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Introduction.  

1. Let the function w = / ( z )  be uniform and meromorphic in the unit circle 

] z ] < 1. We adopt no general hypothesis regarding the unit circumference I zl = 1 of 
which every point may be a regular point or a pole of /(z);  or some points may 

be essential singularities; or every point may be an essential singularity of /(z) .  

For our purposes i t  is convenient to include the poles in the class of regular points 

of /(z) for then the value r is in no way exceptional. 

In order to study and describe the behaviour of / (z)  near the circumference 

[z [=  1 we associate with /(z) certain sets of values which are defined as follows. 

(i) The Cluster Set C(/).  a EC(])  if there is a sequence {z~}, I z,] < 1, such 

that  lira [z~l= 1 and l im/(zn) ~a .  An equivalent definition, which is applicable to 
n - - - ~ o o  n---> o 0  

a general domain, is that  there is a point z0 of the boundary ]z ]=  1 such tha t  

lira z~ =zo and lim/(z~) = a. We call a a cluster value o~ /(z) .  The complementary 
n - - >  OO ~ - - a - ~  

set of non-cluster values with respect to the closed complex plane is denoted by 

C G(/). The frontier of C(/) is denoted by ~ C ( / ) .  We shall throughout use the 

notation U(a,  "E) for the e-neighbourhood of a, i.e. the set of points w satisfying 

[ w --  a I < e. Then a e :7 C (/) if and only if, for all t > O, U (a, e) contains at least 

one point of both the sets ~(/)  and C C(/). 

Evidently C (]) is closed so tha t  C C(/) is open and consists, if it is not void, 

of a finite or enumerable set of open domains. 

(ii) The RAnge of  Values R(]).  a q R(])  if there is a sequence {zn}, I 1, 

such that  lira I z,] = 1 and ~(z n ) = a  for all values of n. As for the duster  set, 
~ - - - )  OO 

lim z~ = z0 for some Zo on [ z l =  1 and / ( z ~ ) = a  is an equivalent condition. The com- 
l~---a-O0 
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plementary set with respect to the closed complex plane is denoted by C R(/) and 

may be called the Excluded Range. A value b E C R(/) is an excluded range value o] 
/(z). The frontier ot~ R (/) is denoted by :~R (/). 

(iii) The Asymptotic Set F(/). a E/ ' ( / )  if there is a continuous simple path 

z=z( t ) ,  ~ < t < l ,  such that  ]z(t) l < l ;  l i m ] z ( t ) ] = l  and l i m / ( z ( t ) ) = a .  We call 
t~l t~l 

a an asymptotic value o/ /(z). The complementary set of non-asymptotic values o//(z) 
is denoted by C F(/) .  

(iv) The Value Set X (/). a fi X (]) if there is a point z (a), where I z (a) I < 1, 

such that  /(z(a))=a. The frontier of X(/) is denoted by JX(/) .  
We see at once that  X(/) is open. For if a fiX(/) we can find e > 0  and 

0 < ~ < 1 - -  [ z (a) I such that  every value in U (a, e) is taken by  / (z) in the circle 

I z - z ( a ) l  < ~ so that  a is an internal point of X(/). C X(/) is therefore closed and 

:~ x (1) =_ c x (]). 
In the usual notation we denote closures by C([), CC(/), R(/), CR(/), 5(/) 

etc. and derived sets by O' (]), etc. 

Evidently 

(1.1) R(I) =- X (l), 

(1.2) R(])-= e( l )  
and 

(1.3) F (/) =- C (/). 

Also 

(1.4) c (1) =- X(l);  

for if a e C X ( [ )  then, for some e > 0 ,  I ] ( z ) - - a l  > e  in Izl < 1  so that  a E C C ( ] )  

and hence C ~: (]) =- C C (/). 

The foregoing definitions relate to the behaviour of /(z) in the large either at  

the whole boundary ]z ]=  1 or in the whole domain ] z l <  1 without specifying any 

particular point of the boundary or domain. In Par t  I of this paper we shall s tudy 

these sets systematically and, in particular, we shall investigate the relations between 

the frontier sets ~ C(/), :~ R(/), :~ X(/) and the excluded range C R(/) on the one 

hand and the asymptotic set _/'(/) on the other. By  way of illustration we may 

recall corresponding theorems for the case of a function ~(z) meromorphic and non- 

rational in the finite plane I z l <  oo. For such a function the sets C(F),  R (F) and 
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/ ' (F)  are defined as above except that we put lira z,~=c~ in the case of C(F) and 
n-->O0 

R(/) and lim z(t)= oo in the case of F(F). The three classical theorems of Weicr- 
t--~oo 

strass, Pieard and Iversen can now be stated in terms of these sets as follows. 

~heorem A (Weierstrass) C C(F) is void. 

Theorem B (Picard) C R(F) contains at most two values. 

From this theorem it follows at once that ~ R ( F ) =  C R(F). 

Theorem C (Iversen) C R (F) = ~ R (F) c F(/). 

Theorem A is, of course, implied by the deeper and more difficult Theorem B. 

All three theorems apply also to the case of a function F (z) having an isolated 

essential singularity, the sets C, R and _P being defined in relation to the neigh 

bourhood of the singularity. 

The corresponding system of theorems for a function /(z) meromorphic in 

I zl < 1 is closely analogods. Theorem A holds for /(z) under the condition that 

T (r,/) is unbounded. We show that in the general case C (/) is a continuum. Schottky's 

theorem and its variants are the analogues of Theorem B. The principal result to 

be proved in Part I is the analogue of Theorem C. The general form of this result 

is in fact very simple, namely 

R (I) O ~ C (I) = C R (/) n C (I) ~_P(1), 

while if 1-'(/) is of hnear measure zero CC(/) is void and instead we have 

c R (I) ~_ F(1), 

which is again of the form of Theorem C. These theorems lead to a number of 

results concerning the sets C C(/), C R(/), ~ C(/), :~ R(/), and / '(/) in special cases. 

The resulting system of theorems is related on the one hand to the order of ideas 

associated with Fatou's theorem on the boundary behaviour of a bounded function 

and its generalization by Nevanlinna to functions /(z) of bounded characteristic 

T (r,/) and on the other to a recent theorem of Collingwoodl on deficient values of 

functions /(z) of unbounded characteristic T (r,/). 

The theorems of Part I may be called boundary theorems in the large since 

they are concerned with the behaviour of /(z) near the boundary of the unit circle 

1 COLLr~OWOOD (I) p. 336, Theorem IV and corollaries. The numbers agaln~t authors' names 
refer to the bibliography at  the ena of the paper. 
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and not near any particular point of the boundary and they belong to what may 

be called the boundary theory in the large. 

Corresponding to the boundary theory in the large there is a boundary theory 

in the small. In this theory there is a selected point z = e  ~~ of the boundary and 

we study the behaviour of ](z) near this point. For the purposes of this theory 

we define sets relative to the function f(z) and the point z = e  ~~ analogous to C(/), 

R(/), and /'([). I t  is also necessary to introduce a further conception, that of the 

uniform convergence of t (z) to a value a on a sequence of arcs converging to a 

closed arc of ]z l=  1 which contains the point z = e  (~ and to define the set of values 

a for which t (z) has this property. We postpone the formal definitions. In Part II  

of the paper we establish a system of boundary theorems in the small corresponding 

to the boundary theorems in the large proved in Part I. 

In Part I I I  we prove a group of theorems, of a type that originated with a 

well-known theorem of Plessner, concerning the distribution upon the circumference 

I zl = 1 of certain classes of points, defined by the behaviour of [ (z) in their neigh- 

bourhoods. 

The central idea of our method derives from Iversen's theory of the inverse 

function. 1 It  consists in the continuation of an ordinary or algebraic element of the 

inverse function along an appropriate path free from non-algebraic singularities. The 

method appears to be one of considerable power in this field. 

The first systematic work upon the sets C, R and F was that of Iversen (1, 2, 3) 

and Gross (1, 2) some thirty years ago and was concerned, in so far as it related 

to functions meromorphic in a domain having a contour, to the theory in the small. 

Subsequent developments in this theory are due notably tb Seidel (1, 2), Doob (1--4}, 

Beurling (1), Noshiro (1, 2, 3, 4) and, more recently, Caratheodory (1) and Weigand (1). 

