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1. Introduction

Generators and defining relations for the group 4, of automorphisms of a free group
of rank n were derived by J. Nielsen [11]. For n =2, this is a fairly easy task, but for »>3
it requires very difficult combinatorial arguments which have not been simplified since
the appearance of Nielsen’s paper. In order to obtain an easier approach to the investiga-
tion of A4, and a better understanding of its structure, it seems natural to study its sub-
groups.

For all n, the elements of 4, which induce the identical automorphism in the commuta-
tor quotient group F,/F, form a normal subgroup K of 4,. Bachmuth [1] calls this the

group of IA automorphisms of F,. Magnus [8] showed that this subgroup is generated by
the automorphisms
K a,~aa,a;"

a,—~>a,, kFi
and Ky a,—~> a,0;0,0; tait
a, > a,, MF1

where a,, @, ..., @, are a set of free generators of F,, and where the subscripts of each of
these automorphisms are distinct members of the set {1, 2, ..., n}. In the present paper,
we will study certain interesting subgroups of K, in the case n=3. In this case, K has a
minimal set of nine generators, as Kj; is easily seen to be K, Some, although not all,
of our results can be obtained for » >3 by the same methods.

In section 3, generators and defining relations for the subgroup K, of those automor-
phisms in K which keep two generators of the free group fixed will be presented. In section
4, generators for the subgroup X, of those automorphisms in K which leave one generator

of the free group fixed will be found. Then, in section 5, the group of those automorphisms
1 — 692907 Acta mathematica. 123. Imprimé le 9 Septembre 1969.
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which take every generator of F into a conjugate of itself will be studied. It will be shown
that this group is just C (the subgroup generated by the double indexed generators of K),
and a set of defining relations for this group will be found. In section 6, a theorem about 7'
(the group generated by the triple indexed generators of K) being free will be stated, with
some discussion of the proof. And finally, in section 7, some comments about some known
relations in K will be made, leading to some conjectures about the structure of K.

I would like to express my appreciation to Wilhelm Magnus for the invaluable advice,

help, and encouragement he provided to me during my research for this paper.

2. Notation

We will use a =a,, b=a,, and c=a; to denote a set of free generators of F=Fj.
If u is an automorphism given by au=a, bu=p, cu=y, then u will frequently be
denoted by u: (a; b; ¢) > (x; B; p) or in some contexts just by (e; f; ).
“If u, v€ A = A,, then uy means first apply » to (a; b; ¢) and then apply u to the result.
According to Nielsen [12, page 231, P, @, O, and U can be chosen as a set of generators
of A, where

P: (a; b; )~ (b; a; ¢), Q: (a; b5 ¢) > (a; ¢; b),
O: (a; b;¢)—>(a1; b;¢) and U: (a; b; ¢) = (ab; b; ¢).

The subgroup of K generated by the double indexed K,; will be called C (for conjuga-
tion) and its normal closure in K will be called N.

The subgroup of K generated by the triple indexed K, will be called T'.

F’ will denote the commutator subgroup of F.

If M and N are elements of a group, then the notation M= N means that M and N
commute.

And finally, gp <¢;, -.., g»» Will denote the group generated by g, ..., g,.

3. The group K, of those automorphisms in K which leave
two generators of F fixed
If the generators of F are a, b, and ¢, then by K, is meant the group of automorphisms
which take (a; b; ¢)—(aw; b; ¢), where w€ F'.

Clearly K,,, K3, and K, are in the group K, as is any word in these generators.

THEOREM 1. K is generated by K,;, K3, and Ke,.
The proof of the theorem relies on the following lemma.
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LeMma 1. If u: (a; b; ¢) > (w(a, b, c); b; ¢} is an automorphism of the free group F and
w(a, b, ¢) is freely reduced, then w(a, b, c) contains a exactly once.

Proof. Clearly w contains a at least once since w, b, and ¢ must be free generators for F,
which implies a€gp{w, b, ¢).

Suppose there is some automorphism in which w(a, b, ¢) contains @ more than once.
Let « be such an automorphism in which w is of minimal length.

a: (a; b; ¢) > (wula, b, ¢,); b; ¢).

