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Introduction.

1. Let the function w=f(z) be uniform and meromorphic in the unit circle
|2| <1. We adopt no general hypothesis regarding the unit circumference |z|=1 of
which every point may be a regular point or a pole of f(z); or some points may
be essential singularities; or every point may be an essential singularity of f(z).
For our purposes it is convenient to include the poles in the class of regular points
of f(z) for then the value oo is in no way exceptional.

In order to study and describe the behaviour of f(z) near the circumference
|z|=1 we associate with f(z) certain sets of values which are defined as follows.

(i) The Cluster Set C(f). a€C(f) if there is a sequence {z.}, |za| <1, such
that lim [2z,]=1 and lim f(zys)=a. An equivalent definition, which is applicable to

n—>00
a general domain, is that there is a point 2, of the boundary |z|=1 such that
lim z,=2, and lim f(z.)=a. We call a a cluster value of f(z). The complementary

n->00 N>
set of non-cluster values with respect to the closed complex plane is denoted by
CC(f). The fwontier of C(f) is denoted by FC(f). We shall throughout use the
notation U (a, &) for the eneighbourhood of a, i.e. the set of points w satisfying
|[w—a|<e Then a€FC(f) if and only if, for all >0, U(a, ¢) contains at least
one point of both the sets C(f) and CC(f).

Evidently C(f) is closed so that CC(f) is open and consists, if it is not void,
of a finite or enumerable set of open domains.

(ii) The Range of Values R(f). a€R(f) if there is a sequence {z.}, |za| <1,
such that lim |z,]=1 and f(zs)=@¢ for all values of n. As for the cluster set,

N>

lim z,=2y for some 2z, on |z|=1 and f(zs)=a is an equivalent condition. The com-
N—>00
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plementary set with respect to the closed complex plane is denoted by C R(f) and
may be called the Excluded Range. A value b€ CE(f) is an excluded range value of
/(z). The frontier of R(f) is denoted by F R (f).

(i) The Asymptotic Set I'(f). a€I'(f) if there is a continuous simple path
z=2(t), a<<t<l1, such that |z(t)|<1; lim |z(f)|=1 and lim f(z(!))=a. We call
-1 i—1

a an asympiotic value of f(z). The complementary set of non-asymptotic values of f(z)

is denoted by C I'(f).

(iv) The Value Set X(f). a€X(f) if there is a point z(a), where |z(a)]| <1,
such that f(z(a))=a. The frontier of X (f) is denoted by FX(f).

We see at once that X(f) is open. For if a€X(f) we can find ¢>0 and
0<n<1l—|z(a)| such that every value in U (a, ) is taken by f(z) in the circle
|z—z(a)| <7 so that a is an internal point of X (f). C X(f) is therefore closed and
FX(NHeCX(). L

In the usual notation we denote closures by C(f), CC(f), R(f), CR(f), I'(f)
etc. and derived sets by C'(f), ete.

Evidently
(1.1) R(f) = X(f),
(1.2) R(h=C(f)
and
(1.3) INGELI))
Also ’
(1.4) Che X (f);

for if a€CX(f) then, for some >0, |f(z) —a|>e¢ in |z] <1 so that a€CC(f)
and hence C X (f)c CC(f).

The foregoing definitions relate to the behaviour of f(z) in the large either at
the whole boundary |2]|=1 or in the whole domain |2z} <1 without specifying any
particular point of the boundary or domain. In Part I of this paper we shall study
these sets systematically and, in particular, we shall investigate the relations between
the frontier sets FC(f), FR(f), FX(f) and the excluded range C R(f) on the one
hand and the asymptotic set I'(f) on the other. By way of illustration we may
recall corresponding theorems for the case of a function F(z) meromorphic and non-
rational in the finite plane |z| << co. For such a function the sets C(F), R(F) and
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I'(F) are defined as above except that we put lim 2,=c0 in the case of C(F) and

n—o¢

R(f) and lim z(f)=co in the case of I'(F). The three classical theorems of Weier-
t—>o0

strass, Picard and Iversen can now be stated in terms of these sets as follows,

Theorem A (Welerstrass) CC(F) is void.
Theorem B (Picard) CR(F) contains ot most two values.

From this theorem it follows at once that F R(F)=C R (F).
Theorem C (Iversen) C R(F)=JF R(F)< I'(f).

Theorem A is, of course, implied by the deeper and more difficult Theorem B.

All three theorems apply also to the case of a function F(z) having an isolated
essential singularity, the sets C, R and I' being defined in relation to the neigh
bourhood of the singularity.

The corresponding system of theorems for a function f(z) meromorphic in
|2] <1 is closely analogous. Theorem A holds for f(z) under the condition that
T'(r, f) is unbounded. We show that in the general case C(f) is a continuum. Schottky’s
theorem and its variants are the analogues of Theorem B. The principal result to
be proved in Part I is the analogue of Theorem C. The general form of this result
is in fact very simple, namely

FR(HFC(H=CR(NnCHTH,
while if I'(f) is of linear measure zero C C(f) is void and instead we bave
CR(HheTI(),

which is again of the form of Theorem (. These theorems lead to a number of
results concerning the sets CC(f), CR(f), FC(f), FR(f), and I'(f) in special cases.
The resulting system of theorems is related on the one hand to the order of ideas
associated with Fatou’s theorem on the boundary behaviour of a bounded function
and its generalization by Nevanlinna to functions f(z) of bounded characteristic
T (r,f) and on the other to a recent theorem of Collingwood! on deficient values of
functions f(z) of unbounded characteristic T (r, f).

The theorems of Part I may be called boundary theorems in the large since
they are concerned with the behaviour of f(z) near the boundary of the unit circle

1 CoruiNewooD (1) p. 336, Theorem IV and corollaries. The numbers against authors’ names
refer to the bibliography at the end of the paper.
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and not near any particular point of the boundary and they belong to what may
be called the boundary theory in the large.

Corresponding to the boundary theory in the large there is a boundary theory
in the small. In this theory there is a selected point z=¢e'® of the boundary and
we study the behaviour of f(z) near this point. For the purposes of this theory
we define sets relative to the function f(2) and the point z=¢® analogous to C(f),
R(f), and I'(f). It is also necessary to introduce a further conception, that of the
uniform convergence of f(2) to a value a on a sequence of arcs converging to a
closed arc of |2|=1 which contains the point z=e¢*® and to define the set of values
o for which f(z) has this property. We postpone the formal definitions. In Part II
of the paper we establish a system of boundary theorems in the small corresponding
to the boundary theorems in the large proved in Part I.

In Part III we prove a group of theorems, of a type that originated with a
well-known theorem of Plessner, concerning‘ the distribution upon the circumference
|z}=1 of certain classes of points, defined by the behaviour of f(z) in their neigh-
bourhoods.

The central idea of our method derives from Iversen’s theory of the inverse
function.? It consists in the continuation of an ordinary or algebraic element of the
inverse function along an appropriate path free from non-algebraic singularities. The
method appears to be one of considerable power in this field.

The first systematic work upon the sets C, R and I was that of Iversen (1, 2, 3)
and Gross (1,2) some thirty years ago and was concerned, in so far as it related
to functions meromorphic in a domain having a contour, to the theory in the small.
Subsequent developments in this theory are due notably to Seidel (1, 2), Doob (1—4),
Beurling (1), Noshiro (1, 2, 3, 4) and, more recently, Caratheodory (1) and Weigand (1).
But, as regards the theory in the large, while a number of individual theorems are
known there has, so far as we are aware, been no systematic development of a
general theory of the sets C(f), R(f), I'(f) and their mutual relations. It is the pur-
pose of this paper to develop the main lines of such a theory for the unit circle
both in the large and in the small. Our theorems can be extended by conformal
mapping to Jordan domains, those of Parts I and II Without restriction, and those
of Part 1II subject to restrictions upon the boundary. These generalisations, which
cannot be dismissed quite without discussion, are dealt with in the Appendix. We

1 IversEw (1).
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do not consider domains of a more general character for which interesting theorems
have been proved by Gross (2), Besicovitch (1) and subsequent writers.!

It should be said that the present paper supersedes a paper by Cartwright (1)
of 1935 in which the method of the inverse function was also used. Unfortunately
Cartwright’s investigation was vitiated by an oversight with the result that some of
the theorems of the paper referred to, as well as the arguments, are incorrect.? Piece-
meal correction would not be practicable and perhaps at this distance of time is
hardly desirable. Recognition of the mistake has, however, led us to develop the
theory - afresh from a more general point of view which has enabled us, in partic-
ular, to elucidate in some detail the relations between the asymptotic set I, the

excluded range CR and the frontier sets FR and FC, both in the large and in
the small.®

1 The terms Cluster Set, Range of Values and Asymptotic Set and the notation C, R and I'
have been adopted following Seidel since, so far as the terminology is concerned, this appears to be
the established convention in English and it is clearly desirable to establish a conventional notation
in a theory which is becoming elaborate. Practically the whole of the previous development of the
theory has been in the small so that when we speak of previous conventions we refer to the conven-
tions of that theory.

In the past there have been considerable variations both in terminology and notation. The
Cluster Set was called d ine d’indétermination by PAINLEVE (1 and 2) with whom the concept
originated and at first also by IVERSEN (1 and 2). Later IVERSEN (3) adopted the terminology and
notation of Gross (2) who used H (Haufungsbereich) for C and W (Wertbereich) for B. IVERSEN (3)
used K (Konvergenzbereich) for I. Noshiro and other Japanese writers have used Seidel’s terminology
but a different notation.

Doos in (3) wrote F (z) for C (f) which he called the cluster boundary function of f(z). But he
was only considering properties in the small. The functional notation and terminology are perhaps
less well adapted to the theory in the large. In Door (4) he used the term range for the value set.

In a recent paper CARATHEODORY (1), and WEIGAND (1) following him, used Randwert instead
of Haufungswert for cluster value. Although this term does clearly relate the concept to boundary
theory we have adhered to the term cluster value even though it is perhaps less suggestive. More-
over, the terms Randwert and boundary value are already used in other senses in the theory of
functions,

2 The sets which we subsequently call 4 (f) and @ (f) were overlooked in CaRTWRIGHT (1).
But the final section of that paper and two later papers, CARTwRIGHT (2 and 3), all of which are
concerned with the boundary behaviour of functions at a boundary which is everywhere discontinuous,
are unaffected by the error referred to.

3 A short summary of some of our results, in particular Theorems 9 and 22 of the present
paper, was communicated to the International Congress of Mathematicians at Harvard University,
September 1950, see CorLiNgwoOD and CARTWRIGHT (1).
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Part 1.

Boundary Theorems in the Large.
The analogue in the large of Theorem A.

2. We use the notation that is now standard.!

M(r,f)=lmaX|f(Z)|

and =
T(r,)=m(r,f)+N(@{),
where \
e f) =5 [ log” /(9140
and ’

T

N(r,/)= [”(9’ 20) —n(0, oo)d@ + n (0, o) log 7,
Y e
n (g, ©) being the number of poles of f(z) in the region |z| < g, each being counted
with its order of multiplicity. More generally, n(o,a) is the number of zeros of
f(2) —a, each counted with its order of multiplicity, and

r

N(r,a)= I'n(g, a);n((), a)dg + n (0, a) log 7.

0

Clearly, if a € CR(f) then N (r,a)=0(1).
The functions f(2) meromorphic in |z|<<1 fall into two classes, namely the
class for which T (r, /)=0(1), known as functions of bounded characteristic, and the
complementary class for which T (r, f) is unbounded, which may be called the class

of functions of unbounded characteristic.
We recall that?

1 We refer generally to R. NEVANLINNA’s two standard books: Théoréme de Picard-Borel et la
théorie des fonctions méromorphes, Paris 1929; and Eindeutige Analytische Punktionen. Berlin 1936,
cited hereafter as E.A.F.

2 If the values of f(z) are transformed to the unit w-sphere T' (r, f) is defined in terms of the
af+ B
yi+4
etc. being in general unbounded are measured in the spherical metric, no inconvenience arises from
retaining Nevanlinna’s definition of 7 (r, f). Projection onto the sphere may be made at any con-
venient stage.

spherical metric and satisfies the equation T (r, )= T (r, f). Although the sets C, R, I"
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af + B)_
r(82E)-re.n+ 0w,
af + B
yf+é
All linear transforms of f(z) thus have the same order defined by the limit
— log T(r,])

b g (1—1)

where is a linear transform of /.

A trivial argument shews that if T (r, f) is unbounded C(f) has the Weierstrass
property of covering the closed plane, or its transform to the unit sphere. In fact

we have

Theorem 1. If f(z) is meromorphic in |2| <1 and if T (r,[) is unbounded, then
CC(f) s void.

For suppose a€C C(f). Then there are numbers K << oo and &>0 such that,
for all » in 1 —e<r<1, we have

1

fren—al <%

and hence m(r,a) <K for 1 —e¢ <r<1. Since plainly N (r,a)=0(1) we have
1
T (r, f)=T(r, /—~Tl) + 0()
=m(r,a) + N(r,e) + O(1)=0(1)

for 1 —g<r<1; and since T (r, f) is an increasing function of r this inequality holds
for all r<<1. This proves the theorem.

Evidently it is not true in general that C C(f) is void. For functions f(z) which
are linear transforms of bounded functions and which constitute an important sub-
class of functions of bounded characteristic C C(f) is not void. On the other hand
we can find .examples for which C C(f) is void while T (r, f) is bounded.

To complete the analogue of Theorem A we prove

Theorem 2. If f(z) s meromorphic and non-constant in |z| <1, then C(f) is a
continuum.

If O(f) contains only one point then f(z) is a constant.! So we may assume

1 1t is easy to give & direct proof of this; but for economy we rely on the indirect propf given
in § 4 below.
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that C(f) contains more than one point. To obviate special mention of the point
at infinity we transform onto the unit w-sphere. Distances are accordingly to be
understood as spherical distances.

First C(f) is compact. For if w, € C(f) and w is a limit of the sequence {wy}
so that, for some sequence {n'}, lim wy =w it is easy to see that w€ C(f). For given

n'~>o0

a sequence %), lim 7, =0, we can find a sequence {g,}, lim &y =0 such that the
n'—>o0

n'—o0
annulus 1 — &y <|2z| <1 contains a point z»' such that |f(zs) — wn'| < 7n. Hence

lim |zo | =1, lim f (20) = w.
n'—o0 n'—>00

C(f) is connected. To prove this we assume the contrary. There is then a
partition of C(f) into two compact subsets K; and K, which are at a positive dis-
tance 20 apart. Let H; be the open set of points whose distance from K, is less
than 36 and H, the similar set for K,. The distance between H; and H, is §,
C(H,UH,) is closed and C (H;UH,)<s CC(f).

Now choose a € Ky, and b€ K,. Given a sequence {7}, lim 7,=0, we can find

n->00

a sequence {e,}, lim &,=0, such that the annulus 4, defined by 1 —e&, <|z|<1
contains a point 2z.(a) such that |f(2.(@) —a|<#a and a point z,(b) such that
| F(za®) —b| < 9n. For n > ng, say, nn <36 so that U (a, ns) S H, and U (b, 4a) S H,.
We ignore values of % =<1, and we join the points z,(a) and z.(b) in pairs by a
standard curve. If |2z4(a)|=|2x(b)| then it is simply one of the arcs z=|za(a)|
joining these points. Otherwise if, say, |zx(a)]<|z(b)| it consists of the radial
segment joining zs(a) to the circle |z|=|2,(b)| at zs(a)’ and one of the arcs defined
by 2n(a)’, 2zn(b). Call this curve Cn. The function f(z) maps Cn, which lies wholly
in A, on a continuous curve A, having its end points wn(a) and ws(b) in
Ua,pa) S Hy, and U (b, ps) € H, respectively.! We can now find on A, a point
wn€C(HyUH,). For A, is connected so that its end points are connected by a
3 0-chain wn,, Un,, . . . Un, and if all these m points of A, are contained in Hj, or
H, it follows that the distance between H; and H, cannot exceed 4 4. But this
distance is 6. We now choose a point w,€ C(H; UH,) on each 4,. The sequence
{wa} has at least ome limit point ®, which may be infinity, and there is a sub-

sequence {wy}, lim wy=w. Since Cy is contained in A we have lim |z, |=1 where
n'—>00 n' o0

wn and 2y are corresponding points of A, and C,. Multiple points of 4, occasion

no difficulty since the corresponding set of points of Cn' must be finite. Therefore

1 A, is not in general a simple curve.
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w€C(f). But since w=lim w,, where wy €C(H,UH,), and C(H,UH,) is closed

n'—o00
it follows that w€ C(HUH,)c C(K,UK,)=CC(f). We thus have a contradiction
which proves that C(f) is connected. This completes the proof of the theorem.

