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A First Main Theorem for holomorphic maps into the projective space was established
in [10]. As an application, an equidistribution theorem for open holomorphic maps of maxi-
mal order was obtained. These results shall be extended to arbitrary order s. On a Stein
manifold, they assume a special elegant form:

Let M be a non-compact, connected Stein manifold of dimension m. Let h: M—~R
be a non-negative function of class C° on M such that its Levi form (2) 5, =d*dh is positive
definite on M and such that for every » >0 the open set G,={z|h(z) <r} is not empty and
relative compact. Such a function k exists on M if and only if M is a Stein manifold. Ob-

viously, y, is the exterior form of a Kaehler metric on M. Define y,=1 and for sin 1 <s<m
define

1
Zs=axl/\ /\xl
s-times.
Let V be a complex vector space of dimension #+1>1. Take a hermitian metric on

V. It induces a Kaehler metric on the projective space P(V) associated to V, whose exterior
form is denoted by @,. Define @go=1 and

Goog = o A .. N ddg  (s-times)

Wis)= ;n;

Let f: M~>P(V) be a holomorphic map. For 0 <s<Min (r, m), define the characteristic of
order s by

() This research was partislly supported by the National Science Foundation under Grant
NSF GP 7265.

(%) Define d* =4(0 —8) = —d° where d=20+2.
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4 (t)=-1—f Plion.s) A X
[N 4 W(S) c Wo, s m-s

T, ()= f 4,0

For =0, 4, ,(t)=M(t) is the volume of G,.

Let G,(V) be the Grassmann manifold of p-dimensional linear projective subspace
E of P(V). Suppose a neighborhood W of E,€Q,_,(V) and a neighborhood U of z,€ M
with f(z,) € B, exist such that dim,/~{(E)=m—s<m for all z€fY(E)NU and all E€EW.
Then T, ,(r)—~ oo for r—>oo. If

Asa,5(r)
Ts.f(r)

-0 for r—>co,

then the image f(M) intersects almost every linear projective subspace E€@G,_(V).

The mean value of the Levine form over the Grassmann manifold G,(V) has to be
computed. This integration over the Grassmann manifold may be of independent interest.
For instance, this method gives the degree of the Grassmann manifold easily.

Recently, Hirschfelder [3], Wu [13] and the author [11] obtained a First Main Theorem
for holomorphic maps into compact Kaehler manifolds. However, the results there do not
imply the results here because the Levine form is not a proper proximity form as obtained
there.

Although this paper is a sequel to [10], it can be read independently. The beginning
of § 3 provides a survey of the results obtained in [10]. The notation has been changed
slightly, hopefully for the better.

1. Differential forms

Let V be a complex vector space of dimension n+1 with »>0. Let P(V) be the associ-
ated projective space. Let P: V' —{0}—~P(V) be the natural projection such that P(3) =P(iv)
if and only if 3 A 1 =0. The projection is denoted uniformly by P for all vector spaces. If
the dependency of V shall be denoted, write P =P

Associated are the exterior product V[p]=V A...AV (p-times) and the dual vector

space V*. For 0 <p<n, define the Grassmann cone by
G (V) ={apA...A0,|a,EV}IS V[p+1].

The Grassmann manifold G,(V)=P(G,(V)—{0}) is a smooth, compact, complex submanifold
of P(V[p+1)]) and has dimension (p+1)(x —p). For 0 #aG@p( V), the (p+1)-dimensional
linear subspace
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E(@)={3€V[3/ra=0}

is defined. If a=ayA... A 0,30, then E(a)=Cay+...+Ca, If a€G,(V), then E(a)=E(a)
is the same for all a €P—1(a). Moreover, E maps G,(V) bijectively onto the set of all (p+1)-
dimensional linear subspaces of V. If a €G,(V), define

E(a) = Py(E(a) - {0}) = P(E(a)) < B(V).

Then £ maps G,(V) bijectively onto the set of all p-dimensional projective linear sub-
spaces of V. Obviously, Go(V)=P(V) and G,_(V)~P(V*).
If 0<p<n and 0<g<n, define

».q

z{{(a,b)EGp(V)XGq(V)IE(a)EE(b)} if p<q
{(a,0)€G,(V)x G(V) | E(@)2E(b)} if p>gq.

Let n: F, ,~G(V)and 7: F, ,—~G,(V) be the natural projections.

LemuMa 1.1, F, , is a connected, compact, smooth, complex submanifold of G,(V) X G(V).

The projections 7 and T are proper, surjective, regular holomorphic maps.

Proof. Obviously, F, , is closed and locally given by holomorphic equations. There-
fore, F, , is a compact analytic subset of G, (V) x G(V). Let GL(V)={a: V-V |« linear
isomorphism} be the general linear group on V. Then GL(V) acts on G,(V) by a(E(a)) =
E(a(a)). Moreover, if (a, b)€F, , so is («(a), (b)) € F,, , Hence GL(V) acts as a group of
biholomorphic maps on ¥, ,, and the action of GL(V) on F, , is transitive. Because F, ,
is smooth at at least one point, it is smooth. Obviously, the projections 7z and 7 are surjec-
tive, proper, holomorphic and commute with the action of GL(V). By Sard’s Theorem,
st and 7 are regular at least along one of its fibers; hence, considering the action of GL(V),
they are regular. If p <gq, then F, , is a differentiable fiber bundle over the connected base
space G,(V) with the connected fiber G,(E(b)). Hence, F, , is connected. If p>g, then
F, ,is biholomorphically equivalent to F, ,. Hence, F, ,is connected, q.e.d.

Let (- | -) be a positive definite Hermitian product on ¥. With this product, ¥ becomes
a Hermitian vector space. Also, V[p] and V* become Hermitian vector spaces. If 0 ==r € V[p]
and 0=+y€ V[q], then

ot lEAD]
"E-t)" le 9]

is defined. If x€G,(V) and y €G(V), then ||z:y|| is well-defined by

eyl =llz:pl] rePx) yeP-Yy).
Then 0< ||z:y] <1. '
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On any complex manifold, the exterior derivative d splits into d = +8. Define d* =
(06 —8) = —d*. Define the forms v, and v,, on V[p +1] and the forms w, and w,; on V[p +1]—
{0} by (")
v, (1) = }d+d|z)? um=§ VA...Au (s-times)

w,(x) = }d+dlog |t w,,=$w A...Aw (s-times).

Observe that v, vy, ®,, w,, ; are forms on V. One and only one Kéhler matric exists on
P(V[p+1]) with fundamental form ¢, such that P*(w,) =w,. Define @, =(1/s!) i, A ... A &,
(s-times). Then P*(é,,) =w,,. Observe that(?)
W(n) =J Won= . ()
(V)

n!

The Grassmann manifold G,(V) is a smooth, compact, complex submanifold of P(V[p +1])
and has dimension d,=(p +1)(n—p). The pull back of the forms @&, , to the submanifold
G,(V) will be denoted again by ¢, ,. The volume of G,(V) is denoted by

W(n, p)= f Wp.dp 2)

GpM
and will be computed later.

For a€G,(V) and z€P(V) — E(a), the exterior product z Aa is well defined by zAa=
P(r A a) where P(r) =z and P(a)=a. A holomorphic map
7t P(V)— E(a)> G, (V)
is defined by 7,(*) =2 A a. The map , is meromorphic on P(V). On P(¥) — E(a), define
D,(a) = na(Bpa)-
If a€G,(V), then E'(a)={3€7V|(3|a)=0 for all a€ E(a)} is orthogonal to E(a) and V=
E(a)® E*(a). Let §,: V—E+(a) be the projection. Then g,: P(V) — E(a)~>P(E*(a)) is well-
defined by Pog,=g,oP. Let j,: P(E+(a))~>P(V) be the inclusion. Then
q)p (@)= 9:7.: (o)
which implies DL@a)=Dp(a)A ... ADy(a)=0 if rzn—p,
(r-times)

because P(E4(a)) has dimension » — p — 1. Moreover,

N io(2) — Dy (a) (%) = }dd* log || |
for z€P(V) — E(a).

