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A good part of Enumerative Geometry,  in its modern version, may be viewed as 

seeking to compute and "unders tand"  fundamental classes of loci of configurations of 

figures, say points on a variety, satisfying natural geometric conditions. The difficulty 

of the problem often has much to do with the degenerate configurations, i.e. those 

whose points may coalesce in complicated ways. The curvilinear configurations are 

those which can degenerateat  most like points on a smooth curve. The purpose of this 

paper is to develop a point of view, going back to Severi [23] and Le Barz [14], which 

leads to a solution of a good number of enumerative problems involving curvilinear 

configurations. This point of view consists in realizing natural loci of interest as 

intersections, in the following manner: 

We are given an embedding X c Z ;  Xk or Zk are suitable spaces parametrizing k- 

tuples on X or Z (which need not be precisely defined here), and Bk~Zk is a certain 

subspace, which should be thought of as well-understood and well-behaved. Then the 

locus of interest is the intersection. 

X~ nB k c Z k. 

Provided all these spaces can be reasonably defined, this viewpoint clearly shifts, in a 

6-858288 Acta Mathematica 155. Imprim~ le 28 aoflt 1985 
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sense, the weight of the problem to performing the above intersection; for this, 

however, we have the well-oiled machine of intersection theory at our disposal. 

Examples. (1) The case originally considered by Severi is where X is a curve in 

Z = P  3, k--3, and B 3 consists of the triples of points which are aligned, i.e. lie on a line. 

Thus X3 nB 3 consists of the aligned triples on X, i.e. essentially the trisecant lines of X. 

Severi's idea was recently resurrected and modernized by Le Barz [14], [15], who took 

for Zk the curvilinear Hilbert scheme (see below), and was able by this method 

essentially to compute the cycles of multisecant lines to curves and surfaces in 

arbitrary projective spaces. 

(2) Let f.'X--, Y be a map, take Z=Xx Y and let F c Z  be the graph of f .  Note the 

natural embedding Xk• Y~Zk and let B k be its image. The Ok=FknB k, the united k- 
tuple locus off ,  parametrizes essentially the k-tuples on X mapped to a single point by 

f ,  and contains in particular information about the multiple points of f (c f .  Kleiman [9] 

who, however, takes a different point of view on these). 

In order to make good on this approach for enumerative geometry what one must do 

is to compute the intersection-cycle [Xk].[Bg], where [.] denotes fundamental class; 

actually, in view of the well-understood nature of the embedding Bk~Zk, it turns out to 

be sufficient to compute [Xk]. More precisely, what one must do is to define Xk and Zk 

suitably, so that [Xk] can be computed. This causes some difficulty if one considers 

arbitrary k-tuples, and for this reason we restrict ourselves to curvilinear ones. For 

these, however, it turns out that an adequate parameter space has already been 

constructed by Kleiman [8]: it is a smooth compactification of the space of "ordered"  

curvilinear length-k schemes. 

The main results obtained in this paper are as follows: 

(a) A general formula, essentially in terms of Chern classes, for the fundamental 

class [Xk] ~A'(Zk), for an embedding of smooth varieties X~Z/S (Theorems 4.2 and 

4.3). 

(b) A representation of the loci of aligned k-tuples (k-secant lines) of a family of 

projective varieties, or k-secant spaces of arbitrary dimension to a family of smooth 

curves, as the zero-set of a section of a vector bundle, refining a construction of 

Schwarzenberger [22]. The Chern classes of these vector bundles are computed. In the 

case of curves this simplifies somewhat, and extends to the relative case, formulas of 

MacDonald [17] and Mattuck [18]. Applying this in the usual manner to special 

divisors, one obtains formulas for various cycles associated with these and in particular 

formulas for the classes of the loci, in the moduli space of curves, of curves carrying a 

given type of linear series; these all turn out to be polynomials in certain standard 
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classes introduced by Mumford [19] (Propositions 5.3 and 5.4, Corollary 5.5, Theorem 

5.6 and Example 5.7). 

(c) A formula enumerating the united k-tuples of a map, valid "away from the ~qz- 

locus" refining Kleiman's results [9, 10] and extending their range of validity (Theo- 

rems 6.5 and 6.8 and Corollary 6.9). 

It is an essential feature of our (and Le Barz's, but not Kleiman's) approach that 

the formulas obtained are shown to be valid whenever they make sense, i.e. whenever 

the locus in question has its "expected dimension" (many of the concrete conse- 

quences of our results could also be obtained, but with further hypotheses, by existing 

methods). The importance of proving enumerative formulas in this generality was 

already stressed by Hilbert in his 15th problem. In fact in applications of enumerative 

geometry, such generality is often crucial. For instance in one common sort of such 

application (see for instance [12]), especially to situations over which one does not have 

good control, one wants to conclude that a certain locus is nonempty by showing that 

the formula for its fundamental class yields a nonzero answer (for this type of applica- 

tion, Kleiman's results [9, 10] are useless, because of his "genericity" hypotheses). As 

examples of such applications of the methods of this paper, see [20], [21]. 

This paper is mostly devoted to general principles and methods. Further applica- 

tions, examples, special cases and computations will be given elsewhere. 

