
STATE SPACES OF JORDAN ALGEBRAS 

BY 

E R I K  M. A L F S E N  and F R E D E R I C  W. SHULTZ 

University of Oslo Wellesley College 
Oslo, Norway I~ZeUesley, Massachussetts, USA 

Contents 

w 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155 
w 2. Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . . . . . .  157 
w 3. The Hilbert ball property . . . . . . . . . . . . . . . . . . . . . . . . . .  160 
w 4. The pure state properties . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
w 5. The splitting into atomic and non-atomic parts . . . . . . . . . . . . . . . . .  171 
w 6. The type I factor case . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 
w 7. The main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  186 

w 1. Introduction 

The purpose of this paper  is to  give a geometric characterizat ion of the  state spaces 

of the  class of normed J o r d a n  algebras named  JB-algebras  in [4]. Recall in this connec- 

t ion tha t  by  the  generalized Gelfand-Neumark theorem of [4] the  s tudy  of JB-a lgebras  

can be reduced to  the s tudy  of J o r d a n  algebras of self-adjoint operators on a Hi lber t  

space and  the exceptional algebra M s. One of the  mos t  impor tan t  examples of a JB-a lgebra  

is the self-adjoint par t  of a C*-algebra; thus the  properties we establish for s tate  spaces of 

JB-algebras  also give information about  state spaces of C*-algebras. 

We first prove tha t  the  state space of a JB-a lgebra  has the  following proper ty  which 

we term the  "Hi lber t  ball p roper ty" :  for each pair  ~, a of extreme points,  the  face generated 

by  ~ and ~ is a norm-exposed face affinely isomorphic to  the  closed uni t  ball in some finite 

or infinite dimensional Hilbert  space (Corollary 3.12). This observat ion appears to  be 

new even for the  case of a C*-algebra. 

We also prove t h a t  the a-convex hull of the  pure states of a JB-a lgebra  is a split 

face of the  state space (Corollary 5.8). I n  other  words, the  s tate  space is a direct convex 

sum of two faces, one being the a-convex hull of the  extreme points,  the other  containing 

11 -772908.4cta mathematica 140. Imprim6 le 9 Juin 1978 



156 Eo 1YI. AL:FSEN AND le. W.  SHULTZ 

no extreme points. This property, which we term the "splitting into atomic and non- 

atomic parts",  follows from well known facts in the case of a C*-algebra. 

I t  is known that  the state space of a JB-algebra is a strongly spectral compact 

convex set in the terminology of [2]. (Cf. [2; w 12] and [4; w 4]). In the present paper we 

show that  this property together with the two properties above characterize the state 

spaces of JB-algebras among all compact convex sets (Corollary 7.4). 

In  fact, we shall derive this result from a stronger theorem which does not invoke 

the full strength of the spectral theory of [2]. In order to state this theorem, we need 

the fundamental concept of a "projective face" of a convex set, defined in [2; w 2]. 

(See also the geometric characterization of projective faces given in [2; Th. 3.8].) To fix 

the ideas, we note at  this point that  in the case of a C*-algebra then the projective faces 

are in 1-1 correspondence with the self-adjoint projections (and the ultraweakly closed 

one-sided ideals) in the enveloping yon Neumann algebra. We also recall that  the pro- 

jective faces occur in "quasicomplementary pairs" F,  F * (corresponding to orthogonal 

projections p, 1-p in the special ease mentioned above). Moreover, two positive elements 

a, b of the space A of all bounded affined functions on K are said to be "orthogonal", in 

symbols a•  if there exists a projective face iV of K such that  a = 0  on F and b =0  on F ~. 

As usual, the space of continuous affine functions on K is denoted by  A(K).  Then we have 

the following: 

MAIN THEOREM. A compact convex set K is the state space o / a  JB-algebra i]] the 

]ollowing requirements are satis]ied: 

(i) K has the Hilbert ball property 

(ii) K splits into an atomic and a non-atomic part 

(iii) Every norm.exposed/ace o / K  is projective 

(iv) Every aEA(K)  can be decomposed as a di//erence a = b - c  where b, cEA(K)+ and 

b l c  

(To say that  K is "strongly spectral" means that  K satisfies (iii) and (iv) above and 

in addition that  every aEA  can be decomposed as a = b - c  where b, cEA+ and b l c ,  this 

decomposition being unique, cf. [3; w 2]. For general compact convex sets, this additional 

requirement is irredundant, as shown by an example in [3; w 2].) 

In  the development leading up to the main theorem, we also establish another 

characterization of state spaces of JB-algebras. This characterization is less geometric in 

nature, but  it is stated in terms of conditions which admit some interesting physical inter- 

pretations. Specifically, they are the "pure state properties" (4.3), (4.4) and (4.5) of w 4, 

which are equivalent to physical axioms used in axiomatic quantum mechanics by various 
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authors. (See w 4 for further discussion.) Thus, our results establish further the connections 

between Jordan  algebras, spectral theory and quantum mechanics, cf. [7], [9], [13], [16]. 

w 2. Preliminaries and notation 

Following [4] we define a JB-algebra to be a Jordan  algebra over the reals with 

identi ty e equipped with a complete norm such tha t  for any two elements 

(2.1) HaobH <~ [la[I ]lbH 

(2.2) lia2ll =llall ~ 

(2.3) Ila ll ~< Ila~+b~ll 

A JB-algebra which is a :Banach dual space, will be called a JBW-algebra. 

The motivating example for JB- and JBW-algebras are respectively the self adjoint 

par t  of a C*-algebra and a yon Neumann algebra, with the Jordan  product ao b = �89 + ha). 

More generally, any  Jordan  operator algebra (norm closed Jordan  algebra of self-adjoint 

operators on a Hilbert  space with identi ty and the above product) is a JB-algebra.  

The main result of [4] is tha t  for every JB-algebra B there is a unique ideal J such tha t  

B/J is (isometrically isomorphic to) a Jordan operator algebra and J is exceptional in the 

sense specified in [4; Th. 9.5]. For JBW-algebrasone has a stronger theorem, by  which 

every JBW-algebra A can be uniquely decomposed as a direct sum A =A~p| o where 

A~r is a Jordan  operator algebra and Aexr is the algebra C(X, M s) of all continuous func- 

tions from a hyperstonean space X into M s [17]. (M s is the "exceptional" Jordan algebra 

of self-adjoint 3 • 3-matrices over the Cayley numbers.) 

In  [4; w 3] it is shown tha t  to every JB-algebra B one can associate a "monotone 

complete enveloping JB-a lgebra" /~ .  in  [17] it is proved t h a t / ~  can be identified with the 

bidual  B** equipped With the Arens product. In  this paper  we will refer to /3 = B** as 

the enveloping JBW-algebra o/ B. 

I f  B is a JB-algebra,  then we can order B by  the cone B 2 of all squares in B. With 

this ordering and the identity as order-unit, B becomes an order-unit space. A state on B 

is a positive linear functional with value 1 on the identi ty e. The state space K of B is the 

w*-compact convex set of all states. ~or  the dual ordering and norm, B* is a base-norm 

space with base K. (For definitions of order-unit and base-norm spaces see [1; Ch. I I ,  w 2].) 

As shown in [17], the predual of a JBW-algebra is unique, and will be a base-norm 

space. The base of the positive cone in the predual can be identified with the set of 

normal states, i.e. the states ~ such tha t  (a, ~> =lim~ <a~, ~> whenever {a~} is an increasing 
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net with 1.u.b.a .  If  B is a JB-algebra with state space K, then K can be identified with 

the normal state space of the enveloping JBW-algebra B**. 

A JBW.algebra and its predual are in spectral duality by [3; Th. 3.1]; the state space 

of a JB-algebra is strongly spectral by [3; Cor. 3.2]. We will briefly review the basic notions 

of spectral theory from [2] and [3]. 

Let  (A, e) be an order-unit space which is the dual of a base-norm space (V, K). Then 

one can identify A with the space A~(K) of all bounded affine functions on K. We say two 

positive projections P,  Q on A (or on V) are quasicomplementary (q.c.) if 

(2.4) ker+ P = im+ Q, im+ P = ker + Q. 

A w*-continuous positive projection P: A-->A with HP[[ < 1 is said to be a P-projection if 

there exists a (necessarily unique) w*-continuons positive projection P': A-+A with 

[[P'[] <1 such that  P,P '  are q.e. and the dual projections P*,P '*  (on V) are also q.e. 

(Various equivalent definitions are given in [2; w167 2, 3].) If A is a JBW-algebra and V its 

predual, then the P-projections are exactly the maps Uv: aF-->{pap) where p is an idem- 

potent and {pap} denotes the Jordan triple product. In particular Uva =pap with p a self- 

adjoint projection if A is the self-adjoint part  of a yon Neumann algebra. 

To every P-projection P is associated a projective unit up =Pe and a projective /ace 

Fp = K fl im P* ={0 e K] <Pe, O> = 1). 

The sets of P-projections on A, projective units in A, and projective faces of K are 

denoted by ~), 7~, and 9:, respectively. In ~) an ordering is defined by P ~ Q  when 

PQ =QP=P; this is equivalent to the natural ordering of the corresponding elements of 

~/ and :~, i.e. to Pe<~Qe and ~p_~FQ (cf. [2; Lemma 2.16]). Thus the sets ~/, ~), :~ are 

order isomorphic under the maps Pe+-*P~Fp [2; Th. 2.17]. Using these maps one can 

transfer the notion of a quasieomplement from ~ to ~ / and  :~. Specifically, let u q ~ / and  

Feht ,  say u=Pe and F = F ~  with Pe~) ;  then u ' = P ' e = e - u  and F ~ =Fp,=KNimP'* .  

According to [3; w 2], (A, e) and (V, K) are in spectral duality if the following two 

requirements are satisfied: 

(2.5) Every norm-exposed face of K is projective. 

(2.6) Every aEA admits a unique decomposition a = a + - a -  such that  a +, a-CA+ and 
a+ .s a -. 

(Recall that  a face F of K is norm-exposed if there exists a norm-closed supporting hyper- 

plane which meets K exactly in F; the orthogonality relation of (2.6) was defined in the 

introduction.) 
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I t  is shown in [2] and [3] that  if (A, e) and (V, K) are in spectral duality, then the set 

:~ of projective faces of K is a complete orthomodular lattice (this depends only on 

(2.5)) and every aEA admits a unique spectral resolution. Furthermore, A will possess a 

functional calculus for bounded Borel functions having the usual properties. This spectral 

resolution and functional calculus will coincide with those developed in [4; w 4] when A 

is a JBW-algebra (cf. [3; w 2]). 

If  in addition K is compact in some locally convex Hausdorff topology, then it is 

of interest to know when the space A (K) of continuous affined functions on K will be closed 

under the functional calculus by continuous functions. By  [2; Th. 10.6] and [3; w 2] this 

will be true iff K is a strongly spectral compact convex set, i.e. if K satisfies (2.5) and (2.6) 

and also 

(2.7) a +, a-EA(K) for all aEA(K). 

If K is the state space of a JB-algebra B, then B can be identified with A(K) (up to order 

and norm isomorphism). Then K will be strongly spectral, and the functional calculus from 

spectral theory will coincide with that  in [4]; in particular the squaring maps will agree. 

Thus the Jordan product can be recovered from spectral theory by the formula 

a o  b = l ( ( a  + b) ~ - a  s -  b2). 

