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A F i r s t  Main Theorem for holomorphic  maps  in to  t he  pro jec t ive  space was es tab l i shed  

in [10]. As a n  appl ica t ion ,  an  equ id i s t r ibu t ion  theorem for open  holomorphic  maps  of maxi -  

ma l  o rder  was obta ined .  These resul ts  shall  be e x t e n d e d  to a r b i t r a r y  order  8. On a S te in  

manifold ,  t h e y  assume a special  e legant  form: 

L e t  M be a non-compact ,  connec ted  Ste in  mani fo ld  of d imension  m. L e t  h: M - ~ R  

be a non-nega t ive  func t ion  of class C ~176 on M such t h a t  i ts  Lev i  form (3) X,1 = d'Ldh is pos i t ive  

def ini te  on M a n d  such t h a t  for eve ry  r > 0 the  open set  Gr = ( z [ h ( z ) <  r} is no t  e m p t y  a n d  

re la t ive  compact .  Such a func t ion  h exis ts  on M if a n d  on ly  if M is a S te in  manifold .  Ob- 

viously,  $1 is the  ex te r io r  form of a K a e h l e r  met r ic  on M.  Define S0 = 1 a n d  for s in 1 ~< s ~< m 

define 
1 

S ~ = ~ S I  A .. .  ASs 

s-t imes.  

Le t  V be a complex  vec tor  space of d imens ion  n + 1 > 1. Take  a he rmi t i an  met r ic  on 

V. I t  induces  a K a e h l e r  met r ic  on the  pro jec t ive  space P(V) associa ted  to  V, whose ex te r io r  

form is deno t ed  b y  ~5 o. Define &co = 1 a n d  

1 
~b08 = ~ Wo A .. .  A ~b 0 (s-times) 

W(s)  = ~ .  

L e t / :  M - ~ P ( V )  be a holomorphic  map .  F o r  0 ~<s ~<Min (n, m), define the  charac ter i s t ic  of 

o rder  8 b y  

(1) This research was partially supported by the National Science Foundation under Grant 
NSF GP 7265. 

(~) Define d •  - d  c where d=O+~. 
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As.t(O = ~ t*(i~o,,) A zm-8 

= f~As . t ( t )  d2. T,. t(r) 

For s =0,  Ao.t(t ) =M(t)  is the volume of Or. 

Let  G~(V) be the Grassmann manifold of p-dimensional linear projective subspace 

E of P(V). Suppose a neighborhood W of E 0 E Gn_8(V) and a neighborhood U of z 0 E M 

with /(Zo)EE 0 exist such tha t  d i m z / - a ( E ) = m - s < m  for all zE/-a(E)N U and all E E W. 

Then Ts.t(r)-~ co for r-+ co. I f  

As-l,r(r) ~0 for r -~oo,  
Ts.r(r) 

then  the image / (M)  intersects almost every linear projective subspace E E Gn-s(V). 

The mean value of the Levine form over the Grassmann manifold G,(V) has to be 

computed. This integration over the Grassmann manifold may  be of independent interest. 

For instance, this method gives the degree of the Grassmann manifold easily. 

Recently, Hirsclffelder [3], Wu [13] and the author [11] obtained a First Main Theorem 

for holomorphic maps into compact Kaehler  manifolds. However, the results there do not 

imply  the results here because the Levine form is not a proper proximity form as obtained 

there.  

Although this paper is a sequel to [10], it can be read independently. The beginning 

of w 3 provides a survey of the results obtained in [I0]. The notation has been changed 

slightly, hopefully for the better.  

1. Differential forms 

Let  V be a complex vector space of dimension n + 1 with n > 0. Let  P(V) be the associ- 

a ted  projective space. Let  P: V -  {0}-+P(V) be the natural  projection such tha t  P(3) =P(Iv) 

if and only if 3 A IO =0.  The projection is denoted uniformly by P for all vector spaces. I f  

the  dependency of V shall be denoted, write P =Pv- 

Associated are the exterior product V[p] = V A ... A V (p-times) and the dual vector 

space V*. For 0-~<p ~<n, define the Grassmann cone by 

O~(v) = {ao A ... A a~l%e v } z  V[p + 1]. 

The Grassmann mani]old G ~ ( V ) = P ( O , ( V ) -  {0})is a smooth, compact, complex submanffold 

of P(V[p + 1 ]) and has dimension (p + 1) (n - p ) .  For 0 + a E G~(V), the (p + 1)-dimensional 

linear subspace 
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E(a)  = {3 e v13  A a = 0}  

is defined. If  a = a0 A... A % #0,  then E(a) = i3% +.. .  + C%. I f  a 6 G~(V), then E(a) = E(a) 

is the same for all a eP-l(a) .  Moreover, E maps Gv(V) bijeetively onto the set of all (p + 1)- 

dimensional linear subspaces of V. I f  a e Gv(V), define 

E(a) = Pv(E(a) - {0}) = P(E(a) )_  P(V). 

Then E maps Gv(V ) bijectively onto the set of all p-dimensional projective linear sub- 

spaces of V. Obviously, G0(V) = P(V) and G~_~(V) ~ P(V*). 

I f  O<<.p<n and O<.q<n, define 

Fv q I {(a'b)edv(V) x Gq(V) IE(a)~--E(b)} 
' = [ {(a,  b) E Gv (V) x Gq (V) I E(a) ~_ E ( b ) }  

if p<q  

if p>q. 

Let ~: Fv.q-+Gq(V) and ~: Fv,q-+Gv(V) be the natural  projections. 

L EMMA 1.1. Fv, q is a connected, compact, smooth, complex submani]old o~ Gr(V) x Gq(V). 

The projections ze and ~ are proper, surjective, regular holomorphic maps. 

Proo/. Obviously, Fv.q is closed and locally given by  holomorphie equations. There- 

fore, Er,r is a compact analytic subset of Gv(V) x Gq(V). Let  GL(V) = {a: V-+ V] ~ hnear 

isomorphism} be the general linear group on V. Then GL(V) acts on G~(V) by ~(E(a))= 

E(zc(a)). Moreover, if (a, b)EFv.r so is (~(a), ~(b))EFv.q. Hence GL(V) acts as a group of 

biholomorphic maps on Ft.  q, and the action of GL(V) on Fv. r is transitive. Because Fv. q 

is smooth at  at  least one point, it is smooth. Obviously, the projections ~ and v are surjec- 

t ire,  proper, holomorphic and commute with the action of GL(V). By Sard's Theorem, 

zt and ~ are regular a t  least along one of its fibers; hence, considering the action of GL(V), 

they are regular. I f  p < q, then Fv. q is a differentiable fiber bundle over the connected base 

space Gv(V ) with the connected fiber Gv(E(b)). Hence, ~'v.r is connected. I f  p >q, then 

Fv.q is biholomorphieally equivalent to Fq.r. Hence, Fr.q is connected, q.e.d. 

Let  (- ] �9 ) be a positive definite Hermit ian product on V. With this product, V becomes 

a Hermit ian vector space. Also, V[p] and V* become Hermit ian vector spaces. I f  0 #~  E V[p] 

and 0 # t) E V[q], then 

I1 : 11 =I A I 
151 

is defined. I f  xEGr(V) and yEGq(V), then IIx:ull is well-defined by  

IIx:yll=ll : ll 
Then II :Yll 
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On any complex manifold, the exterior derivative d splits into d =0  +0. Define d ' =  

i(0 - ~ )  = - d  e. Define the forms up and u~s on V[p + 1] and the forms cop and cops on VLp + 1] - 

{0} by(~) 
1 ,,~(~) = ~a• ~ u ~ = ~  ,, A ... A,, (~-times) 

1 
c o A ~ ) = k d •  ' % s = ~ A . . . A w  (8-t~nes). 

Observe tha t  uo, Uo,, too, COo. s are forms on V. One and only one Ks matric exists on 

P(V[p + 1]) with fundamental  form 55p such tha t  P*(&p) =e%. Define &p, = (I/s!) ~bp A ... A &p 

(s-times). Then P*(/bp,)=e%s. Observe that(2) 

W ( n )  = ( ~ 0 . . = ~ . .  (D 

The Grassmann manifold Gp(V) is a smooth, compact, complex submanifold of P ( V ~  + 1]) 

and has dimension d~ = (p + 1 ) ( n - p ) .  The pull back of the forms ~5~. s to the submanifold 

G~(V) will be denoted again by  &p. s. The volume of Gp(V) is denoted by  

W(n, p) = ( gO~.d, ( 2 )  
d Gp(v) 

and will be computed later. 

