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w 1. Introduction 

The theory of holomorphic Poincar6 series has been developed and studied quite 

generally [29]. It allows one to construct explicitly in terms of infinite series, holomor- 

phic cusp forms. "Nonholomorphic" Poincar6 series were introduced by Selberg [27] 

for SL2(R). If K is a maximal compact subgroup of SL2(R) and F a nonuniform lattice in 

SL2(R) then by expanding these series once spectrally in L2(F\SL2(R)/K) and once 

directly in a Fourier series in a cusp, one obtains a relation between the L 2 spectrum 

and sums of Kloosterman sums. In this way using bounds on Kloosterman sums due to 

Weil [32], Selberg established the well known estimate 

3 
(1.1) ~' I> 1---( 

for the second smallest eigenvalue of the Laplacian for any congruence subgroup of 

SL2(Z). The bound (1.1) above goes part of the way towards the "Ramanujan Conjec- 
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ture" ~,1~>1/4, which remains a basic unsolved problem. See Iwaniec [12] for some 

recent progress. 

The above relation and set up has a number of striking applications [11, 13] which 

we do not enter into here. Suffice it to say that it is desirable to develop such a theory 

for more general groups. For GLn, n>~3, computations have been done by Bump-  

Friedberg-Goldfeld [2] and Stevens [30]. However it appears that the direct estimation 

of the resulting exponential sums does not produce results better than what follows 

from quantitative versions of property T, see Jacquet-Shalika [14] (and these have 

nothing to do with arithmetic 9. 

In this paper we develop a theory of Poincar6 series for SO(n, 1). The main appli- 

cations of the theory are to the meromorphic continuation to C of the 'Kloosterman- 

Selberg' zeta function for general F~<G and the analogue of (1.1) for congruence 

subgroups of isotropic unit groups of rational quadratic forms. These results were 

announced in [18]. Some related results and in particular Theorem 4.10 below have also 

been announced by Elstrodt, Grunewald and Mennicke [5]. 

A general theory of Poincar6 series on real reductive groups of rank 1 has been 

developed by Miatello and Wallach [20]. Their theory is slightly different from the one 

developed here. In particular, their Poincar6 series are not L 2 while it is essential for 

our purposes that our Poincar6 series are L 2. Their proof of analytic continuation 

involves a detailed analysis of the special functions involved. Our proof of a similar 

statement on the continuation of the Kloosterman-Selberg zeta function involves a 

shift equation which was originally suggested by Selberg. In order to apply this type of 

argument to our situation we use ideas suggested by J. Bernstein. 

We now turn to a more precise description of our results as well as introduce the 

notation to be used in this paper. Let G be the real special orthogonal group of a form of 

signature ( r+l ,  1) with r~>2, i.e. G=SO(r+I, 1). We may realize G as 

(1.2) G={gESLr+2 tg(1 lr 1 ) g = (  1 lr 1 ) } ,  

where lr is the r• identity matrix. Denote by A, H, U the following subgroups 

{(a ) ) (1.3) A = lr a E R* . 
a - 1  

H=SO(r) which we embedded in G via 
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(1.5) U = 1 r u u E R r . 

J 
Here u is a column vector  and ( , )  is the usual inner product  on 1V. With this notat ion 

(1.6) P = U A H  

is a parabolic subgroup of  G with unipotent  radical U---R r and Levi componen t  

(1.7) M = A H .  

Let  F~<G be a discrete subgroup of  finite co-volume but not co-compact .  We may 

take one of its cusps to cor respond  to U i.e. 

(1 .8)  F" = F n U 

is a full rank lattice in U. For  notational simplicity assume that in fact F n P = F  0~ and 

that this is the only cuspidal subgroup of  F (in general there may be a finite number  of  

nonconjugate such subgroups).  Fix nontrivial unitary characters  ~ and ) / o f  U, trivial 

on F ̀ ~ The Bruhat  decomposi t ion  of  G asserts  that 

(1.9) G = P U P w U  

where 

w = er a n d  8 r = l r _ l  . 

1 

Hence we may write any ~ E F, ~ (~ P uniquely as 

7 = u(7) a(7) h(y) w v ( ~ )  

or in terms of  M as 

(1.10) 7 = u(7) m(~,) wv(7) 
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with the  obvious notations concerning membership. Let 

(1.11) M(r) = {m(y)lyEr,  y(~r~). 

One may choose a set of representatives for F%F/F ~, y ~ F ~, of the form 

(1.12) umwv 

where for each rn E M(F), u and v run over a finite set in Ux U. The 'Kloosterman' sum 

KI0p, r/, m) for rn E M(F) is defined by 

(1.13) K10p, r/, m) = E ~p(u) r/(v) 

where the summation ranges over the finite set of u's and o's above. The sum is dearly 

independent of the choice of these representatives. Let r be an irreducible unitary 

representation of H, we define the (matrix valued) Kloosterman-Selberg zeta function 

by 

(t.14) z0p, ~, r, s) = E KI0p, ~, m) r(h(m))la(m)] '§ 
mEM(~ 

We will see that the series above converges absolutely for Re(s)>r/2 and hence 

Z0p, r/, r, s) is holomorphic in this region. Our first result is the meromorphic continu- 

ation of this function to the complex plane. To describe the location of poles we need to 

decompose the right regular representation of G on L2(F\G). L2(F\G) breaks up into 

the orthogonal sum of invariant spaces 

(1.15) L2(F \G)  = t~i~(F \G)Ot2~ont(F \G).  

Here L2cont(F \G)  is spanned by unitary Eisenstein series while its orthogonal comple- 

ment L~isc(F \G)  decomposes into a countable direct sum of irreducible representations 

of G. The representations of most relevance here are the principal and complementary 

series. The principal series of the form 

(1.16) Ind~(a| I I Q sgn ') 

where e=0 or 1, oE121, Re(p)=0, and I lesg n~ is a character of A. The complementary 

series are of the same form except that o=identity and -r/2<Q<~r/2. Let R denote the 

standard representation of H=SO(r) in R' and for any o E/~ let o~(h)=u(e, he). 
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THEOREM 2.16. ZOp, ~7, v, s) has a meromorphic continuation to C with the set of  

poles contained in 

(1) -k ,  k~>0, kEZ. 

(2) Q-k, k~O an integer and where zc Ind~(a |  I [~ ~) is a constituent o f  

L2sc(F\G) and also r is a constituent o f  a~| k. 

(3) Q-k, k>~O an integer and Q is a pole of  E(a, g, s) (the Eisenstein series, see w 2.6) 

and also r is a constituent o f  a~| k. 

The set of possible poles above is in fact a discrete set. Moreover the question of 

whether a given number in this set is a pole of Z is equivalent to the vanishing of a 

certain Fourier coefficient, see w 2. 

The proof of Theorem 2.16 is based on the following Poincar6 series. Let bl, b2 be 

Schwartz functions on U and M respectively. Define the function f on G by 

~ f ( u l w u E m  ) --- ~3(Ul) bl(U2) bx(m) v(h) 
(1.17) Lf(g) = 0  if g is not of the above form. 

The Poincar6 series Pf(g) on F \G  is defined by 

(1.18) Pf(g) = X f(Tg). 
F~\F 

The spectral decomposition and Fourier development of Pf as well as the proof of 

Theorem 2.16 are carried out in Section 2. The zeta function is obtained as a Mellin 

transform of Pf along a suitable subgroup. 

The most interesting case of the zeta functions Z0p, r/, r, s) is that of r being the 

identity representation. In this case there may well be poles of Z in Re(s)>r/2-1. These 

poles correspond to complementary series occurrences of the right regular representa- 

tion in L~isc(FkG ). The duality theorem [6], which we will often use, asserts that the 

multiplicity of the constituent Indea(l| [0) in L2is~(F \G)  is precisely the multiplicity of 

the eigenvalur 2=(r/2-o)(r/2+Q) of the Laplacian A on the hyperbolic space 

FkHr+I~FkG/K, K=SO(r+I). In this way the poles of Z above correspond to eigen- 

values 0<) [<r -  1. 

More generally we call poles of Z0p, r/, 1, s) in O<Re(s)<r/2, or equivalently 

eigenvalues ~. of A in (0,(r/2)2), exceptional spectrum. In Section 6 it is shown that 

exceptional spectrum and even poles arbitrarily close to r/2 may occur for the general 

F. For F a congruence group the situation is much better. 

For the rest of the paper we consider only congruence subgroups of unit groups of 

16-918289 Acta Mathematica 167. Imprim6 le 5 novembre 1991 
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rational quadratic forms. To begin with we stick to the orthogonal group G in (1.2) 

except now we consider this group over other fields. The modifications needed to deal 

with the general quadratic form of signature (r+ 1, I) is straightforward. 

Let 

(1.19) F = G fl SLr+2(Z) 

be the group of integral automorphs of 

[111 
It is a nonuniform lattice in G [3]. For D E Z let F(D) be the congruence subgroup 

defined by 

(1.20) r (D)  = 1 (modD)}. 

Let Yo=F(D)\G/K be the corresponding hyperbolic manifold. Our main result concern- 

ing the exceptional spectrum is the following 

THEOREM 4.10. Let 21(Yo) be the smallest nonzero eigenvalue o f  the Laplacian on 

functions on YD then for r>~2, 

The method of proof is to show that in these cases, Z(~, ~, l, s) has no poles in 

Re(s)>(r-1)/2. To pick up the arithmetic structure of F(D), especially the local part, we 

find it both convenient and indispensable to work adelically. In particular we introduce 

adelic Poincar~ series. 

Let G(A), G(Q), P(A), P(Q), U(A), U(Q)... denote the adelic, respectively rational 

points of the corresponding subgroups. Let ~0=IIp ~0p be a standard character for Q\A. 

For ~E(1/D)Z r we define a character ~ of U(Q)\U(A) by 

(1.21) ~pr = e/((u, ~)), u E U(A). 

Clearly we may decompose ~pr as ~pr To introduce the Poincar6 series on 

G(Q)\G(A) we define the function if(g), g E G(A) as follows: 

(1) For p=oo we set 

(1.22) f ~  (u y k) = ~p~ (u) yS+r/2 e-Z~lr 

where u E U(R), k E K| (the maximal compact) 
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(y) y =  lr 
y - I  

and uyk is the Iwasawa factorization of an element in G(R). 

(2) For p<oo let 

Kp = (g E G(Zp)lg -= 1 modp t where plllD} 

then set 

(1.23) 

Define 

(1.24) 

f~(g)=(~o~(U) if g=uk, uEU(Qp),kEKp 
if g is not of this form. 

Clearly f~ satisfies 

(1.25) 

f~(g) = ]-If~(gp) for g = (g=, g2 . . . .  ) E G(A). 
p 

fr = ~pr f$(g). 

Finally the adelic Poincar6 series is defined by 

(1.26) P g(g, s) = Z f~(Yg). 
~, ~ U(Q)\ C,(Q) 

The convergence and meromorphic continuation of this series is investigated in Sec- 

tions 3 and 4. We note that these series and the "real"  ones (1.18) are defined 

differently. We have found the above definition (I .26) most convenient for purposes of 

estimation and corresponding proof of holomorphicity of the zeta function (which is 

closely tied to P~) in the region Re(s)>r/2-1/2. The series in (1.18) or rather their 

Mellin transform over a certain subgroup, is most suitable in developing the meromor- 

phic continuation of Z(s) to all of C. 

