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1. G. W. Hill's equations define the movement of a body with infinitely small 

mass, attracted by Newton's law of gravitation towards two bodies moving in circles 

by that  same law. Of these two bodies the mass of one is negligible in comparison 

with that  of the other, and the distance of the body with infinitely small mass from 

the smaller of the two other bodies is assumed to be negligible in comparison with 

the distance between these. The whole movement takes place in a plane and is re- 

ferred to the uniformly rotating axes. I t  is, thus, a degenerate case of the problem 

of three bodies. 

Hill employed rectangular coordinates with the time as independent variable. Let 

p and q be the coordinates, t the time, then Hill's equations are 1 

( d~p 2 ~q p 
~ dt 2 dt = 3 p -  r~ 

(1) | d2q dp q 

with Jacobi's integral 

[dP\  ~ ~dq~2=3p2 , ~ 2 _ C .  
(2) [-dt) + \ d t /  r 

I t  has been shown 2 that, 

putting at the same time 

introducing polar coordinates p = r cos l, q = r sin l, 

1 See, for ins tance ,  H.  C. PLUMMER: An  introductory treatise on dynamical astronomy (1918), 

265-6.  

2 j .  F .  S~EFFENSEN: Les o rb i t e s  p6r iod iques  dans  le p rob l6me de Hil l .  Acaddmie royale de 
Danemark, Bulletin 1909 n ~ 3, 320-3.  

1 2 -  543809. Acta Mathematica. 93. Imprirn6 le 13 ao6t 1955. 



1 7 0  J . F .  S T E F F E N S E N  

1 l d r  dl  
(3) s = O ,  e = r ~ - ~ ,  w = l + d -  ~ 

and  el iminat ing t, the  following sys tem of three  equat ions  is obta ined  

de  
( o J -  1 ) ~  = - 3 e e  

do  = (08 ~2 (4) (oJ - 1) ~-~ - +~  cos 2 / + . ~ - e  

da~ = _ 2  e _ 3  (co - 1) ~ co sin 2 l 

~ i t h  Jacob i ' s  integral  

(5) ~ o 8 + (1 o~2 _ o~) - { (1 + 3 cos 2 l) + (~ C e~ - E) = O. 

We proceed to  r emove  the  t r igonometr ic  funct ions f rom this system.  Pu t t ing  

(6) c o s 2 / = x ,  c o = l + ~ / ,  o = ~ s i n 2 l  

we have  d x = - 2  sin 2 l  d l and  find 

2Y~xx = 3 ~ e  

J2(l_x2)~ d~- = (l-x2)~2-~2+s+2,1(r (7) a x  

with Jacobi's integral 

(8) C = [2 s + -32 (1 + x) - (I - x 2) ~ - 7 2] e-~.  

2. We now t r y  to  sat isfy (7) with the  power  series 

t,--O 

(9) - ~ / =  ~ B,x"  

s = ~ Cv X'. 

I t  follows f rom general  considerat ions t h a t  a region exists  in ~, ~] and  e where  

this solution converges for  sufficiently small  I xl .  1 We m a y  therefore  inser t  the  series 

1 See, for instance, ]~MXI~ PIC.~RD: Trait~ d'analyse II, Chap. XI. 
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(9) in (7) and  d e m a n d  t h a t  t he  coefficients of x n shal l  vanish .  I n  th is  way  we o b t a i n  

recurrence  fo rmulas  for the  d e t e r m i n a t i o n  of Av, B~ and  Cv. These fo rmulas  we ar-  

range  in such a way  t h a t  on the  lef t  we have  An+i ,  Bn+1 and  Cn+l, while on the  

r igh t  only  coefficients wi th  lower indices enter .  I n  s t a t ing  the  resul ts ,  the  cases n =  0 

and  n = 1 m u s t  be s t a t ed  separa te ly .  W e  find: 

n = 0  

1 2A1Bo=A~)- (B. + 1)2 + Co - .1, 

(10) , B1Bo=Ao+AoBo+ ~ 

2 C1Bo= 3 Ao C o. 

n = l  

2 A 2 B o = (A I + Bo) (A o - B1) + ~ C 1 - B 1 - 

(11) 2B2Bo=A 1 (Bo+  1) + B  1 ( A o -  BI) 

4 C  2B o = 3 A  oC 1 + 3 A  1C O - 2 B  1 C 1, 

n_>2 

. . . .  

