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l .  Introduction 

Generators and defining relations for the group A n of automorphisms of a free group 

of rank n were derived by  J .  Nielsen [11]. For n = 2, this is a fairly easy task, but  for n ~> 3 

it requires very difficult combinatorial arguments which have not been simplified since 

the appearance of Nielsen's paper. In  order to obtain an easier approach to the investiga- 

tion of An and a bet ter  understanding of its structure, it seems natural  to s tudy its sub- 

groups. 

For all n, the elements of An which induce the identical automorphism in the commuta-  

tor quotient group Fn/F'~  form a normal subgroup K of An. Bachmuth [1] calls this the 

group of IA automorphisms of F n. Magnus [8] showed tha t  this subgroup is generated by  

the automorphisms 
Ktj :  ai ~ a ja i  a i  1 

ak ~ a~, k # i 

and K~jk: at ~ a~ aj  a k a [  1 a ;  1 

am ---~ am, ~7~ :~= i 

where al,  a2, ..., a n are a set of free generators of Fn, and where the subscripts of each of 

these automorphisms are distinct members of the set {1, 2 ..... n}. In  the present paper, 

we will s tudy certain interesting subgroups of K, in the case n = 3. In  this case, K has a 

minimal set of nine generators, as K/~ is easily seen to be K~kj. Some, although not all, 

of our results can be obtained for n > 3 by  the same methods. 

In  section 3, generators and defining relations for the subgroup K 1 of those automor- 

phisms in K which keep two generators of the free group fixed will be presented. In  section 

4, generators for the subgroup Ka of those automorphisms in K which leave one generator 

of the free group fixed will be found. Then, in section 5, the group of those automorphisms 
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which take every generator of F into a conjugate of itself will be studied. I t  will be shown 

tha t  this group is just C (the subgroup generated by  the double indexed generators of K), 

and a set of defining relations for this group will be found. In  section 6, a theorem about  T 

(the group generated by  the triple indexed generators of K) being free will be stated, with 

some discussion of the proof. And finally, in section 7, some comments about  some known 

relations in K will be made, leading to some conjectures about  the structure of K. 

I would like to express my  appreciation to Wilhelm Magnus for the invaluable advice, 

help, and encouragement he provided to me during my  research for this paper. 

2. Notat ion 

We will use a = al, b = a2, and c = a 3 to denote a set of free generators of F = F 3. 

I f /~  is an automorphism given by  alz=O~, bp=fl, cp=~, then p will frequently be 

denoted by  ~u: (a; b; c) -~ (~; fl; ~) or in some contexts just by (~;/~; ~). 

�9 If  p, ~ E A = .43, then p~ means first apply ~ to (a; b; c) and then apply/z to the result. 

According to Nielsen [12, page 23], P,  Q, 0, and U can be chosen as a set of generators 

of ,4, where 

P: (a; b; c) ~ (b; a; c), Q: (a; b; c) --> (a; c; b), 

O: (a; b; c) ~ (a-1; b; c) and U: (a; b; c) ~ (ab; b; c). 

The subgroup of K generated by  the double indexed Ktj will be called C (for conjuga- 

tion) and its normal closure in K will be called N. 

The subgroup of K generated by the triple indexed K~s ~ will be called T. 

F '  will denote the commutator  subgroup of F. 

I f  M and N are elements of a group, then the notation M~-N means that  M and N 

commute. 

And finally, gp (gl ..... g~) will denote the group generated by  gl ..... gn. 

3. The group K 1 o f  those  automorphisms  in K which  leave 
two generators o f  F fixed 

I f  the generators of F are a, b, and c, then by  K 1 is meant  the group of automorphisms 

which take (a; b; c)~(aw; b; c), where wEF'. 

Clearly K~,  K13, and K123 are in the group K~ as is any  word in these generators. 

THEOREM 1. K is generated by Kxz, K13, and KI~. 

The proof of the theorem relies on the following lemma. 
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LEMMA 1. I//~: (a; b; c) -~'(w(a, b, c); b; c) is an automorphism o/the/ree group F and 

w(a, b, c) is/reely reduced, then w(a, b, c) contains a exactly once. 

