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1. I n t r o d u c t i o n  

The (universal) elliptic genus [L1] is a ring homomorphism 

�9 s o  

from the oriented bordism ring to the graded polynomial ring M.. Here 5 = r  2) 

and e--r where C P  2 (resp. H P  2) is the complex (resp. quaternionic) projective 

plane (an introduction and background information on elliptic genera can be found in 

[HBJ], [L1], [O2], [Se], [W]). The elliptic genus provides a connection between bordism 

theory, modular forms and quantum field theory. For, M. can be identified with a ring 

of modular forms and, following Witten [W], the elliptic genus r of a spin manifold 

M can be interpreted as the Sl-equivaxiant index of an operator on the loop space on M. 

In fact, Witten used this interpretation to provide a heuristic proof for the rigidity of the 

elliptic genus�9 A rigorous proof along those lines was given by Taubes IT] (see also [BT]). 

The rigidity is equivalent to the multiplicativity of r for certain fibre bundles E--*B 

[03]; namely, if E, B axe closed oriented manifolds, the fibre F is a spin manifold and 

the structure group of the bundle is compact and connected then r162162 

The universal elliptic genus makes M, and hence M. [w -1] for any wEM. a left mod- 

ule over 12. s~ (recall that M. [w -1]--li__m iV/., where the connecting maps in the sequence 

axe given by multiplication by w). Landweber, Ravenel and Stong [LRS], [L1] showed 

that the functor 
X ~-~ i2s~ (X)| M. [0; -1] (1.1) 

is a homology theory if w=r or w=62 -~.  Recently Franke [Fr] proved this for a general 

w of positive degree. This 8-periodic homology theory is called (odd primary) periodic 

elliptic homology. 

(1) The second author was partially supported by NSF Grant DMS 88-02481, the Max-Planck- 
Institut in Bonn and the SFB in Gbttingen. 
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In this situation one has the following obvious problems [L2]: 

(a) Give a geometric description of elliptic (co)homology. 

(b) Define elliptic (co)homology at the prime 2. 

Recently Ochanine [04] investigated an integral elliptic genus fl defined for bordism 

classes of spin manifolds. In analogy with the homology theory above this suggests that 

the coefficients of integral elliptic homology should be isomorphic to the image of fl with 

an appropriate element inverted. 

The main result of this paper is a geometric definition of an (integral) homology the- 

ory which agrees with the Landweber-Ravenel-Stong theory after inverting the prime 2. 

As a by-product we obtain a new geometric description of KO,-homology. The idea for 

these geometric constructions is to use fibre bundles with fibre the quaternionic projective 

plane H P  ~. This was motivated by the second author's proof of the Gromov-Lawson con- 

jecture concerning the existence of positive scalar curvature metrics on simply connected 

spin manifolds of dimension >/5 [Stl]. 

We recall that for small n the spin bordism group ~Spin is as follows (cf. [Mi]): 

f~Sptn ~ Z / 2  is generated by S 1 (with the non-trivial spin structure), the square of S 1 is a 

generator of ~-~2 Spin ~-Z/2  and the Kummer surface K (a 4-manifold with signature 16) is 
Spin,,,~ flSpin~z@z is generated by H P  2 and a manifold B a generator of f~4 =,~. The group 

(for 'Sott '), characterized by _4(B)=l, sign(B)=-0. The other groups gt spi~ are zero for 

n<~8. 

For a space X let flSpi~(x) be the bordism group of n-dimensional closed spin 

manifolds together with maps to the space X. Let T,~(X) be the subgroup of the flSpin(x) 

consisting of bordism classes [E, fp], where p: E---,B is an Hp2-bundle over a closed 

spin manifold B of dimension n - 8  and f is a map from B to X. Here an Hp2-bundle 

is a fibre bundle with fibre H P  2 and structure group the projective symplectic group 

PSp(3) (which is the isometry group of t t P  2 with its standard metric). Let T,~(X) 

be the subgroup consisting of all bordism classes [E, fp] as above with the additional 

assumption that [B, f] is the trivial element of ~Spi~(x). Let ell,~(X) be the quotient of 
~'~Spin(x) modulo  :Fn(X). 

Cartesian product of manifolds induces a multiplication 

eUm(X) x elln (Y) ---* ellm+~(X • Y) (1.2) 

and a natural transformation 

f~S, pin (X)| ell, ---* ell, (X), (1.3) 

which is compatible with the multiplications on both sides. Here ell, =ell,(pt) where pt 

is a point. 
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THEOREM A. (1) ell.(X)| is a multiplicative homology theory. 

(2) The natural transformation (1.3) is an isomorphism after inverting 2. 
(3) ell.~-Z[s,k,h,b]/(2s, s3, sk, k2-22(b+26h)), where s, k, b, h are the images of 

r~Spin ,, [$1], [g], [B], [Hp2], respectively, under the projection map ~.  --*eli.. 

We remark that the relations in ell. are consequences of corresponding relations in 

~,Spin. Combining Theorem A with the Landweber-Ravenel-Stong or the Franke result, 

that (1.1) is a homology theory, we obtain our main theorem. For an element vEellq 

define 

EI,~,(X) = ell~(X)[v -11 = ~ ell,~+qU (X), 
k 

where the limit is taken over the sequence of homomorphisms given by multiplication 

by v. In the special case v=h (i.e. if v is represented by H P  2) one has the following nice 

description of El~ (X): 

(X) = @ , 
kEZ 

where the equivalence relation .-~ is generated by identifying [M,f]Ef~Sp~n(x) with 
Spin [E, fp] Eft.+ s (X) for every Hp2-bundle p: E---*M (i.e. total spaces of HP2-bundles are 

identified with their base). 

THEOREM B. The functor EI~.(X), where v is any element of positive degree, is a 

multiplicative homology theory which agrees with the theory f~s~174162 -1] of 

Landweber-Ravenel-Stong after inverting 2. 

Here, abusing notation, we denote by r the homomorphism 

r el l .  = M .  

induced by the elliptic genus (note that T.(pt) is in the kernel of the elliptic genus 

due to its multiplicative properties for HP2-bundles). We note that r162 

r162162  and r162 Hence by part (3) of Theorem A the 

elliptic genus induces an isomorphism ell. [1] ~-M,. 

For the proof of Theorem B it suffices to show that EI.~(X)| is a homology 
v 1 theory and that El. (X)[5] is canonically isomorphic to the Landweber-Ravenel-Stong 

theory. The former is a corollary of part (1) of Theorem A (the direct limit of exact 

sequences is exact and hence ell.(X)[v-1]| is again a homology theory). The latter 

follows from the natural isomorphisms 

e l l . (X)  [�89 ,~= ~.Spin (X)  ~ s p l n  ell. [5]1 ,'~= i'l.SO(x) | M. (1.4) 



234 M. K R E C K  A N D  S. S T O L Z  

by inverting v resp. r The first isomorphism comes from part (2) of Theorem A, the 
second isomorphism is the tensor product of the isomorphism ~Spin(x) [�89 ~__~,so (X) [~]1 

and the isomorphism ell, [ �89 ~ M, induced by r 
n v Unfortunately, our proof that the geometrically defined fu ctor El, (X) is a homology 

theory is not geometric in nature. In particular the proof of part (1) of Theorem A makes 

heavy use of stable homotopy theory. In fact, there are two key results lone concerning a 

splitting of MSpin A~ s BPSp(3)+, the other concerning maps from MSpin to connective 

real K-theory spectra) which are not proved in this paper, but in the homotopy theoretic 

companion paper 'Splitting certain MSpin-module spectra' by the second author [St2]. 

Remarks. (i) In w we show that the natural transformation (1.3) does not induce an 
isomorphism if we invert h E ells on both sides. In particular, ~.Spin (X) | ell, [h- 1] is 

not a homology theory. However, Hovey has shown recently that ~$Spin(x) | ell. [b -1] 

is isomorphic to our functor Elb. (X) and thus a homology theory [Ho], indicating a delicate 
difference between Elh(X) and Elb(X). 

(ii) The isomorphism (1.4) implies that ell,(X)[�89 is not a homology theory since 

the functor l'~. s~ (X)@nso M. does not satisfy the conditions of the exact functor theorem 

which by [Ru] are also necessary conditions for such a tensor product to be a homology 

theory. In particular, ell. i X) is not the connective homology theory corresponding to the 

periodic homology theory El . iX ). Our notation EI,(X) iinstead of Ell.iX)) hopefully 
avoids that possible confusion. 

(iii) We show in (5.2) that the 2-local spectrum el corresponding to the homol- 

ogy theory ell.(X)| is homotopy equivalent to V ~sk ko where ko is the connected 

KO-theory spectrum. However, the ring spectrum structure on el correponding to the 

multiplication (1.2) does not correspond to the multiplication on ~/E sk ko induced by 

the multiplication on ko. Otherwise the inclusion of the bottom ko would give a ring 

spectrum map ko--*el which is impossible: the arguments in [St2, w showing that there 

is no ring spectrum map ko--*MSpin apply since MSpin--*el is a 10-equivalence. 

(iv) By Spinier-Whitehead duality there are corresponding multiplicative cohomol- 

ogy theories El* (X). It is a very interesting open problem to give a geometric construction 

of El*(X). G. Segal has proposed a construction related to topological quantum field 

theory which might lead to such a geometric definition [Se]. 

(v) By construction of elliptic homology vector bundles with spin structure are 

orientable with respect to El,~i X) and ell,(X)| 

Next we consider the functor X~'~koon(X)--~SnPin(X)/Tn(X). It is shown in [St2] 

that koo,(X)|174 where ko,(X) is the connective real K-theory of X. 

In this paper we complete the computation of this functor by analyzing it at odd primes 
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(the easier part) showing that koo,(X)[�89 ~ Spin 1 ----f2. (X)| This leads to 

the following geometric description of periodic real K-theory: 

THEOREM C. There is a nagural multiplicative isomorphism between koo.(X)[b -t] 

and KO. (X). 

We note that Hopkins and Hovey proved recently that the natural transformation 

flSpin (X) | KO. (pt) ---* KO. (X) is an isomorphism [HH]. 