Analogues in the large of Theorem B.

3. The results here are well-known, but we set them down for completeness.
The properties of CR(f) with which we are concerned are closely related to the
growth of T (r,f). We have first the

Schottky-Nevanlinna Theorem.! If {(z) is meromorphic in |2| <1 and if
1o T (7’ f)

M g a—n

then C R(f) contains at most two values.

In the Schottky-Nevanlinna Theorem the condition on the growth of I'(r,f)
cannot be improved. For functions of unbounded characteristic we have

Frostman's Theorem.? If f(z) is meromorphic tn |z| <1 and of T (r, {) is
unbounded, then C R (f) is of capacity zero.

Although we do not use the theory of capacity® in any of our arguments we
shall have occasion to state some comparative theorems in terms of this measure.
The following metrical property is important.

We denote by an S-set? any set of points satisfying the following condition:
suppose that s(f) is a positive, continuous increasing function for ¢> 0 such that

§(0)=0 and
k

0

is convergent for some %£>0. For any &£>0 there is a sequence of circles with

radii gy, s, . . . covering the set such that

o

> s(on) <e.

y=1

1 E.AF. pp. 253-254.

2 E.AF. p. 260.

3 Zero capacity and zero harmonic measure are equivalent and may be interchanged in our
enunciations. For the theory of harmonic measure and capacity see E.A.F. pp. 29—41, 106-121
and 142-153. On zero capacity see also BEURLING (2).

4 E.AF. pp. 142-145,
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An S-set is by definition a set of s-measure zero.!

A set of capacity zero is an S-set.

The definitions of s-measure and of capacity also apply when the set is pro-
jected on the unit sphere and the spherical metric is used. For unbounded sets
they will be taken in this form.

Further, an S-set s of o-dimensional measure zero for all o> 0.2

We now see that just as Theorem A is implied by the deeper Theorem B, so
Theorem 1 is implied by the deeper Theorem of Frostman. For if a€C R(f) every
neighbourhood U (a, &) contains points of R(f), since CR(f) is of linear measure
zero. Hence a € R'(f); and so R(f)UCR(f)< R(f)= C(f), shewing that CC(f) is void.

The set I'(f). Preliminary Theorems and Lemmas.

4. We set out in this section a number of results, some of them classical, to
which we shall frequently have to appeal.

We must begin by analysing rather more closely the conceptions of an asymp-
totic value and an asymptotic path. If a€ I'(f) there is a continuous curve z=z(t),
0<<t<1, on which 111111 |z(t)]=1 and 12111; f(z@®)=a. The limiting set of the curve

z(f) on |z|=1 is either a single point or a closed arc, which may bé the whole

circumference. This is expressed in the following lemma.

Lemma 1. 4 continuous curve z=z(t), 0<<t<<l, such that |z(1)| <1 and
}inln |2()|=1 has at least one limit point z=¢'® on |z|=1 and if there are two such
;)ints % and &%, then the set of limit points of z=2z(t) on |z|=1 contains at least
one of the two arcs defined by €% and &%,

The first assertion is trivial, for if we choose a sequence {t,}, t,—~1 as n—>oo,
the sequence of points z,=2z(¢,) has a limit point on |z|=1.

To prove the second assertion suppose that both of the arcs contains a point

1 The s-measure of a set  is defined as follows: Given £ > 0, suppose the set'® to be covered
by an arbitrary sequence of circles ¢, with radii g, << £, and denote by m, (&, s) the lower bound
of the corresponding sums 28 (0y). This number increases with decreasing & Put

m (O, 8} = lim m, (&, 8).
&0
Then 0 < m (&, §) = + 00. By definition m (e, 8) is the s-measure of o.. For s = 7712 the s-measure
is the plane measure and for s= 27 the linear measure of .
2 E.AF. pp. 142-143.
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which is not a limit point of z(f). Denote these pointz by p and q¢. We can find
£>0 such that neither of the circles of centres » and ¢ and radius & contains a
point of z(¢); and we can find #(e) such that |z(f)]>1—e for t>¢t(¢). If we cut
the annulus 1—e&<|z|<1 along the radii to p and ¢ neither of these cross cuts
is within a distance ¢ of the curve z=2z(t), ¢t(¢) <t<1, which is therefore not
connected. This is contrary to hypothesis and the lemma is proved.

We call the limiting set on |[z|=1 of an asymptotic path its “end”; and we
define I'p(f)S I'(f) and I'4(f)S I'(f) as follows: a€ I'p(f) if there is an asymptotic
path z=2z(f) whose end is a point of |2]=1 and such that ltm; f(z®)=a, and

a€I'ys(f) if there is an asymptotic path z=2z(¢) whose end is an arc of [z|=1 (or
the whole circumference) and such that lim f(z({)=a.
1

We also write a € I'p (f, ¢'%) if €'¢ is the end of 2(¢) and I'p(f, 6, <0 < 0,) for
U TI'p(f, €% so that I'e(f)= UIp(f,€®); then I'(f)=Ip(f)UTL4(f). We must

f1<6<6; (]
note that the intersection I'p(f)N I'4 (f) is not necessarily void.

An important class of asymptotic paths are spirals converging to the circum-
ference |z|=1. Functions tending to asymptotic values along such paths have been
constructed and their properties discussed by Valiron (1 & 2). We may denote by
I's(f) the set of values {a} for which there is a path z=2(f), 0 <¢<<1, such that
,Il’,i‘ |z(¢)|=1, |arg z(t)| is unbounded and %11111 f®)=a. Then Is(f) contains the

set of asymptotic values of f(z) for which there are spiral asymptotic paths. Further
I's(fye Ta(f) s T'(f).

Evidently, when Is(f) contains more than one value I'p(f) must be void.
Functions constructed by Valiron (1) are examples. Equally, if I'p (f) contains more
than one value I's(f) is void. All bounded functions satisfy this condition; and it
is also satisfied by the modular function w(z) which is unbounded and has I'p(f)=
=(0)U(1) U(co). It follows that if neither I'p(f) nor I's(f) is void they must con_
gist of one and the same value. A function with this property is Koenigs’ function?®
K (z) for which I'p(f)= I's(f)=(c0).

Theorem 3. If f(z) is meromorphic in |z| <1 and if T (r, )=0(1), then I'4 (f)
18 void.

1 See VaLiRON (2).
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This is an immediate consequence of the following two well-known theorems.

Fatou-Nevanlinna Theorem.' If f(z) is meromorphic in |z|<1 and if
I(r,/)=0(1), then for almost all 6 tn 0=<0<<2wm, lim f(2) exists uniformly in the

z—>¢t?

angle | arg (1 —ze~%9)| < g — & for all > 0.

A point z=¢'® for which this property holds we call a Fatou point and the set
of such points we denote by F=F (f) and its complement by CF. Then CF s of
measure zero if T (r,f)=0(1). For e¢®€F we denote the unique limit of f(z) as 2

tends to € in any angle | arg (1 — ze~ %) | < g — & by f(e'9).

Riesz-Nevanlinna Theorem.? If f(z) is meromorphic in |z| <1, T (r, )=0(1)
and there s a number a such that [(¢°)=a for a set of values of 6 of positive meas-
ure, then f(z)=a.

Denoting by F, the subset of F for which f(e'’)=a, we note first that if f(z)
is not constant and T (r,f)=0(1) then F, is of measure zero for all values of a.
It follows as an immediate corollary that +f C(f) consisis of a single value a, then
f(z)=a. For we may assume a oo so that T(r,f)=0(1) and F, is the whole
circumference |z|=1. We note secondly that given any arc of |z|=1 there is an
infinity of values of # for which this arc contains points of F,.2

If now T'(r,/)=0(1) and a€ I'4(f) there is an arc of |2|=1 which is the end
of an asymptotic path y(a) on which f(z) tends to . But we can find a radius to
this arc on which 1'1_1}11 f(ré*®) % a. Since y(a) intersects this radins an infinity of

times in every neighbourhood of ¢! we have a contradiction. Hence I's(f) is void
and Theorem 3 is proved.

For functions of finite order there is an interesting theorem of Valiron (2) who
has proved that if f(z) is regular in |2|<1 and of finite order then there is no finite
number a € I's(f).

5. There is another important condition under which I'4(f) is void.
Theorem 4. If f(z) is meromorphic in |z|<1 and C R(f) contains more than

two values, then (1) I's(f) is void so that I'(f)=TIp(f); and (i) if a€ I'p{}, &%), then
I'p(f, ) contains no other value and ¢°€F.

1 E.AF, p. 197,
2 E.AF. p. 197,
3 E.AF. p. 198 Satz.
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This is a special case of a more general theorem (Theorem 6) the proof of

which depends upon the following lemma due to Koebe.l

Koebe's Lemma. Let ¢(z) be regular and bounded in |z]| <1 and let there be
two sequences {20} and {z®} such that | 20| <1, lim 2D =e; [P <1, lim 2P =it
n—o0 n—0
. . L g
where 0, 7 0. If there 1is a sequence of continuous curves y, joining ZD to 22 and
contained in an annulus 1 — en <|2z| <1, where &, >0, lim e,=0, such that on yn we

N—>0

have | @ (2) — x| < nn where im 5, =0, then ¢ (2)==.
n—>0

We now introduce a further definition relating to a function f(z) meromorphic
in |z] <1. Suppose that there is a closed arc 6; < 0= 0, of the circumference
|2]=1 which is the limit of a set of curves y, satisfying the condition of Koebe’s
lemma and that |f(z) —a| <%, lim 7a=0, for all z on yn. By definition, a € D (f)

n—oo
and, for any 0 satisfying 6, < 0 < 6,, a € D(f, €%); so that @ (/)= U D(f, ).
[}
We now prove
Theorem 5. If f(z) is meromorphic and non-constant in |2| <1 and f(z) #a, b

or ¢ where a, b and ¢ are distinct, then (i) D(f) is void;® and (i) sf for some O
here exists x € I'p (f, '), then I'p(f, ¢'°) contains no other value and €'°€F.

We may assume f(z) has been transformed so as to make ¢=oc and we write

p(z)= f**——gz)_;a .

w(z) is then regular and does not take the values 0,1 or oo in |2z|<1. Now let

g be any number which is not real and write

() = v(yp@) —v(9)
v (p@) —r(9)

where »(w) is the inverse of the modular function for the half plane. Then ¢(z) is

1 KoesE (1 and 2). Proofs are also given in L. BIEBERBACH, Lehrbuch der Funktiontheorie
Bd II, p. 19, 2'nd edition, Leipzig 1931; and in P. MONTEL, Legons sur les familles normales de fonc-
tions analytiques, p. 107, Paris 1927.

% This result is in fact due to Gross (1) pp. 35-36 who also derived it from Koebe’s Lemma.
He does not use the modular function but maps the universal covering surface of the w-plane
punctured at a, b and ¢ onto the unit circle IE I < 1. We had overlooked this theorem of Gross
until after our own paper had gone to the press; but we have allowed our proof to stand since
Gross’ paper is not now very accessible and the result is an essential piece of our apparatus.
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regular and satisfies |@(2)] <1 in |z]<<1. (ii) now follows immediately from the
Fatou-Nevanlinna theorem. The proof of (i} is carried out in two stages.

a%(), 1 or
—a

First suppose that h€ @(f), where h # a, b or oo, so that k=z
oo and k€ P(y). Hence ¢k)eP(p) and it follows at once from Koebe’s lemma
that @ (z)=9@ (%), y(2)=*% and so f(z)=h.

Secondly, we assume that A€ D (f) is one of the omitted values a or b. We can
exclude the case h=oco by transforming to 1/f(z). Clearly we may put h=5b. We
then have a sequence of curves yn converging to a closed arc of [z]|=1, such that

z) — 1| <#m, lim 7,=0, for all z on y,. Now let the circle |z| <1 be cut along
Y n n_’w”

a radius. Each of the two branches of (y(2))? is regular and omits the four values
0, —1,1,00 in the cut circle. We can choose a branch of (p()}, which we will
call u(z), and which converges uniformly to — 1 on a sub-sequence y»' of the ¥y
Map the cut circle by a function £=£&(z) on the circle || <1 and denote by z(§)
the inverse mapping function. Then v(&)=wu(2(§) is regular and not equal to 0, 1
or o in |£]|<1; and —1€®(v) since the sequence of curves y, is mapped by
£(2) on a sequence in |&|<<1 satisfying the same condition of convergence to a
closed arc of |£|=1. It now follows from the previous argument with » (&) in place
of w(z) that u(2)=—1, p(2)=1 and f(z)=b=h.

Since by hypothesis f(z) is not a constant this proves (i).

From theorem 5 we can at once deduce the following more general theorem.

Theorem 6. If f(z) 1s meromorphic and mnon-constant m |z| <1 and CR(f)
contains more than two wvalues, then (1) D(f) is void; and (i) f for some O there
exists w€ I'p(f, €°) then I'p(f, ¢'%) contains no other value and ¢'®€ F.

Let a, b and ¢ belong to CR(f). Then we can find &> 0 such that f(z) # a, b,
or ¢ in the annulus 1 —¢<[2{<1; and so also in the annulus cut along the seg-
ment 1 —¢<Rz=<1. We map the cut annulus conformally on |&]<1 by a funec-
tion £(z), the inverse being z(&). The function x(£)=f(z(&) is meromorphic and
not equal to @, b or ¢ in [£]<1 so that @ (x) is void. But if there is a number
d€D(f), then evidently d€ P (x). For there is a sequence of curves y, converging
to an arc of |2|=1, which we may clearly assume does not contain the point z=1,
on which |f(z) ~d| tends uniformly to zero. This sequence is mapped upon a
sequence of curves §, in |§]| <1 converging to an arc of | &|=1 on which | % (&) — d|
tends uniformly to zero. Therefore @ (x) void implies @(f) void and the theorem
is proved.

7— 632081 Acta mathematica. 87
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Theorem 4 is an immediate corollary of Theorem 6. For if a € I'4(f) we can
find a sequence of segments of an asymptotic path, on which f(z) tends to a, con-
verging to an arc of |z|=1. Hence I'4(f) < D(f).

We know from the Schottky-Nevanlinna theorem that the condition of theorem
3 that CR(f) contains more than two values also implies a restriction on the char-
acteristic T (r, f) namely T (r,f)=0(—1log(l —7). The argument of paragraph 4 has
shown that if I'4(f) is not void, or indeed if @(f) is not void, then T'(r,f) is un-
bounded. We may ask whether unboundedness of some minorant of T (, f) is implied
by either of the conditions I'4(f) not void or @ (f) not void. The theorem of Valiron
on spiral paths quoted at the end of paragraph 4, suggests that some such relation

may exist. We are, however, unable to answer the question.

The sets I'(f) and @ (f) under conformal mapping.

6. Let D be a simply connected domain in |z] <1 whose frontier consists of
an arc a of the circumference |z|=1 and a Jordan curve in |[z]|<1. Conformal
mapping of domains of this type upon the unit circle is an essential feature of our
technique.! The essential property of such mappings for our purposes follows from
the symmetry principle. To avoid repetition we state the relevant case of this

principle as

Lemma 2. If D is mapped conformally upon the circle || <1 the mapping
function &(z) is regular upon the arc a.

From this we derive the properties of I'(f) and @ (f) under conformal mapping.
It follows at once from the lemma that a curve z(¢) having its end point on a
and making an angle @ with the radins at this point is mapped upon a curve
&(z®) making the same angle @ with the radius of |£|=1 at its end point. In
particular, if @ is a radial asymptotic value for f(z) at a point €% of « ie. if
lim f (r %) =a, then a is a radial limit for ¢ (&)=/(z2(£€) at the point & (¢'%), of the

r—1
circumference |&|=1; while if ¢% is a point of the set ¥ for f(z) then &(¢%) is a
point of the set F for ;p(.f).

It also follows from Lemma 2 that if a € @ (f, €'%), then a € @ (p, £(ci%).

We have thus proved

Lemma 2 a. Let f(z) be meromorphic in 2| <1 and let the domain D defined
above be mapped conformally by the function & (2) upon the circle |&|<1. Then

! More general mappings are discussed in the Appendix.
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(i) 4 point €° in o which belongs to the set of points F for the function f(z)
transforms into a point &® of the set F on the circumference |&E|=1 for the function
@ (&)=1(29); and if a=] (), then a=gp (&?).

(1) If ae®(f, e?®) for €° in a then a€ D (g, ?).