In Section 3 we spectrally analyze P~(g, s). The analysis is similar to Section 2. The 

heart of the paper is Section 4 which consists of the computation of the Fourier 

coefficients of P~(g, s). These give rise to local Kloosterman integrals, see (4.4). These 

of course are special cases of the Kloosterman sums introduced earlier but the 

arithmetic is properly captured in this form. These exponential sums over finite fields 

are varied in type. Of theese one family reduces to the classical Kloosterman sum, see 

Lemma 4.6. To these we apply Weil's bound [32]. For the rest which are multidimen- 
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sional sums we apply the "trivial bound".  By a delicate analysis which requires a 

careful examination of those 7's for whichfr we show in Section 5 that Z(s) is 

holomorphic in Re(s)>(r-1)/2.  This leads to the proof of Theorem 4.10. 

The question as to where (if any) are the exceptional poles in 0<s~<(r - 1)/2 for the 

manifolds YD, remains open. In this context the analogue of the Ramanujan Conjecture 

would a s s e r t  ,~.l.~>(r/2) 2 (i.e. no exceptional spectrum at all). This statement however is 

false. In Section 6 we give an explicit construction via theta-liftings from SL(2) (or 

SL(2) depending on the parity of r), of exceptional spectrum for lid for D large. These 

exceptional poles occur at s=r/2-1, r/2-3 .... These "counter examples" to the 

Ramanujan conjecture are similar to those constructed by Howe and Piatetski-Shapiro 

[10]. 

Finally the case of r=2 has been treated in part by Sarnak [26] while adelic 

Poincar6 series for GL(2) were introduced by Piatetski-Shapiro [22]. 

w Analytic continuation 

The goal of this section is to prove the meromorphic continuation of the Kloosterman- 

Selberg zeta function. The notation used is the same as in Section 1 (1.2). 

2.1. Let zt be a Banach representation of G, realized on the Banach space H. Let 

H~ be the space of smooth vectors. Denote by U(~) the universal enveloping algebra of 

g, the Lie algebra of G. We recall that a vector ~ E H is in H~ if and only if D. g} E H for 

all DE U(~). The space H~ is endowed with its usual Fr6chet topology. 

Let 27 be a continuous linear functional on H~, such that 

(2.1) 2~(:r(u) ~) = r/(u) 2~(~) 

for all u E U, $ E H| Note that the character r/may be represented as 

(2.2) r/(u) = e((a, u)) 

for suitable 0 * a  E R r. Set 

(2.3) We(g) = Z~(~(g) ~p) 

for gEG and ~EH| 

LEMMA 2.1. There is a finite collection {Da} ~_ U(~) and an integer k>0 such that 

[We( a h a-') <~(ak+a-')(~a IIDo' II). 
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Proof. For an integer v~>0 let U(g)v be the subspace of U(g) spanned by elements 

which are products of no more than v elements of g. The fact that 2, is continuous 

implies that there is some v and a basis {Di) of the finite dimensional space U(g)~ such 

that 

(2.4) [We(l)] ~< ~ l[O,.~oll. 
i 

Let 

( a )  g =  h . 
a - I  

We know from Wallach [3I, Lemma 2.2] that there exists c>0, r~0 so that 

(2.5) [at(g)[ ~< c(ar+a -r) 

where [at(g)[ denotes the operator norm of at(g). We have W,(g)= W,~g)r so 

ah a i) 
(2.6) 

<~ ~ ItDi'(at(g)'~)[I 
i 

= ~ Ilat(g)" Ad(g)-~(Di)'~ll 

<- c(ar+ a-r). Z I IAd(g)- l(Di) �9 q~ll 
i 

where Ad denotes the adjoint representation. 

The subspace U(~)v is stable under the adjoint action. Thus 

Ad(g)-l(Di) = Z au (g) Dj. 
J 

An explicit look at the adjoint action shows that the matrix coefficents aij (g) satisfy the 

estimation 

laij(g)l ~ cl(aV +a -v) 

with cl a constant. Combined with (2.6) we see that our lemma is valid for k=r+v and 

{De} a constant multiple of the collection {D;}. Q.E.D. 

LEMMA 2.2. For any integer N>0 there exists elements Dt ..... D,~ E U(~) such that 
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for a~l  and ~EH= 

(a /I t w~ h < < a  - u  IIO~'r �9 
a - I  

Proof. Let  el . . . . .  e, be a basis of  R r. The function 

f(h) = max I(a, hC[ 
1 ~/'~<r 

is continuous and nowhere vanishing on H.  Hence ,  H being compact ,  there is a positive 

constant Co such that 

for all hEH. 
Set 

f (h )  >t Co 

x j =  o , 

0 

j= l , . . . , r .  

Given h E H there is at least one index j such that 

(2.7) ](a, he)[ >I c o. 

Now 

/ o ) 
=--~e(ta(a, hej))Wr h a -~ 

= 2zria(a, hej) We( a h a_l). 

t=0 

Therefore 

1 ( a ) h  
h = 2~tia(a, hej) Wxfr a-1 a-1 
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Repeating this k times gives 

h = 
a - I  (a t 1 h 

ak(2~ri(a, hey)) k W~. ,  a-I  

Applying Lemma 2.1 and (2.7) we obtain 

W*( a h a_l) I <~2(2:rc~176 IlDa'xf'~[I) 
where k0 is a fixed integer. Now we obtain our lemma upon taking k=ko+N and the 

collection D 1 . . . .  , D m to be 2(2z~c0)-k.D~ .X~j for all a and l<-j<-r. Q.E.D. 

For q~ E H~ we let 

fS0 (2.8) Ie(r, s) = W,(m))G(h m) [am[S-red*adh 

where X~ is the character of  the finite dimensional representation 3. More generally for 

~ any matrix coefficient of r we set 

f j0 (2.9) I , (~ ,  s) = Wc,(m) ~(h m) [amlS-r/2d*a dh. 

PROPOSITION 2.3. For (9 EH| I ,(r ,  s) and I~(~, s) converge absolutely for Re(s) 

large. The maps ~--~I~(~, s) and ~b---~I,(~, s) are continuous in the topology of H~. 

Proof. The convergence follows from the estimation of Lemma 2.2. The continuity 

follows from the dependence of these estimates on the derivatives of q~. Q.E.D. 

(2.10) 

2.2. A shift equation. Let  el . . . . .  er denote the standard basis of R r and set 

Xj= 0 
0 

�9 =( 101/ 
,4--% 
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Let g, m, a, u, ~ be the Lie algebras of G, M, etc. Let u -  be the span of the .('j. We use 

the subscript C to denote complexifications. Let Z(gc) be the center of U(gc). 

LEMMA 2.4. Let DEZ(gc) ,  then D can bes expressed as 

r 

D=Dm+s 
j=l 

where D= E Z(mc) and D i E U(gc). 

Proof. We have 

gC = u c + m c q - l l c  

and, by the Poincar6--Birkhoff-Witt theorem, a direct sum decomposition 

(2.11) U(gc) = U(mc)E)(u c �9 U(gc)+ U(gc). Uc). 

It is standard that if D EZ(gc) then its projection onto the first factor in (2.11) lies in 

Z(mc). Hence 

(2.12) Z(gc) ~_ Z(mc)~)(u c U(gc)+ U(g c) Uc). 

Given DEZ(gc) we may write 

D = Do+f 

where D O E Z(mc), fE  u c U(~c)+ U(~c) u c. Clearly f commutes with T. Now by the 

PBW theorem f is a linear combination of monomials of the form 

XaOl ~8 

where a, fl E Z~, 

and DIE U(mc). We have clearly 

[ T, X~ ~;a] = (lal_ Ifll) X~ ga 

where lal=a~+...+a,, I#l--fl,+...+fl,. Since f commutes  with any power of T we may 

assume that each monomial as above occurring i n f h a s  lal--Ifll. Then since (2.11) is a 
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lal = > 0 .  

This proves the lemma. Q.E.D.  

A representation of G is called quasi-simple if Z(~c) acts by  scalars. Let  ~r be 

quasi-simple. Let  2,, be the infinitesimal character of  ~r determined by relation 

(2.13) at(D). ~0 = 2~(D) ~0 

for all q~ EHo~, D EZ(gc).  

ff  r is an irreducible representation of  H as above and s E C, then as is well known, 

the induced representation 

(2.14) at(r, s) = Indp~174 �9 I -s) 

is quasi-simple. Let  2,.s be its infinitesimal character. 

PROPOSITION 2.5. Let D ~Z(gc)  and write 

D = Din+ Z XiD i 
i= 1 

as in Lemma 2.4. Let ri (h) be the matrix coefficient o f  the standard representation o f  H 

gioen by 

(see (2.2)). Then for  Re(s) large 

(2.15) I,(~,, s) = 

r i (h) = (a, hei) 

r 

2ari 2 Inj*(rJ ~ '  s+ 1). 
~.~(D)-A~, ~(D) j= 

Proof. From the proof  of  Lemma 2.2 we know 

( a ) ( a )  W~(x) r h = 2~riarj (h) W, h . 
a-1 a-1 

Hence 

(2.16) I~tx),(~ ~, s) = 2m Ir s+ 1). 
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Now on the one hand we have 

(2.17) 

On the other 

(2.18) 

J. C O G D E L L  ET AL.  

I~o)r ~, s) = 2~(D)Ir s). 

r 

s) = s)+ Ixjoj.,( ,, s) 
j = l  

r 

= Iom.r s)+2~i Z Ioi.r s +  1). 
j = l  

It therefore remains to show that 

(2.19) Iom.,(~ ~, s) = 2~,,(D)I,(~, s). 

Let  M+=HA + be the connected  component  of  M. Le t  ~, be the representat ion of  M + 

given by 

(2.20) Y = f |  15-'/2 

where r is the contragredient  representat ion of r. Le t  V~ be the space on which r acts. 

Then y can be realized on V e We define a bilinear form ( , ) on H= • V~ by 

(~, ~) = W~, h ~(h) [alS-r/Ed*a dh. 
a-I 

(Here we are identifying V~ with a space of  matrix coefficients of  ~.) Then 

(2.21) Ir s) = (q~, ~>.  

From invariance of Haar  measure on M + we see the pairing ( , ) is invariant for the 

action of M +. On the Lie  algebra level this says 

(2.22) (Xq~, ~) + (~O, X~) = 0 

for all XE m. Define an involution on m by 

X ~ . ~  = - X .  

This extends to a unique complex linear involution on U(mc), which we again denote  by 
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D0---~/50. Then (2,22) implies 

(2.23) <Oo~,~ > = <~0,/~o~ >. 

Let ;ty be the infinitesimal character of the 

Do6Z(mc) we get from (2.23) 

(2.24) 

In particular 

irreducible representation 7. Then if 

(Do~, ~> = ~,y(/Jo) (~b, ~). 

IDm.r (Dm'~ ,  ~r) 

= ~( / )m) I~(~,  S). 

Thus (2.19) will follow once we show that 

(2.25) 2r(/)m) = ~,~, s(O). 