But, as regards the theory in the large, while a number of individual theorems are 

known there has, so far as we are aware, been no systematic development of a 

general theory of the sets C(/), R ( / ) ,  /~(/) and their mutual relations. It  is the pur- 

pose of this paper to develop the main lines of such a theory for the unit circle 

both in the large and in the small. Our theorems can be extended by conformal 

mapping to Jordan domains, those of Parts I and I I  without restriction, and those 

of Part l I I  subject to restrictions upon the boundary. These generahsations, which 

cannot be dismissed quite without discussion, are dealt with in the Appendix. We 

1 IvEItS~.~ ( I ) .  
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do no t  consider domains  of a more general character  for which interes t ing theorems 

have been proved by  Gross (2), Besicovitch (1} and  subsequent  writers, i 

I t  should be said t h a t  the  present  paper  supersedes a paper  by  Cartwright  (1) 

of 1935 in which the  me thod  of the  inverse funct ion  was also used. U nf o r t una t e l y  

Car twright ' s  inves t iga t ion  was v i t i a ted  by  an  oversight  with the result  t ha t  some of 

the theorems of the paper  referred to, as well as the arguments ,  are incorrect.  ~ Piece- 

meal  correction would no t  be pract icable and  perhaps a t  this  distance of t ime  is 

hard ly  desirable. Recogni t ion of the  mis take has, however, led us to develop the  

theory  afresh from a more general point  of view which has enabled us, in  partic- 

ular,  to elucidate in  some detail  the relat ions between the  asymptot ic  set F ,  the 

excluded range C R and  the  frontier  sets :~R and  :~ C, bo th  in  the large a nd  in  

the small.  3 

1 The terms Cluster Set, Range o/ Values and Asymptotic Set and the notation C, R and F 
have been adopted following Seidel since, so far as the terminology is concerned, this appears to be 
the established convention in English and it is clearly desirable to establish a conventional notation 
in a theory which is becoming elaborate. Practically the whole of the previous development of the 
theory has been in the small so that when we speak of previous conventions we refer to the conven- 
tions of that theory. 

In  the past there have been considerable variations both in terminology and notation. The 
Cluster Set was called domaine d'ind~t~rmination by PAIN~Vr (1 and 2) with whom the concept 
originated and at first also by IVERSEN (1 and 2). Later IVERSEI~ (3) adopted the terminology and 
notation of GRoss (2) who used t-1 (Hau]un41sbereieh) for C and W (Wer~bereich) for R. IVERSE~ (3) 
used K (Konvergenzbereich) for / ' .  Noshiro and other Japanese writers have used Seidel's terminology 
but a different notation. 

DOOB in (3) wrote $' (z) for C (]) which he called the cluster boundary function of ! (z). But he 
was only considering properties in the small. The functional notation and terminology are perhaps 
less well adapted to the theory in the large. In Door (4) he used the term range for the value set. 

In  a recent paper C~RAT~rEODORY (1), and WEIO~D (1) following him, used Randwert instead 
of Hau]ungswert for cluster value. Although this term does clearly relate the concept to boundary 
theory we have adhered to the term cluster value even though it is perhaps less suggestive. More- 
over, the terms Randwert and boundary value are already used in other senses in the theory of 
functions. 

2 The sets which we subsequently call /'A (]) and ~ (]) were overlooked in CARTWRIGHT (1). 
But the final section of that paper and two later papers, CARTWRIGHT (2 and 3), all of which are 
concerned with the boundary behaviour of functions at a boundary which is everywhere discontinuous, 
are unaffected by the error referred to. 

3 A short summary of some of our results, in particular Theorems 9 and 22 of the present 
paper, was communicated to the International Congress of Mathematicians at Harvard University, 
September 1950, see COLLL~GWOOD and C~TW~IOHT (1). 
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PART I. 

Boundary Theorems in the Large. 

The analogue in the large of Theorem A. 

2. We use the notation that  is now standard. 1 

M (r,/) = max I ] (z) I 
I~1=~ 

and 

where 

and 

T (r, 1) = m (r, 1) + N (r, 1), 
2~ 

,,, (,-, t) : ./" , <  
o 

N(r,/)= f 
0 

(~, OO) (0, n OO~ n 
' d e + n (0, c~) log r, 

n (~, c~) being the number of poles of /(z) in the region I zl ~ ~), each being counted 

with its order of multiplicity. More generally, n (~, a) is the number of zeros of 

/ ( z ) -  a, each counted with its order of multiplicity, and 

r 

" d r + n (0, a) log r. 
n (e, a )  n (0, a )  

N (r, a) =.. r 

0 

Clearly, if a e C R ( / )  then N(r,  a)=O(1).  

The functions /(z) meromorphic in z I < 1 fall into two classes, namely the 

class for which T(r , / )  = 0(1), known as functions of bounded characteristic, and the 

compIementary class for which T (r,/) is unbounded, which may be called the class 

of functions of unbounded characteristic. 

We recall that  ~ 

I We refer  general ly to  R.  ~'EVANLINNA'S two s t a n d a r d  books :  Thdor~rne de Picard-Borel et la 
thdorie des ]onctions mdromorphes, Par i s  19~ a n d  Eindeutige Analytlsche Funktionen. Berl in  1936, 
c i ted  he rea f te r  as E .A .F .  

2 If  t he  values  of ] (z) are  t r ans fo rmed  to t he  un i t  w-sphere  T (r, i t) is def ined  in t e r m s  of t he  

( + spher ical  me t r i c  a n d  satisfies t he  equa t ion  T r, ~ f  = T (r, ]). Al though  t h e  sets  C, R, /1 

etc.  being in genera l  unbounded  are measured  in t he  spher ical  met r ic ,  no inconvenience  ar ises  f rom 
re ta in ing  Nevan l inna ' s  defini t ion of T (r, ]). P ro jec t ion  onto  the  sphere  m a y  be m a d e  at  any  con- 
ven ien t  stage. 
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+ 0(1), r = T (r, 1} 

~1 + fl is a linear transform of 1. where 7/~- r 

All linear transforms of /(z) thus have the same order defined by the limit 

l ~  log T (r,/) 
,-+1 - -  log  (1 - -  r) 

A trivial argument shews, that  if T (r, D is unbounded C (~ has the Weierstrass 

property of covering the closed plane, or its transform to the unit sphere. In fact 

we have 

T h e o r e m  i .  / ]  ](z) is meromorphic in I z I < 1 and i] T (r, ]) is unbounded, then 

C c(/) is ~oid. 

For suppose aECC(]). Then there are numbers K < c ~  and ~ > 0  such that,  

for all r in 1 - - , < r < l ,  we have 

1 
] ] ( r e ~ ) _ a l  < K 

and hence m ( r , a ) < K  for 1 - - e < r < l .  Since plainly N(r,a)=O(1)  we have 

T ( r , t ) = T  r ,~- -~  + 0(1) 

=re(r ,  a) + N (r, a) + 0 ( 1 ) = 0 ( 1 )  

for 1 - -  e <: r < 1 ; and since T (r, ]) is an increasing function of r this inequahty holds 

for all r < 1. This proves the theorem. 

Evidently it is not true in general that  C C(]) is void. For functions ](z)which 
are linear transforms of bounded functions and which constitute an important sub, 

class of functions of bounded characteristic C C(]) is not void. On the other hand 

we can find .examples for which C C(]) is void while T (r, ]) is bounded. 

To complete the analogue of Theorem A we prove 

T h e o r e m  2. I] ] (z) is meromorphic and non-constant in j z l <  I, then C(]) is a 
continuum. 

If C(]) contains only one point then /(z) is a constant, x So we may assume 

1 I t  i s  e a s y  to  g ive  a d i rec t  proof  of th is ;  b u t  for  e c o n o m y  we re ly  on t h e  ind i rec t  propf  g i v e n  

in  w 4 below. 
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that  C(/) contains more than one point. To obviate special mention of the point 

at  infinity we transform onto the unit w-sphere. Distances are accordingly to be 

understood as spherical distances. 

First C(]) is compact. For if WnEC(]) and w is a limit of the sequence {wn} 

so that,  for some sequence {n'}, lim Wn,=W it is easy to see that  wEC,(/). For given 
nf.-.>~ 

a sequence ~n', ~n ' - 0 ,  we can find a sequence {en0}, lira ~n'=0 such tha t  the 
nr---~oo 

annulus 1 --  e~, < [z [ < 1 contains a point z~, such tha t  [[ (zn,) --  wn' ] < ~n'. Hence 

lim I z,,, I = 1, lim / (zn') = w. 