(1} For the proofs of the results mentioned here, see {10], § 3.
(2) See Lemma 2.1 for a proof.
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If s=n—p and a€G,(V), define the Levine form

A, (a)= Z®WAw“’

1
(—1)1,2
on P(V)— E(a). Obviously, .&(a) is a non-negative, real-analytic form of bidegree (s —1,
s—1) with &&(u) =0 and 535(0,) =0. The associate proximity form A(a) is defined by

Awu)lﬁ%” M&muwo

for 2€P(V)— E(a). Then
ddA(a) = iy,

It will be important to compute the integral average

1 .
W(n, p) f aeG,,,(V)A8 (@) @s.4, (@)

This has already been done in [10] for p =0, where the following identity was of impor-
tance: Take a€V. On V — E(a), define &, by (1)

" £,(m) =

@vAw|wAag)_ 1 ( (w|a) 2)
wlwAal —[waa] 1~ T 2wl

Define 7,=(3/2) &, A &a on V — E(a). If a €P(V), then 7, is welldefined on V — E(a) by 7,=%,

with a6 €P-1(a). Moreover, one and only one form %, of bidegree (1, 1) on P(V)— E(a)=

P(V)—{a} exists such that P*(7,)=7,. The form %, is non-negative and %, A ,=0. Then
[|a:z]|2Dg(@) () = idp(x) —Zalx),

and lla : 2]|* D (@) (z) = 65§ (x) — ga (@) A @§ (=) 3)

for x€P(V)—{a} and g€N.

For a fixed integer p in 0 <p <n, consider the diagram

. -
Fp1 = Gp(V)
Gv—l(V)

In order to establish a fundamental identity for integration on Grassmann manifolds,

the maps 7 and = shall be expressed in local coordinates in a neighborhood of an arbitrary
point (a, b)€F,_, , as follows:

(1) For the proofs of the results mentioned here, see [10], § 5.
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Observe E(a)< E(b). Pick an orthonormal base q, ..., a, of ¥V such that
E(a) = Cao+ o +C(Ip_1
E() =Cay+... +Ca,.
Define a=ayA ... Aa,_; and b=qay A ... Aa,. Then a=P(a) and b=P(b).
Consider "~ 7** a5 the vector space M of all matrices
20p -« %on
z=| : : with z,,=0. 4)

K2

Zop o+ Zpn

Consider C"~?*D? ag the vector space M, of all matrices

20,p oo 20,0

Zp-1,p +++ p—1,n

Consider C" »®*D a5 the vector space M, of all matrices

|“’«o,p+1 ces 20,n
y=| : & (6)
zp_,,+1 ere zl,.n
Define the projection 7,; M —M, by 7,(z) =z with z as in (4) and x as in (5). Define the
surjective, regular holomorphic map by n,;: M—~M,; by

U0, p+1 »o» Uon
mE)=| : (7
Up,p+1 «o Upy
with

=z 2y forO<u<p-—land p+1<v<n wu,=z2, forp+l<v<n. (8)

v v —z,uv
For v=0, 1, define ,: M,~G,_;,,(V) by

(a) v=0: x€M,asin (5):

eu=0au+ Zz,,,.a, Osu<p-1
v=p

e=eyA... ANy ®)
Lo(x)=P(e), then [y(0)=a.
(b) v=1: y€EM, as in (6):
Cu =0y +,_§+lz,,,a,
(10)

C=CA...AG
Ly(y)=P(c), then ;(0)=b.
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According to [11] Lemma 2.1, £, is a biholomorphic map onto an open subset of @,_; (V).
Define the holomorphic map {: M—F,_, , by

(=) = (P(e), Ple Aey) EF,,y
where ¢ and e, are defined as above. Then

10l ={,01,.
Observe

€A cp= [ A (cﬂ+zﬂp ap)] A (ap+ f zp,v av) = [ A (cn _zﬂp i lzpvav):l A Cp.

ousop—-1 r=p+1 ougsp-1 =D+

Hence, P(e A ¢,) =L, (7,(2)). Therefore, ol =¢,0m,. Consequently, the map { is injective.
Obviously, £(M) is contained in the open subset F,_, , N ({o(Mg) X £o(M,)) of Fy_y, p. Now,
it will be shown that { maps M onto this subset. Take (x, y)€F,_, , with z€y(M,) and
y€4y(M,). Then &—L3"(w) and §—L7'(y) with

Zop oo Xog Yo,p+1 «-o Yo,n
y:

Zp-1,p «-- Tp-1,n Yo.p+1 ++« Yo

I3
I

Define z as in (4) by z,,=2,, for 0Su<p-—1 and p<y<n and z,,=y,, for p+1<v<n
and z,,=0. Then 74(z) =% and 7(((2)) = Co(To(2)) =Lo(%) =z. Denote 7,(z) as in (7) and (8).
Then w,, =y,,, if p+1<v<n, and u,, =2, — 2,4, if 0Su<p-1and p+1<y<n. More-
over,

Lu=0,+ 2 2,0,€E@)SE(y) if OSu<p—1l,

=D
t),,=a,,+v=§+1y,wa,,EE’(y) if O<u<p

where Y, ..., ), is a base of E(y) over C. Therefore, c,,€C exist such that

» D n b4
Tu= 2 Cule= 2 Cuglpt 2, ( c.“QyQi’) a,
0=0 =0 =0

v=p+1

for u=0, ..., p—1. Hence, ¢,,=0 for ¢ +u and o +p with ¢,, =1 and ¢,, =z, for u=0, ...,
p —1. Moreover,
Zuy =Yup t8upYpe i p+1<v<n

which implies y,,=%,, if 0<u<p-1 and p+1<y<n. Moreover, y,, =u,, if p+1<v<n.
Therefore, 7,(z) =% and

7(l(2)) = La(m(2)) = o(F) =y

(z) = (¢v(8(2)), =(L(2))) = (=, y)
which implies CM)=F,_, ,N(Co(M,) x £y(My)).
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Because (M) is open and { injective, : M~ F,_,, , is a biholomorphic map onto an open
neighborhood of (a, b). Because the complements of {,(3,) in G,_,,,(V) are thin analytic
subsets, the complement of {(M) is a thin analytic subset and its intersection with each
fiber of T and & is a thin analytic subset of this fiber or the whole fiber. The following

commutative diagram has been established:

oy
M > M,
N
To Fyry - > G,(V) a1)
M, ° T

&
Gp—l(V)

Especially, the dimension of F,_, ,is n+p(n—p); the fiber dimension of 7 is n —p and the
fiber dimension of = is p.

LevMma 1.2. If b€Q,_,(V), then

f THDp-1,0) = W(p)=—.
n1(b)

Proof. The diagram (11) implies

J=j T*(@p-1.9) =f 7" (wp-1,p)-
a"i(b) Era ()]

On 71;1(0), the identities (9) read

ep=0,+2zup0, if OSu<p—1
-1

e=e A Ay 1=0yA...AQp_1+ Zoz,,,ao/\ e At A A Qi A e Ay
P

-1
[ef=1+ 3 |zu[%
p=0

E oy =~ Lardtog (14 3 [o]) == &7
T (wﬂ‘l-l’)_p! 4 Og ;;:0 “p ?!

where ¢ is the fundamental form of the Kihler metric of P(C**') defined by the Hermi-

p+1

tian product (£|Y) = >2%.¢ x5, on €

1
Hence, J= f — &P =W(p), g.e.d.
pcrth) P! ®)
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Consider the diagram (11). Differential forms from G,_,(V) and G,(V) can be pulled
up to F,_, , where the following important identity holds:

TrEoREM 1.3. Let d,=(p+1)(n—p) be the dimension of the Grassmann manifold
Gy(V). Then
7 (édp,ap) N TH@p-1,p) = TH(Dp-1,dp—1) A T*(Dp,n-5)-

Proof. Pick (a, b)€F,_, , and construct the diagram (11). Then
L3(6p-1) = e*P¥(&p-1) = €*(,-1) = }d* dlog e[*
M (@p-1) = 000 (6p-1) = }d*dlog [e o 7o |* = }d* dlog e [?
if e is regarded as a vector function on M. Moreover,
L1 (6d,) = c*P*(éd,) = *(w,) = }d* dlog | ¢
C*ar(iy) = wt (i) = Yt dlog |com [P = td dlog|e A ¢, [?

if e and ¢, are regarded as vector functions on M. Hence,

C*-r*(r}'),,_l)=32—l d [|e]® (de|de) —(de|e) A (e|de)]

ot

o = T oille A bl e A Gl A 6) = @Al en ) A e Aldle A6
Now, these differential forms shall be computed at 0 €M, which corresponds to (a, b):

n
en= 2 dzm, €,=0a,
v=p

»-1
de=120e0 Ao Aeacr AdegAeigi A Aepoy

n
—Zo D B2ag A e NG AG A Qe Al A G
=0 y=p

»-1 n

(delde)=1212dz,1,/\dzh le]=|agA ... Aay_s|=1
% S

(de]e)=0, (e|de)=0.