Proo/. Clearly w contains a at  least once since w, b, and  c mus t  be free generators for F ,  

which implies aEgp<w,  b, c>. 

Suppose there is some au tomorphism in which w(a, b, c) contains a more than  once. 

Le t  ~ be such an au tomorphism in which w is of minimal length. 

a: (a; b; c) ~ (w~(a, b, c,); b; c). 

Clearly w~(a, b, c) must  begin and end in some power of a [not necessarily the same power 

for the beginning and  end], since if it ends in b e then applying the au tomorphism U -~ 

will result  in an au tomorphism with a w of shorter  length. [Similarly if it ends in c e or  begins 

in b e or c e then it could be shortened.] Therefore, w~(a, b, c) =aPv(a, b, c)a~, where v(a, b, c) 

does no t  begin or end in a. Bu t  since g is an  automorphism,  Wa, b, and  c mus t  be free gene- 

ra tors  of F and  hence a=u(w~, b, c)--i.e. 

a = w a  p(1)  b q(l~ c m) ... w~ (k) b q(k~ c r(~, 

where the exponents  are integers, some of which m a y  be zero. Now w~ must  begin and end 

i n  a, since F is a free group. Therefore, there can be no cancellation between w~ (~) and  

b q(j) or c r(j~ where ? '=i  or i - 1 .  Therefore, again since F is free, all q(i) and r(i) must  be 

zero, so a=u(w~, b, c,) =w~. But  this can only happen if p = • 1 and  w~ = a ~  +1. This contra- 

dicts the assumption tha t  w~ contains a twice. Therefore, the lemma is proved. 

By  the  lemma, a ny  au tomorphism in K 1 must  take a-+ u(b,c)av(b,c) where 

u(b, c) v(b, c) E F'(b, c) since we are dealing with an  IA  automorphism of F .  

The proof of Theorem 1 now proceeds as follows: I f  k E K  1, It: a~u(b, c)av(b, c) then 

u-l(K12, Kls)k: a~av(b, c)u(b, c), 

where by  u(K12 , K13 ) is meant  the image of u(b, c) in gp (K12  , Kla ~ under  the mapping  

b-~ K12, c-~ Kls. 

Therefore, the theorem need only be proved for those automorphisms in K 1 which take  

a-~aw(b, c) where w(b, c) E F'(b, c). Suppose in such an  au tomorphism/c ,  

w(b, c) = wl(b, c)cvbPw2(b, c), 

where fl = • 1 and  7 --- • 1. 

w~(KI~, Kls ) k: a-+ w2(b, c)awl(b, c)cvbP. 
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If/~ =7  = -- 1, then apply K~2a; 

if ~ =7  = 1, then apply Kf~K12aKlsK13; 

if 7 = 1, fl = - 1, then apply Kf~Kla~.K13; 

and if ~ = -  1, f l= 1, then apply Kl-~lK13sKls. 

In  any of these cases the result will be 

we(b, c) aWl(b, c) bPcv, 

and then applying w~l(K12, Kin ) we will get: 

aWl(b, c)b• cvw~(b, c). 

Therefore, given any automorphism in K 1 of the form 

a ~ aWl(b, c)c~'bPw2(b, c), 

multiplying this automorphism by the proper automorphism in gp (KI~, K13, K123) results 

in an automorphism taking 

a ---> aWl(b, c) bBc~'w2(b, c). 

Continuing this process, the above automorphism can be brought into the form a~abec o" 

simply by  multiplying by the proper elements of gp (K12, K13, Kl~3). But, since the resulting 

automorphism is in K1, and hence in K, ~ = a = 0. 

Therefore, any automorphism in K~ can be changed to the identity automorphism 

by  multip]ying by  an automorphism in gp (K12, K13, K123), and so the theorem is proven. 

Note, by the way, that  any mapping taking (a; b; c) into (aw(b, c); b; c) is an auto- 

morphism for an arbitrary w(b, c), since it can be generated by U and Q UQ. If w(b, c) e F'(b, c), 

then this automorphism will be in K and hence in K 1, and hence will be generated by 

K12, K13, K1~3. 

Now that  the generators for::the group K 1 are known, one would like to find defining 

relations. In order to do this, it is useful to introduce new generators for K 1 which facilitate 

this process. Let  

wp~ = bZ cy b - lc  -1 bcl-v b-Z. 