Clearly w,(a, b, ¢) must begin and end in some power of a [not necessarily the same power
for the beginning and end], since if it ends in b then applying the automorphism U—¢
will result in an automorphism with a w of shorter length. [Similarly if it ends in c¢ or begins
in b or ¢t then it could be shortened.] Therefore, w,(a, b, ¢c) =afv(a, b, c)a?, where v(a, b, ¢)
does not begin or end in a. But since « is an automorphism, w,, b, and ¢ must be free gene-

rators of F and hence a=u{w,, b, ¢)—i.e.

a = wi® pav) gr@ oo WHUA A TRy

where the exponents are integers, some of which may be zero. Now w% must begin and end
in @, since F is a free group. Therefore, there can be no cancellation between wZ® and
b or ¢ where j=¢ or 4—1. Therefore, again since F is free, all ¢(¢) and r(¢) must be
Zero, 80 @ =u(W,, b, ¢,) =w}. But this can only happen if p = +1 and w, =a*'. This contra-
dicts the assumption that w, contains a twice. Therefore, the lemma is proved.

By the lemma, any automorphism in K, must take a - u(b, c)av(b, ¢) where
u(b, ¢)v(b, ¢) € F'(b, c) since we are dealing with an TA automorphism of F.

The proof of Theorem 1 now proceeds as follows: If k€K, k: a—u(b, ¢)av(b, ¢) then

u_l(K12’ K13)k: a-—>cw(b, C)u(b, C),

where by u(K,,, K;;) is meant the image of (b, ¢) in gp (K4, K,3> under the mapping
b—~K,, ¢~ K. ‘
Therefore, the theorem need only be proved for those automorphisms in K, which take
a->aw(b, ¢) where w(b, ¢)€ F'(b, ¢). Suppose in such an automorphism #,
w(b, ¢) = wy(b, ¢)cvbbw,(b, c),

where =41 and y=+1.

wy(K 1o, Kq3) k: @ ~> wy(b, ¢)aw, (b, c)c7bA.
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If f=y = —1, then apply K,,g;
if =y =1, then apply Kig' K 0, K, K ,;
ify=1,8=—1, then apply Kig' K3, K5
and if y=—1, f=1, then apply Kig' K3, K.

In any of these cases the result will be
wy(b, ) aw, (b, c)bbcr,
and. then applying w; (K, K,3) we will get:
aw, (b, )b cYwy(b, c).
Therefore, given any automorphism in K, of the form
a— aw, (b, c)c7bfw,(b, c),

multiplying this automorphism by the proper automorphism in gp (K;,, K3, K53 results
in an automorphism taking

a — awy(b, c)bPcrw,(b, c).

Continuing this process, the above automorphism can be brought into the form a—abec”
simply by multiplying by the proper elements of gp (K,,, K3, K,53>. But, since the resulting
automorphism is in K, and hence in K, p =0 =0.

Therefore, any automorphism in K, can be changed to the identity automorphism
by multiplying by an automorphism in gp (K, K3, K33, and so the theorem is proven.

Note, by the way, that any mapping taking (a; b; ¢) into (aw(d, ¢); b; ¢) is an auto-
morphism for an arbitrary w(b, ¢), since it can be generated-by U and QUQ. If w(b,c) € F'(b,¢),
then this automorphism will be in K and hence in K,;, and hence will be generated by
K5, K3, Kyps.

Now that the generators for-the group K, are known, one would like to find defining
relations. In order to do this, it is useful to introduce new generators for K, which facilitate
this process. Let

wgy, =bAcyb~lc b -rbA.

Then the wy, are free generators of F'(b, ¢). [This is a consequence of a theorem proved in
reference 6.] Let Ry, be the automorphism of F given by (a; b; ¢) going into (awg,; b; c).
By the note above Ry, is clearly an automorphism in K. Similarly, define

Lyg,: (a; b; ¢) > (wg,a; b; ©).
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Ly, =ORj} 0, 80 Ly, is an automorphism, and since it is clearly in K it is in K;. Now
K93 =Ry,, 80 K, is generated by Ky,, Ky3, By, and Ly,. The relations below (3.1) are easily
seen to be true.

Ko Rp, K15 = Rg,.

e==11
Ki2LﬂyKl—28=Lﬂ+e.y
Ry Ry ...Rp Ry i1 Bil... B3l Ry it >0
KlaRﬂny:;l: .Ro_ y+1 if ﬂ=0
R(;IIR:%,I---REiLlRﬂ, y+1Rﬂ+1_1...R~1_1R01 if ﬂ<0
Lfll L2_]_1. .o Lﬁ—]_l Lﬂ_ y+1 Lﬂl cee L21 Lll if ﬂ > 0
K3 Lgy Kig' =1Lo, y11 if f=0
LoL oy v...Lpir1Lg ysr Lgti .. L1 Lyt i <0 31)
RooR—l.O---Rﬁ-i-l.ORﬂ, y-lRﬂ__,l_l'o...R:%_oR&)l if ﬂ<0
Kl_alRﬂme: By if =0
Rl_ol...REolRﬁ_y_lRﬂo...Rm if ﬂ>0
LEOIL:%’O...LE{}L()L& 7_1L5+1.o...L-1,0L00 if ﬂ<0
K1_31LﬂyK13= Lo' y—1 lf /3:0
LyyLyy... Lpo Lp, -1 Ly ... Lig if >0