Remark. One can modify our functors describing E1 and KO by replacing the cate- 

gory of spin manifolds by a different category and H P  2 by a closed manifold F in that 

category (with the action of a suitable Lie group G on it). In general our construction 

does not give a homology theory, but we expect this to hold in the following cases: 

(1) non-oriented manifolds and F the real projective plane, 

(2) oriented manifolds and F the complex projective plane, 

(3) BO(8)-manifolds and F the Cayley plane. 

Recently the first two cases were confirmed by Rainer Jung [J]. In the third case BO(8) 

is the 7-connected cover of BO and a BO(8)-manifold is a manifold M together with a 

lift M---~BO(8) of a classifying map of its tangent bundle. We note that such a lift exists 

if and only if the loop space of M admits a spin structure [W]. 

The paper is organized as follows. In w we discuss the Atiyah invariant a, the 

(universal) elliptic genus and then the Ochanine genus ;3, which can be viewed as a 

common generalization of both. Moreover, we. prove multipllcativity of the Ochanine 

genus for fibre bundles with compact connected structure group and fibre dimension 

-0 ,  3 mod 4. In w we show that the kernel of/3 is T.(pt) and go on to prove parts 

(2) and (3) of Theorem A, as well as Theorem C. In w we show that the kernel of a 

is equal to T.(pt) at odd primes. This section is technical and should be skipped in a 

first reading. The proof of part (1) of Theorem A is outlined in w using some facts 

which are proved in w the homotopy theoretic heart of the paper. In w we show that 

~'~.SPia(x)~flspin ell. [h -1] is not a homology theory. 

We would like to thank Serge Ochanine and Rainer Jung for stimulating discussions 

and Mark Hovey for pointing out inaccuracies in earlier versions of this paper. 

2. The ell iptic genus and the Ochanine genus 

In this section we discuss the (universal) elliptic genus and the Ochanine genus, a gen- 

eralization of the (universal) elliptic genus. Furthermore we show in Propositions 2.7 

and 2.8 that the Ochanine genus is multiplicative for suitable fibre bundles. The elliptic 

16-  935204 Acta Mathematica 171. Impdm6 le 2 f~vrier 1994 
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genus (resp. the Ochanine genus) can be thought of as an extension of the .4-genus (resp. 

the Atiyah invariant) and hence we find it useful to discuss the A-genus first. 

The A-genus is a ring homomorphism 

Z ~so __, q .  

For a spin manifold M the .4-genus A(M) is an integer (namely the index of the Dirac 

operator [AS]) and its restriction to spin bordism can be factored in the form 

~2. spin -% KO.(pt) ~ Q, (2.1) 

where the ring homomorphism ph ('Pontrjagin character') maps an element of KOn(pt)= 

KO(S '~) to the Chern character of its complexification evaluated on the fundamental class 

of S '~. To define (~ recall that for a spin manifold M n the projection map ~rM: M--~pt 

induces a Gysin map or Umkehr homomorphism ~rM: KO(M)---+KO-'~(pt)=KOn(pt) in 

KO-theory [Bo, Chapter V, w which is constructed making use of the KO-theory Thom 

isomorphism for spin bundles. Then a(M)=TrM(1) where 1 is the multiplicative unit of 

KO(M) (i.e. the trivial real line bundle). The multiplicative properties of the Gysin map 

imply that a is a ring homomorphism. Note that the Gysin map is the topological index 

of Atiyah-Singer. 

Now we turn to elliptic genera and the Ochanine genus. A rational genus is a ring 

homomorphism 
r ~.so _~ h 

from the oriented bordism ring to a commutative Q-algebra with unit. Thorn showed 

that fl,SO| is a polynomial algebra whose generators are the bordism classes of the 

even dimensional complex projective spaces C P  2n. Hence a genus r is determined by 

the formal power series 

l~ = ~ 1---~r 
2 n + l  " 

n~>0 

which is called the logarithm of r Following Ochanine [02] a rational genus r is called 

elliptic if its logarithm is an integral of the form 

fo ~ 1 dt log o (x) = x/1 - 26t 2 +et 4 

with 6, e E A. It turns out that if r is the elliptic genus corresponding to arbitrary elements 

~, eeA then 6=r  2) and e=r It follows that an elliptic genus r is completely 

determined by r  2) and r The A-genus is an example of an elliptic genus 
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with 5- - .4(CP2)=-~ and e=.4(HP2)=0.  Clearly, every elliptic genus factors through 

the universal elliptic genus 
r n s~ O[5, 

which sends CP  2 (resp. H P  2) to 5 (resp. r It turns out that the image of r is contained 
in Z [�89 [5, e]. 

The Ochanine genus is a ring homomorphism f~: ~Spin---~KO. (pt)[q] into the ring of 

power series with coefficients in KO.(pt). It is a generalization of the elliptic genus in 

the sense that the following diagram is commutative [04, Theorem 1]: 

~-~Spin . , KO.(pt)[q] 

lp h 
Z[�89 [5, e] i , Q[q]. 

(2.2) 

5 t o  - ~  n>0 ~ d  and e to ~ d 3 qn. 
d o d d  n/d  o d d  

(2.3) 

We note that i(5) and i(e) are q-expansions at the cusp oo of level 2 modular forms of 

weight 2 (resp. 4) derived from the Weierstrass p-function (compare [Hir, Appendix 1], 

[Z]). Moreover, we can use the embedding i to identify Z [1] [6, ~] with the level 2 modular 

forms with q-expansion coefficients in Z[�89 [L2, w 

To define the Ochanine genus let E be a real vector bundle over a space X. The 

total exterior (resp. symmetric) power operations are defined by 

)~t(E) = E  hi(E) ti resp. St(E) = E  Si(E) ti' 
i>~o i>~o 

where Ai(E) resp. Si(E) is the ith exterior (resp. symmetric) power of E. We denote by 

eq(E) the following formal power series in q with coefficients in KO(X): 

Oq(E) = E Oi(E) qi --_ @(A_q2.-1 (E)| (E)). 
i>~O n>/1 

(2.4) 

This expression looks rather artificial but from the physics point of view it appears 

natural. According to Witten [W, p. 167] the index of the Dirac operator on a spin 

manifold M n twisted by Oq(TM), where T M = T M - n  is the reduced tangent bundle, 

can be interpreted as the index of a sort of twisted version of the signature operator on 

Here ph is the map KO.(pt)---*Q from (2.1) extended to power series, and i embeds 

Z [1] [5, e] as a subring in the power series ring by mapping 
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the free loop space AM. This operator has no finite dimensional analogue, a fact which 

might be relevant for the definition of elliptic cohomology. 

Oq is exponential in the sense that for vector bundles E, F 

Oq( E @ F) = Oq( E) | F). (2.5) 

So Oq may be extended to virtual bundles and be considered as an exponential map 

Oq: SO(X)  --* KO(X) [q]. 

For an n-dimensional spin manifold M the Ochanine genus/~(M) [04] is defined as 

/3 ( i )  = ~ /3~(M) q~ = ~ ~M(O~(T-M)) q~ e KO~(pt)[q]. (2.6) 
i~>0 i>~0 

In a more compact notation, we write/3(M)=lrM(Oq(T-'-M)). It is easy to see that this 

definition agrees with the definition given in [04]. We note that O~ for any vector 

bundle E is the trivial real line bundle and hence/3~ =~rM(1) =a(M) .  The fact that Oq 

is exponential (2.5) plus the naturality of the Gysin map implies/3(M x N)=/3(M).~(N) .  

Recall that the universal elliptic genus r is multiplicative for a fibre bundle E--*B 

whose fibre is a spin manifold and whose structure group is compact and connected. It is 

an open problem whether the Ochanine genus/3 is multiplicative for such fibre bundles. 

As a consequence of the rigidity of the elliptic genus, we get the multiplicativity of/3 

under some conditions. 

PROPOSITION 2.7. Let G be a compact, connected Lie group acting on a closed spin 

manifold F of dimension k preserving the spin structure. Assume that k-=0, 3 mod 4 or 

G = S  1. Then for any fibre bundle p: E--*B over a closed spin manifold B with fibre F 

and structure group G we have/3(E)=~(B)./3(F). 

This proposition is a consequence of a slightly more general result. To state it, 

first some notation: let KS(pt ) (resp. KOS(pt)) be the eqnivariant complex (resp. real) 

K-theory of the point and let Ka(pt)  (resp. K"OG(pt)) be the cokernel of the map from 

the non-equivariant to the equivariant K-theory. 

PROPOSITION 2.8. The conclusion of Proposition 2.7 holds if instead of assuming 

k~0,3  mod 4 or G = S  1 we assume that the complexification map K-O~k(pt)---*K~k(pt) 

is injective. 

Proof of Proposition 2.7 (using Proposition 2.8). We recall from [ASP, w that 

K~k(pt) ~ R(G) |  

KO~k (pt) ~-- Ac|174174  ' 
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where R(G) is the complex representation ring of G, AG, Bo and CG are direct summands 

of the Real representation ring described below, and KSp is symplectic K-theory. Recall 

that a Real G-module is is a complex G-module with an antilinear involution commuting 

with the G-action. The commuting field of a simple Real G-module, i.e. the set of 

complex linear endomorphisms which commute with the G-action and the involution, is 

R, C or H. The Real representation ring RR(G) is the free abelian group generated 

by the simple Real G-modules. It is isomorphic to AG@BG@CG, where AG (resp. 

BG r e s p .  CG) is the free abelian group generated by the simple Real G-modules whose 

commuting fields are R (resp. C resp. H). Moreover, these isomorphisms are such 

that the complexification map KO~k(pt)---,K~k(pt) corresponds to the obvious maps 

from KO-k(pt) (resp. K-k(pt) resp. KSp-k(pt)) into K-k(pt).  By Bott-periodicity 

K-k(pt) - -Z for k even and K-k(p t )=0  for k odd and 

Z for k - 0  mod 4 

KO-k(pt)~-KSp-k+4(pt)--- Z/2 for k--_l,2 mod 8 

0 otherwise. 