Assume now that  (A, e) is an order-unit space which is the dual of a base-norm space 

(V, K) and that  (2.5) holds. We recall from [2; w 5] tha t  a P-projection P is central if 

P+P'=I;  by [2; Th. 10.2] this is equivalent to the corresponding projective face being 

a split face. We will say A is a/actor (for the given duality with V) if it contains no central 

P-projections other than 0 and I (the identity map), or equivalently, if K contains no 

proper split faces. We will say that  u E ~ is an atom if u is a minimal (non-zero) projective 

unit, and we will say a factor A is of type I if it contains an atom. i t  follows from [3; 

Prop. 1.13] tha t  if u is an atom, then the corresponding projective face will contain exactly 

one (extreme) point, which we will henceforth denote by 4. Now u ~ 4  is a 1-1 mapping 

of the atoms onto the norm-exposed points of K, and for a given atom u then z~ is the unique 

point in K such that  (u,  ~ = 1. 

Specializing to a JBW-algebra A (in duality with its predual), we note tha t  an 

idempotent p is central in the sense defined in [4] iff the corresponding P-projection 

U~ is central in the above sense (cf. [4; Lemma 2.11]). A JBW-algebra A which is a factor, 

will be called a JBW-/actor. (The definition in [4; w 5] is slightly different, but  via spectral 

theory and the results of [17] it  can be seen to be equivalent.) Clearly, these notions for 

JBW-algebras will in turn specialize to the usual ones for yon Neumann algebras, 
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w 3. The Hiihert ball property 

We begin by  recalling some general notions relating to an arbi t rary convex set K 

(in some linear space), and for brevi ty  we denote by  A the space A~(K) of all bounded 

affine functions on K. (This conforms with the notations used in w167 1, 2.) For any  subset 

E of K there exists a smallest face F = f a c e  (E) which contains E (possibly F = K ) .  We 

say tha t  two extreme points ~, ~ of K are separated by a split face if there exists a split 

face F such tha t  Q E F and o EF'. (As usual F '  denotes the complementary split face, 

cf. [1; Ch. I I ,  w 6].) 

PROrOSITION 3.1. I f  tWO extreme points ~, o of a convex set K can be separated by a 

split face, then/ace ((9, a)) is equal to the line segment [9, 0]. I f  in addition 9 and a are norm- 

exposed points, then [9, a] is a norm-exposed/ace. 

Proof. 1. The s ta tement  tha t  face ((Q, a ) ) =  [9, a], follows in a straightforward way 

from the definitions; we leave the details to the reader. 

2. Assume now tha t  9 and a are norm-exposed, and let a, bEA be chosen such tha t  

a > 0  on g ~ ( 9 ) ,  (a, 9~ =0 and b > 0  on g ~ ( o ) ,  (b, o~ =0.  Also let F be a split face such 

tha t  9 e F  and o e F ' .  For every 0)EK, let 2(0)) e [0, 1], ~v(o~) e F  and ~v(w) e F '  be (uniquely) 

determined by  

(3.1) 0) = 2(0))~(0)) + (1-2(0)))y~(0)). 

Now define a function c on K by  writing 

(3.2) (c, 0)) = 2(0)) (a,  ~v(0))> + (1 --2(0))) (b, y)(0))>. 

Clearly c is bounded, and it is seen by  a straightforward verification tha t  c is affine. 

Hence e CA. Clearly also c > 0 on K ~ [ 9 ,  a] and e = 0 on [9, 0]. This completes the proof. []  

By  a Hilbert ball we shall understand the closed unit ball of some real Hilbert  space 

H. The dimension of H can be finite or infinite, and for convenience we also admit  the 

"zero dimensional Hilbert  ball", consisting of a single point. 

Definition. A convex set K has the Hilbert ball property if face ((9, o}) is a norm- 

exposed face affinely isomorphic to a Hilbert  ball for every pair 9, (r of extreme points 

of K. 

Note tha t  if the two extreme points 9, a coincide, then face ((9, a} )=face  {9}; so if g 

has the Hilbert  ball property,  then every extreme point of K is norm-exposed. 

Note also tha t  by  Proposition 3.1, a convex set K will have the Hilbert  ball property 

iff every extreme point is norm-exposed and face ((9, 0}) is a norm-exposed face affinely 
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isomorphic to a Hilbert ball for every pair ~, ~ of distinct extreme points which can not 

be separated by a split face. 

If  (A, e) is an order-unit space which is the dual of a base-norm space (V, K) and 

if (2.5) holds, then every subset E of K is contained in a smallest projective (and norm- 

exposed) face [3; Cor. 1.2], which we will denote by F(E).  In  this case, if the convex set 

K has the Hilbert ball property, then 

(3.3) F((~, a}) = face ({~, (~}) 

for every pair 9, a of extreme points of K; in particular 

(3.4) F(e) = {e} 

for every single extreme point ~ of K. 

We now proceed to prove that  the normal state space of a JBW.algebra has the 

Hilbert ball property, and the first step will be to prove that  every extreme point of the 

normal state space of a JBW-algebra A is norm-exposed. We begin by showing this for 

the exceptional JB-algebra M~ of all self-adjoint 3 • 3-matrices over the Cayley numbers. 

This algebra is finite dimensional, so we do not have to worry about normality for 

states, and we can use the term "exposed point" without further specification. 

LE~MA 3.2. Every extreme point o I the state space K o I M~ is exposed. 

Proo/. Let A=M~ and V=(M~)*. By a known result there exists in A an inner 

product making A + a self-dual cone, i.e. (alb)>~O for all bEA+ iff aEA + (cf. [6; Ch. 11, 

Satz 3.8]). Now a~-->(, la) is seen to be an order isomorphism of A onto A*= V. Therefore, 

if we can prove that  every extreme ray of A+ is exposed, then every extreme ray of V + 

will be exposed, and so every extreme point of K will be exposed. 

But  an extreme ray of A+ is a closed face of A+, and therefore of the form im + P 

for some P-projection P [2; Th. 12.3]. By Proposition 1.4 of [2], im + P is semi-exposed, 

and by finite dimensionality, exposed. This completes the proof. []  

PROPOSITION 3.3. Every extreme point o/the normal state space K o/a JBW-algebra 

A is norm-exposed. 

Proo]. Let ~ be an extreme point of K and let c(~) be the smallest central idempotent 

of A satisfying <c(~), ~ )=1 .  Also let P0 be the corresponding P-projection, i.e. c(e ) =Poe, 

and let ~0 be the corresponding projective face, i.e. F 0 = ( a e g i ( c ( e ) ,  a>= l} .  Note that  

P0 = Uc(o)- To show that  ~ is norm-exposed, we will relativize to the spectral duality of 

(A 0, c(e)) and (V 0, F0) where A o = i m P  o and Vo=imP*  (cf. [3; Prop. 2.3]). Specifically, 

we will show that  (~} is a norm-exposed, or equivalently a projective, face of F 0. 
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By [4; Lemma 5.5.] AQ is a factor. Therefore by  [4; Th. 8.6] AQ is either isomorphic 

to M~ or to a Jordan  operator algebra. In  the former case we are done by  Lemma 3.2. 

In  the latter case the argument  in the proof  of Theorem 8.7 in [4] shows tha t  the projec- 

t ive face generated by  r is minimal. I t  then follows from [3; Prop. 1.13] tha t  this face 

consists of e only. Thus, {e) is a projective face of F o, as desired. []  

Next  we shall prove a series of lemmas needed for the s tudy of face ((~, a}) for two 

extreme points Q, a of the normal state space of a JBW-algebra.  

Lw~MA 3.4. Let A be a JBW-algebra, and let u, v be arbitrary idempotents in A.  Then 

there exists s E A  with s~=e such that 

(3.5) U~(u V v - u )  = v - u  Ix v. 

Proo/. By Lemma 6.2 of [4] there exists s E A  with s~=e such tha t  

(3.6) V {u,vu,} = {vu ,v} ,  

where u' = e - u .  By the proof of Lemma 6.3 of [4] we also have 

(3.7) Us r( {u' vu'} ) = r( {vu' v} ). 

By Lemma 1.8 and equation (1.4) of [3]: 

r ( {u'vu' } )  = (v v u) A u' = v u ) - u  

and r({vu'v}) = (u' V v') A v = (u A v)' A v = v -- (u A v), 

which completes the proof. []  

The following corollary will not be needed in the sequel, but seems of interest in its 

own right. Let  L be a lattice and a, b eL; one says (a, b) is a modular pair  (written (a, b) M) 

if lor all x EL with a A b ~<x ~< b there holds x = (x V a)A b. A lattice is semimodular if the 

relation M is symmetric,  i.e. if (a, b ) M  implies (b, a )M.  (For background see [5] or [11].) 

Topping [20] has shown tha t  the projection lattice of a yon Neumann algebra is semi- 

modular. We will now generalize this to JBW.algebras .  

COROLLARY 3.5. The lattice ~ o/ idempotents  (=projective units) in a JBW.algebra 

A is semimodular. 

Proo/. We know tha t  U is an orthomodular lattice (el. [2; Th. 4.5] or [4; Prop. 4.9]). 

By  Corollary 36.14 and Theorem 29.8 of [11], it now suffices to prove tha t  whenever 

u, v E ~/ and u V v =e, u A v =0,  there exists a lattice automorphism of ~/ taking u to 

v' and v to u'. 
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I f  s E A  and s~=e, then the map  Us: ae->{sas} satisfies U~=I .  Note  tha t  since Us is a 

Jo rdan  au tomorphism (cf. [8; p. 60] or use Macdonald 's  Theorem [8; p. 41]), then it maps  

idempotents  into idempotents;  by  [4; Prop. 2.7] i t  is order preserving so it is a lattice 

au tomorphism of ~ .  

Now if u V v = e  and u A v=O, then Lemma 3.4 gives U s ( e - u  ) =v for some s E A  with 

s2=e. Thus U ~ u = e - v = v '  and U ~ v : u ' ,  which completes the proof t h a t  ~ is semi- 

modular.  [ ]  

LEI~MA 3.6. 11/ U is a minimal  idempotent o/ a JBW-algebra and v is an arbitrary 

idempotent, then u V v - v  is either a minimal  idempotent or zero. 

Proo/. B y  L c m m a  3.4 there exists s E A  with s~=e, such t h a t  U~ exchanges u V v - v  

and  v - u A v. B y  minimal i ty  of v, the  lat ter  either equals v or is zero. Now U~ maps  mini- 

mal  idcmpotents  to  minimal idempotents.  This proves the  lemma. [ ]  

L E M ~ A  3.7. Let u, v be distinct minimal  idempotents o] a JBW-algebra. I] w is an 

idempotent di]]erent /rom 0 and u V v such that w < u V v, then w is also minimal.  

Proo]. Define w ~ = u  V v - w .  Then u<~u V w ~ ~ u  V v; we claim one of these relations 

is actual ly  an equality.  For  if bo th  inequalities are strict, then we also have the strict  

inequalities 

0 < ~  V w ~ --U<U V v- -u ,  

which contradicts  the fact  t ha t  the  last t e rm is a minimal idempotent  by  L e m m a  3.6. 

Thus, either u = u  V w ~ or u V w ~ = u  V v. 

I n  the  former case, minimal i ty  of u forces u = w ~ ;  so 

W ='Ie V V - - W  r = U  V V - - U ,  

which is minimal by  Lemma 3.6. 