Using these relations, any time Rj} or L3, is followed, in some given word in K,, by
K3#' or Ki! it can be replaced by K& or K3 followed by some word in the Ry, and Lg,.
Eventually the given word can be brought into the form w,(K,,, Ky3)wa(Rg,, Lg,). Also,

K12K13K1—21 K;sl = R:ﬁlLIl, (3.2)
80, using the relations (3.1) and (3.2), any word in gp (K,,, Ky, Ry, Lg,> can be changed
into the form K1 Kf3wy(Ry,, Ly,). Such an automorphism takes (a; b; ¢) into
(bocefyafyceb=7; b; c)
where f; and f, are in F'(b, c). This cannot be the identity unless o =¢ =0. Therefore, any
relation in gp (K;y, Ky, Rgy, Lg,> can be brought by means of (3.1) and (3.2) into the

form wy(Ry,, Lg,)=1. But since wy, is a free set of generators of F'(b, ¢), then clearly

gp (R, is free as is gp (Lg,>. Also since multiplication on the right is completely in-
dependent of multiplication on the left,

Ry =L, (3.3)
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This gives a set of defining relations for gp (R, Lg,>.
Therefore the following presentation for K, is obtained.:.

K, =<K, K3, Rﬂy: L,97| (3.1), (3.2), (3.3)).

One would like to have a presentation for K, in terms of the generators K,,, K,;, and

K3 But
B, = KKl K Kygy Ky K157 Kif

and Ly, =KL K3 K Kis' Ky K1, K13V Kif.

Therefore, substituting these expressions in (3.1), (3.2), (3.3), one gets a set of defining

relations for K, in terms of K;,, K,;, and K,,,.

4. The subgroup I?s of those automorphisms in K which leave
one generator of F fixed

K3 stands for the group of automorphisms of F which take (a; b; ¢) into (aw; bu; c)
where w, u€ F’.

Clearly, K,,, Ky3, K55, Ky, Koy, and Ky, are in this group, as is any word generated
by them, and again the converse is true.

THEOREM 2. Ky, Ky3, K 53, Koy, Koy, and Ky, generate K.

The method of proof of this theorem is based upon the work of Magnus [8, section 6]
in finding the generators of K.

The proof depends on the following lemma, due to Nielsen. (This lemma is an easy
consequence of the fact that any set of free generators of the free group can be changed
into (a, b, ¢) by elementary Nielsen transformations without increasing total length [11]
(or see [9, Theorem 3.1]).

N1ELSEN's LEMMA. Let «, 8, ¢ be free generators of F, where a and B are words in
(@, b, ). Then (a; B; c) can be changed into (a; b; c) by the following processes:

1. a—af*! or ptla 2. a—>pH 3. a>actlor el or
(ad B~ ot B—>Bcttor et Bor §
c—>c c—~c c—~c

without ever increasing |a| +|B| + |¢|, where | | means length in terms of a, b, and c.

Nielsen’s lemma gives generators for the subgroup 4; of those automorphisms of F

which leave ¢ fixed. These can easily be shown equivalent to the following automorphisms:
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st (o5 B ©) > (af; B; c), ot (5 B ©) = (Bas; Bs.c),
ps: (0 B 0) > (B os¢), pat (a5 B €) = (ac; Bs c),
st (o5 B €)= (o ¢B; c).
Now KN A, consists of those automorphisms of F which leave ¢ fixed, and which
induce the identity automorphism of F/F'. But this is clearly just K,. Since K is normal
in 4, K;=Kn A4, is normal in 4,.- Also; A/K =@, the full 3 by 3 modular group ([12,

page 28] or [8, section 6]), so A/ K, =G, some subgroup of G. Clearly a matrix will be in
G, only if it is in @ and it is of the form.

llay, @ e

Ay Gy f

0 0 1

where @,;@9,— 138y = +1, and all entries are integers.

Conversely, given a matrix of the above form, the matrix

Ay Gy

A1 Qg

is in the 2 by 2 modular group, and hence corresponds to an automorphism u of the free
group generated by a and b ([12], or [8, p. 168]). But then the given matrix corresponds to
the automorphism u§uf u. Therefore, a three by three matrix is in @, if and only if it has
integer entries with determinant +1 and its third row is 0 0 1.