In this paper everything will be done over a fixed,arbitrary, base scheme S (unless 

otherwise mentioned). We will generally deal with smooth spaces Z/S (I haven't 

seriously considered the singular case). We will use as intersection theory the Chow 

ring A', but any coarser theory will do as well. 

Acknowledgement. This paper, like any paper in this hoary subject, owes a good 

deal to previous works. I have been particularly influenced by ideas of Le Barz and of 

Fulton and Laksov. In addition, I would especially like to thank W. Fulton and F.-O. 

Schreyer for stimulating conversations and encouragement. 

1. The spaces Zk 

In this section, we shall recount Kleiman's construction ([8] p. 390) of certain spaces 

Zk parametrizing k-tuples of points on a variety Z. As Kleiman's description of these 

spaces is not quite sufficient for our purposes, it will be convenient to start from 

scratch. 

The construction of Zk can be motivated by the classical concept of "infinitely-near 

points": e.g. i fZ  is the plane and Z' is the blow-up of Z at the origin 0, with exceptional 
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divisor E',  then points z' E E' represent "pairs of infinitely near points" on Z containing 

0; if Z" is the blow-up of Z' at z' with exceptional divisor E", then points z"EE" 

represent triples of infinitely-near points on Z containing z', and so on. The space Zk 

then is a suitable blow-up of the cartesian product of Z which parametrizes k-tuples of 

points, some (or all) of which may be infinitely near. 

Let p: Z-->S be a smooth morphism. The spaces Zk, and associated objects and 

maps, are constructed by induction. Zo=S, Z~=Z, 

pl = p~: Z l_ .  Z0 

is just p, and tj: ZT->Z j is the identity, j--0, 1. By induction, suppose we have construct- 

ed the following: 

(a) spaces Z0 .. . . .  Zk; 

(b) "projection" maps ffi i2: ZF->Z~2_6+ 1 for all i I, i 2 with O<~il-l<.i2<. j 

(c) maps tj.: Zj-->Zj w i t h  p~ip i2 o tj=p~j]_i2,j_ii and tjo tFidentity. 

(d) divisors 19~,i2cZ j for all l<~il<i2<~j. 

Consider the cartesian diagram 

pr2  
Z k x Z k > Zk 

I z- 1 ,  Prl Pl,k-i 

Z k ) Zk_ I 
k 

P2,k 

Let A k denote the image of the embedding 

and let 

identity x tk'- Zk----> Zk  X Z k 
Zk-1 

bk+l:Zk+l--->Z k X Z k 
Zk- ! 

_k+l  be the blowing up of Ak, with exceptional divisor Dk+11, k+l" Define new projections P6,i2 

by 
k+l _ k 0 Pil,i2--Pil,i2 Prl~ if i2 <~k 

=p~_l,i2_ l opr2ob/~+l if i 1 I> 2 

= identity otherwise 
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(note that these formulas are consistent).  Also let pk+l:Zk+l---~S be the structure 

morphism, and p/k+1 _k+l =Pi, i �9 When this causes no confusion, superscripts will be omit- 

ted. As 

A k ~ Z  k x Z k 
Zk-t 

is a smooth embedding over either prl or pr2, it follows that 

pk+l pk+l smooth,  whence  by inductionp~,i  2 are smooth for all k, ii, i2. Also l ,k and 2,k+l  a r e  

note that (tkopr2, tkoprt) defines an involution of  ZkXzk_Z k preserving At,, hence 

lifts to an involution tk+ 10fZk+ 1. Define further divisors Dk+1~Z by il, i2 k+ 1 

Dk+l=tnk+l~*D i2-il+l l<~il<i2<~k+l,i2-il<k. 
zl,i 2 x,l"il,i2] 1,i2--i1+1' 

For any partition k=(kl . . . . .  kr) of  k, define subvarieties VkcZk by 

r 
k Vk= I"1 I"1 Dl+kl+...+kt,j. 

l = 0 kl+...kl+l < j  <~ kl+...kt+ 1 

These should be thought of  as parametrizing k-tuples " o f  type k" .  

Example. k=3.  General  elements of  Vk can be  described as follows: 

V0,1,1) = Z3 <-> general triples. 

V(2, I) = D], 2 <--> triples containing an infinitely near pair; pictorially: o-~, o. 

V(3 ) = D~,2 N D~,3 ~ infinitely-near triples; pictorially q~T--"" 

Note  that D~,2 f)D23,3, on the other  hand, corresponds to pairs of  pairs of  infinitely-near 

points, based at the same point; pictorially ~-,. This shows that Z3 is not " symme t r i c " ,  

i.e. permutations don ' t  in general act  on it (although the involution (13) does,  corre- 

sponding to t3). Note ,  finally, the " se l f  regenerating" nature of  the construction of  Zk: 
k p l  " n e w "  namely if we rename Pl,... ~-1 as then the p2 will be the same as the " o l d "  

pk+l, and so on. 1,k 

2. Schubert calculus 

As we shall see below, the fundamental  classes of  naturally occuring cycles on Zk can 

all be shown to be polynomials in the divisors D~,;2, and classes pulled back from Z. In 
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order to compute those the essential step, since D~,i2 are distinct divisors, is to 
k r compute powers (Dit,i) . As our projection maps are fiat, we are reduced by induction 

to computing (D~,k) r. This can be done inductively as follows: 