I n  the lat ter  case 

w = u V v - - W  ~ ~ u V w ~ - - W ~  

which is again minimal by  L e m m a  3.6. [ ]  

LEMMA 3.8. I /  A is a JBW. /ac tor  and u is a non-zero idempotent in A ,  then {uAu}  

is a JBW-/actor.  

Proo/. Note  first t h a t  {uAu}  is a JBW-algebra ,  as can be seen f rom [4; Prop,  4.11]. 

Now suppose t h a t  a is a non-trivial  idempotent  which is central  in {uAu} ,  and let 

b = u - a .  B y  Lemmas  6.4 and 6.7 of [4] there exist non-zero idempotents  al<.a , bl<~b and 
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s e a  with s2=e such t h a t  {sals)=b r Let  t=(usu);  then  since al, b lE{uAu)  

(ta t} = = b l .  

But  b y  pos i t iv i ty  of the  m a p s  Ut and U b [4; Prop.  2.7] we now get 

b 1 -= (bblb) = {b{talt}b ) <~ {b(tat}b), 

and since a, b, t e {uAu)  are compat ib le  b y  centra l i ty  of a and  b, this gives (cf. [4; 

L e m m a  2.11]) 

bl <~ UbUta= Ut Uba = 0 ,  

a contradiction.  This  completes  the  proof t h a t  there is no nontr iv ia l  central  idempoten t  in 

{uAu),  so {uAu)  is a JBW-factor.  [] 

Recall  f rom [4] t h a t  a JBW-factor of t ype  1 is said to  be of t ype  I s if the  max ima l  

ca rd inah ty  of a set  of or thogonal  non-zero idempoten t s  is 2 (cf, [4; w 

LEMMA 3.9. I] u, v are distinct minimal idempotents in a JBW-/actor A,  then A~.v = 

{(u V v)A(u V v)) is a type I s JBW-/actor. 

Proo]. B y  L e m m a  3.8, A~., is a JBW-factor.  Since Au. v contains the  min imal  

idempoten ts  u and  v, it mus t  be of t ype  I .  Note  also t h a t  the  max ima l  n u m b e r  of e lements  

in a set  of or thogonal  idempoten ts  is a t  least  2, since u and  u V v - u  are or thogonal  and  

bo th  non-zero. On the  other  hand,  suppose t h a t  w 1, w~, w a were three  non-zero or thogonal  

idempoten ts  in Au. v. Then  w l + w  ~ would be a non-minimal  idempoten t  under  u Vv, 

con t ra ry  to L e m m a  3.7. Thus,  there  can not  be any  set  of more  t han  2 or thogonal  non- 

zero idempoten t s  in Au.v; so Au. v is an  Is-factor .  [ ]  

LEMMA 3.10. I / A  is a JBW-]actor o/type 12, then all states o / A  are normal and the 

state space o / A  is a//inely isomorphic to a Hilbert ball. 

Proof. Let  A be a n y  JBW-factor of t ype  I~, and  note  t h a t  b y  Proposi t ion 7.1 of 

[4] A will be an (abstract)  spin factor  in the  sense of Topping  [19], i.e. A can be equipped 

with  an  inner p roduc t  (a [ b) which makes  it  a real Hi lber t  space in such a w a y  t h a t  e is a 

uni t  vector  and  for every  pa i r  a, b of elements  of 2Y = {e) ~ one has 

(3.8) aob = (a[b)e. 

I n  par t icular  [[a][ ~ = [[a~[[ = [(a [a) I, so the  Hi lber t  no rm [[[a [[[ = ~/~-[ a) will coincide wi th  

the  given JB-a lgebra  norm Ilall for a E h  r, Clearly also the  two norms will coincide on Re. 

B y  L e m m a s  3 and 4 of [19] the  following inequalit ies will hold for a general e lement  a e A  
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(3.9) iilaiil ilal] r 

Therefore A is linearly homeomorphie to a Hilbert  space, and so is reflexive. Hence the 

predual of A will coincide with its dual, and all states must  be normal. 

We will prove tha t  the closed unit ball of the subspaee N of A provided with the 

Hilbert  norm ilIa Ill, is affinely isomorphic to the state space of A. To this end we first note 

tha t  by  Lemma 1 of [19] a general element a+~eEA,  with a E N  and ~ER, is positive iff 

(3.10) ~ ~> lilaH[. 

For every given b E N we define a linear functional ~ on A by  

(3.11) ~b(a + ~e) = (a I b) + ~, 

where a fi N and ~ fi R 

Clearly b ~->Q~ is an affine map of N into A*. I f  l llblll < 1, then for every a + ~e >~ 0 

with a e N  and ~ e R  we get by  (3.10) and (3.11): 

50(a+ e) I(alb) l Illal[ I >/0. 

Hence 5, I> 0 when III bill < 1. By the definition (3.11), 5b(e) = 1 for all b e N. Thus, b ~-> 5b is 

an affine map of the closed unit ball of N into the state space of A. 

Now let bl, b~ be two distinct vectors in N. Letting a = b l - b ~ # O ,  we have by  (3.11) 

5a,(a) - 5b.(a) = ( a l  b~ - b 2 )  = II1 b~-b~llr #0.  

Hence the map b~->Sb is 1-1. 

Finally we consider an arbi t rary state 5 of A. Since the two norms on A coincide 

on 2V, the restriction of 5 to N will have norm at  most 1 with respect to the Hilbert  norm. 

Hence there exists b e n  with lllblll < 1 such tha t  5(a)=(a[b) for all a e N .  By linearity 

o(a +ae) = (alb) +~o(e) = (alb) +~  

for arbi t rary  a e h  r and ~eR.  Hence 5 =5," This proves tha t  the map b~-~5, maps the unit 

ball of N onto the state space of A, and we are done. []  

THEOREM 3.11. The normal state space o/ a J B  W-algebra has the Hilbert ball property. 

Proo]. Let  A be any  JBW-algebra with normal state space K. By Proposition 3.3 

every extreme point of K is norm-exposed. We consider an arbi trary pair 5, a of extreme 

points of K which can not be separated by  a split face, and we will prove tha t  face ({5, a}) 

is a norm.exposed face affioely isomorphic to a Hilbert  ball. By  previous remarks this will 

prove our theorem. 
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Let R be the P-projection, and w the projective unit, corresponding to the projective 

face F({O, a}) generated by ~ and a. Since {e} and {o} are norm-exposed faces, they 

will also be projective faces. We denote the corresponding (minimal) projective units by 

u and v, respectively. In the lattice ~ of projective faces of K, we have F({O, a ) ) =  

{~} V {o}. Hence in the lattice ~ of projective units, we have w = u  V v. Therefore R is 

the P-projection corresponding to u V v, and so R =  U~v~. Thus, for aEA 

(3.12) .Ra = {(u V v )a (u  V v)}. 

We write Au. .=im R, and we note that  Au.~ is a JBW-algebra by [4; Prop. 4.11]. 

By [3; Prop. 1.10], (im R*, F({e, o))) will be the predual of (Au.v, u V v). Thus F({Q, a}) 

will be the normal state space of A,., .  

Now, let c(~) be the smallest central projective unit of A such that  (c(~), ~) = 1, and 

recall that  the corresponding projective face G is the smallest split face containing ft. 

Since the two extreme points ~ and a can not be separated by a split face, then also o E G. 

I t  follows that  F({~, o})~_G, and by passage to projective units, u V v<c(~). 

Let Q be the (central) P-projection corresponding to c(~), let Ac(~)=ira Q, and note 

that  uEA~(Q) and veAc(~). (Recall that  by [2; Cor. 2.12], im Q is the order ideal of A gene- 

rated by c(Q).) By Lemma 5.5. of [4], At(q) is a JBW-factor; and since it contains the 

minimal idempotents u, v, it  must be of type I. 

Next we note that  A~.v= RA = RAclo) since Au.v~ Ac(o). Then it follows from Lemma 

3.9 and formula (3.12) that  A~.. is a n / j a c t o r .  By Lemma 3.10 the normal state space 

2'({~, ~}) of A~., must be a Hilbert ball. 

Finally we note that  the face generated by any pair of distinct extreme points of a 

Hilbert ball, is the entire ball. Hence face ({~, o})=F({~, a}). Thus, face ({0, 0}) is a 

projective, hence norm-exposed, face of K affinely isomorphic to a Hilbert ball. 

COROLLARY 3.12. The state space o/ a JB-algebra has the Hilbert ball property. 

Proo]. The state space of a JB-algebra is the normal state space of its enveloping 

JBW-algebra (cf. [17]), so Theorem 3.11 applies. [] 

Now we turn to discuss a second geometric property which will be useful in the sequel. 

First we define a reflection of a convex set K (in some linear space) to be an affine auto- 

morphism ~ of K which is involutory (i.e. ~*=id). To justify the term "reflection", note 

that  such a q has a non-empty set of fixed points Ko={�89 and that  for 

each ~ EK the image point ~(Q) is obtained by reflecting the line segment [Q, q0(~)] about 

its mid-point �89 0. 
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De/inition. A convex set K is symmetric with respect to a convex subset K o if there exists 

a reflection of K whose set of fixed points is precisely K 0. 

LEMMA 3.13. Let (A, e) be an order-unit space which is the dual o / a  base-norm space 

( V, K). I] F is a projective/ace o / K  and P is the corresponding P-projection on A, then the 

]ollowing are equivalent: 

(i) K is symmetric with respect to co (F U .F ~) 

(ii) 2 P + 2 P ' - I  >10. 

I] these equivalent conditions hold, then q)= (2P + 2 P ' - I ) * ] K  is the unique reflection o / K  

with co (FU F ~) as its set o// ixed points. 

Proo]. Assume first tha t  (i) holds, and let ~0 be a reflection of K with co (FU F ~) as 

its set of fixed points. Define ~p=�89 and note tha t  ~p(K)cK and ~o~=~o. Further- 

more, for ~ E K it is easily verified tha t  ~o(~) = ff iff ~v(~) = @, so ~o(K) = co (F  U F ~). Thus v 2 

is an affine retraction of K onto co (F U F~).  By  [2; Th. 3.8] there exists exactly one affine 

retraction of K onto co (FU $'~), namely (P+P')*[K.  Thus we have ~fl=(P+P')*]K, 

which implies q~=(2P+2P'-I)*]K. In  particular ( 2 P + 2 P ' - l ) *  leaves the base K of 

the cone V + invariant. Hence 2P + 2 P ' - I  leaves the cone A+ invariant, so (ii) is proven. 

In  addition we have proven the uniqueness s ta tement  of the lemma. 

Assume next  tha t  (ii) holds. Then since 2P  + 2P' - I >~ 0 and (2P + 2P' - I )  e = e, the 

dual map ( 2 P + 2 P ' - I ) *  will leave invariant  not only the cone V + but  also its base K. 

Since ( 2 P + 2 P ' - l ) 2 = l ,  the map (2p+2p ' - l )*]K is a reflection of K. Furthermore 

(2P+2P'-I)*@=~ iff (P+P')*~ =~, which by  [2; Th. 3.8]) is equivalent to ~Eco (FU Fr 

This shows tha t  K is symmetric with respect to co (F  N Fr  which completes the proof. []  

PROPOSITION 3.14. The normal state space o/ a JBW-algebra is symmetric with 

respect to co (F U E r ]or every projective/ace F, or what is equivalent: 

(3.13) 2 P + 2 P ' - I > ~ O  for a l l P E ~ .  