But this follows from a discussion of the Harish-Chandra homomorphism contained in 

the next lemma. Q.E.D. 

LEMMA 2.6. The relation (2.25) is oalid for all D 6Z(tc) .  

Proof. Let t be a Cartan subalgebra of b. Then [=ct+t is a Cartan subalgebra of t .  

Let W be the Weyl group of the pair (~c, tic). The Harish-Chandra homomorphism gives 

us an isomorphism 

(2.26) ~P: Z(tc) ~ U(~c) w. 

In particular a character of Z(tc) is given by (the W-conjugacy class of) an element of 

If. By convention the element If which corresponds to the infinitesimal character of a 

representation Jr will itself be called the infinitesimal character of re. 

Let 

m e = n c ~ c ~ n  c 

be a triangular decomposition of m c, in such a way that nc+n  c and nc+U c are maximal 

unipotent subalgebras of tc. Let 5, ,5  u be the half sum of positive roots of 

i c in n c and u c respectively. We note that 6. vanishes on a c while 5u vanishes on t c. 

Let A~ be the highest weight of r with respect to n c. From Knapp [15, p. 225] we know 

that the representation (2.14) has infinitesimal character given by 
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(2.27) A r + 6 . - s  

where s is identified with the functional on ac which takes the basis element TE Ctc to s. 

Let us identify U(lic) with polynomial functions on ~: 

U([ c) = P([~). 

Define an automorphism 

by the recipe 

for v E {~. If 

fl: P([~)---) P([~) 

fl(f)(v) = f(v+6u) 

V/m: Z(mc)--* U([c) 

denotes the Harish-Chandra homomorphism for mc it is easy to see that the map (2.26) 

is given by 

(2.28) ~p(D) = fl o ~fm(Dm) 

where D m is related to D as in Proposition 2.5. To conclude the proof we need to show, 

by (2.27) 

~p(D)(Ar+5 n - s )  2~(/9m). (2.29) 

But the map 

D m --o ~'y(/)m) 

corresponds to the infinitesimal character of the contragredient representation of y, 

which is 

= r| I 

The representation ~ has infinitesimal character 

Ar+6n- ( s - r / 2  ) = A~+bn-s+5  u. 

Thus (2.29) amounts to 



POINCARI~ SERIES FOR SO(n, 1) 245 

~p(D)(A~+d,-s) = Vdm(D~)(A~ +dn-s  +du) 

which is obviously true in view of (2.28). This proves the lemma. Q.E.D. 

Remark. If g is of type B, i.e., if r is odd, then - s  in (2.14) can be replaced by s. 

For in such case there is an element in the Weyl group which acts as - 1 on ac and as 

identity on [c. 

We shall adopt the notations and terminologies introduced in the proof of Lemma 
2.6. 

Let zc be a quasi-simple representation. Let X,~ E l~ be the infinitesimal character of 

~. Given u, v E [~ we write 

W 
U ~ I J  

if there is an element of W taking u to v. 

PROPOSITION 2.7. Let notations and assumptions be as above. Then 

(i) Ie(~, s) has a meromorphic continuation to all o f  C. 

(ii) Let R be the standard representation of  H=SO(r) on R ~. Then I~(~, s) has a 

possible pole at s only i f  the following conditions are satisfied: There is a highest 

weight A occurring in r |  k, k an integer 30, such that 

W 
(2.30) A+du- ( s+k)  --Z~. 

Proof. By Lemmas 2.1, 2.2, there is a real number So depending on ~r, such that 

Ir s) is holomorphic in the half plane Re(s)>so for any 4~ and ~.  Then from equation 

(2.15) we see that Ir s) is holomorphic in the region Re(s)>so-1 except at those 

points s with So-l<Re(s)~<So, such that 

for all DEZ(gc). In view 

implies 

2~(D) = ;t,, s(D) 

of the Harish-Chandra homomorphism (2.26) the above 

W 
A~+dn-s ~X,~. 

where A~+d,-s  corresponds to the infinitesimal character 2~,s, as we have seen in the 

proof of Lemma 2.6. 

Now r~.~, in (2.15) is a matrix coefficient of r |  By decomposing r |  we may 
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3' 

where ~, is a matrix coefficient of the irreducible representation r' occurring in r |  

Then 

I~(rj~r, S+ 1) = E I~(~,, s+ 1), 

and we can repeat the above argument with each I~(~,, s+ 1). This proves the propor- 

tion. Q.E.D. 

Remark  2.8. Let z~ be irreducible. It is well known that zt is then a subquotient (or 

even a subrepresentation) of an induced representation 

IndpG(O| [ �9 [Q. sgn) 

where o is an irreducible representation of H, 0 E C and e=0 or 1. The infinitesimal 

character of z~ is then 

Z~ = Ao+6~ +O. 

If 

then (2.30) implies 

(2.31) 

If 

then (2.30) implies 

(2.32) 

r 
0 ~ modZ 

s+k  = +O. 

r 
Q - - ~  modZ 

2 

r 
s-----~ modZ. 

2 

These relations can be easily obtained by looking at the explicit action of the Weyl 

group. 
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2.3. We now apply the above to the case of interest. The group G acts on L2(F\G) 

in the usual way and defines a unitary representation there. Let S(F\G) be the space of 

smooth functions in L2(F\G) with respect to the action of G. For ~ E S(F\G) we define 

its Fourier coefficient We(g) by 

(2.33) We(g) = f r ~l-~(u) du 
Jr nU\U 

where q is again a non-trivial character of U, but now assumed to be trivial on F f~ U. 

LEMlVIA 2.9. The functional 

r W,(:) 

is continuous with respect to the topology of S(F\G). 

Proof. This is an application of Sobolev's lemma. In fact, if l>�89 dim g then for a 

suitable basis {Dj.} of U(g)t we have 

(2.34) Iwr ~< X IlDJ$i{ 
J 

for all $ ES(FkG). Q.E.D. 

2.4. Spectral decomposition. In order to meromorphically continue Ir we need 

to expand $ spectrally. Consider the spectral decomposition of L2(F\G). We have 

L2(F \G) = L02(r \G)@L~r \G)~L2co.,(r \G) 
(2.35) 

= L~sc(FXG)@LLnt(FkG ) 

L0(F \G) decomposes as a discrete direct sum of irreducibles each occurring with finite 

multiplicity. 

L2es(F\G) decomposes first as 

(2.36) L~s(F\G) = ~ 2 ~ Lres, T(F \G) 

where H is the unitary dual of H and L~e~,,(F\G) is spanned by the residues of 

Eisenstein series of the form IndeG(r| [e sgn*), e=0 or 1. 

For each z, the space L~,  ~(F \G) decomposes as a direct sum of a finite number of 

irreducible representations (of the complementary series). L2co~t(F\G) is a direct inte- 
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gral of the form 

(2.37) L2cont(r \G)  = inde~(r| i,r) dr .  
r=O r E B J -  4~r 

Note that r| I ~ is naturally a representation of H x A  and thus of P via its quotient 

M. (For notational simplicity only we have assumed F has only one cusp.) 

As ~ EL2(F\G) we have the corresponding decomposition of q~. We may write 

f dr (2.38) @ = E F,~(@)+E F,,,,,i,,,)(dP) 
~r=L2isc(F \G) r, r 

with F,~(q~) the projection of q~ into the corresponding :r component of L2(FkG). If in 

addition q~ E S(FkG), then one can use the Dixmier-Malliavin theorem [4] to conclude 

that each F,~(~) is a smooth vector in :r and furthermore that the above decomposition 

converges in the S(F\G)  topology. 

From Proposition 2.3 we have 

PROPOSITION 2.10. For ~b E S(FkG) and Re(s) large we have the absolutely conver- 
gent representations 

Ir s) = E Ir,fr s)+ lv,,o ,, ~,~r s) dr 
o,~ j_= �9 �9 4er 

and similarly for  Ir s). 

In the next subsection we show that the analytic continuation of Z(s) can be 

achieved through the continuation of Ir s). The representation in Proposition 2.10 

will be used to do this. In fact later we show that for s in a compact set all but a finite 

number of the terms in the above series are analytic in s. For the finitely many terms we 

have studied the meromorphicity of the Iv,~)(~,, S) individually. 

2.5. Poincar~ series and the zeta function.  Let v E 5e(R') and/~E Co(R*). Define 

f E  S (U\G ,  V?) as follows: First recall the Bruhat decomposition 

Set 

(2.39) 

G = P U UwP. 

~lP(ul)v(u2)xr(hm)lX(am) i f  g = UlWU2m 
f(g) I 

[0  for g E P .  
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where r is a fixed irreducible representation of H. Define 

(2.40) P:(g)= E f(Yg)" 
yErn u \ r  
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Proof. 

LEMMA 2.11. If mEM then 

We:(m)= E Kl(%~l'm')O(a','h~,! a)Z,(t~m'hm)It -~, "lam'l 
rn' E M(r) 

where # is the Fourier transform on R" with respect to rl -t, i~m,=e,h m, e,, a is defined in 
(2.5) and K1 is the Kloosterman sum of Section 1. 

Wpf(m) = fr ~ \ePy(um) ~ - I ( u )  du 

= fr E f(yum)q-l(u)du. 
~\U r ~ \ r  

Now for y E F, y ~ F ~ we may write 

We are assuming F N P = F  N U = F  | so by the Bruhat decomposition 

F |  = 1 +  U F| 
m' EM(F) 

therefore 

Wef(m)--- [ f(um)71-1(u)du+ E [ E f(ul(7)m'wu2(7)urn)rl-'(u)du. 
J F |  m' EM(F) J U  F=\Um'wUIF ~ 

The first integral is 0 since f vanishes on the small Bruhat cell. The second gives 

E KlOP'rl'm')fP(a-'i~a)la-'l'l~(a'~zfl~m'h- )" Q.E.D. 
m'EM(F) \am'~ 

Since F is discrete, there is a positive constant C such that for m E M(F) we have 

17-918289 Acta Mathematica 167. Imprim~ le 5 novembre 1991 

Clearly PfE S(F\G).  Hence we may compute its Whittaker-Mellin transform Ies(r, s). 
We begin with the computation of its Whittaker function. 
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l a~l>C.  Since H is compact we see that 

(~  = a m ]~m I a[ m E M(F)} 

is contained in a closed ball B in R r. Hence we can find v E 5r r) such that ~(~)= 1 for 

all ~ E B. Fix such a choice of v. Then the series for W in the previous lemma takes the 

form 

r Wes(m) = E KI(~0, r 1, m')It  lam,I z~(hm, hm). 
m' E M(F) 

We can now proceed to compute the Mellin transform. To simplify the computa- 

tions assume that It(a)=It([al). 

PROPOSITION 2.12. For Re(s)>r/2+k (or simply large), ItE Co(R*) and even, v as 

above 

Ies(r, s) = #(s - r /2 )  Z(q~, rl, C, s) 
dim r 

where fi denotes the Mellin transform and C(h)=r(erher)=r(l~). 

Proof. For Re(s) large 

Ies(r, s) = Wes(m)zr laml "-r/2 dm 

I (at = E el(~/,, rl, m')lam,I r" It --m laml,_r/2 d.am 
m' E M(F) .10 ", am' / 

fHZ  r( ]~m ' hm) )~ r( hm) dhm. 