For aEG~(V) and x E P ( V ) - E ( a ) ,  the exterior product x A a is well defined by  x A a =  

P(~ A a) where P(~) = x  and P(a) =a .  A holomorphic map 

~a: P(V) -/~(a)-+Op+l(V) 

is defined by g~(x) = x  A a. The map g~ is meromorphic on P(V). On P(V) - E ( a ) ,  define 

= n.(%+O" %(a) * "" 

If aeG~(V), then E• Vl(3ia)=0 for all aCE(a)} is orthogonal to E(a) and V= 

E(a)|177 Let  ~ :  V~E• be the projection. Then Qa: P ( V ) - / E ( a ) ~ P ( E ' ( a ) )  is well- 

defined by  Po~a=Q~oP. Let  ~'~: P(E• be the inclusion. Then 

(I)~ (a) * "* =e~l~(0) 

which implies r =~Pp(a) A ... A r if r >~n-p, 
(r-tLmes) 

because P(E• has dimension n - p - 1. Moreover, 

for x E P(V) - E(a). 
&o(X) - (I)p (a) (x) = �89 log Hx: all 

(1) For the proofs of the results mentioned here, see [10], w 3. 
(~) See Lemma 2.1 for a proof. 
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If a -- n - p and a E G~ (V), define the Lev ine /o rm  

A A~(a) = 1 8-1 �9 " 8--1-~ Op (a) A a)0 (8-1)!  ,_0 

on P(V)-/~(a) .  Obviously, As(a) is a non-negative, real-analygic form of bidegree ( e - l ,  

e -  1) with ~As(a) =0  and OAs(a) =0. The associate prox imi ty /orm As(a) is defined by  

;( A8 (a) (x) ~ log As(a) (x)/> 0 

for x E P(V) -/~(a).  Then 
dZdA~(a) = g%.. 

I t  will be imporgant to compute the integral average 

I 
f a  A 8 (a) 5)~. a, (a). W(n, p) ~o,<~ 

This has already been done in [10] for p =0,  where the following identi ty was of impor- 

tance: Take aE V. On V - E ( a ) ,  define ~a bY(l) 

"~lm~ (dllo A YO ] YO A a) 1 

"~ '= i.l-r   l =lro^al  (r~ 
Define ~a = (i/2) ~a A ~a on V - E(a). I r a  E P(V), then ~a is welldefined on V - E(a) by v~ = va 

with aEP-l(a). Moreover, one and only one form ~a Of bidegree (1, 1) on P ( V ) - E ( a ) =  

P ( V ) - ( a }  exists such that  P*(v~)=va. The form #a is non-negative and u ~a=0. Then 

Ila:xll'(i)o(a) (x) =/be(x) -- ~a(x), 

a n d  [[a: xII2q O$(a)  (x) = ~bg (x) - qL(x) A &~)-~(x) (3) 

for x E P ( V ) - { a }  and qEN. 

For a fixed integer p in 0 ~<p ~<n, consider the diagram 

a (v) 

G~_,(V) 

In  order to establish a fundamental identi ty for integration on Grassmann manifolds, 

the maps v and g shall be expressed in local coordinates in a neighborhood of an arbitrary 

point (a, b) E F~_I. ~ as follows: 

(1) For the proofs of the results mentioned here~ see [10], w 5. 
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Observe E ( a ) _  E(b). Pick an  or thonormal  base a 0 . . . . .  an of V such t h a t  

E(a) = C% +. . .  + C~_ 1 

E(b) = Ca0 +. . .  + C%. 

Define a=Cto A ... A %-1 and  b = a o  A ... A %. Then  a = P ( a )  and  5 =P(l~). 

Consider C (n-~)v+n as the vector  space M of all matrices 

z = with z~ = 0. (4) 

~  n 

Consider C (n-p+I)p as the vector  space M o of all matrices 

ZO.p . . .  Z O . n  . 

x = : : (5) 
Z p - l , p  . . .  Zp - l , n  

Consider C (n-~)(~+l) as the vector  space M 1 of all matrices 

[ Z0. p+ l p  " '"  Z O . n  �9 

Y= zv" i (6) 
+1 Z~) .n  

Define the  projection 30: M ~ M o  by  T0(z)=x with z as in (4) and  x as in (5). Define the  

surjective, regular holomorphic map  by  gl:  M - * M z  by  

UO.p+l . . .  ~0n 

~7~1 (Z) = i i (7) 

II u~.~+l uv. 

with ul, v=z~,v-zt,~% v f o r O < - l a < - p - l a n d p + l ~ v < < - n  u ~ = % v  f o r p + l ~ v ~ n .  (8) 

For  v = 0 ,  1, define ~v: M~-~Gv_I+~(V ) by  

(a) v = 0 :  x E M  o as in (5): 

G, = a~, + ~vz~,a, O < la <~ p - 1  

e =Co  A . . .  A % - i  (9) 

G(x) =P(e) ,  then  G(0) = a .  

(b) v = h y E M  z as in (6): 

w f p + l  

c=coA...^~ 
~I(Y) =P(c) ,  then  ~z(0) =b .  

( l O )  
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According to [11] Lemma 2.1, ~ is a biholomorphic map onto an open subset of ~P--I+~([/)"  

Define the holomorphic map ~: M--~F~_x.~, by 

$(z) = (e(e),  P(e ~ ~ , ) )e  F~_~.~ 

where e and % are defined as above. Then 

~ ~  = ~0~ 
Observe 

Hence, P(r A %)=~(~z(z)). Therefore, g o $ = $ ~ o ~ .  Consequently, the map ~ is injective. 

Obviously, $(M) is contained in the open subset F~_~.~ fi ($o(Mo) • ~(M1)) of F~_~, p. Now, 

it will be shown tha t  $ maps M onto this subset. Take (x, y)e  F~_I. ~ with x e$o(Mo) and 

ye~(M1) .  Then ~ = ~ l ( x )  and ?~=~;l(y) with 

xop ... xon ] Yo.p+~ . . .  Y o . n  

X= i i I Y= yp.-+ip i 
II x~_~.~ x,_~.~ y~.~ 

Define z as in (4) by  z~v=x~, for 0 ~ < t u ~ p - 1  and p<~,<~n and %v=yp~ for p+l<~v<~n 

and %p=0. Then To(Z)=2 and ~(~(z))= ~0(v0(z))=~o(2)=x. Denote gl(Z) as in (7) and (8). 

Then u~,~,=y~, if p +l-~<v-~<n, and u~=x~,-xt , j ,y~,  , if 0~<#~<p-1 and.p+l<~r<~n. More- 

over, 

~=%-~- ~x~,~a~EE(x)~E(y) if O ~ l a < p - 1 ,  

v ~ p §  

where t)o ..... t~ is a base of E(y) over C. Therefore, %o~C exist such tha t  

. . ) 
~ffi0 qffi0 ~ffip+] 

for # = 0  ..... p - 1. Hence, %q = 0  for Q #/z and Q # p  with cgg = 1 and c~ v = xgr for/~ = 0  .... .  

p - 1. Moreover, 
xzv=y~,+x~y~,,  i f p + l ~ < v ~ n  

which implies y ~ = u ~  if 0~<#~<p-1 and p + l  ~<v~<n. Moreover, yp~=u~,~ if p + l  ~<v~<n. 

Therefore, gl(Z)=~ and 
~(~(z))  = ~1(~1(z)) = $1(~) = y 

~(z) = (v(~(z)), g(~(z))) = (x, y) 

which implies ~(M) = F~_I. p fi (~o(Mo) • ~1(M1)). 
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Because ~(M) is open and ~ injective, ~: M ~ F ~ _  x, p is a biholomorphic map onto an open 

neighborhood of (a, b). Because the complements of $~(M~) in G~_I+~(V) are thin analytic 

subsets, the complement of ~(M) is a thin analytic subset and its intersection with each 

fiber of ~ and g is a thin analytic subset of this fiber or the whole fiber. The following 

commutative diagram has been established: 

M 

M~ * t ~ 

\ 
) 0vCV) (11) 

Especially, the dimension of 5 _ 1 .  p is n +p(n -p) ;  the fiber dimension of v is n - p  and the 

fiber dimension of g is p. 

LEMMA 1.2. 1] bEGp_I(V), then 

_,o)z*(/b~_l.~)=tV(p) p! .  

Proo[. The diagram (11) implies 

On g;l(0), the identities (9) read 

e~,=a~,+z~,pct, if 0~</z~<p-1 

p - 1  
e = e 0 A . . ,  A ep_  1 = i~) A . . .  A t ip-1  'JI-~OZ.upI~I A . , ,  A 1~/4-1 A flu A C[/~+I A . . ,  A f l p - I  

p - 1  

lel~=l+ Y. I~.~l"- 
p=0 

1 (1 v v 1 

where /b is the fundamental form of the K~hler metric of P(C "+1) defined by the ttermi- 
_ p - ~ p + l .  t ian product  (~1 ~) - ~ . - o  xoy~ on 

fp  1 ibm= q.e.d. Hence, J -~ p~. W(p), 
(C ~+1) 
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Consider the  d iagram (11). Differential  forms f rom (7~_1(V) and  G~(V) can be pulled 

up  to lv~_l. ~ where the  following i m p o r t a n t  iden t i ty  holds: 

THEOREM 1.3. Let d~=(p+l)(n-p) be the dimension o/ the Grassmann mani/old 

G~( V). Then 
:r*(ib~.dp) A ~*(~-1 .~)  = ~*(i5~-1.a~-1) A :r*(ib~.,_,). 

Proo/. Pick  (a, b)GF~_l. ~ and  construct  the  d iagram (11). Then  

~ ( ~ , - 1 )  = r  = e*(o~p_l) = ~g•  log [e [s 

r = T ~ r  = �88177 log [e o 70 [2 = �88 d log [e ]2 

if e is regarded as a vector  funct ion on M. Moreover,  

~'*(b3~) = c*P*(~b2,) = c*(o~,) = �88 d • d logic I s. 