Moreover, the complexification map KO-~(pt)---~K-k(pt) and the forgetful homomor- 

phism KSp-k(pt)---~K-k(pt) are injective on the torsion free parts. This shows that 
~ - - k  ^ - - k  

the complexification map KO o (pt)---*K a (pt) is injective if k - 0 ,  3 mod 4 or if all non- 

trivial simple Real G-modules have commuting field (3, which is the case for G=S 1. [] 

Proof of Proposition 2.8. The following argument follows closely Segal's argument in 

his proof that the rigidity of an elliptic genus implies its multiplicativity for fibre bundles 

[Se, w For the fibre bundle p: E---*B we have TE~-p*TB~TF, where TF is the tangent 

bundle along the fibres. By the functoriality of the transfer r~  =~r~p! and hence 

~(E) ~-- 71"!E(Oq ( ~ ) )  --~ 7fBp!(p*Oq(TB). Oq(TF)) ~- 7rB(Oq(~)'p!Oq(TF)). 

Now p Oq(TF) is an element of go- (B)[qi whose augmentation is 
KO-k(pt)[q] (compare the bundle p:E--*B to ~rF:F---*pt). It suffices to show that 

p!Oq(TF) is in the image of (rs)*:KO-k(pt)[q]--*KO-k(B)[q] since this implies 

p!OqiTF)=(rB)*(/3(F)) and hence 

=Z(S).Z(F). 

To prove that p!Oq(TF) is in the image of ( r s )  * it suffices to prove the corresponding 

st atement for v, the tangent bundle along the fibres of r: EG x a F--. EG x V pt = BG, the 

universal bundle with fibre F and structure group G. 
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CLAIM 2.9. ~r, Oq(~) is in the image of (~rBv)*: KO-k(pt)~q~--~KO-k(BG)~q]. 

To prove the claim consider the commutative diagram 

KOG(F) �9 KO(EG• 

KOSk(pt) , KO-k(EGxapt) 

where the horizontal maps take a G-vector bundle over a G-space X to the associ- 

ated vector bundle over the Borel construction EG • The equivaxiant tangent bun- 

dle TFEKOG(F) maps to TEKO(EG• and hence 1r~(Oi(T-'-F))EKO~k(pt) maps 

to mOi(~).. Hence it suffices to show that the equivariant Ochanine genus 13G(F ) - ~  -- 
~r~(Oi(T--F))EKOhk(pt) is in the image of KO-k(pt)---*goh~(pt). Our assumption con- 

- - - - ~ -  k ^ - k  
cerning the injectivity of KO G (pt)---*K G (pt) means that it is sufficient to prove the 

corresponding statement in complex K-theory. For k odd this is trivially true, for k even 

K~k(pt) can be identified with the complex representation ring RG and via the Atiyah- 

Singer index theorem ~rF(O~(T'F))EK~k(pt)=RG is the equivaxiant index of the Dirac 

operator on F twisted by Oi(TF). 
The Witten-Taubes rigidity theorem IT], [BT] says that this index is the triv- 

ial representation for G=S 1 and hence for all compact, connected Lie groups G; i.e. 

~rF(Oi(T-F))EK~k(pt) is in the image of g-k(pt)--*g~k(pt) .  [] 

3. Kerne l  and image  o f  the  Ochanine  genus  

In this section we study kernel and image of the Ochanine genus and prove Theorems A 

and C of the introduction, except part (1) of Theorem A whose homotopy theoretic proof 

is defered to w and except the determination of kera  at odd primes (Proposition 3.3) 

which is given in w We begin by an analogous discussion of the ring homomorphism 

~Spin --~ KO. (pt). OL: _ . ,  

By Bott-periodicity, 

KO, (pt) -- Z[~?, w, #, ,-11/(2,, ~ ,  ~ (3.1) 

where ~/, w,/~ axe elements of degree 1, 4, 8, respectively. In fact, for the generators S 1, 

K, H P  2 and B of the low-dimensional spin bordism groups (cf. w after Theorem A) we 

have 
a ( S 1 ) = y ,  a(g )=w,  a(B)=#,  a ( H p 2 ) = 0 .  (3.2) 
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Geometrically c~(M) can be interpreted as the index of a family of operators associ- 

ated to M parametrized by S n [Hit, p. 39]. Using this geometric interpretation Hitchin 

showed that a(M)=O if M has a Riemannian metric of positive scalar curvature [Hit]. In 

particular, a ( H p 2 ) = 0  since the standard metric on H P  2 has positive scalar curvature. 

More generally, total spaces of HP2-bundles have metrics of positive scalar curvature 

and hence the subgroup T~(pt) consisting of bordism classes of such total spaces is in 

the kernel of a [Stl]. 

PROPOSITION 3.3. kerc~=T~(pt) 

Localized at 2 this was proved by the second author in his work on the Gromov- 

Lawson conjecture [Stl]. The proof at odd primes is easier and is provided in w below. 

Now we turn to the Ochanine genus 

]~: ~'~.Spin ---> K O ,  (pt)~q]. 

Proposition 2.7 shows that the Ochanine genus is multiplicative for Hp2-bundles (bun- 

dles with fibre H P  2 and structure group PSp(3)). We stress that the Witten-Taubes 

rigidity in this special case is not a deep fact, since it can be proved by writing down the 

equivariant elliptic genus in terms of the fixed point data which are known explicitly. 

The multiplicativity for Hp2-bundles implies in particular that the subgroup T~(pt) 

of flSpin (consisting of total spaces of Hp2-bundles over a zero bordant base) is contained 

in the kernel of j3. The converse holds, too, and it is basically a corollary of Proposi- 

tion 3.3. 

PROPOSITION 3.4. (1) kerj3=T,~(pt), 

(2) im/3---Z[/3(S1),/3(g),/~(B), j3(HP2)]/I,  where I is the ideal generated by 2/3($1), 
~ ( S 1 )  3, Z(S1)']~(K) and ]3(K) 2-22(]3(B)+26z(I-IP2)). 

Part (2) is a result of Ochanine [04, Theorem 3] which he proves by studying the 

modular properties of ~3(M) for a spin manifold M. Below we give a different proof which 

makes use of (3.3). We note that Proposition 3.4 implies part (3) of Theorem A. 

Proof. Recall from the introduction that ~Spin~z/2 is generated by S 1 (with the 

non-trivial spin structure), Spin ~ 7. f~4 = _  is generated by the Kummer surface K, and c}Spin~'~ ~S  ~- 
Z@Z is generated by H P  2 and a manifold B (for 'Bott'), characterized by .4(B)=l ,  

sign(B)=0. There are the following obvious relations between these bordism classes: 

2[S1] = 0, [S113-~-0, [$1] x [g] =0,  [K]2 = 22 ([S] + 26 [I-Ip2]). (3.5) 

The first three relations follow from Q1Spin-~z/2 resp. QSpin=0 for n=3, 5, the last relation 

follows from the fact t h a t  ~'~Spin~'~Z~Z is detected by .4-genus and signature and the 
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calculation 

A(K x K)  = (A(K)) 2 = 22, sign(K x K)  = (sign(K)) 2 = 28. 

Let S.  be the subalgebra of ~,Spin spanned by [$1], [K], [B], and [Hp2]. 

CLAIM. The restriction of ~: 12,Spin---*KO,(pt)lq] to S, is injective. 

To prove the claim we note that  

t3(S 1) --- ~/(1+...), ~3(K) = w(l+. . . ) ,  

f~(B) = #(1+.. . ) ,  f~(HP2) = #(q+.. .) .  

The first three equalities follow from f~~  and the information about a in (3.2). 

The last equality follows from diagram (2.2) using the fact that  r  and ph(#)=1.  

These equalities show that the elements ]~(B)q3(Hp2) p resp. 3(K)3(B)q3(HP2) p are 

linearly independent over Z and that the elcments fl(S1)r~(B)q3(Hp2) p for r = l ,  2 are 

linearly independent over Z/2.  Hence there are no other relations between the elements 

f~(S1), f~(g), f~(B) and f~(HP 2) besides the obvious ones coming from the relations (3.5). 

CLAIM. ~Spin----Sn~Tn(pt ). 

OSpin__g for n<~9. Now assume that The proof of this claim is by induction over n. ~,,~ - ~,~ 
Spin the claim is true for n<8k and that [M] 6f~sk+r with 0~<r<8. Subtracting if necessary a 

multiple of [B]k[SI] ~ (for r = 0 ,  1, 2) or a multiple of [B]~[K] (for r=4) we can assume that 

a(M)=O. Thus by Proposition 3.3 M is bordant to the total space of an I-IP~-bundle 

over some manifold N implying [M]- [N]  • [HP 2] mod T.(pt) .  This proves the claim 

since [N] and hence [N] x [ t tP  2] are in S . + T . ( p t )  by the induction assumption. 

Those two claims and the multiplicativity of the Ochanine genus for t tp2-bundles  

now imply both parts of Proposition 3.4. [3 

Proof of part (2) of Theorem A. First we provide a different description of the 

subgroups T,(X)  and T , (X)  which will also be useful for the proof of Theorem C, as 

well as for the proof of part (1) of Theorem A in w 

Given a manifold N and maps f:  N--+BG=BPSp(3), g: N--+X let p:/Y--+N be the 

pull back of the fibre bundle 

H P  2 --~ EG x G H P  2 --L BG 

via f .  A spin structure on N induces a spin structure on /V and hence we can define a 

homomorphism 
Spin ~2: fl,~-s ( BG x X)  ----* flSpin (X) (3.7) 
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by mapping the bordism class of ( N , / x  g) to the bordism class of (N, gp). Note that  

T,(X) is the image of �9 and Tn(X) is the image of ~,  the restriction of �9 to 

ker(f~spi_~(BG• (Pr2)* Spin ,,~ --Spin ,-,a--Spin S ~,~_s(X))=f~._s(BGAX+)=g~n (~ BGAX+). 