Now 

while 

ffit(a ] d'am = 
\am,~ 

itZr(t~,n' hm) xr(hm) dh m = diml(r) Zr ')" 

The proposition follows. Q.E.D. 
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Now/~ E Co(R*) is arbitrary and so can be chosen so that ~i does not vanish at any 

given s. Hence the meromorphic continuation of Z and location of poles is dictated by 

Ies(r, s). A similar analysis to the above can be carried out for the matrix Kloosterman 

zeta function rather than its trace (i.e. for Z~ replaced by matrix coefficients). 

Thus our problem is reduced to meromorphically continuing Iei(r ~, s) (which con- 

tains the continuation of Ies(r, s) in the obvious way). In fact the explicit form of Pf will 

no longer play a role. We are reduced to the more general problem: For ~ ~ S(F\G) to 

analytically continue I~(r s) to C and determine the location of the poles. 

2.6. Analytic continuation. Recall that from Proposition 2.10 we have for Re(s) 

large the representation 

(2.41) I~(~, s) = ~ IF (~)(~ ~, s)+ IF~to.,,.,~(~)(~ ~, s) dr .  
~r E Ld2isc(r \G)  a,e J - ~  4~7t" 

The first step is to use the shift equation of Proposition 2.5 to prove 

PROPOSITION 2.13. Let  ~T be an open set with compact closure in C. Then there is a 

finite set FI o f  zr's and F2 o f (a ,  e)'s such that 

E oo " ' ' r 

has an analytic continuation to ~. 

With this proposition the meromorphic continuation of I~(~, s) and location of 

poles, is reduced to studying the finite sum of integrals above which are easily handled 

by Proposition 2.7. 

For a moment, let us return to the setting of Lemma 2.6 and Proposition 2.7. 

Let [~/W denote the set of orbits of W in It. This is an affine variety, in fact even an 

affine space. Recall that to each quasisimple representation et one can associate its 

infinitesimal character X~ E ~/W.  

LEMMA 2.14. Let  K be a f ixed compact subset o f  [~/W. Then 

(a) (g~l z~cL~isc(r'\G)} N K is finite. 

(b) I f  ~r(t7, ir, e)=Inde~(o| Iir sgn0, then at most a finite number o f  the curves (in r) 

Z~(a, ir,e) with (0, e)E/~x(0,  1} meet K and those curves that do meet K, do so with 

bounded r. 
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Proof. (a) The spectrum of G acting on L~ise(F\G) is discrete, and this implies that 

the set 

0 ,,I L isc(r \G)) 

is discrete in I~/W. The statement (b) follows more easily. For as we know from Knapp 
[15, p. 225], the infinitesimal character of n(o, Jr, e) is represented by 

Ao+t$n +ir E ~ 

(see (2.27)). The fact that Ao+Sn+ir represents an element of the compact set K implies 

that Ao+6n+ir is bounded in It. In particular 

(2.42) - R  <~ r ~< R. 

But Ao, being the highest weight of o, lies in the "weight lattice" inside t*cl*.  Hence 

there can be only finitely many of them within a bounded set. This proves (b). Q.E.D. 

The fact that I~/W is an affine space corresponds to the fact that Z(~c)=U(~c) w is a 

polynomial algebra. Let 

m = dimc(Ic) = I 2 ]  +1. 

Choose a set of generators D I  . . . . .  D,, for the algebra Z(gc). Given X E [~/W let t be the 

character of Z(6c) corresponding to X. The map 

Z---) 

then gives us an isomorphism 

(2.43) I~/W ~ C". 

From now on for a quasi-simple representation of G we shall write 

< , . - )  �9 

We can now prove Proposition 2.13. Let ;t,,, be as in (2.15) and let Z,,= be the 
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corresponding element given by (2.44). Set 

K = closure of {Z,.sl s E ~}. 

By Lemma 2.14, this meets {Z~I~rEL2i~r in a finite set FI of ~r's. We claim 

f(s)= 
zrEL2disc(r\G) 

neFf 

is holomorphic in (Y for any #ES(F \G) .  Firstly this series converges absolutely for 

Re(s)>o0. Now for each :rCF! there is j=j(zr)E {1 ... . .  m} such that 

(2.45) [2,,,(Dj)-2~(D~)[ ~> e o > 0 

where e0>0 is fixed. 

Hence applying (2.15) we find the representation for f 

2~ri 
I" 

f (s)  = E �9 ~/~<y,~ ~ r ,  ~ ,  s+  1). 
a E L~se(F \G)  2~(OJ( ~r))-'~r, s(O~)) i= 1 

n ~ F  1 

In view of (2.45) this series converges absolutely and renders f holomorphic in 

(Re(s)>| NtT. Repeating this gives the holomorphicity of f i n  ~Y. The argument for 

the continuous part is similar. This completes the proof of Proposition 2.13. Q.E.D. 

We can now state the main theorem of this section: 

THEOREM 2.15. Let ~p E S(F\G) then I,(~,, s) has a meromorphic continuation to C 

with the set o f  possible poles contained in 

(1) p - k ,  k>.O, k E Z  and where Hc_IndeC(tr| [o sgn e) is a constituent o f  L~i~e(F\G) 

and also r is constituent o f  a |  k. 

(2) o - k ,  k>~O an integer and O a pole of  c(o, s), tTE/~, where c(o, s) is the constant 

term o f  the Eisenstein series, and here too r must be a constituent o f  tTOR k. 

Proof. In view of Proposition 2.13 the theorem is reduced to studying the mero- 

morphic continuation and poles of a finite set of IF~,)(~ ,, s)'s and a finite set of integrals. 

Hence they may be dealt with term by term. Proposition 2.7 together with Remark 2.8 

immediately gives (1) above which come from the sum over Fi. To meromorphically 

continue the integral consider one such 
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(2.46) f :  IF~o. ir.~,t~,)(~ r, S) dr, 

or, more generally, an integral of the form 

= [ Iv~o.~,~,(r s) dp. In(s) Jc 
R ! 

where CR is the contour in the Q-plane given by 

CR={Q=ir:lrl>~R}O{Q=Rei~ } 

oriented so that Im(•) increases, see Figure 1. 

We assume CR avoids all poles of the Eisenstein series associated to elements of 

Indea(o| I ~ sgn~), or equivalently, the c-function c(tr, Q). (We can always make small 

symmetric perturbations of CR to guarantee this without effecting the validity of what 

follows,) We have the convergence of Io(s) for Re(s)>>0 from the spectral theory, and 

since CR differs from Co only on a compact set which avoids the poles in Q of the 

integrand, we have the convergence of IR(s) for Re(s)>>0 as well. 

As a function of s, it follows from Proposition 2.7 and Remark 2.8 that the 

integrand of IR(s) is a holomorphic function of s on the complement of the curves CR-k 
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for k=0, 1,2 . . . . .  We claim that in fact IR(s) converges absolutely, uniformly on 

compact subsets, on the compliment of the CR-k to a holomorphic function of s. For if 

s does not lie on a curve CR-k for some k, then there is an element DE U(g) such that 

the function 2=(D)-2,,~(D) does not vanish at s for :r=~r(o, 0, e) with 0 E CR. Since 

,~=(D)-~.,,~(D) is polynomial in both 0 and s, there is a relatively compact neighborhood 

U of s such that 2=(D)-2~.,(D) is bounded away from 0 for (0, s) ~ CRx U. Applying the 

shift equation (2.15) for D we find 

fclI~.,o,~,<#~,)l Id01 ~ 2at ~ fc~ 1 II~o;~;#~ rj, s+ 1) I Idol 
12,(O)-2~ ,(O) J j 

<~2~ME ( II=to)r=,r Id01 
.i d C  s 

where ~r=Jr(o, O, ~) and the Dj are as in Proposition 2.5. Hence IR(s) converges absolute- 

ly for s E U iff the IR(s) associated to Ds.(q~) converge absolutely for s E U+ 1. Applying 

this repeatedly we may move s into the half-plane of absolute convergence for the IR(s). 
This proves the claim. Note in particular that IR(s) converges absolutely and uniformly 

on compact subsets, to the right of CR. 

Now let DR be the region of the 0-plane bounded by the curves {o=ir: Irl.<R) and 

{o=Rei~ x/2~<0~<3ar/2), see Figure 2. 

Let PR denote the set of poles in 0 of the integrand Ie,~o.o.,~t,)(~, s) in DR. These are 

the same as the poles of the c-function c(o, O) in DR, and hence finite in number. By the 

Cauchy residue theorem, for Re(s)>>0 we have 

(2.47) Io(s) = IR(s)+2~ri ~ ,  Res I~,~.~ E,~#~ ~, s). 
oj~PR ~176 
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As the integral IF~o,~,,)~,)(~,s ) is absolutely convergent, we may move the residue 

computation inside the integral. Let z~'(69)) denote the irreducible quotient of :r(o, 69, e) 

at Q=69j. Then we have 

Res IF,~o" ~, j~,)(~, s) = I~,,~/~,)(~, s). 
O=Qj 

Each le~<~)~)(~, s) has a meromorphic continuation to all of C with poles at s=69j-k, 

k=0, 1,2 .....  if r is a consUtuent of o |  k by Proposition 2.7 and Remark 2.8. Hence 

the expression on the right hand side of (2.47) gives a meromorphic continuation of our 

integral to the region of the plane to the right of CR with the stated poles. By taking R 

sufficiently large, this extends (2.46) to any relatively compact region of C. This affords 

the meromorphic continuation of (2.46) and completes the proof of the theorem. 

Q.E.D. 

Combining Theorem 2.15 with Proposition 2.12 gives the proof of Theorem 2.16 

stated in the introduction. 

The method of proof here generalizes to give the analytic continuation of a 

Kloosterman-Selberg zeta function for an arbitrary real reductive group G. We will 

return to this topic in a future paper. 

w 3. Adelic Poincar6 series 

The notation used here is the same as in Section 1. D>0  is an integer. For p .oo  

Kp = {gE G(Zp)[ g = 1 (modpt)} 

where pt is the highest power of p dividing D. Kp is a compact subgroup of G(Zp). For 

ptD clearly Kp=G(Zp). For p =  0% we let K| be the maximal compact subgroup of G(R) 

defined by 

K| = SQ+~, t n Or+ 2 = {g E G(R)[ tgg = Ir+2}" 

Set 

Ko=l-Ir  

If G' is an arbitrary Q-subgroup of G we let 

G'(D) = {gEG' (Z ) lg -  I modD}. 
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In this notion F(D) of Section 1 is denoted G(D). Let 

be the connected component of A(R). Let us make a convention that will be conve- 

nient: the element 

of A+(R) will always be denoted y. The Iwasawa decomposition for G(R) is 

G(R) = U ( R ) A ( R )  + K=. 