Define Z 2ap A dZap

Nil@

> dzp, AdZ,,

2 v=p+1

-1 =

i i
§ Z Z ) dz;,, A dZz,.

0 v=p+1
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Then L t*(p-1) =u +w.

Observe u* =0 if s> p and w?=0 if ¢> p(n — p). Hence,

1 » 1
* T (Dp—_1.dy_y) = —— (U +w)P" PP = 0, D(n—p)+p—e
S AN R 2 elon—p) T o)
1
—_—— %Dwﬂ(ﬂ - p).
p!(p(n —p))!

Now,

dle Ae)=(de)Ac,+eAde,=de Aa,+agA ... Aay_y Ade,
p-1 n n

=> Zldzhao/\.../\a,l_l/\a,/\a“l/\.../\a,,+ D dap, oA ... Ay AQ,

A=0v=p+ =p+1

P n
=2 > doG A AG  AGAMG AL AG,
A=0y=p+1

» n
Hence, (denc)dene)=2 > dahdz,.

A=0vy=p+1
Moreover, leAncP=lagA... A =1

(denc)|enc)=(deAc)| A ... Aa,)=0=(e Ac,|d(e Ac)).

yil n
Therefore, PFatwy)=5 2 2 daldiz=vtw
A=0vy=p+1

N -,

where v* =0 if s>n—p and w?=0 if ¢> p(n — p). Hence,

e (g, a,) = dip' (0+ wpa-Pnp _ :é: T 1+ g
REr T an
ow e map) AT (Gop 20D = G (p:n TP A Rl
“pln—p) !l(p(n e
wmd - EE G ) N o) = pl))x ey L G
1

upv"_pwp(n—l’).

T plm—p)! (p(n - p))!

Therefore, the assertion of the theorem holds at the arbitrary point (a, b), q.e.d.
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2. Integration over a Grassmann manifold

At first, some integrals over the projective space P(V) shall be computed. Let % be a
measurable function on P(V) such that hgw,, is integrable over P(V). Define

1
Lh)y=Ly(h)=——— hwon.
(R) v(h) Wn) Jow, wo
If h=hoP, then() L(h)zgnl‘ﬁj‘ eI h(3) vo.n+1(3)-
v

Define I ={teR|0<t<1}.

LemMa 2.1. Let g =0 be a measurable function on I. Take w€P(V). Define h: P(V)—-R
almost everywhere on P(V) by h(z) =g(||w:z||?). Suppose that either hivy, is integrable over
P(V) or g(t)t" ! is integrable over I. Then both are integrable and

L(h) = nfl g(eyt™1dt

0
18 independent of wEP(V).

Proof. Take 1 €V such that || =1 and w=P(ip). Take an orthonormal base ay, ... a,
of ¥ such that a,=tv. If 3=>7_02,0,€V, then

n
WAZ= D 2,00A 0
p=1

Iossh = (2 Jol?) (3, F)

If 2,= Vt, %, 0<i,< o, 0< @, < 27, then

1 o e L.+ ¢
_— -l a2 = —tymw—tn g [ 1 n
L(h) e fve gl :311%) vo,n+1(3) fo fo e g (to R tn) dty...dt,.

Now, introduce the following change of variables:

h=7(;+...+s;) 0<7<]l and 0<s,< o0

t,=(1—1)s, for v=1,...,n,
Yo
then T=—-"—
tot...+t,
o +...+¢
8=1,2—"—" for y=1,...,n
tit ...+t

(*) See [6] Hilfssatz 1.
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with the identities ...+, =8+..+s,
1 _t___t1+... +1,
tot ... +1,

a(toy (] tn)

=@ +...+s)(1—7)" L
O(T, 8 v 8p) &+ 8n) (1= 7)

Then

1 ] o0 1
L(h)=f g(l—r)(l—t)"'ldtf f e—=n—----=-(s,+...+s,,)dsl...ds,,=nj git) "2 dt.
o 0 0 0

It was assumed that L(k) exists. If [{g(¢)¢"~'dt exists, the proof can be reversed because
g=0, q.e.d. Especially, L(1) =1, which proves W(n)=n"/n!.

LeMMa 2.2. Let g >0 be a measurable function on 1. For 121, define

1 |22+ ... + ]z |2) |22[2vo.n+1
= =~ ]2e]® = oo |2n[* 1 1%n| 3 .
Ii(g) n"“fcnﬂe g(|z0|2+'-'+|zn|2 lzoI2+---+|zn|2

1
Then I,(9) =f g(t)t* 'di

0

if either one of these integrals (hence both) exists.

Proof. The same changes of variables as in Lemma 2.1 imply

0 e L+ .. ) adly ... dt
I = —ty—wu—tn 1 n 0 n
9) fo fo ¢ g(to+...+tn)tl+...+t,,

1 ] oo 1
=f g(1—7) (l—t)""‘dtf f e““"“’"sldsl...ds,,=f g(t) t" 1 dt, q.e.d.
0 0 0 )

LeMMA 2.3. Let >0 be a measurable function on I. Suppose that g(t) t"~! is inte-
grable over I. Take integers p=>1 and A>1 with g+ A. Then the integral

g_lzol"u-‘lznl' (|21I2 4 eee + Izn|2) 212900.,14_1
l2o2 + ... +|2 % 2o P+ .. Tz

cn+l

1
Le@)= -5 f
exists and is zero.

Proof. Because |2;2,| <|2;|2+|7,|% Lemma 2.2 implies the existence. of I;,(g). The

change of variables u, =2, if g +2 and u;= —2z; shows I,,(g)= —1,,(9). Hence, I,,(g)=0,

#®
q.ed.
Let M be a complex manifold of dimension m. Suppose that for every a €P(V) a dif-

ferential form y(a) of bidegree (p, ¢) on M is given. Let 2={(z,, ..., 2,) be local holomorphic
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coordinates on an open subset U of M. Let T(p, m) be the set of all injective, increasing
maps of {1, ..., p} into {1, ..., m}. For u€T(p, m) define

dz” = dz,‘(l, A A dZ‘u(p)
diﬂ = dZ,,(D A A dil‘(p)'

Then functions y,,(a) are uniquely determined on U such that

pl@)= > > puwl(a)dz, Adz,.

#eT(p,m) veT(g.m)

If for every € U all the integrals L{y,,{-) (x}) exist, then

Liy)= > 2 Lyuw(a)) deu A dz,

peT(p.m) veT(g,m)

is a well defined form of bidegree (p, ¢) on M. Thus, the average L extends from functions
to forms.

Lemma 2.4. Let g be an integer with 0 <q<n. Take wEP(V). Let g >0 be a measurable
function on I such that g(t)t" =~ is integrable over I. Define yp =y(a, w) =g(||w:a||2)D§(a) (w).
Then

L(y)=(n— Q)fo g(t) (1 —8)" """ dtof.

Proof. Define g,(t) =g(t)t~? for 0 <t<1 and g,(0)=0. Take 0+ €EP(V) with w=P(iv).
Take 3€V —E(w). Then

&) = | w|2[w A 3[-dw A | w A 3).

