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Let  Z un be a 

lim sup [ n u n  [ < c~.  

of Z un, and let 

1. I n t r o d u c t i o n .  

series of complex terms satisfying the Tauberian condition 

Let  sn = u 0 + ux + " '  + un denote the sequence of partial sums 

(1.1) Mn = 8 0 " ~ S l  -~  "'" "3F 8 n  1 - -  ~ uk 
n +  1 ~=o 

denote the arithmetic mean transform. The Kronecker formula 

1 ~,  kul , ,  (1.2) M n - - S n  = n + 1 ~ o  

which follows from (1.1), implies tha t  the formula 

(1.3) lira sup IM.--s..I =<B hm sup I-, , .  I 

holds when ~,~ = n  and B =  1. 

The questions with which we are concerned are the following where in one case 

we assume that  Z un has bounded partial sums, and in the other case we do not 

make this assumption. How much can we reduce the constant B in (1.3)if, instead 

of requiring that  ~n = n, we allow ~n to be the optimum sequence that  can be se- 

lected after the series Z un has been given ? I t  was shown in [3, Theorem 5.4] tha t  

B can be reduced to log 2--.69315, and no further, if we require tha t  ~n be a func- 

tion of n alone so that  ~n must be independent of the terms of Z un. Moreover 

{1.3) holds when :pn=[n]2] and B=.69315.  I t  was also shown in [3, Theorem 9.2] 

tha t  B can be reduced to .56348 by choosing ~n to be the most favorable one of 

the two integers [3n]8] and [5n/8] ,  the choice being allowed to depend upon the 
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terms of the series Z un. Finally, it was shown in [4, Theorem 14.3] that, even 

when Z u, is assumed to have bounded partial sums, B cannot be reduced below 

the constant Bo which is the unique number satisfying the equation 

(1.4) 

The numerical value of B0 is 

(1.41) 

e- (n/s) s, = ~0" 

B0 = .474541 

and, without further explanation even in statements of theorems, Bo will always stand 

for this constant. 

While more precise statements are given in terms of the following definitions, 

and still more precise results are obtained in later sections, it is our main purpose 

to show that the constant B of (1.3) can in fact be reduced to B 0. Corresponding 

problems, in which one seeks information about constants C for which 

(1.5) lira sup ]sn--Mq. ] <C lira sup lnu.]  

is attainable by choice of q. ,  are much simpler and are solved in [3]. 

2. Definitions and statements o f  results. 

The four following definitions differ in that boundedness of s .  is assumed in the 

first and third but not the second and fourth, and that the sign ~ appears in the 

first two while the sign =< appears in the last two. 

Deenltion 2.t.  Let a positive number B have property PI i/ to each series E u . ,  

/or which 0 < lira sup [ nu .  [ < oo and /or which s. is bounded, corresponds a sequence 

p.  such that 

(2.11) lira sup [M.--s,~.[ < B  lira sup [nu ,[ .  
n ~ O O  n ~ O 0  

D e e - ! t i o a  2.2. Let a positive number B have property P~ i/ to each series E u~ 

/or which 0 ( l i m  sup [nun ] <  oo corresponds a sequence p,  such that 

(2.21) lira sup ]M.--s~,. ] < B  lim sup ]nun [. 
n ~ 0 0  n ~ O O  

Definition 2.3. Let a positive number B have property PI i~ to each series Z u. ,  

/or which lim sup ]nun ] < oo and /or which s. is bounded, corresponds a sequence 

p. such that 

(3.31) lira sup ]M.- - s . . ]  < B lim sup ]nun]. 
n ~ O O  n ~ O O  
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Definition 2.4. Let a positive number B have property P~ i] to each series ~,un 

[or which lira sup [nun [ < oo corresponds a sequence p,  such that 

(2.41) lira sup IM.- -s~ .  [ < B lira sup In u.  [. 

I t  is known [4, Theorem 14.3] that each constant B less than B o fails to 

have property P~ and hence also fails to have property /)1. We shall complete this 

result in Theorem 5.1 by showing that B o (and hence also each greater number), has 

property P1 and hence has also property P~. Combining these results gives the 

following theorem. 