The set I'(f) in relation to the inverse function.

7. We recall the elementary properties of the inverse function z=z (w) of the
function w=/(z).1 To every z in |2z|<<1 there corresponds an element e,=e, (w’, w),
where z=e,(w, w), which is regular or algebraic according as w is a simple or mul-
tiple value of f(z) and which has a positive radius of convergence. If |z|=11is a
natural boundary for f(z) the inverse function z(w) is the set of these elements
e (w', w) for |z| <1. Given any two elements e, and e, (| 2,| < 1;|2a] <1) of z(w),
there is an analytic continuation of e, to e, such that every element of the continua-
tion is an element of z(w).

The definition of the inverse function z(w) is easily extended by analytic con-
tinuation to the case where |z|=1 is not a natural boundary. We shew first that
to every continuation of f(z) there corresponds a continuation of z (w). In particular,
suppose that there is a continuation from a point 2z’ in [z]| <1 to a point 2" in
|2|> 1. These points can be joined by a polygonal curve L at all points of which
f(2) is regular and f'(z) > 0 and this curve is mapped on a curve A in the w-plane.
To every point z of L there corresponds an inverse element e, (w’,w) which maps a
circle |w' —w|<<e(z), £(2) >0 on a domain d(z) containing z. Since for every z
the domain d(z) contains an arc of L of positive length it follows from the Borel-
Lebesgue covering theorem that I is covered by a finite number of the domains
d (z). Since consecutive domains of this finite set overlap, the corresponding circles
in the w-plane also overlap, the corresponding inverse elements are equal in the
common parts of these circles and thus are immediate continuations of one another.
Every other inverse element e, (w’, w) corresponding to a point z on L is an immediate
continuation of one of this finite set of elements and is thus an element of the

continuation of z(w) along A corresponding to the continuation of f(z) along L.

1 The theory was developed systematically by IVERSEN (1) in the parabolic case i.e. for w = F (2)
meromorphic in the finite plane |z‘ < ©0. For the corresponding theory with w = f (2) meromorphic
in |z| <1, the circumference |z|= 1 being a natural boundary, see E.A.F. pp. 269-275. For the
general case see VALIRON (5) pp. 415-417. The theory has been developed in considerable detail for
an arbitrary analytic function by NosHIRO (4) pp. 43-73.
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We have now only to reverse the argument to shew that to every continuation
of an element e, (w', wy) of z(w) to another element e, (w’, w,) there corresponds a
continuation of the element ey, (', 21) of f(2) (wy = ew, (21, 21) = (2)) of which e,, (w’, w;)
is the inverse, to an element ey, (2’, 25) (wy = €w, (25, 2;) = (29)) of which e, (w’, wy) is
the inverse.

It has thus been shewn (i) that given any two elements e, (w', w,), and e, (W', ws),
being the inverses of f(z) at 2=z; and z=z, respectively, each is a continuation of
the other; and (ii) that given any element e, (w’, w,) which is a continuation of an
element e, (w', w;) of z(w) then e, (w’, wy) is the inverse of an element of f(2). z(w)
is thus defined throughout its domain of existence by analytic continuation from any
element inverse to an element of f(z).

Now consider a path A in the w-plane defined by a continuous function w=w (z),
0=t <1. Then, by definition, an analytic continuation along the path is a set of
regular or algebraic elements e,, (v’ w(?)), where 2= e, (w(®), w®), such that for any
tin 0 <t<1, e, (w, w) exists and we can find £ =& (¢) > 0 such that for | T —¢| <e
all the elements e, (w', w(I)) are immediate continuations of e, (w’, w(®). Any two
elements of the set can be joined by a finite chain of elements of the set which
may be selected in an infinity of different ways. It follows at once from the fore-
going argument that to every continuation of an element of z(w) along A4 there
corresponds a continuation of an element of f(z) along the corresponding path [ in
the z-plane. We note expressly that either or both of the paths A and ! may be
closed curves described any number of times.

We classify the elements e, (w’, w) of the inverse function z (w) of f (z) as follows:
e (w', w) is an internal element of z (w) if it is the inverse of an element ey (2, 2) of
f(z) for which |z|<1; it is a boundary element if |z|=1; and an external element
if |z|>1. If |z|=1 is a natural boundary for f(z) then z(w) has only internal
elements,

It is readily seen that any continuation (as defined above) of an element of z(w)
along a given continuous path A in the w-plane which contains both internal and external
elements contains at least one boundary element. Since A is arbitrary the continuation
may contain algebraic elements in which case the particular continuation is deter-
mined by the choice of branches of these algebraic elements. Now the branch of
z (w) generated by any particular continuation maps A upon a path [ in the z-plane
which joins a point in [z] <1 corresponding to an internal element to a point in
|z]>1 corresponding to an external element. So ! cuts the circumference |[z|=1 in

a point z corresponding to the point w (4;), say, on 1 and, since f(z) is meromorphic
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or algebraic on ! the continuation along A contains an element e, (w', w(t;)) which is
a boundary element. This proves our assertion. It follows as a corollary that any
continuation along @ path 1 in the w-plane of an element of z(w) which contains no
boundary element, contains only internal or only external elements.

Suppose now that the circumference |z|=1 is a natural boundary for f(z) and
consider a path A defined by a continuous function w=w(t), 0 =< <1 such that

lim w (t)=w. Suppose further that there is a continuation of an element of z(w)
—1

along 1 towards the point e« such that the radius of convergence of the regular or
algebraic elements e, (w', w(®) of the continuation tends to zero as ¢{~>1. Then w is
a transcendant singularity of the branch of z(w) generated by the continuation. The
path A is mapped by this branch of z(w) on a path [ defined by the continuous func-
tion z={(f)=z(w®), 0 < ¢ <1, where [{(f)] <1. We see at once that lim | (t)|=1.
For if not there is a number 7 <<1 and a sequence # <<ifp << -f-fl< b < -,
lim t,=1, such that |l (ta)|=7, and hence there is a point zy=roe'®% and a sub-

n—>00

sequence {5} such that lim { (f,) =2, Now since |2,| <1 there is a regular or algebraic

>0

element e, (w', wy), ug=f(z), of z(w) having a positive radius of convergence g,.
We can find », such that | (&) — 20| << 0o/2 for all >, and it follows that each
of the elements ¢, (w', w()) is an immediate continuation of e (w’, wy) and thus has
a radius of convergence greater than p,/2. But this contradicts the hypothesis that
the radius of convergence of e, (w’, w() tends to zero as ¢—1 so that it follows
that lt1_1>111 [¢()|=1 and since ltl_lg f(C@)=w we see that w€ I'(f). Conversely, if

€ I'(f) then w is a transcendant singularity of some branch of z(w). For there is
a path I in |2 <1 defined by z=z(¢), 0=<¢<1, such that |z(t)}~1 and f(2(t)) =~ o
as t—~>1. We may assume without loss of generality that ! passes through no zero
of f'(2) so that I is mapped by /(z) on a continuous curve 4, w=1w (z(), 0=t <1,
without branch points such that w(z(®))—>w as t—>1. Let z,=2(t;,) €l and e, (w', wy),
wy={(2)€A, be the corresponding element of z(w). If the radius of convergence of
the elements e, (', w) obtained by continuation of e, (', w;) along A towards w does
not tend to zero this radius has a lower bound g, We can find ¢, such that
w(2) —w| < gy/2 for ¢>¢, The continuation contains the element e, (w’, w,),
where zy=2(ty), wo=w(2()), whose circle of convergence, of radius not less than g,,
contains the circle |w— w|=pg,/2, which in turn contains the curve w (z(®), f,<t<1,
which it therefore maps within a domain contained in |z| << 1. But since the continua-
tion maps 4 upon I on which |z| -1 this gives a contradiction and it follows that
must be a transcendant singularity for the branch generated by this continuation.
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We have thus proved that if |z|=1 s a natural boundary for f(z), then I'(f)= 2(f),
where $2(f) is the set of transcendant singularities of z(w).*

Secondly, consider the case where |z]=1 is not a natural boundary for f(z).
There are then regular points, in which we include the poles, or algebraic points of
f(z) on |z|=1. These form an open set which thus consists of a finite or enumerable
set of open intervals I, on |z|=1. At each point € of I= U I, f(z) clearly has a

n

unique asymptotic value f(e?), which we call a regular boundary value, and which
corresponds to a boundary element of z(w). The intervals I, are mapped by f(2)
upon a set of analytic arcs every point of which is a regular asymptotic value; and
it follows that the set of regular asymptotic values of f(z) is either void or of positive
linear measure.

Asymptotic values of f(z) which are not regular we call transcendant. If there

is a continuation along 4 defined by w=w(t), 0 <¢ <1, lim w(tf) = @ consisting only
-1

of internal elements of z(w) and such that the radius of convergence tends to zero
as t—1 then o is a transcendant singularity for the branch of z(w) generated by
the continuation and, by the argument used above, 1 is mapped by this branch on
a path [ defined by z2={(), 0 =t <1, which cannot have any point of |z} <1 or
any regular point of [z|=1 in its limiting set as ¢t —> 1. Hence thn; [¢@#)|=1 and o

i a transcendant asymptotic value. Conversely, if w€ I'(f) and is not a regular asymp-
totic value then o is a transcendant singularity for some nfernal branch of z(w);
l.e. for some branch consisting only of internal elements.

Denote by Q(f) the set of transcendant singularities for the internal branch of
z(w) consisting of all internal elements® and by II(f) the set of regular boundary
values. We have shewn that if |z|=1 4s not a natural boundary for f(z), then

I'(fy=L2() VIL()).
Combining these two results we have the following lemma.
Lemma 3. If f(z) is meromorphic in |2]| <1 then

I'(h=Q( vII(f),

! This result is given by Nevanlinna, E.A.F. pp. 271-272.

2 We should obgerve that if lz|= 1 is not a natural boundary the complete function f (z)
generated by continuation across the circumference Iz l =1 in both directions may not be uniform
so that for any z in |z | <C 1 there may be more than one element ey (z', z) of the complete function.
But as we are only concerned with a single branch of f(z) which is, by hypothesis, uniform in
Iz | <C 1 no ambiguity arises.
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where 2(f) s the set of transcendant singularities for the internal branch of z(w) and
IT(f) is the set of regular -boundary values.

If |2]=1 is a natural boundary then I1(f) is void and the internal branch is
the complete function z{(w) and we have I'(f)=£(f). We note as a corollary of
lemma 3 that ¢ I'(f) s of linear measure zero, II(f) is void so that |z|=1 s a
natural boundary for f{z) and I'(f)=LQ(f).

The set I'p (f) for bounded functions.

8. We wish to study I'(f) when CC(f} is not void. If a € CC(f) there are
positive numbers ¢ and ¢ such that |f(2) —a|> ¢ (or |f®@)| <1/o if a=00) in the
domain 1 —¢<|z|<1. If a co we make a linear transformation that puts a on
oo so that the transform of f(z) is bounded. It is therefore sufficient to consider
functions regular and bounded in an annulus.

We write I'p(f, 0, <<0<8)= U Ip(f, ¢ and with this definition we prove

8y <0<fy
the following lemma.

Lemma 4. Suppose that f(2) is meromorphic in |z| <1 and regular and bounded
in a simply connected domain D in | 2| << 1 whose frontier consists of an arc @ < 0 < 6,
z=¢% and a Jordan curve in |z| <1. Then, for any pair 0, 0y such that
0, <0, <0y < Oy, wy=f(e!%)=Tp(f, &%), wa=F(e'%)=TIp(f, &%) and w, # wy, the
projection on the open straight line L between wy and wy of the set I'p(f, 0; << 0 <C0,)
of values of f(¢'®) in the open interval 0, << 0 << 0, includes all points on L, and
hence the set ' (f, 0, < 8 << 0,) 15 of positive linear measure.

Let D be mapped conformally on the unit circle |£]|<<1. As we saw in para-
graph 6, it follows from lemma 2 that the arc @; < 6 < @,, z=¢'% denoted by a,
transforms into an arc ¥, <y <¥,, £=¢¥ denoted by B; the points of F for f(z)
in a transform to points of F for ¢(&)=f(2(§) in B; and

PP(‘P;¢1$1P£1P2)=PPU,91£0S62)

where et and e'¥: are the transforms of €% and % respectively. Further, since
@ (&) is bounded, almost all points of the arc f and hence almost all points of
the arc a are points of F for the respective functions ¢ (&) and f(2).

Now we can find 6,, 0, such that @, < 0; < 0, << @y and w, =f (¢'%) = I'p(f, €%)
is not equal to wy=f(e!%)=Ip(f, ¢%). For if not ¢(£) which is bounded in|&| <1

and has
PP(%T1$¢S‘P2)=FP(/, @]_SeS@z)
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must be constant, by Riesz’s theorem; and so f(z) is constant in D and hence also
in |z|<1.

We now fix our attention on the function ¢(&). Draw the chord joining the
points e, ¢i*: and consider the segment of |&| <1 bounded by this chord and the
arc of [&|=1 contained in . Let arg (1 —£e")=—py and arg (1 —&e %)=y be
the lines bisecting the angle between the chord and tangent at ¥t and €f*2 in the
segment and, in the w-plane, let L be the straight line joining w, and w, and M
any straight line perpendicular to L and intersecting it between w, and w, We
now choose ; so that in the domain | arg (1 —&e*n)| <y, |&» — £| < §, we have
|@ (&) —w;| < 4,, where 4, is the distance from w, to M.

Similarly, we choose d; so that in |arg (1 — Ee %) | < u, | eiv2— £| < §; we have
|@(&) —ws| < Ay, where A, is the distance from w, to M. Let é=min (d,, d;)
and denote by ¢; and c, the curves bounding the regions |arg (1 — £e™i%)| < g,
| —&]| <8 and |arg (1 — e )| < g, |év—&| <.

Since @ (&) is regular for |&| << 1, the points at which ¢’ (£)=0 are isolated; and
so we can find a straight line s joining ¢; and ¢y inside |£] <<1 on which ¢’ (£) # 0.
Hence s is mapped by ¢(£) on a simple curve S in the w-plane which joins Cj,
the map of ¢;, to C, the map of ¢;, Cy and O, may not be simple curves but
they lie wholly within the circles @ —w;|<D; and |p— w,| = D, respectively.
Therefore S certainly intersects M. Further, since ¢ (&) is regular S is an analytic
curve and it follows that the number of intersections of S and M s [inite.
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There' is thus at least one point of intersection of S and M such that there is
no other such point above (below) it on M. Let p be this uppermost (lowest) point
of intersection, There is then an ordinary element e (p, p) of the inverse &(p) of
the function ¢ (&); and this element can be continued upwards (downwards) along M
without encountering any other point of intersection. We choose p and the direction
of continuation (if there is only one point of intersection of S and M so that a
choice of direction remains) so that the curve m on which the path of continuation
on M is mapped lies in the segment of |&|<<1 bounded by the chord &%, ¢*: and
the arc of |&]=1 contained in . Now since ¢ (&) is bounded, say |@(£)| <k for
|z} <1, and since e (p, p) is an internal element of &(gp) there are two possibilities:
either (i) this continuation contains external elements in which case it contains a
boundary element ez (p,g), ¢ being a point of M within the circle |@|<k; or (ii)
this continuation contains only internal elements in which case it must be brought
to a stop by a transcendant singularity w on M within the circle |@] <k. In case
(i) the path pg is mapped by the continuation on an asymptotic path in |&]<<1
having its end point in the arc &=e¢', y; <y <y, contained in B, ¢ being a regular
asymptotic value at this point. In case (i) it follows from Lemma 3 that the path
pw is mapped by the continuation on an asymptotic. path in |£] <1 which, since
pE)| <k for |£]<1 also has its end point in the arc &=e'?, p, <y <y,
contained in f and on which ¢(&)>w as |&[—1. It follows that in case (i)
g€Ip(f, 0, <<0<0,) and in case (ii) w€ I'p(f, 6; < 0 <<0,), since ¢ (&) =f(2(&). But
M is any perpendicular to L so that there is at least one point ¢ or one point w
in |w| <<k on every M. This proves the lemma.

Applying Lemma 4 to the case of a function f(z) bounded in an annulus we
may put ;=0 and @,=2xs. We then have at once, by the remark at the head of
this paragraph,

Theorem 7. If [(z) is meromorphic in |2|<1 and CC(f) is not void, then
IL'(f)y=Tp(f) 1s of positive linear measure.

The Main Theorem in the Large.