~'*x~*(~) = g*~'*(~5~) = �88 d • d logic  o ~x ]2 = ~a• logic A q,['~ 

if e and  C~ are regarded as vec tor  funct ions on M. Hence,  

, .. i 1 
�9 * (~ -1 )  = ~ ~ fle I s (ae I de) - (de [ e) ^ (e [ ae)] 

~ , ~ , ( ~ )  i I 
c~l, tie A c~l~ (a(e A c~)la(e A ~ ) ) - ( a ( e  A c~)le A ~) A (e A ~[a(e A c~))]. 

2 le A 

Now, these differential forms shall be computed at 0 E M, which corresponds to (a, b): 

n 

p - 1  

de = ~or A ... A e~-i A de~ A r A ... A e~-i 

~ - 1  n 

= ~ ~ d z ~ , O - o A . . . A ~ - l A O ~ A a , t + t A . . . A 0 - n  
),=O ~ ,~  

~ - 1  n 

(aelae)= Y. ~az~,Aa~ [el=laoA... A~ 11=1 
).=1 r 

(de[e) =o ,  (elde)=O. 

i ~ - 1  
Define u = ~  ~ dz~ A d ~  

~ 0  

i ~ d 
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T h e n  ~*l '*((/)p_ 1) = u ~- w .  

Observe  u" = 0 if 8 > p a n d  w q = 0 if q > p(n  - p). Hence ,  

r (u +w) . ( . -~ .~= ~ ~ ~! (p(n - p) + p - ~) ! 

p ! ( p ( n - p ) ) !  
y~Wp(n - p) 

Now,  

d(r h q,) = (de) A C~ + e A dcj, = de A % + a o/~ . . .  A ch,-~ A dq, 

Hence ,  

Moreover ,  

uOwP(n-P)+p-q 

p - 1  

) .~0 s,=~ +1 ~ ' ~  +1 

= ~.. dz;.,o- o A . . .  A a~-1 A ~ A a~+1 A ... A an. 
~,=0 v = p + l  

(d(e/~ c,,)]a(e A c,)) = ~: ~ d~,. A d~,~. 

le A c,l' = Ioo A ... A 0,I'= I 

(d(e A cPle A cp = (d(e A cPl ao A . . .  A aT) = o = (e A c, I d(e A cp). 

Therefore ,  $*z:(~bp) = ~ ~ dz~x A dS,a = v + w 
~=0 v=p+ l  

where  v s = 0 if s > n - p a n d  w q = 0 if q > p (n  - p). Hence ,  

~ , ~ , ( ~ o ~ . a , ) = l ( v + w ) U ( n _ p ) + ~ _ p =  n-~ 1 
du. e ~ o ~ ! ( p ( n - p )  + n - p - Q ) !  

VOwP(n-p)+ n-p-O 

( n - p ) ! ( p ( n - p ) ) !  
vn-1~w~(n-~) 

1 
Now,  ~*(~*( tbp .  dp) A "g$(o)~_l. p))  = Vn-PwP(n-P)(U -Jr- w) p 

(n p)~ (p(~ p))! p !  

1 ,11~vn-1)w~(n-ID 
p!  (n - p ) !  ( p ( n - p ) ) !  

1 
a n d  ~*(v*(i.b~_l.e~_l) A ~ * ( i b p . , ~ _ 1 , ) ) = p ! ( p ( n _ p ) ) ! ( n _ p ) !  U~'U.x('~-~')(v+w) '~-p 

1 
= p! (n - p)!  (p(n - p))!  uPvn-7'u'x(n-~)" 

Therefore ,  t h e  asse r t ion  of t h e  t h e o r e m  holds  a t  t he  a r b i t r a r y  p o i n t  (a, b), q.e.d. 

(u) 
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2. Integration over a Grassmann manifo ld  

At  first, some integrals over the projective space P(V) shall be computed.  Le t  h be a 

measurable funct ion on P(V) such t h a t  h~b0~ is integrable over P(V). Define 

1 fp h/bo~. L(h) = Lv(h) = ~ )  (v) 

1 fve_l~l,h(3) uo n+1($)" L ( h ) = ~  I f  1~ = h o P, then (1) 

Define I={tERlO<~t<~l}. 

LEMMA 2.1. Let g>~O be a measurable/unction on I.  Take wEP(V).  Define h: P ( V ) ~ R  

almost everywhere on P(V) by h(z)=g(llw:zll~). Suppose t ~ t  either h~on i8 integrable over 

P(V) or g(t)t n-1 is integrable over I .  Then both are integrable and 

L(h) = n  g(t)t~-ldt 

is independent o /w  EP(V). 

Proo/. Take to E V sueh t h a t  I rol  = 1 and  w =P(ro). Take an  or thonormal  base ao . . . .  a~ 

of V such t h a t  %=1"o. I f  3 = ~ o Z ~ C t e E  V, then  

iV A 3 = ]~ % ao A a,,, 

I f  z, = 1/~d ~, O~<t~< ~ ,  0~<%<2z~, then 

Z L(h)= e-'~'g(llw :311 ~)~o.n+l(3)= ... e- ' . -  .... ~g  + + t~ "" 

Now, introduce the following change of variables: 

to=~(Sl+. . .+s~)  0 < ~ < 1  and 0 < s ~ < c ~  

t~=(1--v) s~ for ~ = 1  . . . . .  n, 

to then ~ = 
to+  ... +t~  

t t o +  "'" § tn 
8~ : v t l ~ . . .  ~_ t :  for ~ = 1 . . . . .  n 

(1) See [6] Hflfssatz 1. 
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with the identities t o + . . .  + t  n = s  1 + . . .  +sn 

t l  + . . .  + t,, 
1 - 3  = 

t o +  . . .  + tn 

a(to . . . . .  t . )  
a (z ,  s l  . . . . .  s . )  = ( s l  + " '"  + s . )  (1 - z ) . - 1 .  

Then 

f : s  fo L(h )=  g(1 - ~ )  (1 - r  dr ... e-* , - ' " -~ ' ( s l+. . .+s~)ds l . . .ds~=n g(t)t"-ldt. 

I t  was assumed that  L(h) exists. If  .[log(t)P-ldt exists, the proof can be reversed because 

g>~O, q.e.d. Especially, L(1)= 1, which proves W(n)=~t"/n!. 

Then 

LEMMA 2.2. Let g >~O be a measurable [unction on I. For 2~>1, de]inc 

1 fc e-I,,I,-...-I,.I, gi lzl l '  + ' '"  + Iz,,l'] Iz~No.,,+, 
I ' ~ ( g ) = ~  "+' I,[Zol'+ + Iz, , l ' / Izol '+. . .  + k,l '" 

I . ( g )  - g(r t~-Xdt 

i/either one o[ these integral8 (hence both) exists. 

Proo[. The same changes of variables as in Lemma 2.1 imply 

fo fo ~ (t, +... + t,] t~ ~0... at, I ~ ( g )  = . . .  e - t o - ' " - t . i I  \ t o  + . . .  + tn ]  t1+ ... + tn 

LEMMA 2.3. Let g >~ 0 be a measurable [unctio~ on I. Suppose that g(t) p-1 is inte- 

grable over I.  Take integers ~ >~ 1 and 2 >~ 1 with ~ # 2. Then the integral 

tirol +-.. +k l ' / I ~o l~u  l" 
exists and is zero. 

Proo]. Because I z~zo I <~ [zx [2 + I z ~ 19., Lemma 2.2 implies the existence of I4o(9). The 

change of variables u~=z~ if/~*~t and ux= - zx  shows I~Q(g)= -IxQ(g). Hence, I~o(g ) =0, 

q.e.d. 

Let  M be a complex manifold of dimension m. Suppose that  for every aEP(V) a dif- 

ferential form ~(a) of bidegree (p, q) on M is given. Let  z = (z 1 ..... zm) be local holomorphic 



VALUE DISTRIBUTION OF HOLOMORPHIC MAPS INTO THE PROJECTIVE SPACE 95  

coordinates on an  open subset U of M. Le t  T(p,  m) be the  set of all injective, increasing 

maps  of {1 . . . .  , p} into {1 . . . . .  m}. For  f r e T ( p ,  m) define 

dza = dz~a ) A ... A dz~(~) 

d ~  = dSm) A ... A dS~,(r ). 

Then functions yJ~v(a) are uniquely determined on U sueh t h a t  

v2(a ) = ~ , ,  ~ ,  ,n)VA,, (a) dz i, A d2,. 
,u ~ T ( p .  m )  

I f  for every  xE U all the integrals L(yJ~( - ) (x)) exist, then  

L(~p) = ~ ~. L(y~,(a))dzt,  Ag~ ~ 
.uE T ( p . m )  t,~ T ( q . m )  

is a well defined form of bidegree (p, q) on M. Thus, the  average L extends from functions 

to forms. 

LEM~IA 2.4. Let q be an integer with O<q<~n. Take weP(V) .  Let g>~O be a measurable 

function on I such that g(t) t n- 1- q is integrable over I .  Define v/=yJ(a, w) =g( ]lw: all z)(I)~)(a) (w). 

Then 

L L(~o)=(n-q) g(t) (1 -O~-'-qdt/b~. 

Proof. Define gl(t) = g(t) t- q for 0 < t ~< 1 and  gl(0) = 0. Take 0 4= lv E P(V) with w = P(IV). 

