside 

H 1 (k, Auto(Go)) parametrizes the inner forms of G; the rest are called the outer forms. 

Moreover, each fibre of c~ contains a unique k-quasisplit representative, and for inner 

forms this is the split form Go. For example, if k ~ is a quadratic extension of k, the 

quasispiit group SU~+I(k') is an outer k-form (denoted 2A~) of X=A,~, and the split 

form is SL~+I(k). The following proposition (to be used in w says that  we can always 

find an extension E of very small degree over k such that  G becomes an inner form 

over E: 

PROPOSITION 5. Let G be an absolutely simple, connected, simply-connected alge- 

braic group over a number field k, and suppose that G is not a form of D4. Then there 

exists a Galois field extension E /k  such that [E:k] ~2  and G is an inner form over E. 

If  G is a form of Da, then such an E exists with [E:k]=l, 2, 3 or 6, the latter 

possibility arising only when G is of type 6D4. 

Proof. This is a consequence of the fact that  Sym(X) is a small group. Let uE 

H 1 (k, Auto(G0)). We have to prove the existence of a Galois field E such that  the image 

~oa(u) in the commutative diagram below is trivial in Hi(E ,  Sym(X)):  

H 1 (k, Aut~ (Go)) ~ > H 1 (k, Sym(X))  

Hl(E ,  Aut~(ao)) ~ , HI(E,  Sym(X)) .  

Now c~(u)E H 1 (k, Sym(X))  is represented by a homomorphism Gal(k/k)-~ Sym(X).  

Let Y<~Gal(k/k) be the kernel of this homomorphism and let E be the fixed field of Y 

(so that  Y=Gal(~:/E)). Prom the definition of E it follows that  boc~(u)=l=~oa(u), and 

we are done. [] 

Let E be the field given by the above proposition, and suppose that  p is a rational 

prime which splits completely in E.  Let ~r be a prime ideal of the S-integers O s ( E )  of E 

lying above p, and set 7r~= Os n 7c. 

Then 

O s ( E ) / ~  ~- O s / ~  ' ~  - Fp, 

and hence G(Os/TJ)=G(Fp) is an inner form of G over Fp. 
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Let the prime p E N  be as above. By Lang's theorem each connected algebraic group 

over a finite field is quasisplit, and so with the strong approximation theorem we conclude 

that  for almost all such p the group F maps onto the split Chevalley group G(Fp)=X(p)  

of type X over Fp. Notice that  these axe the same images used to prove the lower bound 

in [GLP] in the case of split G. More precisely, the following theorem is proved there: 

THEOREM 9. Suppose that G is a split ChevaUey group, and that k is contained in 

a Galois field K over Q. 

(i) Assuming the GRH we have 

(r)/> 
2 

4R 2 

(ii) Moreover, part (i) holds unconditionally if Gal (K/Q)  has an abelian subgroup 

of index at most 4, or if deg[K: Q] <42. 

The proof of Theorem 9 in [GLP] used only the finite images of F of the form 

G(Os/Tr')=G(Fp), where p is a rational prime which splits completely in K.  Therefore 

the same argument proves Theorem 2 (B). 

5. Lat t i ce s  in Lie g r o u p s  

In this section, H denotes a semisimple group of characteristic O. By this we mean that  
H r -- l -L=1Gi(Ki) ,  where for each i, Ki is a local field of characteristic 0 and Gi is a 

connected simple algebraic group over Ki. The rank of H is defined to be 

T 

rank(H)  = ~ rankK~ (Gi). 
i = 1  

We assume throughout that  none of the factors Gi(Ki) is compact (so that  we have 

rankK~(Gi)/>l). Let F be an irreducible lattice of H,  i.e., for every infinite normal 

subgroup N of H,  the image of F in H / N  is dense there. 

Assume now that  rank(H)/>2. Thus by the Margulis axithmeticity theorem, F is an 

S-arithmetic lattice. More precisely: 

THEOREM 10. ([Ma, Theorem 1]) There exist a number field k, a connected ab- 

solutely simple algebraic group G defined over k, and a finite set of valuations S of 

k containing V~, such that H is isomorphic to GT=I]v~T Gv for some set TC_V of 

valuations of k, and moreover, 

(1) F is the image of some S-arithmetic subgroup of G under the embedding G(k)-+ 

rIveTGv; 
(2) for all v c S \ T ,  the group Gv is compact. 
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Note that  the split form of G is uniquely determined by the split form of the simple 

factors of H, which are necessarily of the same type. We set 7 ( H ) : = v ( G  ), defined in 

the introduction for the split form of the algebraic group G. 

Since F is commensurable with G(Os) the two groups have 'roughly the same' 

subgroup growth. This statement can be made precise, see Proposition 1.11.1 of [LuS]. 

Passing to the simply-connected cover of G also does not affect the asymptotics of the 

subgroup growth (see Proposition 1.11.2 of [LuS]), and therefore we can assume that  

G is in fact simply-connected. As S-rank(G)=rank(H)>~2, Serre's conjecture (on the 

finiteness of the congruence kernel of G(Os),  see [S] and also w of [LuS] for definition) 

gives that  the congruence subgroup growth of G(Os) is asymptotically the same as its 

subgroup growth. 