9. The principal steps in the proof of our main theorem in the large can con-
veniently be isolated in separate lemmas. These lemmas and certain collateral results
arising from them, are proved in this paragraph and in paragraph 10. The main
theorem itself is proved in paragraph 11 with further developments in paragraphs
12-14.
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Lemma 5. If (2) is meromorphic in |z| <1 and if a€C I'(f), then either
(i) a€eCC(H; or

(ii) a is an wnterior point of R(f).

For a given positive number ¢ we consider the set of domains G (a, ¢) in which
1

[/z)—al<o (U—(zﬂ<a if a=00) in |2z] < 1. The frontier .of a G (a, o) consista

only of level curves, which we shall call contours, on which
1 .
&) —al=0 (l‘uz')'r“ b “’°°)

in |2|<1 and points of the circumference |z|=1. Either of these elements may
be absent; but if the frontier of G (a, 6) contains a point of |z|=1 we say that
it is unbounded.? Otherwise G (a, o) is bounded. The frontier of a bounded G (a, a)
consists of a finite set of closed contours, while the frontier of an unbounded @ (a, o)
may contain either open or closed contours or both to any number finite or infinite.

By hypothesis we can find & >0 such that U (a, &)n I'(f) is void? and we have
to consider the following possibilities :

() For some ¢ <e there is neither an unbounded G (a, o) nor an infinity of
bounded G (a, o). Clearly in this case we can find >0 such that [f(z) —a|=0
in 1—n<|z|<1 so that a€ CC(}).

(i) For all ¢ < e there is either an infinity of bounded G (a, o) or an unbounded
G (a,0). In the former case each bounded @ (a, 0)® contains a zero of f(z) —b for
any b in |b—a|=<g¢ so that U(a, ) S R(f).

We treat the latter case in two stages. If the set of domains G (a, o) has only
a finite number of closed contours and no open contour then there is only one
unbounded @ (a,0) which for a sufficiently small %> 0 contains an annulus
1—7<|z|<1 and in this annulus [f(z) —e|<<o. It follows that I'(f)<U(a,e)
and, by Theorem 7, that I'(f)=I'(f)n U (a, ¢) is of positive linear measure. Since
this is contrary to hypothesis we conclude that if there is no unbounded G (a, o)
having an open contour there is an unbounded @ (a, ¢) having an infinity of closed
contours.

1 We use the notation of Corumgwoon (1) p. 313.

2 We may assume throughout that a 7% OO; or alternatively I'(f) may be projected on the
unit sphere so that U (a, ¢) is a neighbourhood on the sphere.

3 We use the bar notation for closures. A bounded @ (a, 0) is thus a connected region in which
2l <1 1) —a] <o
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We consider these two cases. First, if for a positive ¢ <<¢ there is a G (a, 0)
having an unbounded contour we can choose a point z on it and continue the
corresponding inverse element e, (w’, w), which is an internal element of z (w), indefinitely
round the circumference |w —a|=0. For, since I'(f)n U (a, €) is void by hypothesis,
the continuation contains no boundary element and there can be no transcendant
point of the internal branch of z(w) on the circumference |w —a|=¢. It follows
that for any b having |b—a|=0 there is an infinity of zeros of f(z) —b on the
open contour so that b€ R(f). Secondly, if there is a G'(a, o) having an infinity of
closed contours, there is a zero of f(z) —b on each of them so that again b€ R(f).
Since o < & but is otherwise arbitrary we conclude that every point of U (e, &), ex-
cept perhaps the point a, belongs to R(f). We now shew that a € B(f) also. Let o’
be any point in U (a, &/2) and put p=|a’ —a|<e/2. Then U (a', ¢/2)n I'(f) is void
and we apply the foregoing argument to the domains G'(a’, g). Since a' € R(f) < C(f)
case (i) is eliminated and we are in case (i) so that a€R(f). Hence we have
proved that U (a, &) € R(f).  This proves the lemma.

Lemma 6. Suppose that for some £¢>0 the set U(a, )N I' is of linear measure
zero and that a €C I. Then for all values of & in 0 <8O < 2a except perhaps for a
set of measure zero there is no point of Ula,e)N I’ on the diameter of a circle
|w—a| <o through the point w=a + c&?® for any o <e.

Put ¢ <& and consider the set of annular regions

g g o
% 9~ =% ..
o2’ on = | w “l—2n+1’ .

Call these regions 4, dy,... An,.... We say that a value & is blocked in 4, if
there is a point of I' in A, on the diameter through w=a + ce'®. Since I'n 4, is
of linear measure zero the set B, of blocked values ¥ is of measure zero. The set

of values ¥ blocked in |w—a|=<o is the union UB, of an enumerable set of
n

sets B, of measure zero and is therefore of measure zero. This proves the. lemma.

This enables us to prove a generalisation of Lemma 5, namely

Lemma 7. If f(z) is meromorphic in |z| <1, a€C I'(f) and U(a,e)n I'(f) s
of linear measure zero for some &> 0, then either

(i) a€CC(f); or

(i) Ufa, &) ER(f) and a€R(}).



108 E. F. Collingwood and M. L. Cartwright.

Exactly as in the proof of Lemma 5, if a€C(f) then for all o, 0 <o <Tg,
there is either an infinity of bounded domains G (a, ¢) or an unbounded G (a, o)
having either an open contour or an infinity of closed contours.

Now since I'(fyn U (a, ¢) is of linear measure zero the circumference y(o,) de-
fined by |w—a|=0; <& for almost all ¢, in 0 <o, < e has no point of I'(f) upon
it. If there is an infinity of closed contours of domains G (a, oy), either bounded or
unbounded, every value b on y(o;) belongs to R(f). If there is not an infinity of
closed contours there is at least one open contour of an unbounded G (e, 0;). Choose
a point z upon such a contour and let e, (w', w), where w is on ¥ (o;), be the corre-
sponding element. We can continue e, (w', w) indefinitely round v (o;), the continua-
tion containing only internal elements.! It follows that again every value b on
¥ (61) belongs to R(f). Since every point of U (a, €) is arbitrarily near to a circum-
ference y(oy) it follows that U (a, &)< R(f). It will be observed that this does not
require the condition a € C I'(f).

It now remains to prove that a€ R(f). Suppose on the contrary that a € C R(f).
We can then find &(a) >0 such that for all o, <&(a) all the zeros of f(z) —a are
contained in a finite set of bounded domains G (a, 6;). But since a € R'(f) we can
find b€ R(f) such that |6 —a|<o,. Hence there is an unbounded domain G, (a, oy)
which contains no zero of f(z) —a. Now by Lemma 6 we can find a diameter v of
the circle y(o;) on which there is no point of I'(f) and on which therefore every
internal inverse element of z(w) at an end point of T on y(oy) can be continued
through the point @ to the antipodal point, the continuation again containing only
internal elements. Choose a point z on a contour of @, (a, o;) and continue the cor-
responding internal element e, (w, w;), |w; —a|=0; along the circumference to an
end point of v which is mapped on a point z(t) of the contour. The corresponding
element e,;y can be continued along 7 through the point a to the antipodal point
and in this way v is mapped on a cross cut of the domain G, (a, o7) on which there
18 a zero of f(2)—a which therefore lies in G,{(a, o). But G, (a, ;) contains no
zero of f(z)—a so we have a contradiction and we conclude that a € R(f). This
completes the proof of the lemma.

To complete the group of lemmas we have

1 In fact a continuation of an element e, (w', w) along any path contained in U (a, &) contains
no boundary element since if there were such a boundary element then U (a, €) N I'(f) would be of
positive linear measure: see paragraph 7 above.
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Lemma 8. If f(2) is meromorphic in |2| <1 and

() o a s an isolated asymptotic value, ve. if a € I'(fyn C I''(f) then, for some
£>0, Ula, &) —(a) SR(f); while '

@) o a€l'(f) and Ua, e)n I'(f) ts of linear measure zero for some &€ >0 then
U(a, &) SR ().

Choose ¢ <<e. Since a € I'(f) there is at least one unbounded @ (a, o).

(i) follows from the argument for the case of an unbounded G (a, ¢) in the
proof of Lemma 5. This proves that b€ R(f) for any

b=a+06é? 0<9<2m 0<o<e

(1) follows from the argument for the case of an unbounded G (e, 0;) in the
proof of Lemma 7.

10. As a further preliminary to the proof of the main theorem in the large
we prove

Theorem 8. If f(z) is meromorphic in |z| <1, then the following relations are
satisfied :

(10.1) Interior of R (f) < interior of C(f)
(10.11) SR(f)
(10.12) S C(f)

and from these, by taking complements,

(10.2) CC(H)e interior of CR(f)
(10.21) - eCap
(10.22) €CE().

Of these relations only (10.11) and its inverse (10.21) are not trivial. It is
therefore sufficient to prove (10.21). This relation was first proved by Noshiro!, but
we give here a new and rather more direct proof based on dimension theory.?

Let a be an interior point of CR(f) so that, for some ¢ >0, U (a, &) € C R(f).

Choose a sequence 7, —0 as n— oo and define X,(f) as the set of values taken at

! Nosmiro (2) p. 230. The argument is reproduced in NosHIRO (4) p. 67.
2 We refer to Karr, MENGER, Dimensionstheorie, Leipzig 1928; or Wrrorp HurEwIcz and
Henry WaALLMAN, Dimension Theory, Princeton 1941.
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least once in the ring 1 — %, <<|z[ <1. Now Xa(f) is an open set. For if b€ X, (/)
there is a point z(b) in 1—#,<|z| <1 such that f(z)=b and a neighbourhood
U@z®),d), >0 in 1 —n,<]z|<1 in which f(2) takes all values in a neighbourhood
U®,¢e), >0, in the w-plane so that U (b, ¢')S Xa(f) and b is an interior point
of X,(f). Hence CXn(f) 2s closed.

Now not all of the sets C X, (f) can be of dimension =< 1. For if they were
then, by Menger’s summation theorem?!, C R(f)= UC X, (f) would be of dimension

n

=1 which is impossible since U (a, ¢), which is contained in C R(f), is of dimen-
sion 2. The same is true of the sets CXa(f)n U (a, &).. We can therefore find n,
and 7, such that C X, (f)n U (a, ¢) is of dimension 2, and hence, by a theorem of
Menger and Urysohn?2, contains a domain. Let d be such a domain. Then d<= CC(f)
and since d€ U (a,&) and &> 0 is arbitrary it follows that a€CC(f). This proves
(10.21) and Theorem 8 follows.

The theorem has the following three corollaries.

Corollary 8.A. If f(z) is meromorphic in 2| <1 and if there is an interior
point of C(f), then R(f) s dense wn the interior of C(f); and if R(f) s nowhere
dense, then C{f)=F C(f) so that C(f) vs a Cantor curve.

Immediate from (10.11).3

Corollary 8.2. A necessary and sufficient condition that C C(f) shall be void is
that C R(f) contains no interior point, 1.e. CR(f) € FR({).

The condition is necessary, for +f CC(f) s void then R(f) ts everywhere
dense and it follows that there is no interior point of C R(f). It is sufficient be-
cause if the interior of C R(f) is void then CC(f) is void by (10.2).

We require two further lemmas about the frontier sets F C(f), FR(f) and F X (f).

Lemma 9. If f(z) is meromorphic in |z| <1, then

(10.3) FRHUIC(H=CR(HnCH.
We note that
(10.31) CR(H=FR(H)u interior of CR(f);

1 MeNGER p. 91, or HUrREWIcS-WALLMAN p. 30.

2 MENGER p. 242, or HUREWICS-WALLMAN p. 44,

3 The weaker result: Interior of ¢ (f) not void implies R (f) not void was proved, in quite a
different way, by NosHIRO (1) Theorems 5 and 6.
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(10.32) FRHnCH=FR()
since F R (f) €C(f); and by (10.21),
(10.33) Interior of CR(f)eCC(f)=CC(H)uIFC().

F 10.33),
rom | ) C(f)n interior of CR(f) s FC(f).

But also
Interior of CR(f)c CFR(f)

and so

(10.4) C(f)n interior of CR(HEFC(H)n CIR().

No

" CFR(f) € interior of R(f)U interior of C R(f)

< interior of C(f) U interior of C R(f)

8o that

FCHNCIR(P)SIC(HN interior of CR(f)

(10.5) €C(f)n interior of CR(f)

since FC(f) €C(f). Combining (10.4) and (10.5) we have

(10.6) C(f)n interior of CR(f)=FC(f)n CFR(}).

Now from (10.31) and (10.32) we have

CRHNCH)=FR(H U (CHN interior of CR()
=FR()vIFC().
by (10.6). This proves the lemma.

Lemma 10. If f(z) is meromorphic in |z| <1, then

(10.7) IXNEFRHUICY).
We see first that
(10.71) FX (o).

For if a€CC(f) we can find ¢>0 and % >0 such that |f(2) —a]|>¢ for
1—5<]z|<1 and hence the number N of a-points of f(z) in [2]< 1 is finite.
Now if N >0 then a€ interior of X(f) and is therefore not a point of F X (f); and

if N=0 then

f(z)1~a is regular in |z]<<1 so that |f(z) —a]>¢ in |z| <1 and

a € interior of C X (f) and is again not a point of F X (f). Hence CC(f)cCFX(f)
and (10.71) follows.

Now suppose a € F X (f) is not a point of FC(f). Then, by (10.71) and (10.11),
a € Interior of C(f) SR (f).
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Now & cannot be an interior point of R(f) for it would then be an interior point
of X(f). Hence a€F R(f). This proves the lemma.

Lemma 10 implies a theorem of Persidskij! which in our notation may be
stated as follows: If f(z) is meromorphic in |z| <1, CC(f) is not void and A is
any component of CC(f), then either ASX(f) or ASCX(f). For FX () C()).

Further, we observe that «f C(f)=3F C(f) then at least one component of CC/(f)
18 contained n X (f).

11. We are now in a position to prove our main theorem in the large, namely

Theorem 9. If f(z) is meromorphic in |2|<<1, then the following relations are

satisfied :
() If I'(f) is unrestricted
(1L.1) FRHUICH=CRAHNCH =T (H);

(1)) +«f I'(f) is of linear measure zero
(11.2) CR(He (.
To prove (i) we use Lemma 5. By that lemma

(11.3) CT()sCO() v interior of R(f)

and so, taking complements,

(11.4) CR(HnC(f) s T(h.
The complete relation (11.1) now follows from Lemma 9. Alternatively,
FR(HVICHET()

also follows immediately from (11.3). For, by (10.2) we have C I'(f) € CF R(f) and,

by (10.1), CT'()cCIFC(f) so that CT(HSCFRHNCIFC(f) and the resuls
follows on taking complements.

To prove (ii) we use Lemma 7. It is convenient at this point to introduce a new
notation. We define the set I', (f)SI_’(/) as follows: a€ ' (f) if, for all ¢>0,
Ua,e)n I'(f) is of positive linear measure. A point of I', (f) is not necessarily a
point of I'(f). Now from Lemma 7 we have

CriHnCr.()HeCC(HuR()
and hence

(11.5) CR(HeCCHUI (YT ()

1 Persipskis (1). The result is quoted by Door (3) p. 450, who gives a proof.,
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But if I'(f) is of linear measure zero, I, (f) is void and, by Theorem 7, CC (f) is
also void. Therefore, under this condition C R(f)<€ I'(f) and (ii) is proved.
The corollary to Lemma 3 may be recalled at this point as supplementing (ii).
We shall now shew by an example that Theorem 9 (i) ¢s best possible in the

sense that in the general case f(f) cannot be replaced in (11.1) by I'(f). In fact
we prove that there erists a function w=g(z) meromorphic in |z| <1 such that
CR(@nC(g)n CI'(g) is not void. :

Using a well-known theorem of Koebe on the conformal mapping of symmetrical
slit regions it is in principle a simple matter to construct an automorphic function
g (2) having the desired property.

Put w=wu+ 7v and denote by s, the segment u=;];, —1=<v=<1. We define

the domain D, symmetrical about the real axis, by cutting the w-plane along all
the segments s, for n= 11, + 2,... so that the frontier FD of D consists of all
the s, and the segment s« defined by «u=0, —1 <o =< 1. All internal points of
8« are inaccessible points of FD. Let £,(n=0, £ 1, +2...) be the segment of
the real axis joining s, and se+1 with the convention that the segments (— co, — 1)
(+1, + 00) are both designated t,. Cut D along the real axis and let D, be the
part above this axis and D, the part below. Denote by s,(1) the segments

1
U=, m=%1,%2...),0=v=1 and by sw(l) the segment u=0, 0 <v=<1.

These together with the real axis form the frontier of D,. We map D; conformally
on the half-plane F{ >0, the mapping function being denoted by ¢(w). The seg-
ments $, and ¢ are then mapped upon alternate segments o (n=+1, +2,...) and
T(n=0, £ 1, £2,...) of 3(=0 having a unique common limit point @ corre-
sponding to the segment s.(1). We suppose ¢ (w) to be normalised so that @ =0
and {(1 +4)=00. The 7, then will lie in a finite segment —k <R < k.