LEMMA 3.1. The Iwasawa decomposit ion o f  a general element g E G(R) is given as 

follows. Put  g in block matrix form 

1 r 1 

Then 

(kEK| where 

i) = (g ,~) .  
g = r  b 

1 e 

g =  

y = (dZ+(e, e)+f2)-vz = 2 - 2 ,-it2 (gr+2, t + " "  t gr+2, r+2) 

u = y2(d" a+b . t e+ f ,  c) 

Proof. g=uyk  implies 

gtg = uyk tktytu = uyt(lgy) 

the formulas follow immediately from this equation. Q.E.D. 
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We review the definition of the Poincar6 series from Section 1. Let ~E (1/D)Z r. ~ 
is a character of U(Q)\ U(A) by 

~0~(u) = ~p((u, ~)) 

~0p ~ is a character of U(Qp) defined analogously so that ~pg=IIp ~p~. The functions f~ on 

G(Qp) are defined by 

(i) p=oo, then 

f~(uyk) = ~p~(u) yS+r/2e-2~l~lY 

s a complex parameter. 
(ii) p<oo, 

(uE U(R), yEA(R) +, kEK=), 

(,, ~ U(Q A, k E K A 

and set f~ to be 0 outside the open set U(Qp)Kp. 

For g=(g| g2, g3...) E G(A) put 

Clearly 

f~)  : I ~  f~p(gp)" 
P 

f~(ug) = ~p~(u)f~(g) (u E U(A)) 

and hence in particular is left invariant by U(Q). 

Definition 3.2. The Poincar6 series P~(g, s) is defined to be 

P~(g, s) = E f$(Tg). 
y E U(Q)\G(Q) 

LEMMA 3.3. The above ser&s converges absolutely for Re(s)>r/2, uniformly for g 
and s in compact subsets. 

Proof. It is both efficient and enlightening to prove this by comparing the series 

with a particular Eisenstein series. If gp E G(Qp) we may write 

gp= h * -k 
0 a -1 
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with kE G(Zp) i fp  is finite and kEK~ ifp=oo. Define e~p(gp) to be ]alp in this factoriza- 

tion. For g E G(A) we set 

~ ( g )  = H {~P(gP)~ 
P 

The Eisenstein series is defined by 

(3.0) E(g, s) = eP(Tg) "+~:2 

y E P(Q)\G(Q) 

From the general theory of Eisenstein series [16] we know that the statement of Lemma 

3.3 is true for E(g, s). 
We have 

(3. I) G(A) = G(Q) G(R) I--[ G(Zp). 
p<oe 

Thus in Definition 3.2 it suffices to take g=g~ .k with g| E G(R) and k E l-lp<~o G(Zp). 

Since f~ is also right invariant by Koo, we may even take g to be 

(3.1') ) 
( xER  r, y>0) which is naturally a variable on the hyperbolic (r+ 1)-space I-F+I=G/K~. 

Let 

( ,) ( ,o 0 ) w =  er with er= - v  " 
lr-I 

I 

The Bruhat decomposition for G(Q) reads 

G(Q) = P(Q) u P(Q) w U(Q). 

Hence we may write P~(g, s) as 

(3.2) P~(g, s) = ~f~(ah" g)+ ~ f~(ahwug) 
a,h a,h,u 

(a EA(Q), h EH(Q), u E U(Q)). From the definition o f f  ~ we see thatfe(ah .g)*O only if 
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ahkpEKp for all p < ~ ,  and in such a case we have 

If~( ah'g)l = Y ~ (o = Re(s)). 

It follows that the right hand side of  (3.2) is dominated by 

(3.3) cly~ ~ Ife(ahwu.z)l (c = 2~1~1) 
a, h, u 

with a positive constant c~. Since 

f~(ahwug) = f~(ahwuz) I-I f~(ahwukp) 
p<~ 

we havef~(ahwug)*O ifff~(ahwukp)*O for all p * ~  and in such a case 

o+r/2 ~ t xo+r/2 (3.4) [f~(ahwug) I = If~(ahwuz)[ <~ a ~ qJ~wuz) . 

Nowf~(ahwukp):~O means that there is a vE U(Qp) such that vahwukpEKp, or 

wu = (vah)-l k'p (k'pE G(Z,)) 

this implies 

The product formula gives 

~p(wu) = lal~ I. 

ralo = I 7  lal;' = 17 
p<~  p<oo 

Therefore (3.4) can be written 

(3.5) If~(ahwug)l ~ ~ ) (WUZ)  ~ 

We now need the following crucial lemma. 

LEMr~A 3.4. (a) For p ~ ,  given gpEG(Qp), the condition 

f~(ahgp) ~: 0 (a E A(Qp), h E H(Qp)) 

determines a (respectively h) up to a multiplication on the left by A(Qp) f) Kp (respective- 
ly H(Qp) n Kp). 
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(b) Given g E G(A) the condition fr (a EA(Q), h E H(Q)) determines ah up 
to multiplication on the left by M(D). 

Proof. Clearly (b) follows from (a). To prove (a) note that f~(ahg)4=O means that 

there is a v E  U(Qp) such that vahgpEKp. If also f~(a'h'gp)*O then v'a'h'gpEKp for 

some v' E U(Qp). Thus v'a'h'(ah) -1 v-l=v'a'h'gp(vahgp) -1EKp. Since M=AH normal- 

izes U, the condition v'a'h'(ah) -1 v -1EKp implies a'h'(ah) -16Kp. The lemma follows. 

Q.E.D. 

Combining (3.3), (3.5) and Lemma 3.4 we find that the right hand side of (3.2) is 

bounded by a constant multiple of 

(3.6) Y~ + E (~(WUZ)~ 
u E U(Q) 

On the other hand, the Bruhat decomposition also enables us to write 

E(z, o) = yO+r/2 + E ~(WUZ)O+rrZ" 
u E U(Q) 

Comparing this with (3.6), we see that Lemma 3.3 follows from familiar facts about 

Eisenstein series [16]. Q.E.D. 

We turn now to the spectral analysis and analytic continuation of Pc(g, s). For 

simplicity we will treat only the case D= 1 in detail. D> 1 can be handled similarly, but 

the book keeping involved is more tedious. So we set F=F(1). We have seen that for  

Re(s)>r/2, Pc(g, s) is left G(Q) and right K=IIp Kp invariant. Hence as in (3. I) it may be 

considered as a function on G(Q)\G(A)/K~F\H r+l. When viewed as such we write it 

as Pe (z, s), z E H r+l as in (3.1'). Our first calculation is that of the spectral components 

of Pc (z, s). We see from the proof of convergence that Pc(z, s) is of moderate growth 

(since the Eisenstein series are). The spectral calculation will allow us to conclude 

much more. 

The spectrum of A on F \ H  ~+l consists of a discrete set of L2(F\H ~+1) eigenfunc- 

tions as well as the unitary Eisenstein series [3] and [16]. Let u0(z), ut(z).., be an 

orthonormal basis spanning the discrete spectrum. We write 2o<2~<22 ... with 

o 

~ _  r 
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Note that v0= r/2 corresponds to the constant eigenfunction Uo(Z). Since all but a finite 

number of the )./s are less than (r/2) 2 it follows that all but a finite number of the vi's are 

purely imaginary. Also the Weyl asymptotics for the numbers 2: [3] ensures that 

(3.8) I{J: Ibl ~ T}I = O ( T ' + ' )  �9 

The rest of the spectrum is spanned by Eisenstein series. Since D= 1, F \ H  '+~ has only 

one cusp. We have for this cusp the Eisenstein series E(z, s) [3]; [16]. The Eisenstein 

series are holomorphic on Re(s)=0 and the functions E(z, it), t E R furnish the rest of the 

L 2 spectrum [3], [16]. 

To compute the inner products (P~(., s), uj) and (P~( . , s ) ,E( ' , i t ) )  we need the 

Fourier developments of these eigenfunctions. Let L = F = = F n  U(R) as usual. Clearly 

L-~ZL The functions u: (z) and E(z, it), being L periodic, may be developed in a Fourier 

series. A simple calculation (separating variables) shows using (3.7), (see [3]), that 

I 
(3.9) uj(z) = E qJ(rl)Yr/2K~(2Jrlrll y) e((q, x)) + possible zero coefficient term 

r/~L* 

and 

(3.10) E(z'w)=Yr/Z+W+c=(w)Y~/Z-w+S2 E 'c(w'rl)Kw(2:rl~llY)e((rl'x)) 
qEL* 

where e(z)=e 2=iz and Kv(y) is the Bessel function 

Kv(y) = e -z~~ cosh vt dt. 

PROPOSITION 3.5. For Re(s) large the inner products (P, u:) and (P, E) converge 
and 

(3.11) ( e~ (.,  s), u~) = ej (~) r ( s -  b) r(s + vj) 
(4~1~51) ~ F(s + 1/2) 

(3.12) (P~ (' ,  s), E(.,  it) ) = c(it, ~) F ( s -  it) F(s + it) 
(4:rill) s V(s+ 1/2) 

Proof. The functions uj(z) and E(z, it) defined on H r+l, have unique extensions to 

G(A) so as to be G(Q) automorphic and right K invariant. We denote these extensions 

by uj(g) and E(g, it). Consider first (P, ui). 
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(3.13) 

(3.14) 

where 

(P~(', s), uj) = fr\n,+zP~(z, s) uj(z)dz 

= f Q> \G(A) P~ (g" S) Uj (g) dg 

= fa E fS(yg) uj (g) dg 
(Q)XG(A) re U(Q)XG(Q) 

= [ f~ (g) uj (g) dg 
J U(Q) \G(A) 

= (  ( f '  (g) tp~ (u) uj (ug) du dg 
d U(A) \G(A) d U(Q) \ U(A) 

= fv f~ (g) u j, ~ (g) dg 
(A) \G(A) 

f 
uj, e(g) = | u~(ug)~p(-(u, 8))du 

du (Q) \ U(A) 

by weak approximation for U(A) the last 

[ uj (u~z) to(-(u, ~L)) du 
JL \ U(R) 

= Ofl~)yr/2Kb(2:~l~ly), using 3.9. 

Hence returning to (3.14) we have 

(P~(., s), uj) = ~j(~) f~(y)yn2K~j(2~l~ly ) dy yr+ 1 

L ~o Ys e kb(2zr]~l Y) = qj  ( ~ )  - 2 . ~ I ,  dy 

Y 

The last integral may be evaluated, see Gradshteyn-Ryzhik [7, p. 712] giving 

r ( s -  ~.) r(s  + ~) 
= oj (~) (4~1#1)' r ( s+  1/2)" 

This verifies (3.11) except for a word of explanation concerning the interchange of 

integrals above. In fact one can easily check the absolute convergence of (3.13) above. 
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Carrying out the computations above we find that it is dominated by 

f | e_CYyOmaxlu~(x,y)l dy 
x yr+l  

which is finite for a large. The calculation with the Eisenstein series is identical. 
Q.E.D. 

LEMMA 3.6. There is No depending on r only such that 

Io~ (~)l << e~lbl/2 Ivj I N~ 

Ic(it, ~)l << F*t/2ltl N~ 

Proof. From (3.9) we have 

Ioj(O K.~(2~l~l Y)l << s I uj(x, y)l dx. 
\ U(R) 

Hence for Ivjl large; 

/" Ivfl-lvj[1/2 dy_~+~fLf~2dxdy (3.15) Loj(~5)l 2 | IK,,j(y)I z << luj ~ << 1. 
Jlvjl-2lvjl It2 \U(R) A 0 

Now for y in this range we have 

K~j(y)~ 1 xe-~l"jl/2 (2(ivj-Y)~ l/z [Jt/3(y)+J_l/3(y)] 
�9 T t 7 / 

see Magnus-Oberhettinger-Soni [19, p. 142]. From this and (3.15) we conclude 

Ioj (OI << Ivj I N~ e~lb ll2" 

The estimation of c(it, ~) is similar. Q.E.D. 