Proo]. Let  A be a JBW-algebra with normal state space K. 

We will first verify the following identi ty valid for any idempotent  q E A with q' = e - q: 

(3.14) ((q--q')a(q-q')} = 2(qaq} + 2(q' aq'} --a. 

By definition, (bab}=2bo(boa)-b2oa for any  beA.  Applying this to b = q - q ' =  

2q-e ,  we find 

(3.15) { ( q - q ' ) a ( q - q ' ) }  = 4{qaq} -4qoa  + a. 
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Interchanging the roles of q and q', we get 

(3.16) { (q-  q')a(q -q')} = 4{q'~'} -4q'oa +a. 

Addition of (3.15) and (3.16) gives (3.14). 

Now suppose P is any P-projection on A. Then P = Uq, 1o' = Uq, for some idempotent  

qEA. Thus (3.14) gives the following equality valid for each aEA: 

(2P §  = (2Uq.+ 2Uq . - I )a  = {(q-q ' )a(q-q ' )} .  

By Proposition 2.7 of [4] the maps Ub: a~->{bab} are positive for all b, and so we conclude 

2P§ which proves (3.13). [ ]  

Passing from a JB-algebra to its enveloping JBW.algebra, we also obtain: 

COROLLARY 3.15. The state space o] a JB-algebra is symmetric with respect to 

co (E U F "~) /or every projective/ace F. 

Remark. In  the proof above s = q - q '  satisfies s~=e. Thus each map  2 P + 2 P ' - I  in 

the JB-algebra context is of the form U~ for some element s such tha t  s 2 =e. In  the 

operator algebra context the map  U~ is conjugation by  the self-adjoint unitary s. Thus 

symmet ry  of the state space for a C*-algebra can be viewed as a consequence of the fact 

tha t  conjugation by  a self-adjoint uni tary  is an involutary *-automorphism, and thus 

induces a reflection of the state space. 

w 4. The pure state properties 

Throughout this section we will assume tha t  (A, e) is an order-unit space which is the 

dual of a base-norm space (V, K) and tha t  (2.5) holds. The extreme rays of V + are the sets 

R+~ with Q an extreme point of K. Thus, to say tha t  a map P* (with P E 9)  preserves 

extreme rays, means that  P*~ is a multiple of an extreme point for every extreme point 

of K. (Here we allow the possibility tha t  P*~=0.)  

P ~ o P o s I ~ I o ~  4.1. I /  K has the Hilbert ball property and is symmetric with respect 

to co (FU F r /or every projective /ace F, then P* preserves extreme rays /or every P E p .  

Proo/. Let ~ EK be an arbi trary extreme point. We can, and shall, assume (P +P ' )*~ #~;  

for otherwise 0 ~<P* ~<Q, and then P*~ would be a multiple of the extreme point ~. 

By  the symmet ry  property,  the map (2P + 2P'  - I)* acts as an automorphism of K. 

Hence eo=(2P+2P'-I)*Q is an extreme point of K. By the ball property,  face ({~, ~o}) 

is affinely isomorphic to a I-Iilbert ball. 
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:Now let x = liP*all #0, and observe t h a t  1 -~t = lip'*ell #0. Define also a = IlP*QII-~P*~ 

and T =  IIP'*~llP'*o. Then 

1(~ +co) = (P + P ' ) * q  = ha + (1-4)~:.  

:Now it  follows f rom the definit ion of a face t h a t  a, TE face ({Q, co}). 

The  points  a and  ~ are contained in disjoint  faces K N im P* and K N im P'*;  therefore 

the  line segment  [a, v] can not  be extended beyond a or ~ within K.  Thus,  a and  T mus t  be 

bounda ry  points,  and  then  also ex t reme points  of the  ball face ({~, co}). I t  follows t h a t  

o = IIP* II-1P*Q is an ex t reme  point  of the  given convex set K, and  the  proof is complete.  [ ]  

I n  our nex t  proposi t ion we will in t roduce two propert ies  which are consequences of the 

preserva t ion  of ex t reme rays  b y  P* for P E ~). I n  fact ,  under  the  assumpt ion  t h a t  every  

ex t reme  point  of K is exposed, i t  is not  hard  to  ver i fy  t h a t  each one of t h e m  is equivalent  

wi th  the  preservat ion  of ex t reme rays.  However ,  this will not  be needed in the  sequel, 

so we omit  the  proof.  

PROPOSITION 4.2. I1 K is such that P* preserves extreme rays/or  every P E ~ ,  then: 

(i) For each atom uE~l and each vE~l, (u V v') A v is either an atom or zero. 

(ii) Each P E 7) maps atoms to multiples o/atoms. 

Proo/. 1. Le t  Q be the P-pro jec t ion  and  G the  project ive face corresponding to v E ~/, 

and recall t ha t  {~} is the  project ive face corresponding to the  a t o m  uE~/ .  B y  [3; 

Prop.  1.9] 

(4.1) F(Q*~) = ({~} V G ~) N a .  

B y  hypothesis  Q*4 is ei ther zero or a mult iple  of an ex t reme point .  I n  the  la t ter  case 

{IIQ*~tII-1Q*(e} is a norm-exposed,  hence projective,  face of g .  Therefore I]Q*deli-IQ*(e=d9 

for some a t o m  w E ~/. Now (4.1) can be rewri t ten  in the  form {c5} = ({~} V G ~) fl G. B y  the  

i somorphism of the  lat t ice ~ / o f  project ive  uni ts  and  the  lat t ice ~ of project ive  faces, this 

gives the  equal i ty  w =  (u V v ' )A v, which completes  the  proof  of (i). 

2. Le t  P E O  and let uE~/  be an a tom.  B y  [3; L e m m a  1.8] 

r(Pu) = (u V P'  e) APe, 

and b y  s t a t emen t  (i) the  r ight  t e r m  is ei ther zero or an a tom.  Therefore Pu must  be a 

mult iple  of an a tom.  [ ]  

Remarks. As was first  observed b y  Pool in a related context  [14], the  s t a t emen t  (i) 

of Proposi t ion 4.2 is closely related to  the  not ion of semimodular i ty  of the  lat t ice ~/. I t  is 

well known t h a t  for every  o r thomodula r  lat t ice semimodular i ty  implies (i), and it  can 
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be proved that  the converse implication holds if there are "sufficiently many"  atoms, 

i.e. if every element of the lattice is 1.u.b. of atoms. (See [15] and [11; Th. 30.2, Cor. 7.7].) 

PROPOSITION 4.3. I1 K has the Hilbert ball property, then/or every pair o[ atoms 

u, vE~l: 

(4.2) (u, ~ = (v, 4)  

Proo[. By hypothesis F =face ({~, ~}) is a norm-exposed face affinely isomorphic to a 

Hilbert ball. Being norm-exposed, the face 2, is also projective, therefore of the form 

2 , = K  N im Q* for Q E ~). Since 4, ~E2,, we can pass to the corresponding projective units 

and obtain u, v<~Qe. Now by [3; Prop. 1.10], u and v will de:ermine projective units in 

the relativized spectral duality of (im Q, Qe) and (im Q*, 2,). Thus the restriction of u 

and v to 2' will be affine functions with values in [0, 1]; the former with the values 1 at  

4 and 0 at its antipodal point, and the latter with the values 1 at ~ and zero at its antopodal 

point. 

Denoting by ~ the center of the ball 2, and by ~ the angle between ~ - ~  and ~ - ~  

and using some elementary plane geometry, we obtain (see fig. 1): 

(u,  ~) = (v, 4 )  = �89 +cos  ~). 

Note that  this proof is valid also when 2, is one-dimensional: Then ~ = 180 ~ and (u, ~ ) =  

(v, ~)=o. [] 

The properties established in Propositions 4.1 and 4.3, will always be used in connec- 

tion with the property that  all extreme points of K are norm-exposed. I t  will be con- 

venient to be able to refer to them by a single name; since they are all related to the 

extreme points of K, we give the following: 

Definition. K has the pure state properties if: 

(4.3) Every extreme point of K is norm-exposed. 

(4.4) P* preserves extreme rays for every P E ~.  

(4.5) (u, ~) = (v, 4) for every pair of atoms u, v E ~ .  

Remarks on the physical interpretation o/ the pure state properties. As in [3; w 3] we 

may view each ee v+ as representing a beam of particles with intensity ]IQll =(e ,  ~), and 

each P E ~ as representing a filter transforming any given beam ~ ~ V + to a new beam 

P*~ of intensity at most equal to that  of the given beam. (By a fundamental property of 

P-projections, the intensity remains undiminished only when the filter is neutral to the 

beam, el. [2; w 2].) 
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Property (4.3) states that  for an arbitrary beam of particles in a pure state, i.e. for an 

arbitrary extreme point ~ of K, there exists a filter P E ~ which transforms every incoming 

beam to (a multiple of) the given beam, i .e.  P*(V +) =R+ 0. (This may  :be expressed by  

saying that  the filter P "prepares" ~.) 

Property (4.4) states that  each filter P E ~ transform s pure states t o  (scalar multiples 

of) pure states. (The scalar factor represents the decrease in intensity, and is strictly less 

than 1 unless P*o=o, as noted above.) 

Property (4.5) is a statement of a symmetric relationship between the "transition 

probabilities" connecting pure states. For a more detailed discussion of these and related 

properties see [14], [7], [12]: 

w 5. The splitting into atomic and non.atomic parts 

Until further notice we will make the same hypotheses as in w 4, i.e. we assume that  

(A, e) and (V, K) are given such that  A =  V* and (2.5) holds. We will first present some 

relevant lattice theoretic definitions and results, which we state for the (complete) ortho- 

modular lattice ~ of projective units in A. 

Let  u, v, wE~/, we say v covers u if u < v  and u<~w<~v implies w = u  or w=v.  Clearly 

this is equivalent with v - u  being an atom. We say that  ~ has the covering property if 

(5.1) u, vE'~ and v an atom implies u V v  covers or equals u. 

Note that  (5.1) holds in the particular case where ~/ is the lattice of idempotents in a 

JBW-algebra (Lemma 3.6). 

An element u E ~/is said to be/ ini te  if it is the 1.u.b. of a finite number of atoms; the 

minimum number of atoms whose 1.u.b. is u, is caned the (lattice theoretic) dimension 

of u. We say ~ has the / in i te  covering property if (5.1) holds for all finite u E ~l. Also we 

say ~/ is  atomic if every element :of ~/ is  the 1.u.b. of an orthogonal set of atoms. In  the 

sequel we will use the symbol A~ to denote the linear span in A Of all ,,f, oms of ~ .  

12-772908  Acta mathematica 140. Imprim~ le 9 Juin 1978 
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LE~M.~ 5.1. Assume that ~ is atomic and has the finite covering property. I] u E ~  

is finite, then every v <~u is finite with dim v ~<dim u. Eurthermore, every set o] mutually 

orthogonal non.zero v ~  such that v<~u, has cardinality at most equal to dim u. 

Proo/. The result will follow from [10; Th. 4.1]; we only have to show tha t  if u, vE~/ 

and u and v both cover u A v, then u V v covers u and v. Since x~-->x- (u A v) is an order 

isomorphism of the lattice interval [u A v, u V v] onto [0, u V v - u  A v], we can assume 

u A v - -0  without loss of generality. Then u and v are atoms, so u V v covers u and v by  the 

finite covering property.  [ ]  

From now onward we specialize to the case of a JBW.algebra A in duality with its 

predual V, with K being the normal state space of A. We will say A is atomic if the 

lattice ~ of projective units (=idempotents)  is atomic. 