In other words, there is an exact sequence of (left) modules over ~Spin 

f iSpin(~sBa^X+) & asPin(X) ~ ell.(X) ~ 0. (3.8) 

Replacing X by a point and applying the right exact f u n c t o r  ~Spin(x)|  ( - - )  gives 

another exact sequence which maps to the first one via maps induced by Cartesian 

product of manifolds. Hence we get the following commutative diagram with exact rows 

(tensor products are tensor products over  ~'~Spin): 

~spin(x)| ) Spin Spin ' ~ '~.  (X) |  ' [ '~,Spin(x) |  

l l 1 
5spi"(ESBaAX+) , f~Spin(x) , ell, (X) , 0 .  

(3.9) 

The middle vertical map is clearly an isomorphism and the vertical map on the left 

is an isomorphism after inverting 2 for the following reasons: after inverting 2 the inte- 

gral homology of BG is concentrated in even dimensions, hence the Atiyah-Hirzebruch 

spectral sequence converging to ~Spin(y]SBG) collapses and so ~,Spin(~SBG) is a free 

module over f~spin. This implies that  f~Spin(x)| is a homology theory. 

Thus the left vertical r~ap is a natural transformation between homology theories (with 

2 inverted). It is an isomorphism for X--pt and hence an isomorphism for all X (cf. [CF, 

Theorems 18.1 and 44.1]). Thus the five lemma implies that  the vertical map on the 

right, which is the natural transformation of part (2) of Theorem A, is an isomorphism 

after inverting 2. [] 

Proof of Theorem C. For a space X let ko,(X) be the connected real K-homology 

of X. Then kon(pt)=KOn(pt)  for n~>0 and hence a can be considered a ring ho- 

momorphism c~:f~SPln---*ko,(pt) which is surjective by (3.1) and (3.2). Recall from 

(3.3) that  the kernel of c~ is the subgroup T,(pt).  Hence the induced map koo, (p t )=  

~Spin/T,(pt)---*ko,(pt) is an isomorphism. As explained in [St2] there is a natural trans- 

formation koo,(X)--*ko,(X) restricting to this isomorphism for X=pt. Moreover, this 

map is an isomorphism when "localized at 2 [St2, Theorem B] and is compatible with 

inverting b resp. # in the domMn resp. range. Hence we get a natural transformation 

koo,(X)[b-1]-*ko,(X)[# -1] which is an isomorphism localized at 2. The range can be 

identified with the periodic theory KO,(X)  since there is a natural transformation of 
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homology theories ko.(X)[# -1]---*KO.(X)[# -1] =KO, (X)  which is an isomorphism for 

X = p t  and hence for all X. 

Hence it suffices to show that koo.(X)[b-ll|189 is a homology theory. We note 

that replacing ell, by koo. and BG by BG+ in diagram (3.9) above and using the same 

arguments it follows that the natural transformation f~Spln(x)| koo,---*koo.(X) in- 

duced by Cartesian product of manifolds is an isomorphism after inverting 2. This implies 

that koo.(X)[b-1]|189 is isomorphic to ~.Spin(x)| KO, [�89 which is a homology 

theory (cf. [HH, w [] 

4. Total  spaces  of  H P 2 - b u n d l e s  at  odd  pr imes  

In this section we prove Proposition 3.3, i.e. we show that the kernel of the Atiyah 

invariant a :  ~--~Spin "- -+SO.  (pt) is equal to the subgroup T. (pt) consisting of bordism classes 

represented by total spaces of HP2-bundles. The only thing left to show is that kera_C 

T.(pt) after inverting 2. We recall from [S, p. 180] that f~,Spin(pt)[1] is a polynomial 

algebra generated by elements [M 4n] in degree 4n where M 4n is any spin manifold with 

sn(Man ) = ~ 2 a if 2n+1 is not a prime power 

( 2~p if 2n + 1 is a power of some prime p. 

Here s~(M) is the characteristic number (s~ (TM), [M])E Z, defined by evaluating a cer- 

tain characteristic class sn(TM)EH4n(M; Z) of the tangent bundle on the fundamental 

class of M. For a real vector bundle F, s,~(F) (defined e.g. in [MS, w is a polynomial 

in the Pontrjagin classes pi(F). Due to the splitting principle, it can be characterized by 

the following properties: 

sn(F@F') = s~(F)+sn(F') and sn(F) = p I ( F )  n if pi(F) = 0  for i > 1. (4.1) 

We note that if E is a 3-dimensional quaternionic vector bundle then its associated 

projective bundle PE is a bundle with fibre t t P  2 and structure group Sp(3). In particular, 

it is an I-Ip2-bundle in the sense of the introduction. 

PROPOSITION 4.2. For each n>.2 there exists a 3-dimensional quaternionic vector 

bundle E over a (4n-8)-dimensional spin manifold such that 

2 a(n) if 2n+ l is not a prime power 
s,~(PE) = 

2a(n)p if 2 n + l  is a power of some prime p, 

where a(n) =2 if n=2 i -  1 and a(n) = 1 otherwise. 

This shows that we can choose the generators [M 4'~] of the polynomial algebra 
~-~Spin [ 1 ] * t~J to be in the ideal T,(pt) for n~>2. This implies kera  [�89 C_T,(pt)[�89 and proves 

Proposition 3.3. 
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Proof of Proposition 4.2. For fixed n>~ 2 and 0<~r <~n-2 let Er be the 3-dimensional 

quaternionic vector bundle (~1 • over the product H P r x H P  n-r -2  of quater- 

nionic projective spaces. Here 71 and 72 are the canonical quaternionic line bundles 

over the factors and H is the trivial quaternionic line bundle. We choose the orientation 

on quaternionic projective space such that  (yk [Hpk] )= l ,  where y is the generator of 

H4(Hpk;  Z) whose pull-back to C P  2k+l is the square of the 2-dimensional generator. 

2n LEMMA 4.3. s~(PE~)=-2ar where ar=(2(r+l))--l. 

Before we prove the lemma we will apply it to finish the proof of Proposition 4.2 by 

computing gcds~(P~) for O~r<~n-2. Note that  

n(n-1)(2n-3)(2n-1) 
a 0 = ( 2 n + l ) ( n - 1 )  and a l - -  6 - 1 .  (4.4) 

This implies that  gcd a~ is not divisible by 4. On the other hand, gcd a~ is divisible by 

2 if and only if 2~ (2(r+1)) is odd for O4r<~n-2 which holds if and only if n + l  is a power 

of 2. 

If p is an odd prime divisor of gcd ar then (4.4) implies that  p divides 2n+ 1 (in the 

case p=3 observe that  if 3 divides ( 2 n + l ) ( n - 1 )  then it also divides 2n+ l ) .  Note that  

a~-a~_l can be written in the form 

a~-a~-l= 2(r+1) - 2r \ 2 r + 2 ] - k 2 r + l ] "  

Now assume that  2n+l=pkq with q prime to p. Then for _1  k r-~(p - 1 )  we have 

ar - a~_ 1 ~ 0 rood p since ( p~ q ~ = 0 rood p and [pk q~ -~ 0 rood p. Hence p does not divide \ p k + l  ] - -  \ p k  f-f-- 

gcd a~, provided q>~ 1 (for q= 1 the number r =  �89 1) does not satisfy the condition 

r<~n-2). 
For 2n+l=p k we claim that  gcda~ is not divisible by p2. This is clear from (4.4) 

1-(pk-1 -- 1) which in turn for k = l .  For k~>2 it follows from a~-ar-l~O mod p2 for r=2~ 
pr 

follows from (p~_P[+l)----0 rood p2 and (,~_1)~0 rood p~. 

On the other hand, p divides gcda~ for 2n+l=p k, since p is a divisor of a0 and 

a -a _l for 0 < r < n - 2 ,  which follows from (4.5) and rood p for all 0 < i < p  

This finishes the proof of Proposition 4.2. [] 

Proof of Lemma 4.3. Consider the following general situation. Let p : / ~ - - , N  '~-s be 

a fibre bundle with fibre H P  2 and structure group G=Sp(3).  Such a bundle is the pull- 

back of the fibre bundle lr: E=EG• via the classifying map f :  N--*BG 
of the associated principal bundle. Then the tangent bundle T/~ is isomorphic to 

p*TN@TF, where TF is the tangent bundle along the fibres of p: N---,N. Hence 

(s~(TN), [/~]) = (p*s,~(TN)+sn(TF), [/~]) 
(4.6) 

---- (P!(Sn(TF) ), [N])----(f*(~r!(sn(7"))), [N]). 
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Here p,: Hn(/V; Z)--*Hn-S(N; Z) (resp. 7r,: H~(E; Z)-~H'~-S(BG; Z)) is the Gysin map 

(integration over the fibre) associated to p (resp. ~r) [Bo, Chapter V, 6.14] and T is the 

tangent bundle along the fibres of r :  E---*BG. 

To identify T we note that  the isotropy subgroup of the G-action on H P  2 at the 

point [0, 0, 1] E H P  2 is H = S p ( 2 ) x  Sp(1). Hence we can identify the fibre bundle 

H P  2 ---* E G x G H P  2 -~ BG 

with the fibre bundle 

H P  ~ = G / H  ---+ B H  B_~ BG (4.7) 

induced by the inclusion i: H--~G. Let g--[} @ b • be the decomposition of the Lie algebra 

of G into the Lie algebra of H and an orthogonal subspace (with respect to the Killing 

form). The adjoint action of G on g restricts to an H-action on b • The associated 

vector bundle E H  x H ~• is isomorphic to v. 

Before we can calculate s,~('r) we have to discuss the cohomology of BG. We note 

that the inclusions 

T 3 = S 1 x S 1 x S 1 ~ H = Sp(2) x Sp(1) --+i G = Sp(3) 

induce monomorphisms of the integral cohomology of the corresponding classifying spaces 

(here j is the standard inclusion of a maximal torus which maps ( z l , z2 , z3 )6T  3 to the 

diagonal matrix with these entries). Hence we can identify H*(BG; Z) (resp. H*(BH;  Z)) 

with its image in H*(BT3; Z)--Z[xl ,  x2, x3] (xi are elements of degree 2), which consists 

of the subring of polynomials invariant under the Weyl group of G (resp. H)  [Bor]. Hence 

H*(BG; 2 2 2~3 Z)~-Z[Xl,X2,X3] and H*(BH;Z)=Z[x2 ,  -2 _21~2 X2~ x3J 

where the symmetric group ~3 acts on Z[xl 2, 2 2 x2, x3] by permuting the generators and Z2 

is the subgroup of ~3 fixing x~. 

