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Introduction 

The problem to be studied in this paper  concerns the closure properties on an 

interval of a set of characters {e~nx}~, where A = {2n}~ is a given set of real or complex 

numbers without finite point of accumulation. This problem is for obvious reasons 

depending on the distribution of zeros of certain entire functions of exponential type. 

The main problem of the paper is to determine the closure radius Q = Q(A)defined 

as the upper bound of numbers r such that  (ei~x)~EA span the space L 2 ( - r , r ) .  The 

value of r does not change if a finite number  of points are removed from or ad- 

joined to A. Nor does Q(A) change if the metric in the previous definition is replaced 

by any other LV-metric, or by a variety of other topologies. 

I f  A contains complex numbers we shall always assume 

(1)< 
6~t ~ (0.1) 

�9 ~eA ~ 

thereby excluding the trivial case Q(A)= c~ which occurs when the series diverges. 

The problem to determine ~(A) explicitly in terms of density properties of A was 

solved by  the authors in 1961 for real sets A, and one of the main elements in the 

proof has been published earlier in this journal [2]. This paper will be concerned mainly 

with the distribution of zeros of entire functions of exponential type satisfying the 

condition 

1--4~ < ~ .  (0.2) 

The results in this field go beyond the preliminary report [3] and will be derived by 

essentially new methods. 

(i) Supported by the Air Force Office of Scientific Research under grant AF-AFOSR-1071-66. 
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In  order to explain the results we introduce the following notions concerning 

families ~ of intervals of the real axis. Without distinguishing between closed, open 

or semi-closed intervals we represent an interval co by a point 

Teo = x(eo) + iy(w) 

in the upper half-plane, defining 

x(m)=center  of w; y (w)=lw]=leng th  of w. 

If  the pointset T ~  is measurable we assign to ~ the measure 

m(~) = f r  dxdy  (0.3) 
n 1 +x2+Y ~" 

If  o) is an interval, ~ shall denote the collection of all its subinterval and we define 

= (J ~5 for co E ~.  We observe that  T~ consists of an isoscele with ~o as base and 

of height I col. As a union of such triangles a set T(~) is always measurable. 

Dv.~ ' i~ iTio~s .  I. A set ~ o/ intervals is negligible i/ m ( ~ ) <  oo. 

II .  A positive measure d# on the real axis is regular and o/ density A(d]u)=a i/ 

the /amily o/ intervals 

 fod#-a (0.4) 

is negligible ]or each e > O. 

I I I .  The interior density At(d#) o/ dlz is de/ined as the upper bound ol A(dv) /or 

regular dv<~dt~. The exterior density Ae(dlz ) is the lower bound o/ A(dv) /or regular 

dv>~d#. I /  no such ma~orant dv exists, Ae(d#)= oo. 

An immediate consequence of these definitions is that  d# is regular if and only 

if its interior and exterior densities coincide and are finite. 

To a sequence A of complex numbers without finite point of accumulation we 

assign the measure dN = d N  h which vanishes off A and assumes at 2 E A the value 

equal to the multiplicity of 2 as element of the sequence. 

By means o f  the notion of regular measures d/~, we can define a notation of regu- 

larity of sets A. 

D~FINITIO~ IV. A real set A without finite point o/ accumulation will be called 

regular i/ the measure dN h is regular. 

This concept can be extended to complex sets A satisfying (0.1). We consider 

the mapping taking 2 = a +  ib into the point 2"= 1~12/a. The two open half planes 



O N  T H E  C L O S U R E  O F  C H A R A C T E R S  81 

x >  0 and x <  0 are thus mapped on the postitive and the negative real axes respec- 

tively, and the line x = 0  is thrown out to z =  ~ .  We shall write A * =  {2"; / teA} and 

always assume 0 ~ A. 

The importance of the projection A-~A* is due mainly to the relation 

1) 1=1 +] 
2* 2 

which implies tha t  for all real x 

(1 
DEFINITION V. A complex set A will be called regular i/ (0.1) holds and i / the  

measure dNh. is regular. 