Lv .~Mx 5.2. 1 / A  is a JBW-algebra, then A is the direct sum o /an  atomic JBW-algebra 

and a JBW.algebra containing no atoms. 

Proo]. Using the techniques of [4] we can apply the proof of [18; Prop. 1.3]. (In w 6 

we shall give a direct proof of this result in a more general context.) [ ]  

PROPOSXTION 5.3. I / A  is a JBW-algebra, then every a E A  I can be written as a finite 

linear combination a=~=12~u~ o/orthogonal atoms ul, ..., un. 

Proo]. By Lemma 5.2 we may  assume tha t  A is atomic. Let  a = ~ . 1 2 ~ v  i where v 1 ... . .  vn 

are atoms. Define v =v  1 V .., V vn and A ,  = {rAy}. Then A v is an atomic JBW-algebra,  and 

by  Lemma 5.1 there is a finite upper bound on the eardinality of orthogonal sets of idem- 

potents in Av. The desired representation of a now follows from the spectral theorem 

in Av. [] 

L~M~A 5.4. 1I A is an atomic JBW-algebra, then its normal state space K is the norm 

closed convex hull o / i t s  extreme points. 

Proo]. I t  clearly suffices to prove tha t  the cone generated by  the set of extreme points 

~ K  is norm dense in V +. To this end we suppose a e A  and <a, ~>>~0 for all e e l ,  K,  and 

we will show tha t  a ~ A +. By  a s tandard Hahn-Banaeh argument,  this will complete the proof. 

Choose P E ~) such tha t  Pa = - a -  (cf. w 2). For each ~ CasK, P*O will be a non-negative 

multiple of an extreme point (Proposition 4.1), so 

0 ~< <a-, ~> = - <Pa, O> = -- <a, P*~> ~< O. 

Thus a -  annihilates ~ K .  By  hypothesis, the lattice :~( ~ ~ )  of projective faces of K is 

atomic; therefore the norm-exposed (=project ive)  face generated by  8~K is K itself, t tence 

a-=O, and so a=a+ >~O. [] 
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LEMMA 5.5. I f  A is an atomic JBW.algebra, then there exists an order isomorphism 

from the ~red~l V o /A  o~ A into A it~el/ such that [[V'][ <1 and ~(~) = u / o r  all atoms u in A. 

Proo]. We firs~ observe that  if u 1 .. . .  , un are atoms such that  ~=12i~>~0 ~or given 

constants 2~ ..... 2~, then by the pure state property (4.5) 

2,u,, = ,~, >/0 

n for each atom v; hence ~ X ~ u ~ 0  by Lemma 5.4. Thus, there exists a well defined 

positive linear map v/0: lin (~K)-+A given by 

Clearly ~o maps lin(0~K) onto A~. To prove injeetivity, let ~0(~)=0 where 

~ = ~ _ _ ~ . ~ ,  u~, ..., u~ being atoms. By the pure state property (4.5) once more 

< v, l = <v,e> 

for all atoms v. Hence ~ =0 by spectral theory, atomieity of A and [2; Lemma 12.1]. Thus, 

Y~0 is injective. 

Next we show II~011 ~< 1. By Proposition 5.3 each 0 e lin (OeK) admits a representation 

Q = ~ 1 2 ~ d i  where u 1 ..... u~ are orthogonal atoms. I t  is not difficult to verify that  

[[~H = 5 ~ 1  l~q[, and so 

II'F I]~00(0)]l= ,~1 a'~/~t I~,l=lioll 
Thus,  < 1 .  

By density of lin (~eK) in V (Lemma 5.4) and by completeness of A, we can extend 

~0 to a positive linear map ~0: V-~A such that  ][y~[[ < 1. Observe also that  by the pure 

state property (4.5), we have 

(5.2) (~(q), ~> = (~(a), q> 

for all ~, a e ~ K ;  by linearity and continuity (5.2) will hold for all ~, aeV.  

Finally, to show v 2 bipositive we suppose e e V and YJ(0)>~0. By (5.2) <~(a), O> >/0 for 

all a e  V+, and in particular for aeO~K. By spectral theory and atomicity of A, we get 

0 >~0. This completes the proof. [] 

PROPOSITION 5.6, I / A  is an atomic JBW-algebra, then every ~EK can be expressed 

as ~ = ~ , 1  i~t where ~,=12~--- , )t,>~O and ~e~eK /or all i, and ~.L~j /or i~=j. 
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Proo]. Let ~ 6 K. For given a > 0 we have by  the spectral theorem in A 

V(Q) = f /  ]~de~ >~ a(e - e~). 

Suppose u~ .... .  u~ are orthogonal atoms below e -e~ ,  then 

Since V is an order isomorphism, then also ~ > ~ 1 ~ ,  and so 

i=I / 

Thus n < ~-~, ans so there are only a finite number  of orthogonal atoms below e-e=.  

I t  follows tha t  

f V(~) = 2de~= ~ 2~,v, 

where vl, v 2 . . . .  are orthogonal atoms and ~q"-aO. Observe tha t  ~__1~.~<~1 since V(~)>~ 

~ 1 2 i v t  gives 

O0 A Thus ~=ll~V~ is a norm convergent series such tha t  

V(~) = V(~ 2, 4,), 
O0 ,' and so ~=~,=~l,v,. Also 

which completes the proof. []  

For the s tatement  ol our next  theorem, we recall tha t  the a-convex hull of a subset 

~_12~=1 and 2~>0, ~ 6 K  E of K consists of all (norm) convergent sums ~ l l i O i  where ~o 

for all i. 

TH~,O~.M 5.7. Let A be a JBW-algebra with normal state space K.  Then rhea-convex 

hull o~ the extreme points o/ K is a spl i t /ace o/ K.  

Proo/. By Lemma 5.2 there is a central idempotent c in A such tha t  coA  is atomic 

and ( e - c ) o A  contains no atoms. Then K N im U* and K N im * Ue-c are complementary 

split faces of K, w i t h t h e  former being the normal state space Of coA  and the lat ter  being 

the normal state sp~ce of ( e ~ c ) o A . B y  Proposition 5.6 the former is the a-convex hull 
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of its extreme points, and by  the 1-1 c0rrespondence of extreme points and atoms 

(cf.  w 2 and (4.3)) the lat ter  contains no extreme points. This completes the proof. [ ]  

COROLLARY 5.8. Let K be the state space o /a  J B-algebra. Then the (~-convex hull o] the 

extreme points o] K is a split ]ace o / K .  

w 6. The type I tactor case 

In  this section we keep the assumptions of w 4, thus we are given (A, e) and (V, K) 

such tha t  A = V* and (2.5) holds. In  addition we assume that  V is complete (in the base 

norm). Our purpose here is to find necessary and sufficient conditions for K to be the 

normal state space of a JBW-faetor of type I. An obvious necessary condition is tha t  A 

shall be a type I factor as defined in w 2; we will show tha t  one can obtain a set of necessary 

and sufficient conditions by adding ei ther  the Hilbert  ball property and the splitting into 

atomic and non-atomic parts, or the pure state properties of w 4. I t  will be convenient to 

start  out from hypotheses which are implied by  either of these sets of conditions, and to 

work in a context slightly more general than  the type I factor case. 

Thus, until further notice we will assume tha t  K satisfies the following requirements: 

(6.1) The lattice :~( ~ ~ )  is atomic (cf. w 5). 

(6.2) 9: has the finite covering property (cf. w 5). 

(6.3) Every  extreme point of K is norm-exposed. 

(6.4) <u, ~> - <v, ~ for each pair of atoms u, v CA. 

Observe tha t  for each PoE~) the above conditions (6.1)-(6.4) will also be satisfied 

in the relativized setting of A 0 - i m P  0 and V0- imPg ' ,  with co=Poe replacing e and 

Ko=KN V o replacing K (cf. [3; Prop. 1.10]). 

Observe also tha t  (6.3) and (6.4) are nothing but  the pure state properties (4.3) and 

(4.5). We will now prove tha t  a weak form of the remaining pure state proper ty  (4.4) 

will follow from our present assumptions. In  this connection we define an-element  P 

of the l a t t i c e  7 ) t o  be co]inite if P '  is finite (similarly for :~ and ~).  Recall also tha t  if 

P E ~  is fl~nite, then every Q ~ P  is finite by  virtue of Lemma 5.1. 

LEMMA 6.1. P* preserves extreme rays i] PE ~ is finite or cofinite. 

Proo]. 1. Let  P E  :~ be cofinite, say P = R'  where R is finite. Let  F = K  N im P* be the 

projective face corresponding to P. Then G = F ~ corresponds to R. Following the termino- 

logy of [3], we denote the projective face of K generated by  a point (rE V + by  F(a). 
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For each @6aeK, then F(Q)--{Q} is a minimal element of ~. Since G is finite in ~, 

the finite covering property implies that  F(@)V G covers or equals G. This means that  

(F(@) V G) A G * is a minimal element of :~ or the empty set. By  [3; Prop. 1.9] we have 

F(P*e) = (F(e) v F,) o ~ = (F(~) v a) A G*; 

hence P*@ is either a non-zero element located on an extreme ray  in V +, or P*@ =0  (el. 

[3; Prop. 1.13]). With this we have shown that  for the cofinite P-projection P,  then P* 

preserves extreme rays. 

2. Keeping the notation from the first part  of the proof, we will prove that  for the 

finite P-projection /~, then R* preserves extreme rays. For  given @6@eK, let Pc be the 

P-projection corresponding to F(@)={~}. Then Po=R VP o is finite. In  the relativized 

setting of A0=im P0 and V o =ira P~ the P-projections are (up to canonical identification, 

ef. [3; Prop. 1.10]) exactly those Qs which s~tiafy Q~P0;  hence they are all finite. 

From the first par t  of the proof it  follows that  R*~ is a multiple of an extreme point in 

K 0 = K fl im P~. Since K 0 is a face of K, this point must be extreme in K as well. Hence 

R*@ is a multiple of an extreme point in K, and we are done. [ ]  

LEMMA 6.2. I f  @6 V and <v,@>>~O /or all atoms v6A, then Q>~O. 

Proof. By [3; Prop. 1.7], ~ / i s  a w*-dense subset of 3e[0, el, so by  the Krein-Milman 

theorem it suffices to prove <u, @> >~ 0 for an arbitrary u 6 ~/. By  atomicity, u will be the 

1.u.b. of a set of orthogonM atoms, and by  [2; Prop. 4.4, Lemma 12.1] the net of all finite 

sums of these atoms will converge to u in the w*-topology. Hence <u, @> >~0, as desired. [ ]  

COI~OLLARY 6.3. A s and V are in separating order and norm duality (c/. [2; w 1] ]or 

the definition). 