Theorem 2.5. The constant B o is the least number B having property 1)1, and 

is the least number having property P{. 

I t  is known [4, Theorem 14.4] that Bo fails to have property P~. We shall 

complete this result in Theorem 4.3 by showing that B o has property P~' and hence 

that each number B greater than B o has both properties P~ and P~. Combining 

these results gives the following theorem. 

Theorem 2.6. The constant B o does not have property P2 but is the greatest lower 

bound o] numbers B having property P2, and is the least number having property P~. 

3. Preliminary estimates. 

We now obtain some consequences of the assumption that R > 0, that 

(3.1) ,~=e - 'R,  

and the Z u~ is a series for which lira sup I n u,  ] < 1 and, for an infinite set of val- 

ues of n, 

(3.11) IM~--sk]>R ~ n < k < n .  

Supposing n has a fixed value such that 2 R 2 n  > 100 and (3.1) holds, we put 

(3.12) sk = M~ + Rk e t~ O < k < n 

where Rk>0  and, at least when k>2n ,  Ok varies slowly with k in the sense that it 

never makes unnecessarily large jumps of multiples of 2 g. Then, when )tn < k < n, 

we have Rk > R and the law of cosines gives 
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(3.13) 

and  hence 

(3.14) 

Ralph Palmer Agnew. 

Rk-1 + R~ - -  2 Rk-1R~ cos (0k - -  0k-l) 

= (R~-I - -  Rk) ~ + 2 Rk-1 Rk [1 - -  cos (0k - -  0k-l)] 

_>-- 2 R 2 [1 - -  cos (0~ - -  0~-1)] = 4 R 2 sin ~ �89 (0~ - -  0k-l) 

sin �89 10w--  0k-al --< I s k - - s k - l l / 2 R  = l u k [ ]  2 R .  

Le t t ing  ~. denote  the m a x i m u m  of I kuk[ for ~ n  < k  < n, we see t h a t  lim sup ~. < 1 

and  hence t h a t  we can choose a sequence e~, such t h a t  e~, > 0, s~ ~ 0, and  ~,  < 1 + 
+ , E. .  Then  

(3.15) sin �89 +e',,)/2Rk ~n <k<n.  

Let t ing  ~ be def ined b y  

sin -1[(1 + g )  / 2Rn~] 
(3 .16)  1 + ~ . = ( l + e  i )  ( l + e ~ ) ] 2 R . X  ' 

we see t h a t  ~. > 0, e.--> 0, and,  when  2 n  _-< k -< n, 

(3.17) 

so t h a t  

(3.18) 

I Ok - -  0k-1 [ < 2 (1 + e . )  (1 + s~,) -~ s in �89 I 0~ - -  0k-11 

[Ok--Ok_,]<-_(l+e,,)/Rk ~ n < k $ n .  

Hence,  when 2 n < p < q _-< n, 

q 

(3.2) 1_ 
- = - R k=~+lk 

L e t  
-<_ (1 + e , )  R -~ (log q - -  log p). 

(3.21) (n)  = n e - " R ' ( l + ' .  ), ( . )  = n e  

Pu t t i ng  q = ~ (n) and  p = k in (3.2) gives, when  a (n) _-< k < ~ (n) 

(3.22) 

and  hence 

1 + e .  
] Ok - -  0 . ( . )  } _-< ~ + ~ ( log k - -  log  n)  

We simplify t y p o g r a p h y  b y  unders tand ing  t h a t  t is an  abbrev ia t ion  for  It], the  

grea tes t  in teger  in t, in any  symbol  or equa t ion  in which t should be an  integer.  

P u t t i n g  p = /~  (n) and  q = k in (3.2) gives, when fl (n) < k < n), 
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(3.24) 

and hence 

(3.25) 

I 0~(,o - -  0k [ -< (1 + e,~) R -1 ( log  n - -  l o g  k) ~z 
- 2 

[ 08( .  ) - -  Ok I =< ~z/2 oc (n)  _-< k < fl (n) .  