Expressed in the term of exterior density of a measure the solution to the closure 

problem reads as follows: 

Let A satis/y condition (0.1). Then 

Q(A) = ~A e (dNh,). (0.6) 

In  order to describe the proof of this and further results we first recall some 

definitions and properties concerning entire functions /(z). I f  log ]/(z)] ~< O([z]), z ~ co, 

/(z) is said to be of exponential type and the number  

c = sup  log  I/(z) l 

is referred to as the type of /. By  Ea we will denote the set of all ] of type ~<a 

for which the summabili ty (0.2) is fulfilled. Furthermore,  / E E  a will be called nor- 

malized if / (0)= 1 and 

a = lim sup log [/(iy)] = lim sup log I/(iy) l 
u=+~ y u=-~ - y  

For a normalized / of class E ~  the following properties are well known: 

lim Na (r) = lim N~ (r) = k, (0.7) 
r~z~ /" r = ~  r 

where N 1 (r) and N2 (r) represent the number  of zeros of / in the two half-circles having 

( -Jr ,  ir) as diameter. Moreover, the series (0.1) converges and ] has the representation 

6 - 662905 Acta  mathematica. 118. I m p r i m 6  le  I1  a v r i l  1967 
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/(z)=/(z; A)=lim,_~ ~-<,1-] (1 -~) .  
~ltA 

(o.8) 

We shall find tha t  the summabil i ty condition (0.2) implies a much more refined 

proper ty  of the distribution of the zeros than  tha t  described by  (0.7). The following 

result is a consequence of a more precise theorem proved in Chapter I;  it is also the 

key to the closure problem: 

THEOREM I. The zeros A of a normalized f E Ek,  ]orm a regular set and A(dN A. )=k.  

The solution of the closure problem relies also on the following result on multipliers 

proved in [2]. 

THEOREM A. Let / belong to a class E~,, and let e and ~< 1 be given positive 

numbers. Then the class E~,, contains a /unction g with zeros F = {?'n)~ such that for all 

real x 
Ig(x) f(x)[ < const e -I"1". 

The r .  may be and so tha /or . , * n ,  Ir, -nl >/1/ , .  

The closure problem is herewith reduced to the question whether or not a given 

class Ek.  contains a function vanishing on a given set A. The answer reads as follows; 

THEOREM II .  Let A satis/y (0.1) and assume Ae(dNA,)=a< r Then the class 

Ek,~ contains /unctions vanishing on A i/ k > a, whereas no such /unction exists in Ek,~ 

i /  k<a .  

The closure theorem follows immediately on combining the two last theorems and 

will not be considered further in the text.  

I. A class of subharmonic functions 
We will be interested in functions U(z)<. O(Iz D which are subharmonie in the punc- 

tured plane z 4= oo and harmonic in the half planes y > 0 and y < O. The real axis is thus 

the support of the positive measure dp associated to U and defined as AU/2rt  in the 

sense of distributions. In  case U admits a representation 

U(x + iy) = k z  ]y[ + u(x + iy), (1.1) 

where k is a constant and where 
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lim u(re~~ - 0 ,  0+-0,:~, (1.2) 
T ' B ~  r 

we shall say that  U belongs to the class Sk~. If in addition U(x)/(1 + x 2 ) E L ' ( -  oo, oo), 

U will be called Poisson summable and we will have the following representation for u 

figuring in (1.1) 

l yl u(~) d~ U). u(x+iy)  = 1  f ~  y2 + ( x _ ~ ) 2 = P ( x + i Y ,  

If  U belongs to a class Sk. and is constant on the real axis, then clearly d/z coincides 

with the measure /c dx. I t  is therefore to be expected that  the difference S d/~-  k leo[ 

would be small whenever U(x) is close to a constant in a neighborhood of an interval o). 