Then the wpv are free generators of F'(b, c). [This is a consequence of a theorem proved in 

reference 6.] Let  Rpv be the automorphism of F given by (a; b; c) going into (awpv; b; c). 

:By the note above Rpv is clearly an automorphism in K 1. Similarly, define 

L~v: (a; b; c) ~ (w$va; b; c). 
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L~v=OR~O, so L~r is an automorphism, and since it is clearly in K it is in K~. Now 

Kx9.a = Rn,  so K~ is generated by  K~, K~a, R?~, and L~,. The relations below (3.1) are easily 

seen to be true. 

K~2 R/~r K ~  = R~ ~,. 
e=__+l 

K~2 L~, Ki~ = L#+,. ~, 

KaaR~vK~=lRo.~,+~ if f l = 0  

[RoTR:I,...R~L~R~.~,+~R~+L1...R_LIRo~ if f l < 0  

L-1L-I - 1  J 11 21. . .Lf l l  Lfl, 7+ILfll...Lg.ILu if f l > 0 ]  
fl=0 K~aLpvK~aX=|Lo.~,+~ if f l < 0 I  

( / m L - L  1 ... L~+i. 1L/7. r+xL/~-+11. 1 ... L -  L 1i~-x t if 

[ .Roo R_I.  o . . .  Rfi.+l. o R o, ~_1 R/~:,. o .. o R-_ 1, o .Roo 1 if ~ ] < 0 ]  

K[r RD7 Kla = ] R0. r-x if /~ = 0 

( R1-01 . . .  R~-O 1 R/~, r_l  RD0.. .  Rio if ~ > 0 J 

(3.1) 

[Lo-oaL-_l.o...L~+LoL#.r_lL#+Lo...L_l, OLoo if /~<0} 

K ~  Lpv Kla -- L0. r- t if fl = 0 

I LIo i2o  �9 L~o i/~. ~_1 i~-o 1-.. 51-01 if fl > 0 

Using these relations, any time R ~  or L~ 1 is followed, in some given word in K x, by 

Kj ~1 or K~:a ~ it can be replaced by K~ 1 or K~:a t followed by  some word in the Rpv, and Lpv. 

Eventually the given word can be brought into the form wl(K12, Kla)Wg.(Rp~,, Lp~,). Also, 

K K w-lr,--1 19 . la~Xl2 lXl3 = R~-llLxl, (3.2) 

so, using the relations (3.1) and (3.2), any word in gp (Kt9 ., K13, Rp v, Lpv) can be changed 

into the form K~2K~aw3(RD:,, Lp~,). Such an automorphism takes (a; b; c) into 

(b~176 b; c) 

where/1 and/2  are in F'(b, c). This cannot be the identity unless ~ =(r=O. Therefore, any 

relation in gp (K19., K13, Rpv, Lpr> can be brought by means of (3.1) and (3.2) into the 

form w3(Rpr, L~,)=I. But since wpv is a free set of generators of F'(b, c), then clearly 

gp (Rp7 > is free as is gp (Lp~). Also since multiplication on the right is completely in- 

dependent of multiplication on the left, 

RpT m LQ~. (3.3) 
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This gives a set of defining relations for gp (Rp~,,Lpr).  

Therefore the following presentation for K1 is obtained:. 

K 1 = (KI~, K13, Rpv, Lpv[ (3.1), (3.2), (3.3)). 

One would like to have a presentation for K1 in terms of the generators K12, K13, and 

K12 3. But 
RZv = K1B2 K~131K~ K12 a K12 K ~ V  U l ~  

and _ fl ~, -1 -1 1-~, -fl Lpv -K l~Kl~K12  K13 K12aK12Kla Kin .  

Therefore, substituting these expressions in (3.I), (3.2), (3.3), one gets a set of defining 

relations for K 1 in terms of K12, K13 , and KI~ a. 

4. The subgroup Ks of those automorphisms in K which leave 
one generator of F fixed 

]~3 stands for the group of automorphisms of F which take (a; b; c) into (aw; bu; c) 

where w, u E F ' .  