Proof. A I and V are in separating order duality by  Lemma 6.2. To establish 

separating norm duality, we consider an element @ 6 V such that  [<a, @>[ ~< 1 for all a 6A z 

with ]lull ~<1, and we will show that  Ilell ~<1. Since 7 / i s  w*-dense in aeK, an elementary 

argument shows that  S = { 2 u -  e I u 6 %l} is w* dense in 0e[-  e, e] (el. e.g. the proof of [3; 

Prop. 1.7]). Thus, by the Krein-Milman theorem it suffices to show that  [<2u-e, ~>] <1 

for an arbitrary u 6 7/. As in the proof of Lemma 6!2, we construct nets {u~} and {v=} in 

A r such that  O<~u,,<~u, O<~v~<~e-u and u ~ u ,  v = ~ e - u  in the w*-topology. Then 

u , , - vaqAr f l [ -e , e  ] and u,,-v~,--+2u-e in the w*-topology. Hence [<2u-e,@>[ <~1, as 

desired. [ ]  

Lv.MMA 6.4. There exists a unique positive linear map qD: Af-> Y such that q(u)=r 

for all atoms u; the equation (a[ b)= <a, q(b)> will de/iuc a symmetric bilinear form on A~ 
such that 
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(6.5) (u Iv) = ( u ,  ~ 

/or all pairs of atoms u, v;/urthermore, each ]inite or co/inte PE 0 maps A r into itsel/ and 

satis/ies the symmetry condition 

(6.6) (ea]b) = (a[Pb) 

/or all a, bEAp 

Proo]. Observe first tha t  if u 1 ... . .  u n are atoms such tha t  ~'_l~t~ui~>0 for given 

constants 2t, ..., 2n, then by  (6.4) 

~n ~ ~ >~n by  Lemma 6.2. Thus there exists a well defined po- for each a tom v; hence /~1 -~  ~ - 

sitive linear map  ~: A~-~ V given by  

(6.7) ~0 2~ui = ~ 2~4~. 

The bilinearity of the form (alb) =(a,  99(b)) is trivial; so is (6.5), and the symmet ry  

follows from (6.7) and (6.4). 

Assume now tha t  P is finite or cofinite. By  Lemma 6.1 and Proposition 4.2, P maps atoms 

into multiples of atoms; hence P ( A I ) ~ A  p In  order to prove tha t  P is symmetric with 

respect to the bflinear form on A r, we s tar t  by  establishing 

(6.8) ( ( / - p )  ~ [y~)  = o 

for an arbi trary pair of a toms u, v. 

As remarked above, Pv is a multiple of an atom, say Pv=~w where 2 E R  + and w=Qe 

for a P-projection Q with one-dimensional range (cf. [3; Prop. 1.13]). Now, ira+ Q is the 

ray determined by  w, and since w E im + P we must  have im+ Q~_ ira+ P,  which shows tha t  

the projective face corresponding to Q is contained in the projective face corresponding to 

P [2; Lemma 2.16]. By  definition, ~ is the unique element of the projective face K fl im Q* 

corresponding to Q. Hence  ~ E K N  imP*,  and so P * ~ = ~ .  

Using this and the definition of the bilinear form on A I, we obtain 

( ( I - -P)  u]Pv) = 2 ( ( I - P  u [w) 

= 2 ( ( I - P ) u ,  ~> = 2(u, ( I -P )*~> = 0, 
which establishes (6.8). 

From (6.8) we conclude tha t  

(Pu]v) = (PuJPv) = (uiPv) 

for every pair of a toms u, v. Now (6.6) follows b y  linearity, since by  definition A I is the 

linear span of atoms. [ ]  
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COROLLARY 6.5. I / P e  ~ is/inite or co]inite and cp is the map de/ined in Lemma 6.~, 

then ~(Pa) =P*~(a) ]or all a ~A~. 

Pro(?/. By (6.6) we have for all a, b E A r  

<b, ~v(Pa)> = (b IPa) = (Pb la) = <Pb, ~v(a)> = <b, P*~(a)>. 

By  Corollary 6.3 it follows that  cf(Pa)=P*~(a). []  

LEMMA 6.6. I /  a projective unit u is ]inite (in the lattice ~), then it is a/ ini te  sum o/ 

orthogonal atoms, in particular it is in Af. 

Proo]. Using the finite covering property, induction, and the formula 

u: V ... V u~ = u: V ... V u,_1 + (( ~ V ... V u~_:) V u~-u: V ... V u~_:), 

we conclude that  u is a finite sum of atoms. Since these atoms sum to u~e ,  they must be 

orthogonal [2; Prop. 4.4]. []  

COROLLA~Y 6.7. I / P e p  is ]inite and Q ~ P ,  then (Q§ 

Proo]. By Corollary 6.5 and the compatibility of P and Q (cf. [2; (5.4)]) 

(Q +Q')* ~(Pe) = ~( (Q § Q') Pe) = ~(Pe). [] 

P R o P o s : T I o ~  6.8. l e t  PE 0 be/inite. Then every ~E imP* can be written as a ]inite 

linear combination ~ = ~=1 ~Qt o/orthogonal pure states ~1, .... ~n EK fl im P*. 

Proo]. We proceed by  induction on the (lattice theoretic) dimension of P. 

If  dim P = i ,  then P is minimal in 0 ,  and so im P* is one-dimensionM with K f) im P* 

equal to a single extreme point [3; Prop. 1.13]. Hence the proposition holds in this case. 

Let  n~>2, and assume that  the proposition holds for dim P < n .  Assume now that  

d i m P = n ,  and let QC imP* be arbitrary. We write v=Pe ,  and we note tha t  v ~ A / b y  

Lemma 6.6. By  the defining proper~y ~ ( u ) = 4  of the map % it maps orthogonal atoms to 

orthogonal pure states. Thus it follows from Lemma 6.6 that  ~(v) is a finite sum of ortho- 

gonal pure states. Hence if 0 =;~cf(u) for: some ~eR,  then we are done. Otherwise, there 

exists a ~ ER such that  neither ~ ~< X~s(v) nor ~ >/~(v).  Hence, the element a e V defined by 

a = ~ - ~ v ( v )  is neither positive nor negative. By [3; Prop. 1.3], t he re  exists Q E ~  with 

Q#O, Q # P ,  Q ~ P ,  such that  ~+ =Q*: >~0, a -  = -Q '*a  >~0 and a = o  + - a - .  Thus (Q § =a, 

and  by Corollary 6.7 also (Q+QSacf(v)=~(V); hence (Q§ Thus, we have a de- 

composition 

(6.9) Q = ~1 +ep, Q1 = Q'e, e2 = Q'*e" 
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Now ~1 E im Q* and ~= Elm Q'* N im P* = im (PQ')*. Since Q ~ 0 ,  Q ~ P ,  then dim Q < dim P 

and dim (PQ') <dim P. By the induction hypothesis, ~1 is a finite linear combination of 

orthogonal pure states in K N im Q* and ~= is a finite linear combination of orthogonal 

pure states in K N im (PQ')*. Since each pure state in K N im Q* is orthogonal to each 

pure state in K N im (PQ')*, we can substitute the decompositions for Q1 and ~ into (6.9) 

and obtain a decomposition of the desired type for ~. This completes the induction. []  

C o R o L L A R u 6.9. Every a E A I can be written as a linite linear combination a = ~ =  12~u~ 

o/orthogonal atoms u I . . . .  , u=. 

Proo]. Let a=~=lyjVj where v 1 .... , v~ are atoms. Let v = v l  V ... V v,n and choose 

PE ~ such that  P e = v .  Then ~0(a)=E}~lyj~jEim P* and P is finite, so by Proposition 6.8 

there exist orthogonal pure states ~1 ..... ~nEK N im P* and scalars 21 ..... 2~ such that  

m n 

. / = 1  4 = 1  

Let u 1 ..... un be the atoms in i m P  such that  4 , = ~  for i = l  ..... n. B y  (6.4) we have for 

every atom w E im P 

( -  )(w ",} 
n U �84 By Proposition 6.8, a - ~ , = l ~ ,  , is annihilated by everything in imP*; since i m P  and 

im P* are in separating duality a=~.~=l,~ui, which proves the corollary. []  

De/inition. For each atom u = P e  with P E p  and each b EA we write 

(6.10) u~eb = �89 + P - P ' ) b  

The following lemma and proof are essentially those of [7; Th. 5.1]. 

LEMMA 6:10. Let u, v be a toms in  A .  Then: 

(i) u-~v  = v-~u,  

(ii) u - ) e ( v ~ b ) = v ~ ( u - ) e b )  i /  u_kv and b E A .  

Proo]. (i) Let P,  Q E O  be such that  P e = u  and Q e = u  v v. On im Q the quasicomple- 

ment of P is just the restriction of P '  [3; Prop. 1A0]; thus u ~ v  is the same whether calcu- 

lated in A or in im Q. For simplicity of notation we will therefore assume:A =ira Q, or 

equivalently e:=u V V: Note that  in this case dim e - 2 ,  therefore e - u  is also an atom 

(Lemma 5.1). 
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The space im P is one-dimensional since u is an a tom [3; Prop. 1.13]. Hence Pv  =2u 

for some ~t E tt. Now by  Lemma 6.4 

2 = (Pv ,  ~ = (Pv [ u) = (v I Pu)  = (v l u), 

hence 

(6.11) Pv  = (v]u)u.  

Since e - u  is also an atom, we can apply the same argument  to P '  and obtain 

(6.12) P'  v -~ ( v i e - u )  ( e - u )  

Now by  the definition of u~ev: 

u ~ v  = �89 + (v I u ) u -  (v I e - u )  (e - u ) ]  = � 8 9  - (1 - (v I u))  e] 

(Note tha t  ( v l e ) = ( e l v ) = ( e ,  ~ = 1 ) .  The above expression is symmetric in u and v, and 

SO U ~ v V ~ V - ) ~ .  

(ii) Let  P,  R E ~) be such tha t  Pe = u  and Re =v.  Since P and R are orthogonal, then by  

[3; (5.5)] P,  R, P ' ,  R'  all commute; hence 

u~e(v~eb) =�88  §  + R - R ' ) b  = �88 + R - R ' ) ( I  + P - P ' ) b  = v~e(u~eb) 

This completes the proof. []  

PROPOSITIOn 6.11. Let A o be the norm closure o / t he  set o[ all elements a §  where 

a E A  I and 2 e l t .  Then there exists a unique product aob on A o such that A o is a JB-algebra 

with identity e and u o v = u ~ v  /or all atoms u, v. 

Proof. 1. We first define the product on A I by  

(6.13) a o b =  .~. r162 u~ ~evj 

where a = ~ = l ~ u ~ ,  b = ~ = l f l j v j  with u 1 ... . .  u~, v 1 . . . .  , v~ atoms. I t  is easily seen from the 

definition (6.10) tha t  the right hand side of (6.13) is independent of the particular 

representation of b. By  Lemma 6.10 (i), it is also independent of the representation of a. 

Thus, aob is a well defined commutat ive bilinear product  on Ap 

We will next  verify tha t  the fundamental  Jordan  identi ty 

(6.14) a~o (boa) = (a~ob)oa 

holds for a, b eAI.  Note first tha t  by  the definition (6.10), u~eu = u  and u~ev = 0  when u •  

Let a, b be represented as before, but  assume now tha t  the atoms u~ .... .  u ,  are orthogonal 

(Corollary 6.9). Then 
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(aSob)oa = .~k i~7# 1~(U~ovj)ou~ 

while a2o (boa) = ~ 1~7jl~u~o (v~ou~). 
LLk 

By Lemma 6.10, this proves (6.14). Hence A I is a Jordan algebra under the product 

(6.13). 

2. H e E A  r, then for every atom u = P e  with P6~)  we have 

uoe  = � 8 9  ~ Pe  = u, 

so e is an identity for At. 