LEraMA 3.7. For Z lying in a compact subset of  H r+l w e  have the uniform 

estimates 

luj (z)l << (Ivj l+ 1) 2r 

IE(z, it)l << (Itl+ 1) zr 

where the implied constants depend on the compact set. 
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Proof. This follows easily from the equations Auj+Ajuj=O and AE+s(r-s)E=O, 
see Cohen-Sarnak [3]. Q.E.D. 

We can prove the basic proposition concerning the spectral expansion of PC(g, s). 

PROPOSITION 3.8. The function Pc(g,s) has a meromorphic continuation to 
Re(s)>0 with series representation 

Oj (~) F(s-v)  F(s+v) u (g) + l_l_ ( | c(it, ~) F(s-it) F(s+it) E(g, it) dt. 
P~(g,s)= j=0 ~ ( - ' 4 - - : t ~ ~  J 4~z J_| (4~rl$l),r(s+l/2) 

The above series and integral converge absolutely and uniformly on compact subsets 
of G(A) and of Re(s)>O. In particular the possible poles (which are simple) of PC(g, s) in 
Re(s)>0 are at s=vj, vj>0, that is the exceptional spectrum. The corresponding residue 
is 

oj (O r (2o  
uj(g). 

(4z@lY~r'(�89 

Proof. The convergence of the right hand side above follows from the estimates in 

Lemmas 3.6 and 3.7, Weyl's law (3.8) and Stirlings series 

IF(c+it) I ~ e-~nl'lltl~ x / ~  as [tl--> oo. 

Now for Re(s)>r]2 the right hand side H(z, s) represents a smooth L 2 function whose 

components alone uj(z) and E(z, it) are identical with PC(z, s). It follows that 

fr H(z, s)-Pc(z, s)) q~(z) dz = 0 
\H r+l 

for any q~ E L2(I -" \ H  r+l) of compact support. Clearly then H(z, s)-Pc(z, s) for all s and z, 

proving the proposition. Q.E.D. 

Note that vo=r/2 is not a pole of Pc(g, s) since 00(~)=0. 

COROLLARY 3.9. For y fiA(R) + the function 

F(~, s) = f er s) e/~(-u) du 
dv (Q)\U(A) 

is meromorphic in Re(s)>O and has simple poles at the exceptional spectrum vj with 

18-918289 Acta Mathematica 167. Imprim6 le 5 novembre 1991 
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residues 

( ~ v  I~}J'(~)[2) " F(2vj)yrn Kvj(2rt[~lY) 

;= j . (4~l~l)W(�89 

The important point to note here is that i f  vj is in the exceptional spectrum then for 

some ~, F(~, s) does have a pole at vj. 

If D > I  the situation is essentially the same. For now we will have 

h 

G(Q)\G(A)/K = U Fi \H "+l 
i=t  

and each Fi is a congruence subgroup of F(1) and may have more than one cusp. Taking 

I '= N~= l F i one has that P~(g, s) lives on I" \H r+l and the spectral expansion and location 

of poles is similar. 

PROPOSITIOrq 3.10. For any level D>~ 1 and for y E A(R) + the function 

F(~, s) = ~ P~(uy, s) lp~(-u) du 
.lu Q\U~ 

is meromorphic in Re(s)>0 and has possible simple poles at the exceptional spectrum 

vj. I f  vj is in the exceptional spectrum, then for some ~, F(~, s) does have a pole at vj. 

w 4. Fourier coefficients and local Kloosterman integrals 

In this section we compute the Fourier coefficient F(~, s) of Proposition 3.10, in terms 

of Kloosterman integrals. We have 

F(~, s) = fV(Q)\t1(A) Pg(uy, s) ~pg(-a) du. 

Unfolding Pg (uy, s) using the Bruhat decomposition gives 

Since f~(yuy)~=O only when y E M(D), the first sum is simply 
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,+m-or Z I q,~(7(u)-u)du 
y e r E M(D) d U(Q)\ U(A) 
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and put 

then 

(4.5) 

For p < ~  we let 

(4.4) 

/ [ 
h = h'e, ~recall that w = ~1 

so that h E Or(Q). 

Using Lemma 3.1 we find that 

s) ~= ~u~I"m f~(Twuy) ~p~(-u) du Iv(Y, 
(4.3) 

Put 

7=ah ' (aEA(Q), h'EH(Q)).  

/?r ,) lr ) 

= l (. J_~a~y_ '~S+mexp{ - claly du. JRr\Y2+�89 ] ~k y2+�89 ) Y2+fi( u,a(hu'-~) "~u,/I 

ga.(7) = ( f~(Twu) ~(-u) d. 
J u(%) 

KI(7) = I'-[ Klp(7) 

Z(y, s) = Z I~(y, s) Kl(7). 
E MIQ) 

We first compute the "local Kloosterman integrals" (4.4). These turn out to be 

generalized Kloosterman sums. The integrand (4.4) is zero unless there is v E U(Qp) 

(where 7(u)=Ad(7)(u)). This last expression is clearly entire in s and plays no further 
role in our discussion. 

We denote the second term in (4.1) by Z(y, s) (we drop the notational dependence 

on ~ which is fixed). As in the last section we may write 7 E M(Q) as 
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such that vywu E Kp. Direct calculation gives 

(4.6) trgwu = 

/ __~a (V,V) _tvh + .(v., v)t u a+ ..1 (u,u)(v,v)-(v, hu)\ 
2a 4a ) 

I ' !  v h-1--VtUa h u - v . ~ a  ) 

1 t u _ l_l_(u, u)  

a " a 2a 

In what follows we use the notation that for any matrix over Qp, we let I[p denote the 

maximum of  the absolute values of  its entries. 

We now look at the conditions on y and u which are forced by the requirement that 

vywu E Kp. A glance at the last row of  the matrix (4.6) shows that 

(4.7) la]p ~ 1, lulo ~ laJp, ](u, u)lp ~ ]2alp and also Ivlp ~ lair. 

From the center entry, one has 

h = 1 v t u + z  
a 

with z E M,(Zp). Therefore 

,, _< /lul~ Iol~ Izl~). 
I - - Z -  , 

By the above, 

lal----~ ~(~p = [a lp 

and by assumption Izlp~l. Hence  Izlp~max(lalp, I). So if lalp>l we have Ihlp~lalp. Since 

thh=l ,  we always have Ihlp~>l. Hence  we have three cases: (I) lalp= 1; (II) lalp>lhlp>~l; 

(III) lal,= Ihlp> 1. 

Let us first assume ptD, p*2 and examine the various cases separately: 

Case I. ]alp = 1. 

Looking at (4.6) we see that ~,EM(Zp), uE U(Zp), vE U(Zt,). In this case we have 

KlAr) = I. 

Note that for a given 7 E M(Q) this is the case for almost all p. 
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Case II. lalp> [hJp. 

(Since thh=Ir=> Ihlp~>l, the condition lalp>lhlp implicitly implies lalp>l.) In this 

case we claim that either lut~<lal~ or Ivlp<lalp. For otherwise we would have 

and this implies 

lul~ = Ivlp = lal~ (see 4.7) 

I1  Ivlplul~ ~ lalp - la lp>l .  

But h-(1/a)vtu (which is the central block in the matrix (4.6)) is integral. Hence 

Ihlp= ~o'. p=lal. 
contrary to our assumption. 

Let's assume that lulp<lalp. (If we start with the assumption Iolp<lalp it will any way 

turn out that lulp<Jalp holds.) Looking at the last row in (4.6) we see that (u, u)/2a must 

be a unit in Zp. Since hu-(u, u)v/2a (which is located in the 3rd column of 4.6) must be 

integral, we may conclude 

(4.8) 

Hence 

The element 

v -- ~ hu (rood Z~). 

h-1-~-vtU=a h(1- (u~u ta )  modulo integral part. 

R(u) = 1 -  2--utu 
(u, u) 

is a reflection in Q~ determined by the vector u. So we must have hR(u)EH(Zp). 
Summing up we obtain the following conditions 

t (u,u) = 1, (4.9) (i) ! 2a Ip 
I.(ii) R(u) E H(Zp) h 

(since R(u) z= 1, the condition hR(u) (?. H(Zp) is equivalent to h E H(Zp) R(u) which in turn 

is equivalent to R(u)~.H(Zp)h, etc.). One checks that once (4.8) and (4.9) are satisfied 
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then indeed vywu E Kp. We have 

LEMblA 4�9 then 

where the integral is over the set o f  u' s described by (4.9). 

We need an upper  bound for IKlp(~,)l. The "tr ivial"  estimation of this integral is an 

estimate for the volume of the domain of  integration. 

LEMMA 4.2�9 Suppose that u satisfies (4.9) then 

lul~ = }ale Ihlp. (4.1 O) 

Indeed (4.9)(ii) implies that 

lul  
IhlP = IR(u)IP = ](u, u)lp" 

Together with (4.9)(i) this implies (4.10). Q.E.D.  

LEMMA 4.3�9 Let Ihlp--p*. Fix an element Uo satisfying (4.9). Then the set o f  u's 

satisfying (4.9) can be described by 

f(i) I(u, u)lp = 12alp = lalp since p #  2, 

~ (ii) u = 2u0+u where 2 runs through a set o f  

(4�9 I representatives o f  units in Z u modulo pk, 

and lu'lp ~< lal~/2 Ihl; 1/2. 

Proof. If Ihlp=l then (4.11) comes down to [(u, u)lp=lalp and lulp<.lal~/2, which is 
easily seen to be the same as (4.9) in this case. 

Now let Ihlp>l. If u satisfies (4.9) then 

R(uo)EH(Zp)R(u) i.e. R(uo)R(u)EH(Z ft. 

We have 

(Uo, Uo)/ (u, u) / 
2u 0 tu 0 2utu 4(u 0' u) UotU 

= 1  
(Uo, Uo) (u, u) (Uo, Uo)(U, u) 
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Let  us write u~0, u j for the j th  entry of u0 and u respectively. C h o o s e j  so that lu j Ip=lulp. 

The condition R(uo)R(u)EH(Zt,) implies in particular 

2u o Uio 2uu J 4(u 0' u) u o u i p 

(Uo, Uo) (u, u) + ~ ( ~ ,  ~ ~< 1. 

The last inequality can be written 

(4.12) lu-Zuolp <- I(u, u)l~ 
12uJlp 

where 

2 - (u, u) [ 4(Uo, u) u j 
2u ] \(Uo_~o)~U,U) 

Since [2u/[p= [uJ[p= lu[p, (4.12) can be written 

(4.13) lu_2Uolp <. I(u, u)l o = la1~2 ihl_~tr2" 
lult, 

(Uo, Uo) / 

A moment 's  thought shows that (4. I0), (4.13) together with Ihlo> 1 imply 12lp= 1 i.e. 2 is 

a unit in Zp. Furthermore if 2 ' - 2  (modp k) then 

I;~'Uo-~uolp = I~'-~1~ lu01~ 

-< ]hl~-~(lalt, Ihl) +~'2 
1/2 ~ -1/2 

= a p  nt ,  

i.e. 2'Uo=2Uo+U' with 

I/2 lu'lt, ~ a t, Ihl; 1'2. 