To calculate s ,~ ( r )=sn(EH x/~ b • we describe the representation b • more explic- 

itly as H 2 with (am b ) 6 H : S p ( 2 ) •  mapping a point x 6 H  2 to ax-b (here b e l l  is 

the quaternionic conjugate of b 6 H  and the multiplication is the matrix product). In 

particular, 

~• "~ HI | @HI |174 ~H2| (4.8) 

where Hi is the I-dimensional complex representation of T 3 with (Zl, z2, z3)eT 3 acting 

by multiplication by zi. Hence the pull-back of T to BT 3 is a sum of complex line bundles 

and it follows from (4.1) and (4.8) that 

s,~(r) ---- (x ,-x3)2n-}-(x,  +x3)2" +(x2-x3)2n +(x2+x3) 2'~. (4.9) 
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For the calculation of 7r! we observe that H* (BH; Z) is a free module over H* (BG; Z) 

with basis {1, x 2 x 4x (this follows e.g. from the Leray-Hirsch theorem [Sw, p. 365] applied 3~ 3J  

to the fibre bundle (4.7)). Hence each sGH*(BH; Z) can be written uniquely in the 

form s = so + slx~ + s2x 4 with si E H* (BG; Z). It follows from the Serre spectral sequence 

description of m. [Bo, Chapter V, 6.14] that m.(s)=s2. Using this we can calculate 

~r:(s,~(~-)) for small n, but it soon becomes very tedious to express Sn(T) as a linear 

combination of the basis elements. In this situation the following commutative diagram 

is useful: 
2 2 2 IE2 ~r, 2 2 2 E3 �9 Z [Xl, X2, X3] Z [ X l ,  X2, X31 ) 

2 2 2 2 Z[Xl , .T2 ,  X~] A , Z l x l  ' x2 ,  x ] ] .  

(4.10) 

Here w=A(x21x 4) and A is the anti-symmetrization map which sends a polynomial p 

to Y~ sign(a)a(p), where the sum extends over all aEE3 and sign(a) is the sign of the 

permutation a. To prove the commutativity of the diagram we note that all maps 
2 2 2 ~a axe module maps over Z[xl,x2,x3] . Hence it suffices to check commutativity on the 

elements of the basis {1, x23, x34} which is a short calculation. 

Now we calculate Zr!(S,~(T)) or rather Sk*(rr!(sn(~'))), where k: Sp(1) x Sp(1)-*Sp(3) 

is the embedding which sends (hi, h2) to the diagonal matrix with entries hi, h2, 1 

in Sp(3). 

Sk*(A(x 2 Sn(T))) 

-=" Bk* ( a ~  sign(•) x2(1)[(xa(1)-xa(3))2n +(xa(1) +xa(3))2n]) 

2n+2 2 2n 2n 2n+2 2 2n =2xl  +x2[(x2-xl) +(z2+xl )  ]-2x~ - x l [ ( x l - x2  ) +(xl+x2)  2hI 

i~0  

n-2~_,(l_ ( 2n "~ 2i 2(n-i-2) 

With regard to the first equality we note that the terms x~(x2+x3) 2n are in the kernel 

of A since they are symmetric with respect to interchanging x2 and x3. Since Bk*(w):  
2 2 2 2 XlX2(X l -x2)  the above calculation and the commutative diagram (4.10) imply 

= 2(1- (  2n 

�9 , = o  t , 2 ( i + l ) ) )  ' �9 

Now the statement of the lemma follows from (4.6), since the classifying map of E,  is the 

inclusion of H P  r x H P  ~-~-2 into H P  ~ xHP~176 composed with Bk 
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2i 2(n-i-2) and x I x 2 evaluated on the fundamental class [HPr• HP n-r-2] is one for i--r 

and zero otherwise. [] 

5. Total spaces of  Hp2-bundles  at the prime 2 

In this section we outline the proof that ell,(X)| is a homology theory using a 

splitting result (Proposition 5.1) we prove in the next section. The strategy is to produce 

a 2-local spectrum el and a natural isomorphism ell,(X)| We will 

actually show that the spectrum el is homotopy equivalent to the wedge V ESkko of 

suspensions of the connective real K-theory spectrum (Corollary 5.2). Unfortunately we 

are unable to describe directly a map from MSpin to V Esk ko which factors through the 

connective elliptic homology inducing an isomorphism. The difficulties are related to the 

fact that el and V Esk ko are not homotopy equivalent as ring spectra (cf. remark (iii) 

of the introduction). From now on all spectra and abelian groups are localized at the 

prime 2. In particular, we write ell,(X) instead of ell,(X)| 

To construct el recall from (3.8) that ell,(X) fits into the exact sequence 

5sP~"(SS BG AX+ ) ~ asP~"( X) --, e l l . ( X )  --~ O. 

As in [St1, w the reduced transfer map ~ can be identified via the Pontrjagin-Thom 

construction with 

7r, (MSpin AESBGAX+) (TA1).) 71", (MSpin AX+). 

Here T is the restriction of the map T:MSpinAESBG+--*MSpin of [Stl, w to 

MSpin AESBG. 

Since ella(X) is the cokernel of the transfer map the cofibre spectrum of T seems to 

be a good candidate for the spectrum representing elL(X). But this is not the case since 

the map (TA1), is not injective. To overcome this difficulty we split MSpin AESBG in 

an appropriate way. 

PROPOSITION 5.1. (1) The spectrum MSpinAESBG splits as A V B  such that T]A 

induces a monomorphism and TIB induces the trivial map in Z/2-homology. 

(2) There is a map S:VESkko---*MSpin such that AvVESkkoTS*V~MSpin is a 

homotopy equivalence. 

Now we define the spectrum el as the cofibre spectrum of T[A and denote the pro- 

jection from MSpin to el by rr. Part (2) implies 
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8k S . lr COROLLARY 5.2. The composition V E ko-~MSpm--*el is a homotopy equiva- 

lence. 
. ( . ^ 1 ) .  

In particular, the map ~r.(MSpm AX+) , r . (e lAX+) is surjective for all X. The 

relation between the homology theory corresponding to el and the functor elL(X) is 

described by the following diagram with exact rows: 

r . (AAX+) (TIAA1).)  r .(MSpinAX+) ( r h l ) .  ~ . ( e l A X + )  

7~.(MSpinAESBGAX+) (~^~)*) ~r.(MSpinAX+) P~ , elL(X) 

0 

~0. 

The vertical map on the right is surjective since the projection map pr is surjective by 

definition of ell,(X). The next proposition and a diagram chase imply that it is also 

injective, which proves part (1) of Theorem A. 

PROPOSITION 5.3. The composition of T and ~r is homotopic to zero. 

The rest of w is devoted to the proof of this proposition. The idea is to compare 

~r: MSpin--*el to a map B: MSpin--~KO[q~ which is a homotopy theoretic version of the 

Ochanine genus. Here KO[q] is the product of countably many copies KOi indexed by 

the non-negative integers. We think of an element of 7r,(KO[q]) as a formal power series 

of q with coefficients in 7r,(KO)=KO,(pt) which motivates our notation. To construct B 

consider the projection map ~/: BSpin--*BO as an element of KO(BSpin) and define Bi= 

ff)(O i(-'~)) eK'O ~ (MSpin), where ~: KO* (BSpin) --, K-'O* (MSpin) is the KO-theory Thorn 

isomorphism and O ~ is the KO-theory operation defined in (2.4). Let B: MSpin--~KO[q] 

be the map with components Bi: MSpin---,KOi. 

Spin ..~ . B .  LEMMA 5.4. The induced map f~, =Tr,(MSpm)--*Tr,(KO[q])=KO,(pt)~q] is the 

Ochanine genus t3. 

Proof. Let M ~ be a spin manifold. Recall that the Pontrjagin-Thom isomorphism 

maps the bordism class [M]Ef~ spin to the element of 7rn(MSpin) represented by the 

composition S n T--~M(--TM)-MAMSpin. Here M ( - T M )  is the Thorn spectrum of the 

inverse of the tangent bundle, Mc is the map of Thorn spectra induced by the classifying 

map M---~BSpin of - T M ,  and T is the Thorn (collapsing) map. Hence, using naturality 

of O i and naturality of the Thom isomorphism we get 

B~ ([M]) = ~(O~(-7))McT = (~(Oi(T--M))T. 

To identify this with ~i(M)--~rM(Oi(T'-M)) recall that the Gysin map ~r! associated to a 

fibre bundle ~r: E--~B with fibre a manifold F n is the composition 

~!: KO*(E) --,~ K'O*(M(-z)) T(~)*) ~-~*(E~B+) = K'O*-~(B+). (5.5) 
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Here ~- is the tangent bundle along the fibres which is assumed to be a spin bundle, 

is the Thorn isomorphism, and T(r)  is the Thorn map associated to lr. Interpreting 

T: S n - + M ( - T M )  as the Thorn map T ( r  M) associated to the fibre bundle ~rM: M - + p t  

we conclude 

~(Oi(T"-M)) T(~r M) -_ rM (Oi(T-M)) = Hi(M), 

which proves the lemma. [] 

We recall that the multiplicativity of the Ochanine genus ~ for certain fibre bundles 

(Proposition 2.7) implies that the subgroup Tn(pt) of flSpin (consisting of total spaces of 

I-Ip2-bundles over zero-bordant bases) is in the kernel of the Ochanine genus. Homotopy 

theoretically, Tn(pt) is the image of the reduced transfer map T: MSpin AZSBG---+MSpin 

on homotopy groups. This implies that the composition of T and B is trivial on homotopy 

groups. In fact, more is true: 

LEMMA 5.6. The composition MSpin A~B BG T--+ MSpin B--~K O[q] is zero homotopic. 