(12) 
n 

+ 2 ~ v ( A , - ,  Bn_, - A ,  Bn- ,+ i )  - 2 Bn + Cn. 

(13) (n+l)Bn+lBo=An+ ~ A, Bn_,-  ~.vB, Bn-,+,. 

(14) 2 (n+ I)C,+1Bo=3 ~ C, An_, -2  ~ vC, Bn_~+x. 
v=0 ~I 

3. For x=0 we obtain from (9) ~=A o, w=B 0, E=C o , which we will take as 

constants of integration, corresponding to l=~, since x= cos 2 L In order to com- 

pare with the orbit calculated by me in the paper quoted above I therefore put 

l=~ in formula (41) l.c. The result is 

A o = 177649 

B o =  12"370483 

C o = 179"22909. 

These  f igures are,  of course, a p p r o x i m a t i o n s  b u t  mus t ,  in ca lcula t ing  the  following 

coefficients,  be  t r e a t ed  as a rb i t r a r i l y  chosen exac t  s t a r t ing  values .  Only  on this  as- 
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sumption can it be defended to retain so many figures in the coefficients as I have 

done in the table below. 

v A v  B ,  C ,  

"177649 
-'033704984 

"055457 
"07426 

12"370483 
"2526379 

-'0396596 
"0414547 

179"22909 
3"860788 
-'00186694 

"o49422 

As a check on these calculations I have calculated Jacobi 's constant C by (8) 

for x = 0 ,  x=0"6  and x =  1 and found the following values: 

x = 0, G = 6"5085385 

x = 0"6, C = 6"5085385 

x =  l, C =  6"5085384. 

The agreement between these figures is as good as can be desired. 

The control by Jacobi 's integral of which no other u s e  has been made is, of 

course, particularly valuable in a case like the present one where the remainder-terms 

of the expansions are unknown. 

The chief advantage of the present method is that  the calculation of the coef- 

ficients A,., B, and C, is much easier than the calculation of the corresponding coef- 

ficients in the trigonometrical series employed in the earlier paper, where it was 

necessary to proceed by successive approximations. On the other hand the con- 

vergence in the numerical example is nearly as rapid, as appears from a comparison 

of the coefficients given above with those of formula (41) in the earlier paper. 

4. In  order to examine the convergence from a purely theoretical point of view 

we begin by writing (12), (13) and (14) in the following form, where we have isolated 

the constants of integration A0, B o and C 0. When the upper limit of summation is 

< 1, the sum in question is simply left out. 

(15) 

2(n+ I)A,,+~Bo=2Ao(A,,-A,,_~+ B,,_~)+2Bo(nA,,_~-B,,)+C,,-2 B,,+ 
n - 1  n - 2  n n - 3  

+ 2 (A.A._ . -~B._ . )+22(v+l)A.B._ ._~-2  ~ vA.B._.+~- ~ A.A._._2. 
v-I v=l ~-1 p-I 

(16) 
n - 1  

(n+I)Bn+~Bo=AoB,,+BoA,,+A,~+ ~ A. Bn_. - ~ ~B.B,,_.+~. 
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(17) 
n - 1  

2(n+I)C,+IBo=3AoC~+3CoA=+3 Y C , A , _ , - 2 ~  vC~B,_,+I. 

We now write for v > 1 

(18) K, (2 > o) 
v (v+ 1) 

and will assume that  for 1 < v <  n we have proved tha t  

(19) ]A,I<QtK,, ]B,]<flK,, [C,[<TK ,. 

We propose to find conditions which are sufficient to ensure that  these inequalities 

are then also valid for v = n + l ,  tha t  is, always. 

In this investigation certain sums occur which are obtained by  the identity 

1 ( V + ~ +  1 1 

Putt ing for abbreviation 

s~= ~ l < n  
~=lY 

(21) 

we find 

.-I n -  1 +2s~_1 2~" 
(22) .-1Z K.K._,,= 2 ~(~-+-~+--2) 

(23) . - a  n - 3 + 2 s . _ s  2 n_~. K , K , ,  . . . . .  2 
,=1 - n ( n -  1) (n - 2) 

n - 2  
(24) ~ (u + I) K,  K,_._I  n - 2 + 2 s ' - ~ 2 ~ - l .  