Take 3 E V -  E(w). Then 

~:,(ro) = I m P I ro A s I-i(dro A m I ro A 3)- 

Let  a 0 . . . . .  a~ be an  or thonormal  base of V with iv = a 01 Iv l" Then 

Therefore, 

= i : , , w , o ,  
v=O v=O 

n 

ro A3=lml ~,a,,A a, 
n 

i n 
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Moreover, 

W ~ ~ ,HELM STOLL 

~o(~) = ~ (I ~ l - '  (I ~ l ~ (d~ l d~)  - (a~  [ ~ )  A (~  l d~))  

i ~ i i~ol_~y dwo Ad~o" = ~ I ro I-~ w~ A d~o - duo A a~o = ~ o =i 

Lemmas 2.2 and 2.3 imply: 

s  t ~-l-q dt 0)0(~) 

fi =i__ ~lrol_~dwoAdCv ~ gl(t) tn_ad t 
20=1 

1 fc  e-I~l'gl([Zl]2+'"+lznl2~ z;tz~176176 i ~ iml_2dweAd~x_T 1 
= ~  ~ ~1~ol2+ + 1 ~ , 1 9 1 ~ 7 ~ 1 ~ 1  ~ ,~, 0= 1 n+l . . .  

- -  7171+1 I~{~VIB-]Sit ffl ([[~O " 8[[ 2) T8 (~0)L}o.n+ 1 (8)" 

- gl(llw :~ll ~) ~(w) ~o.(~)= g(t) l"-'-qdti/oo(W). Hence, Lt W(n) Ep(v) 

Moreover, 

L=l-A--fzW(n) s s 2 ep(v)gl(l[w:z]12)ibon(Z) =n gt(t) t~-ldt=n g(t) tn-l-adt. 

:Now (3) implies 

fO (n-q) g(t) t~-l-qdt~bg(w) 

s ; = n  g(t) tn-~-~dt/bg(w)-q gff) t~-~-q/bo(W)) A/b~-X(w) 

= L~ tbg(w) - qL1 A/bg-~(w) 

1 f~ g~(llw:~ll~)ECo~}(w)_q~.(w)Ao~o..q-l( )]O)o,n(Z ) w  " "  

W{n) (v) 

_ 1 fe  [g(]lw:z][~)~p~)(z)(w)]iho~(z)=L(~p) ' q.e.d. 
W(n) <v) 

Let h: G~(V)-* C be a function on the Grassmann manifold where p >~ 1. Then h6")~. ,_~ 
* 1 is lifted to ~ (h&u. ,_~) o n  Fp_ 1.v. Pick z fi G~_i(V). Then r -  (z) is a compact, smooth, connected 

complex submanifold of dimension n - p  of F~_t.~. Define 

1 f~ ze*Ch~b~.n_~) ~ [h] (z)= W(n- p) -,{~) 
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if this integral  exists. If  it exists for all z ~ G~_~(V), t hen  ~ [ h ]  is a funct ion on G~_~(V). A 

par t i t ion of un i ty  shows tha t  ~ [ h ]  is of class C ~ if h is of class C ~. As L, also ~ extends  from 

functions to forms. 

L]~IMA 2.5. Let p, q and s be integers with 0 < p < n  and O <q < n - p  =s. Let g be a non- 

negative measurable /unction on I. Pick aEGp_I(V ) and wEP(V)-J~(a) .  Suppose that 

g(THa:wi]2)~*-q-i is integrable over I. Define h=h(z)=g(Iiz:wH2)aP~(z) (w ) almost everywhere 

on G~(V). Then ~ [ h ]  exists at a and 

~ [h] (a) = (s - q) f ~ g(T ]]a : w H 2) T~-q-~ dt r (a). 

(0/course, i/ q=O, then w can be taken everywhere in P(V)). 

Proo/. Let  ao . . . .  , an be an or thonormal  base of V with E(a)=C%+.. .  + C % - v  Define 

a = % A ... A a~_ 1. Then  
V = E(a) | EX(a). 

Let3a: E~(a)-~ V and is: P(E~(a))-~P(V) be the inclusions. Then  E'(a)  is again a hermit ian 

vector  space (of dimension s + 1) by  restricting the scalar product  to EL(a); the associated 

forms are ~*(~o0) and ?'*(/50). Obviously, Po3~ =jaoP. Let  ~ :  V~E•  be the projection. 

Then  ~)a: P(V)-# , (a ) -+P(EX(a))  is well-defined by  PO~a=eaOP and 

r l ( a ) =  *'* 
ea 7a (~0)" 

Define 60: E" (a)-+ ~ (V) 

by  (?o(3) = 3 A a for 3 E EL(a). Then  [~o(3)] = [3 [. Hence  ~o is injective. Hence  So: P(EZ(a)) 

G~(V) is well-defined by  P o (?o = ao oP and (~o is injective. Define a: P(EZ(a))-+ F~_I,~ by  a(z) = 

(a, a0(z)). Because dim P(E• = n - p  = d i m  T-l(a), the  map  

a: P(E• -~T-l(a) 

is biholomorphic. Moreover, z: T-I(a)-->Gp(V) is injeetive and xeoa=a  o. Consequently,  if 

0 ~:3 E E• t hen  

P*a*g*(/b~) (3)= P*~(b)p)(3)= b~P*(/b~)(3)= b~(e%)(3) 

= ~d• log 13 A a 1~ = �88177 log ] 3 r =J* (oo) (3) = P*7~* (&o) (3) 

=7~(o). or a*~*(/b~) "* b) 

Take mEP-I(w)~_V. Define ~=~a(m)EE• and ~ = m - ~ e E ( a ) .  Since lv~E(a) ,  the 

image y =P(~) exists in P(E• I f  z EP(E• take 3 eP- l (z )  �9 Then  

6 ~ -  692907 Acta mathematica. 123. Imprim6 le 19 Sep~. 1969. 
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I I~o(~) :wl I= IS^a^~I_ Ia^sA~I_IsA~I  I~1 ll~:ulllaA~l IsAal Ir~l- Isl I~1 -Isl I~1 I~1- ~]-[-~=ll~-:ull Ilalwll. 
Moreover, 

P * ~  (~o(Z)) (to) = �88 log [a A ~ A ~]~ = ~ d ' d  log 1~ A ~l ~ = P*q)o(Z) (~) = P*j*~o(Z) fro). 

Therefore  %(ao(Z)) = j*r if zeP(E• 

Hence o'*:~*(hgbp.n_~) (z) = g(llz : yl] 2 []a : w[[ 2) j* (I)o(z) (y) j* (cb0.,-v) (z). 

Now, Lemma  2.4 implies 

' L  
w,[h]+) W(n-p) ~_.,of(ll~:wll')Cg(,,)(w)Co,.,-,(u) 

i f . _  ,) ,p<~.<~))o(l[ z: yll' Ila: wll ~) i* (r (y) i* (~o.,-,)(~) W(n 

(s - q)f~ g(~ II~: wll') e o ' d r  j: (~g) (y) 

;o = ( s - q )  g(~lla:wll:)~'-:-'d~ **  

Io = (s - q) g(~ I[a: wll') e - : - '  a~ r  (a) (w) 

because Qa (w) = ~a (P(eo)) = P(~a (YO)) = P(t)) = y, q.e.d. 

Taking q = 0 and g ~ 1 implies 

Le t  h : G~ (V) -> (3 be a funct ion on the Grassmann manifold with p ~> 0. Define the 

average by  

L~(h) = 1 je  h~bp.ap 
W (n, p) ,(v) 

if this integral  exists. Obviously, L~(1)= 1 and Lo(h ) =L(h).  As L, also Lp extends  from 

functions to forms. 

T H ~ O a ~ M  2.6. Let h: Gp(V)-~(~ be a measurable /unction. Suppose p>~l. Suppose 
that L~(h) exists. Then 

L~(h) = L~_a (q~ [h]) 

_ 1 / "  L~(h) _l, pCh o 3T) 9T*C~)l~,dp) A %~(~p-l.~). W(p) W(n, P) 
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Proo/. Assume at  first t ha t  h/> 0. Lemma 1.2 implies 

JJ ~p-- l,p 

Hence the  integral  over F~_I.~, exists. I n  the  general ease, the existence of L~(h) implies 

the  existence of L (Ih[I. Hence is integrable over F~_L,.  

Therefore, the integral  ident i ty  holds for general h. Theorem 1.3 implies 

L,(h) W(p)W(n,1 P) flZ,_l.• (h 0 :r~) 2g*(~p. dp) /~ T*(~)p- l .P)  

1 
fF  (he ~) ~*(tS~-l,d~_l) A ~*(tbp ~_p) W ( p ) W ( n - p )  ~_~,, 

- -  W(p)W(n,W(n-P)p) &~-~.ap-~= W(n-p)W(n' p - 1 )  p) 

I f  h = 1, then  L~(1) = 1 and  Lp_I(F~[1]) =Lp_i(1 ) = 1. Therefore, 

W(n, p) W(p) = W(n, p -  1) W(n-p )  

and  L,(h)=L~_l(cf~[h]) , q.e.d. 

Of course, Theorem 2.6 extends  to  differential forms on a manifold depending on 

a E Gp(V) as a parameter .  

PROPOSlTIOI~ 2.7.(1) The volume el the Grassmann mani/old G~(V) is 

W(n,p)=~(~+z)(n_~) p! ( p - 1 ) !  ... 1! 
(n-p)!  ( n - p +  1)! ... n!" 