We have shown that (4.9)=~(4. I 1). The other direction is easier and left to the reader. 

Q.E.D.  

COROLLARY 4.4. In Case II 

(4.14) IKlp(r)l -< Ihl~ -r~" lal~ 'z. 

Indeed this is essentially the volume bound. We turn to 

Case III. Ihlt, = lalp > 1. 
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Since Ihl~ = lalp > I the integrality of  h - ( 1 / a ) v t u  implies 

Iolplulp Ihlp= -~v'u - -  lal~ 

Together with (4.7) we see that 

Let 

[Ulp = IOlp = l a l p .  

(i) U = . , O ~ 

\ U r /  �9 

h i = ith row of h 

h j = j t h  column of  h 

hij = i , j  entry of  h. 

With this notation the integrality of  h - O / a ) v t u  is expressed as 

(4.15) h e -  Uiuj ~Zp for all i,j. 
a 

Fix k, ! so that Ihk~lp=lalp. Then also 

Ivklp = lullp = lal,. 
Set 2=a/ol.  We have IAI,--1 and (4.15) implies 

~ (i) u = 2thk mod Z~ 

(4.16) (ii) v -  1 aft_ h' modZ~. 
l /. hkl 

Substituting these into (4.15) we find that 

(4.17) h -  1_~ hth, 
hkt 

is integral. 

One verifies that the conditions (4.16)-(4.17) imply that oFwu E Kp. Hence we have 

LEMMA 4.5. Kip(y) is non-zero only when (4.17) is satisfied, and in such a case we 
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(4.18) 
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t I a t KIp (7)= X ~ p 2 h , + - - - - h ~ .  
~.r * 2 hkl ] 

For later purposes it is convenient to state the preceeding lemma another way. 
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and 

/ lal,,\ 
(4.21) lal.~121pp 2', Ihl,~<maxtl,-~- ) 

(4.20) Kip0, ) = ~ ~0p~(2Uo+2-1Vo). 
2 ~(Zp/a- lZ)  * 

(4.19) u=itu o modZp, 2EZ*. 

There is v o E U(Q) such that v o 7wu o ~ Kp the class of  v o mod Z~ is determined by Uo, we 

have [uolp=lvolp=lalo and 

Finally we take up the remaining primes; plD or p=2. We can assume that 21D. The 
situation here is similar to Case II above (i.e. we will need only the volume estimate) 
and we state the results only. 

LEMMA 4.7. Let pt (l>0) be the highest power of  p dividing D, then f~p(ywu) is non- 
zero only when 

(4.22) t ( i ) ~ a  u ~  1 (m~ 

~.(ii) hR(u) E H(Qp) N Kp. 

The relation Ihip=max(1, lul2p/iaip) holds. When p*2  we have Ihlp=lUlZ,/la}) as in 

(4.10). If(4.21) and (4.22) hold, then 

(4.23) Kip(7) = f ~p~_(u+~\ (u,20u) hu)du 

where the integral is over the set o f  u's satisfying (4.22). 

LEMMA 4.6. Suppose that Ihl,=lalp>l. Let Uo E U(Qp) be such that f~p(yWUo)*O then 

for any u E U(Qp) we have f~p(ywu)*O iff 
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LEMMA 4.8. Let Ihlp=p k. Fix one Uo satisfying (4.22). Then the set  o f  u ' s defined by 

(4.22) is given by the following conditions 

(i) ( u , u ) / 2a - -1  modp / 

(ii) u=2uo+u',  where 2 goes through a set o f  representatives o f  the units in Zp 

modp t+k and lu'l<-P-'lhl; ~/z a p  . 

COaOLLARY 4.9. For plD and 7 satisfying (4.21) we have 

IKIR(Y)I << Ihl~ -r/z lal~,/2 

where the constant depends on the normalization o f  Haar measure on U(Qp) and is not 

important for  us. 

With these preliminaries we can now return to Z(y, s). 

From (4.7) we have that la(y)lp~>l for all but a finite number of p (and for the 

exceptional p the numerator is bounded). Hence essentially a(y)= 1In with n running 

over the integers. In this case lal tends to 0 and we have from (4.3) 

lk y2+�89 u) e((u, ~)) du+O(lal'+r/Z+l). 

Hence clearly 

(4.24) 

Let 

(4.25) 

Z(Y'S)=(ee~u~QKl(y)lalS+r/2)fRr(yZ+~u,u)) s+r/ze((u'~))du 

Z(s)= ~] Kl(~,)lal s+~/2. 
yEM(Q) 

This zeta function is of course a special case of the ones introduced in Section 2 and 

hence is meromorphic in C. In the next section we will prove using the evaluations of 

the Kip(y) carried out in this section that Z(s) is holomorhic in Re(s)>r/2-1/2. In fact 

we will show that the series (4.25) converges absolutely in this region. It follows that the 

O term in (4.24) is holomorphic in Re(s)>r/2-3/2. Hence we learn that Z(y, s) is holo- 

morphic in Re(s)>r/2-1/2 and hence from (4.1) and the remark following it that F(~, s) 

is holomorphic in the same region. Combining this with Proposition 3.10 yields 
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THEOREM 4.10. I f  YD is the hyperbolic manifold F(D)\H '+ 1 and 21 the smallest non- 

zero eigenoalue of  the Laplacian on Yo then 

~,1 >~ 1/2(r- 1/2). 

w 5. Estimation 

THEOREM 5. I. The Kloosterman-Selberg zeta function 

Z(s)= ~ Kl(r)larl s+r~2 
rEM(Q) 

is absolutely convergent in Re(s)>r/2-1/2.  

Proof. Let Af denote the finite adeles of Q. Given 

yp = h E M(Qp) 
a - I  

set 

For Y=0'z, Y3 .... ) E M(A/) we put 

n(?p) = lalp. 

nO') = 1-I n(Yv) 
p<~ 

then for ~, E M(Q)~_M(Af) we have 

n(~') = laelZ ~ 

Thus we may write 

(product formula). 

(5.1) Z(s)= E Kl(y) 
y~M(Q) n(Y) s+'/2. 

Our strategy now is as follows. To each Ye E M(Qp) we will find a majorant 

(5.2) IKlp%)l ~< ~,.(y~) 

such that ~p depends only on the coset (M(Qp) N Kp)~p, i.e. ~p is a function defined on 

M(Q e) n Kp\M(Q).  Set 
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~(Y) = I-I ~p(yp) for y E M(Ar), 

then �9 is a function on MfkM(Af) where 

My= H (M(Qp)flK,). 
p< ov 

In particular it restricts to a function in M(D)\M(Q)=M:\M(Af). Now 

S ~ ~(y) (5.3) 2 Kl(y) I ~ .{~ , -~ r ,2"  
:Mr I n(Y)'+m I yEM(D)\M(Q) "'~.)'! 

Enlarging the index set on the right to Mf\M(Af) we find that the series is dominated by 

(5.4) 

where 

ye MI.\M(Af) p<oc 

r o) = ~ ~(~") 
y E M(Qp) ~ Kp\M(~p) l'l(yp)~ r/2" 

Remark. Replacing M(D)\M(Q) by M/\M(A s) enables us to gain the Euler product 

(Z(s) does not have an Euler product!). This technique was first used in [17] in the 

analogous situation for the unitary group U(n, 1). 

The local calculations of the previous sections show that Klp(yp)=O if n(yp)<l. 

Take ~p(yp)=O in this case. If n(yp)= I and Klp(yp)*O then plD and for vp E M(Qp) N Kp 

we have 

{~ if PlD 
Kip@p) = if p'~D. 

Thus we take ~P(Ye) to be 0 and 1 respectively in these two cases. For each integer l set 

(5.5) S(Pt) = E ~p(YP), Yp E M(Qp) N Kp\M(Qp) 
n(yp)=p t 

then 

(5.6) l;(p, o) = E " S(pt) .... 1 + E S(pt) pl(o+ri2) pl(o+r/2) " 
I=0 I=1 

Theorem 5. I will follow from the following lemma. 
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LEMMA 5.2. Let o>r/2-1/2 then 

s(pt) <<p-~-~ (E>0). 
1=1 pl(tr+r/2) 

For the rest of this section we will define the function @p satisfying (5.2) and verify 

Lemma 5.2. 

Consider first Klp(Tp) with plD. Write 

and put as before 

n % )  = lal~ = P', 

else K1 is zero by the analysis in Section 4. 

Assume first that />1.  If k<! then (4.14) gives 

(5.7) 

]hlp=p k (O<~k<~l) 

IKa,(~,p)l ~< pk.-r~)p,,2 ~ %%). 

We may count the number of ~'p's (modulo M(Zp) of course) for which Klp(yp)*0 using 

Lemmas 3.4 and 4.3. First observe that 4.10 implies k+l must be even. We may 

pararnetrize the relevant Vp's by means of the vectors u0 appearing in Lemma 4.3. The 

r-dimensional vector u0 must lie in p-(~k+t)/2)Z~. (4. I 1) implies that we may "mod out" u0 

by vectors in p-((t-k)/2)Z~. The quotient space 

p-((l+k)/2)Z~/p-((I-k)/2)Z~ ' 

is isomorphic to Z~/pkZp. The relation (4.11)(ii) further implies that we may identify 

multiples of elements from the multiplicative group (Zp/pkZp) *. Finally, there is one 

more constraint coming from (4.11)(i). Putting all this together, we find that the number 

of relevant ~p's is bounded by pk(r-2). Thus for fixed k<l (with k-l(2)) the contribution 

to S(p 1) is bounded by 

pk(r- Z)pk(l-r/2)plr/2. 

If k=l then the non-zero Klp(~,p)'s are given by (4.20). Trivial estimation gives 

IKlp(yp)l ~ pt 
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(this is the same as (5.7) with k=l). Similar arguments as before, this time using Lemma 

4.6 show that the number of relevant 7p's is bounded by pt(r-2). Hence  we have 

S(pl) ~ pl(r-2)pl + Z pk(r-2)+k(l-rl2)+lr/2 

2p I(r-1). 

This implies that for a>r/2-1/2 

(5.8) 

O<~k<l 
kml mod 2 

~ S(p I) < < . - l - ,  
1=2 pl(a+r/2) tl 

if o=r/2-1/2+e. Note that so far we have only used the "trivial" estimation of KI. 

Next we consider the case l= 1. Here the only non-zero Klp(yp) is given by (4.20). If 

(u0, ~)~ Zp then the sum in question is a nontrivial "classical" Kloosterman sum and 

Weil's estimation [32] gives 

(5.9) IKlp(yfll <~ 2V-p- __a (I)p(yfl. 

The number of such yp's is as before bounded by pr-2. Hence the contribution to S(p) is 

bounded by pl/2pr-2=pr-3/2. On the other hand if 

(5.10) (u0, ~) ~ zp 

then we can only use the trivial bound 

IKlp0,,)l ~<p. 