Let a,, ..., 0, be an orthonormal base of V with =a0| m]. Then

n n
3= zoz” a, dw =3 dw,q,

v= y=0

n o n

m/\5=|mlglz,ao/\a, lm/\3|2=|m|~gllz,|2
n
div A1 =|mw| Zodw,ao Aa,

(o Aw|wAZ)=|w[> zdw,.
y=1

; n -1 n . -
Therefore,  7,(10) =2 & () A & () = (lez,P) e z%”%@
y= 0=
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Moreover,

wq(10) = 5 (10| (| 10]? (d1o | drv) — (@ | 0) A (0] di))

=—;-lm|‘2(2 dw, A div, — dw, /\dﬁ:o) =%1m|'2z dw, A dib,.
e=0 e=1
Lemmas 2.2 and 2.3 imply:

1
fo g(£) £" ™1~ dt axy(tw)

7[\/]:

1
|10]~% dw, A dwgf gyt dt
0

Mo .

1

iz s 1 |22+ ...+ ]z |2) 212,V0,n+1(3)
_ - _Iali 1 1“n] e V0,
5,2, "’w@”’“nﬁlfc,.ﬂe gl(|z0|2+...+|znlz ... +|a]
1 .
n+1f el g1 ({110 : 311*) 73 (10) vo,n 41 (3)-
4 3€V

1

1
Hence, L= W) Lmv)gl("w :2|[%) % (w) don(z) = fo g(t) 1"~ dt dg(w).
Moreover,

1

1

1
) fzemwgl(llw:zﬂz) on(2) ="L g0t di=n f o(t) "1k,

0
Now (3) implies

1
(n— q)f0 g() "1 dt o (w)

1 1
=nf0 g(t) t" 11 dt o (w) —qfo gty "1 g (w)) A @0FHw)

= Ly@f(w) — gLy A 6§ (w)

1 . - q Y vg—1 .
W fP(V)gl(Ilw 2]|?) [@8 (w) — q¥, (w) A @F " ()] do.n(2)

1 a . _
=W L(V)[g(llw 2]|2) @ (2) (w)] édon(2) = Liyp), qe.d.

Let h: G,(V)—C be a function on the Grassmann manifold where p >1. Then ké, .,

islifted to z*(hid,, np) o0 Fp_; . Pickz€G,_,( V). Then v—1(z) is a compact, smooth, connected
complex submanifold of dimension » —p of F,_, ,. Define

1 .
@ [P] (2) = m J;_‘(z)n*(hwp.n—p)
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if this integral exists. If it exists for all z€G,_,(V), then ¢ [k] is a function on G,_,(V). A
partition of unity shows that ¢,[A] is of class C¥ if h is of class C¥. As L, also ¢, extends from
functions to forms.

LEMM A 2.5. Let p, q and s be integers with 0<p<n and 0 <g<n—p=s. Let g be a non-
negative measurable function on I. Pick a€@,_ (V) and we€P(V)—E(a). Suppose that
g(z|la:w||?)7*~ 9" is integrable over I. Define h=h(z)=g(||z:w||?)®%(2) (w) almost everywhere
on Gp(V). Then @,[h] exists at a and

1
Pplh] (@)= (s — Q)fo girlla:wl’) 71 dEDF_1 (a).

(Of course, if ¢ =0, then w can be taken everywhere in P(V)).

Proof. Let qay, ..., a, be an orthonormal base of V with E(a)=Ca,+ ... +Ca,_;. Define

a=0yA...Aa,_,. Then
V = E(a)® E*(a).

Let j,: E+(a)—V and j,: P(E*(a))—=P(V) be the inclusions. Then E-'(a) is again a hermitian
vector space (of dimension s+ 1) by restricting the scalar product to E(a); the associated
forms are 7*(w,) and j*(d,). Obviously, Poj,=j,0P. Let g,: V—>E*(a) be the projection.
Then g,: P(V)— E(a)—>P(E*(a)) is well-defined by Pop,=g,0P and

D,_1(@) = aja (io)-
Define Gy Ba)—>G,(V)
by &9(3) =3 A a for 3€ E*(a). Then |6,(3)| = |3|. Hence 6, is injective. Hence o,: P(E+(a))—~

G,(V) is well-defined by Po§y=0,0P and o, isinjective. Define o: P(E*(a)) > F,_, ,byo(z) =
(a, 64(2)). Because dim P(E*(a)) =n —p=dim 7-(a), the map

o: P(E*(a)) »717Y(a)
is biholomorphic. Moreover, #: 771(a)—~>G,(V) is injective and mos =0,. Consequently, if
0+3€ E*(a), then
Pro*a*(iby) (3) = P*ao (@) (3) = 65 P*(idy) (3) = 60(ep) (3)
=td*dlog|3 A af* = }d*dlog|3]* =73 (wo) (3) = P*ja (o) (3)
or o7 (Dp) = Ja(iDy)-
Take WEP w)S V. Define §)=4,(v)€EE(a) and =10 —YyY€EE(a). Since Ww¢E(a), the

image y =P(Y)) exists in P(H(a)). If zEP(E*(a)), take 3EP'(2). Then
61 — 692907 Acta mathematica. 123, Imprimé le 19 Sept. 1969.
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"__|3/\a/\rv|__|a/\5/\t)|__|3/\t)|It)l llz: "laAmI

[w] laf [w]

= =S = ||Z.: al\w
sAal ol TalIwl I3l ol ol 291l llaf ol

llog(2):
Moreover,
P* @, (0,(2)) (0) = }d*dlog|a A3 A w|* = fd*dlog |3 A Y| =P* Dy(z) () = P*jz Do(2) ().
Therefore (I>,,(ao(z))=7‘:d)o(z) if zEP(E+(a)).
Hence *n*(hédp.n-p) (2) = g(llz : Y[ [l :|[*) 12 @o(2) (¥) 52 (@0,n-5) (2)-

Now, Lemma 2.4 implies

1
Wn—2) Juema
1

_— corlll2 7 - and[2) 2% (D R
T 0D ) emepri, P o) 72 (@) () i (Gon ) 2)

@p[h] (@)= (o : wl[?) DE (w) (w) @p,n—p(w)
1

=(s— q)f0 g(rlla:wl?) >~ dz 5% (F) ()
1

~e-q) f g(zlla:wll®) vt dx 2% (@9)

=(s— q)f0 g(zla:w|?) v* 1 dr OF -, (a) (w)

because g, (w) =g (B(10)) = P(5, (1) =B(9) =y, g.e.d.
Taking ¢ =0 and g=1 implies

p[1]=1.
Let k:G,(V)—~C be a function on the Grassmann manifold with p> 0. Define the
average by
1
L,(h)=
p( ) W(n, P) Gp(V) Wr.ap

if this integral exists. Obviously, L,(1)=1 and Lyk)=L(k). As L, also L, extends from

functions to forms.

THEOREM 2.6. Let h: G,(V)—~C be a measurable function. Suppose p=>1. Suppose
that Ly,(h) exists. Then

Lp (hy= L, , (®» [A])

1

Ly = W{p)W(n, p)

f (ho ) (i) A T (ép.5)-
Fp—1,p
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Proof. Assume at first that £ >0. Lemma 1.2 implies
00 > f (b o 7) w*(édp,a,) A TH(Dp-1.p)
Fp—1,p

- f h(z)(f r*(c'bp_l.n) ., = W (0) Wi, ) Ly (h) < oo.
2eGp(V) 7 2)

Hence the integral over F,_, , exists. In the general case, the existence of L,(k) implies
the existence of L,(|k|). Hence |hom|n*(iy,a,) AT*(@y_y,p) is integrable over F, ; ,.

Therefore, the integral identity holds for general 4. Theorem 1.3 implies

1 . .
Lp(h)=m Fp_l,p(hwl)ﬂ (6p.ap) A T*(00p-1,p)
1 Y .
T W Wn—-p) F,,_,,,,(hm” (&p-1,8p—1) N 7T*(Wp,n-p)
W(n—p) W(n—p)Wn,p—1)

= h) ip-1,ap—1= Ly 1(@,[R]).