Proof. By construction [Stl, w the transfer map T is the composition 

T: MSpin A~SBG+ id^~ MSpin A MSpin ~ MSpin, (5.7) 

where # is the multiplication of the ring spectrum MSpin, and t is the map 

t: ~SBG+ T(Ir)) M(-~-) Mc ----+ MSpm. 

Here T(~r) is the Thorn map associated to the fibre bundle H P  2---*EGxvHP 2 Z+BG, 

T is the tangent bundle along the fibres and Mc is the map of Thorn spectra induced by 

the classifying map of --T. 

We consider first the composition of t and B i. By naturality of O i, naturality of the 

Thorn isomorphism and the construction of ~r~ (see (5.5)) we get: 

Bit  = r = ~(Oi(~))T(~r) = r! (Oi(~)). 

By (2.9) r!(Oi(7)) is in the image of Ko-S(pt)--+KO-S(BG), i.e. the restriction of 

Bit: ~SBG+--+KO to ~SBG is trivial. 

Note that this implies that B:F, the restriction of B T  to MSpin A~SBG, is trivial 

using the following fact. [] 

LEMMA 5 .8 .  There i8 a multiplication map #:KO~q]AKO[q]-+KO[q] such that 
B: MSpin--+KO[q] is a ring spectrum map. 

Proof. The multiplication # on KO[q]=l-Ii>>.oKOi is given by 'multiplication of 

power series'. Its KOs-component is the composition 

II  Ko, ^ II  Ko,--. 1] Ko, ^ 1-[ Ko, = V Ko, ^ V rco,-. Ko , (5.9) 
i>>.o i~o o<~i<~s o<~i<~s o<.<i<.s o<.i<~s 
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where the first map is the projection map and the second map restricted to the summand 

KOi A K0j  is the trivial map for i + j r  and is the multiplication of KO (induced by the 

tensor product of vector bundles) for i + j = s .  

After applying the Thorn isomorphism (making use of its multiplicative properties) 

the proof that B=r is a ring spectrum map follows from the following facts: 

(1) The multiplication on MSpin is induced by the Whitney sum. 

(2) The multiplication on KO[q~ is induced by the tensor product. 

(3) eq is exponential (cf. (2.5)) 

This proves Lemma 5.8. [] 

Proof of Proposition 5.3. To show that the composition 

. ~r 
g: MSpin Ar, SBG ---* MSpm --* el 

is trivial we recall that el is homotopy equivalent to ~/Z sk ko by (5.2) and note that 

the natural map V ~Sk ko__.l-L>~0 ~sk ko is a homotopy equivalence since it induces an 

isomorphism in homotopy. Hence g is equivalent to a sequence of maps 

g~: MSpin A~SBG --* ~ak ko. 

We note that •sk ko is homotopy equivalent to ko(8k/, the (8k-1)-connected cover 

of KO and hence by [St2, Theorem 5.2], which shows that for suitable spectra X the 

group [X, ko(k)] of homotopy classes of maps from X to ko(k) can be computed in terms 

of a pull back diagram, gk is homotopic to zero if and only if it induces zero in Z/2- 

homology (which is clear by construction of el) and the composition with the projection 

PSk from ~sn ko=ko(8k / to KO is zero-homotopic. We know from Lemma 5.6 that the 

composition BT is trivial. In particular, B factors through a map B: el--KO[q L and 

the composition 

MSpin A~SBG g-* el B_~ K0[q] 

is trivial. Let ~i: el--*KO be the ith component of B (recall that KO[q]=l-Ii>~o KOi), 

let Bk be the restriction of B to the summand ~Sk ko of el= V ~sk ko and let B~ be the 

restriction of ~i  to ~8k ko. 

CLAIM 5.10. B~ is trivial for k>i and B~ is the projection map ps~:~Skko= 

ko(Sk) --,KO. [] 

Assuming the claim which will be proved in w and assuming inductively that gk is 

trivial for k <i  it follows that 

o<<. k O<~ k <~ i 

is trivial. This implies that gi is trivial and proves Proposition 5.3. [] 

17-935204 Acta Mathematica 171. Imprim6 le 2 f~vrier 1994 
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6. A splitting of MSpin 

This section is devoted to the proof of the splitting result (5.1). As before G=PSp(3 )  

and we localize everything at the prime 2. The strategy of the proof is to show first that  

the statement of the proposition holds on the level of homology groups. Then we use a 

result of [St2] to show that  the splitting of H,MSpin AESBG as a comodule over the dual 

Steenrod algebra can be realized geometrically. The study of the maps induced by T and 

S in homology is made a lot easier by the fact that  the spectra involved are 'homology 

ko-module spectra '  which implies that  their homology groups have a nice structure (they 

are extended A(1),-comodules). 

For the convenience of the reader we begin by recalling the definitions of ring spectra 

and (homology) module spectra (cf. [Sw, (13.50) and (13.51)], [St2]). Then we construct 

the map S and state the result concerning the homology of homology ko-module spectra 

before calculating the maps induced by T and S. 

A ring spectrum is a spectrum E with a 'product '  #: EAE--*E and a 'unit '  ~: S~ 

such that  the diagrams expressing the associativity of # resp. that  ~ is a unit for p are 

commutative up to homotopy. A map f : E - ~ E '  between two ring spectra is a ring 

spectrum map if the appropriate diagrams comparing the multiplication and the unit in 

E with those in E t are homotopy commutative. 

For example, the Whitney sum of vector bundles induces a multiplication 

MSpin A MSpin-~MSpin which makes MSpin a ring spectrum (the unit is given by the 

inclusion of the bot tom cell). Similarly, the tensor product  of vector bundles induces a 

product ko A ko--~ko which makes ko a ring spectrum (again, the unit is given by the 

inclusion of the bot tom cell). The KO-theory Thom class for spin bundles gives a map 

D: MSpin-~ko. The multiplicativity of the Thorn class implies that  D is a ring spectrum 

map. As shown in [St2] a ring spectrum map ko--~MSpin doesn't  exist, but there is a 

map s: ko--*MSpin which is a right inverse to D and induces an algebra map in homology. 

An E-module spectrum is a spectrum F with an action map c~: EAF--~F such 

that  appropriate diagrams are commutative up to homotopy. These diagrams encode 

the associativity of the action and the fact that  the unit acts trivially. An E-module 

spectrum map is a map f : F - , F '  between E-module spectra such that  the diagram 

comparing the E-action on F with the action on F t is homotopy commutative. The 

simplest kind of E-module spectrum is of the form E A X  where X is some spectrum and 

the E-action is given by the multiplication in E.  If f :  X--*F is a map from a spectrum 

X to an E-module spectrum F we can form the composition 

f'. WAX ~^~ E A F  -% F 

which is an E-module map we call the E-extension of f .  
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For example, the transfer map T: MSpinA~SBG+---+MSpin is (by definition) the 

MSpin-extension of a map t: ~SBG+--*MSpin (cf. (5.7) and [Stl, w In particular, T 

is an MSpin-module map. The corresponding statement holds when we remove the base 

point from BG+ and replace T (resp. t) by their restrictions T (resp. {). 

As in [St2] we generalize the notion of E-module spectra and E-module map by 

replacing 'homotopy commutative' by 'commutative in homology'. Such spectra (resp. 

maps) we call homology E-module spectra (resp. homology E-module maps). We note 

that we can regard every MSpin-module spectrum as a homology ko-module spectrum 

via the map s: ko-+MSpin which looks like a ring spectrum map in homology. Moreover, 

every MSpin-module map such as T can be considered as a homology ko-module map. 

Now we construct the map S. For k>_.0 let sk: SSk---+MSpin be the map correspond- 

ing to the bordism class of the kth power of H P  2. Let S be the ko-extension of the map 

Vsk: S 8k --~MSpin. More explicitly, S is the composition 

V Z S k k o - - k o A ( V  S sk) " ^ v ' ~ , M S p i n A M S p i n 2 % M S p i n ,  (6.1) 
"k>~O " 

where/~ is the multiplication map of the ring spectrum MSpin. 

Proof of Claim 5.10. We note that if we identify el with V Esk ko via (5.2) then Bk 

corresponds to the composition 

~sk ko slns~% MSpin B_~ KO[q]. 

It follows that Bk is the ko-extension of S sk 8~ . B - ---~MSpm--*KO[q~ (regarding KO~q] as 
8 . B homology ko-module spectrum via ko---*MSpm---*KO[q D. Recall that sk 67rsk(MSpin)~ 

~ S p i n  is the kth power of the bordism class of H P  ~ and hence s k  

Bsk = B ,  ( s k )  = Z([Hp2I k) = #k(qk + ...) e ~rSk (go)  [q] 
s~ . B i 

by (5.4) and (3.6). This implies that B~, the ko-extension of S sk --*MSpm--~KO, is trivial 

for k>i and that B--k k is the ko-extension of #k: SSk ---*KO, which agrees with Psk: ~sk ko= 
s . B ~ ko/8k) --+KO by Bott-periodicity (note that ko---~MSpm---*KO is the canonical projection 

map p0). [] 

Recall that the homology of a spectrum X is a (left) comodule over the dual Steenrod 

algebra A., i.e. there is a homomorphism %b: H , X - + A , |  satisfying a 'coassociativ- 

ity' condition. The Hopf algebra A. can be described explicitly as the polynomial algebra 

Z/2[r ~2, ...] with generators ~# of degree 29 - 1  (the ~j's are the conjugates of the usual 

generators ~j). The coproduct is given by the formula 

J 
r 1 6 2  = (0.2) 

i----0 
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(cf. [Ra, Theorem 3.1.1]). 