As a measure of the "flatness" of U(x) on ( x - y / 2 ,  x + y/2) we shall use the quanti ty 

q(eo) = w(x § iy), (1.3) 
Y 

where w(x+iy)-~ inf P (x+iy ,  [ U - c [ ) .  (1.4) 
~ o o < c < o o  

T H E O R E M  T'.  

/ollowing holds: 

The set o/ intervals 

Let U belong to the class Sk,~ and be Poisson summable. Then the 

is negligible /or each ~ > O. 

The inequality 

Qo = {o; q(eo)/> ~} (I.5) 

holds /or each interval eo such that 

q(eo) < ~ ~< �88 min (1, ~).  

Let  us point out tha t  unless U is constant the associated function w is a strictly 

positive continuous superharmonic function in y > O, with the property that  for fixed 

z, w(x+ iy ) /y  is strictly decreasing with increasing y. Define for ~ > 0 

Do = {z -= x + iy; 0 < w(z) < ~. y}, B~ -~ {z = x + iy; w(z) >~ ~. y >10}. 

D0 is a simply connected region with a boundary meeting each vertical line in a unique 

finite point. The set /~  is the image under T of the family Q~ of intervals defined 

in (1.5). As a first step in the proof that  m(Q~)< ~ we shall show that  for all 0 > 0 
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To this purpose we observe tha t  

fB  dx dy 
1 + < (1.7) 

v(x + iy) = (~ . y - w(x + iy) 

is a strictly positive subharmonio function in D~, tending to zero a t  all finite boundary 

points. Assume % =  iyoE Do and let D0.r denote the component of the intersection of 

D0 and the disc C r = { z ; l z + i l < r  } which contains Zo, r > l + y  0. Let  O(z,?r)be the 

harmonic measure for D~.r of its circular boundary are ?,. Then ~-rO(z, 7r) is a har- 

monic majorant  of v(z) and we shall have in particular 

0 < V(Zo) < ~" rO(zo, 7~), r > 1 + Yo. 

I n  order to estimate 0 we shah use the inequality 

O(Zo, 7~) < e-~L't~ 

(cf. [3], p. 10, formula (26)) where A denotes the Dirichlet integral of any function 

~p, harmonic in Dt.~ and satisfying the conditions 

y(zo) = 0, ~(z) >/L,  z e ~'r- 

The choice ~(z) = log [z + i[ - log [z o + i[ yields L = log (r + 1) - log (Yo + 1), and 

A = f dx dy ( dx dy 
+il < log r - j.o.r i :-il (1.8) 

where B~.r=Ba N Cr. If  (1.7) diverges the last term in (1.8)would tend to - c ~  with 

increasing r. This implies 0(Zo, ?r)= o(1/r) leading to the contradiction V(Zo)= O. There- 

fore (1.7) is true. 

The stronger proper ty  re(Q0)< 0o will be proved next. To this purpose we recall 

�9 he Harnack inequalities for positive harmonic functions in y >0 :  

1 << u(z) <k, 
Ir U(Zo) 

_lz- 01+lz-zol 

'These relations remain valid for w also, being the lower envelope of positive harmonic 

~unetions. Let  Two = Xo + iy o and let R~, denote the square with vertices at  x o • yo/2, 

~Co-~ y0/2 + iy o. On the upper  side of R~o the Harnaek  inequality yields 

wCz) > �89 wCzo), 
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which implies q(eo) > �89 q(~oo), Ta) = R~., (1.9) 

proving that TQo=B~I2. Hence by  (1.7) m(~)~)< oo. 

In the proof of (1.6) we need this elementary lemma; Let q~(z)be the Poisson in- 

tegra~ o/ a /unction q~(x) with the /oUowing properties: 

a) supp ~ 0 c [ - 1 , 1 ]  and 0~<?(x)~<l; 

b) S ~0(x) dx < 3//2; 

c) ~ is o/ class C 2 and ]~"(x)[~<M, where M~>16. 

Then on the real axis 

+ x z" (1.10) 

For [x[ > 1 derivation of the Poisson integral gives 

~0 < 3  ( ix l_1)z .  