The degree o/the Grassmanu mani/old G~(V) as an algebraic subvariety o/P(V[p + 1]) is 

p! ( p - 1 ) !  ... 1! 
( n -  p)! ( n - p +  1)! ... n! ((P+ 1) ( n -  p))!. 

Proo/. The assertion is correct for p = 0  as is well known (see also Lemma 2.1). Sup- 

pose the assertion is correct for p - 1 < n. Then 

(1) The degree of a Grassmarm manifold is well known. See Hodgo-Pedoe [4], p. 366. If A is 
an algebraic variety of pure dimension g, then (1]W(q)) ~A/50,q is the degree of A. See Thie [12]. 

7--692907 Acta mathematlca. 123. Imprimd le 11 Septembre 1969. 
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W ( n ,  p )  = - -  
w ( n - p )  

W(p) 
W(n,p_l)=~(n_p+~)+(n_v)_ ~ p! ( p - - I ) !  ... I!  

( n - p ) !  ( n - p +  1)! . . . h i  

= 7 ~ ( p + l ) ( n _ p  ) p! . . .  1 !  

( n - p ) !  ... n! 
q.e.d. 

Lemma  2.5, Theorem 2.6 and Lemma 2.4 imply immediately:  

PROPOSITION 2.8. I /  q>~O and n>p>~O with s = n - p ,  then 

q - -  q - -  - -  q L~ ((1)p) - L~_I ( ( I ) p - 1 )  - - - - .  - -  Lo ((I)0) = b)8 
A 

L~ (A,) = s/bo.,. 

L E M M A 2.9. Let q be an integer with 0 <. q < n - p = s. Take a E Gp_ 1 (V) and w E P(V) - 

J~(a). De/ine h by h(z) = log Hz : w H-s (i)q (z) (w). Then 

q~[h] (a)= ( s ~ q +  log ~ )  dP~-i(a) (w). 

Proo]. Apply  Lemma 2.5 with g(t)=log (l/t). Then  

fo  ~ 1 1 1 ( s - q )  l~ vi'a:wi'~~-q-id~=ll II s - q  + l o g  ila:wH ~ . q.e.d. 

LEMMA 2.10. Let q be an integer with O < . q < n - p = s .  

log ]lz : w]l-s (i)pq (z) (w) i / z  e G v ( V) and w e P(V) - E(z). Then 

P 1 
L~(h)=  Z - - ~ b 8  on P(V). 

u = o s - q + #  

De/ine h by h(z, w)= 

Proo[. At first, the  case p = 0 shall be proved.  Lemma  2.4 with g(t) = log (l/t) implies 

1 1 ( 1  -T)n-l-qdvib~=n_ q L o (h )=L(h )=(n -q )  l ogv  

Now, assume tha t  the assertion is correct for p - 1. Then  

Lv(h)=Lp l(q~[h])=Lv_l ( ( s - - ~ +  log ~ )  dP~_l(a) (w)) 

1 p -1  1 P 1 
- b)8+ ~ b32 = ~. - -  53~), q.e.d. 

s - q  ~= = o s + l - - q + #  ~,=o s - - q + #  

THEOREM 2.11. I /  O<~ p < n  and s = n - p ,  then 

4s ,=I +,=o ~ &o.~-1. 
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Proo[. Lemma 2.10 implies 

(,  1 - ,  ~  - -  ~ (I)~ (a) A b)~ -~ -  1 b~f) A 
u llw:all  ~ - 

= 4s ,=1 ~,~o ~ ~)OoS-1, q.e.d. 

Since G~(V) is a symmetr ic  space and  the  non-negat ive form Lh(As) is invar iant  under  

all isometries, it can be concluded a priori t h a t  

Lh(A~) = Kb)o, ~-1 

where K is a non-negat ive constant  which could be infinite. The importance of Theorem 

2.11 consists of the  fact  t ha t  K < ~ .  

3. The First Main Theorem 

Let  /: M - ~ N  be a holomorphic map  of a pure m-dimensional complex manifold into 

a pure n-dimensional complex manifold with m ~> n. The rank  of / a t  z is defined by  

r :(z) = m - d imz/ - l ( / ( z )  ). 

The set {z [r : ( z )<p}  is analyt ic  (1) for each integer p.  The set 1):= {z [ r : ( z )<n}  is called the 

degeneracy o f / ,  a n d / ( 1 ) : )  is a set of measure zero (even almost  th in  set) in N. A point  

z EM belongs to  M - D :  if and  only if an  open neighborhood U of z exists such t h a t / [  U is 

open. Hence,  the  multiplicity(s) ~,f(z) of / a t  z E M - D :  is defined. The map  / is said to be 

regular at  z if its jacobian matr ix  a t  z has r ank  n. The set R:  of regular points of / is open 

and  contained in M - Dr. Moreove r , / (M - R:)  is a set of measure zero by  Sard 's  theorem. 

Obviously, vf(z) = 1 if z E R:. The set M - R :  is analytic.  

Let  g be a complex vector  space of dimension n + 1 > 1. Le t  M be a pure m-dimensional 

complex manifold. Le t  s be an  integer with O<s<~m and  O<s<~n. Define p = n - s  and  

q = m - s .  L e t / :  M-~P(V)  be a holomorphic map.  Define F = F ~ = / * ( F 0 .  r) by  

F = {(z, a ) E M  x Gr(V)[/(z)EJE(a)}.  

Then  F is a smooth,  complex submanifold of M • G~(V) with pure dimension m + p ( n  - p ) .  

The projection a: F-~  M is a surjective, proper, regular, holomorphic map.  (s) A holomorphic 

(1) See Remmert [5]. 
(2) See [8]. 
(s) For the proof of this and other results mentioned here, see [10]. 
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ma p  [: F -~P0 .  ~ is defined by  ](z, a)=(/(z), a) with v o ] = / o a .  Define ]=z~o/:F-+G~(V) 

as the  projection. Then  
(~: f - l (a )  ~ 1-1(1~(a)) 

is biholomorphic for every  a GGj,(V). The following commuta t ive  diagram is const ructed 

1: .$' ~'Fo,~, , (;AV) 

(~ 

M P ( v )  

The map / is said to be general of order s at  z E M for a E G~(V) if and  only if open neigh- 

borhoods U of z in M and  W of a in Gu(V) exist such tha t  dimx/-X(E(y)) = q for all x E/-I(E(y)) 

with y E W, which is the  case ff and  only if (z, a) E M • Gp(V) - D]. The map is said to be 

general for aEG~(V) if and  only if / is general of order s for a at  every  point  of ]-l(E(a)), 

which is the case if and  only if aEGv(V) -f(D]), i.e., for almost  all a. I f  / is general  a t  zEM 

for aEGv(V), the intersection number  is defined by  vT(z)=vi(z, a)=vT(z; a) if ( z , a ) E F  

(i.e., (z, a )EF-D];  i.e., /(z)eB(a)) and  by  vT(z)=vf(z; a ) = 0  if (z, a)(~F (i.e., ](z)$$(a)). 

Obviously,  the support  of v7 i s / - l (E(a) ) .  

I f  p = 0 ,  then  o, v and ~ are biholomorphic and  vs(z; a) =v](z, a) if (z, a) E.F-D]; i.e., 

z E (M - D~) N/-l(J~(a)). 

Now, it shall be assumed t h a t  a non-negat ive exterior form g of bidegree (q, q) and  of 

class C 1 is given on M such t h a t  d Z = 0  on M. Assume fur ther  t ha t  M is connected.  

Let  H be an  open subset of M. A pure ( 2 m -  1)-dimensional oriented real manifold S 

of class C ~ with k ~> 1 is said to be a boundary mani/old of H if and  only if 

1. S is a relative open subset of H - H  with the induced topology. 

2. I f  aES, then  a n  open neighborhood U of a in M and  connected neighborhoods 

U" of 0 E R m-1 and  0 E R and  orientat ion preserving diffeomorphisms ~: U-+ I x U" 

and  fl: UN S-+U" exist such t h a t  a(a)=O and  

~(z) = (g(x), fl(x)) for x E U 

U N H = {xe GIg(x ) <0} 

v n s = {xe  v lg(x) = 0}. 

The collection B = (G, F, g, 7, v2) is said to be a bump on M if and  only if G and  g are 

relative compact,  open subsets of M with y c  G where F = G - G and  7 = g - g  are boundary  
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manifolds of G, respectively 9. Moreover, yJ: M-+R is a non-negative, continuous function 

on M with maximum R > 0 such that  ~ ] ~--  R and ~0 ] (M - G) -- 0 and such that  ~01 (G - g) 

is of class C ~. 

Then, dr /and d• exist on G - g  and are understood to be the limits from the interior 

on the boundary. For any such bump, define the spherical image of order s by 

At(G) = A~,r(O) = ~ )  /*(SJo.~) A Z (12) 

and the characteristic of order s by 

'L TI(G) = T.,I(G) = ~ ~01*(~b08) A 2f. (13) 

If aEG~(V) and if / is general of order s at every point of G f~ ]-l(~(a)), define the 
counting function of order s by 

ni(G , a) = fav~g  with Ga=G N/-l(JE(a)), (14) 

the valence/unction of order s by 

NI(G, a) = fa yrv~Z, 

the proximity/unction of order s by 

mi(F , a) -- _ ~ 1  
W(s) fr/*(AS(a)) A d• A Z, 

the proximity remainder of order s by 

mAr, a)=w~- ) /*(As(a)) A d ' ~  h Z, 

and the de/ieit of order s by 

1 Iq_ j . (A~ (a)) DI(G , a)= ~ )  . A dd• A g. 

(15) 

(16) 

(17) 

(18) 

All these integrals exist, and their integrands--with the exception of (18)---are non-negative. 