Let Tk denote the "vertical tangent bundle" of pk2,k: Zk---~Zk_~; thus we have an 

exact sequence 

dp~,k 
0---> Tk--> TZ k ---> (p2k, k) * TZk_l-->O. (2.1) 

Note that the normal bundle to A k in Z k Xlk_l Z k is NA= p ~  Tkla. By definition, we 

have DI k, k=P(NA), hence 

tT~.~ (D k, k) = {~P(NAk)(-- 1). (2.2) 

In view of the isomorphism Zk--->Ak, standard results from intersection theory allow us 

to compute powers k r (D1, k) provided we know the Chern classes of Tk. To compute 

these, inductively, let Qk be the tautological quotient bundle on D~, k=P(NA),  i.e. we 

have an exact sequence 

0--> er~vak) ( -  1)---> ~k NA ---> Qk---> 0 (2.3) 

where :rk: P(Na)-->Ak is the projection. Then standard facts about blowing up yield 

the following sequence 

0--> k+l , Tk+l--->(pl,k+l) Tk--> Qk-->0 (2.4) 

from which we can compute what we want. 

3. Zk and the Hilbert  s c h e m e  

In order to make sense of using Zk as a parameter space for k-tuples, we have to 

consider its relation to the canonical such parameter space, the Hilbert scheme. As it 

turns out, there is a close connection between a suitable open subset of Zk and the 

"curvilinear" open subset of the Hilbert scheme. But this is, essentially, as far as it 

goes. 

Let Hilbk (Z/S) denote the Hilbert scheme of length-k subschemes of Z and let 

~Pk: Zk--->Hilbk (Z/S) be the natural rational map. Let Hilb~ (Z/S)c  Hilb k (Z/S) denote the 
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open subset consisting of curvilinear schemes, i.e. those lying on smooth curves or 

equivalently those whose ideal is, locally at each point of their support, of the form 

(z~, z2 . . . . .  z,) for a suitable system of parameters Zl . . . . .  Zn. Let  Hilb~ (Z/S)--->Sym k (Z/S) 

be the "cycle  m a p " ,  put 

Z [k] = Hilb~,(Z/S) x (Z/S) k, (Z/S) k = cartesian product 
symk(Z/S) 

and let q~k: Zk -~Ztkl be the natural rational map. 

k k 2 On the other hand put Z 2= 13 Diz,i2nDi2,i3 and Z~k=Zk\Z k. 
il <i2 <i 3 

P R O P O S I T I O N  3.1. ~k induces an isomorphism Z~k--->Z tk~. 

Proof. In order to save notation we will write out the proof in case Z = A  2. By 

induction it clearly suffices to verify the proposition in a neighborhood of 

DI,2flD1,3k k f.l...flDklkfqZ~k., Let  x ,y  be coordinates on A2=Z. Then on a typical open 

subset UcZ2=Z~2, local coordinates are given by xl, yl ,  x2, u 2, with 

Y2 = Yl +u~ (x2-xl), 

where xi=xop~, yi=yop~. By induction, local coordinates in a neighborhood of 

(pk, 2) - 1 (U) tq D1 k, 2 n. . .  f] D~, k n Z~k are given by 

y, ,  x,, x~ . . . . .  x k, u~ . . . . .  u~ 

with 

uk=u~- 'opk,  k_l, i = 1  . . . . .  k - 1  

k - I  o k k - 1  - k Ukk.(Xl--Xk) = Uk_ 1 Pl,k--Uk-l ~ k. 

To get a local chart  for Z tkl, note that for any curvilinear length-k scheme a on 

which projection to the x-axis induces an embedding, there exist uniquely determined 

polynomials fix), g(x) of degree ~<k-1, such that the ideal of  a is (xk--f(x),y--g(x)). 
Here xk--flX) defines the projection of  a to the x-axis, so that if xk--f(x)=IIik=! (X--Xi) 
then the cycle corresponding to a is just  the formal sum E/k=1 (xi, g(xi)). Thus ordering 

this cycle amounts  to ordering the x 's ,  i.e. replacing f by the ordered set (Xl .... Xk). 

(1) As the referee points out, this case was already known (see e.g. [4]), and in fact lies at the heart of 
the modern approach to curvilinear enumerative geometry. 
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Thus we see that (xl . . . . .  Xk, g(x)) give a local chart on Z tkJ. 

In terms of  this latter chart and the former one for Z~k, the map q3k is given by 

XiV-">Xi, i = 1 . . . . .  k, 

g(X)~-~ yl  + UkE(X--Xl)+ U~(X--XI) (X--X2)+... + uk(x--Xl) ... (X--Xk-1). 

This is obviously an isomorphism. 

What  happens to ~k or q0k over the rest of  Zk? For k<~3 we're still OK because of  

PROPOSITION 3.2. For  k<~3, q~k gives a morphism Zk---~Hilbk(Z/S). 