The formulas (3.23) and (3.25) imply, because of (3.12), tha t  all of the points sk in 

the whole range a (n) < k -< n lie in the closed half-plane which has its edge passing 

through the point Mn and which includes and is bisected by  the half-line extending 

from Mn onwards through s~(~). 

Without  changing our notation we suppose that ,  with n fixed as above, the 

elements of the sequence So, Sl, s, . . . .  and all quantities determined by  it  are 

translated and rotated in the complex plane so tha t  M .  = 0 and 0 ~ , , ) =  r d 2 .  Then 

(3.12), (3.11) and (3,25) imply tha t  

(3.3) sk = R k e  '~ r162 < k < n 

where Rk > R and 0 _-< 0k < ~. I t  follows that ,  when ~ (n) _-< k < n, the imaginary 

par t  Im s, of s~ is greater than or equal to Im s~, where 

' e~ i Ok .~ (3.31) s~ = R ~ (n) < k < n. 

If we set, when fl(n) < k < n, 

7g 
(3.4) ~k 2 

and, when oc (n) < k < fl (n), 

3.41) ~ -  ~o~ 

2 + ~ ( 1  + en) (log k - - l o g  n) 

1 + en (log n - -  log k) 
R 2 '  

then comparison with (3 .22)  and (3.23) shows tha t  [ Ok - -  ~ /2  [ < [~k - -  n[21 when 

(n) = < k = < n and hence tha t  Im s'~ => Im zk where 

(3.42) zk = R e  '~k :r (n) < k < n.  

From (3.4) and (3.41) we obtain 

1 + Sn log k - -  - o~ ( n )  < k -< n .  (3.43) 

We have also 

(3.44) Im sk > Im zk = > 0 ~(n) < k < n. 

Our next  step is to estimate the sum Vn defined by 
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(3.5) Vn 

This can be put  in the form 

(3.51) V. 

where 

1 ~ Zk. 
n § 1 ~-o(.) 

R n  ~, "n/k\ l 

(3.52) /n(x) = 0, 0 < x < e  -"nw+~n),  

(3.53) / .  (x) = d (l+en)a-llogx, e -€ = < x =< 1. 

Thus the sum in (3.51) is a Riemann sum for the function /n (x), and it is easy to 

show that  lira ( V n -  V~)=  0 where g~, is the corresponding Riemann sum for 

lira/n (x). Therefore 
1 

(3.54) Vn = o (1) - -  R f e' R-~log x dx .  
e - ~ R  

Evaluating the integral by use of the formula 

(3.55) 

g i v e s  

(3.56) 

b b 
X l + | k  l b e(l+tk) log x]b 

1 + i k  . '  

R2 e - ~  R) " V . = o ( 1 )  + ~ ( 1  + (--R+i). 

Using (3.44), (3.5), and (3.56) gives 

(3.57) Im 1 ~ R ~ e_,,R) n +----1 ~=a(.)sk _-> o (1) + ~ - ~  (1 + 

We shall use also the simple result in the following lemma. 

Lemma 3.6. 

(3.61) 

I] Z un is a series /or which lira sup ]nun [ <  c~ 

lira 1 lo~ n 
. ~ n  + 1 ~ o  ( s k - - M . )  = O. 

, t h e n  

To prove this, we choose H such that  Inu,~l < H when n = l, 2, 3 . . . .  and 

find that  
k 

(3.61) Is~l --< luol + ~ H i  -1 =< luol + (1 + H ) l o g  (k + 1) 
1=1 

and 
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(3.62) I M ,  I < max l sk[ < [%1 + (1 + H) log (n + 1). 
O<k<_n 

Use of the crude inequality 

(3.63) [ s ~ - - M ~  I <-_ Isk] + I M , ]  < 211%1 + (1 + H ) l o g  (n + 1)] 

then leads to (3.61). 

353 

4.  S e q u e n c e s  t h a t  m a y  b e  n n h o u n d e d .  

We now prove the following lemma. 

L e m m a  4 . i .  I]  R > B o and i/ Z u~ is a series /or which lim sup I nun  I <-- l ,  

then there is a sequence pn such that e -= R n < pn < n and 

(4.11) lira sup I M , - - s j , , I < R .  