Off) is connected. To prove this we assume the contrary. There is then a 

partition of C (/) into two compact subsets K1 and K2 which are at  a positive dis- 

tance 20 apart. Let H1 be the open set of points whose distance from K1 is less 

than �89 0 and H~ the similar set for Ks. The distance between H1 and H9 is 0, 

C (H1 U H2) is closed and C (H1 U H~.) =_ C C (/). 

Now choose aEK1, and bEK2. Given a sequence {~n}, lim yn=0 ,  we can find 
n-->00 

a sequence {~n}, lim e~=0, such that  the annulus An defined by 1 - - e n d  ]z I ~ 1 

contains a point zn(a) such tha t  [[(zn(a)) - -a[ .~n and a point zn(b)such tha t  

I.t (zn(b)) --  b[ < ~n. For n > no, say, ~n < �89 0 so tha t  U (a, ~/,) c H1 and U (b, */n) c__Ha. 

We ignore values of n <~ no and we join the points z~(a) and zn(b) in pairs by a 

standard curve. If [ z~ (a)[ = ] zn(b) [ then it is simply one of the arcs z = I zn (a) I 

joining these points. Otherwise if, say, I z',(a)l<lzn(b)l it consists of the radial 

segment joining zn(a) to the circle [z]=[zn(b)[ a t  zn(a)' and  one of t h e  arcs  defined 

by z,,(a)', zn(b). Call this curve Cn. The function ](z) maps Cn, which lies wholly 

in An, on a continuous curve 2n having its end points wn(a) and wn(b) in 

U (a, ~n) c__ H1 ' and U (b, ~n) c Ha respectively. 1 We can now find on ~ a point 

wneC (HI U Ha). For ~tn is connected so tha t  its end points are connected by a 

�89 &chain un~, ~ . . . .  un~ and if all these m points of ~ are contained in H1, or 

Ha it follows that  the distance between H1 and Ha cannot exceed �89 0. But this 

distance is 0. We now choose a point wn e C (H1 tt H~) on each ~ .  The sequence 

{wn} has at  "least one limit point to, which may be infinity, and there is a sub- 

sequence {wn'}, lira wn, = w. Since Cn, is contained in An' we have lim ] zn, I = 1 where 
nr.-~oo nr.-~oo 

wn, and z,, are corresponding points of ~ ,  and Cn'. Multiple points of ~ ,  occasion 

no difficulty since the corresponding set of points of C,n, must be finite. Therefore 

1 ~n is not  in general a simple curve. 
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co E C (/). But  since ~o = lira w,,, where w,, E C (H1 U H2), and C (H1 U H2) is closed 

it follows tha t  m E C (H1 U H~) c C (Ki U K2) = C C (/). We thus have a contradiction 

which proves tha t  C(/ ) i s  connected. This completes the proof of the theorem. 

Analogues in the  large  o f  T h e o r e m  B. 

3. The results here are well-known, but  we set them down for completeness. 

The properties of C R(]) with which we are concerned are closely related to the 

growth of T (r, [). We have first the 

S c h o t t k y - N e v a - l l - n a  T h e o r e m .  1 I /  [(z) is meromorphic in [z[ < 1 and i/ 

lim T (r , / )  c~ 
r-.1 - -  log ( 1 -  r) 

then C R (/) contains at most two values. 

In  the Schottky-Nevanlinna Theorem the condition on the growth of T(r,])  

cannot be improved. For functions of unbounded characteristic we have 

F r o s t m a n ' s  T h e o r e m .  2 / ]  / (z) is meromorphic in [ z [ < 1 and i/ T (r , /)  is 

unbounded, then C R (/) is o/ capacity zero. 

Although we do not use the theory of capacity a in any of our arguments  we 

shall have occasion to state some comparat ive  theorems in terms of this measure. 

The following metrical proper ty  is important .  

We denote by  an S-set 4 any set of points satisfying the following condition: 

suppose tha t  s(t) is a positive, continuous increasing function for t ~ 0 such tha t  

s(0) = 0 and 
Ir 

0 

is convergent for some k > O .  For any e > O  there is a sequence of circles with 

radii 01, O~ . . . .  covering the set such tha t  

1 E.A.F. pp. 253-254. 
2 E.A.F.p. 260. 
3 Zero capacity and zero harmonic measure are equivalent and may be interchanged in our 

enunciations. For the theory of harmonic measm'e and capacity see E.A.F. pp. 29-41, 106-121 
and 142-153. On zero capacity see also BEURLINa (2). 

4 E.A.F. pp. 142-145. 
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An S-set is by definition a set of s-measure zero. 1 

A set o] capacity zero is an S-set. 

The definitions of s-measure and of capacity also apply when the set is pro- 

jected on the unit  sphere and the spherical metric is used. For unbounded sets 

t h e y  will be taken in this form. 

Further, an S-set is o] co-dimensional measure zero /or all ~ > O. 2 

We now see that  just as Theorem A is implied by the deeper Theorem B, so 

Theorem 1 is implied by the deeper Theorem of Frostman. For if a EC R( / )  every 

neighbourhood U (a, e) contains points of R (]), since C R (/) is of linear measure 

zero. Hence a E R' (/) ; and so R (]) U C R (/) ~ R (]) =_ C (/), shewing that  C C (/) is void. 

The set / ' ( f ) .  Preliminary Theorems and Lemmas. 

4. We set out in this section a number of results, some of them classical, to 

which we shall frequently have to appeal. 

We must begin by analysing rather more closely the conceptions of an asymp- 

totic value and an asymptotic path. If a E P(]) there is a continuous curve z = z ( t ) ,  

0 < t < 1, on which lim [ z (t) [ = 1 and lira / (z (t)) = a. The limiting set of the curve 

z(t)  on ] z [ = l  is either a single point or a closed arc, which may b~ the whole 

circumference. This is expressed in the following lemma. 

L e m m a  1_. A continuous curve z = z ( t ) ,  O ~ t ~ l ,  such that t z ( t )  l ~ l  and 

lim I z ( t ) l = l  has at least one limit point z = e  ~8 on I z [ = l  and i] there are two such 
t--~l 

points e i~ and e i~ then the set o/ l imit points o~ z=z( t )  on I z l = l  contains at least 

one o] the two arcs defined by e ~~ and e ~~ 

The first assertion is trivial, for if we choose a sequence {tn}, t , -~ l  as n ~ c ~ ,  

the sequence of points zn=z(tn) has a limit point on I z[ = 1. 

To prove the second assertion suppose tha t  both of the arcs contains a point 

1 The s -measure  of a set  ~ is defined as follows : Given 8 ~ 0, suppose  the  set~ ~ to be covered 

by  an  a rb i t r a ry  sequence of circles c~ wi th  radii Qv ~ g, and  denote  by  me (~, s) the  lower bound  

of the  corresponding sums  ~ s (~v). This  n u m b e r  increases wi th  decreasing 6. P u t  

m (~, 8) ~ l im me (~, s). 
~--~0 

Then  0 ~ m (~, 8) ~ ~- cx~. By definit ion m (~, a) is the  s -measure  of ~. F o r  s ~ ~ r  2 the  8-measure 
is the  plane measure  and  for s ~ 2 r the  l inear measure  of ~. 

E .A.F.  pp. 142-143. 
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which is not a limit point of z (t). Denote these points by p and q. We can find 

8 > 0 such that  neither of the circles of centres p and q and radius e contains a 

point of ~(t); and we can find t(e) such that  I z(t)l > 1 - ~  for t > t(~). If  we cut 

the annulus 1 - - s  < I z l <  1 along the radii to p and q neither of these cross cuts 

is within a distance ~ of the curve z=z(t), t ( s ) < t < l ,  which is therefore not 

connected. This is contrary to hypothesis and the lemma is proved. 

We call the limiting set on [ z l =  1 of an asymptotic path its "end"; and we 

define ! ' p ( / )~  F(/) and Fa  (/)_c/~(/) as follows: a ~ Fp(/) if there is an asymptotic 

path z=z(t) whose end is a point of I z l = l  and such tha t  lim/(z(t))=a, and 
t ~ l  

a q I '4 (/) if there is an asymptotic path z = z (t) whose end is an arc of I zl = 1 (or 

the whole circumference) and such tha t  lim/(z(t)) =a. 
t -~l  

We also write a~Fe(/ ,e ~~ if e ~~ is the end of z(t) and Fp(/,01<O<02) for 

0 Fp(/,d ~ so tha t  F e ( / ) =  OFe(/,d~ then F(/)=Fp(/)OFa(/). We must 
0t<0<t~2 0 

note that  the intersection Fp(/)tl Fa  (/) is not necessarily void. 