Proof.  For  k~<2 this is easy and well-known. For k=3,  the only problem is near 
3 3 DI,sND1,2. We will content  ourselves to give a recipe for q0s(Z) for zED~,sf)DSl 2, 

leaving to the reader the straightforward task of verifying that this makes q03 a 

morphism. Put ' s _ 3 z =Pl,  2 ( z ) - - P l ,  3(Z) �9 The main point is that the map 

q02xp2: Z2---~ Hilb 2 (Z/S) x Z = Hilb 2 (Z/S) x Hilb 1 (Z/S) 
S S 

is an isomorphism onto the locus of pairs of ideals (12, I1) of  colengths 2, 1, respectively 

with I2cI1.  In view of  the isomorphism, for any ideal J ,  

Tj (Hilb) = H o m  (J, tT/J) 

of Zariski tangent space, the tangent space to the latter locus consists of  commutative 

diagrams 
I l - - - - ~ / I  l 

rT l" 
I2------, ~7/I 2 

where r, s are the natural maps. As 

D~,s  = P ( N A ) ,  A 2 r Z 2 • Z2, 
Zl 

we see that z yields a (not quite commutative) diagram 

B 
11 ~ ~7/I 1 

r l  a , I s 
) 

Ot 2 
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with SOal=SOa2=flor and al=l=ct2; here al and a 2 are not well-defined, as they 

depend on the lifting of an element of the normal bundle to the tangent bundle. 

However, the difference al-ct2 is well-defined up to scalars and yields a nonzero map 

I 2 ~ I i / l  2. 

Then define qo3(z) to be the kernel of this map, an ideal of colength 3. 

Warning. Contrary to an assertion of Kleiman ([8] p. 390), it is by no means the 

case that q0k extends to a morphism to Hilb if k~>4 and dimZ~>2: e.g. if d imZ=2 any 

element of 4 4 4 D1, z nDz, 3 ND3, 4 corresponds to infinitely many length-4 schemes con- 

taining the total first-order neighborhood of some point. 

4. The fundamental-class formula 

As noted above, a pivotal role in our approach to enumerative geometry is played by a 

formula for the fundamental class of Xk on Zk, where X c Z  is a subvariety. This 

formula will be given in this section, as an application of the "residual-intersection 

formulas" of Fulton and Laksov and Fulton and MacPherson [4], [5]. 

Fix a smooth embedding 

j: X--> Z 

over S. It induces smooth embeddings 

jk: Xk-'-~ Zk 

_k D k Let Pi, /1.i2 etc. denote objects attached to Z, and ~x, etc. denote ideal sheaves. Also 

put 

i<j 

In order to be able to apply the residual-intersection formula, what we need is the 

following 

LEMMA 4.1. (p~)*(oCx)-~d~xk'5~o,,, mod(plk, k_l)*(d~Xk_l). 

The proof will be postponed to the end of this section. Assuming this, the formula of 

Fulton and Laksov applies and computes the fundamental class [Xk] EA'(Zk). There is 

one case in which the result becomes particularly simple and explicit, and in fact this 
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case already suffices for many applications, and in particular for the united-set formula 

of w 6, so we will give this case first. Let N denote the normal bundle of X in 2 and 

c = A'(X) 

its total Chern class. Then the special case we are considering is where 

c=j*~, ~EA'(Z). 

THEOREM 4.2. With the above hypotheses, the class of Xk is given by 

[Xk] = -= ([XI)-[/Y'k] l + [ ~  "'k] .-m-I ' 

n=dimZ,  m = d i m X  and { }a denotes the homogeneous component of de- where 

gree a. 

In the general case one is forced to give a stronger, though less explicit, result, 

namely a formula for the Gysin map. Let 

rk: Sk ~-> (p~,k_l) -1 (Xk_l) 

be the inclusion. In view of I2emma 4.1 ,  the Fulton-MacPherson formula yields: 

THEOREM 4.3. With the above notations, the Gysin map is given by 

k-I { 
Dk p*(c) 

(rk)*((Pk)* (,8)) = (Pk)* (J*(fl))--Z P*(fl) [ , ,k] l+--~,k]j ,_m_, i=l 
forflEA'(X). 

Note that rk is A'(Zk)+(pkl,k_O*(Xk_O-linear, so by applying (4.3) repeatedly 

we can compute the Gysin mapjk. ,  restricted to the subring of A(Xk) generated by the 

p~(A(X)), and the Dk . In particular, we can compute [Xk], but finer classes as well: /1, 12" 

for example i fBcXk_l  is a subvariety we can compute [Xkflp~,~_l(B)], i.e. the class of 

the "part of Xk lying over B" .  

Another consequence of Lemma 4.1 is an exact sequence for the normal bundle of 

Xk in Zk, namely 

0-">(Pk)*(N) | ff-Dk'k)-'-> Nx k aP:'k-~ > Qgl,k-l)* Nxk_l "->0. (4.4) 

An analogous formula, in the context of the curvilinear Hilbert scheme, was also given 
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by Le Barz [16] who had, in the same context, essentially computed several special 

cases of Theorem 4.2 for X a curve or a surface in Z = P  N, [14], [15]. 