If  e tAs ,  then we define for a, b 6 A  r and t , / ~6 R:  

(a + te )o  (b + /ae) = ao b + tb  + laa + tlae. 

I t  is straightforward to verify tha t  with this product A t + R e  becomes a Jordan product 

with identity e. 

3. To prove that  A.~+Re satisfies the norm requirements (2.1), (2.2), (2.3) in the 

definition of a JB-algebra, it suffices by  [4; Th. 2.1] to show that  

(6.15) - e < ~ a ~ e  implies O<~a2<~e. 

(The proof of [4; Th, 2.1] is given for a norm complete algebra, but  the completeness is 

not used in the proof.) 

Let  a - ~ . l t ~ u  t +ye  where u I . . . .  , u ,  are orthogonal atoms. Setting q = e - ~ l u i ,  we 

can rewrite the representation of a in the form 

n 

(6.16) a =  E a~% +flq.  

Note that  q2=q and qou t=O for all i. Since ul, ..., un, q are orthogonal projective units, 

one may apply suitable P-projections to (6.16) and obtain 

llail = max (I~II  ..... [ ~ [ ,  ifl[)" 

Assume now that  - e < . a < e .  Then I~,1 <1 for i = 1  .. . . .  n and Ifl[ ~<1, and so 

t 

which proves (6.15). 

4. By the inequality (2.1), i.e. [[aob[[ ~< [[ai[ [[bi[, tho product aob is eo.tinuou  on 
As+Re. Hence it can be extended by  continuity to A o = ( A r §  , and A 0 is seen to be 

a JB-algebra for this product. [ ]  
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Lv, M~A 6.12, For each aEA o and ~E V there exists a unique element aoeE V such that 

(6.17) <b, ao~> = <aob, ~> for all bEA o. 

Proo]. Assume first that  a is an atom, say a=Pe with P E ~ .  By the definition of the 

Jordan product on A 0, we have aob=�89  and hence 

<aob, q) = <b, �89 + P - P ' ) *  ~> 

for all b EA 0. Thus, aoo=�89  satisfies (6.17) in this ease. Note also that  when 

a=e, then (6.17) is satisfied with eo~=~. By linearity, there exists ao~EV satisfying 

(6.17) for every aEAr+Re. 

For an arbitrary aEA o we choose a sequence {an} from AI§  which converges in 

norm to a. By  the norm-inequality (2.1) in the JB-algebra A 0 (and by Corollary 6.3), 

{anOQ} will be a Cauchy sequence in V. By completeness of V, this sequence is convergent, 

and clearly the limit satisfies (6.17). Finally, by Corollary 6.3, the solution ao~ to (6.17) is 

unique. [] 

P~OrOSITION 6.13. A can be equipped with a Jordan product which makes it a JBW- 

algebra with predual V. 

Proo/. I t  follows from Corollary 6.3 that  A 0 and V are in separating order and norm 

duality. Hence V can be embedded order isomorphieally and isometrically into A~. In  the 

rest of this proof we shall assume that  this embedding has been performed. Recall from w 2 

that  A~* is a JBW-algebra with predual A~. Note also that  the identi ty element of A~* 

is (the canonical image of) the element e EA. Since A 0 is w*-dense in A~* and the Jordan 

(=Arens) product in A~* is separately w*-continuous in each variable, the formula (6.17) 

will subsist for bEA~*. Thus, for aEA o and ~E V, then 

(6.18) <b, ao~> = <aob, e> for all bEA~*. 

Now let J be the polar of V in A~*. By (6.18) aoJ~_J for aEA o. Since J i s  w*-closed, 

it  follows that  a o J ~  J for all a EA~*. Hence J is a w*-closed Jordan ideal in A~'*. By [17; 

Lemma 2.1], there exists a central idempotent cEA~* such that  J=Uc(A**)=im U~. 

Now it follows from [3; Prop. 1.10] that  im Ue-c is a JBW-algebra with predual ira U~_~. 

Since V is complete, it is closed in A~; by  the bipolar theorem it is the polar of J = im U~, 

hence 

V = ker U c = im Ue-c. 

Thus A = V*~ im Ue-c, and the proof is complete. []  
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Remark. I t  can actually be shown that  the canonical mapping of V in A~ is onto. 

Hence the central idempotent c of the proof above must be zero, and A = Is'* ~A~*. 

However, we will not need this result in what follows, so we omit the proof. 

With the above Proposition 6.13 we have completed our list of consequences 

of the assumptions (6.1)-(6.4), and our discussion henceforth will only presuppose the 

standing hypotheses of this section (A = V*, V is Complete, and (2.5) holds). We are now 

ready for the main results of this section, which consist in necessary and sufficient condi- 

tions for A to be an atomic JBW-algebra (and in particular a JBW-factor of type I). 

Note that  this is an unambiguous statement, for if A is a JBW-algebra for some product 

aob, then V is its (unique) predual, and by [3; Prop. 3.1] A and V are in spectral duality 

and the Jordan product i s  uniquely determined by 

( 6 . 1 9 )  a o  b = � 89  + b) ( ~ ) -  a (~) - b(2)], 

where the exponent (2)indicates the squaring operation defined by spectral theory. 

PROPOSITION 6.14. A is a JBW-/actor o/type I i// A is a/actor o/ type I (as defined 

in w 2) and K has the pure state properties. 

Proo/. The conditions are necessary since the normal state space of any JBW-algebra 

has the pure state properties (w 4). 

To prove the sufficiency, we assume that  A is a type I factor and that  K has the pure 

state properties. By Proposition 6.13 we only have to verify the properties (6.1)-(6.4). 

Of these, (6.3) and (6.4) are identical with the pure state properties (4.3) and (4.5), and (6.2) 

is satisfied since ~ has the covering property (cf. [3; Prop: 1.9]). Thus, only the atomicity 

of :~ has to be established. 

In this connection we shall need the following general implication involving the 

projective unit r(a) associated with a given aEA§ (see [2; p. 31] for the definition): 

(6.20) If  P, QE~), aEA + and PaE imQ, thenP(r(a))E imQ. 

To verify (6.20), observe that  if PaEimQ, then Q'Pa=O, so a annihilates im(Q'P)*= 

im P*Q'*. By [2; Prop. 4.7], r(a) also annihilates P*Q'*~ for each Q EK. Now it follows that  

Q'Pr(a) =0. Since Q and Q' are quasicomplementary, we must have P(r(a))E imQ. 

We now turn to the proof of the atomicity of :~, which proceeds in three steps. 

1. We will first verify t h a t  e is equal to the 1.u.b. u 0 E ~ of all atoms in ~,  (Note that  

is a complete lattice by [3; Cot. 1.2], so this 1.u.b. exists.) 

We consider an arbitrary P E ~), and:we will show that  P is compatible with %. Let  

[u0]~be the order-ideal of  A generated b y  %, so :[u0]=im Q where uo=Qe with Q e ~  
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[2; Cor. 2.12]. I f  u 1 ... . .  un is any finite set of atoms, then by  Proposition 4,2 (if), PUl ..... Pun 

are multiples of atoms; therefore 

P(ul +... +un) e [%] 

By the definition of the map a~->r(a) (see [2; w 4], we have r(a) V r(b) = r(a + b) for a, b E A +. 

Hence by  the implication (6.20) above: 

P(Ul V ... V un) = P(r(ul + ... § un)) e [u0]. 

B y  [2; Prop. 2.11], this shows tha t  P(u 1V ... V un)<~u o. Clearly the family of all l.u.b.'s 

of finite sets of a toms is directed upwards with l.u.b, equal to %; by  [2; Lemma 12.1] u 0 is 

also the weak limit of this directed family. We have just seen tha t  P maps each element 

of this family under %; by  weak continuity of P we conclude Puo<~u o. By Proposition 

5.1 of [2] this shows tha t  P is compatible with u 0. 

Now we have proved tha t  u o is compatible with any  P 6 ~ ,  and so is by  definition 

central. Since A is a factor, either u 0--0 or u o =e.  Since A is of type  I ,  i t  contains at least 

one atom, so the first possibility is ruled out. Therefore u 0 =e, as desired. 

2. Next  we will show tha t  for an arbi t rary non-zero element u e ~ /  where u = P e  

with PE~),  there exists at  least one a tom w such tha t  w<~u. I f  v is any  atom, then by  

Proposition 4.2, Pv is either a non-zero multiple of an a tom or Pv =0. In  the former case 

w=HPvU-lPv=r(Pv)  is an a tom satisfying Pv<~Pe=u, so our claim is verified. We will 

show tha t  the latter case can not prevail for all atoms vET2. In  fact, if Pv=O where 

v=Qe with QE~), then P Qe~ 0 ,  which implies P •  and so u.kv  (eft [2; p. 28]). Thus, if 

Pv=O for all atoms v, then v<.u ' = e - u  for all atoms v; since e has been shown to be the 

1.u.b. of atoms, this gives e < e - u ,  i.e. u = 0 ,  contrary to assumption. 

3. Again we consider an arbi trary non-zero element u E ~/. By  Zorn's lemma there 

exists a maximal  orthogonal family {u~} of atoms under u. Let  v fi ~ / b e  the 1.u.b. of (u~}. 

Now we must  have u =v, for otherwise u - v  would contain an a tom which would be ortho- 

gonal to all ua, contrary to the maximal i ty  of (ua}. This completes the proof. [ ]  

PROPOSITIO~ 6.15. A is an atomic JBW-algebra i]] K has the Hilbert ball property 

and is the q-convex hull o / i t s  extreme points. 

Proo/. The normal state space of any  JBW-algebra has the Hflber t  ball proper ty  

(w 3), and by  w 5 the normal state space of an atomic JBW-algebra is the a-convex hull 

of its extreme points. Hence the conditions are necessary. 

To prove sufficiency, we assume tha t  K has the Hilbert  ball p roper ty  and is the 

a-convex hull of its extreme points. Again we only have to verify (6.1)-(6.4). Of these, (6.3) 
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is explicitly required in the definition of the Hilbert  ball property,  and (6.4) follows 

from the Hilbert  ball property by  Proposition 4.3. Hence we have left the finite covering 

property and the atomicity of :~. 

We first establish the atomieity. Let  G E :~ and let ~ E G. By assumption ~ ~ ~ 1 ~  

where ~~ and )ti>~0 , Q~E~eK for i----l, 2, .... Choosing ]c such tha t  ~ 0 ,  we have 

Since G is a face of K, then ~kEG. Thus, G contains the minimal projective face {0k}, and 

the atomicity is verified. 

The finite covering property is most  easily established for the lattice ~ .  Then we 

must  show tha t  if u E ~ is an a tom and w~ ~ is any  finite element, then 

(6.21) u V w - w  is an a tom or zero. 

We will prove (6.21) by  induction on the (lattice) dimension of w. I f  dim w = l ,  then 

w is an a tom and (6.21) follows from the Hilbert  ball property (since the only proper 

/aces of a Hilbert  ball are the extreme points). Let  dim w=n>~2 and assume tha t  (6.21) 

holds for all smaller dimensions of n. Choose atoms w 1 .. . .  , wn such tha t  w =wl  V ,.. V w~, 

and note tha t  the element v=wl V ... V Wn_l satisfies dim v<n and v=~w (since dim w=n). 

Now 

O < ~ u V w - w < u V w - v .  

By the Hilbert  ball property,  we will have established (6.21) if we show dim (u V w - v )  ~<2. 