Now consider the domain A of connectivity co formed by cutting the ¢-plane
along the segments 7,(n=0, +1, +2,...). By a theorem of Koebe! there is a
function &=§({) which maps 4 conformally upon a symmetrical domain K (Kreis-
bereich) bounded by an infinity of distinet circles m(n=0, £1, £2,...) corre-
sponding to the 7, all lying outside of one another and all having their centres on
the real axis J&=0. We normalise the mapping so that £(co)=oco0 and £=0 is
the unique limit point of the y,. We now cut K along the real axis F&=0 and
denote by K; the upper part belonging to § & > 0 and by K, the lower part belonging

1 8¢ KoEBE (3) § 3 pp. 273 et seq.
8 — 632081 Acta mathematica. 87
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to J& <0. We also denote by s the segments u=- (n=+1, £2,...), —~1<=9=<0,

in the w-plane. (See figure 2).

The function &({w)) maps D; conformally upon K,. Mapping the half plane
S&>0 upon the unit circle |2] <1 so that £=0 is mapped on z=1 and £=00 on
z=—1 we obtain a function z(&({(®)))=¢(w) which maps D, upon a domain Jy in
]2] <1 bounded by an infinity of ares es(1) (n=+1, + 2, ...) of the circumference
|2] =1 corresponding to the segments s and an infinity of circular arcs
dn(1) (n=0, 1, £2,...) in |z] <1 and orthogonal to the circumference |z|=1.
The point z=1 is the unique limit point of the two sequences of arcs &, (1) and
6n(1). Dencte by w=g(z) the inverse of z=g¢(w). This function g(z) is meromorphic
in J; which it maps conformally upon D; and is real and continuous on all the
arcs 0,(1). By the symmetry principle g(z) is therefore meromorphic on all the
6s(1) and in the domains obtained by reflecting J, in these arcs. Denote by J, the
reflection of J; in &, (1) and let I, be the domain consisting of J,, J, and their com-
mon frontier 8y(1). Then by the symmetry principle, g(z) takes every value belonging
to D once and once only in I, but takes no value belonging to FD in I,. The
domain I, is bounded by the two sequences of arcs

a(l) (n=211, £2,..)), 6(l) (m=% 1, £2,..))
and their transforms with respect to 8,(1) which we may denote by

&@a2) (=11, +2,...)
and
0h(2) (=11, £2,...).
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Fig. 3.

The boundary arcs of I, thus have the two limit points z=1 and its transform
with respect to (1) which we may denote by z=¢'%, (See figure 3.)

Since g(z) is real and continuous on the arcs d,(1) and 6, (2) (n=+1, £2,...)
successive reflections with respect to these arcs and their transforms generate a
group T of linear transformations of I, into a set of domains Iy, Iy, .. . Ip, . ..
which together with their common frontiers fill the unit circle |2| << 1. The frontier
of each such domain I, consists of two sequences of arcs emn(l) and emas(2) of the
circumference |2]|=1, the transforms of &, (1) and &,(2), and two sequences of ortho-
gonal arcs Oma(l) and Oma(2) in [2| <1, the transforms of d,(1) and d,(2), and the
two limit points of these sequences, the transforms of z=1 and z=¢'?. The function
¢(2) is thus automorphic with respect to the group 7' and the points z=1, z=¢'%
and their transforms are limit points of the group.
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We have thus shewn that g(z) is meromorphic in |z| <1 and that R(g)=D
and CR(g)=3FD. Further, it follows from the structure of D that
CR(9)=CR(0)=3D
and that _
CC(@=CR(9)

is void. Now

5SCR@=CR@NC);

and it is easily shewn that %SC I'(g).

For consider any continuous path in |z] <1 tending to the circumference
|z|=1, and let it be defined by a continuous function z=p(t), 0 <t << oo, where
[2()] <1 and lim |p(t)|=1. Suppose first that for all > ¢, say, z=p(t) lies in

{—>o00

one of the domains I,, which without loss of generality we may take to be I,.

Since % lies outside D, and is an inaccessible frontier point of D, which is mapped

conformally on J; it follows that w=g(p®) cannot tend to % as ¢t tends to oo,

Secondly, suppose that the path z=p(f) has points in an infinity of the domains I,.
It must therefore cut an infinity of arcs dma(l) or dmas(2). But at each point of
intersection with one of these arcs w=g(p®) is real and it follows that g (p(®)

cannot tend to 21 as t > oo, This proves our assertion. Finally, we note with re-

gard to g(z) that it is analytic or algebraic on the arcs emn(l) and emn(2) corre-
sponding to s and s® so that I'(g) is of positive linear measure. The function
generated by continuation of g(z) across the arcs emn(l) and £ma(2), is a multiform
function of which ¢(z) is a uniform branch.

12. We proceed to deduce some of the consequences of Theorem 9 and the
preceding lemmas. In the first place, if C R(f) is restricted in some way so as to
make CR(f)SFR(f) results for CR(f) follow at once from (11.1). For example,
we have

Corollary 9.1. A necessary and sufficient condition for
(12.1) CR(HeTI'(

ts that CR(f) should contain no interior point; and if a value a € CR(f) i8 not in
T'(f), then a€CC(f) < interior of CR(f).
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The condition is necessary since by (11.1)

CRHNCHSCRANCP T

and so

CR(HNC(HsCC(.
It is sufficient since it implies that
CR(HEFR(N<T() by (11.1).

An equivalent statement of the corollary follows from Corollary 8.2.

A necessary and sufficient condition for (12.1) to be satisfied is that C C(f) should
be void.

Since, by Theorem 1, CC(f) is void if T (r, f) is unbounded we have therefore

Corollary 9.2. If f(z) is meromorphic in |z| <1 and T (r, f) is unbounded, then
CR() e (f).

Further corollaries follow if we impose a restriction upon the set I'(f).

Corollary 9.3. If I'(f) 7s void then C R(f) is void.
This follows immediately from (11.2).

This result was originally proved by Noshiro?!, but in quite a different way.
More generally, from (11.2) we have

Corollary 9.4. If I'(f) 7s an isolated set then C R(f) S I'(f) ts also isolated. In
particular, +f I'(f) is finite then CR(f) < I'(f) is also finite.
By this corollary and Theorem 6 we have

Corollary 9.5. If CR(f) is infinite, then I'(f) 4s infinite and if CR(f) is not
an solated set, then I'(f) is not an isolated set. In either case I'(f)=Ip(f) and @ (f)
s void.

Corollaries 9.4 and 9.5 are illustrated by the modular function u(z) regular in
|2} <1 for which CR(f) and I'(/) both consist of 0,1, co and by @(z)=log u(2)
for which CR(f) and I'(f) consist of oo, + 2nni (n=0,1,2,...).2

Two other special cases are of interest.

Corollary 9.6. (i) If CR(f) s of positive capacity, then I'(f) is of positive
capacity; and (i) if CR(f) 1s of positive linear measure, then I'(f) is of positive
linear measure.

1 Nosarro (3) Theorem 4.
2 J. E. Lirtrewoop, Theory of Functions, Oxford 1944, p- 185; or LirtLEwWooD (1), p. 489. See
also A. Hurwirtz—R. CoURANT, Funktionentheorie, Berlin 1929, p. 432.
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Of these, (i) is a known result. For by Frostman’s Theorem, if C R (f) is of
positive capacity T (r, f)=0(1) and it follows from a theorem of Nevanlinna! that
I(f) is of positive capacity. As regards (ii), this is a stronger form of Theorem 7
which, in virtue of Corollary 8.3, may be stated in the form: If C R(f) vs of positive
plane measure, then I'(f) is of positive linear measure.

Finally, combining Thedrem 9 with Lemma 10 we have

Corollary 9.7. B
FXherlp;

and if I'(f) is of linear measure zero, then
FX(Hher'p.
For since X (f) is open we have R()c X () CIFX(f) and so, if I'(f) is of

linear measure zero,

IX(HeCR(HeT()).
13. It follows from (11.1) that FC(f)€ I'(f), and since

Interior of I’ (H e interior of C(f)
it follows that B
(13.1) FONsF (.

Further, F C (f) not void implies that I'(f)= I'p () by Theorem 7.
We can, however, prove a stronger result, namely

Theorem 10. If f(z) is meromorphic in |z| <1, then

(13.2) FOHSIT(HnF T, (f).
From Lemma 7 we have
CrifinCr,(f)sCC(f)u interior of R(f)
(13.3) €CC(f)v interior of C(f);
and from Lemma 8 (ii)
I'(fin C I, (f) € interior of B (f)
(13.4) € interior of C (f).
Combining (13.3) and (13.4),

CI . (heCOC(f)u interior of C(f)
cCIFC(f)

1 E.AF. p. 198 Satz.
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so that FC ()€ T, (f), and since

Interior of I', (f) € interior of C(f)
it follows that
(13.5) FCHeF T ().

Combining (13.1) and (13.5) the theorem is proved.

Theorem 10 supplements Theorem 7. For, since I',(f) is closed, it associates
with the frontier set FC(f) a set of asymptotic values of positive linear measure
while Theorem 7 merely asserts that if FC(f) is not void then I', (f) is not void.

Corollary 104. A component of one of the open sets C I (f) or CT() s
either a component of CC(f) or is interior to C(f).

14. We have seen (Corollary 8.1) that if R (f) is nowhere dence then C (f)=JF C(f).
In particular this is true if R(f) is an isolated set. We denote by R;(f) the set of
isolated points of R(f). With this definition we see more generally, that R;(f) < FC (f).
For R;(/)SC(f); and if a €R;(f), then for all £ >0, u(a, &) contains interior points
of CC(f) and so also points of CC(f). Therefore a€ FC(f). In virtue of Theorem
10, we have thus proved

Theorem 11. If f(z) s meromorphic in |z| <1 and if R(f) contains a set
Ri(f) of usolated values, then

(14.1) R(NEFTHnI ().
Also, +f R(f) s nowhere dense, then
(14.2) RHEITHn I, ().

Corollary 11.1. If R(f) is nowhere dense, then
L(h=T,(Hh=FI(H=C().
Foher, (eI (HeITHEC(H=FC(F).

For

On comparing Theorem 11 with Lemma 8 (i) we see that, in a certain sense,
the isolated points of R(f) and the isolated points of I'(f) have a reciprocal pro-
perty. For Lemma 8 (i) shews that, denoting by I’ (f) the set of isolated points of
I'(f) and by (CR(p) the set of isolated points of C R(f), we have

(14.3) I;(H = (CRP) U interior of R(f),

which we may regard as the counterpart to (14.1).
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For (CR()) we also have the complementary relation
(14.4) (CRPpsT(Hu T, (f).

For plainly (CR(OkECR(/)nC(f) and (14.4) follows from (11.5). On the analogy
with the case of F(z) meromorphic in the plane |z| < oo, where

CR(F)=(CR(P)c I'(F),

it i8 natural to ask whether the set I', (f) on the right of (14.4) can be eliminated;
but this question remains open.
Theorem 11 is illustrated by the function %(z) defined as follows. Put

@(&)=6"% cos &1

z
1
formly to zero as & tends to infinity in this angle and takes the value 0 an infinity
of times and every other value a finite number of times only. Let z=z(£) be the

and consider ¢ (£) in the angle |arg &| < %—6, when 0 <8< @ (&) tends uni-

function which maps the angle on the unit circle putting £=0 and £=oc0 onto z= —1
and z=1 respectively and let £(z) be its inverse. Now put h(z)=¢@(£(2)). Then
plainly R(h) consists of the single value 0; A(z) is bounded; and every point of
|z]=1 with the exception of z=1 is a regular point. So the set F (k) consists of
the whole circumference |z|=1. Evidently 0€ I, ().

Part II.
Boundary Theorems in the Small.
Preliminaries.

15. Let ¢'° be any point of the circumference |z|=1. Although these are well
established® we give here, for completeness and consistency of notation, the formal
definitions of the cluster set and range of values of f(2) at the point ¢®. The de-
finitions of the sets I'p(f, €%) and @ (f, ¢'®) have already been given in paragraph 4.

(i) The Cluster Set C(f, ¢%). a€C(f, ¢'®) if there is a sequence {z}, |z | <1,
such thait lim z,=¢® and lim f(zs)=a. The complementary set is denoted by

n—o0 f1—>00

CC(f, €% and the frontier by FC(f, ).

1 This example was given in é. different connection by NosHiro (1) p. 29.
2 Thess concepts were first formulated by PaNLEvE (1 and 2).
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(ii) The Range of Values R(f, ¢!%. a€R(f, ¢®) if there is a sequence {2},
|za| <1, such that lim z,=¢'® and f(z:)=a for all values of n. The complementary

set is denoted by C R (f, ¢'%) and the frontier by F R (J, ¢9).

If beCR(f, €% we can find a positive number  such that f(2) b in the
domain [z—ei®| <4, |2| < 1.

As before, we denote closures by C, R etc. and derived sets by C, R’ etc.

We observe trivially that C (f, ¢'%) is not void for any value of 6. It is known?,
and can obviously be proved by the method of Theorem 2, that C(f, €% s
either a single point or a continuum.

Conversely, we have the following

Theorem of Gross.? Given any continuum C and any 0, there is a function
f (z) meromorphic in |z| <1 such that C=C (f, ¢'%).

Theorem 12. If f(z) is meromorphic in |z| <1 and if for some value of 0 the
set O (f, €% consists of a single value a, then I'p(f, €%)=a=C(f, €.

The proof is immediate. Let z=2z(f) (0 <<t<1) define any continuous path
such that z(1)=e"® and |z(t)] <1 for t<<1. Then %inllf(z(t))=a. For if not, we

can find a sequence & <t3<- <t <'--, <1 and a number £>0 such that
|f(z@))—a]|>e. We can therefore find a limit point b of the set {f(z(t)} such
that |b—a|=¢ and since b€C(f, ¢®) the theorem is proved. The point € is a
Fatou point for f(z).

We need to be able to describe the behaviour of f(z) at the boundary of
|2] <1 near a given point z=¢€‘®. For this purpose we adopt the following addi-
tional notations and definitions:

We write in general

(15.1) C(f, 0, =<0=<0,)= U C(f, e
0,0<0,

with a similar definition for C(f, 6; < 8 <0,); and, in particular,

C(f,0<|0—bl<m)= U  C(f, &)
0<|6—0 )<y
and .
C(f:|0—00|<77)= U C(f’ezﬂ)'

[0—60)<q

1 Gross (1) p. 20 § 6; or (2) p. 248 § 6: or Doos (1) p. 753.
2 Gross (1) p. 20 § 7. More precise theorems were proved in Gross (2) pp. 248-253, see foot-
note 2, p. 123 below.
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Then the cluster set at e'® with respect to the boundary is defined as the intersection
of all the sets C(f,0<|6—6,|<7), where 5 is arbitrarily small. This set! is
denoted by
(15.2) Cu(f, é%)=nC(f,0<<|0— 0] <9).

]

The set I'p(f, 6;<<8<0,) was defined in paragraph 8. The definition is
generalised as follows. We say that

a€l'(f, 0, <<0<0,)
or
a€l'(f, 6,6 =<0,

if there is an asymptotic path on which f(z) tends to a and whose end is contained
in the open arc z=¢'% 6; << 0 << 0, or the closed arc z=¢'?, 8; < § < 0,, respectively.
For brevity we write

F(f,0—n<¢<0+n=I(f]0—0]<ny)
and, in particular,

I'(f, —p<0<n)=T(]0]<n),

and similarly for I's and I'4.
The intersection of the sets I'(f, |6’ — 6| <17), which we denote by

(15.3) 2(f, €% = n rg¢loe—el<n)

plays a similar role in the theory in the small to that of I'(f) in the theory in

the large. It is convenient also to have the notation

xp(f, €0 =nTp(f 0 —0[<n)
and
x4 (f, €)= n Ta(f, [0 —0] <)

Then
x(f €% =xp (f, %) Uya(f, ¢9).
We note that

2 eenI(f,|6—06]<n
n

and, writing

1 This definition, generalising the original concept of Painlevé, was introduced by Gross (2)
pp. 248-249.
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(15.4) 1*(f, €9 = n T, 10 —6]<n),
we have
(15.5) 1, €91, 9 g*(f, 9.