Proof o fLemma 4.1. By induction, it clearly suffices to prove 

(P l,k-O (~xk)" ,,,k ), (#xk ,) -- #Xk'~O~k mod k , ~ 4 " 2 ,  k _ , _ 

But in view of the self-regenerating nature of Zk noted at the end of w 1, it suffices to 

prove (4.5) for k=2, in which case it is nearly obvious, but we will write the details 

anyway.(~) Take "local coordinates" x 1 . . . . .  x m, y l  . . . . .  yn-m on Z relative to S, so 

that y~, .,., y n - m  define X, and let xj, yj, j = l , 2 ,  be the corresponding functions on Z2. 

Then local coordinates on a typical open set in Z2 are given by 

with 

xl  . . . . .  g . . . . .  y l ,  . - m ,  
�9 " , Y l  ' X 2 ' U 2 ' ' " ' l i m ' V l ' ' " ~ V n - m  

i 1 1 
i __ X i l + l f i ( X ~ _ x l l ) ,  y~ = Y l + V i ( X 2 _ X l ) .  X 2 - -  

Then (p~)-l(X) (resp. (p~)-l(X)) is defined locally by y~=0 (resp. y'2=0) for 
1 l i=1 . . . . .  n - m ,  X2 is defined by y~=vi=O, i=1 . . . . .  n - m ,  and D~,2 is defined by x2=xl. 

This makes Lemma 4.1 obvious. 

5. Secant bundles 

If A is any space parametrizing k-tuples on a variety Z, and E is a vector bundle on Z, 

Schwarzenberger [22] has introduced the notion of secant bundle associated to A and 

E, which is nothing but (pr0.(pr~(E)lB) where B c A •  is the natural subscheme. 

Applying this construction to Zk, we get a vector bundle defined (at least) over the 

open subset Z~k, but not over all of Zk. In this section we will show, however, that the 

secant bundle over Z~k extends to a vector bundle Ek over Zk and we will give an 

inductive recipe for computing the Chern classes of Ek, somewhat analogous to a 

formula of MacDonald [171 in the case of curves. This result will then be applied to 

describe multisecant lines of projective varieties, and multisecant spaces of curves. 

The latter case will then be applied, in the usual manner, to special divisors. 

The bundles Ek are constructed as follows: Ej =E; E2 is defined by 

~,~) e~. 2~, 
O--.E a >(p~)*(E,)*(p~)*(E,)->tp,) (El) D~,2-->O 

where •:(a, b)=res (a)- res  (b). 
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We note that E2 is in fact a bundle: quite generally, i fZ  is a variety, D c Z  a Cartier 

divisor, E (resp. F) a vector bundle on Z (resp. D), and a: E-oF, a surjection, then ker a 

is locally free, as follows by an easy argument from Nakayama's lemma. 

By induction, suppose Ej. is defined for all j<.k, as are maps 

,~]" E j ~  (P~ , j -1 )*  ( E j - I ) ,  ~,2: E j ~  Q~,j)* ( E j _ I ) .  

Define a vector bundle Kk+l by 

1 2 
(~k+l' ~k+l) /nk+l~  , (~ / 'nk+ 1~* rk+l 

O"-+ Kk+, ' x~'l,k, (Ek) (Ek)  ' (p2k+~)*(Ek-1)---~0 �9 ~" ~,v2, k I 

where 

and Ek+l by 

k+l , 2 k+l , 1 
rk+l=((Pl,k) (2k)--(P2,k+l) ('~k)), 

where 

I 2 
(~+l'ak+t) 0k+z r  "-->0 

0"-> Ek+  1 ~ Kk+l ~ W l , k J  nk+i 
~l,k+l 

0k+, = res o u l+l - res  o x~+ I. 

Note the exact sequence 

0__t .k+l~, t ra i  nk+l,k+l~ .~- .._~_k+l~.(Ek)___>0 (5.1) -"~ ~,Yk+ 1! ~t~]~,--~ ]""P L~k+I *,YI,k ] 

from which one can conveniently compute by induction the Chern classes of Ek. In the 

case of curves, analogous formulas for the Chern classes were already given by 

MacDonald [17] and Mattuck [18]. 

PROPOSITION 5.2. (i) Any section s of  E induces a section st, of  Ek and if the zero- 

set X=(s)o is smooth then Xk=(Sk)o. 

(ii) The restriction of  Ek to Z~, coincides with Schwarzenberger's bundle. 

(iii) I f  N is the normal bundle of  X in Z then Nk is the normal bundle of  Xk in Zk. 

Proof. Cf. Lemma 4.1, (4.4)and Proposition 3.1. 

In the context of the curvilinear Hilbert scheme the analogue of (iii) was pointed 

out by G. Larry. 
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We apply this set-up to the following situation: let Z, E be as above with r k E = l ,  

let F be a vector bundle on the base scheme S, and 2:p*F--->E a surjection; note that 

this induces a map 

J2Z--->P(F*) with E=f*tTp(~(1). 

Let G=G(I, F) denote a Grassmann bundle o f F  and T the tautological subbundle on G. 