It turns out that the homology of ko as A.-comodule is closely related to the Hopf 

algebra A(1).=A./((~, (2, (a, (a, ...) (A(1), is the Hopf algebra dual to the subalgebra 

A(1) of A generated by Sq I and Sq2). Note that we can view A, as a (right) A(1).- 

comodule by composing the coproduct (6.2) with the projection map on A(1).. Let M 

be a (left) A(1).-comodule. Recall that the cotensor product A,OAo).M is defined by 

the exact sequence 

0 ~ A, VIA(1) , M --* A, |  r ~|162 A, | | 

where ~ denotes the A(1),-comodule structure maps for both A, and M. We note 

that the (left) A.-comodule structure on A . |  induces a A.-comodule structure on 

A.0A(1). M. Such A,-comodules are refered to as 'extended' A(1).-comodules. The ho- 

mology of ko is an example of such a comodule: H.ko-~A.OAo).Z/2 (cf. [Ra, p. 76]). 

It turns out that the homology of every homology ko-module spectrum Y is an ex- 

tended A(1),-module. More precisely, the map on homology induced by the action map 

ko A Y--* Y makes H.Y a module over H,ko. Let ~r: H,Y---*H,Y be the projection onto 

the indecomposables of this module. Note that H,Y is an A(1).-comodule since the 

augmentation ideal of H.ko is an A(1).-comodule. 

PROPOSITION 6.3 [St2, w For a homology ko-module spectrum Y the composition 

Cv: H.Y ~--~ A, |  1| A, |  

is an A.-comodule isomorphism onto A,  OA(~).H,Y. 

As remarked above, an MSpin-module spectrum Y can be considered as a homology 

ko-module spectrum via the map s: ko-*MSpin. Then the above definition of the A(1),- 

comodule H.Y agrees with the definition of H.Y for the MSpin-module spectrum Y in 

[Stl, w as explained in [St2, w 

Note that a homology ko-module map f:  Y--*Z induces a A(1),-comodule map 

f , :  H ,Y ---* H,Z.  

It is clear that the definition of the isomorphism ~I)y is functorial, and hence we can 

identify the induced map f , :  H.Y--*H.Z with the 'extended' homomorphism 

id0f, :  A, nA(1).H,Y -~ A, OA(D.H,Z. 

The following proposition is then the analogue of (5.1) on the homology level. 
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PROPOSITION 6.4. The A(1).-comodule H,(MSpinA~SBG) can be decomposed in 
the form A@B such that 

A@H.(ko A(vSsk)) T*!A~S~ H,MSpin 

is an isomorphism and T.IB is trivial. 

This result implies Proposition 5.1 since the splitting H.(MSpinA~SBG)=A@B 
is induced by a splitting of MSpin AESBG as homology ko-module spectrum by [St2, 

Proposition 8.5]. 

Proof of Proposition 6.4. To make the structure of the proof transparent we subdi- 

vide it into a sequence of claims and their proofs which together imply Proposition 6.4. 

Recall that H.MSpin is a polynomial algebra with a generator y,~ in each degree n>~8, 

n # 2 ~ + 1  [St1, (9.2)]. 

CLAIM 1. im(S.)=Z/2[ys]CH.MSpin 

By construction, S is of the form s=Vk  sk, where ~k:koASSk---*MSpin is the ko- 

extension of Sk: SSk---*MSpin. By Lemma 2.9 of [St2] the homomorphism 

($~).: H .S  sk = H.(ko AS sk) --* H.MSpin 

agrees with 

H, S8 k (s~). H,MSpin P H,MSpin 

where p is the projection on the H,ko-indecomposables. Hence (sk), maps the genera- 

tor of H,(S sk) to (p(x)) k, where xEHs(MSpin) is the image of [tlP2]EDssPin(MSpin)~ 

7rs(MSpin) under the Hurewicz map. Note that x is non-trivial since t t P  2 has non-zero 

rood 2 characteristic numbers (e.g. the rood 2 Euler characteristic). 

Recall from Proposition 6.3 that 

H. (MSpin) r A. |  (MSpin) l| A. | (6.5) 

is a monomorphism with image A.I:]A(1) * H,MSpin. Under this composition the element x 

maps to l |  since x is in the image of the Hurewicz map and hence r174 It 

follows that p(x) is non-zero and thus p(x)=ys, the only non-trivial element in degree 8. 

We conclude that the image of S. is the subalgebra Z/2[ys]. 

CLAIM 2. H.MSpin is spanned by im(S,) and im(T.). 

Recall that T:MSpinAESBG---*MSpin is the MSpin-extension of [:ESBG--* 

MSpin. It follows that the image of T. is the ideal in H.MSpin generated by the image 
s ~ �9 p �9 of H,~, BG-~H,MSpm-~H.MSpm. According to [St1, (8.8)] the homomorphism 

pt 
H.~SBG+ ~ H.MSpin --* QH.MSpin 
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is onto in positive degrees, where the unlabeled map is the projection on the indecompos- 

ables of the algebra H,MSpin. Hence, if we replace BG+ by BG and t by its restriction 

t, the corresponding homomorphism is surjective in degrees > 8. It follows that H, MSpin 

is spanned (as a vector space) by the images of S, and T,. 

CLAIM 3. The intersection of im(S,) and im(T,) is trivial. 

The idea of the proof is to find a homology ko-module map W:MSpin--*K such 

that W, maps im(T,) trivially and im(S,) injectively. 

Let wn E HnMO be the element corresponding to the nth Stiefel-Whitney class under 

the Thom isomorphism. Consider w,~ as a map w~: MO--*EnH into the nth suspension 

of the Z/2-Eilenberg-MacLane spectrum H. Define 

w= I-Iw,~:MO---, K= H E~H 
n ~'t 

where n runs through the non-negative integers. Note that the Cartan formula for the 

Stiefel-Whitney classes imples that w is a ring spectrum map if we equip K with the 

'power series multiplication' (cf. (5.9)). In particular, we can regard K as a ko-module 

spectrum via the ring spectrum map ko-LH-~MO 2-,K, where t corresponds to the non- 

zero class of H~ and SH is the ring spectrum map from Proposition 6.1 in [St2]. This 
s . p r  w 

composition agrees with ko--~MSpm--+MO---~K by [St2, Proposition 6.7] and hence the 

composition W:MSpin P-~MO-%K is a homology ko-module map. The element W,(x k) 
of H8k(K) is non-trivial, since the Euler characteristic of (I-Ip2) k is odd. Hence W,(y k) 
is non-zero and W, maps im(S,)=Z/2[ys] injectively. 

It remains to be shown that ira(T,) is in the kernel of W,. Consider the commutative 

diagram 

MSpinAESBG T ~ MSpin 

prA11 I pr 
7' 

MOAESBG > M0 ~ ~ K 

8 t . p r  where T' is the MO-extension of E BG--+MSpm--*MO. Identifying 7r,(MO) with the 

unoriented bordism ring ffl, the image of the induced map T,': 7rn(MO ABG)--+~r,~(MO) 

consists of the bordism classes represented by total spaces of Hp2-bundles over manifolds 

which represent zero in ffl,-8. In particular, the rood 2 Euler characteristic of such a 

bordism class [M] is zero. It follows that [M] is in the kernel of w,: ~r~(MO)--+~rn(K) 

since the rood 2 Euler characteristic is wn(M) evaluated on the fundamental class of M. 

Thus the composition w T' induces the zero homomorphism on homotopy. We note that 

this composition is an MO- and hence H-module map. The following lemma then implies 

that wT' and hence WT is zero homotopic which proves Claim 3. 
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LEMMA 6.6. Let X and Y be H-module spectra and let f:X---*Y be an H-module 

map. Assume that ] induces the trivial map in homotopy. Then f is zero homotopic. 

We prove this lemma at the end of the section, after proving the following claim 

which finishes the proof of Proposition 6.4. 

CLAIM 4. H.MSpinAZSBG can be decomposed in the form A(~B such that T,I A iS 

a monomorphism and T.IB is trivial. 

It suffices to show that T. is a split surjection on its image (take A to be the image of 

a split and take B=kerT. ) .  The proof of this fact is parallel to the proof of Proposition 

8.5 in [Stl]. By Lemma 8.6 of that paper it suffices to show that T.: H,MSpin AZSBG--~ 

im(T ) induces a surjection in Qo-homology (Q0 =Sq 1 acts on an A(1).-comodule M as a 

differential and the corresponding homology groups are denoted H. (M; Q0)). Moreover, 

it follows from results proved there that 

H,(H,ZSBG; Qo) --* H, (H,MSpin; Q0) --* QH, (H,MSpin; Q0) 

is onto in degrees > 8. Here the first map is induced by pr t and the second map is the 

projection on the indecomposables of the algebra H. (H.MSpin; Q0), which is a polyno- 

mial algebra with generators of degree 4n~>8 [St1, Lemma 9.4]. Thus it follows that we 

can choose these generators z4n to be in the image of pr t except for zs. Hence the image 

of 

T,: H, (n.MSpin AESBG; Q0) ---* H. (H.MSpin; Q0) (6.7) 

is the ideal generated by z4~, 4n>8. On the other hand, the direct sum decompo- 

sition of A(1),-comodules H,MSpin=im(T,)GZ/2[ys] induces a corresponding decom- 

position of H,(H,MSpin; Q0). Comparison implies that the image of (6.7) is equal to 

H, (im(T,); Qo). [] 

Proof of Lemma 6.6. Let X be an H-module spectrum. Then H , X  is a module 

over H , H  and abusing notation we denote by pr: H ,X--*H,X the projection on the in- 

decomposables. The composition H , X  C A ,  |  l| A, |  is an isomorphism of 

A,-comodules (cf. Proposition 6.7 in [Stl]). In particular, H , X  is a free A,-comodule, 

hence X is a (generalized) Z/2-Eilenberg-MacLane spectrum and the Hurewicz homo- 

morphism maps ~r,(X) isomorphically onto the primitives P ( H , X ) c H , X .  On the other 

hand the above isomorphism shows that P ( H , X )  maps isomorphically onto H , X  un- 

der pr. Finally, the functoriality of these isomorphisms implies that the induced map f ,  

on homology is determined by the induced map on homotopy. [] 
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~. Spin f~. (X)@n.spinell.[h -1] is not  a homology theory 

In this section we show that the natural transformation 

f~Spi~ (X) @aspl. ell, [h - t  ] ---* ell, (X)[h -1] (7.1) 

induced by the Cartesian product of manifolds (cf. (1.3)) is not injective for suitable 

X (it is always surjective). This implies in particular that the left hand side is not a 

homology theory since a natural transformation between homology theories which is an 

isomorphism for X = p t  is an isomorphism for all X. In this section we localize again all 

Z-modules and spectra at the prime 2. 