�9 =I n ( n - 1 )  

n n + 2 s n  
(25) ~ v K, K~_,+I 2 ~+1. 

, _ ,  (n + 2) (n + 3) 

(26)  

5. We first obtain from (15) by (18) and (19) 

2 ( n +  1)]Bo[. [A,+,[ _< 2 [Ao[ (r + o~Kn_2+flK,_l) + 2[Bo[ (no~Kn_l +t~Kn) + 
n - 1  n - 2  

+(7+ 2fl) K, + (a" § fls) • K,K.~_,+ 2otfl 2 ( v + l ) g , K  . . . .  1+ 
vffil ~=1 

n - 3  

+2aft ~ v K, K,_,+I +~ z ~. K,K._,_2. 
v = l  r-I 

If, now, the right-hand side of this inequality is ~_2(n+l)[Bol.~Kn+l, then 

I A n +1 [ ~ ~ Kn +1, so that  the inequality I A, I ~ ~ K~ is valid for all ~. 
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By. (18) and (22)-(25) this condition may, after multiplication by (n +2 )  ~L ~ 

be written in the form 

/ n + 2  -2 n + 2  n + 2  \ 
2 I A o l I ~ ~ .  + (n_ 1) (n_2j~+ n(-Czi~fl;t) + 

+2]Bo[ ln+2 n + 2  2 n + 2  -2 
[ . _ - = i ~ +  n g T i i P  ~ ) + ( Y + 2 P )  n ~ . T i ) X  + ~ w 

(27) 
- 1 +2s._,12+2o~[3(n-2+2Sn_2) ( n +2 )  

+ 2 (~ + fl2)n n ( n +  1) n ( n -  1) ~+  

2 ^ n + 2 s .  ( n - - 3 + 2 s . _ 8 ) ( n + 2 )  _<2~ta[Be[ " 
+ ~ / / ~  ~a + 2 ~ n ( n -  1) ( n - 2 )  

This condition we will replace by a simpler though more rigid sufficient condi- 

tion, obtained by replacing the fractions depending on n by numbers independent of 

n but  at  least as large as the original fractions. 

As regards the fractions where s~ dces not enter simple considerations show 

that  for n >_ 3 

(28) 

(29) 

n+2 < 5  n + 2  5 n + 2  5 n + 2  
n ( n + l )  -12'  ( n - - 1 ) ( n - 2 )  ~ '  n ( n - 1 )  <--6' n_ l<- -~  �9 

I n  dealing with the fractions in which s~ figures we employ the notations 1 

n -  1 + 2 s._~ ( n -  2 + 2 s._~) ( n +2 )  
Tn , U~= , 

n ( n + l )  n ( n -  1) 

( n - 3  + 2s~_a) ( n +2 )  n + 2 s .  
V. = , Wn 

n ( n - 1 ) ( n - 2 )  n + 3  ' 

1 
T .  will decrease for increasing n if T.>Tn+,, and, since sn=sn_,+ - ,  this con- 

n 

dition may be ~Titten in the form 

n + 4 s n _ , > 4  

which is satisfied for n ~ 2, so that ,  in particular, 

(30) T.<_~ ( n _  3). 

In the corresponding way is shown tha t  U~ >_ U,+,  if 

2 (n + 5) s~_9 >_ n + 1 3  

which is satisfied for n_> 3. Here we have U3=U4=~,  so that  

(31) U~<i (,~> 3). 

* I t  follows from (22)-(24) t ha t  Tn only occurs for  n>_2, U. for n _ 3  and  V n for n>_4, 
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The condition for F .  > V.+1 is 

n(n- -1 )+4(n+4)s~_a> 24 

which is satisfied for n >  4. Hence 

(32) v . ~  (~>_4). 

We finally have W= > W.+I, if 

2 
s. > ~ +  n +  1" 

This condition is satisfied for n=9,  since s0=2"82 . - ->2"7  and is therefore satis- 

2 
fled for all n > 9, because s~ increases but  decreases for increasing n. For  n > 9 

n + l  

we therefore have W~_< Wg and in particular, for simplicity's sake, 

(33) W~ < ~. 