Put 

X = {(z,  L) E Z x G: A(L) (z) = 0) = 0-locus of the natural section of T* | E on Z x G. 
s s 

(We omit symbols such as pr~' when this causes no confusion.) Note the natural 

embedding 

Z k X G t_.> (Z X G)k 
s s 

and the natural isomorphism, for any sheaf A on Z, B on G, 

(A XB)klzk• = Ak (~ B. 

Put 

,/k,t = X k n Z k x G .  

Applying (5.1) and Proposition 5.2, we get 

PROPOSITION 5.3. l f  Jk, ! has codimension kl in ZkxG,  then 

k 
[Jk, l] = Ckl (T~ (~ Ek) = I-[  Cl(T* ~ Ei (~ ~(--DJ'k)) 

j=l 

where Ei=(pik) * (E). 

Applications. (i) Multisecant lines. Suppose i = r k E - 2  and f is an immersion (more 

generally, we could suppose Sz(f)=O). Note that in this case Jk.t~_L~kxG, and hence 

Jk, t can be identified with the set of pairs (z,M) where z is an ordered length-k 

subscheme of Z and M is a projective line containing f(z); similarly Jk, tfl Vk, for any 

partition k, parametrizes such pairs where z is of type k. Thus Proposition 5.3 describes 

completely (up to explicit computation) the enumeration geometry of multisecant and 

multitangent lines, or more precisely aligned k-tuples, for projective varieties. Note 
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that by pushing forward to G (resp. to ZD we obtain formulas for the loci of the lines 

themselves (resp. for their contact loci). 

(ii) The case o f  curves. Now assume d imsZ=l ,  l arbitrary. Thus Zk=Z~k=the 

Cartesian product. Then Proposition 5.3 yields formulas for the multisecant spaces of a 

family of curves. In particular, when F=p.E,  Jk, t parametrizes, essentially, effective 

divisors z on Z with h~ considering z as a divisor on Z. In particular, we can 

take E to be the canonical divisor Kz/s, in which case h~176 - 1 -k+g ,  by 

Riemann-Roch, so the image Jk, I of Jk, 1 in Zk parametrizes precisely those effective 

divisors which move in a linear series g~, where r=l+k-g ,  and we can compute the 

fundamental class [Jk, t] as 

[Jk, d = (P]),ck~( r* | K0, 

this being valid whenever Jk, t has its expected dimension or, equivalently, whenever 

dimJk, t=dimS+p+r and a general divisor ZE]k,t has h~ here Q is the 

"Brill-Noether number" Q = g - ( r +  1) (k-d+r) .  

Consider in particular the case where Q~<0. Put 

S~ = pk(~) = {S E S: Zs has a g~}. 

To compute the (expected) class of S~, note that each g~ contributes an r-dimensional 

subvariety to the fibre of pk; to cut this down, we can require that the first r points 

belong to specified canonical divisors. Thus: 

PROPOSITION 5.4. Under the above hypotheses, we have 

[S~] - 1 p,k([~] [K1] ... [Kr]) E A-e(S). 
(2g-2)  r 

Now as in Mumford [19], put ui=p.[K] i+l, 2i=ci(F). Mumford shows that the 2i 

and u,. are polynomials in Ul . . . . .  Ug_> Now it is clear from Proposition 5.3 and 

Proposition 5.4 that [S~] must be a polynomial in the 2i and u;, hence 

COROLLARY 5.5. I f&,  ~ has its expected codimension then [S~] is a polynomial in 

Xl, " ' ~ g - - 2 .  

(Actually this result already follows from the relative version of MacDonald's 

formula.) Replacing Jk, t by Jk, in Vk for a partition k, for analogous results hold for the 
r r i analogous subvarieties S k of curves carrying a gk w th ramifications of type k. 
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By general results of Mumford [19] and GiUet [7] the above results carry over to the 

moduli space itself, even though this has no universal family and is singular. Thus 

denote by ~ g  the moduli space of curves of genus g, and define natural subvarieties, 

for every partition k of k 

r r Z ~g,k ~-" {[C] E ~g: C has a gk containing a divisior D= kiPi,PiE C}. 

Mumford shows that the classes 2 i and u i above, and their relations, come from 

analogous classes and relations in A'(~g),  Fulton's Chow ring [3]. Gillet shows that 

"universal" formulas as in Proposition 5.4 and Corollary 5.5 yield analogous formulas 

in A'(~g). Thus we have: 

THEOREM 5.6. Under similar dimension hypothesis, the class o f  ~t~ g,k in A'(~g) is 

a polynomial in Ul . . . . .  Xg-2. 

By a result of Harer [7], it is known that ul generates Al(~l~e). But in higher 

codimensions, it is unknown whether the uj generate A'0Y~e). 

Examples 5.7., Many examples of such formulas were known before, see e.g. 

Mumford [19]. Without giving details, we will write down a few more. 

(a) The hyperelliptics: the recipe above gives the following formula, already given 

by Mumford: 

[~g, 2]1 _ _  2g-21Z(-1)i '~'i(ZuJ~Cg-2-i-j-2g-i-g§ \ j 

where Uo=2g-2, ui=0 for i<0. 