To prove this, we first observe tha t  the map xF--->x-v is a lattice isomorphism of the 

lattice interval Iv, e] onto [0, e-v]; thus since v ~<w: 

u v w - v  = (u v v)  v w - v  = ( w - v )  V [(u v v) - v ] .  

By induction hypothesis both w - v  and u V v - v  are atoms or zero; hence the dimension 

of their join is at  most  2, which finishes the proof. []  

Note tha t  by  the definitions, the atomic JBW-algebra A of Proposition 6.15 is a 

JBW-faetor of type  I precisely if i t  is a type I factor in the sense defined in w 2. 

In  the following theorem the main results of t h i s  section are restated in a more 

geometric form. Here the starting point is a convex set C (the normal state space)which 

is supposed to be embedded as the base of a complete base-norm space; as usual the te rm 

"projective face" refers to the duali ty with the order-unit space of all bounded affine 

functions on C. 
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THEOREM 6.16. Let C be the base o /a  complete base.norm space. Then C is a/finely 

isomorphic to the normal state space o/a JBW-/actor o/type I i]/ C satisfies (i), (ii) and either 

(iii) or (iii)' below: 

(i) C contains no proper split/aces 

(ii) Every norm-exposed/ace o/ C is projective 

(iii) C contains at least one extreme point and C has the pure state properties 

(iii)' C is the (~-convex hull o/its extreme points and C has the Hilbert ball property. 

Proo]. Assume first that  C is the normal state space of a type  I JBW-factor A. 

Then A can be identified with the space of all bounded affine functions on C (cf. [3; Th. 

3.1]); there can be no proper split faces in C since A is a factor [2; Prop. 10.2], and 

8 e C h O  since A is of type I. By  the results of 22 3, 4, C has the Hilbert  ball proper ty  

and the pure state properties~ I t  was shown in 2 5 tha t  the a-convex hull of 8eC is a 

split face of C; since it is non-empty,  it must  be equal to C. With this we have proved 

tha t  the conditions are necessary. 

The sufficiency of (i), ( i i ) and  (iii) follows from Proposition 6.14; the sufficiency 

of (i), (ii) and (iii)' follows from Proposition 6.15. []  

w 7. The main theorem 

In  this section K will be a compact convex set. Without  loss os generality we assume 

tha t  K is embedded as the base of the base-norm space V =A(K)* where A(K) is the space 

of all continuous affine functions on K [1; Ch. I I ,  2 2]. As before, we denote by  A ~ V* 

the space of all bounded affine functions on K, and we recall tha t  (A, e) is an order-unit 

space in separating order and norm duality with (V, K). In  the sequel all notions from 

spectral theory, like "projective face . . . .  projective un i t "  and "orthogonali ty" (a• for 

a, b EA+), will refer to this duality. 

Recall from [3; 2 1] tha t  if every norm exposed face of K is projective, then for every 

~ESeK there exists a smallest split face FQ containing ~; the corresponding central pro- 

jective unit is called the central support of ~ and is denoted c(~). Also we :will use the 

notation Aq=im P~ where Pq is the P-projection corresponding to FQ. 

The next result shows tha t  there are many  " t y p e I  factor representations"; this will 

allow us to "globalize" the "local" results of 2 6. 

L~MMA 7.1. I1 every norm exposed/ace o/ K is pro]ective, then Aq is a type I/actor/or 

every norm-exposed ~ E~eK. 
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Proo/. Suppose for contradiction that  A 0 is not a factor. Then by [3; Cor. 1.11] there 

exists a central P-projection QE~) such that Q~Po, Q~=O, Q~Po" Since Q is central, 

Q+Q'=I .  Hence (Q+Q')*~=Q. Since ~ is extreme, Q*O and Q'*~ must both be multiples 

of ~. Then necessarily Q*Q =0  or Q'*O =0; otherwise Q*~ would be a non-zero multiple of 

Q'*O which is impossible. 

Now let cl=Qe and c~=c(o)-Qe. By hypothesis 0<cx<c(Q ) and el, c ~ are central 

projective units such that c1+c2=c(~ ). If Q*~=0, then <cl, ~>=<Qe, Q>=0, so <c~, ~>= 

<c(Q)-c I, ~>=1. If  Q'*Q=O, then we similarly get <cl, ~>=1. In either case we have a 

contradiction with the minimality requirement defining c(~). []  

THEOREM 7.2. A compact convex set K is aHinely homeomorphic to the state space of a 

JiB-algebra (with w*-topology) iff K satisfies the following requirements: 

(i) K has the Hilbert ball property 

(ii) The (~-convex hull of the extreme points of K is a split/ace of K 

(iii) Every norm exposed face of K is projective 

(iv) Every a e A(K) admits a decomposition a = a + -  a- where a+, a- E A (K) + and a + L a-. 

Proof. If K is affinely homeomorphic to the state space of a JB-algebra, then (i) holds 

by Corollary 3.12 and (ii) holds by  Corollary 5.8; moreover, K is strongly spectral by [3; 

Cor. 3.2] and so it satisfies (iii) and (iv). Hence the conditions are necessary. 

To prove sufficiency, we assume that (i)-(iv) are satisfied. By  [3; Prop. 1.10] for 

each ~ E ~ K  the spht face P~ will also satisfy (i), (ii), (iii) and AQ can be identified with the 

space of all bounded affine functions on Fq. Thus by Proposition 6.15 and Lemma 7.1, 

each ~'0 is the normal state space of the JEW-factor Aq. 

For each ~E~eK let q0 denote the map which sends aeA(K)  to a[FoEA o, Also define 

B =  | ~o~o~KAQ, and note that  B is a JB-algebra with pointwise operations and the 

supremum norm. Note also that  by the Krein-Milman theorem the map ~: a~-->~Q~eKq~o(a ) 

is an isometric order-isomorphism of A(K) into B. 

Now let aEA(K),  and let a = a + - a  - be a decomposition of the type described in (iv). 

By  [3; Prop. 1.10], qQ(a +) and q0(a-) will be orthogonal in A 0 for given QE~K. By [3; 

Th. 3.1] the JEW-algebra AQ is in spectral duality with its predual; hence the decomposition 

of qQ(a) as a difference of two orthogonal elements of A 0 is unique [3; Th. 2.2]. I t  follows 

that ~0(a +) =~00(a)+. 

By [3; Th. 3.1] the squaring maps given by the Jordan product in Ae and by the 

spectral duality of Aq with its predual, will coincide. Thus, by  the Stone-Weierstrass 

theorem the element q0(a)+ defined by  spectral theory in Aq coincides with the positive 

part of ~q(a) in the JB-algebra sense. Working in the JB-algebra B, we now obtain 

13 - 772908 Acta mathematica 140. I m p r i m 6  le 9 J u i n  1978 
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~~ = ~ ~ (a)+ = ~0e~K ~%(a+) = ~~ Qe~aK 

Thus, ~(A(K))) is a norm closed subspace of B which contains the identity and is closed 

under the map a~-->a+. Applying the lattice version of the Stone-Weierstrass theorem, 

we find that  ~(A(K)) is closed under squaring. Hence ~(A(K)) is a JB-subalgebra of B. 

Since ~ is an isometric order-isomorphism of A(K) onto the JB-algebra ~(A(K)) 

such that  ~(e)=e, then ~* is an affine homeomorphism of the state space of ~(A(K)) 

onto the state space of A(K), i.e. onto K itself. This completes the proof. [] 

The first one of the corollaries below is actually an alternative, but somewhat less 

geometric, characterization of state spaces of JB-algebras. 

COI~OLLARu 7.3. A compact convex set K is the state space o/a JB-algebra i]/ it satis/ies 

(iii), (iv) and in addition: 

(v) K has the pure state properties. 

Proo/. The proof is similar to that  of Theorem 7.2, one only has to use Proposition 

6.14 instead of Proposition 6.15 to prove that  AQ is a JBW-factor for each Q 6K. [] 

COROLLARY 7.4. A compact convex set K is the state space o / a  JB-algebra i// it is 

strongly spectral and satisfies (i) and (ii). 

Proo/. Strong speetrality is necessary by [3; Cor. 3.2], and it is sufficient since it 

implies (iii) and (iv) (cf. [3; Th. 2.2]). [] 

Clearly one may replace (i) and (ii) by (v) also in Corollary 7.4. Note also that  for a 

general compact convex set K, the requirement that  K be strongly spectral is strictly 

stronger than (iii) and (iv) together (cf. the example in [3; Prop. 2.5]). 

COROLLARY 7.5. A /inite dimensional compact convex set K is the state space of a 

JB-algebra i/] it satis/ies (i) and (iii). 

Proo/. In the finite dimensional case (ii) holds automatically, and by [2; Th. 7.11] 

(iv) follows from (iii). [] 

We close this paper by a characterization of the state spaces of Jordan operator 

algebras. (See w 2 for the definition.) In [4; Lemma 9.4] the Jordan operator algebras were 

characterized among all JB-algebras by means of a certain algebraic identity. Our present 

criterion may be considered as a geometric counterpart to this identity, and it mill be 

stated in terms of the Hilbert balls B(Q, a)=face  ({~, a}) determined by pairs ~, a of 

extreme points of the state space. 
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PROPOSITIOI~ 7.6. Let B be a JB-algebra with state space K. Then we have the 

/ollowing two mutually exlcusive alternatives: 

(i) B is isomorphic to a Jordan operator algebra 

(if) There exists a pair ~, a o/extreme points o / K  such that dim B(~, 0) =9  and B(~, a) 

is not a split/ace o / K .  

Proo/. Suppose that  0, aE~eK, dim B(Q, a) =9,  and B(Q, a) is not a split face. Let  u 

and v be the atoms in AQ corresponding to 0 and a. Note that  since B(0, o) is not a split 

face of K, then B(O, a) is a proper face of the split face FQ, and so u V v#e(o) (the identity 

of AQ). Since dim (u V v)=2,  we can choose orthogonal atoms Pl, P~, t% in A such that  

Pl +P2 = u V v .  

Let M={(p~§247 Then by  Lemma 3.8, M is a type I JBW-  

factor. By Lemma 5.1, every set of orthogonal non-zero idempotents in M has cardinality 

at  most three, so M is an /a-factor. 

Now by [4; Prop. 8.3], M is isomorphic to the Jordan algebra of self-adjoint 3 • 3- 

matrices over the reals, complexes, quaternions, or the Cayley numbers. The same result 

holds with 2 • 2-matrices for 

((Pl +P2)M(pl§ = ((u V v)M(u V v)}. 

The state space of this JB-algebra is just B(O, a). Counting dimensions, we conclude that  

M is isomorphic to the exceptional algebra M s of all self-adjoint 3 • 3-matrices over the 

Cayley numbers. 

Now if B were isomorphic to a Jordan operator algebra, then B and B** would 

satisfy the crucial algebraic identity of [4; Lemma 9.4]. Since this identity is not  satisfied 

in MS~=M~_B **, this gives a contradiction. Hence B can not be a Jordan operator 

algebra in this case. 

Conversely, if B is a JB-algebra non-isomorphic to a Jordan operator algebra, then 

by [4; proof of Lemma 9.4] some AQ will be isomorphic to M s. Now for aeOeFQ, a#Q 

we shall have dim B(O, o) = 9 and B(O, o) is a non-split face of FQ and hence of K. This 

completes the proof. [ ]  
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