An important class of asymptotic paths are spirals converging to the circum- 

ference [zl = 1. Functions tending to asymptotic values along such paths have been 

constructed and their properties discussed by Valiron (1 & 2). We may denote by 

Is(~) the set of values {a} for which there is a path z=z(t), 0 < t < 1, such that  

lim lz(t)l=l, largz(t)l is unbounded and lim/(z(t))=a. Then / ' s  (/) contains the 
t--~l t---~l 

set of asymptotic values of /(z) for which there are spiral asymptotic paths. Further 

l"s(/) ~__v~ (/) ~__v(/). 
Evidently, when Is(~) contains more than one value Fp(/) must be void. 

Functions constructed by Yaliron (1) are examples. Equally, if /~e (f) contains more 

than  one value _r's(/) is void. All bounded functions satisfy this condition; and it  

is also satisfied by the modular function g (z) which is unbounded and h a s / ~ ( / )  = 

=(0) 0 ( 1 ) 0 ( ~ ) .  I t  follows that  if. neither Fp(/) nor /'8(]) is void they must con_ 

sist of one and the same value. A function with this property is Koenigs' function x 

K (z) for which / ' e  (/) =/~s  (/) = (~ ) .  

T h e o r e m  3. If ](z) is ~,romorphiv in Iz] < 1 and i] T ( r , / ) = 0 ( 1 ) ,  then lr'A (/) 

is voi~. 

1 S e e  VAr.TTtON (2).  
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This is an immediate consequence of the following two well-known theorems. 

F a t o u - N e v a n l i n n a  T h e o r e m .  1 I] / (z) is meromorphic in ] z [ < 1 and i] 

T (r, ])=O(1), then ]or almost all 0 in 0--<0<2z~,  lira ] (z) exists unilormly in the 

7~ 
angle [arg  (1 - - ze - i~  <---2--~ /or all ~ > 0 .  

A point z = e i~ for which this property holds we call a gatou point and the set 

of such points we denote by g = g (/) and its complement by C g.  Then C F is o/ 

measure zero i/  T ( r , / )=O(1 ) .  For eiaEt v we denote the unique limit of /(z) as z 

tends to e i~ in any angle ] arg (1 - - ze - i~  <<-~--~ by ~ (ela). 

R i e s z - N e v a u l ~ n a  T h e o r e m .  s I] /(z) is meromorphic in [z] < 1, T (r,/) = 0(1) 

and there is a number a such that / ( d  e) = a /or a set o/ values o~ 0 o t positive meas- 

ure, then ] (z) ----- a. 

Denoting by iv= the subset of F for which [(eia)=a, we note first tha t  if f(z) 

is not constant and T(r , ] )=O(1 )  then ga is of measure zero for all values of a. 

I t  follows as an immediate corollary that  i/  C(l) consists o/ a sir, file value a, then 

] ( z ) - -a .  For we may assume a ~ c o  so tha t  T ( r , / ) = O ( 1 ) a n d  Fa is the whole 

circumference [ z [ = l .  We note secondly tha t  given any arc of [ z [ = l  there is an 

infinity of values of x for which this arc contains points of lv~. s 

If now T ( r , / ) = O ( 1 )  and a E / ' a ( / )  there is an arc of I z l = l  which is the end 

of an asymptotic path 7 (a) on which /(z) tends to a. But we can find a radius to 

this arc on which lira ~ (re i~ ~ a. Since ~ (a) intersects this radius an infinity of 
t '---}I 

times in every neighbourhood of e i~ we have a contradiction. Hence / ' a ( / )  is void 

and Theorem 3 is proved. 

For functions of finite order there is an interesting theorem of Valiron (2) who 

has proved tha t  i] /(z) is regular in [z I < l  and o] finite order then there is no finite 

number a e l~s (/). 

5. There is another important condition under which / ' a  (/) is void. 

T h e o r e m  4. I] f(z) is meromorphic in [z I < l  and C R (f) contains more than 

two values, then (i) / ' a ( / )  is void so that / ' ( / ) = / ' ~ ( / ) ;  and (fi) i/ aE Fp(f ,  ei~ then 
/~p(/, e is) contains no other value and s176 

1 E.A.F.p. 197. 
E.A.F.p. 197. 

a E .A .F .p .  198 Satz. 



96 E . F .  Collingwood and M. L. Cartwright. 

This is a special case of a more general theorem (Theorem 6) the proof of 

which depends upon the following lemma due to Koebe. 1 

Koebe's  L a m i n a .  Let q~(z) be regular and bounded in ] z ] <  1 and let there be 

two sequences {z~ )} and {z~ )} such that [z~)[ < 1, n]im z~)=el~ [z~)[ < 1, l i ra  z~)=ei~ = 

where 01 ~ 08. 1] there is a sequence o/ continuous curves yn joining z~ ) to z~ ) and 

contained in an annulus 1 --  ~, < [ z [ < 1, where sn ~ 0, lim e, = 0, such that on ~n we 
n--~O0 

have [ q~ (z) - -  x [ < V, where lim ~. = 0, then q~ (z) ~ x. 
n--~oO 

We now introduce a further definition relating to a function /(z) meromorphie 

in [z[ < 1. Suppose that  there is a closed arc 01~< 0 ~ 08 of the circumference 

]z I= 1 which is the limit of a set of curves 7n satisfying the condition of Koebe's 

lemma and that  [ / ( z ) - - a ] <  ~/,, lim ~]n=0, for all z on 7-. By definition, a E ~( / )  

and, for any 0 satisfying 0 z ~  0 ~ 08, a E ~ ( / ,  e~~ so that  ~ ( / ) =  U~(/,e~~ 
o 

We now prove 

T h e o r e m  5. I /  ] (z) is meromorphic and non-constant in [ z ] <  1 and ](z) ~ a, b 

or e where a, b and c are distinct, then (i) ~([)  is void;2 and (ii) i] /or some 0 

here exists xE Fp (],ei~ then Fp([, e i~ contains no other value and e~sEF. 

We may assume /(z) has been transformed so as to make c=  co and we write 

~(z) =]~Z)-aa.  

v 2(z) is then regular and does not take the values 0, 1 or co in ] z l <  1. Now let 

g be any number which is not real and write 

~(z )  ~ ( ~ ( z ) ) - ~ ( g )  
(~ (z)) - -  ~ (a) 

where v(w) is the inverse of the modular function for the half plane. Then ~(z) is 

1 KOEBE (1 a n d  2). Proofs  a re  also g i v e n  in  L.  BrEB~.R~Acrr, Lehrbuch der Funkt4.ontheorie 

B d  I I ,  p. 19, 2 ' n d  ed i t ion ,  Le ipz ig  1931; a n d  in  P .  MONTEL, Le~o~ a~ur les ]amille8 norr~les de/one. 
tions analyti~ue~, p. 107, P a r i s  1927. 

2 T h i s  r esu l t  is in  f ac t  due  to GP, o s s  (1) pp .  35-36  who  also de r ived  i t  f r o m  K o e b e ' s  L e m m a .  
H e  does  n o t  u se  t he  m o d u l a r  f u n c t i o n  b u t  m a p s  t h e  u n i v e r s a l  cover ing  su r face  of t h e  w-p lane  

p u n c t u r e d  a t  a, b a n d  c on to  t h e  u n i t  circle I ~ ] ~ 1. W e  h a d  over looked  t h i s  t h e o r e m  of Gross  
u n t i l  a~ter our  own p a p e r  h a d  gone  to  t h e  p re s s ;  b u t  we h a v e  a l lowed ou r  proof  to  s t a n d  s ince 

Gross '  p ape r  is n o t  n o w  v e r y  access ible  a n d  t h e  r e su l t  is a n  essen t i a l  piece of our  a p p a r a t u s .  
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regular and satisfies [ ~ (z) [ < 1 in ] z ] < 1. (ii) now follows immediately from the 

Fatou-Nevanlinna theorent. The proof of (i) is carried out in two stages. 

h - - a  
First suppose that  h E ~(]),  wKere h ~ a, b or co, so that  k = b _  ~ ~ 0, 1 or 

co and k E r Hence q(k)e  q~(~) and it follows at  once from Koebe's lemma 

that  q~(z)~rp(k), v2(z ) - - k  and so /(z)-=-h. 