Instead of cutting down by requiring the first point to be in a fixed canonical 

divisor, we can instead require the divisor to be non-reduced, i.e., to contain one of the 

branch points of the gl of which there are 2g+2. This yields 

~ l  1 
[ g,2] - 2g+2 Z (-1)i(2e-i-l)2iug-2-i 

i 

(b) The trigonals: as above, we get 

[~)-~lg,3]= 4g-41 Zi (-1)i~i(~\ i,j ~J~k~Cg-4-i-j-k--Zj (2]+4--3j--lO)~cJ~gg-4-i-J) 

+ ( +  (3g-l + 1)-2 g+2-i+(g- i -  I ) ( g - i +  2) +(g-i+5)Xg_4_i] 
\ 2  / 
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1 ~ /  ( ) ~ , ( ~ i  (~+2 1)~j~g_,_i_j_(l(3g--i.~l)_2J+l-i -- _1 / . 
2g+4 

+ g - / + l )  Xg_4_i). 

Finally, we will mention a slightly different type of application, pertaining to the 

case •=0 and due originally to Beauville [1] and which also follows from one of Harer 's 

results [7]. First we recall that, according to the fundamental result of Griffiths and 

Harris, when Q=0 a generic cirve of genus g possesses only finitely many g~'s. 

PROPOSITION (Beauvil le) . / fQ=0 then the sum of  all divisor classes o f  g~' s on an 

generic curve o f  genus g is a multiple o f  the canonical class. 

Proof. Take a family of curves Z/S parametrized by a suitable open subset of ~0~g. 

Instead of pushing ~ to S as above, push it only down to Z~--Z, then restrict on a 

generic fibre Zs. By Proposition 5.4 the class in question must be a multiple of the 

canonical divisor class K. On the other hand, the locus in question will consist in a 

certain number, say a, of divisors from each g~. Hence if D is the sum of all classes of 

g~'s, then aD is a multiple of K. Since the Picard group of the generic curve over ~l~g is 

torsion-free, it follows that D is a multiple of K, as claimed. 

Given a morphism of varieties 

6. United-set formula 

f : X ~  Y, 

a united set or united k-tuple for f is, roughly speaking, a k-tuple of points 

Xl, ...,Xk~S, 
say distinct, such that 

f(xl) = . . .  =f(xk). 

The object of this section is to give an enumerative formula for the united k-tuples 

of a map. We define a cycle which parametrizes these k-tuples, and give a formula for 

the class of this cycle in a suitable Chow ring (namely A'(XkX Y), in fact). 

For the rest of  this section, we fix the following notation: X, Y are smooth varieties 
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of dimensions m, r, respectively, and f: X---> Y is an arbitrary morphism. We recall from 

w 3 the natural (functorial) map q)k: X~k---~Hilbk(X/S) �9 

Definition 6.1. The united k-tuple locus of f ,  as a set, is 

Uk= Uk(f)= {(x,y)EX~k:f(~k(x))=y (as schemes)}. 

We denote Ok the closure of U~ in Xk• Y. 

We are going to define a scheme structure on Uk and, in particular, make it into a 

cycle. To this end, a crucial thing to observe is the natural embedding 

Otk: Xk X Y ~ (XX Y)k, 

as in w 5. Let 

F = F f c X x  Y 

denote the graph o f f  and note that the normal bundle Nr=f*Tr, via id x f: X--%F. Now 

define 

Ok = Ok(f) = (r')k nxkx  rc (Xx t')k 

with the natural scheme structure as intersection. 

LEMMA 6.2. As sets, Okn(X~kx Y)=Uk. 

Proof. By construction, we clearly have ak(X~kxY)~(XxY) ~ and in fact, by 

functoriality of q)k, 

ak(X~k x Y) = {Z e (Xx y)0: pr 2 (r has length 1}. 

Restricting this on Fk yields the lemma. 

The rest of Ok is, as one may expect, not so well behaved, but we can still say a 

little bit about it. Put 

~q2(f) = {x E X: rk (dfx) <<. m -  1 }, 

S2,k(f) = Ok(f)fl (4 <iO2<i3(P41(S2(f))nDil,izfIDi2,i2) ) 

where Pi: Xkx Y--->X are projections and D ~  are pullbacks of divisors on Xk. 

7-858288 Acta Mathematica 155. Imprim* le 28 aoflt 1985 
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LEMMA 6.3. We have Okfq(X2x Y)~_S2,g(f). 

Proof. Let (x,y)EI[IkNX2xy. Without loss of generality, we may assume 

xEDk,2nDk3 and consequently also k=3. By functoriality of the map 03: V--*Hilb 

for V=X, F and Xx  Y, it follows as in Lemma 6.2 that f(~3(x))=y as schemes. Since 

�9 3(x) has embedding dimension 2, we get rk(dfx)<~m-2 where x=supp(x). Thus 

(x, y) E ,-~2, k(f). 
NOW set 

uk = H (pjxq)* ([F])-[D j'k] [ ~ J r - 1 , /  eA'(Xkx Y) 
j = l  

where q: Xkx Y---> Y is the projection. 