The set x(fe'®) may be void even though I'(f,|6’— 8] <<%) is not void for
any > 0; but y*(f, €% is not void unless I'(f, |6’ — 8| < ) is void for some 7>0.
Plainly
(15.6) 1*(f, ¢ = C(f, &9).

The analogues in the small of Theorems B and C.

16. The characteristic Picard Theorem in the small is that of Gross and

Iversen.! It is evident that
Cr(f, ¢®) = C{(f, €?).

Cs ({, %) is closed but not necessarily connected; but its two sub-sets
Coe(f, €)= C(f, =<6 —0<0)
. %
and Cu(f, €% =n C(f, 0 <0 — 0 <) are both connected.? It is known?® that
" ,
(16.1) FC(f, €% FCr(f, €.

Doob? has given a strikingly simple proof of the theorem of Gross-Iversen, which

in our notation is stated as follows.

Theorem B’ (Gross-Iversen). If f(z) 1s meromorphic in |2|<<1, then for any
value of 6, f(2) takes every value belonging to C (f, ¢'®) but not to Cg(f, ¢*®), with two

1 Gross (2) p. 291 § 6; Iversexn (2) p. 13 § 12.

2 We shall not be further concerned with the sets Cgr (f, ¢*%) and Cpy (f, ¢ %). However, the
relations between these sets and the sets C (f, ¢'%) and Cp (, ¢'?%) are significant and were studied in
considerable detail by Gross and Iversen. See particularly Gross (2) pp. 248-253 and pp. 281-284
and IVERSEN (3) pp. 8-18. '

Quite recently, interesting theorems on the structure of C (f, & 9) of a rather different type
from those proved by previous writers have been proved by CaraTEEODORY (1) and WEIGAND (1).
The principal theorem of Weigand does, however, contain Gross’ theorem, quoted in § 15 above.
But the methods of Gross and Weigand, which are similar in principle, do not apparently enable
us to prove, in the abscence of any restriction on the continuum C, that C = C (f) for some f (z)
meromorphic in lzl <1.

3 This was first proved by BEURLING (1) p. 101. See also NosHIRO (2 and 4).

¢ Doos (1).
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possible exceptions, in every neighbourhood of z=é'® contained in |z| <1; i.e. the set
CR(f, #)nC(f, €°)n CCz(f, &%)

contains at most two values. Also, if this set contains two values, then C R (f, €°) con-
tains no other values and CC (f, €'%) s accordingly void.

This theorem follows easily from another theorem of Gross and Iversen which
is an analogue in the small of Theorem C, namely

Theorem Q' (Gross-Iversen). If {(z) is meromorphic in |2| <<1, then for any
value of 8, we have

(16.2) CR(f, ¢énC(f, &% n CCr(f, €9 = I'p (f, €9).

In other words, a Picard value at a point ef? which belongs to C(f, €') but
not to Cz(f, €% is an asymptotic value. We observe that it follows at once from
this theorem that if R(f, ¢'%) is void then C(f, ¢%)=Cg(f, €. For, in virtue of
(16.1) and the fact that CCg(f, €') is an open set, C(f, e®)n CCg(f, €% is either
void or an open set; but by Lindel6f’s theorem I'p(f, €¢?) contains at most one
value since R (f, ¢'%) is void and hence C (f, ¢%)n CCx(f, €% is void.

The relation (16.2) has an obvious analogy with (11.5). However, the limitations
of Theorem C’ are severe since it has no significance unless Cg(f, ¢'%) differs from
C(f, ¢%. For example, in the case of the modular function u(z) the omitted values
0, 1, oo belong to CR(f, €% but both CC(f, ¢%) and CCz(f, €'®) are void for all
values of 6 and Theorem C’ tells us nothing about the set C R (f, ¢'¢). Our main
theorem in the small (Theorem 16 below) leads to a generalization of Theorem C’

which is free from this limitation and leads to a generalization of Theorem B.

The Main Theorem in the Small.

17. Our method differs only in detail from that used to prove Theorem 9.
We begin by proving the lemmas and collateral results analogous to those proved
in paragraphs 9 and 10.

By analogy with the definition of the set I, (f) we say that a €y, (f, €'%) sf for
all n>0 and e>0 the set Ufa, e)n I'(f, |6 — 0| < %) is of positive linear measure.t

We now prove the analogue in the small of Lemma 5, namely

I This does not of course imply that U (a, &) N x (f, ei?) is of positive linear measure. But
a € Cx* (4, ¢'% does imply that for some £y, U (a, £9) N % (f, ¢*%) is of linear measure zero.
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Lemma 11. If [(z) is meromorphic in |2| <1 and if a€C y*(f, %), then either

(i) a€CC(f, ¢%; or
(1) a is an interior point of R(f, €%); or
(iii) a€D(f, €% and, for some >0,

Ul(a, &) — (a) SR ({, €'9).

We may clearly put 6=0. Denote by E=E (1, %) the domain |z — 1| <2 sin /2,
lzl< 1, cut off from the unit circle by a circle of centre z=1 through the points
z=e1*1, and by ¥ =13 (a, 0, 57) the set of domains @ (a, o)n E.

By hypothesis we can find ¢>0 and #% >0 such that U(a, &)n I'(f, [ 0] <7%)
is void and we have to consider the following possibilities.

(i) a€CC(f,1); ie. for some ¢=<¢ and some >0, |f(z)—a|>0c in E so
that X is void.

Otherwise, for all >0 and %> 0 the set X is not void. In this case z=1is
a limit point of contours of 2. For if not we can find 7 such that, for some o,
E is identical with X so that |f(z) —a] <o in E and so, by Lemma 4,

Ula, e)n I'(f,|0]<n)

is of positive linear measure, contrary to hypothesis. Case (i) being excluded we
are now left with the two following alternatives.

(i) For all 0 <g <e¢ the frontier of X contains either an infinity of closed
contours or an open contour having an end in the arc z=¢€'% |0 <#. Then it
follows by the method of Lemma 5 (i) that, since there is no point of I'(f, | 6] < 7)
on the circumference y (o) defined by |w—a|=o0, there is an infinity of zeros of
f(z)—0b in E for any b on y(o) so that beR (f, 1).

(iii) The frontier of X does not contain either an infinity of closed contours or
an open contour having an end in the arc z=e¢'% | 6| <%, but contains an infinity
of open contours in E having no ends in this arc and therefore having their end
points on the arc |2—1|=2sin /2, |2]<1. Since f(z) is meromorphic in [2z|<<1
only the points et” can be limit points of these end points. This clearly holds for
all smaller % and hence such a set of contours converges to at least one of the
ares z=¢6% —n<0=<0 or 0=0< 7. If this condition is satisfied for any arbi-
trarily small ¢>0, then a€®(f,1); and so if a€C D (f, 1) this condition is not
satisfied for o < g, say.
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Suppose now that a € C P (f,1). Then we can find g such that 2 satisfies con-
dition (ii) for all ¢ <g and it follows by the argument above that y (o) S R(f, 1)
for all 0<o< e We now shew that it also follows that a€ R (f,1). Choose a
sequence oy>> gy > > Op ', lim on=0, on<<ég, and let b, by a point of y(ay).

n—o0

Since b, €R(f, 1) we can find a b,-point 2, of f(z) i.e. a zero of f(z) — by, in E(1,9/2).
The corresponding element e, (w, b;) of the inverse function z(w) can be continued
along the radius of y(¢;) to the centre a and the continuation maps this radius on
a curve %; in |2| <1 one of whose end points is the point z, while the other is an
a-point. Similarly, let b3 be a point of y(oy) and choose a by-point z; of f(2) in
E (1, 9/3) and continue the corresponding element along the radius to @. This con-
tinuation maps the radius on x, joining z; to an a-point of f(z). Repeat the process
for by on y(o3), 23 in E(l, 5/4), and generally for b, on y(os), z in E(1, n/n+1).
In this way we obtain a sequence of curves x, for which z=1 is a limit point and
on which

[(f(z) —al|<oa (“—(lzTISGn if a=oo).

Now suppose that a€ CR(f, 1) and that 5 has been so chosen that E contains no
a-point of f(z). Then all the curves x, cross the circumference |z —1|=2 sin /2.
Further, they have no limit point in E since at such a limit point z, we should have
f{zo)=a contrary to hypothesis. Therefore the sequence of curves x, converges to
at least one of the ares z=¢i®, —9<0=<0,0=<0=<1,sothat a€ D (f,1). It there-
fore follows that under the hypothesis of the lemma U (a, &) SR (f, 1) if

acC{,)nCPD(f, 1)
Finally, a € @ (f, 1) implies U (a, &) — (a) € R (f, 1) since, by Theorem 6 and Lemma

2a, CR(f, 1) contains at most two values. This completes the proof of the lemma.
As the analogue of Lemma 7 we prove

Lemma 12. If f(z) is meromorphic in |z| <1 and if a€ C g (f, ¢°)n C x, (f, €%
then either

i) a€CC(f, é%; or

(i) @ is an interior point of R(f, €°) and
a€R(f, % ; or

(iii) a€D(f, €9 and, for some £ >0,

U (a, &) — (a) ER (f, €?).
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Put 0=0 and define & and X as in the proof of Lemma 11. Then, just as in
that proof, if a€C(f,1)n CD(f,1) we can find g such that for all ¢ <e, the
frontier of 2 contains either an infinity of closed contours or an open contour having
an end in the arc z2=¢'% || <%. Now for almost all o, in 0 <oy <e there is no
point of I'(f, | 6] <) on y(0y); and it follows that y (o;) SR (f, 1) and hence that
Ua, e)<R(f,1). To prove that a € R(f, 1) we now choose a sequence

0'11>0'12>"'> OLln o« o hm 0'1”':0,

n—»o0

of numbers belonging to the set o; and, as by Lemma 6 we may do, we choose a
point b1, on each y(o1.) such that there is no point of I'(f,|6] <#) on the
diameter of y(o1.) through b14. We now repeat with the points by, the argument

of Lemma 11 (iii) for the points b,, which applies without modification. The lemma
is therefore proved.

As the analogue in the small of Lemma 8 we prove

Lemma 13. Suppose that f(z) is meromorphic in |z| <1 and that a €y (f, ¢%).
(i) If, for some 5 <0, a is an isolated point of I'(f,|6'— 0| <n), then
U(a, &) — (a) SR ({, ¢'%) for some &> 0.

(i) If a€x(f, e®)n Cy*(f, €°), then a is an interior point of R(f, ¢'%).

To prove this we use the methods of Lemmas 11 and 12. E and X are defined
as before and we observe that a€C (f,1) so that X is not void. If @ (f,1) is not
void it follows, since CR(f, 1) then contains at most two values, that

Ula,e)—(@)SE(f, 1)

for some &> 0 independently of any condition on x(f,1). We need then only
consider the case when @ (f, 1) is void. Then, as we shewed in the proof of Lemma
11, we can find & such that the frontier of X contains either an infinity of closed
contours or an open contour having an end in the arc z=e'% || <#. The argu-
ment of Lemma 11 (ii) then proves U (a, &) — (a) SR (f, 1) if a is an isolated point of
I'(f,|6]<7%); and the argument of Lemma 12 (ii) proves that U (a,e) SR (f,1) if
a€x(f,)n Cyx.(f,1). The lemma is therefore proved.

18. The analogue in the small of Theorem 7 is the following theorem.

Theorem 14. If f(z) is meromorphic in |z| <1 and if for some 0 the set
CC(f, €% is not void, then the set
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r1e—ol<n=Tr(,|6—6]|<n

18 of positive linear measure for all 7> 0 and thus the set y, (f, €®) is not void.

Put 6=0 and choose a€ CC (f,1). Then we can find 7, such that the function
1/(f@)—a) is regular and bounded in the domain E (1, 7,). The theorem then follows
immediately from Lemma 4.

To complete the preliminaries to the proof of our main theorem in the small,
we observe that Theorem 8 holds for the sets C (f, ¢'®) and R (f, ¢'?). In fact we have

Theorem 15. If f(z) s meromorphic in |z| <1, then for any 6, 0 <0 < 2m,

(18.1) Interior of R(f, ¢'®) S interior of C(f,€®)
(18.11) cR (.69
(18.12) cC(f, €9

and from these, by taking complements,

(18.2) C C(f, €% S interior of CR (f, &%)
(18.21) €CC(f, ¢
(18.22) cCR(, ¢9).

Again, only (18.11) and (18.21) are not trivial. Putting 6#=0 and defining
Xa(f,1) as the set of values taken at least once by f(z) in the domain E (1, ns)
when 7, - 0 as n —> oo (18.11) is proved by precisely the same argument as (10.11)
applied to the set CR(f,1)= UC X, (f, 1).

n

Corollary 15.1. If C(f,¢'®) has an inlerior point then R (f, €% is dense in the
wnterior of C(f,¢'%; and if R(f, ¢'®) is nowhere dense then C (f,¢®)=3FC (f, ¢'%).1

Immediate from (18.11).

Corollary 15.2. A4 necessary and sufficient condition that CC (f, €'°) shall be
voiud 45 that C R(f, ¢'°) contains no interior point, i.e. CR(f, ¢S F R (f, €'9).

Just as for corollary 8.3, necessity follows from (18.21) and sufficiency from
(18.2).

1 This latter result generalises a theorem of Gross (2), p. 260, § 10, who- proved it for a
function of bounded valency in Izl <L
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Finally we have

Lemma 14. If f(2) s meromorphic in |2| <1, then for any 6, 0 < 60 < 2m,
(18.3) FR(,E)VIC(f, %) = CR(f,¢)nC(f, 6%).

This lemma is deduced from (18.21) by precisely the same argument as Lemma 9
was deduced from (10.21). In view of this complete formal identity it is sufficient
to refer to the proof of Lemma 9.

We now prove our main theorem in the small, namely

Theorem 16. If f(z) ¢s meromorphic in |z| <1, then for any 0, 0<0<2m,
the following relations are sotisfied :

(i) If x(f, €°) s unrestricted
(19.1)  FR(, VIO, é)=CR(,ENNC(, ¢ S g* (f, €9 U D (f, 69);

(i) If x.(f, €% s void ie. if T(f,|6 — 8] <n) 1s of linear measure zero for
some 1 > 0,
(19.2) CR(f,é%cx(f,e?) U D (f, )
and if, further, CR(f, ¢°) contains more than two values, D (f, €°) and x4 (f, ¢°) are
both void and
(19.3) CR(f, &) sx(f, é®)=yxr(f, ¢°).

To prove (i) we use Lemma 11. By that lemma

Cx* (1,9 CC(f,€%U interior of R (f, ¢®) U D (f, ¢°) and hence

(19.4) CR(f,énC(f, ) s y*(f, ) U D (f, €9).

The complete relation (19.1) now follows from Lemma 14.
To prove (i) we use Lemma 12. This gives
Cx(e)nCy. (,e°)SCO(f, ) UR(f, #°) U D (f, ¢9)
and hence
(19.5) CR(,e)SCO(f, ) Uy(f, e Ugs(f, €2 UD (f, &%)

Now, by Theorem 14, if y, (f, €% is void CC(f,¢*®) is also void and so we have
(19.2) and if CR(f, ¢'®) contains more than two values (19.3) follows by Theorem 6.

The function g(z), which we constructed in paragraph 11 to shew that Theorem
9 (i) is best possible, also shews that Theorem 16 (i) is best possible in the sense
that the set x*(f, ¢'®) cannot be replaced in (19.1) by x(f, ¢®). We have only to

consider g(z) in the neighbourhood of the point z=1,
9 — 632081 Acta mathematica. 87
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Theorem 16 is a concise statement of a somewhat complicated situation. We
set out the various implications of the theorem in the general case, i.e. Theorem
16 (i), in order to shew that it is exhaustive.

For a given a€CR(f, ¢%)n C (f, €% the alternative possibilities are tabulated
as follows:

(i) a€x*(f, €. In this case for all >0 we have a€ I'(f,] 6’ — 0| <)
This does not exclude the possibility that at the same time a € @ (f, ¢*9).

(i) a€Cy*(f, ¢, but a€d(f,¢®). In this case we can find 7, and & such
that U(a, g)n I'(f,|0°— 6| <7n) i8 void. Also CR(f,¢'®) contains at most two
values, one of which must be a since then a€ CR(f, ¢®)=C R (f, ¢'®). On further
analysis we find three alternatives of this case.

(a) There is a set of curves Cn on which f(z) tends uniformly to a as n — oo
and which converges to an arc z=¢'%, |0’ — 6| <5, <7, Then, since

a€CIL({f,|0—6|<m),
rdg,|e—e6| <n) is void.