Secondly, we assume that  he  r  is one of the omitted values a or b. We can 

exclude the case h =  co by transforming to 1/](z). Clearly we may put h=b.  We 

then have a sequence of curves 7~ converging to a closed arc of [z I= 1, such that  

Wn, lira ~/,= 0, for all z on 7~. Now let the circle [ z l <  1 be cut along 

a radius. Each of the two branches of (~(z))~ is regular and omits the four values 

0, - -1 ,  1, co in the cut circle. We can choose a branch of (v2(z))t , which we will 

call u (z), and which converges uniformly to ~ 1 on a sub-sequence ~,, of the y, .  

Map the cut circle by a function ~ = ~(z) on the circle [ ~ [ <  1 and denote by z (~) 

the inverse mapping function. Then v(~)=u(z(~)) is regular and not equal to 0, 1 

or co in I ~ [ < 1 ; and --  1 E 4~ (v) since the sequence of curves 7- is mapped by 

~(z) on a sequence in 

closed arc of ]~[=1.  I t  

of ~(z) that u (z)~---1,  

Since by hypothesis 

From theorem 5 we 

[ ~ [ <  1 satisfying the same condition of convergence to a 

now follows from the previous argument with v (~)in place 

~o (z) ~- 1 and ] (z) -- b-~ h. 

](z) is not a constant this proves (i). 

can at once deduce the following more general theorem. 

T h e o r e m  6. 1/ ] (z) is meromorphie and non-constant in ] z ] < 1 and C R (]) 

contains more than two values, then (i) ~( / )  is void; and ( i i ) i /  /or some 0 there 

exists x E l"p(],e ~~ then I 'p(],e ~~ contains no other value and e~a E P. 

Let a, b and e belong to C R(]). Then we can find 5 > 0 such tha t  ] ( z ) ~  a, b, 

or c in the annulus 1 - - e  < [ z  l <  1; and so also in the annulus cut along the seg- 

ment 1 - - e  ~ ~ z  g 1. We map the cut annulus conformally on I ~ ] <  1 by a func- 

tion ~(z), the inverse being z(~). The function u(~)=](z(~)) is meromorphic and 

not equal to a, b or e in [ ~ [ < 1  so tha t  ~5(u) is void. But if there is a number 

dE r  then evidently dE ~(u).  ~or there is a sequence of curves ~'n converging 

to an arc of ] z ]~  1, which we may clearly assume does not contain the point z = 1, 

on which [ / ( z ) - -d [  tends uniformly to zero. This sequence is mapped upon a 

sequence of curves ~,  in [ ~ [ < 1 converging to an arc of [ ~ ] = 1 on which [ x (~) --  d I 

tends uniformly to zero. Therefore ~ (u) void implies ~(])  void and the theorem 

is proved. 
7 - -  6 3 2 0 8 1  Acta mathematica. 8 7  
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Theorem 4 is an immediate corollary of Theorem 6. For if a E T'~(/) we can 

find a sequence of segments of an asymptotic path, on which /(z) tends to a, con- 

verging to an arc of [z [ -- 1. Hence / ~  (/) c ~5 ([). 

We know from the Schottky-Nevanlinna theorem that  the condition of theorem 

3 that  C R(/) contains more than two values also implies a restriction on the char- 

acteristic T (r, /)  namely T (r, /)  = 0 ( - -  log (1 --  r)). The argument of paragraph 4 has 

shown that  if F~ (/) is not void, or indeed if �9 (/) is not void, then T (r , /)  is un- 

bounded. We may ask whether unboundedness of some minorant of T (r , /)  is implied 

by either of the conditions F~ (/) not void or �9 (/) not void. The theorem of Valiron 

on spiral paths quoted at the end of paragraph 4, suggests that  some such relation 

may exist. We are, however, unable to answer the question. 

The sets U(f) and q, ( f )  under conformal mapping. 

6. Let  D be a simply connected domain in ] z l <  1 whose frontier consists of 

an arc a of the circumference ] z ] = l  and a Jordan curve in [ z [ <  1. Conformal 

mapping of domains of this type upon the unit circle is an essential feature of our 

technique. 1 The essential property of such mappings for our purposes follows from 

the symmetry principle. To avoid repetition we state the relevant case of this 

principle as 

L e m r n a  2. I /  D is mapped con/ormally upon the circle [ ~ [ <  1 the mapping 

/unction ~ (z) is regular upon the arc a. 

From this we derive the properties of F ( / )  and r ( / )under  conformal mapping. 

I t  follows at once from the lemma that  a curve z (t) having its end point on a 

and making an angle O with the radius at this point is mapped upon a curve 

(z(t)) making the same angle O with the radius of I~] = 1 at  its end point. In 

particular, if a is a radial asymptotic value for /(z) at  a point e ioo of a i.e. if 

l im/ ( re i eo )=a ,  then a is a radial hmit for q~(~)=/(z(~)) at the poin~ ~(ei~ of the 
r-->l 

circumference [~] = 1; while if e ie~ is a point of the set ~ for /(z) then $(e is~ is a 

point of the set F for q ($). 

I t  also follows from Lemma 2 that  if a e r  ei~176 then a e~(q0, ~(eieo)). 

We have thus proved 

L o r a m a  2 a. Let /(z) be meromorphic in [ z ] <  1 and let the domain D de/ined 

above be mapped con/ormally by the /unction ~ (z) upon the circle [ ~1< 1. Then 

1 More general mappings are discussed in the Appendix. 



Boundary Theorems for a Function Meromorphic in the Unit Circle. 99 

(i) A poinr e ~ in ~ which belongs to the set o~ points F /or the /unction / (z )  

trans/orms into a point e ia o/ the set iv on the circum/erence I ~1 = 1 /or the /unction 

q~(~)=/(z(~)); and i/ a= / ( e~ ) ,  then a=q~(e~). 

(ii) I /  a e ~ (/, e i~) /or e ~~ in a then a e ~ (% e~O). 

The set / ' ( f )  in relation to the inverse function.  

7. We recall the elementary properties of the inverse function z = z (w) of the 

function w = / ( z ) . l  To every z in I z l <  1 there corresponds an element ez=ez (w', w), 

where z = e~(w, w), which is regular or algebraic according as w is a simple or mul- 

tiple value of ] (z) and which has a positive radius of convergence. I f  I z l=  1 is a 

natural  boundary for ].(z) the inverse function z(w) is the set of these elements 

ez(w',w) for Izl < 1 .  Given any two elements e~, and ezz({Zl{ < 1; Iz~] < 1 )  of z(w), 

there is an analytic continuation of ez, to e~ such tha t  every element of the continua- 

tion is an element of z (w). 

The definition of the inverse function z (w) is easily extended by  analytic con- 

t inuation to the case where I zl = 1 is not a natural  boundary.  We shew first tha t  

to every continuation of / (z) there corresponds a continuation of z (w). In  particular, 

suppose tha t  there is a continuation from a point z' in I z l ~  1 to a point z" in 

I z I ~ 1. These points can be joined by a polygonal curve L at all points of which 

/ (z) is regular and /' (z) ~ 0 and this curve is mapped on a curve A in the w-plane. 

To every point z of L there corresponds an inverse element ez (w', w) which maps a 

circle I w ' - - w [ < e ( z ) ,  e ( z ) > 0  on a domain d(z) containing z. Since for every z 

the domain d(z) contains an arc of L of positive length it follows from the Borel- 

Lebesgue covering theorem that  L is covered by a finite number of the domains 

d (z). Since consecutive domains of this finite set overlap, the corresponding circles 

in the w-plane also overlap, the corresponding inverse elements are equal in the 

common parts  of these circles and thus are immediate continuations of one another. 

Every  other inverse element ez (w', w) corresponding to a point z on L is an immediate 

continuation of one of this finite set of elements and is thus an element of the 

continuation of z (w) along A corresponding to the continuation of /(z) along L. 

i The theory was developed systematically by IVERSEN (1) in the parabolic case i.e. for w = -~ (z) 
meromorphic in the finite plane z ~ co. For the corresponding theory with w "  ] (z) meromorphic 
in I zl < 1, the circumference I z = 1 being a natural boundary, see E.A.F. pp. 269-275. For the 
general case see VALIRON (5) pp. 415-417. The theory has been developed in considerable detail for 
an arbitrary analytic function by lgOSHIRO (4) pp. 43--73. 
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We have now only to reverse the argument to shew that  to every continuation 

of an element e~ 1 (w', Wl) of z (w) to another element ez2 (w', wg.) there corresponds a 

continuation of the element ewl (z', zl) of / (z) (wl = e~ (zl, zl) = ] (z)l) of which ezl (w', wl) 

is the inverse, to an element ew, (z', z~) (w2 = e~, (zg, z~) = / (z2)) of which e~ (w', w2) is 

the inverse. 