To show that (7.1) is not injective we find (for a suitable X) an element [M,f]E 
~Spin(x) such that 

(a) [M, f] | 1 is a non-trivial element of ~Spin(x) | ell, [h-l], 

(b) [M, f ] |  maps to zero under (7.1). 

We choose X to be a finite CW-complex such that H,(X; Z/2) as A(1),-comodule 

is isomorphic to E~A(1), for some r (such a space exists [DM, Proposition 2.1]). Re- 

garding XAMSpin as an MSpin-module spectrum Proposition 6.3 gives an A,-comodule 

isomorphism 

H, (X A MSpin) -~ A, ["] A (1). (fi* (X) | N), (7.2) 

where the quotient N =  H, (MSpin) of H, (MSpin) is a polynomial algebra with a generator 

yn of degree n for each n>~8, nr Note that with our choice of X the A(1),- 

comodule H, (X) |  is free and hence XAMSpin is a (generalized) Eilenberg-MacLane 

spectrum. In particular, the Hurewicz homomorphism maps ~Spin(x)~Tr,(XAMSpin) 

isomorphically onto the primitive elements P(H,(XAMSpin)). Another consequence of 

(7.2) is the isomorphism 

P(H, (X A MSpin)) -~ P(H, (X) | (MSpin)) ~ P(H, (X) | 

which is given by the restriction of l| where r is the the projection map from 

H, (MSpin) to N. Let 

h: 7r.(XAMSpin) --~ P(H,(X)| 

be the composition of the Hurewicz map and the isomorphism above. We sum up the 

discussion by saying that h is an isomorphism for our choice of X. 

To study P(~I,(X)| we note that the image of the diagonal map r 

A(1), |  which is injective, is P(A(1),| Hence it gives an isomorphism 

E~N ~-* P(E~A(1), |  -~ P(H, (X) |  
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~Spin Let [M, f] Ef~r+ll(X)=~rr+lt(XAMSpin) be the element with h([M, f])--r EN. 
Then [M, f] | 1 is in the kernel of the natural transformation (7.1) since by part (1) 

of Theorem A and Corollary 5.2 

ell,(X)=~r,(elAX)=Tr.(V~8kkoAX)~Tr.(V ]Csk+~H) 
--k~>0 " 

which is zero in degree r + l l ,  The last isomorphism follows from the fact that 

H.koAX~-A.DA(1).H.X~-r."A. which implies that koA X is homotopy equivalent to 

the rth suspension of the Z/2-Eilenberg-MacLane spectrum H. 

This proves (b) above. To prove (a) we have to show that for all k/>0 [M, f] x [HP2] k 

is not in the image of the multiplication map 

5.spin (X) | (pt) -~ 5Spin(x). 

To prove this we translate into stable homotopy theory and consider the following dia- 

gram: 
7r, (X A MSpin) | ~r. (MSpin A ~SBG) 

~r.(XAMSpin)| • + ~r.(XAMSpin) 

1 
P@I.(X)|174 ,n| P(H.(X)@N) 

1+ -1 

Zry| ,n., r,"N 

"| 1" 

Here x is the obvious multiplication map, h is the Hurewicz homomorphism followed by 

the projection from P(H.(MSpin)) to P(N) and m is the multiplication in N. 3 is the 

ideal in N=Z/2[yn] n>~8, nr  generated by Y~I and Yn for n~8,  11. ~ is the map 

induced by m, p is the projection and p its restriction to P(N). 
By [GP, Theorem 3.2] P(g)/3nP(N)~-Z/2[ys] and hence it follows froms Claims 1 

and 3 in the proof of Proposition 6.4 that i~hT, is trivial. This shows that [M, f] x [Hp2] k 

is not in the image of the multiplication map (7.2) since 

PC-lh([M, f] x [HP~]k) = a ryllys'kr 



260 M. KRECK AND S. STOLZ 

References  

[ASe] ATIYAH, M. F. 8z SEGAL, G. B., Equivariant K-theory and completion. J. Differential 
Geom., 3 (1969), 1-18. 

[AS] ATIYAH, M. F. ~; SINGER, I. M., The index of elliptic operators III. Ann. of Math., 87 
(1968), 546-604. 

[Bo] BOARDMAN, J. M., Stable homotopy theory. Mimeographed notes, Warwick, 1966. 
[Bor] BOREL, A., Sur la cohomologie des espaces fibr6s principaux et des espaces homog~nes 

de groupes de Lie compacts. Ann. of Math., 57 (1953), 115-207. 
[BT] BOTT, R. &: TAUBES, C. H., On the rigidity theorems of Witten. J. Amer. Math. Soc., 

2 (1989), 139-186. 
[CF] CONNER, P. E. &: FLOYD, E. E., Differentiable Periodic Maps. Springer-Verlag, Berlin- 

Heidelberg-New York, 1964. 
[DM] DAVIS, D. M. & MAHOWALD, M., vl- and vu-periodicity in stable homotopy theory. 

Amer. J. Math., 103 (1981), 615-659. 
[Fr] FRANKE, J., On the construction of elliptic cohomology. Math. Nachr., 158 (1992), 43-65. 
[GP] GIAMBALVO, V. &: PENGELLEY, D. J., The homology of MSpin. Math. Proc. Cambridge 

Philos. SOP., 95 (1984), 427-436. 
[HBJ] HIRZEBRUCH, F., BERGER, TH. & JUNG, R., Manifolds and Modular Forms. Vieweg 

Verlag, Braunschweig/Wiesbaden, 1992. 
[Hit] HITCHIN, N., Harmonic spinors. Adv. in Math., 14 (1974), 1-55. 
[HH] HOPKINS, M. J. ~ HOVEY, M. A., Spin cobordism determines real K-theory. Preprint, 

1990. 
[Ho] HOVEY, M. A., Spin bordism and elliptic homology. Preprint, 1991. 
[J] JUNG, R., MPI doctoral dissertation. In preparation. 
ILl] LANDWEBER, P. S., Elliptic genera: an introductory overview, in Elliptic Curves and 

Modular Forms in Algebraic Topology (P. S. Landweber, ed.), pp. 1-10. Springer- 
Verlag, 1988. 

[L2] - -  Elliptic cohomology and modular forms, in Elliptic Curves and Modular Forms in 
Algebraic Topology (P. S. Landweber, ed.), pp. 55-68. Springer-Verlag, 1988. 

[LRS] LANDWEBER, P. S., RAVENEL, D. C. ~5 STONG, R. E., Periodic cohoraology theories 
defined by elliptic curves. To appear. 

[Mi] MILNOR, J. W., Spin structures on manifolds. Enseign. Math., 9 (1963), 198-203. 
[MS] MILNOR, J. W. ~: STASHEFF, J. D., Characteristic Classes. Ann. of Math. Stud., 76. 

Princeton Univ. Press, 1974. 
[01] OCHANINE, S., Signature modulo 16, invariants de Kervaire g6n6ralis6s et hombres car- 

act6ristiques dans la K-th6orie r6elle. Mdm. Soc. Math. France, 5 (1981). 
[02] - -  Sur les genres multiplicatifs d6finis par des int~grales elliptiques. Topology, 26 (1987), 

143-151. 
[03] - -  Genres elliptiques equivariants, in Elliptic Curves and Modular Forms in Algebraic 

Topology (P. S. Landweber, ed.), pp. 105-122. Springer-Verlag, 1988. 
[04] - -  Elliptic genera, modular forms over KO. and the Brown-Kervaire invariant. Math. Z., 

206 (1991), 277-291. 
[Ra] RAVENEL, D. C., Complex Cobordism and Stable Homotopy Groups of Spheres. Academic 

Press, 1986. 
[au] RUDIAK, Y., Exactness theorems for the cohomology theories MU, BP,  and P(n). Mat. 

Zametki, 40 (1986), 115-126; English translation in Math. Notes, 40 (1986), 562-569. 
[Se] SEGAL, G., Elliptic cohomology. S6minaire Bourbaki, 695 (1987-88). Astdrisque, 161-162 

(1988), 187-201. 



HP2-RUNDLES AND ELLIPTIC HOMOLOGY 261 

[St1] STOLZ, S., Simply connected manifolds of positive scalar curvature. Ann. of Math., 136 
(1992), 511-540. 

[St2] - -  Splitting certain MSpin-module spectra. To appear in Topology. 
IS] STONG, R. E., Notes on Cobordism Theory. Mathematical Notes, 7. Princeton Univ. 

Press, 1968. 
[Sw] SWITZER, R. M., Algebraic Topology--Homotopy and Homology. Springer-Verlag, Berlin- 

New York, 1975. 
IT] TAUBES, C. H., S 1 actions and elliptic genera. Comm. Math. Phys., 122 (1989), 455-526. 
[W] WITTEN, E., The index of the Dirac operator in loop space, in Elliptic Curves and 

Modular Forms in Algebraic Topology (P. S. Landweber, ed.), pp. 161-181. Springer- 
Verlag, 1988. 

[Z] ZAGIER, D., Note on the Landweber-Stong elliptic genus, in Elliptic Curves and Modular 
Forms in Algebraic Topology (P. S. Landweber, ed.), pp. 216-224. Springer-Verlag, 
1988. 

MATTHIAS KRECK 
Fachbereich Mathematik 
Universit~t Mainz 
Saarstrai~e 21 
6500 Mainz 
Germany 
E-mail address: kreck@topologie.mathematik.uni-mainz.de 

STEPHAN STOLZ 
Department of Mathematics 
University of Notre Dame 
Notre Dame, IN 46556 
U.S.A. 
E-mail address: stolz.l@nd.edu 

Received October 2, 1991 
Received in revised form November 9, 1992 