Suppose this lemma is false. Then, for some R > B o, there must be a series 

Z u~ satisfying the assumptions set forth in the first sentence of section 3. Hence 

we may use all of the results of section 3. Let  h > 1, and suppose that  n is fixed 

so large that  ]ku~ I < h when k > log n. Since Im sa(~) > 0, we obtain the in- 

equalities 

(4.2) Im sk > I m  zk, log n < k < cr (n), 

by defining zk over log n < k < ~ (n) so that  

zo(.)_~ = - i h l ~  (n) (4.21) 

and 

(4.22) 

Lett ing 

(4.23) 

we find that  

(4.24) 

z k - - z ~ _ l = i h [ k ,  log n =< k < e ( n ) - -  1. 

1 a (~-1 
W, 

n § 1 k = l + l o g n  

Wn + l a(n)-I a(n)-I 
= - -  +~o [zo(n)_,- r(z~-zj_,)] n + lk=x r f=k+l 

= o ( 1 )  

23 -- 6 3 2 0 8 1  Acta mathematica. 87 

i h  
n § 1 [ a ( n ) - - l o g  n] = o ( 1 ) - - i h e  -=R. 
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Using (4.2), (4.23), and (4.24) gives 

(4.25) Im 1 a(.)-x n +----1 ~-1+~.  
sk > o (1 ) - -he  - ' n  

(4.27) R s e-=n) he-,, R Im M ,  _-> o(1) + ~ ( 1  + --  . 

Since (4.27) holds for each h > 1, it must hold also when h = 1 and we obtain 

(4.28) Im M ,  > o (1) + 
/ ~  - - e  - n R  

R * +  1 

Our hypothesis tha t  R >  B o implies tha t  R 2 >  e - = ' ;  therefore (4.28)contradicts  

(4.26) and Lemma 4.1 is proved. 

With the aid of the preceding ]emma, we prove the following theorem which 

shows tha t  B 0 has property P~ of Definition 2.4 and which moreover gives some 

information about the sequence ~o, which may in some sense or other be as precise 

as is obtainable. 

(4.31) 

and 

(4.32) 

T h e o r e m  4.3. I /  Z u. is a series /or which lira sup ]nu. 1<  c~, then there is 

a sequence ~n such that 

lim sup I M ,  --  sp. [ < Bo lim sup ] n u .  I. 

In ease lira sup ]nu.~]l= 0 we can, as (1.2) shows, at tain the desired conclusion 

immediately b y  taking p.  = n. We can therefore assume that  lim'sup I n u .  [ -- h > 0. 

Since division of each term of Z u .  by h results in division of M . ,  sk and lira sup 

I n u .  I by the same constant h, we can and shall assume tha t  h = 1. Lemma 4.1 

provides, corresponding to each R >  B o, a sequence q(R, n) such that  e-"nn <- 

_ - < q ( R , n ) < n  and 

(4.4) lim sup ] M.  -- s~(n..)[ < R. 

But  from (4.26) we obtain, by use of (3.61), (4.25), and (3.57), 

After the transformation (depending upon n) by which we made M .  = 0 in section 

3, we have 

(4.26) M . =  1 r ~ , ,  a(.)-x ~ ] . § L § , , - - o  k •l n k n) 
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Choose p (R, n) such that  IMp--sk i  attains its minimum over the interval 

n exp (-- zt R) < k _-< n when k = p (R, n ) .  Then obviously 

(4.42) lim sup ]Mn -- ST(R. ~) ] < R. 

If k lies in the interval e-~'Rn <= k <-n but  outside the shorter interval B~n = 

n exp ( - - B  o~) =<k_-<n, then (where we put  r 1 6 2  and f l = n e x p ( - - B  og) to 

simplify subscripts) 

(4.4a) Is -s l-- Z lu, I -< 
i = k + l  k ~ a  

<= o(1) +k=~=~ i - 1 = ~ 1 7 6  

I t  follows tha t  if we choose pn such tha t  I M , -  ski attains its minimum over the 

shorter interval B2on < k <_ n when k = pn, then 

(4.44) lira sup I s~(R. n) --  svn ] < re (R --  Bo). 