We have also the representation 

~q~_l f ?  dt ~Y ~ (q~(x§247 

which, using the majoration 

[q~(x + t) + ~0(x - t) - 2 ~9(x) [ ~< min (2, Mt~), 

(1.11) 

yields ~1~< ]/8gM< 1/-~. (1.12) 

The stated result follows on combining (1.11) and (1.12). 

For 0 < ~ ~< �88 we define ~0~(x) as the even continuous function which vanishes for 

x~> �89 + 2  ~ and equals 1 on [0, �89 and furthermore such that on the first and second 

half of the interval [�89 �89 +2e l ,  the second derivative ~0~ is - 1 / e  2, 1/e ~ respectively. 

The function ~0_~(x) is defined similarly with the exception that the interval where ~0_~(x) 

decreases from 1 to 0 is now instead [ �89  2e, �89 Hence 

f q~• (x) dx = 1 +_ 2 ~ <~ 3. 

The discontinuity of the second derivative does not impair the validity of (1.10) 

and we shall have 
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3 1 
9 , ,  < -  (1.13) e l + x  v 

Let  us first prove (1.6) for ~oo=[ - � 89  �89 By virtue of the properties of u and 

9e we can use the Greeen formula for a half plane writing 

f w.e  (U-Co)dxf f (U-Co) 9, dx, 
where the integration is extended over the line y--~] > 0. When ~ - , 0  the measure 

Du/ay dx/rc converges weakly over finite intervals to dp-lcdx. Hence 

B y  (1.13) the second member  is in absolute value less than 

3 f!  v ( ~ ) -  c01 d~ = 3 w(0 = 3 
q(~o), 

where c o is the constant minimizing the integral. 

we get 

and  finally (1.6) by  taking 

V3 q(e%) ~ = ~  ~ " 

I n  order to prove (1.6) for an arbi t rary  interval [ ~ - 7 / 2 ,  ~ +~7/2] it  is sufficient to 

apply  the previous result to the function 

Uo(z) = U (,Tz + ~) 

1 
observing tha t  f~,dlao-~F~lf~,dp, 

go (r = Wo (1) = w(~  + i~ )  _- q(oJ), 
z/ 

where %, w0, dp0 , are derived from U o. 
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H. L e m m a s  on snmmable  Hillmrt transforms 

By L~ we will denote the subset of the space Ll f f iLI( -  ~ ,  c~) consisting of func- 

tions ] with the properties; 
I/(x) I" (1 + ~"~) e L' ,  (2.1) 

f f(x) = (2.2) dx 0. 

For functions / satisfying (2.1) we introduce the translation invariant norm 

'/fr f v(l )= rain /(~)l'a:~ (~,-,~o)'l/(:~)l"d~. (2.3) 
- o o < x o < o o  - -  d j 

LEPTA ILl .  For ]EL~ the Hilbert transform 

/(x)-+f(x)=lim l zt ,_~,>. I(---~-)-x d '  

is isometric in the norm p and 

f l i(~) dx <.< V ~  p(1) = I P(/). (2.4) 

The transformation ]-~] is isometric in the space L 8. It  thus follows by (2.2) and 

the identity 

$ - X 0 = l  + x - %  

that (X-Xo)f(x) is the transform of (X-Xo)/(x). Hence, p(f) fp( / ) .  By Schwarz' in- 

equality 
2 (flf(~)lax) <~fl] (x) l ' ( l+t2(x-%)2)dx ,  t>O, (2.5) 

where the minimum of the right-hand side equals 2 ~p~(]). This proves (2.4). 

Co~oT,r,A~y oF L ~ M A  II.1, Let {~,} be a set o! non-overlaying intervals cov- 
ering the support o/ a /unction l(x) locally o/ summable square. Assume 

f , , / (x)  O, (2.6) dx 
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Then both ] and ] are s u m ~ l ~  and 

  lt(x) lax< (2.8) 

Set ]~=/Z,,  where Z, is the characteristic function of o~,. Then ], ELi  and 

,(t)=p(/) < f lt.l, dx. (2.9) 

The inequality (2.8) follows on summation using (2.4). 