Clearly, K12, K13, Klz3, K~I, K~a, and K~I 3 are in this group, as is any word generated 

by them, and again the converse is true. 

THEOREM 2. KI~, Kla, Klan, K21 , K~3 , and K21 z generate ~;a. 

The method of proof of this theorem is based upon the work of Magnus [8, section 6] 

in finding the generators of K. 

The proof depends on the following lemma, due to Nielsen. (This lemma is an easy 

consequence of the fact that  any set of free generators of the free group can be changed 

into (a, b, c) by elementary Nielsen transformations without increasing total length [11] 

(or see [9, Theorem 3.1]). 

NIELSEN'S LEM~IA. Let ~, fl, c be free generators of F,  where cr and fl are words in 

(a, b, c). Then (~; fl; c) can be changed into (a; b; c) by the following processes: 

1. ~ ~ afl~:l or fl+l~ 2. ~ ~ fl+l 3. a ~ acA:l or c~_1 ~ or 

---~ ~ ~ "'>" 0~ 1 ~ ~ ~C -.tl or c ~1 ~ or 

without ever increasing I o~ I +[~[ + I c [, where [ [ means length in terms of a, b, and c. 

Nielsen's lemma gives generators for the subgroup "~a of those automorphisms of F 

which leave c fixed. These can easily be shown equivalent to the following automorphisms: 
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~1: (~; fl; c) ~ (~8; 8; c), ~ :  (~; 8; c) -~ (Sa; 8;, c), 

~ :  (a; 8; c) -~ (8; a; c), ~4: (a; 8; c) ~ (ac; 8; c), 

~ :  (~; 8; c) -~ (~; c8; c). 

Now K N ~a consists of those automorphisms of F which leave c fixed, and which 

induce the identity automorphism of F/F ' .  But  this is clearly just/~a. Since K is normal 

in A,  I~a=Kfi  ~a is normal in ~a .  Also; A / K = G ,  the full 3 by 3 modular group ([12, 

page 28] or [8, section 6]), so ~a//~a=~a, some subgroup of G. Clearly a matrix will be in 

~a only if it is in G and it is of the form. 

, 11 e{{ 
a~1 a~ ! 

0 1 

where alla22-ax~a21 = • and all entries are integers. 

Conversely, given a matrix of the above form, the matrix 

a u  a12 [ 
a21 a22 

is in the 2 by 2 modular group, and hence corresponds to an automorphism/~ of the free 

group generated by a and b ([12], or [8, p. 168]). But then the  given matrix corresponds to 

the automorphism ~/~/~.  Therefore, a three by three matrix is in Oa if and only if it has 

integer entries with determinant • 1 and its third row is 0 0 I. 

Suppose a presentation for Oa can be found; then/~a is the normal subgroup in ~a 

generated by the preimages of the relators in On- 

The group of  matrices of the form 

a21 a22 

0 0 

with determinant -{-1 is generated by the matrices 

{li 1 !{{ I{11 ~ P =  0 , U =  0 1 0 

O 0 0 1 
with defining relations 

p2 = ( p u p u - 1 p u ) 2  = (pu-xPU~)4 = 1 (4.1) 

as is easily seen from [12, page 8]. 
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Also, the group of matrices of the form 

0 
are generated by 

ii1011 Q= 0 1 0 ,  

0 0 1 

ill 
1 0 

0 1 

0 0 

1 

1 

with defining relations 

The group of matrices 

QSQ-1S -1 = 1. 

a~l a2~ ! 
0 1 

(4.2) 

is easily seen to be a splitting extension of the group of matrices 

II~ I :0 ~ 0 1 by the group a~2 0 , 

0 0 0 1 

and the action is given by conjugation, resulting in the relations 

PQP-1S-X = PSp-1Q -1 = UQU-1Q-I = USU-1S-1Q -1= 1. (4.3) 

Therefore, ~ a = ( P ,  Q, S, UI(4.1), (4.2), (4.3)). 