W)W, 7) Joysin 2 772 oW, @)
If h=1, then L,(1)=1 and L, ,(g,[1]) =L,_,(1)=1. Therefore,
W(n, p)W(p)= W(n, p—1) W(n—p)

and L,(h) =L, 4(p,[L]), q.e.d.
Of course, Theorem 2.6 extends to differential forms on a manifold depending on

a€G,(V) as a parameter.
ProrositionN 2.7.() The volume of the Grassmann manifold G,(V) is

— D+ D(—p) plp—1)!... 1!
W p) = m—p)lm—p+I)...al"

The degree of the Grassmann manifold G,(V) as an algebraic subvariety of P(Vip +1]) ¢s

plip—1!... 11
(m—p)l(r—p+1).. 0!

((p+1) (n—p))!.

Proof. The assertion is correct for p=0 as is well known (see also Lemma 2.1). Sup-

pose the assertion is correct for p —1 < n. Then

(!) The degree of a Grassmann manifold is well known. See Hodge-Pedoe [4], p. 366. If A4 is
an algebraic variety of pure dimension ¢, then (1/W(g)) _fA @y, ¢ is the degree of A. See Thie [12].
7 - 692907 Acta mathematica. 123. Imprimé le 11 Septembre 1969,
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_F—p) 1\ — pr—paDin-py-p __ P! (-1!..1
Win, p)= W(p) Win,p=1)== (n=p)l(n—p+1).. 0!
_ Dn pl... 1!
— @D p)(n—p)!...n! q.e.d.

Lemma 2.5, Theorem 2.6 and Lemma 2.4 imply immediately:
ProrosiTioN 2.8. If =0 and n>p>0 with s =n— p, then
Ly(®3) =Ly 1 (D5-1) =... = Ly (D§) =
Ly (A,) = séo.s.

LemMa 2.9, Let q be an integer with 0 <qg<n—p=s. Take a€G,_1(V) and weEP(V) —
E(a). Define h by h(z)=log ||z : w|| =2 ®2(2) (w). Then

1
@y (7] (“)=(s_q+10g " "z) 5-1(a) (w).

Proof. Apply Lemma 2.5 with g(t) =log (1/t). Then

1 1
lo Ty = +lo . ed.
‘-”f g ||2 s—q 8wt a

LEMMA 2.10. Let q be an integer with 0<g<n—p=s. Define h by h(z,w)=
log ||z : w|| "2 ®E (z) (w) if z€G, (V) and weP(V) — E(z). Then

Lp(h)=éos~q+ua,g on (V).

Proof. At first, the case p =0 shall be proved. Lemma 2.4 with g(¢) = log (1/¢) implies

g

1
Ly (k) =L(h) = (n —Q)fo log % (1—7)" " drf=

Now, assume that the assertion is correct for p —1. Then

1
Ly,(h) =Ly 1 (@, [A]) = Ly, ((8 —+log IEE "2) @7 _s(a) (w))

1 r-1 1 p
_ - ol = .g od.
s—qw0+zos+l—q+,u ¢ ,gos—q—l—ywo’ a-e

THEOREM 2.11. If 0<p<n and s=n—p, then

LA)-£ 3 3

wo,, 1.
v=1 pu=0 v+ﬂ'
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Proof. Lemma 2.10 implies

1 1 s-1 ) 1 s-1 »p "
=1 |—1 P At v =-_ DL A sl
L(A) =L, (43! o8 [| : alf? Zo b (@) A &% ) 4s! 5 Eo s—ptp N
1 22 1
=2 2 Wo,5-1 qed

Since G,(V) is a symmetric space and the non-negative form L,(A,) is invariant under

all isometries, it can be concluded a priori that
Lh(As) = Kd’o. s—1

where K is a non-negative constant which could be infinite. The importance of Theorem
2.11 consists of the fact that K < o,

3. The First Main Theorem

Let f: M—~N be a holomorphic map of a pure m-dimensional complex manifold into

a pure n-dimensional complex manifold with m >n. The rank of f at z is defined by
r4(2) = m —dim, f~1(f()).

The set {z|r/(z) <p} is analytic(*) for each integer p. The set D,={z|r(z) <n} is called the
degeneracy of f, and f(D,) is a set of measure zero (even almost thin set) in N. A point
2€M belongs to M — D, if and only if an open neighborhood U of z exists such that f| U is
open. Hence, the multiplicity (3) v/(z) of f at z€ M — D, is defined. The map f is said to be
regular at z if its jacobian matrix at z has rank n. The set R, of regular points of f is open
and contained in M — D,. Moreover, f(M — R,) is a set of measure zero by Sard’s theorem.
Obviously, »,(2)=1 if z€ R,. The set M — R, is analytic.

Let ¥ be a complex vector space of dimension » +1 > 1. Let M be a pure m-dimensional
complex manifold. Let s be an integer with 0 <s<m and 0<s<n. Define p=n—s and
g=m—s. Let f: M—>P(V) be a holomorphic map. Define F=F;=f*F, ,) by

F = {(z a) € M x G,(V) |f(z) € Ba)}.

Then F is a smooth, complex submanifold of M x G,(V) with pure dimension m -+ p(n — p).

The projection ¢: F—~ M is a surjective, proper, regular, holomorphic map. (3) A holomorphie

(1) See Remmert [5].
(2) See [8].
(3) For the proof of this and other results mentioned here, see [10].
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map f F—>F, , is defined by f(z, a)=(f(2), a) with tof=foc. Define f=mof: F~G,(V)
as the projection. Then

o: fY(a) > f(E(a))

is biholomorphic for every a €G,(V). The following commutative diagram is constructed

T
iF >Fo,5 &, (V)

M——— P(V)

The map f is said to be general of order s at z€ M for a €G,(V) if and only if open neigh-
borhoods U of zin M and W of ¢ in G,(V) exist such that dim,f*(E(y)) =q for all z €f-1( E(y))
with y€ W, which is the case if and only if (z, a) €M x G,(V)—D;. The map is said to be
general for a€G,(V) if and only if f is general of order s for a at every point of f~Y(#(a)),
which is the case if and only if a €G,(V)—f(Dj), i.e., for almost all a. If f is general at z€ M
for a€G,(V), the intersection number is defined by v}(2) =v,(2, @) =v;(z; a) if (2, a)EF
(ie., (z,a)€F—Dy; i.e., f(z)€E(a)) and by v¥(z) =v,(z; a) =0 if (z,a)¢F (ie., {(2) ¢ E()).
Obviously, the support of v¢ is f-1(#(a)).

If p=0, then o, T and 7 are biholomorphic and v,(z; a) =v;(z, a) if (2, a) € F —Dj;;i.e.,
2€(M — D)0 {3 H(a)).

Now, it shall be assumed that a non-negative exterior form y of bidegree (g, ¢) and of
class Cis given on M such that dy =0 on M. Assume further that M is connected.

- Let H be an open subset of M. A pure (2m —1)-dimensional oriented real manifold §
of class C* with k>1 is said to be a boundary manifold of H if and only if

1. S is a relative open subset of H — H with the induced topology.

2. If a€S, then an open neighborhood U of @ in M and connected neighborhoods
U” of 0€R™! and 0€R and orientation preserving diffeomorphisms a: U—1 x U”
and f: UNS—U" exist such that a(a)=0 and

«(z) = (9(x), B(x)) for z€U
UnH ={z€Ulg(x) <0}
UnS={z€U|g(x) =0}

The collection B=(G, T, g, y, ) is said to be a bump on M if and only if G and g are
relative compact, open subsets of M with §— & where I'=G — G and y =g —g are boundary
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manifolds of &, respectively g. Moreover, p: M —R is a non-negative, continuous function
on M with maximum R >0 such that y|g=R and y|(3 —G)=0 and such that y{(G—g)
is of class C2.