L ~ . ~ A  II.2. Let A be a real set with exterior density Ae(A)=a.  Assume 0 C A  

and let the /unction N ( x ) = N h ( X  ) be de/incd as 

= f~dNA,  x ~ O. (2.10) N(x) 

Then /or each given b>a  there exists a /unction ~P(x)=~b(x) belonging to the class 

Fb = {(I)(x); 0 <. r -- r <~ b(x 2 - Xl) , X 1 < X2} 

and such that ( ( I ) (x) -N(x)) /x  ~ as well as its Hilbert trans/orm is summable. 

Consider the variational problem 

f ~  2 dx inf T(~P(x)--N(x)) - ~ i n f  J(CP), (2.11) 

where ___T~A and where (I)belongs t o  Fb over [ - T ,  T]. Since F~ is convex we con- 

clude tha t  there exists a unique (P=(I)T minimizing (2.11). We want  to show tha t  

[ - T ,  T] is dissected into a finite sequence of intervals where alternately (I)' = 0  and 

r = b. 

Assume ( I ) - N < 0  on an open interval (Xl, x2). Then (I)' =b in (xl, x2) because 

otherwise there would exist a (I)IE F~, equal to (I) off (x 1, x2) and such tha t  in (x 1, x~) 

(I) ~< (I) 1 ~< N, w h e r e  (I)< (I) 1 holds on a set of positive measure, contradictory to the 

minimal property of (I)~ By similar reason the conclusion r b remains true under 

the assumption ( I ) -  N >  0 in (x, x~), or more generally if 

O(x) - N(x) :~ O, a.e. for x e (x 1, x2). (2.12) 

I f  two points ~1 < ~ are not separated by  any point in A and if O(~1)= r then 

clearly � 9  N = O  in [~1, ~ ]  and we shall have ~ ' =  0 there. An open subinterval of 
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[ - T, T] which is maximal  with respect the property (2.12) will be called a beta-inter- 

val. A closed maximal interval where (I) '= 0 will be referred to as an alpha-interval. 

We already know tha t  at  most  one alpha-interval can be contained in [2, ~'] where 

),, ~' are adjacent points in A, and we may  therefore conclude tha t  [ -  T, T] is divided 

into a finite sequence of intervals alternating between the :r and the fl-type. 

Our next  aim is to  show tha t  for all beta-intervals 

dx (2.13) 

To this purpose let Vv.~ be a local translation operator associated to the interval 

= (xi, x~) and defined as follows. I f  e >0:  

and if ~<0 :  

Ir x -  ~), 
V~,~ r = ]r 

lr 

r  e), 
v~,~ r =/r 

[r 

I f  r on y, then for e ~ O  

J( Vr.~ ~P)- J((I))= - 2 b ~ f ,  ( r  + O(e'). 

x E  (Xl+~ ,  x z + ~  ), 

xE (xi, x~ + e), 

x r (x ,  x~ + ~), 

xE (x~ + ~,x2 + e), 

x E (x~ + ~, x~), 

x r (x~ + ~, x~). 

(2.14) 

(2 .15)  

(2.16) 

We should observe also tha t  if (I)EF~ and is constant on (x~,x2+(~), ~ > 0 ,  then 

V,,~r for 0 < e < 5 .  Similarly, if (I) is constant on (Xl -~ ,x l ) ,  then Vr.~(I)EF b if 

- - ~ < e < 0 .  In  order to prove (2.13) it is now. sufficient to show tha t  the endpoints 

of a beta-interval, '  fl= (~1, ~) ,  do not  belong to A, because then V~.~(PE F~ for l el 

sufficiently small and (2.13) follows from (2.16). 