I t  has thus been shewn (i) tha t  given any two elements ez~ (w', wl), and e~ (w', w2), 

being the inverses of ](z) at z =zl  and z = z~ respectively, each is a continuation of 

the other; and (ii) that  given any element e~ (w', w2) which is a continuation of an 

element ezl (w', wl) of z (w) then e~ (w', w~) is the inverse of an element of / (z) ,  z(w) 

is thus defined throughout its domain of existence by analytic continuation from any 

element inverse to an element of ] (z). 

Now consider a path 2 in the w-plane defined by a continuous function w = w  (t), 

0--< t < 1. Then, by definition, an analytic continuation along the path is a set of 

regular or algebraic elements ezt(w' , w(t)), where zt=e~(w(t), w(t)), such tha t  for any 

t in 0 --< t < 1, ez t (w', w(t)) exists and we can find e = e (t) > 0 such tha t  for 1T - -  t I < e 

all the elements ezr(w', w(T)) are immediate continuations of ezt(w' , w(t)). Any two 

elements of the set can be joined by a finite chain of elements of the set which 

may be selected in an infinity of different ways. I t  follows at  once from the fore- 

going argument that  to every continuation of an element of z(w)along ~ there 

corresponds a continuation of an element of /(z) along the corresponding path l in 

the z-plane. We note expressly that  either or both of the paths 2 and 1 may be 

closed curves described any number of times. 

We classify the elements ez (w', w) of the inverse function z (w) of / (z) as follows : 

ez (w', w) is an internal element of z (w) if it is the inverse of an element ew (z', z) of 

/(z) for which I z l< :  1; it is a boundary element i f ] z l  = 1; and an external element 

if I z ] > l .  If Izl =1  is a natural boundary for /(z) then z(w) has only internal 

elements. 

I t  is readily seen that  any continuation (as defined above) o] an element o] z (w) 

along a given continuous path ~ in the w-plane which contains both internal and external 

elements contains at least one boundary element. Since 2 is arbitrary the continuation 

may contain algebraic elements in which case the particular continuation is deter- 

mined by the choice of branches of these algebraic elements, l~ow the branch of 

z (w) generated by any particular continuation maps ~t upon a path l in the z-plane 

which joins a point in l zl < 1 corresponding to an internal element to a point in 

] z l >  1 corresponding to an external element. So l cuts the circumference [zl= 1 in 

a point z corresponding to the point w (tl), say, on )l and, since ] (z)is meromorphic 
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or algebraic on l the continuation along 2 contains an element ezl(U,', w(tl)) which is 

a boundary element. This proves our assertion. I t  follows as a corollary that  any 

continuation along a path 2 in the w-plane o/ an element o/ z (w) which contains no 

boundary element, contains only internal or only external elements. 

Suppose now that  the circumference I z[ = 1 is a natural boundary for /(z) and 

consider a path 2 defined by a continuous function w =  w(t), 0 ~ t < 1 such that  

lira w(t)=eo. Suppose further that  there is a continuation of an element of z(w) 
t--~l 

along )t towards the point co such tha t  the radius of convergence of the regular or 

algebraic elements ez t (w', w(t)) of the continuation tends to zero as t -~  1. Then eo is 

a transcendant singularity of the branch of z (w) generated by the continuation. The 

path ~ is mapped by  this branch of z (w) on a path l defined by the continuous func- 

tion z = ~ (t) = z (w (t)), 0 < t < 1, where ] ~ (t) [ < 1. We see at once that  lim [ ~ (t) [ = 1. 

For if not there is a number r o < 1  and a sequence t l < t 2 < - . "  < G < ' " ,  

lira t~ = 1, such that  [ ~ (t,) I = r0 and hence there is a point Zo = roe ie~ and a sub- 

sequence {t,} such that  lira ~ (t,) = z 0. Now since ] Zo I < 1 there is a regular or algebraic 

element e ' z0 (w, Ws), wo = / (Zo), of z (w) having a positive radius of convergence Qo. 

We can find Vo such that  [ ~ ( t ~ ) -  Zo[ < ~s/2 for all v >  Vo and it follows that  each 

of the elements ez (w', w(t~)) is an immediate continuation of e~o (w', wo) and thus has 

a radius of convergence greater than ~o/2. But  this contradicts the hypothesis that  

the radius of convergence of ezt(w ~, w(t)) tends to zero as t ~ 1 so tha t  it follows 

that  l i m [ ~ ( t ) [ = l  and since l im](~( t ) )=oJ  we see tha t  t oeF( / ) .  Conversely, if 

eo E F(/ )  then eo is a transcendant singularity of some branch of z (w). For there is 

a path 1 in [ z [ < l  defined by  z=z(t) ,  0 - < t < l ,  such tha t  ] z ( t ) l ~ l  a n d / ( z ( t ) ) ~ m  

as t--> 1. We may assume without loss of generality tha t  l passes through no zero 

of /'(z) so that  1 is mapped by /(z) on a continuous curve 2, w=w(z(t)), O<-t< 1, 

without branch points such that  w (z(t))-+eo as t -+l .  Let  zl = z (tl) E l and ez,(w', wl), 

wl =/(Zl) E2, be the corresponding element of z (w). If the radius of convergence of 

the elements ez (w', w)obtained by continuation of ea (w', wl) along 2 towards eo does 

not tend to zero this radius has a lower bound ~o- We can find to such tha t  

w(z(t)) ~r  < ~o/2 for t>to. The continuation contains the element %(w', wo), 

where z o = z (to), wo = w(z(to)), whose circle of convergence, of radius not less than qo, 

contains the circle [w--o~l=eo/2 , which in turn  contains the curve~(z(t)),  t o < t < l  , 

which it therefore maps within a domain contained in ] z [ < 1. But since the continua- 

tion maps ~ upon 1 on which [z[ -~  1 this gives a contradiction and it follows that  to 

must be a transcendant singularity for the branch generated by this continuation. 
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We have thus proved tha t  i] I zl = 1 is a natural boundary ]or ] (z), then F(])= Q(]), 

where ~([)  is the set o] transcendant singularities o] z (w). 1 

Secondly, consider the case where I z ] =  1 is not a natural  boundary for ] (z). 

There are then regular points, in which we include the poles, or algebraic points of 

[ (z) on I z] = 1. These form an open set which thus consists of a finite or enumerable 

set of open intervals In on ]z]=l .  At each point e ~~ of I =  U In ](z) clearly has a 

unique asymptot ic  value [ (do), which we call a regular boundary value, and which 

corresponds to a boundary element of z (w). The intervals In are mapped by  [(z) 

upon a set of analytic arcs every point of which is a regular asymptot ic  v a l u e ; a n d  

it follows tha t  the set o] regular asymptotic values o]]  (z) is either void or o] positive 

linear measure. 

Asymptotic values of ](z) which are not regular we call transcendant. I f  there 

is a continuation along 2 defined by  w=w(t) ,  0 ~ t <  1, lim w(t )=m consisting only 
t -~ l  

of internal elements of z (w) and such tha t  the radius of convergence tends to zero 

as t - ~  1 then co is a t ranscendant  singularity for the branch of z(w) generated by  

the continuation and, by  the argument  used above, 2 is mapped by  this branch on 

a pa th  1 defined by z= $ ( t ) ,  0--< t < 1, which cannot have any point of ] z ] <  1 or 

any  regular point of I z] = 1 in its limiting set as t ->  1. Hence lim I~( t ) ]=  1 and co 
t - ~ l  

is a transcendant asymptotic value. Conversely, if w E F(]) and is not a regular asymp- 

totic value then eo is a t ranscendant  singularity for some internal branch of z (w); 

i.e. for some branch consisting only of internal elements. 

Denote by  Q(])  the set of t ranscendant  singularities for the internal branch of 

z(w) consisting of all internal elements ~ and by  /-/([) the set of regular boundary 

values. We have shewn tha t  i] ]z]= 1 is not a natural boundary ]or [(z), then 

1~(1) = Q (1) u II ( l ) .  

Combining these two results we have the following lemma. 

L e r n m a  3. I] [(z) is meromorphic in [ z i g  1 then 

F(/)=~(/) UI/(/), 

1 This result is given by NevanUnna, E.A.F. pp. 271-272. 
9. We- Should observe that if ] z ] = 1 is not a natural boundary the complete function [ (z) 

generated by continuation across the circumference ]z ]= 1 in both directions may not be uniform 
so that for any z in I z I <: 1 tl~ere may be more than one element e~ (z', z) of the complete function. 
But as we are only concerned with a single branch of ](z)which is, by hypothesis, uniform in 
] z I < 1 no ~ b i ~ t y  ~ r ~ s .  
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where Q(/)  is the set o/ transcendant singularities ]or the internal branch o/ z(w) and 

II(]) is the set o/ regular boundary values. 