Suppose a presentation for Gy can be found; then K, is the normal subgroup in 4,
generated by the preimages of the relators in G,.

The group of matrices of the form

@1 @y 0
a3 Gy 0
0 0 1

with determinant 1 is generated by the matrices

010 1 1 0
P=|1 0 0}, U=J[0 1 O
0 01 0 01
with defining relations
P2=(PUPUPUR=(PU'PU*=1 (4.1)

as is easily seen from [12, page 8].
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Also, the group of matrices of the form

1 0 e
01 f
0 01
are generated by
1 01 1 0 0
Q=0 1 of, s=llo 1 1
0 01 0 01
with defining relations QSQ 81 =1, (4.2)

The group of matrices
ay Gy €
Ay g |
0 0 1

is easily seen to be a splitting extension of the group of matrices

1 0 e ay; a, 0
01 ¢ by the group ay 4y, O,
0 01 0O 0 1

and the action is given by conjugation, resulting in the relations
PQP18-! = PSP1Q1 = UQU-1Q! = USU-181Q 1 =1. 4.3)

Therefore, G, =(P, Q, 8, U|(4.1), (4.2), (4.3).

Now, as was seen above, 4, is generated by 1 Moy B3, e, and ps. The natural mapping
of A;~@, takes u,~>U, us—~>U, pg—>P, uy—~@Q, and ps—S. Therefore, K is the normal sub-
group of A; generated by all possible preimages of (4.1), (4.2), and (4.3) substituting s,
or p, for U, ug for P, u, for @, and u; for 8. To show that this is just the group generated by
Ko, K3, Kyg3, Koy, Kog, and K, 5, it is only necessary to show that each such preimage of a
defining relation is in this group, and that this group is normal in 4.

This is easily checked (see [4] for more detail), and so Theorem 2 is proved.

As of yet, no set of defining relations for K, has been found, and it seems as if this
may be as difficult as finding relations for all of K.

5. The subgroup C* of those automorphisms which take each generator
of F into a conjugate of itself

THEOREM 3. The group C* of those automorphisms which take each generator of F into
a conjugate of itself is just C, the group generated by the double indexed generators of K.
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Proof. Clearly C< C*. Conversely, given an automorphism in C*, apply an inner auto-
morphism so that the resulting automorphism takes ¢—c¢. Since the group of inner auto-
morphisms is generated by K, K,,, K, Ky, and K,; Ky, to prove the theorem it snffices
to show that any automorphism of the form

(a; b; ¢) > (TaT-1; 8bS-1; ¢)

isin C. Applying K{; and K3 to such an automorphism, we can obtain another of the same
type in which neither 7' nor S begins with ¢. Since this is an automorphism, at least half
of Tat!T-1 or Sb1S—1 must be cancelled in Tat!T-185+1S-1 [9, Theorem 3.2]. But both
are of odd length so more than half of one of them must be cancelled—i.e. either at!7-1 ig
cancelled by S or Sb+! is cancelled by 7-1. In the first case, applying Ki! shortens the
total length while, in the second, applying Ki} has the same effect. Continuing in this
manner—applying K3 or K35 to cancel any ¢’s that appear at the extremes of either of the
first two components at any stage, and otherwise applying K33 or K3;' (whichever shortens
the total length) the identity automorphism must eventually be reached, since at each step
the total length decreases. But this proves the theorem, since in reducing the arbitrary
automorphism to the identity only double indexed automorphisms were used.
The following is a presentation for C.

THEOREM 4. O = (Kyy, Kig, Ky, Ky, Koy, Koo | Ky Ky Ky Ky K i % £k 1)

This theorem is also proven by Levinger as an outgrowth of more general considerations
{5, Theorem 6.1]. However, our approaches differ, so the theorem is presented here.

To prove the theorem, note first that the group I of inner automorphisms of ¥ is
generated by I, =Ky Ky, Iy=K,; K3y, and I3=K,; Ky, and is a free group. Then we need
the following lemma.

LeMMaA 2. C/I2gp (Kyy, K3, Kgy) and the extension splits.
Proof of Lemma. Using the relations
(1) Ky=K,; t=+j=+k+s
2) Kl Ky*=1, if ik 6.1)
@) Kyl,Ky*=I131,1;°
any word in C can be brought into the form
(1) vo( K g, Kig, Koy).