Then, dy and d'y exist on G@—g and are understood to be the limits from the interior

on the boundary. For any such bump, define the spherical image of order s by

1 .
4,(6G) =As,I(G)=—W(8) Ll‘*(wo.s) AX (12)
and the characteristic of order s by

7,(@) =0 @)=y [ v @n) 12 a3)

If a€G,(V) and if f is general of order s at every point of G N f *(#(a)), define the
counting function of order s by

n,(G, @) = f v'x with G,=G nfY(Ea)), (14)
Ga
the valence function of order s by
NG, a)= L Wi, (15)
the proximity function of order s by
l * L
miT.a)= s [ @ ndtp 16)

the proximity remainder of order s by

1
m(y, a)= W) f,,f*(As (@) Adryp A2, (17)

and the deficit of order s by

1
DG, a)= W) J.G-af*(As (@) Addtyp AZ. (18)

All these integrals exist, and their integrands—with the exception of (18)—are non-negative.
Observe that f(o-1(G)n Dy) is the compact set of measure zero of all a €G,(V) for which f
is not general of order s at some point of GN f-2(K(a)). Hence, all the integrals (14) to
(18) are defined on G,(V) with the exception of a compact set of measure zero. If f is general
of order s at all points of Gn f-Y(#(a)), then

T(@) = NG, a) +mT, a) —m(y, a) — DG, a) (19)

which is the First Main Theorem.
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These results have been proved in [10] under a slightly stronger assumption. However,
the results as stated here are obtained exactly the same way, only the neighborhood 4
in the proofs of Theorems 4.3 and 4.4, in the case a € H n f~1(E(«)), has to be taken so small
that dim,f-Y(E(z))=q for all 2€ 4 n f*(#(x)) with z in some neighborhood of . This is
possible by assumption.

Let B=(G, I', g, y, ) be a bump. For 0<r< R, define

={zEM|R—yp(z)<r}

I'(r) = G(r) —G(r).
Then g H0)<= G0)c G(r)cG(r)cG(R)S G
for 0 <r <R, where g +G(0) and G(R) +G may be possible. However, g =G(0) and G(R) =G
if 0<yp{z) <R for 2€G —g. Define plr]=r—R+y on G(r) and yp[r]=0 on M —G(r). Then
B(r)=(&(r), T(r), g, y, v[r]) is a bump if dy +0 on p~1( R —7) N (G —g), which is true for almost
all r in 0 <r < R by Sard’s theorem. Then definitions (16) and (17) make sense for all those

values of 7, whereupon definitions (12), (13), (14), (15) and (18) make sense for all r in
0<r<R.

LeEMMA 3.1. Let B=(G, T, g, y, p) be a bump. Let 8 be a pure k dimensional analytic
subset of G. Let @ be a differential form of bidegree (k, k) on G, which is integrable over S. Then

f 'q)[r]tp=f __ @dt if 0<r<R, (20)
amnns [1] eaHns

R
f Yo =f f_ @dt. (1)
éns 0 ahns

Proof. At first, assume that ¢ is non-negative at all simple points of §. Define A(z, ) =s
if B—y(z)<t, and define A(z, {) =0 if r — R +y(z) >¢. Then

frl(z, t)ydt=r—R+p(z).
0

Hence,

f {r—RB+yp@k)e f f}.(z tydig= f f Az, t)gvdt*f f
Gmns cmns 6mns G(t)ns

In the general case, define y+(z) =1 (respectively u—(z) =1) if ¢ is non-negative (respectively
negative) at the simple z of S. At all other points, define yt(z) =0 (respectively u—(z) =0).
Then ¢ =@ +uteon S, and (20) holds for u* ¢ (respectively u—¢); hence by addition for ¢.
Now, (20) implies (21) because y(2) =0 if zEG—G(R), q.e.d.
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If Lemma 3.1 is applied with 8 =G and @ = f*(do,s) N X, then
r

T,(G(r))=f A (t)dt for O<r<R

o

R
Ty(G)=T,(G(R)) = fo A (t) dt.
If Lemma 3.1 is applied with §=@G n f ' (E(a)) and ¢ =+¢X, then

N (G(r),a)= fo n,(t, @) dt

R

NG, a)= f n,(t, a) dt.

0

105

Obviously, A; and N(G(-), a) are increasing functions continuous from the left if D~ is

the left derivative. Then
D-T((G(r)) = A{G(r)) if0<r<R

D-N(G(r), a) =n(G(r),a) if 0<r<R.

Let B=(@, g, T, y, v) be a bump. The average proximity function of order s is defined

by
11 ,
B0 =t (0= g [ i navpnz,

The average proximity remainder of order s is defined by

1 1 ..
)= ) =3 T | e At

The average deficit of order s is defined by

1 1 .
_Mévo.s-1) Nddry A 2.

Af(G)=As,f(G)=Z‘Z W(S*‘].) -7

Obviously, u,(I') and u,(y) have non-negative integrands. Stoke’s Theorem implies
AHG) = pusAT) —pely)-

If u is a continuous form of bidegree (1, 1) on G —g, define

-D.I(G: a, u) = '—-VVI—(S)' fG-Ef*(A(a)) AuAX.

(22)
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This integral exists according to [10] Lemma 3.5. Define

1 1 .
Af(Ga u) = Asf(G: %) =ZZ W(S -1) G_;f*(wo.s—l) ANuAX.

The integrands of both of these integrals are non-negative.
For =1 and p>0, define
8 p 1

¢ .
D8
vl po0 VT

THEOREM 3.2. Let {: M—P(V) be a holomorphic map of the connected, m-dimensional,
complex manifold M into the projective space P(V) of the (n+1)-dimensional hermitian vector
space V. Let 0<s<n and 0<s<m. Define p=n—s and g=m—s. Let y be a non-negative
form of bidegree (q, q) and class C on M with dy=0. Let B=(G, T, g, y, ) be a bump on M.
Then
1

W(n’ p) Gp(V)

T, (=L, NG, )= NG, a) iy, 4, (23)

cps”&l(l-‘) = Ln (mf(F: : )) = mf(P: a) &)D. dps (24)

W(n: P) Gp(V)

Cps theg (Y) = L (s (y, *)) = my(y, @) Gy, a5, (25)

W (n’ p) Gp(v)

Cps Agf (@)=L, (Ds(G, a)) = D/ (G, a) i, ap, (26)

W (n, p) Jepm

Cps Ay (G, u) =L, (D/(G, @, u))= DG, a, u) dp,ap (27)

W(n, p) Jew
for every continuous form u of bidegree (1, 1) on G —g.

Proof. At first, assume that % is a continuous non-negative form of bidegree (1, 1)
on G —g. Then f*(A(a)) AuA x>0 on G—g. Hence

1 .
L,(Dy(G, a,u))= W(:,, S TE Jon G_;,*(As (@)) Au A X éop,ap(a)
1 1 e
N W(s) Je-7 (W(n, P) a,,ml*(A’ (2)) wp,d,(a)) AuA)

1 o1 .
"W Joi (W(’n,p) GP(V)As(“)Wv.ap(a))/\u/\x

11 » _
~ W) 25 fa__cpsl (@o,5-1) A u A X = ey Ag(G, ).

g
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Now, let % be any continuous form of bidegree (1, 1) on G —g. Introduce a Hermitian
metric on M. Let v be its exterior form of bidegree (1,1) with »>0. A constant K >0
exists such that p =w+Kv>0 on G—g. Then

LD(Df(G’ a, ?’)) = CpsA[(G’ (P);
L(Dy(@, a, v)) = ¢, Al(G, v),
LD(DIJ(G> u)) =Lp(Dp(G: ‘P)) _KLp(‘Dp(G: u)) = cpsAf(G’ <P) _cpsKAf(G’ 'U) = cpsAf(Ga u):
which proves (27) and implies (26) with u=dd* .
The mean value of the proximity form and proximity remainder is obtained the same
way, observing that their integrands are non-negative. Now, (19) and (22) imply (23),
q.e.d.

Differentiation implies
AHG(r)) = Ly(ng(G(r), @)

for 0<r<R. If 0<p on @G, then G(R)=G and
AHG) = Ly(ny(G, a)).