If ]z [=  1 is a natural boundary then I I ( / )  is void and the internal branch is 

the complete function z(w) and we have / ' ( / )=~2(/) .  We note as a corollary of 

lemma 3 that  i/ F( / )  is o/ linear measure zero, II(]) is void so that [ z ] = l  is a 

natural boundary /or /(z) and _F(/)=~(/) .  

The set Up ( f )  for bounded functions. 

8. We wish to study / ' ( / )  when CC(/)  is not void. If a E C C ( / ) t h e r e  are 

positive numbers a and e such that  ] / (z)-a[  > a (or I/(z)l < l / a  if a = o o )  in the 

domain 1 - - e  ~ [ z ] ~  1. If a ~ c~ we make a linear transformation tha t  puts a on 

c~ so that  the transform of ](z) is bounded. I t  is therefore sufficient to consider 

functions regular and bounded in an annulus. 

We write /~p (/, 01 < 0 < 02) = U Fp (/, d ~ and with this definition we prove 
0t<0<8~ 

the following lemma. 

L e m m a  4. Suppose that /(z) is meromorphic in ]z I <  1 and regular and bounded 

in a simply connected domain D in [ z ] < 1 whose/rontier consists o[ an arc O1 -<- 0 <-- 02, 

z = e  i~ and a Jordan curve in ]z] < 1. Then, /or any pair 01, 09. such that 

O1 < O1 < 02 < 02, Wl =] (e i~ = Fp (/, ei~ w2 =] (e i~ = Fp (/, e i~ and Wl ~ w2, the 

projection on the open straight line L between Wl and w2 o] the set Fp (/, O1 ~ 0 ~ 02) 

o/ values o/ / (e i~ in the open interval 01 ~ 0 ~ 02 .includes al~ points on L, and 

hence the set I'p (/, O1 ~ 0 ~ 02) is o] positive linear measure. 

Let D be mapped conformally on the unit circle I~l ~ 1. As we saw in para- 

graph 6, it follows from lemma 2 that  the arc O1 ~ 0--< 03, z=  e i~ denoted by a, 

transforms into an arc ~r/1 --~ ~v ~--T~, ~= eiV, denoted by fl; the points of iv for / (z)  

in a transform to points of F for ~(~)=/(z(~)) in fl; and 

Fe  (~, ~1 <- ~ -< ~2) = Fe  (t, 01 --< 0 -- 02) 

where e i~, and e i~ are the transforms of e i~ and e i~ respecti'dely. Furthe r, since 

~(~) is bounded, almost all points of the arc fl and hence almost all points of 

the arc a are points of iv for the respective functions ~ (~) and ] (~). 

Now we can find 01, 02 such that  O1 ~ 01 ~ 02 ~ 02 and wl = / (e I~ = T'p (/, e ir 

is not equal to w~=[(ei~ = I'p(/,  ei~ For if not ~(~) which is bounded in [~[ < 1 

and has 
Fp (~, ~1  <- ~v <-- ~2) = Fp (/, O1 --< 0 -< O2) 
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must be constant, by Riesz's theorem; and so /(z) is constant in D and hence also 

in {z l<l .  
We now fix our attention on the function ~(~). Draw the chord joining the 

points e ~,, e ~, and consider the segment of 1~1 < 1 bounded by this chord and the 

arc of [~1=1 contained in ft. Let  arg (1- -  ~ e~)  = --  /x and arg ( 1 - - ~ e - i ~ ) = #  be 

the lines bisecting the angle between the chord and tangent at  e i~1 and e i~ in the 

segment and, in the w-plane, let L be the straight line joining wl and w~ and M 

any straight line perpendicular to L and intersecting it between Wl and w2. We 

now choose ~1 so tha t  in the domain [arg ( 1 - - ~ e - ' ~ , )  I --~ft, ]ei~,--~ I --<~1 we have 

[90 ( ~ ) - - w l ] <  A1, where A I is the distance from wl to M. 

Similarly, we choose ~ so that  in [ arg (1 --  ~ e -'~2) I -</x, [ e i~2 --  ~[ < 03 we have 

I~0(~)--wg]<A2, where A 2 is the distance from w2 to M. Let O=min(~l ,  09 ) 

and denote by cl and c2 the curves bounding the regions [arg (1- -  ~ e-iV,) l --< /x, 

and ]arg (1--  ~: e-',,) l _< #, 
Since ~0(~) is regular for I~1 < 1, the points at which ~o'(~)=0 are isolated; and 

so we can find a straight line s joining cl and c2 inside ]~] < 1 on which ~0' (~ )~  0. 

Hence s is mapped by ~o(~) on a simple curve S in the w-plane which joins C1, 

the map of cl, to C2, the map of cz. C1 and C9 may not be simple curves but 

they lie wholly within the circles ]~o --  wl] --< D1 and I ~o --  w~[ ~< D~ respectively. 

Therefore S certainly intersects M. Further, since ~0(~) is regular S is an analytic 

curve and it follows that  the number o[ intersections o[ S and M is [inite. 
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There is thus at least one point of intersection of S and M such that there is 

no other such point above (below) it on M. Let p be this uppermost (lowest)point 

oI intersection. There is then an ordinary element er (~, p) of the inverse ~ (~) of 

the function ~(r and this element can be continued upwards (downwards)along M 

without encountering any other point of intersection. We choose p and the direction 

of continuation (if there is only one point of intersection of S and M so that a 

choice of direction remains) so that the curve m on which the path of continuation 

on M is mapped lies in the segment of [$1 ~ 1 bounded by the chord e i~, e i~ and 

the arc of [~]= 1 contained in ft. Now since q~(~) is bounded, say [ ~ ( ~ ) ] < k  for 

] z ] <  1, and since er (~, p) is an internal element of ~(T) there are two possibilities: 

either (i) this continuation contains external elements in which case it contains a 

boundary element e~ (~, q), q being a point of M within the circle [q0[< k; or (ii) 

this continuation contains only internal elements in which case it must be brought 

to a stop by a transcendant singularity eo on M within the circle ]q~] < k. In case 

(i) the path p q is mapped by the continuation on an asymptotic path in [~[ <: 1 

having its end point in the arc ~ = e iv, V1 < v /<  ~2, contained in fl, q being a regular 

asymptotic value at this point. In case (ii) it follows from Lemma 3 that the path 

p eo is mapped by the continuation on an asymptotic, path in [ ~ ] ~  1 which, since 

~ ( ~ ) [ < k  for [ ~ [ < 1  also has its end point in the arc r ~v, ~ l < v / < V 2 ,  

contained in fl and on which ~(~)-~eo as I~1-> 1. I t  follows that in case (i) 

q 6. Fp (/, 01 • 0 < 02) and in case (ii) eo 6. Fp (/, 01 < 0 .~ 09), since ~ (~) = / (z (~)). But 

M is any perpendicular to L so that there is at least one point q or one point oJ 

in [ w [ ~  ]c on every M. This proves the lemma. 

Applying Lemma 4 to the case of a function /(z) bounded in an annulus we 

may put O1 = 0 and O3 = 2z. We then have at once, by the remark at the head of 

this paragraph, 

Theorem 7. I /  ](z) is meromorphic in I z ]<  1 and C C(]) is not void, then 
I'(/)=I'p(]) is o/ positive linear measure. 

The Main Theorem in the Large. 

9. The principal steps in the proof of our main theorem in the large can con- 

veniently be isolated in separate lemmas. These lemmas and certain collateral results 

arising from them, are proved in this paragraph and in paragraph 10. The main 

theorem itself is proved in paragraph 11 with further developments in paragraphs 

12-14. 
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L e m m a  5. I] ](z) is meromorphic in I z l <  1 and i/ a E C ~'(/), then either 

(i) a e C C ( / ) ;  or 

(ii) a is an interior point o/ R(/). 

For a given positive number a we consider the set of domains G (a, a ) in  which 

< o  if a = o o  in Izl<l. The frontier.of a G(a,(r) consists 

only of level curves, which we shaU call contours, on which 

=~ if a = o o  

in I z [ <  1 and points of the circumference I z l =  1. Either of these elements may 

be absent; but if the frontier of G (a, a) contains a point of I zl= 1 we say that  

it is unbounded, x Otherwise G (a, a) is bounded. The frontier of a bounded G (a, a) 
consists of a finite set of closed contours, while the frontier of an unbounded G (a, a) 
may contain either open or closed contours or both to any number finite or inIinite. 