I f  this inequahty is writ ten in the form 

n + 1 5  
8n < 

8 

a table of sn shows tha t  it is also valid for n < 9, hence for all n. 

By (28) and (30)-(33) we now obtain from (27), when the terms depending on 

B01 are collected on the right, the sufficient condition 

5 [A0[ (} ~Z +}~X + ~)+ ~ ~X3 +~ (~2 + ~ + ~ + ~ 7 )  X~+ 
(34) 

I t  follows from (19) and (18) tha t  the three power series (9) will be convergent 

Z ()t x)" 1 
if E g ,  x" or v ( v + l )  converges, tha t  is, if [x[___]. 

If, as an example, we choose the simple figures 

(35) ~t=2, ~r fl_l  -~, 7=4, 

the conditions (19) are satisfied in our numerical example for 1_<v_<3, and (34) is 

reduced to 

(36) 951~oI+ 258+6_<341Boi 

which is satisfied in the example. 
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6. As regards (16), we find, proceeding in the same way, 

(37) 

(~+ 1)IBol" I B.+,I-< (r + ~  [Bol +~)  - -  
n 

n ( n + l )  
§ 

n -  1 +2sn_ l  § fl2~n+l +2:~'n~iy~47~) 
n+2s~ 

(n + 2) (n + 3) 

/ •  ~n+l 
whence, if we demand that  the right-hand side shall be ~ (n + 1) [B01 (n + 1) (n + 2) ' 

and multiply by (n + 2) ),-n 

(38) 
n + 2  

( f l l A o [ + ~ [ B o ] + ~ ) - - +  2:cflTn +f122 Wn <_fl).[Bo[ n ( n + l )  

a sufficient condition corresponding to (27). 

Inserting finally the limits given by (28), (30) and (33), collecting the terms 

depending  on I B0[ on the right, we find as a sufficient condition 

(39) 5/~lAol § 5 or § lOo~fl§ 15 ~)._< I Bol (12 ~ ) . -  5 ~). 

With the values (35) this condition becomes 

(40) 101Aol§ 

which is satisfied in the numerical example. 

7. We finally deal with (17) by the same method and find 

(41) 

4n 
2(n+ l)lBol'lCn+ll<-a(rlAol+~lCol) (~+1) 

n - l + 2 s . _ x  
+ 6 ~ ~,)." n ( n  q--~ ( - ~  2) + 2 flI,;t ~+' 

n+2sn 
(n + 2) (n + 3) 

~n+l 
which we require to be <_2(n+l) lBol(u+l)(n+2) 
( n+2 )  2 -n, the condition 

�9 Hence, after multiplication by 

(42) 3 (r IAol + ~  ICol) - -  
n + 2  

n(n + 1) 
+ 6 ~ F T n + 2 f l 7  W ~ - < 2 r ~ I B ,  I. 

Inserting the same limits as in the case of (38), we find as a sufficient con- 

dition 

(43) 5rlAol+5~lcol+ lO~r§ lOl3r~<_sr).[Bol. 
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With the values (35) this becomes 

(44) 20 IAo ] +-~ ]Co] + 46 +~_< 64 IBo ] 

which' condition is satisfied in the numerical example. 

8. The result of the preceding investigation is that ,  if (19) is satisfied for 

1 <v_< 3, and if the constants of integration A0, B 0 and C o satisfy (34), (39) and 

(43), then (19) is satisfied for all v > l ,  and the three power series (9)are  convergent 

1 
for Ixl-< 

In the numerical example there is, thus, at any rate convergence for Ix]___�89 

that  is, for ] cos 21] _< 1. 

If, in a given situation, it has been ascertained that  (19) is  satisfied over a 

greater range than 1 _<v _< 3, better  results may be obtained, because in that  case the 

limits to the fractions (28) and (29) can be improved. 

9. By the second and third of the equations ( 7 ) e  and ~ may evidently be 

eliminated from the first of the three equations. In this way we obtain a differential 

equation of the third order in ~ alone, but  it is a non-linear equation of such com- 

plicated nature tha t  nothing seems to be gained by this way of proceeding. 