Assume ~ E A. Then ~ 4= T and we must  have (I)(~.) = hr (~  + 0) since the contrary 

assumption would imply that  (2.12) holds on a neighborhood of ~ ,  which is incon- 

sistent with the definition of a beta-interval. There exists therefore a ~0, ~x < $o < ~2 

such tha t  ( I ) - N > 0  in ~=(~0,~2). Furthermore for small positive e, Vr.~(I)EF~, which 

leads to the contradiction J(V~. ~(I)) - J ( r  < 0. The property ~1 ~ A is proved similarly 

and we have thus shown tha t  (2.13)holds for fl,interval not containing, or limited 

by  the origin. 

I t  thus remains to be proved tha t  the origin is not included in the closure of a 

beta-interval.  Assume /~ = (~1, ~) .  I t  is sufficient to consider the case ~ > 0, ~1 ~< 0. 
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Since N(x) by assumption vanishes on a neighborhood of x = 0  and (I)(x)=bx on /~, 

we can determine ~0 > 0 such that  for y = (~0, ~2) 

: ((I)- N) ~ > 0 ,  (2.17) 

which again leads to the contradiction J(V~.~)-J(~P)<O. I t  is also easy to see that  

endpoints at the alpha-interval containing x---0 are bounded away from the origin as 

T ---)- OO . 

The previous discussion permits us to derive the following conclusions. There 

exists an infinite sequence T ~ o o  such that  the corresponding solutions (I) l of the 

minimum problem (2.11) converge nniformly over compact intervals to a function 

(I) E l~b. Moreover, (I)' is alternately -- 0 and -- b on the corresponding alpha- and beta- 

intervals as in the finite case. These intervals are discrete since their total  number 

contained in I--T, T~ is limited by 2(N(T)-N(-T))+ 1. For all fl-intervals we will 

have 

l f / r  l f  dNffib" (2.18) 

This relation together with the property A e ( A ) - - a <  b guarantees tha t  no /~-interval 

is infinite. In  each /~ we have I ( I ) (x)-N(x)]~b[~[ ,  and the L2-norm of (~) -_N) /~  

over fl is therefore majorized by b I/~[t/~2(fi), where ~(fl)--dist(/~,0). Lemma II.2 now 

follows by virtue of Lemma II.1 and its Corollary, if we can show that  

~ < oo. (2.19) 

By virtue of the definition of exterior density, dN has a majorant  d~ which is regular 

and of density A(d~)~<a+s, where e is given. According to (2.18) we have for the 

fl-intervals corresponding to (I), 

[fl--] &,-a>~l  d N - a f b - a .  

If  s + ~ < b - a ,  then the set B of all /~-intervals is contained in 

and this set is by  definition negligible and hence, ~(~'~)< ~ .  The mapping T con- 

sidered in the introduction takes the collection of all subintervals of ~ into the isoscele 
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having 8 as base and with height 181, and thus of area 181'/2. By an elementary es- 

timate 

f r~ dx dy 181~ < 8  x(f) ---- center of fl" 
1 +x~(8) 1 + xZ+y ~" 

Hence, Y x +-~-r(8) ~ '  
peB 

and this proves the convergence of (2.19) and finishes the proof of Lemma II.2. 

III .  Proofs  o f  Theorems I and l I  

The results stated in the introduction concern sets A consisting either of real or 

of complex numbers. ,By means of the projection A-~A* and the inequality (0.5) it 

takes very little effort to pass from the real to the complex case. The vehicle to be 

used is 

Lv.M~A III.1. Let the sequence A--{  .}1 satis/y (0.1) together with the conditions 

lim ~ 1 
r-or l an l<r2n  e x i s t s ,  (3.1) 

1 ~ < oo. (3.2) 

Then the /unction /(z)=/(z;A) and /*(z)ffi/(z;A*) defined a8 in (0.8), have the property 

, dx f ~ l l o g l / ( ~ ) l - l o g l / ( ~ ) l l ~ <  ~ .  (3.3) 

To begin with we observe that  the conditions imposed on A imply that  / and 

/* are well-defined. B'y (0.5) we have I/(~)1~>1/*(~)1 for real~,  z f ~ f ~ + g b ,  we define 