However (5.10) puts on an extra constraint on our parameter u0 so that the number of 

non-zero Klp(yp)'s in this case is bounded by pr-a. We conclude that 

S(p) <~ pr-3/2 + ppr-3 <~ 2pr-3/2. 

Therefore for o>r]2-1/2 

(5.11) s(p) 2p_~_~ 
pO+r/2 <~ 

for o=r/2-1/2+e. The estimates (5.8) and (5. I 1) clearly give Lemma 5.2 for ptD. On 

the other hand there are only a finite number o fp ' s  dividing D. Thus to complete the 

estimation we need only check that the series 



POINCARI~ SERIES FOR SO(n, 1) 279 

~ S(p t) 
I=1 pl(a+r/2) 

is convergent for pID and a>r/2-I/2. We can do this easily using Lemmas 4.7, 4.8 and 

Corollary 4.9--the details are left to the reader. Q.E.D. 

w 6. Examples of exceptional spectrum 

As we noted in Section 1 the manifolds I:o (for r~>3) may have exceptional spectrum. 

The purpose of this section is to exhibit such examples. The method of doing so is via 

theta liftings which we review. 

Recall that, the metaplectic group SL2(A) is a two fold covering of SLy(A), so that it 

fits into the following short exact sequence 

(6.1) 1 ~ {1, ~) --~ SL2(A)---> SL2(A)--+ 1. 

Here we have denoted by {1, ~} the group of two elements. The pair G(A), SL2(A) is 

(almost) a reductive dual pair in the sense of Howe [8]. In particular there is an 

oscillator (or "Weil")  representation co associated to this dual pair. 

To be more precise, the choice of w depends on a nontrivial character of Q\A. 

Given the standard character ~p fixed at the beginning of the paper, any other nontrivial 

character of Q\A is of the form ~pa with a E Q* where 

(6.2) ~pa(x) = ~p(ax) (x E Q\A). 

Let us denote by a~a the relevant oscillator representation associated to the 

character ~p~. We now describe a particular (Schr6dinger model) realization of to~ 

suitable for our purposes here. 

Let W be the two dimensional symplectic vector space over Q on which SL2 acts 

(on the right). Let el, ez be a symplectic basis for W. Then to~ will be realized on 

SP(W(A)0)Ar), the space of Bruhat-Schwartz functions on W(A)0)A r. Note that 

(6.3) SD(W(A)~A ') - ~(W(A))| SD(A'). 

The action of SL2(A) is a tensor product of two oscillator representations. It acts 

on the first factor of (6.3) through the linear acti6n of SLz(A) on W(A). On the second 

factor 5r r) its action is just the oscillator representation of SL2(A) associated to our r- 

dimensional quadratic form ( , ). In particular for ~ E 5e(W(A)t~A r) 
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(6.4) e)a((~ 7))~(w,x)=~pa(nq(x))*(w(lo 1 ) , x )  

(w E W(A), x E A r, n E A) where we have put q(x)=(x, x). It is not difficult to describe the 

action of U(A) in this model. However all we need is the following formula. 

(6.5) t.O a(U) dP(e 2, x) = "q)a( ( u, x) ) ~( e 2, x). 

Here, as usual, we are using the identification U(A)------A r in the obvious way. 

Remark. (6.5) follows from Howe [9, formula 19] and is easy to verify. For each 

qb E ,5~(W(A)t~)A r) we define 

Oo(g, h) = E w~(g, h) ~(r I, ~) (g E G(A), h E SL2("-~)). 
~/E w(q)  

~EQ r 

Then 00 is a slowly increasing automorphic function on G(A)• If $ is a cusp 

form on SL2(A), the following integral is absolutely convergent and gives a G(Q) 

invariant function f(g) on G(A). 

(6.6) 
f 

f(g) = | Oo(g, h) qb(h) dh. 
.Is L2(Q)\SL2(A) 

Remark. We assume that the following compatibility condition is satisfied for q~ 

(see 6. l) 

(6.7) $(~h) = ~ q~(h) if r is even 
[-qffh)  if r is odd. 

In this way the integrand in (6.6) is in fact a function on SL2(Q)\SL2(A). 

LEMMA 6.1. For r~3 the function f(g) defined by (6.6) is square integrable on 
G(Q)\G(A). 

Proof (sketch). Proposition 8 of Weil [33] implies that the function O.(g, h) is 

square integrable in the first variable if r~>3. Since the cusp from $ is rapidly decreasing 

this property of square integrability is not lost on integrating against q~. Actually for 

essentially this situation in the classical language see Siegel [28], who examines O(g, h) 
in the variable g for r~>3. Q.E.D. 
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The next question is whetherfis identically zero. Taking ~ of the form ~=~1"~2 
where O1E Se(W(A)), ~2 E 5e(A') we find that 

O~,(l, h) = Fl(h) F2(h) 

where 

and 

Fl(h)= Z Ol(r/h) 
E W(Q) 

F2(h) = Z w'(h)~2(~)- 
~Q' 

Here r is the oscillator representation attached to our r-dimensional quadratic form 

( , ) .  Denote by N the upper triangular unipotent subgroup of SL2. Then N is precisely 
the stabilizer of e2, and we have 

It follows that 

Fl(h) = r Z Ol(e2yh)" 
y E N(Q)\SL2(Q) 

f 
f (  1 ) = __Jst.2r Q)\St.2(A) �9 I (0) F ~ ( h ) dp( h ) dh 

+ I dp l(e2 h) F2(h) dp(h) dh 
Jur Q)\SL2(A) 

----- ~1(0) [ F2(h ) r dh 
J SL2(Q)\SL2(A) 

Z / ~ l(e2 h) w~(h) 02(~) 0(h) + dh. 
E Qr .IN(Q)\SL2(A ) 

From (6.4) we see that the integral 

N~O)~SL,:A) O~(e2 h) ~o'~(h) O2(~) O(h) dh 

is zero if ~=0 (since 0 is a cusp form) and otherwise it equals 

18t-918289 Acta Mathematica 167. Imprim~ le 5 novembre 1991 
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(6.8) 

where 

Set 

We have shown that 

f~(1) ~ fN tDl(e 2 h) ~2(~) ~b~(h) dh 
(A)\SL2(A) 

= fN ~a(h)  (I:}(e2' ~) tpe(h) dh 
(A)\SL2(A) 

r/)~(h) = fly dp(nh) V.,a(- nq(~)) dn 
(Q)\N(A) 

= fN dp(nh) lffa'q(~)(--n) dn. 
(Q)\N(A) 

/- 
f~ = / ~,(0) F2(h) ~(h) dh. 

JSL2(Q)\SL2(A) 

(6.9) f(1) =fo(1)+ E f~(1) 
~EQ' 
~*0 

the same formula holds for the general qb (not necessarily of the form ~ j .  02). 

Observe that the characters of U(Q)\U(A) can be identified with Qr and (6.5) and 

(6.8) show that (6.9) gives precisely the Fourier expansion o f f  along U! Note that 

replacing f(1) by f(g) simply replaces �9 by some other Schwartz function. We have 

shown 

LEMMA 6.2. ( a ) f  is cuspidal iff ~ is orthogonal to all theta series attached to the 
quadratic form ( , ). 

(b ) / f~  possesses a nonzero Fourier coefficient with respect to the character ~p~.q(O 
for some ~ E Qr, then f is nonzero. 

Remark. (1) Part (a) is a special case of a general criterion due to Rallis [23]. 

(2) The condition (b) is always satisfied for an appropriate choice of a. 

The infinitesimal (Howe duality) correspondence for a general real reductive dual 

pair is known. In particular there is a formula relating the images of the Casimir 

elements of the two groups under  the oscillator representation. In the present situation 
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let D and D' be the Casimir elements for the groups G(R) and SL2(R) respectively. Then 

(6.10) 

(see for example J. D. Adams [1]). 

Now take tp to be a cusp form on SL2(A) which comes from a classical holomorphic 

cusp form of weight k (with k an integer or half an odd integer according as r is even or 

odd). ThenfwiU be an eigenfunction on G(A) with eigenvalue (for A) 3. determined by 

2 2  = 4 -  

i.e. 

(6.11) 

Remark. The relation between the Casimir elements and the Laplacians is as 

follows: When expressed in terms of the Iwasawa coordinates -2D'  assumes the form 

( 5  05)  02 _y2 + --Y OX O0 

while when acting on H r+~, 2rD takes the form 

_ ( r 0  2 0 A = - y 2  + ~ + . . . +  
0x I 0x r / 0y 

with an appropriate normalization. 

So far we know that f i s  an eigenform for -2rD with eigenvalue 2 given by (6.11). 

However we don't as yet know that f is K| (and hence may be viewed as a 

function on Hr+~). To put it another way the action of Casimir is not enough to 

determine the representation of G(R) in question. 

The additional information needed is provided by Rallis-Schiffmann [24]. The 

following lemma follows from their Theorem 5. 

LEUMA 6.3. Suppose that 1/2<k<.r/2 and that k is o f  the form k=r/2-2j with j a 

nonnegative integer. Then the (holomorphic) discrete series representation o f  SL2(R) o f  

lowest weight k corresponds to a spherical representation o f  G(R). 

Hence if k satisfies the condition of Lemma 6.3 then we may take f to be K| 

invariant. Such an f corresponds to eigenforms of A for some appropriate congruence 

19-918289 Acta Mathematica 167. Imprimr le 5 novembre 1991 
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subgroup. Since 2=rE/4-s 2, (6.11) implies s = k - 1 .  We have shown 

THEOREM 6.4. For some congruence subgroup there exist exceptional eigenforms 

whose infinite parameter corresponds to s--r /2-1,  r /2-3  . . . . .  

Remark. With a little more work the levels of these exceptional forms can be 

determined and one can also arrange these exceptional forms to be cuspidal. 

We end this section by giving examples of noncongruence F for which ,~I(F \ H  r+~) 

is arbitrarily small, so that in Theorem 4.10 the congruence assumption is essential. The 

examples are similar to those of Selberg [27] and Randol [25] for SL2(R). MiUson [21] 

has shown that there exist D for which d=fl~(Yo)=rank H1(Yo, Z) satisfies d~>l. For  

such D it follows that the set of characters (unitary) of F(D) is Td• where T d is a real 

torus of dimension d and F a finite abelian group. Let  A ~ denote the connected 

component of the identity in the above group. For X EA ~ consider the Laplacian A z 

acting on L2(F(D)\Hr+I,X) i.e. f ' s  such that 

f(~,z) = z(~,)f(z) (y ~ r(D)). 

The spectrum of A z in [0, (r/2) 2) is discrete. Let  20(Z) denote the smallest eigenvalue of 

A z. Thus ;%(1)=0 while it is clear that ).0(Z)>0 for X*I .  It is easily seen, say using the 

minimax principle, that A0(Z) is continuous on A ~ Hence for e>0 we can find Xl*l ,  ZI 

of finite order in A ~ such that 0<20(x)<e. If  F '=  kerxl then F '  is of finite index in F(D) 

and 21(F ' \Hr+l)<e.  This gives examples of  F's  with small ;tl. In view of Theorem 4.10, 

F '  cannot be a congruence subgroup of F(1). 
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