(8) There are two sets of curves C; and C, converging respectively to arcs

2=€¢% 0<0'<0+1n, 0—n <0 <0 on which f(z) tends uniformly to a as n -~ oo.
Then I'(f, 0<|6'— 0] <#%,) and U (a, &)n I'r(f, €®) are both void.

(9) There is one set of curves C; or C, with the property described in (B)

above and the corresponding set I'(f, 6 <0 <0+ #,) or I'(f, 0 —n, <0’ < 0) is
void. The opposite arc €?, § —xn; <6 <0 or § <6 <0+ 7, which we denote by
8, is then a Fatou arc almost all points of which belong to the set F(f) and the
corresponding set I'p (f, 6 —#; <6 < 8) or I'p(f, 8 <0’ <6 + n) lies outside U (a, &).
For consider a point €' of this opposite arc. Since 7, <7, we have a € C y* (f, €'%)
so that
a€CC(f, é¥)UR(f, ?)

by Lemma 11. Hence, since a € CR(f, ¢®) we can choose 7, such that in E (¢'%, ,)
1/(f(2) —a) is regular and bounded and it follows that the arc z=¢'?", | 6" — 0" | <17,
is a Fatou arc by Lemma 2 a. Since €' is an arbitrary point of the arc & our
assertion is proved.

Evidently the three subsidiary cases (a), () and (y) exhaust case (ii) and, by
Theorem 16 (i), this together with case (i) exhausts all the possibilities when no
restriction is imposed on % (f, ¢'9).
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Case (i) is illustrated by ¢(z) and by the modular function y(z) when a is
one of the omitted values 0,1, co. But in this case I'(f, |6’ — 0] <) is finite
for all 0 and % >0 so that a€y (f, €%). Other illustrations are Koenigs’ function
K (2), for which oo €y (f,e®)n D(f, % for all 6, and a function f(z) constructed
by Cartwright!, for which oo € I'p (f, ¢®)n D (f, ¢%) while I'(f,0<<|0— 8] <7),
n <1, is void.

Case (ii) (a) is illustrated by Valiron’s regular function f(z) tending to infinity
on a spiral asymptotic path which was referred to in paragraph 4 above.?

20. The pattern of corollaries of Theorem 16 and collateral results is closely
similar to that arising from Theorem 9. We have first

Corollary 16.1. 4 mnecessary and sufficient condition for
(20.1) CR(f, &%) sy*(f, e UD(f, €°)
is that CR(f, €% should contain mno interior point; and if a value a € C R (f, ¢®) is
not in 1*(f, €% U D (f, €9), then
a€CC(f, é% cinterior of CR (f, €'9).
The condition is necessary since by (19.1)
CR(f, ) C(f, ¢)SCR(, 9 C(f, ¢)
Sx*(f, ¢ UD(f, &)
and so
CR(f,eé)nCy*(f, ¢)nC D (4, ¢9) = CO({, &)
Sinterior of CR{f, €'9).
The condition is sufficient since it implies

CR(f, 9 FR(, ).

An equivalent statement of this corollary follows from Corollary 15.2.
A mnecessary and sufficient condition for (20.1) to be satisfied us that CC (f, €%
should be wvoid.

If now we impose a restriction upon the set y (f, ¢%) we obtain a further group
of corollaries.

1 CarrwricHT (1) § 4.3 pp. 177—181. Cartwright’s function is actually asymmetrical with
respect to e* 9, The symmetrical function f(z) is the sum of two such functions.
2 VALIRON (2).
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Corollary 16.2. If y* (f, €'%) is void, then C R (f, €'°) contains at most two values and
CR(f, e¢®) =D (f, ¢°);

and if both y*(f, ¢'°) and D (f, €'°) are void then CR (f, ¢'°) is void.

This follows immediately from Theorem 16 (ii). For x(f, €*®) U x,(f, €% € x* (/, €'9).
More generally, from Theorem 16 (ii) we have

Corollary 16.3. If, for some 5 >0, I'(f,|6'— 0| < %) s an isolated set, then
CR(f, €9 1is an isolated set. In particular, if T'(f,|60'—06| <n) is a finite set, then
CR({, €% s also a finite set.

We may assume that C R (f, ¢'%) contains more than two values, so that @ (f, €°)
is void, otherwise the assertion is trivial. So (19.3) is satisfied and the corollary
is proved.

Conversely, we have at once

Corollary 16.4. If CR(f, ¢'°) ts wnfinite, then for all n>0, I'(f,|6'— 0] <7)
is anfinite; and if CR(f, €'°) is mot ssolated, then for all n>0, I'(f,|6'— 0] <)
18 not- isolated. In either case D (f, ¢'®) s void, and for all sufficiently small 5 >0,
I |0—o6l<n)=Tr(f|60'—0|<n).

We conclude this group with the analogue of Corollary 9.6.

Corollary 16.5. (i) If CR(f, ¢'%) ts of positive capacity then & (f, ¢'%) is void and
for all sufficiently small 5 >0,

I 0—8|<n=Tr({t, |6'—0|<ny)

s of positive capacity; and (i) of CR(f, €'°) 8 of positive linear measure then D (f,e°)
is vord and for all sufficiently small > 0,

I, |0—0|<g)=TIe(f,|0'—6]<n)

s of positive linear measure and consequently x, (f, €'°) is not void.

This again follows immediately from Theorem 16 (ii), remembering that if
CR(f, ¢®) contains more than two values @ (f, ¢'%) is void and I'a(f, |0’ — 0| <7%)
is void for sufficiently small %> 0.

The second part of this corollary is a stronger form of Theorem 14.

21. A further strengthening of Theorem 14 is given by the following theorem,
which is the analogue in the small Theorem 10.
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Theorem 17. If }(z) is meromorphic in |z| <1, then
(21.1) IO, eeF 2 (f, é)nF y. (f, ).

If FO(f, €% is not void, then @D(f, ¢*% is void and x(f, %) =xr (f, €%). It
follows then from (19.1) that FC(f, ¢'®) < x* (/, ¢!%). But

Interior of y* (f, ‘%) € interior of C(f, ¢'%)
and therefore
(21.2) FOF, )Ty (¢, 9L

From Lemma 12 we have
(21.3) Cx(f,é9n Cy, (f, %) =CC(f, €9 U interior of R (f, ')
eCFC{(f, e

and from Lemma 13 (ii)
(21.4) 1 (f, ¢ n C g, (f, ¢'°) S interior of R (f, e'?)

cCFC(, €.
Combining (21.3) and (21.4) we have

Cx.lf, ) CFC ()

FOU, €Y S qat, €9).

so that

Hence, since
X* (f; eio)sx’ (f, eio):

(21.5) FO(, &)= F . (1, €.

Corollary 17.4. A component of one of the open sets Cy, (f, %) or Cx*(f, %)
15 either a component of CC(f, €'%) or is interior to C(f, €°).

22. The considerations of paragraph 14 apply equally in the small. If R (f, ¢'?)
is an isolated set then CR(f, ¢®) is everywhere dense so that, by (18.11), the
interior of C (f, ¢*%) is void and hence C (f, ¢%)=F C (f, ¢'%). We denote by R;(f, e*%)
the set of isolated points of R(f, ¢%). 1f a€R;(f, ¢'®) then, for all e>0, U (a, &)
contains interior points of CR(f, ¢°) and hence, by (18.21), points of CC(f, &9
and so also points of CC (f, ¢%). But a€C(f) and it follows that

Ri (f: g’:o)EJC(f’ eiO)‘

In virtue of Theorem 17 we have thus proved

1 The relation (21.2) was recently proved, by a different method, by OnTsuxa (1).
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Theorem 18. If f(z) s meromorphic in |2]| <1, then

(22.1) Ri(f, )<= FC(f, &9 F x* (£, %) n Fy., (f, €9).
Also, if R{{, ¢'%) is nowhere dense, then
(22.2) R(f, e Fx" (f, €90 F 1, (1, €'9).

Corollary 18.1. If R (/, ¢'%) is nowhere dense, then

X E0)=yx. (f, ¢O)=F 1" (f, €°).
For . . . ' .
Jo(f, e“’)Ex* (f, ezﬂ)sx* (f, 816)530(}‘, e“’)EJx* (f, eie)sg(](/’ ezO).

A similar remark to that following Theorem 11 applies here also on comparing
Theorem 18 with Lemma 13 (1). For by that lemma
(22.3) 2i(f, €9 CR(f, ¢°; U interior of R(f, €*)
where we define y;(f, ¢'?) as the sets of points a such that, for some % (a) >0, a is
an isolated point of I'(f, |6’— 6]<n(@) and (CR{f, ¢'%); is the set of isolated points
of CR({{, 9.

We also have the complementary relation
(22.4) (CR(f, )iy (f, ) Uga(f, €YU DS, ).

For (CR(f, €9);cCR(f, €% n C (f, ¢?) and (22.4) follows from (19.5).
Theorem 18 is illustrated by the function %(z) defined in paragraph 14 in the
neighbourhood of z=1.

Generalisation of Theorems B’ and C'.

23. We consider first the relation between Theorem 16 and the known result

Theorem C. We observe that, for a given 5 >0,
asyy T I8 —01<n=Te(, 16 =0l <n)uLad, |0 =0l <
' =Ip(f, €U, 0<|0—0|<p)UT4(f,|0—0]<n)

Now if a€l4(f,|0' —6|<<%) and if there is an asymptotic path on which f(2)
tends to @ and whose end contains the point e*® then a€ @ (f, ¢?). Hence

(23.2) Talf, |00 —0|<m)ETa(f,0<|0—8]<m)ud(f, ¢°)

and combining (23.1) and (23.2) we have
(23.3) ¢, |00—0|<np)sTp(t,e)UI({F, 0<]|0—0]|<n)UD(, ¢f).
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Now write

P, e)=n I'(/,0<]|0'—6]|<n)
/)
and

P (f, ¢ =nT(f,0< |6'— 0] < 7);
and we have from (23.3)
(23.4) 2} €0 S Te(f, € UP* (f, €0) U D (£, €9).

Applying (23.4) to (19.1) we have
(23.5) CR(f, é9n C(f, é2)n CP*(f, ¢i9)
sTr(f, €9 U D (f, &°).
Now
¥ (f, eia)EOB (f, eiO) and @D (f, eio)ECB (fs eiﬂ).

So (23.5) gives
(23.6) CR(f, ¢nC(f, ¢°n CCs(f, % c I'p ({, &Y).

Now suppose that a€CR(f, ¢°)n C (f, €9 n CCr(f, ¢®) so that a€ I's(f, ).
If @ is an isolated point of I'p(f, ¢®) then a € I'r(f, ¢®) and (16.2) follows from
(23.6). Setting aside this trivial case, suppose that & Is not an isolated point of

T'p(f, €. Then a€ I (f, ¢%) and there is a sequence {ax), lim an=a such that

n—>o0

a. € I'p (f, €®). We can thus find distinct asymptotic paths y, such that f(2) > aa as
2-—>¢'® on y,. Without loss of generality we may take a=oco and a, finite. We can
choose g, <1 such that the circumference |z — ¢'®|=p, intersects two of the paths
Vn, 88y 1, and y,. Let Dy be the domain having the point €' as a frontier point
and bounded by arecs of y;, y; and the circumference | z—e!®|=p,. Since c0€C R (f, €°)
we can choose gy such that the function f(z) is regular in D, and since /{z) > a; as
z—>¢% on y; and f(2) >a, as z2—>¢% on y, it follows from Lindelof’s Theorem that
f(2) is unbounded in D, in the neighbourhood of the point e*®. Let po=max |f(z)|
on the arcs of |z — ¢i?|=p, belonging to the frontier of D, and put My=maz (2| a |,
2|as), o). Then we can find z, in D, such that f(z)=w, |we|>4M, By
choice of g, we can ensure that |f(z)] < max (2|a,|, 2]|a,]) £ M, on the arcs of y,
and y, belonging to the frontier of D,. There is thus a domain G, (oo, 1/2M,)
containing z, and this domain is contained in Dj, since on its frontier in |z} <1
we have |f(z)|=2M,, and it has ¢'® as a frontier point since D, contains no poles
of f(z). Now since, given £>0, |f(2)|<2M, + ¢ in some neighbourhood of every
frontier point of Gy (oo, 1/2M,) except perhaps €'® it follows that f(2) is unbounded in
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G, in the neighbourhood of ¢'®. For otherwise we should have |[f(2)| <2M, in G,

and in particular |f(2)| =< 2M, contrary to hypothesis. We can therefore find a se-

quence 2, 23, ... Zn, ... in Gy such that lim z,=¢'? and lim | f(2) |=o00. Take g, =go/2
fn—>oo

nro0
and let D, be the domain common to G, and |z —e'®|<p, and having €'® as a
frontier point, and denote by u, the maximum of |f(z)| on the arcs of |z — é'?|=p,
contained in the frontier of D,. We can choose z; in D; such that |f(z;)| > 4 M,
where My=max (2 My, u,). There is then a G, (co, 1/2M,) containing z, and having
€' as a frontier point. Repeating the previous argument, we see that f(z) is un-
bounded in @, in the neighbourhood of €.
Proceeding in this way we obtaine a sequence of domains

Gy>2G,5Gy> - 2G> -
each having ¢'® as a frontier point and such that in G, we have |f(z)]| = 2 M, where

M0<M1<Mz< "‘Mn< ]_imM”::OO,

n—>ro0

We can therefore find a continuous path y defined by z=p(t), 0 <t < oo, such
that lim p(?)=¢'® and given any n we can find t, such that z=p(t) €G, for all
t—>c0

t>ty. y is thus an asymptotic path on which f(z) > oo so that co € I'p (f, €¢¢). We
have thus shewn that in either case a € I'p(f, ¢'?) so that (16.2) again follows from
(23.6). Theorem C’ is thus implied by Theorem 186.

By a straightforward adaptation of Doob’s proof of Theorem B’ we now prove
a generalisation of that theorem, namely

Theorem 19. If f(z) is meromorphic in |z| <1, then for any value of 0, f(z)
takes every wvalue belonging to C (f, €'%) but not to P* (f, ¢'?), with two possible excep-
tions, in every meighbourhood of z=€'° contained in |z| <1; t.e. the set

CR(f,é)nC(f, e¥)n CP* (f, ')

contains at most two values. Also, if this set comtains two values, then C R (f, €'%) con-
tains no other volues.
Suppose there is a value

a€CR(f, ¢9n C(f, ¢%n CP*(f, ¢°).

Now if a€CUIp(f, €9 it follows from (23.5) that a€I'r (f, €9)UD(f, €%). If
a€D(f, ¢, D(f, ¢%) is not void and it follows that C R (f, €'°) can contain only
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one other value; if a€ I'p (f, ¢'?) there are two asymptotic paths ending in the point
¢° on which f(z) tends to different values and it follows from Lindelof’s well-known
theorem that CR(f, ¢!®) contains at most two values. If there are two values @
and b both belonging to CR(f, ¢°)n C (f, ¢2)n CP* (f, ¢'?) and both belonging to
I'p(f, ¢'%) then it follows from Lindel6f’s Theorem that ¢ and b are the only values
belonging to CR(f, ¢/). This proves the theorem.

Since ¥* (f, ¢¢°) € Oz (f, ¢'®) Theorem 19 contains Theorem B'.

Parr 1II

The classification and distribution of singularities of f(z) on the unit circle.

24. The points of |z]=1 which are not regular points may be classified in
terms of the excluded range C R at those points. The appropriate definitions for the
purpose of this classification are obvious enough. To begin with, we define W= W (f)
as the set of points €° for which CC (f, ') ts void. Such a point we call a Weier-
trass point for f(z). By Corollary 15.1, R (f, ¢'®) is everywhere dense for ¢'%€ W (f).
In considering W we require a further definition, namely that of Fy=F;(f). This
is defined as the set of points €' at which the set F=F(f) of Fatou points is of
density 1. The complements with respect to the circumference |z|=1 are denoted
by CW and CF;. Evidently W is closed.

By a quite trivial argument we prove

Theorem 20. If f(z) is meromorphic in |2| <1, then every point of the circum-
ference |2|=1 belongs either to W or to F,.