LEMMA 6.4. Every component of  Ok has dimension >~km-(k-1)r; if Ok has 

dimension <~km-(k- 1) r, then 

Proof. The first assertion 

Theorem 4.2. 

[Okl = uk. 

is standard, and the second follows directly from 

We can state the main result of this section as follows. 

THEOREM 6.5. (a) The scheme Uk defined above parametrizes precisely the pairs 

(x, y) where x is an ordered curvilinear length-k subscheme of X such that f ( x ) - y  as 

schemes. 

(b) Every component of  Uk has dimension ~km- (k -1 ) r .  
(c) I f  Uk has dimension km- (k -1 )  r or is empty, then the fundamental class of  its 

closure 

[Ok]------- uk EA'(Xk• Y) moduloA'(S2,k(f)). 

Proof. In view of Lemmas 6.2 and 6.3, Ok consists of Ok plus (possibly) a cycle 

supported on S(f), so we are done. 

For k=2, a result equivalent to Theorem 6.5 was given by Fulton and Laksov [4] 

(note that $2, z= ~). 

COROLLARY 6.6. l f  uk~OmodA'(S(f)), then Uk~:O. 

Remark 6.7. Note in particular that if dim(SE, k(f))<km-(k-1)r,  then one may 

replace congruence by equality in Theorem 6.5 (c) and Corollary 6.6. This will happen, 
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in particular, if f is finite and dim (S2(f))<km-(k- 1) r. Since every component of S2(f) 
has dimension ~>3m-2r-4,  the latter can happen only if either ~r or k, m, r are 

the following range: k~<3, or k~<4 and r<-m+3, or k~<6 and r<-m+ 1. 

Multiple points. In conclusion, we will compare the results above with Kleiman's 

multiple-point formulas [9]. First, we define multiple points. 

Definition. x EX is a k-fold point f o r f i f  x is contained in a length-k subscheme of a 

fibre of f .  

Given a proper morphism f :X-+  Y (X and Y may be singular, as long as f is a 

"locally complete intersection" morphism, Kleiman defines a cycle Mk on X, image of 

a certain associated space Xk under a natural projection, which is presumably--though 

this is nowhere stated explicitly--supposed to parametrize the k-fold points off ;  he also 

gives an algorithm for computing a certain class mk~A'(X). Then his main result may 

be stated as follows. 

THEOREM (Kleiman). If  Xj for j=2 ..... k have their expected dimensions, namely 
j m - ( j - l ) r  or -1, then [Mk]=mk. 

Remarks. (a) It can happen that Xk has its expected dimension without the same 

being true of Xk-~: Xk-~ may have an "excessively large component" which contri- 

butes nothing to Xk. In particular, an analogue of Corollary 6.6 does not seem to be 

accessible by Kleiman's method. 

(b) As noted by Kleiman ([9], (5.2)) the assumption that Xk have its expected 

dimension implies that either ~r or S2(f)~:~ but dim(S2(f))<km-(k-l)r 
(where the later can happen only in the range listed in Remark 6.7). Hence no 

information is lost by replacing the equality in the Theorem by congruence modulo 

A'(S~(f)), where S~(f)=f-l(f(S2(f))),  the smallest closed subset of X, on whose 

complement, X', the restriction o f f  is both proper and without S2-singularities. 

(c) Kleiman does not claim, nor is it in fact quite true, that Mk parametrizes the k- 

fold points, which makes the significance of his formula somewhat obscure (however, 

see the discussion in [11] or below). 

Now comparing Kleiman's construction and ours, one sees that they are merely 

two ways of looking at the same thing. Thus we have, at least if X, Y are smooth: 

(i) Xk= Ok, naturally. 

(ii) MknX'={k-fold points o f f }  nX '=  {k-fold points of fix, }. 

(iii) I f X  is complete, then mk=(1/k!)(pO.uk. 
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Thus we obtain the following refinement of Kleiman's theorem for smooth, com- 

plete varieties. 

THEOREM 6.8. I f  X is complete and Xk has its expected dimension, then [Mk]--mk 

modulo A'(S~(f)), and this formula validly enumerates the k-fold points o f f ,  away from 

s~(/). 

COROLLARY 6.9. I f  X is complete, Kleiman's explicit formulas (e.g. [9] (5.7), 

(5.10), (5.11)) are valid, modulo A'(S~(f)), provided only that Xk has its expected 

dimension. 

Using the calculus of w 2, it is of course possible to obtain these formulas, and 

formulas for other ink'S directly. But I haven't set about making such calculations 

systematically. 

Intersecting Ok with Vk for various partitions k, one obtains formulas for the 

united sets of type k o f f ,  valid under similar hypotheses. In the context of Kleiman's 

theory, an algorithm for computing pl.[Ok" Vk] was independently given by S. Colley, 

and carried out by her in a number of cases (M.I.T. thesis, 1983). Similar remarks as 

above apply to her results. 

Finally, we mention a corollary about the class mE which follows from the present 

approach. 

COROLLARY 6.10. m2 is an integral class and f .m2  is divisible by 2. 

The proof is described by Fulton in [3], p. 171. 
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