Observe that  [(a-l(G)N D]) is the compact set of measure zero of all aEG~(V) for which ] 

is not general of order s at some point of G N/-l(E(a)). Hence, all the integrals (14) to 

(18) are defined on G~(V) with the exception of a compact set of measure zero. If  / is general 

of order 8 at  all points of G N/-1($(a)), then 

TI(G ) = NI(G, a) +mi(I TM, a) --mi(~, a) --DI(G, a) (19) 

which is the First Main Theorem. 
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These results have been proved in [10] under a slightly stronger assumption. However, 

the results as s tated here are obtained exactly the same way, only the neighborhood A 

in the proofs of Theorems 4.3 and 4.4, in the case a E H  A ]-1(/~(0r has to be taken so small 

tha t  dimz/-l(i~(x))=q for all zEA N [-1(i~(x)) with x in some neighborhood of g. This is 

possible by  assumption. 

Let  B=(G, F, g, y, ~p) be a bump. For O<~r<~R, define 

G(r) = (z e M [ R -~o(z) < r) 

F(r) = G(r) -G(r). 

Then g _  G(0)c G(0)c G(r)~ G(r)~ G(R)~_ G 

for 0 < r  < R, where g +G(0) and G(R)+G may  be possible. However, g = G(0) and G(R)= G 

if 0<v2(z)<R for z e G - y .  Define ~p[r]=r-R+~o on G(r) and ~p[r]=0 on M-G(r ) .  Then 

B(r) = (G(r), F(r), g, y, ~p[r]) is a bump if d~p + 0 on ~p-l(R - r) N (G - g), which is true for almost 

all r in 0 < r <  R by  Sard's theorem. Then definitions (16) and (17) make sense for all those 

values of r, whereupon definitions (12), (13), (14), (15) and (18) make sense for all r in 

O<~r~R. 

LEMMA 3.1. Let B=(G,  F, g, y, ~p) be a bump. Let S be a pure k dimensional analytic 

subset o/G. Let q9 be a di//erential /orm o/bidegree (k, k) on G, which is integrable over S. Then 

o<r< R, (20) 

f o n s y q ~ = f ~ n z f d t .  ,21) 

Proo/. At first, assume tha t  ~ is non-negative at  all simple points of S. Define 2(z, t) =s 

if R -~p(z) ~ t, and define 2(z, t) = 0 if r - R +~p(z) > t. Then 

f ~ ( z ,  dr= - R +  t) r ~p(z). 

Hence, 

In  the general ease, define/~+(z) = 1 (respectively/~-(z) = 1) if ~ is non-negative (respectively 

negative) at  the simple z of S. At all other points, define/~+(z) =0 (respectively/~-(z) =0). 

Then ~ =~u-~0 +/~+~ on S, and (20) holds for/~+~ (respectively~u-~); hence by  addition for ~. 

Now, (20) implies (21) because ~o(z)=0 if zEG-G(R) ,  q.e.d. 
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If Lemma 3.1 is applied with S = G  and qJ=/*(ibo.s) N Z, then 

;o TAa(r ) )=  A1(t)~ for O<r<R 

TI(G ) = TI(G(R)) = f : A1(t) dr. 

If Lemma 3.1 is applied with S = G  N f l (E(a))  and q =v~g, then 

fo lgAa(r), a) = ~At, a) dt 

NAG, a) = f :nA t ,  a) dr. 

Obviously, A s and Nf(G(.), a) are increasing functions continuous from the left if D-  is 

the left derivative. Then 
D-TAG(r) ) =AAG(r)) if O<r<R 

/ ) - N A G ( r ) ,  a) - -  nAG(r), a) if 0 < r <~ R. 

Let B = (G, g, F, y, ~p) be a bump. The average proximity/unction of order s is defined 

by 

1 1 f r , g  5 /zI(17)=/zs'I(F)=2z~ W(s-1)  / ( o.s 1) Ad •  

The average proximity remainder of order s is defined by 

1 1 fy /~s(Y) =/~,r(Y) = 2~r W(s-  1) 1"(/5o.s-1) A d• A Z. 

The average de/icit of order s is defined by 

A'((7) = A"r(G) = ~  1 ~ W ( s  - 1) _j*(tb0.8-1) ^ dd• A Z. 

Obviously,/~r(F) and gI(~) have non-negative integrands. Stoke's Theorem implies 

If u is a continuous form of bidegree (1, 1) on G-g ,  define 

Dr(O, a, u) = _al*(A(a)) A u A g. 

(22) 
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This integral exists according to [10] Lemma 3.5. Define 

Af(G,u)=As1(G,u) 1 1 fa  J*('d~o.s-1) 2~ W(s - 1)  - A u A Z .  

The integrands of both of these integrals are non-negative. 

For s ~> 1 and p >/0, define 

e~, = �89 _ l,=o ~' + #" 

THv.oav.~ 3.2. Let/:  M-~P(V) be a holomorphic map of the connected, re.dimensional, 

complex manifold M into the projective space P(V) o/the (n + 1).dimensional hermitian vector 

space V. Let 0<e~<n and O<s<~m. Define p = n - s  and q = m - s .  Let g be a non-negative 

form of bidegree (q, q) and class C a on M with dz=0 .  Let B=(G, F, g, ~, ~) be a bump on M. 

Then 

W (n, ~ 
T~f(G) = Lp(NI(G, . )) ( NI(G, a) ib~.~ , (23) 

'L %"lusr(I')=L~(mf(P")) W(n,p) ,(v) m~(I''a)ib~'~' (24) 

l fop) %,/~f(p) = L~ (mr(r,.)) = W(n, , (mr (  r, a) ~bp.ap, (25) 

e~+%~(G)=LADA(7, a))= 1 fa  DAa'a)tb"d" (26) W (n, p) ,(v) 

1 
fa  Dr(G, a, u) ib~.av (27) %~A~I(G'u)=L~(Dr(G'a'u)) W(n,p) p(v) 

for every continuous form u o/bidegree (l, 1) on G - g .  

Proof. At first, assume that  u is a continuous non-negative form of bidegree (1, 1) 

on G - g .  Then f*(A(a))A U A Z ~ 0 on G--g. Hence 

L,(DI(O, a, u)) = W (n, _j*(A, (a))/x u A g/~.~,(a) 

1 
- W(+) f a _ ~ ( ~  fa,(,~r(A+(a))t~"~(a)) ^ u ^ x  

' f . ' ( '  Io ) =W(+) _7,1 W(-n,p) ,(A,(a)~,.~,(a) ^u^:~ 

1 I f  2~ a . c,J*(goo.,_~) a u ^ ~, = c,, A~(O. u). 
WO) 
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Now, let u be any continuous form of bidegree (I, I) on G-g. Introduce a Hermitian 

metric on M. Let v be its exterior form of bidegree (I, I) with v>0. A constant K>0 

exists such that  q~ = u + Kv > 0 on G - g .  Then 

LT(Dr(G, a, ~)) = cTsAr(G, ~), 

JL~(D~(G, a, v)) = %sAt(G, v), 

LT(DT(G, u)) = L~(DT(G, qJ)) - KLT(DT(G, u)) = %~Ar(G, ~)  - %~KAs(G,  v) = %.As(G,  u), 

which proves (27) and implies (26) with u=dd•  

The mean value of the proximity form and proximity remainder is obtained the same 

way, observing that  their integrands are non-negative. Now, (19) and (22) imply (23), 

q.e.d. 

Differentiation implies 
AI(G(r)) = LT(nI(G(r), a)) 

for O < r ~ R .  If 0 < ~  on G, then G(R)=G and 

A~(G) = LT(n~(a, a)). 

(Using integration over the fibers, this could be proved directly, so providing an alternative 

proof for (23).) 

Let  N be a subset of M. Define 

I~(N, /) ---- In(N ) = {a E GT(V) ]](N) N ~(a) :~ 0}.  

Obviously, I~(N)=f(a-l(N)).  Therefore, if N is compact, then IT(N ) is compact. If  N is 

measurable, then IT(N ) is measurable. If N is measurable, define 

bs(N) =b~.~(N) 1 ( ~T.~. 
W (n, p) ,I r~cN) 

Then 0 ~< bi(N ) ~< 1. Moreover, 1 - bs(N ) is the measure of the set (a e GT(V) ]/(N) fl ~(a) = 0}.  

Hence, bi(M ) = 1 if and only if/-1(1~(a)) 4 0 for almost all aeqT(V ). Observe 

b~(N~) <~ bs(N~) ~ b1(M ) <~ 1 
if N~___ ZT~___ M. 