Le., first replace K33, K35, and Kj§, respectively by I3 K3y, I3 K3, and I3 K;7'. Then, using
the above relations, bring the inner automorphisms to the left, without changing any of
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the K, remaining. Clearly, vy(K,,, K;3, Ky ) can be chosen as the coset representative of
the above element, and so, to finish the proof of the lemma, it is enough to show that no
word in gp (K,,, K3, K5 ) other than the identity is an inner automorphism. (This shows
firstly that exactly those relations which hold in gp (K,,, K3, Ky;> hold in C/1I, and secondly
that the coset representative v, , of a product must be the product v, ,v, , of the coset
representatives, otherwise v, 19, ,v23 would be in I but not a relator in gp (K, K5, Ky;>).

So suppose some inner automorphism is also in gp (K,, Ky;, Ky >. Since it is an inner
automorphism, it takes (a; b; ¢) into (waw~!; wbw; wew1). But gp (K, Ky3, K>S K,
and hence any element of it leaves ¢ fixed. Therefore, w must be ¢/ for some §. But the inner
automorphism taking (a; b; ¢) into (cfac—#; cFbc=4; c) is just K& Kfs. Therefore,

K33 K8, u(K 1, Kyg, Koy)

or K‘f3Kg3u"(K12, Ky Kgy) =1
The exponent sum of K in this relation is 8, but K/K' is free abelian of rank 9 [2, page 7],
and therefore the exponent sum of each generator of K must be zero in any relation. There-
fore, =0, and so the inner automorphism involved is just the identity, so the lemma is
proven.

Note that the relations (5.1) just give the action of gp (K5, K3, Ky) on I, and so,

since I is free, all that remains to be done to find a presentation for C is to find one for
8P (Kip, Ky, Ky

LeMMA 3. gp (K,,, K;;, Ky,) ts free of rank 3.

The lemma finishes the proof because C/I = gp {K,, K3, Ky;>. I is free; gp {K,,, Ky3,

K,,> is free; the extension is a splitting extension, so a trivial factor set can be chosen;
and the action of gp (K, K,3, Ky> on I is given by the relations (5.1). Therefore,
C=gp <Ky Ky3, Ky, I, I, I|(5.1)). But

I =KnKy, I,=K;pKg, and Ij= KKy,
and the third line of (5.1) is derivable from the second
(K3 LKy =K5 Ky K LKy =L 1L Ky Ky =13 1L IT°),
which is equivalent to the relations

K,=2 K, K.
Therefore,

C =gp<{Kyy, Ky3, Ky, Kog, Ky, Ko | Kjy2 Ky, Kyy22 Ky Ky, t#j+k=+1), qed.

The proof of Lemma 3 is quite messy and relies on the type of combinatorial arguments

due to Nielsen. The details of the proof will not be presented here, but may be found in [4].
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6. The subgroup T generated by the triple indexed generators of K

Bachmuth proved that T is a free group on the three free generators K3, Kyy5, and Ky
{1, Theorem 4]. The method of proof is to find a representation of K, and to show that the
elements of the representation corresponding to K,s, Ky, and Kj,, generate a free group
of rank 3. I too use this idea to prove this theorem, but I use a representation different
from the one used by Bachmuth and I believe my proof is simpler, so I am including it here.

Burau [3] gave a matrix representation for the Braid group. An explanation of the
method used to get this representation may be found in a paper by Magnus and Peluso [10].
This same approach may be used to find matrix representations for many groups of auto-
morphisms. As a K-characteristic subgroup of the free group F of rank 3, we choose H, the
normal closure of ¢b—! and b¢c-1; and we denote the groupring of F/H by R. Then R is iso-
morphic to the ring of polynomials with integral coefficients in v*, where v is an indeter-
minate, and H/H' is a free B-module of rank two on which the automorphisms of K act as

linear mappings. In this representation, Ky, K4, and Ky, correspond respectively to the

1 0
v —v 1.

To show these matrices generate a free group, it is enough to find a particular value of »

matrices

1+02—v v*—vw

1 v—9?
v —v* 14+v—o?

01

3 >

for which the group is free. Putting v =4, we get the matrices

1 -12 13 12 1 0
0 1], —-12 —11f, |12 1}
1 2 1 0
.N= N M= ’
01 2 1
these matrices are just N—6, (N-1M)%, and M® respectively. But N and M generate a free

group of rank 2 [7], and so it is clear that N6, (N-1M)8, and M® generate a free group of
rank 3.

But then T is free, since it is generated by three generators and has a free quotient

Letting

group of rank 3.

7. Conjectures

In conclusion, we would like to venture some as yet unproved conjectures, some

supportive evidence for which may be found in [4].
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1. K is not finitely related.
2. If N represents the normal closure of C in K, then NN T =1, or, alternatively,

K|N =T, which would imply that K has a free quotient group of rank 3.
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