Now the results of the previous sections (which rely on the GRH at one point: 

Theorem 2 (B)) imply that  

logsn(V) = lim logCn(G(Os)) =7(G) .  
l i n a  (log n)2/log log n n--+~ (log n)2/log log n 

Thus Theorem 3 is now proved modulo the validity of the generalized Riemann 

hypothesis for number fields and Serre's conjecture on the finiteness of the congruence 

kernel. In fact, we have proved more: 

THEOREM 11. Let H be a semisimple group with rank(H)>~2. Assuming the GRH 

and Serre's conjecture, then for every irreducible lattice F of H the limit 

lim log sn (F) 
n-+~ (log n)2/log log n 

exists and equals ~/(H), i.e., it depends only on H and not on F. 

5.1.  P r o o f  o f  T h e o r e m  1 

When H is simple and not locally isomorphic to D4(C), and F is a non-uniform lattice 

(i.e., F \ H  is non-compact), we can remove the dependence on the GRH and Serre's 

conjecture above: 

Indeed, then T must consist of a single valuation, and as F is non-uniform, G is k- 

isotropic. Therefore Gv is never compact for any v E V. It follows that  S--T; in particular, 

k has only one archimedean valuation. Hence k is either Q or an imaginary quadratic 

extension of Q. 

Recall that  with the exception of G =  6D4 the extension E given by Proposition 5 

has degree at most 3 over k. In that  case the Galois closure K of E over Q is rather 
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small: Its Galois group A:=  Ga l (K/Q)  has subnormal series 

A ~>AlC> A2, 

where [A: A1] ~ 2, [AI:  i 2 ]  ~ 3 and A2 is core-free in A. An easy group-theoretic argument 

now gives that  IAI=[K:Q] divides 18 or 8, and for such fields K,  Theorem 2 (B)(2) is 

true unconditionally. 

When G is 6D4 then E/k  may have degree 6 and Galois group $3, and then [K:Q] 

divides 72. The only case not covered by Theorem 2 (B)(2) is when the degree is ex- 

actly 72. Indeed, this is the reason that  we exclude D4(C): In this case we must have 

that  k is an imaginary quadratic extension of Q, so H is locally isomorphic to D4(C). 

If the form of F comes from a form of type 6/)4 we need to use the GRH. For the other 

lattices in D4(C) the result is true unconditionally. 

Finally, note that  when G is k-isotropic the t ru th  of Serre's conjecture has been 

verified: see Theorem 9.17 of [PR]. 

Theorem 1 is now clear. 

6. Concluding remarks 

Let us relate the results of this paper with those of [BGLM] on one hand, and those of 

[LiS] and [MP] on the other hand. 

Theorem 11 above gives a very precise estimate for the subgroup growth of lattices 

in higher-rank semisimple groups, By way of contrast, when H is of rank 1 then the 

type of growth is in general very different: type n n instead of n l~176176 (See [LuS, 

Chapter 7.2] for a detailed discussion; only partial results are known.) 

Thus, if r a n k ( H ) = l  and F~<H is a lattice, it is natural to t ry  to study the as- 

ymptotic behaviour of log s, ,(F)/nlogn. The following result has been proved recently 

independently by Liebeck and Shalev and by Mfiller and Puchta: 

THEOREM 12. (ILLS], IMP]) If  H = P S L : ( R )  and F is a lattice in H, then 

lim l o g s n ( F ) _  X(F), 
, , ~  log n! 

where x(F) denotes the Euler characteristic of F. 

The proof of Theorem 12 relics on the explicit known presentations of lattices in 

PSL2(R) (which are Fuchsian groups). Thus one cannot expect these methods to work 

for the general groups of rank 1. They still may be extended to the case of groups of 

rank 1 over non-archimedean local fields of characteristic 0. For such an H every lattice 
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is cocompact and virtually free. The group H= PSL2  (Qp) is an interesting first test case. 

For some explicit presentatations of lattices there, see [LuW]. 

We should mention, however, that  Theorem 12 in its current form is not true for 

general lattices in other simple groups of rank 1. Indeed, if H=PSL2(C)  and F is a 

cocompact subgroup of H, then it follows from Poincard duality that  X(F)=0. On the 

other hand, there exist cocompact lattices in PSL2(C) which are mapped onto non- 

abelian free groups, see [Lu]. For such lattices, clearly 

lim log sn(F) 
~ log n! 

is positive, if it exists. A similar remark applies to SO(n, 1), when n is odd. (Note that  

PSL2(C) is locally isomorphic to SO(3, 1).) 

Recall that  with a suitable normalization of the Haar measure on PSL2 (R), for every 

lattice F in PSL2(R) we have -x(F)=vol (PSL2 (R)/r). One may speculate and suggest 

that  for a general lattice F in G=PSL2(C)  (or G=SO(n,  1)) the limit 

lim log s~(F) 
~ - ~  log n! 

exists and is proportional to the covolume of F in G. This may be a possible way to 

extend Theorem 12 to more general groups of rank 1. 

It is also of interest to relate the results of the current paper to those of [BGLM]. 

There, the following invariant of a simple Lie group H was studied: For rCR+ denote 

by OIH(r) the number of conjugacy classes of lattices of H of covolume at most r. By 

a result of Wang this number is finite if H is not PSL2(R) or PSL2(C). It is proved 

in [BGLM] that  for H--SO(d, 1), d~>4, there exist two positive constants a(d) and b(d) 
such that  

a (d) r log r ~ log (~H (r) <~ b(d ) r log r 

for all sufficiently large r. It is further conjectured there that  for simple Lie groups H of 

higher rank there exist a(H) and b(H) such that  

a(H) (l~ < logc~H(r) < b(H)(l~ 
log log r log log r" 

The results of the current paper support a stronger conjecture: the limit 

lim log O/H ( r )  
r - ~  (log r)2/log log r 

exists and equals T(H). 
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