From this and (4.42) we obtain, for each R > Bo, 

(4.45) lira sup ]M,  --  sv~ ] < R + ~t (R -- Bo). 

Since the left member is now independent of R, we conclude that  

(4.46) lira sup I Mn -- spn I =< Bo 
n ~  

and complete the proof of Theorem 4.3. 

5. Bounded sequences. 

The program of this section is in some respects similar to that  of the preceding. 

We do not use a preliminary lemma. The following theorem shows that  B o has 

property P1 of Definition 2.1 and, in fact, gives a very much sharper result. 

T h e o r e m  5.1. I /  Zu~ is a series ]or which 0 < l i m  sup [nun[ < oo and sn is 

bounded, then there exist a constant B*, which depends only upon the diameter D o] 

the set o] points in the sequence sn and which is less than Bo, and a sequence pn such 

that n exp ( - - g  B*) <= pn <= n and 

(5.11) lim sup [Mn--spn]  < B* lim sup [nun[.  
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We have not encumbered the statement of this theorem with a prescription 

for determination of B*; the prescription is given in the two sentences following 

(5.61). Assuming that  the theorem is false, we conclude that,  when R = B*, there 

is a series E un satisfying the assumptions set forth in the first sentence of section 3. 

As in the preceding section we make free use of the notation and formulas of sec- 

tion 3, including the sequence zk defined over a ( n ) <  k _-< n in (3.42). Using the 

diameter D, we obtain improved estimates of M .  by defining z~ over 0 < k ~ a (n) 

in a manner different from tha t  in (4.21) and (4.22). From (3.44), which shows tha t  

I m s ~ > 0  for some values of n, we conclude tha t  Im s~_->--D for every n. Let  

h > l  and suppose tha t  n is fixed so large tha t  Jkus[ < h  when k > l o g  n. We 

obtain the inequalities 

(5.2) 

by defining z~ so that  

(5.21) 

( 5 . 2 2 )  

and 

(5.23) 

I m  sk > I m z ~  O = < k ~ a ( n )  

z,~(, ,)-i  = - -  i h l a  ( n ) ,  

zl, - -  z , , -1  = i h / k ,  a ( n )  e - ~  <= k < ~ ( n )  - -  I ,  

z,, = - -  i D ,  0 < k ~ ~ (n)  e - ~  

To simplify formulas, let 

(5.3) 

and 

( 5 . 3 1 )  x n  ~- - -  

Then 

(5.32) 

and 

(5.33) 

= o ( 1 )  

= o ( 1 )  

a = cr (n)  e - n l h ,  b = ~ (n)  - -  1 

1 a-1  1 o 

n _b l k~=oZk , Ym k~a Zk . = n + l  = 

X ,  = o (1) --  i D e  - ' ~  e -D la ,  

1 b 

Y" n + lk~,~ [za - = - -  j - ~ + l  ( ~  - -  zj-1)]  

n + l -  - J=~+ i 

n +  1 , - ~ + l k = ~ - = ~  1,=~+1 1- -  = 
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= o (1) - -  ih  (n + 1) -I [(b - -  a) - -  a (log b - -  log a)] 

= o (1) - -  ie  -'~R [h - -  he  -Din - -  De-bin]. 
Hence 

(5.4) Im - - 1  ~(~-I 
n + l  k=o 

zk = o ( 1 ) - -  he - ' R  + he-nR e -D/h. 

But on account of (5.2) the left member of 

(5.5) Im 1 "('~)k =~ ~ n +------1 = sk > ~  + e-~'R e-P 

is greater than or equal to the right member of (5.4) for each h >  1 and hence 

(5.5) holds. Combining (3.57) and (5.5) gives 

Im M.  Im 1 = - -  sk > o (1) + F (R, D) (5.6) 

where 

(5.61) F ( R ,  D) R 2 + 1 + e - ' ~  e-D" 

The difference R ~ - -  e -" n is positive when R > B o and, since F (0, D) ~ 0, it follows 

that  for each fixed positive D there is a constant B 1 --B1 (D) less than B o such 

that  F ( B  1 D ) = O  and F ( R , B ) > O  when R > B  1. Let  B* be chosen such that  

B ~ < B * < B  o. Then F (B*, D ) >  0 and this contradicts the formula (5 .6 )which  

holds when R = B* and the sequence so, Sl . . . .  is, for each n, translated and ro- 

tated so that  (among other things) M~ = 0. This completes the proof of Theorem 5.1. 