PROPOSITIO~ 3.3. The assumptions o/ Theorem 3.2 are made. Moreover, let u be a 

continuous, non.negative/orm o/bidegree (1, 1) on G - g  with dd• A g~<u A %. Then 

(1 -bs.r(G)) T,I(G ) <~ %~(A~.r(G , u) § 

Proo/. The first main theorem implies 

NI(G,a ) <~ TI(G)§ D~(G, a, u)-{-mIO,, a) 
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for  a lmost  all a G G~(V). Now 

f,, i f~;Vr(G'a)~"~,=Tr(G)' 1 2VI(G, a) &p.d~ W(n, p) p(v) W (n, p) (~) 

l f,, l f a  Dr(G,a,u)~b,.d=c,~A,(G,u) ' W (n, p) (a)Dr(G, a, u) o)p.dp < W (n, p) p(v) 

'L 1 mI(7, a) ~bp.e, ~< mI(7, a) ~bp.a, = %s/~I(7). 
W(n, p) (G) W(n, p) ~(v) 

Hence,  TI(G ) <~ bi(G ) TI(G ) +%~AI(G, u) + %~/~(7), q.e.d. 

Now, divide b y  TI(G ) and  let G exhaus t  M. Then  an  es t imate  of 1 - bf(M) is obta ined.  

This will be done in the  nex t  section. At  first, a condit ion will be given which implies 

Tf(G) > O. 

L~MMA 3.4. Let B = ( G ,  F ,g ,~ ,v2)  be a bump on M. Suppose that an open subset U 

o / G  exists such that YJZI U > 0 .  Suppose that aEGv(V ) and zoE U with [(Zo)EE,(a ) exist such 

that ] is general o[ order s at z o/or a. Then At(G ) > 0  and TI(G ) >0 .  

Proo[. An open neighborhood U o of z o wi th  0 o_~ U and an  open neighborhood Uo of 

a exist  such t h a t  ][ W 0 is open with W o = F fi ( U o x U0). Here  (Zo, a) e W o. An open neighbor- 

hood W 1 of (z0, a) wi th  W1--- W0 and a biholomorphic m a p  a: WI-~ W~ onto an  open subset  

of C m+~(n-~) exist  wi th  ~(Zo, a ) = 0 .  Then  a ball  W~={$ eCm+~(n-~)[ ]3] < r}  e x i s t s w i t h 0 < r  
--1 t and  W~___ W~. Define W 2 = a (W2). Then (Zo, a) E W 2 _~ W2 --- W1- Moreover,  

F z = a ( / - l ( x )  [~ W2)c_/ - i ( j~(x) )  N V 0 for xE Uo. 

[9], Theorem 3.9 implies t h a t  the  fiber integral  

is continuous on U~. Because z o e F~ 4 0 ,  the  integral  L(a) is positive. Hence,  a neighborhood 
t 

U~ of a and  a cons tant  c > 0 exist  such t h a t  L(x) >~ c > 0 for x E Uz. Define 

1 
j r |  tb~ ~p > Cl W (n, p)  " O. 

Because v2g I U>O, a cons tan t  r wi th  O<~r<R exists such t h a t  R -v2(z) < r  for zE 0 o, where 

00 is the  compac t  closure of U o. Hence,  0o___ G(r), which implies 

nI(G(r),x)>~L(x)>~c for  xEU~ 



and 

Moreover, 

VALUE DISTRIBUTI01~ OF HOLOMORPHIC MAPS INTO THE PROJECTIVE SPACE 109  

1 f ~  n~(G(r), x) ~b~.~ >1 clc > O. Af(G) >1 A~(G(r)) - W(n, p) ~(v) 

f/ T~(G) = T[(G(R)) >1 A~(G(t) dt >1 (R - r) A~(G(r)) > O. q.e.d. 

4. E~idis t r ibut ion  

Let M be a connected, noncompact, complex manifold of dimension m. Let N be a par- 

tially ordered set, such that  for each r l E N  and r~EN an element r3EN with rl<~r 3 and 

r~ ~< r 3 exists. Then N is a directed set. The net ~ = (Br}re N is called an exhaustion ]amily 

of bumps if and only if 

1. The index set N is directed. 

2. For each t E N ,  the collection Br=(G . Fr, g, 7, Vr) is a bump where g and ? are the 

same for all r E N. 

3. For every compact subset K of M, an element rKEN exists such that  ~0r(Z)>0 

if z E K  and if r>~rK. (Especially G r ~ K  for r>~rK.) 

A family ~ = (ur}~ N is said to be a ma]orant to ~ if and only if 

1. Each u~ is a non-negative continuous form of bidegree (1, 1) on Gr-g .  

2. An element roEN exists such that  UrAZ>~dd• on Gr -g  if r>~r o. 

THEOREM 4.1. Let M be a noncompact, connected, complex mani/old o] dimension m. 

Let ~ = {Br}re N be an exhaustion/amily o/bumps,  and let ~{ = (u~}r~ be a majorant to ~ .  

Let V be a hermitian vector space o/dimension n + l .  Let m - q = n - p  =s >0  where p and q 

are non-negative integers. Let ] : M  ~ P(V) be a holomorphic map. Let Z be a non-negative 

/orm o/bidegree (q, q) and o] class C 1 on M with d Z = O. Suppose that an open, relative compact 

neighborhood U o / z  o e M and a e G~( V) with ](Zo) e J~(a ) exist such that Z I U > O, and such that ] 

is general o/order s at z o/or a. 

Then roEN exists such that Ts.f(G~)>O i/ r > r  o and t E N .  Define the total de/ect by 

r~N Ts, I(G~) 

Then 1 - bs.I(M ) <~ %s~s,r. 

Proo/. Because 0 is compact, roEN exists such that  ~ ( z ) > 0  for zE U and all tEN 

with r>~r o. Then ~ Z I  U > 0  for t E N  with r>~r o. Lemma 3.4 implies T~,f(G~)>O if r>~r o, 

Hence, ~ . r  is defined. Proposition 3.3 implies 

1 - bs.i(M) <~ 1 - bs.r(Gr) <~ %8 Ar(Gr' u~) + 1~.I(~) 

Hence, 1 - b~.~,(M) ~ c~ (~f q.e.d. 



110 W'm~ELM STOLL 

R v.M ARK 1. The average proximity remainder l~8. r (7) may depend on r, although the nota- 

tion does not show so. 

REMARK 2. I] ~sf=O, then ](M) intersects E(a) /or almost every aEG~(V). 

REMARK 3. Theorem 4.1 and the equidistribution theorem stated in Remark 2 are not too 

signi/icant unless the exhaustion/amily ~ and the majorant 9~ can be chosen in a reasonable 

way such that A~.f(G(r), ur) can be better interpreted. This shall be done now in speci/ic cases. 

1. CASE: The order s = 1. (1) Here it is assumed that  g is positive definite form of class 

C ~ and bidegree ( m - l ,  m - l )  on all of M. Take an open, relative compact subset g of M 

with Y = g - g  as boundary manifold of class C ~ such that  each component of M - g  is not 

compact. Let N be the set of all open, relative compact, connected subsets of M with 

F = G - ( 7  as boundary manifold of class C ~176 such that  G D ~. Then N is a directed set. For 

every GEN, a function ~c of class C ~176 on G - g  exists such that  ~ a l T = l  and ~ a ] F = 0  and 

dd• A Z = 0 on G - ~  because this is the Dirichlet problem of an elliptic differential equa- 

tion. Each component of G - g  has boundary points on F and on ~. The maximum principal 

implies 0 <~a(z) < 1 for z e G - ~ .  Define ~a = 0  on M - ( 7  and ~a = 1 on g. Moreover, 

c ( o )  = ~ d •  A Z = ~ d •  ^ Z > 0. 

Define R(G)=I/C(G) and yJa=R(G)q%. Then Ba=(G, F, y, y, v2a) is a bump with~u1(F) = 

jur(7)=l and Dr(G, a)=0. Moreover, !~={Ba}a~N is an exhaustion family of bumps with 

2={ua}a~N as a majorant where u a = 0  for all OeN.  

Le t / :  M-~P(V) be a holomorphic map into the projective space of the hermitian vector 

space V of dimension n + 1 > 1. I t  is no loss of generality to assume tha t / (M)  is not contained 

in any linear projective subspace of codimension 1 because the case of a constant map is 

uninteresting, and otherwise one can consider a lower dimensional projective space as 

image manifold. Since [(M) dg E(a) for each a E G,_I(V), [ is general of order 1 for every 

aEG,_I(V ) at every zEM. Define 

T~(M) = sup { Tu(G) [ G e N  } <- ~ ,  

R(M) = sup {R(G) I G e ~  } < ~ .  

Because {T,(G)}a~M and {R(G)}a,M are increasing nets, they converge to T~,t(M ) respec- 

tively R(M). By Lemma 3.4, TII(M ) >1 T~(G) >0  ff GeM.  According to [7], T~(M) = ~ if 

R(M) = ~ .  Obviously, 

(~) See [7] and [10], pp. 183-184. 
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Cn_l,l= 1 ~  --1 . 
v=l~ 

Hence, the following result has been established. 

THEOI~EM 4.2. Under the assumptions o/this case, 

1 - bl . f  ( M )  <~ 1 
1 1 

~ 1 ~ T l r  ( M )  

i/ Tls(M ) < c~. I] TLs(M ) = c~, which is always the case i/ R(M) = ~ ,  then bir(M ) =1 ,  

meaning that ](M) intersects E(a) ]or almost every a EGn_I(V ). (Observe that G~_I(V ) is 

isomorphic to P( V*).) 