2 ' - - - a - i  I b]. The integrand written below is therefore positive and 

1 f '  o I1-~/al  d~ x r~ I1-~/~'1 d~ 
_ _ * ~ l ~  z~ J_** l~  1 + ~  

I 1 -  i/;t ' l  ~1 + 2 Ibl+ 1 X 
= l ~ 1 8 9 1 7 6  ~, I;tl' 1" 

Relation (3.3) now follows on summation. We conclude also that  if one of the func- 

tions ] and /* belongs to a certain class Ek= and is normalized, then the same is true 

of the other. 
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Proo/ o/ Theorem I. By assumption /(z) is a normalized function of class Ek.  and 

the same therefore holds true of /* .  The subharmonie function U(z)=log  I/*(z)l belongs 

to the class Sk. considered in Chapter ! and Theorem I is thus a special ease of the 

more elaborate Theorem I ' .  

Proo/ o/ Theorem I I .  Let  us show first tha t  the assumptions Ae(dNA, )=a  and 

k < a imply tha t  E~. does not contain any  g vanishing on A (with the prescribed mul- 

tiplicities). Assume tha t  1 ~ = g ( 0 )  - 1  does not  contain the origin. Then g(z)= g(z; F), and  

A * c P * ,  if g vanishes on A. By  Lemma I I I .1 ,  g(z;F*)6Ek, ,  and dNr ,  is a regular 

majorant  of dNA, leading to the contradiction 

a = Ae(dNA. ) < A(dNr,)  ~< k. 

In  order to prove the remaining par t  Of the theorem we have to construct a g 

vanishing on A and belonging to a given class Ek., ]c > a. Denote by  dN* the measure 

dNA.. By virtue of Lemma I I .2  there exists a function O(x) such tha t  

0 <~ dO(x) <~ k dx, 

and such tha t  (O(x) - N * ( x ) ) / x  ~ and its Hilbert  transform both belong to LI( - oo, oo), and  

f ;  (r - N*(x)) ~ = o. (3.4) 

Due to these properties the Cauchy integral 

f ~  r - lV* (t) 
h(z) = l S ( t - z )  dt (3.5) 

represents a function in the Hardy  class H 1 for the half-plane y > 0. Thus, 

f ~ l h ( x +  iy)] dx = 0(1). (3.6) 

1 1 1 
Since t ' ( t -  ~--) ~ ~t(t- ~ ~t" 

1 f~~ (P(t) - N*(t) 
h(Z)=z ~o t ( t : z )  dr. (3.7) we will have 

After a partial  integration we get 

y > 0. (3.8) 
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U(z) = ~ log 1 - d(N*(t) - O(t)) =r=lim~ r " (3.9) 

We have thus proved tha t  U(x) / x  ~ fi L 1 ( - oo, oo). Define dv = k d t -  dO. Observe tha t  

0 <~ dv <~ k dt and write 
d(N* - O) = d(N* + ~) - kdt. (3.10) 

The logarithmic potential  generated by the measure d ( N * +  O) is by  definition U(x) 

on the real axis. Since the measure k dt generates a potential  equal to 0 on the real 

axis we shall have by  (3.10) 

Let  [v(t)] denote the integral par t  of u ( t ) - -k t -O( t ) ,  and let d[v] be the corresponding 

measure. A partial integration yields the estimate 

L :l - d([~,] - ~) < O( log  I xl), x--, ++_ ~ , .  (3 .12)  

Denote by  F = {~'n}T', the support of d[~] and set 

g(z)  = g(z ;  A u F), g*(z)  = g(z ;  A* U r ) ,  

the notat ion being the same as in (0.8). Then 

log Ig*(x)l < u ~ ) +  o [ l o g ] x l ]  
l + x  ~ l + x  ~ l + x * ]  

and it follows tha t  (0.2) is satisfied by  g*. In  addition 

2v*(t) + ~(t) = kt + (2v*(t) - r  = kt + o(It[) 

and we may  therefore conclude tha t  both g* and g belong to the class Eke. This 

finishes the proof. 
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