(Using integration over the fibers, this could be proved directly, so providing an alternative
proof for (23).)
Let N be a subset of M. Define
L(N, f) = I,(N) ={a€G,(V) | {(N) N E(a) +B}.

Obviously, I(N)=f(c-}(N)). Therefore, if N is compact, then I,(N) is compact. If N is
measurable, then I,(N) is measurable. If N is measurable, define

1 .
b ) =bs N =70 ) fl "

Then 0 <b,(N)<1. Moreover, 1 —b/(N) is the measure of the set {a €G,(V)|f(N)N E(@@)=2}.
Hence, b,(M)=1 if and only if /-*(#(a)) + @ for almost all a €G,(V). Observe

bA(Ny) <by(N) <b(M) <1
if N,cN,c M.

Prorosition 3.3. The assumptions of Theorem 3.2 are made. Moreover, let u be a
continuous, non-negative form of bidegree (1, 1) on G —g with dd*y Ay <wuAy. Then
(1 _bs.f(G)) Tsf(G) < cvs(As.f(G’ u) +,u3,/(7))-
Proof. The first main theorem implies

Ny(G,a) < T;(G)+ DG, a, u) +m(y, a)
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for almost all a €G,(V). Now

1 1

NG, @) éop.ay=
W(n’p) In() f( )wa W(n’p) Gp(V)

Ny(G, a) wp,q, = T((G),

1
W(n,p) J e

DG, a,u) ip,a, < DAG, a,u) ip,a0, = Cps A (G, ),

W(n,p) Je,n

1

—_ my(y, @) ip,a, S
W(n,p) J e (72 @) @r.0p

Wi ) Josr M (Y, @) p,ap = Cps fis ().

Hence, THG) SOAG) THQ) + s AH(G, w) +Cpopis(y), q.e.d.

Now, divide by T'{@) and let G exhaust M. Then an estimate of 1 —b,(M) is obtained.
This will be done in the next section. At first, a condition will be given which implies
TH&)>0.

LeEMMA 3.4. Let B=(G, T, g,y,p) be a bump on M. Suppose that an open subset U
of G exists such that yy|U>0. Suppose that a€G,(V) and z,€ U with Hzo) EB(a) exist such
that f is general of order s at z, for a. Then A/{G)>0 and T,(G)>0.

Proof. An open neighborhood U, of z, with Uy< U and an open neighborhood Uy of
a exist such that f| W, is open with W,=F 0 (U, x Uy). Here (zy, @) € W,. An open neighbor-
hood W, of (z,, @) with W,< W, and a biholomorphic map a: W,— W onto an open subset
of C"*?"~P exist with a(zy, ) =0. Then a ball Wy={3€C™*7" 2| |3]| <r} exists with0 <~
and W, W1. Define W,= o« }(W3). Then (z,, a) € W, < W, < W,. Moreover,

F,=o(fYx)n W)Y Ex)nU, forz€Us.

[9], Theorem 3.9 implies that the fiber integral

L(x)= Jl v;6*(X) =f viXx=0
Fumnw, Fe

is continuous on Uy. Because z,€ F, +, the integral L(a) is positive. Hence, a neighborhood
U; of a and a constant ¢ >0 exist such that L(z) =¢ >0 for 2 € U;. Define

1
¢ = Jv C‘bp.dp >0.
W(n,p) Ju

Because yy| U >0, a constant  with 0 <r < R exists such that B —y(2) <r for 2€ U, where

U, is the compact closure of U,. Hence, U,< G(r), which implies

n{G(r), x)=L(x)=>c for z€U;
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1

and A{G) = A,(G(r))= W d) o n,(G(r), &) Dp,a, > ¢, >0,

Moreover, T(G)=T[(Q(R)) > fRA,(G(t) dt = (R —r) A,(G(r)) > 0. q.e.d.
0

4. Equidistribution
Let M be a connected, noncompact, complex manifold of dimension m. Let N be a par-
tially ordered set, such that for each r, €N and r,€N an element 7,€N with r, <7, and
7y <1y exists. Then N is a directed set. The net B ={B,},.y is called an exhaustion family
of bumps if and only if
1. The index set N is directed.
2. For each r€N, the collection B,=(G,, I',, g,y, y,) is a bump where g and y are the
same for all rEN.
3. For every compact subset K of M, an element rz€N exists such that y,(z)>0
if 2€K and if r>rg. (Especially G, > K for r=r.)
A family U = {u,},n is said to be a majorant to B if and only if

1. Each #, is a non-negative continuous form of bidegree (1, 1) on G, —g.

2. An element 7,€N exists such that u, A y>dd*y, Ay on G,—g if r>r,.

TuEOREM 4.1. Let M be a noncompact, connected, complex manifold of dimension m.
Let B={B,}rex be an exhaustion family of bumps, and let A ={u,},y be a majorant to B.
Let V be a hermitian vector space of dimension n+1. Let m—qg=n—p=s>0 where p and g
are non-negative integers. Let f: M ->P(V) be a holomorphic map. Let X be a non-negative
form of bidegree (q, q) and of class C* on M with dy =0. Suppose that an open, relative compact
neighborhood U of 2y€ M and a € G, (V) with f(z,) € E(a) exist such that x| U >0, and such that f
is general of order s ot 2, for a.

Then ry€N exists such that T [(G,)>0 if r>r, and rEN. Define the total defect by

— Tit As.f(Gr’ ur) + ;us.f(y)
(A B

Then 1 _bs.f(M)gcpsas,/"
Proof. Because U is compact, r,€N exists such that v.(2)>0 for z€U and all r€N

with r>r,. Then y,y|U>0 for r€N with r>7,. Lemma 3.4 implies T, «(G,)>0 if r>r,
Hence, §; , is defined. Proposition 3.3 implies

A (Gﬁ ur) +:us f(y)
1—=b, (M)<1—b, (G)) <, —~ ST
.f( ) .f( ) D! Ts.f(Gr)
Hence, 1 —b, (M) <c,,d; q.e.d.
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REMARK 1. The average proximity remainder u, ;(y) may depend on r, although the nota-
tion does not show so.

REMARK 2. If 8,,=0, then f(M) intersects E(a) for almost every a €G,(V).

REMARK 3. Theorem 4.1 and the equidistribution theorem stated in Remark 2 are not too
stgnificant unless the exhaustion family B and the majorant A can be chosen in a reasonable
way such that A; (G(r), u,) can be better interpreted. This shall be done now in specific cases.

1. CasE: The order s=1.(1) Here it is assumed that y is positive definite form of class
C=® and bidegree (m—1, m—1) on all of M. Take an open, relative compact subset g of M
with y =g —g as boundary manifold of class C*® such that each component of M —g is not
compact. Let N be the set of all open, relative compact, connected subsets of M with
I'=G— G as boundary manifold of class C® such that G@>g. Then N is a directed set. For
every G€EN, a function g of class C® on G —g exists such that gg|y =1 and ¢¢|I"=0 and
dd*@g Ay =0 on G —g because this is the Dirichlet problem of an elliptic differential equa-
tion. Each component of G —g has boundary points on I and on p. The maximum principal
implies 0 <gg(2) <1 for zEG —g. Define ;=0 on M —@ and ;=1 on g. Moreover,

1 1
C(G)=§7_z frdltpc/\x=%fdlq)6/\x>0.
4

Define R(G)=1/C(G) and ps=R(@)ps. Then B=(Q, T, g,y, ps) is a bump with u(I')=
1:p)=1 and DG, a)=0. Moreover, B={B;}ger is an exhaustion family of bumps with
U ={ug}gev a8 a majorant where u, =0 for all GEN.

Let f: M -P(V) be a holomorphic map into the projective space of the hermitian vector
space V of dimension 7 +-1>1. It is no loss of generality to assume that f(M) is not contained
in any linear projective subspace of codimension 1 because the case of a constant map is
uninteresting, and otherwise one can consider a lower dimensional projective space as
image manifold. Since f(M)d¢ E(a) for each a€@,_,(V), f is general of order 1 for every
a€@,_,(V) at every z€ M. Define

T(M) =sup {T1,(G)|GEN} < oo,
R(M) =sup {R(G)|GEN} < co.