Now, as was seen above, -~a is generated by Pl, P~, Pa, Pa, and ps. The natural mapping 

of X3-~ 03 takes pl-~ U, p2 -~ U, pa-~P, p4-~Q, and p6-~S. Therefore,/~a is the normal sub- 

group of A3 generated by all possible preimages of (4.1), (4.2), and (4.3) substituting Pl 

o r /~  for U, P3 for P, P4 for Q, and ps for S. To show that  this is just the group generated by 

Kx~,/{13, KI~ 3, K2I, K23, and K~la, it is only necessary to show that  each such preimage of a 

defining relation is in this group, and that  this group is normal in ~a. 

This is easily checked (see [4] for more detail), and so Theorem 2 is proved. 

As of yet, no set of defining relations fo r /~ ,  has been found, and it seems as if this 

may be as difficult as finding relations for all of K. 

5. The subgroup C* of those automorphisms which take each generator 
of F into a conjugate of itself 

T H v.O R V.M 3. The group C* o/those autom~phisms which take each generator o/ F into 

a conjugate o/ i tsel / is  just C, the group generated by the double indexed generators o / K .  
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Proo]. Clearly C~  C*. Conversely, given an automorphism in C*, apply an inner auto- 

morphism so that  the resulting automorphism takes c-~c. Since the group of inner auto- 

morphisms is generated by K12Ka~, K~IKal, and KlaK~, to prove the theorem it suffices 

to show that  any automorphism of the form 

(a; b; c)-~ (TaT-I; SbS-1; c) 

is in C. Applying K~a and K~a to such an automorphism, we can obtain another of the same 

type  in which neither T nor S begins with c. Since this is an automorphism, at least half 

of Ta• -1 or Sb+IS -1 must be cancelled in Ta~IT-1Sb+IS -1 [9, Theorem 3.2]. But both 

are of odd length so more than half of one of them must be cancelled--i.e, either a~lT -1 is 

cancelled by S or Sb +1 is cancelled by T -1. In the first case, applying K ~131 shortens the 

total length while, in the second, applying K ~  has the same effect. Continuing in this 

manner--applying K~a or K~a to cancel any c's that  appear at  the extremes of either of the 

first two components at any stage, and otherwise applying K ~  or K • (whichever shortens 

the total length) the identity automorphism must eventually be reached, since at each step 

the total length decreases. But this proves the theorem, since in reducing the arbitrary 

automorphism to the identity only double indexed automorphisms were used. 

The following is a presentation for C. 

THEOREM 4. C = <KI,, Kla, K~I, K~ a, Kal, Ka2[K,jm Kk j, K,smKtkKj,, i # j  #k  #i>. 

This theorem is also proven by Levinger as an outgrowth of more general considerations 

[5, Theorem 6.1]. However, our approaches differ, so the theorem is presented here. 

To prove the theorem, note first that  the group I of inner automorphisms of $' is 

generated by I 1 =K21K31, 13 =KI~Ka2, and I a =K13K~a , and is a free group. Then we need 

the following lemma. 

LEMMA 2. C/I ~--gp <K12, Kla, K21 ~ and the extension splits. 

Proo/o/Lemma. Using the relations 

(1) K,jmKk~ i# j#k~=i  

(2) K[~IkK~=I~ if i # k  (5.1) 

(3) K~I,K~ ~ = I~I , I i  ~ 

any word in C can be brought into the form 

vl(I)v2(K12, Kla, K~I). 

I.e., first replace K~a, K~I, and K ~  respectively by  I~K~,  I~K~, and I~K~.  Then, using 

the above relations, bring the inner automorphisms to the left, without changing any of 
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the K~j remaining. Clearly, v2(KI2, Kls, K21 ) can be chosen as the coset representative of 

the above element,  and so, to finish the proof of the lemma, it is enough to show that  no 

word in gp <K12, K13, K21 > other than the identity is an inner automorphism. (This shows 

firstly that  exactly those relations which hold in gp <K12, Kls, K21> hold in C/I, and secondly 

that  the coset representative v2. 3 of a product must be the product v2.1v2.2 of the coset 

representatives, otherwise v2. lv2.2v~.~ would be in I but not a relator in gp <K12, K13, K~I>). 