Suppose €€ CW. Then there is a number a € CC (f, ¢?) and so we can find
7 >0 such that 1/(f(2) — a) is bounded in E = E (¢‘%, ) defined by |z — e®| < 2 sin /2
and [2]|<1. We map E conformally on |£| <1 by the function &(z) whose inverse
18 z(&). The function

1
*O=reE—a

is then bounded in |[£][<1 and it follows from Fatou’s theorem that the set of
points of CF(p) is of measure zero and hence, by Lemma 2a, that the set
CF(/)n« (6, 1) is of measure zero, where « (0, 5) denotes the arc z=e¢'?, |0'—0| <m,
so that we have proved that ¢®€ F;. This proves the theorem,
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A more delicate argument gives a stronger theorem due to Littlewood. We
define H=H (f) as the set of points €'® for which C R (f, €'} is of capacity zero. Such
a point we call a Frostman point. H is closed. For if for a sequence 8, — 8 as
n—>oo, CR(f, %) is of capacity zero then CR(f, ¢?)SUCR (f, ¢%n) is also of
capacity zero. We begin by proving "

Theorem 21 (Littlewood). If f(z) s meromorphic in |z| <1, then every point
of the circumference |z|=1 belongs either to H or to F,.

For completeness we reproduce Littlewood’s proof! in our own notation.

Suppose €€ CH. Then we can find 7> 0 such that f(z) omits a set of values
of positive capacity in the domain E=E (¢'% 7). For if not, given any sequence
s —> 0 as n — oo, the set

CR(f, ¢%=UC X, (f, €9

is of capacity zero contrary to hypothesis, where X, (f, ¢/%) is the set of values
taken by f(z) in E (¢i% %s). We now map E on the unit circle |£| <1, the mapp-
ing function being &(z) and its inverse 2(£). The function f(z) transforms into
@(§)=1(z(5) for which C R (p) is of positive capacity. Hence, by Frostman’s Theorem,
T( |, ¢) is bounded and so C F(p) is of measure zero. It now follows from
Lemma 2a, as in the proof of Theorem 20, that CF(f)n « (0, 5) is of measure zero
so that ei®€ F,.
Since evidently C W € C H this theorem contains Theorem 20.

Corollary 21.1. If CF 1is of positive measure then there is al least one point
of H on |z]|=1.

For if H is void then every point of [z|=1 belongs to CH<F;. But if CF
were of positive measure we could find a point at which CF is of density 1.
Therefore CF is of measure zero if H is void.

As a further corollary of Theorem 21 we have

Theorem D (Littlewood).? If f(z) is meromorphic in |z| <1, then almost all
points of |z|=1 belong either to H or to F.

Suppose, on the contrary, that CHN CF is of positive measure. Then there is
a point €® at which this set is of density 1. But, by Theorem 21, ¢° belongs to

1 This result is a stage in the proof of Theorem D, but deserves separate enunciation.

2 The theorem was stated in a rather weaker form in CARTWRIGHT (1) p 181, where H was
de ined as the set of ¢'? for which C R (f, ¢*%) is an S-set. Our proof is the same except that Frost-
man’s theorem is used in place of the earlier and weaker theorem of Ahlfors.
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F; since it belongs to CH so that CF is of zero density at ¢®>. Hence CHNCF
18 of zero density at €. We thus have a contradiction and the theorem is proved.

In this context it is interesting to recall Plessner’s important generalisation,
for functions of unbounded characteristic T (r, f), of Fatou’s theorem. To state the
theorem we require a further definition. Given an angle A of vertex ¢? and con-
tained in |z] <1, ie. a Stolz angle at ¢'® the sets C, (f, ¢®) and Ra (f, €?) are
defined as in 15 (i) and (ii) except that the sequence {z,} is restricted to the angle
A. We now define I =1TI(f) as the set of points €° for which C Cx (f, €°) is void
for every A. Such a point we call a Plessner point. Evidently I € W. But it is
also clear that Theorem 15 holds for Cx (f,€'%) and R (f, €%) so that for e!® <1 (f)
not only is R (f, ¢%) everywhere dense but, by Corollary 15.1, Rx (f, €'%) is every-
where dense for every Stoltz angle A at ¢!®. We recall also that for ¢'° < F (f),
Ca(f, €% consists of the single asymptotic value f(e'?) for every Stolz angle A.
The theorem in question is

Theorem E (Plessner)!. If f(2) i¢s meromorphic in |2| <1, then almost all points
of |z]=1 belong either to I or to F.

It will be noted that H does not contain I, nor does I contain H; and while
F and H may have common points F and I cannot.

25. The results of the previous paragraph depend upon familiar theorems.
However, Theorem 16 enables us to prove a new result of the type of Theorem 20.
We define P=P(f) as the set of points €® for which C R (f, €'°) contains at most two
values: and we write F'=F'(f) for the derived set of F. Then P H and F, S F’.
P is the set of Puicard points of f(z).> P is closed since CP is open. With these
definitions we prove

Theorem 22. If f(2) is meromorphic in |2| <1, then every point of the circum-
ference |z)=1 belongs either to P or to F".

Suppose €€ CP. Then we can find three numbers a, b and c in the set
CR(f, ¢%) so that D (f, ¢!%) is void. Now suppose that ¢!°€ CF’. Since CF' €CF,

1 PressnER (1).

2 This definition of Picard points is that first formulated by VALIrON (2 a) and (3) p 265
In a later paper, VALIRON (4) p 13, he defined four categories of Picard points Py € Py € P3 € Py,
of which P;=P as we have defined it, while H € P4. It is easily seen, however, that Valiron’s
method will allow P4 to be replaced by H. It is only necessary to use Frostman’s theorem in place
of the theorem of Ahlfors referred to in footnote 2 on p. 138.
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it follows from Theorem 20 that CC(/f, ¢%) is void. Therefore, by Corollary 16.1
(equivalent form),

(25.1) CR(f, é9<y (f, ¢ T(f, 16 —0]<n)

for all > 0.
Now we can find 7, such that f(z) omits the values @, b and ¢ in £ =E (¢'%, 7,)
and it follows from Theorem 5 and Lemma 2a that, for 7 <<7,,

I |e—ol<m)="re(f,|0°—06|<n)

and that for any 6’ in |0’ — 6| <7y for which I'p(f, €?) is not void ¢'® € F and
I'p(f, ¢%)=f(¢?). In particular, I'p(f, ¢'®) is either void or contains only one value
which may be one of the values a, b or c.

Since I'(f, |0’ — 8] <n)=T(f,0<]|0—6]<n)UTIp(f, €% and since by (25.1)
I'(f, 10’ — 6] <#) contains all the values a, b and c it follows that if f(¢'?) is equal
to one of these values, say @, then I'(f, 0 <|8'— 6| <7) contains the other two b
and ¢; and if f(ei®) 5¢a, b or ¢ then I'(f, 0<|0’ — 6] <%) contains a, b and c.
Therefore, for any 7 <7, the arc « (6, ) contains points of F at which the asymp-
totic values are equal or arbitrarily near to @, b and ¢. This proves the theorem.
A known result follows at once, namely

Corollary 22.4. If CR(f) contains more than two values then the points of F
are everywhere dense on |z|=1.

For every point of |z]=1 belongs to C P F’. We may observe, for comparison
with this corollary, that it follows from the theorem of Frostman and Fatou-
Nevanlinna that if CR(f) is of positive capacity then CF is of measure zero. The
proof of Theorem 22 has in fact shewn that if, for a given 0, CR (f, €?) contains three
or more values, of which a is any one, and if CC(f, ¢'®) is void and [(¢'®) #~ a, then
&% is a limit point of points of F at which the asymptotic values are equal or arbitrarily
near to a. Familiar examples of functions with this property are the modular function
u(z) which omits the values 0,1, oo and Q(z)=log u(2) which omits the values
oo, + 2nme, n=0,1,2,.... For both these functions every point of [2]=1is a
limit point of points of F at vertices of the modular figure at which the asymptotic
values are equal to the omitted values.

On the other hand, if CC (f, ¢°) is not void and a€CC(f, ¢'%) then a is at a
positive distance from I'(f, |6’ — 8] <) for all sufficiently small > 0.
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It should be mentioned in conclusion that while our methods do not give
existence theorems for the sets W, H or P such theorems have been proved by
Valiron.! In particular, he proved that H is not void of T (r, f) is unbounded® and
that P is not void if

— T}
M o (1—7)

APPENDIX.
Application to Jordan domains.

26. The definition of the sets I" and @ can be generalised so as to apply to
any Jordan domain D; whose boundary F D; is a closed Jordan curve. It is easily
shewn that the generalised sets I' and @ are invariant under conformal mapping
of D; onto any other Jordan domain. The definitions of the sets C, R and Csp
already given are immediately applicable to any Jordan domain and these sets are
also evidently invariant under conformal mapping. It follows that the theorems we
have proved in parts I and II remain valid for any bounded Jordan domain. For the
enunciations of these theorems involve only invariant sets.

Let f(2) be meromorphic in D;. For a simple continuous curve z = z(¢),
0=¢<1, we denote by C(z() the cluster set of z(f) as t—>1, i.e. the set of points
p such that p=1lim z(¢) for some sequence ,—1 as n—>co, We say that such a

curve contained in a Jordan domain D; converges to the boundary if C(z()) € F D;,
and that C(z(®) is its end.

() The Asympiotic Set I'(f, D;) is now defined as follows. a€ I'(f, D;) if there
is a continuous simple path z=z(f) contained in D; such that C(z()S3F D; and
tliril f(z®)=a.

If now Dj is mapped conformally upon the circle |£]<1 by a function &= £(z),
FD; is mapped upon the circumference |£|=1 and the path z=z(¢) upon a path
&=£(2(0) such that |£(2(®))]<1 and }111{1]5 (@) =1. Hence a€ I'(p), where

(&) = [f(2(®) and z(&) is the inverse of £(z). The set I'(f, D;) is therefore in-

variant under conformal mapping onto the unit circle and therefore onto any other
Jordan domain.

1 Vaurrow (3 and 4).

2 Varrow (4) pp. 28—30 actually proves that P, is mot void if 7 (r, f) is unbounded; but P,
can be replaced by H; see footnote 2 p. 139 above.
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By Lemma 1 the cluster set C (£(2(9)) is either a point or an arc on the cir-
cumference |z| =1 and it follows that C(z(¢) is either a point or an arc on FDj.
If the end C(2®) is an are a€ "4 (f, D;) and if it is a point e € I'p(f, D;); and
these sets are invariant.

Let o be an arc and p a point of FD;. Then we may write a € I'(f, Dj, )
or a€I'p(f, D;, p) according as C(z®))Sa or C(z(¢t) =p; and a€ I'p(f, Dj, «) if
p€a and a€l'4(f, Dj,a) if C(2®)Sa is not a point. Then if D; is mapped con-
formally upon another Jordan domain E; we plainly have I'(g, Ej;, )= I'(f, Dj, «);
I'r(g, Bj, @)=TIp(f, Dj, p); I'r(9, Ej, B)=TIr(}, Dj, «) and L' (9, Ej, B)=T'a(f, D}, «)
where ¢ (), ¢ and B are the transforms of f(z), p and a.

In order to generalise the definition of the sets @ (f) and @ (f, €%) we require
s definition of the convergence of a sequence of arcs in D; such that the property
is preserved by a conformal mapping. The required definition is that of metrical
convergence of a sequence of bounded sets due to Hausdorff.!

Let M and N be two bounded sets and denote by U (M, &) and U (N, ¢) the
e-neighbourhoods of M and N. The Hausdorff distance du (M, N) between M and
N is defined as the lower bound of the numbers ¢ for which

NeUM, ¢) and M U(N, ¢).

Then dg(M, N) = dg(N, M) and da(M, N) =0 if and only if M = N. Suppose
that for a sequence of closed bounded sets ¢, there is a closed set ¢ such that

lim dg (cn, ¢)=0. Then the sequence c, is said to converge metrically to c.
n—> 00

For a function f(z) meromorphic in a Jordan domain D; we now define the
set @ (f, D;) as follows.

(i) a€d(f, D;) if there is a sequence of continuous arcs ¢, (the end points
being included) contained in D; and converging metrically to an arc ¢ €F D;, and
a sequence 77,>>0, lim 7, =0, such that, for all n, |f(z)—a| <#a for z on cs. Also,

n->00
by definition, a € @ (f, D;, p) for any point p€c. We see that for a circle this de-
finition is equivalent to that given in § 5.

Now suppose that for ¢ (&) meromorphic in |[£|<1 the set @ (p) is not void
and that a € ®(p). Then there is a sequence of arcs y» in |&|<1 converging met-
rically to an arc y of |&| =1, and such that |@ (&) — a|< 7, lim %, = 0, for all &

00

1p HAUSDORFF, Mengenlehre, Berlin 1927, pp. 145—146; or P. ALExaNDROFF and H. Hopr,
Topologie, Berlin 1935, pp. 112—114.
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on yn. The circle |£] <1 is now mapped upon D; and we denote by ¢ the arc of
F D; corresponding to y and by c, the ares corresponding to y,. We have to shew
that the sequence ¢, converges matrically to c¢. Suppose the contrary. Then we
can find ¢>0 and a subsequence ¢p such that dum(cm, ¢) > &. There are two cases:
either there is a point pm€c such that U (pm, €) contains no point of ¢, or there
i8 a point gm€cy such that U (gm, &) contains no point of ¢. Consider the former
case first. We may assume the condition to be satisfied for the whole sequence
Ppm. There is then a subsequence p; of the sequence p, converging to a point
po€c. The domain U (p,, ¢/2) is contained in all the domains U (p,, €) for s>s(e)
and hence contains no point of any of the curves ¢, for s>s (). Now U (p,, £/2)n D;
corresponds to a domain 6 (¢'%) in the unit circle whose boundary contains an arc
of y containing the point e'% corresponding to p,. All the curves y, lie outside
0 (¢'%) and there is therefore an & >0 such that p is not contained in U (y,, €).
But this is contrary to hypothesis and we conclude that ¢S U (ca, &) for all
n>n ().

Now consider the second case. Assuming the condition to be satisfied for
the whole sequence g¢m, there is a subsequence ¢, converging to a point g, and all
contained in U (g, €/2) while U(gs, &) contains no point of c. Now U (g, £/2) is
contained in all the U(g, &) so that it contains no point of ¢ and is therefore
interior to D;. The corresponding domain is interior to |£|<1; it contains points
of all the p, which therefore do not converge to any arc of |£| =1 and in parti-
cular not to p, contrary to hypothesis. We conclude that ¢, € U(c, £) for all
n > n ().

We have thus proved that c, converges metrically to ¢ so that a€ @ (f, D)
and hence D (p)S D (f, D;). We have only to reverse the argument, starting from
the hypothesis that ¢, converges metrically to ¢, to shew that y. converges met-
rically to ¢ and hence that @ (f, D;)S @ (¢). Therefore D (f, D;) = @(p) and it
follows that the set @ (f, D;) is invariant under conformal mapping of D; onto any
bounded Jordan domain. Further, D (g, E;, ¢) = @ (f, D;, p), where E;, ¢ and g({)
are the transforms of D;, p and f(z) under conformal mapping.

This establishes the validity of the results of Parts I and II for a general Jor-

dan domain. The validity of the classical theorems of Gross and Iversen for such
a domain is of course already well known.

27. On the other hand, the theorems of Part III cannot be generalised so
widely since they relate to the measure of sets on the boundary of the domain
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and to angular domains oriented with respect to the tangent to the boundary. It
is therefore necessary to impose restrictions on the boundary. For the most part
it is sufficient to assume that the boundary is a closed rectifiable curve. The mea-
sure ol boundary sets is then determined in terms of the lengths of boundary arcs.
Under conformal mapping boundary sets of measure zero are mapped upon boundary
sets of measure zero. Further, a rectifiable curve has a unique tangent except per-
haps at a set of measure zero. Leaving out of account the exceptional set, the sets
F and I for a function meromorphic in such a domain are defined as for the circle.
The definitions can indeed be enlarged to be applicable to corners at which there
are distinct right and left tangents. The sets W, H and P are defined on the
whole boundary as for the circle.

If f(2) is meromorphic in D having F D rectifiable and if D is mapped con-
formally upon |&]|< 1 and f(z) transforms to ¢ (&), then W (f), H(f) and P(f) are
mapped on W {p), H(p) and P(p) respectively, while F(f) and I(f) are mapped on
F(p) and I(p) excluding points corresponding to the exceptional set on FD. This
set being of measure zero, F, (f) is mapped on F; (). It follows from this that the
theorems of § 24 can be extended by conformal mapping to any Jordan domain
with a rectifiable boundary.

Finally, in order to extend the results of § 256 to a Jordan domain it is
necessary that #’ should be invariant under conformal mapping. F must therefore
be defined execept for a finite set of boundary points. This is secured if the boundary
is sectionally smooth, i.e. consists of a finite set of arcs with a continuously turning
tangent at every point.
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