Because {T';,(G)}gen and {R(Q)}sen are increasing nets, they converge to T (M) respec-
tively R(M). By Lemma 3.4, T, (M) > T /(@) >0 if GEM. According to [7], T1(M)= oo if
R(M)=oo. Obviously,

(1) See [7] and [10), pp. 183-184.
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1
Gn_1,1=% .
1P

v

Hence, the following result has been established.

TarEorEM 4.2. Under the assumptions of this case,

r1 1
1-b,,(M)<LD —
1.f( ) 2”;1 » Tlf (M)

if Ty(M)<oo. If T, (M)=oo, which is always the case if R(M)= oo, then b, (M)=1,
meaning that f(M) intersects E(a) for almost every a€@G, (V). (Observe that G, (V) is
isomorphic to P(V*).)

The other cases use an exhaustion function. Again, let M be a connected, noncompact,
complex manifold of dimension m. A proper map kh: M—R of class C® with Min, ., h(zx) =0

is called an exhaustion function. For >0, the sets
G, = {@eM|h(x)<r}, T,={x€M|h(z)=r}

are not empty. @, is open and relative compact and I', is compact. For every compact
subset K, a number 7, > 0 exists such that @, > K for all r >rx. Define E,={x €M |(dh)(x)=
0}. Then E,=h(E,) is a set of measure zero in R. If 0 <rER—E}, thenT,=G, -G, isa
boundary manifold of class 0® of @,. Take 0 <7 €R— E,. Define =@, and y =T, .. For
7 >1y, define y,: MR by y,=0 on M -G, by y,=r—h on G, —g and by p,=r—ryon g.
Obviously, ¥, is continuous and y,| G, —g is of class C®. On G, —g,

dty, = —dh, dd*y=d"dh. (28)
Define N ={r€R|r,<r¢£,}. For each r€N,

Br = (Gr: Fr, g, "/’r)

is a bump and B, ={B,}..y is an exhaustion family of bumps,

Let f: M —~P(V) be a holomorphic map into the projective space of the hermitian vector
space V of dimension n+1>1. Take p, ¢, s as non-negative integers with m —g=n—p=
§>0. Let y be a non-negative form of bidegree (g, ¢) and class C* on M with dy =0. Suppose
an open, relative compact subset U of M exists such that x| U is positive. Suppose that
a€G,(V) and 2, € U with f(z,) € E(a) exist such that f is general for a at z,. For » >0, respec-
tively rEN, write Ty(r)=TH{G,) and A/(r)=A,G,) and m(r, a) =mT,, a) and m/(ry, a)=
my(y, a), ete. For ry<r<R, observe

G, = {z€M| R —rg—yg(2) <r —ry} = Gp(r—ry), wglr—7] =y,
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If r€N and REN with r<R, then Bg(r —r,) = B,. Therefore,

T r) = f A0 o,

Nyr,a)= frn,(t, a) dt.

Here, A; and n(-, a) are continuous from the left. Hence,
D-Tyry=A,r) and D-N/ir,a)=nsir,a)

if r>r,, and where T, and N, are differentiable at every r € N. Observe that m(ry, a) and
Us(ry) are independent of r because of (28). Observe that r, €N exists such that U@,
if r>7;. Because p,>0 on G,, also y,x| U is positive for r>r,. Hence 4,(r)>0 if r>r, and

T(r)=2(r—r)A(r)>0 if r>r.
Consequently, T',(r) > oo for r— oo, even

lim Ty(r) >0.
= 7

2. CasE: Pseudoconcave manifolds. Here it is assumed that an exhaustion function %
on M exists such that its Levi form d*dh <0 is negative outside a compact set K. Suppose
that such an exhaustion function is given. Obviously, , can be taken so large that K< @, ..
Construct 3B, with this number r,. For each r€N, define 4, =0 on G, —g. Then A = {u,},cy
is a majorant and A(G,, u,)=0. Because T, [(r)—co for r—oo and because u, {7y} is

constant, §, ,—0. Hence, Theorem 4.1 implies:

THEOREM 4.3. If M is pseudoconcave and if the assumptions of this case are made, then
f(M) intersects E(a) for almost every a€G,(V).

3. CasEk: Pseudoconvex manifolds. Here the existence of an exhaustion funetion & on M
with d*dh>0 outside a compact set K is assumed. Suppose such an exhaustion function
k is given. Construct B, with r,>0 so large that K< g=G@,,. Then dd*y, =d*dh >0forr€N.
Hence U = {dd*y,}cy is a majorant with

1

= J- = T o
Ag f(r) = A, f{r, dd*y,) = 2aW(s—1) Je—o

f*(évo,s—1) Adrdh A X.

Because T ,{r)— oo for r—co, and because u,(ry) is constant, Theorem 4.1 implies

THEOREM 4.4. If M is pseudoconvex, if h is a pseudoconvex exhaustion and if the

assumptions of this case are made, then
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—_ _ Tiwm As.f(r)
1 bs.f(M)gcpsaschps}gg Ts_f(r)-

If 8,,=0, then f(M) intersects E,(a) for almost every a €G (V).

4. CasE: Stein manifolds. () If and only if M is a Stein manifold, then an exhaustion
function h exists with d*dh>0 on all of M. Hence, Stein manifolds are pseudoconvex,
and Case 3 applies. However, a better interpretation can be given on Stein manifolds by a
convenient choice of y. Therefore, let M be a Stein manifold and let & be an exhaustion
function on M with d+dh>0. The couple (M, k) is called a Levi manifold. Construct B, and
U ={dd"y,},eyasin Case 3. Observe that d' dh defines a Kihler metric on M. For each integer
ein 0 <e<m, define

fo=idbdh A .. Advdh  (e-times)

where Y, =1. Then

_1 g+l (i
As,f(r) T on W(s—1) G,.—gf {@o,5-1) A Xg+1
where Ag f(r ——l—f *(0g,5) A
8.1 )_ W(S) G,—f (wo.s) X
For s =0, define Ao, » (ry=M(r) =f L
Gr

as the volume of @, in the Kéhler metric d*dh. Then

q-+1

+1
Bos) =5 Aua (=T 4005(00).

Therefore, up to an additive and a multiplicative constant, the average deficit of order s
equals the spherical image of order s —1, i.e., the derivative of the characteristic of order
s—1. This gives a very instructive interpretation of the average deficit on Levi manifolds. -

Because T, ((r)—> oo for r—co and because y,(ry) and A4, , ,(r,) are constant, also the total

defect receives a new interpretation:

e A () g+l — Ay 1 p(r) g1 o— Ty ,(r)
63 =1 s, AT 1 s-1.f — 1 s—1.1 .
d an:o T, ,(r) 2n rg?o T, (n) 2n TE% T, (r)

THEOREM 4.5. Let (M, k) be a Levi manifold. Under the assumptions of this case,

q+1 .—As,l_f(r)
1-b, (M)<— —_—,
s.f( ) 2 Cps }Lnolo N (1‘)

(*) For s=n, see [10] 3. Example, pp. 187-189.
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Hence, if
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A5 1,(r)

-0 for r—co,
Ts.f(r) f

then f(M) intersects E(a) for almost every a €G,(V).

Observe that if s=1, then 4, ,(r)=M(r) is the volume of G,, and this result should be

compared with Theorem 4.2.

Observe that Theorem 4.5 depends on M, &, V, f, p and the hermitian metric on V

only, and that it is expressible with simplicity in explicit intrinsic terms. Only, the choice

of h is not canonical, and the question remains as to how the theory depends on the choice
of 4 on Stein manifolds.

Observe that Theorem 4.5 generalizes a result of Chern [2]. Also, the results of Bott

and Chern [1] concerning equidistribution of the zero sets of sections can be obtained from

this and generalized to the case where the fiber dimensions of the vector bundle is smaller

than the dimension of the base space.
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[6].
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