So suppose some inner automorphism is also in gp <K12, K~3, K21>. Since it is a n  inner 

automorphism, it takes (a; b; c) into (waw-1; wbw-1; wcw-1). But gp <K12, K13, K21)_~/~3, 

and hence any element of it leaves c fixed. Therefore, w must be c~ for some ft. But the inner 

automorphism taking (a; b; c) into (cZac-P; cPbc-B; c) is just K ~la K~e3. Therefore,  

KasK23 ~ ~ = u(Ka2, Kls ,  K2t) 

or K~13K~au-I(K12, K13 , K21 ) = 1. 

The exponent sum of K23 in this relation is fl, but K/K" is free abelian of rank 9 [2, page 7], 

and therefore the exponent sum of each generator of K must be zero in any relation. There- 

fore,, ~ =0, and so the inner automorphism involved is just the identity, so the lemma is 

proven. 

Note that  the relations (5.1) just give the action of gp <K12, K13, K21> on I ,  and so, 

since I is free, all that  remains to be done to find a presentation for C is to find one for 

gP <K12, KI3, K~I>. 

LEMMA 3. gp <K12, Kla, K~t > is [ree o/rank 3. 

The lemma finishes the proof because C/I "~ gp <K12, K13, K~I>. I is free; gp <K12, KlS, 

K21 > is free; the extension is a splitting extension, so a trivial factor set can be chosen; 

and the action of gp <K12, Kls, K21 > on I is given by the relations (5.1). Therefor e, 

C = g p  <Klz, K13, K21, 11, 18, Isl(5.1)>. But  

11 =g2 tKs t  , 18 = gt2g3~, and I a = KlaK2s, 

and the third line of (5.1) is derivable from the second 

(K~j I, K~ ~ = K~j K~j K;;I,  K~" = I~ I, K; f  K~ ~ = I~ I, I[  ~), 

which is equivalent to the relations 

Therefore, 

C = gp <K12, K13, K21, K23, K31, Ks2[K~j ~K~s, K,j ~KtkKsk, i # ~ # k # i > ,  q.e.d. 

The proof of Lemma 3 is quite messy and relies on the type of combinatorial arguments 

due to Nielsen. The details of the proof will not be presented here, but  may be found in  [4]. 
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6. The  subgroup T generated by the  triple indexed generators  o f  K 

Bachmuth proved that  T is a free group on the three free generators K123, K213, and Kale 
[1, Theorem 4]. The method of proof is to find a representation of  K, and to show that the 

elements of the representation corresponding to KI~ 3, K213, and K312 generate a free group 

of rank 3. I too use this idea to prove this theorem, but I use a representation different 

from the one used by Bachmuth and I believe my proof is simpler, so I am including it here. 

Burau [3] gave a matrix representation for the Braid group. An explanation of the 

method used to get this representation may be found in a paper by Magnus and Peluso [10]. 

This same approach may be used to find matrix representations for many groups of auto- 

morphisms. As a K-characteristic subgroup of the free group F of rank 3, we choose H, the 

normal closure of ab -1 and bc-1; and we denote the groupring of F/H by R. Then R is iso- 

morphic to the ring of polynomials with integral coefficients in v• where v is an indeter- 

minate, and H/H' is a free R-module of rank two on which the automorphisms of K act as 

linear mappings. In  this representation, K123, K213, and/(31 ~ correspond respectively to the 

matrices 

i i :v v ll v II I ~ 
1 , v - v  2 l + v - v  2 , v ~ - v  1 . 

To show these matrices generate a free group,  it is enough to find a particular value of v 

for which the group is free. Putting v =4, we get the matrices 

Letting 

1 1211 13 12jl II 1 ~ 
0 1 , - 1 2  - 1 1  , 12 1 . 

 :rl: :lJ :ll 
these matrices are just N -e, (N-1M) e, and M e respectively. But N and M generate a free 

group of rank 2 [7], and so it is clear that  -IV -e, (N-1M) e, and M e generate a free group of 

rank 3. 

But then T is free, since it is generated by three generators and has a free quotient 

group of rank 3. 

7. Conjectures  

In  conclusion, we would like to venture some as yet unproved conjectures, some 

supportive evidence for which may be found in [4]. 
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1. K is no t  finitely related. 

2. I f  N represents the  normal  closure of C in K,  then  ~VN T = I ,  or, al ternatively,  

K/~V _-_ T, which would imply t h a t  K has a free quot ient  group of rank 3. 
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