Our proof of Theorem 5.1 suggests very strongly that,  to put  matters  roughly, 

if the diameter D is large then for some series Z u ,  the constant B* of (5.11) can 

be only a little less than B o. Examples given in [4] show that  this is true. In 

any case, Theorem 2.5 shows that  there is no fixed constant B* less than B 0 such 

that  (5.11) holds for all finite diameters. 

6. Theorems on l imit  points. 

We now prove the two following theorems on approximation to limit points of 

the sequence Mn by limit points of the sequence sn. 

T h e o r e m  6.1. I /  Z u~ is a series such that lim sup [ n u ~ [ ~  oo and s,  is 

bounded, then there is a constant B* less than B o such that to each limit point ~M 

O/ the sequence M~ corresponds a limit point ~, o[ the sequence sn such that 
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(6.11) l ~ - -  ~,[ --< B* lira sup Inun]. 
~ O O  

Theorem 6.2. The constant B o is the least, constant with the ]ollowina property. 

I /  Z un is a series ]or which lira sup [nun ]< o% then to each limit ~oint ~ o] the 

sequence Mn corresponds a limit ~oint ~s o] the sequence sn such that 

(6.21) [ ~  -- ~, I < B0 lira sup [nun [. 

Theorem 6.1 follows very easily from Theorem (5.1). Assuming that ~M is a 

i mit point of the sequence Mn, we choose a sequence nl, n 2, n 3 . . . .  such that 

M(nk) ~ ~ .  Restricting the n in the left member of (5.11) to values in this 

sequence, we see that the corresponding bounded sequence spn must have a limit 

point ~8 for which (6.11) holds. To prove Theorem 6.2, we note that Theorem 4.3 

and the argument used above imply that B o has the property in question. I t  was 

shown in [4] that no constant B less than B0 has the property, and thus Theorem 

6.2 is proved. 

7. Conclusion. 

Theorem 6.2 solves, for arithmetic mean transforms, the problem analogous to 

a problem proposed by Hadwiger [5] for Abel power series transforms of series. 

The problem of Hadwiger really consists of two parts of which the more difficult 

problem is the following. Let Y.un be a series for which lira sup ]nun] ~ oo. Let 

(t) = Z t ~ us denote the Abel transform, and let ~A represent a limit point of this 

transform, that is, a number ~ such that a ( t~ )~  ~A for some sequence tn such 

that 0 ~ tn ~ 1 and t~ ~ 1. The problem is to determine the least constant Co such 

that to each limit point ~A of a (t) corresponds a limit point ~s of sn such that  

(7.1) I~A--~81 ~ Co ~ sup I"~'~l. 

Hadwiger [5] showed that .4858 < Co --< 1.0160. 

It  seems that the exact value of C o has, despite the fact that  several authors 

have studied Hadwiger's problems and their generalizations, never even been con- 

jectured. I t  was shown in [1] and [2] that C o < .9680448, and that the latter con- 

stant has several optimal properties re]ated to the problem. The fundamental fact 

that Co ~ .9680448 was proved in [3] where it was shown that C o < .838381. By 

use of Theorem 4.3 and the method of [3; section 10] we can show that C o < 

.749439, but the author does not expect this smaller upper bound to turn out to be 

the wlue of Co. It  is hoped that the methods of [4] and this paper will be helpful 
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in extending our results from arithmetic mean transforms Mn to Abel transforms 

and perhaps to more or less general classes of transforms. However, i t  is expected 

tha t  the computations involved in such extensions will be far from trivial. In any 

ease, the best constant C o in (7.1) remains undetermined. 

Cornell University, Ithaca, New York. 
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