The other cases use an  exhaust ion funct iom Again, let M be a connected,  noncompact ,  

complex manifold of dimension m. A proper map  h: M - ~ I t  of class C ~ with MinxEMh(X ) =0 

is called an  exhaust ion function. For  r > 0, the sets 

G~=(xEMIh(x)<r},  F ~ = ( x e M i h ( x  ) = r }  

are not  empty.  Gr is open and  relative compact  and  Pr is compact .  For  every compact  

subset K, a number  r K > 0 exists such tha t  Gr ~ K for all r/> rK. Define E~ = {x e M i(dh)(x) = 

0}. Then  E~ =h(Eh)  is a set of measure zero in It. I f  0 < r E  t t - E ~ ,  then  Fr = Gr-G~ is a 

boundary  manifold of class C w of G~. Take 0 < r o E t t  - E~. Define g = Gro and  ? = Fro. For  

~'>r0, define ~0~: M - ~ I t  by  ~ r = 0  on M - G ~  by  ~pr=r-h on G~-g and  by  y ~ = r - r  o on g. 

Obviously, ~fr is continuous and %[ G r - g  is of class C% On G r - g ,  

dQpr = -dh ,  dd-t~o = dZ dh. (28) 

Define N={reR[ro<r~E'h} .  For  each rEN, 

B ~ = ( G , F , g , ? , ~ )  

is a b u m p  and ~a = (Br}~N is an  exhaust ion family of bumps. 

L e t / :  M-~la(V) be a holomorphic map into the  projective space of the hermit ian vector  

space V of dimension n § 1 > 1. Take p, q, s as non-negat ive integers with m - q = n - p  = 

s > O. Le t  Z be a non-negat ive form of bidegree (q, q) and  class C 1 on M with d Z = O. Suppose 

an  open, relative compact  subset U of M exists such tha t  Z I U is positive. Suppose t h a t  

a E G~(V) and  z 0 E U with/(%) E E(a) exist such tha t  / is general  for a a t  z 0. For  r > O, respec- 

t ively rEN, write T1(r)=Tr(Gr) and  As(r)=Ar(G~) and  mi(r, a)=mi(Fr, a) and  mr(r o, a)= 

mr(?, a), etc. For  r o < r < R, observe 

Gr = (zeM] R-ro-yJn(z  ) < r - r o }  = GR(r--ro), ~oR[r--ro] =~r .  
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If rEN a n d  R E N  with  r<R,  t hen  BR(r-ro)= B r. Therefore,  

T~(r)= fr:Ar(t) dt, 

f ~.n~(t, Nr(r , a) = a) dr. 

Here ,  A I a n d  hi( .  , a) are  cont inuous  f rom the  left.  Hence ,  

D-TI(r ) =A1(r ) a n d  D-Nr(r, a)=nf(r, a) 

if r > r0, a n d  where  T I a n d  N r a re  d i f ferent iab le  a t  eve ry  r EN.  Observe  t h a t  mr(ro, a) a n d  

/xr(ro) are  i n d e p e n d e n t  of r because  of (28). Observe  t h a t  r lEN exis ts  such t h a t  ~ c  Gr 

if r >~ r r Because ~ > 0 on Gr, also YJrZ I U is posi t ive  for r ~> r r Hence  Ai(r ) > 0 if r >~ r 1 a n d  

Tr(r)>~(r-rl)Ai(rl)>O if r>r  r 

Consequent ly ,  T1(r ) -~ oo for  r ~  oo, even 

l im TI(r) > O. 
- -  r 
r --~oo 

2. CASE: Pseudoconcave mani/olds. Here  i t  is a ssumed  t h a t  an  exhaus t ion  func t ion  h 

on M exis ts  such t h a t  i ts  Levi  form d'dh <~0 is nega t ive  outs ide a compac t  set  K.  Suppose  

t h a t  such a n  exhaus t ion  func t ion  is given.  Obviously,  r 0 can be t a k e n  so large t h a t  K _  Gr~ 

Const ruc t  ~ h  wi th  th is  n u m b e r  r 0. F o r  each rEN, define u~ = 0  on G ~ - g .  Then  2 = {u~}~N 

is a m a j o r a n t  a n d  Asr(Gr, u r ) = 0 .  Because Ts.r(r)-->oo for r -+cr  a n d  because fts. r ( r0) is  

cons tan t ,  ~s . r=0 .  Hence ,  Theorem 4.1 implies:  

THEOR~.M 4.3. I / M  is pseudoconcave and i/the assumptions o/this case are made, then 

](M) intersects E,~(a) /or almost every a G G~(V). 

3. CAsv.:  Pseudoconvex mani/olds. Here  the  exis tence  of a n  exhaus t ion  funct ion  h on M 

wi th  d'dh>~O outs ide  a compac t  set K is assumed.  Suppose  such a n  exhaus t ion  func t ion  

h is given.  Cons t ruc t  ~ h  wi th  r o > 0 so large t h a t  K _  g = Gr,. Then  dd'~p~ = d • dh ~ 0 for r E N.  

Hence  9 /=  {dd• is a m a j o r a n t  wi th  

1 fa, o/*(ib~ A d'dh A A~'r(r) = A~'r(r '  ddX~~ -~ 2:tW(s - 1) _ g. 

Because T~,i(r)~ r for r-~ c~, a n d  because/x1(r0) is cons tan t ,  Theorem 4.1 implies  

TH~.ORV.M 4.4. I f  M is pseudoconvex, if h is a pseudoconvex exhaustion and i/ the 

assumptions of this case are made, then 
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1 - b,.r(M ) ~ %~(~f = %s lim As'1(r) 
T-.oo T, ,1(r)"  

I / (~ i=O,  then/ (M)  intersects JEv(a) /or almost every aEGv(V). 

4. CASE: Stein mani/olds. (1) I f  and  only if M is a Stein manifold, then  an  exhaust ion 

funct ion h exists with d• on all of M. Hence,  Stein manifolds arc pseudoconvex, 

and  Case 3 applies. However,  a bet ter  in terpreta t ion can be given on Stein manifolds by  a 

convenient  choice of Z- Therefore, let M be a Stein manifold and  let h be an  exhaust ion 

funct ion on M with d• > 0. The couple (M, h) is called a Levi mani/old. Construct  ~h  and  

= (dd• as in Case 3. Observe t h a t  d• defines a K~hlcr  metric on M. For  each integer 

e in 0 ~< e ~< m, define 

1 
Z~ = ~.. d• dh A ... A d• dh (e-times) 

where Xo = 1. Then 

1 q + l  f a  hs'I(r) -- 2ze W ( s -  1) , -  g/*(~O, , -1)  A Zq+l 

1 f a , / 5  where As.1(r) = ~ )  ,/ (o.~) A g. 

For  s = 0, define Ao.v (r) = M (r) = f a, Y'm 

as the volume of G~ in the Kiihler metric d• Then 

q + l  q + l  
As, f(r ) = ~ -  As-i . I(r)  - ~ -  As-l.r(ro) �9 

Therefore, up to  an  addit ive and  a multiplicative constant ,  the average deficit of order s 

equals the  spherical image of order s -  1, i.e., the derivative of the characteristic of order 

s - 1. This gives a ve ry  instructive in terpreta t ion of the average deficit on Levi manifolds. 

Because T~. i(r)--> ~ for r-+ co and  because juT(r0) and As_l. r(r0) are constant ,  also the total  

defect receives a new interpretat ion:  

- -  A s ' f ( r ) - q q - 1  l~m As- i ' f ( r )  q + l  ~ T~-l.r(r) 
58r=limr-~ Ts.r(r) 2~ ~_~r162 Ts.r(r ) 2z~ T-~oo Ts. f (r)"  

T e N  

THEOREM 4.5. Let (M, h) be a Levi mani/old. Under the assumptions o/ this  case, 

q + l  c l=~mA~ 1.t(r) 1 -bs '1 (M)  ~< 2 ~s 
, ~ o o  " l ' ~ . , ( r )  " 

(1) For  s = n ,  see [10] 3. E x a m p l e ,  pp.  187-189.  
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Hence, i/ As- l ' r (r )  ~0 /or r ~  oo, 
Ts.1(r) 

t h e n / ( M )  intersects ~(a) /or almost every a E G~( F). 

Observe t h a t  if s = 1, t h e n  A0.r(r ) =M(r)  is the  volume of Gr, a n d  th is  resul t  should  be 

compared  wi th  Theorem 4.2. 

Observe t h a t  Theorem 4.5 depends  on M,  h, V , / ,  p a n d  the  he rmi t i an  met r ic  on V 

only,  and  t h a t  i t  is express ible  wi th  s impl ic i ty  in expl ic i t  in t r ins ic  te rms.  0 n l y ,  t he  choice 

of h is no t  canonical ,  a n d  the  ques t ion  r emains  as to  how the  t h e o r y  depends  on the  choice 

of h on Ste in  manifolds.  

Observe t h a t  Theorem 4.5 general izes  a resul t  of Chern [2]. Also, the  resul ts  of B o t t  

a n d  Chern [1] concerning equ id i s t r ibu t ion  of the  zero sets  of sect ions can be ob t a ined  f rom 

th is  a n d  genera l ized  to  the  case where t he  f iber  d imensions  of the  vec tor  bundle  is smal ler  

t h a n  the  d imens ion  of t he  base  space.  
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