By hypothesis we can find e > 0 such tha t  U (a, e)N F(]) is void ~, and we have 

to consider the following possibilities: 

(i) For some a < e there is neither an unbounded G (a, a) nor an infinity of 

bounded O (a, a). Clearly in this case we can find ~ > 0 such tha t  I / (z) - -  a [ > a 

in 1 - - r / < l z l < l  so tha t  aeCC(]). 

(ii) For all a < e there is either an infinity of bounded G (a, a) or an unbounded 

G (a, ~). In the former case each bounded G (a, a) a contains a zero of / ( z ) -  b for 

any b in I b - - a ] < a  so tha t  U(a ,a )  CR(/) .  

We treat the latter case in two stages. If the set of domains G (a, a) has only 

a finite number of closed contours and no open contour then there is only one 

unbounded G(a, a) which for a sufficiently small ~7> 0 contains an annulus 

1 - - 7  < [z[ < 1 and in this annulus ([(z)--a I < a. I t  follows that  I'([)c_V(a, e) 
and, by Theorem 7, that  / ' ( / ) =  F( / ) f l  U (a, e) is of positive linear measure. Since 

this is contrary to hypothesis we conclude tha t  if there is no unbounded G (a, a) 

having an open contour there is an unbounded G (a, a) having an infinity of closed 

contours. 

1 W e  use  t h e  n o t a t i o n  of COLLINGWOOD (1) p. 313. 
2 W e  m a y  a s s u m e  t h r o u g h o u t  t h a t  a yA oo;  or  a l t e r n a t i v e l y  F ( ] )  m a y  be p ro j ec t ed  on  t he  

u n i t  sphe re  so t h a t  U (a, e) is a n e i g h b o u r h o o d  on  t h e  sphere .  
a W e  use  t h e  b a r  n o t a t i o n  for closures.  A b o u n d e d  ~ {a, a) is t h u s  a connec t ed  region in  wh ich  

I 1< 1, 
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We consider these two cases. First, if for a positive a ~ e there is a G (a, a) 

having an unbounded contour we can choose a point z on it and continue the 

corresponding inverse element e~ (w', w), which is an internal element of z (w), indefinitely 

round the circumference I w - -  a I = a. For, since / ' ( ] )  N U (a, e) is void by  hypothesis, 

the continuation contains no boundary element and there can be no transcendant  

point of the internal branch of z (w) on the circumference I w - -  a ] -- a. I t  follows 

tha t  for any b having I b - - a i = a  there is an infinity of zeros of / ( z ) - - b  on the 

open contour so tha t  b E R(/).  Secondly, if there is a G(a, a) having an infinity of 

closed contours, there is a zero of ] ( z ) -  b on each of them so tha t  again b E R(/).  

Since a ~ e but  is otherwise arbi t rary we conclude tha t  every point of U (a, e), ex- 

cept perhaps the point a, belongs to R(/).  We now shew tha t  a E R(/)  also. Let  a' 

be any point in U (a, ~/2) and put  e = I a' - -  a [ < e/2. Then U (a', ~/2) N / ' ( / )  is void 

and we apply the foregoing argument  to the domains G(a', ~). Since a ' E R ( / ) ~ C ( / )  

case (i) is eliminated and we are in case (ii) so tha t  a ER([). Hence we have 

proved tha t  U (a, e) ~_ R (/). This proves the lemma. 

L e r n r n a  6. Suppose that /or some e ~ 0 the set U (a, e)N F is o/ linear measure 

zero and that a E C I ~. Then /or all values o/ ~ in O ~ t~ g 2r~ except perhaps /or a 

set o/ measure zero there is no point o/ U (a,e)N /1 on the diameter o[ a circle 

] w - - a ]  ~ c i  through the point w = a + a e  ~ ]or any a < e .  

Put  a ~ e and consider the set of annular  regions 

o - > l w - a l >  " " 2 - I w - - a l  > . . . .  > I w - - a l  > - 2  3, 

Call these regions A1, As . . . .  An . . . . .  We say tha t  a value v ~ is blocked in An if 

there is a point of /"  in An on the diameter  through w - - a  + a e io. Since /~N An is 

of linear measure zero the set Bn of blocked values v ~ is of measure zero. The set 

of values v ~ blocked in ] w - - a  I ~ a is the union U Bn of an enumerable set of 
n 

sets Bn of measure zero and is therefore of measure zero. This proves the. lemma. 

This enables us to prove a generalisation of Lemma 5, namely 

L e m m a  7. / ]  /(z) is meromorphic in [ z l < l ,  aEC F(/)  and U (a,e)N F(/)  is 

o~ linear measure zero lot some e ~ O, then either 

(i) a E C C f f ) ;  or 

(ii) U (a, e) c_R (/) and a E R (/). 
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Exact ly  as in the proof of Lemma 5, if a e C(~) then for all a, 0 ~ a ~ e ,  

there is either an infinity of bounded domains G(a, a )or  an unbounded G(a, a) 

having either an open contour or an infinity of closed contours. 

Now since /1(/)fl U (a, e) is of linear measure zero the circumference r(al) de- 

fined by ] w - - a ] = a l  < e  for almost all al in 0 < al < e has no point of F ( / ) u p o n  

it. If  there is an infinity of closed contours of domains G (a, al), either bounded or 

unbounded, every value b on ~ (al) belongs to R(f). If there is not an infinity of 

closed contours there is at  least one open contour of an unbounded G (a, ~1). Choose 

a point z upon such a contour and let ez (w', w), where w is on ? (al), be the corre- 

sponding element. We can continue ez (w', w) indefinitely round ? (al), the continua- 

tion containing only internal elements. 1 I t  follows tha t  again every value b on 

(al) belongs to R(]). Since every point of U (a, e) is arbitrarily near to a circum- 

ference ~ (ax) it follows tha t  U (a, e)c_~ (]). I t  will be observed that  this does not 

require the condition a F. C F(]). 

I t  now remains to prove tha t  aft. R(]). Suppose on the contrary tha t  a E C R(]). 

We can then find e ( a ) >  0 such that  for all a 1 < e(a) all the zeros of ] ( z ) - - a  are 

contained in a finite set of bounded domains G (a, al). But  since a e R' (/) we can 

find b fiR(/) such that  I b - - a ] <  al. Hence there is an unbounded domain G1 (a, al) 

which contains no zero of / ( z ) -  a. Now by Lemma 6 we can find a diameter v of 

the circle ~(al) on which there is no point of F(/) and on which therefore every 

internal inverse element of z (w) at  an end point of v on ~(al) can be continued 

through the point a to the antipodal point, the continuation again containing only 

internal elements. Choose a point Zl on a contour of G1 (a, al) and continue the cor- 

responding internal element ez (w, Wl), ] wl - -  a ] = al along the circumference to an 

end point of T which is mapped on a point z(T) of the contour. The corresponding 

element ez(~) can be continued along ~ through the point a to the antipodal point 

and in this way v is mapped on a cross cut of the domain Gx (a, al) on which there 

is a zero of f ( z ) - - a  which therefore lies in Gl(a, aO. But Gl(a, al)contains no 

zero of ] ( z ) - - a  so we have a contradiction and we conclude tha t  a q R(/). This 

completes the proof of the lemma. 

To complete the group of lemmas we have 

1 I n  fact  a cont inua t ion  of an  e l ement  ez (w', w) along any  p a t h  con ta ined  in U (a, e) conta ins  
no boundary  e l ement  since if t he re  were such a bounda ry  e l ement  t h e n  U (a, e) N P ( / )  would  be of 
posi t ive  l inear measu re :  see pa rag raph  7 above.  
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L e m m a  8. I] ](z) is meromorphic in [ 2 ] <  1 and 

(i) i] a is an isolated asymptotic value, i.e. i] a 6 1"(]) fl C F'  (/) then, ]or some 

e > O, U (a, ~) - -  (a) a R (/) ; while 

(ii) i] a 6 1"(/) and U (a, ~)fl IT'(~) is o] linear measure zero ]or some s > 0 then 

U (a, s) ~ R (/). 

Choose a < s. Since a 6 F( / )  there is a t  least one unbounded G (a, er). 

(i) follows from the argument  for the case of an unbounded G(a, a ) i n  the 

proof of Lemma 5. This proves tha t  b fiR(~) for any  

b=a  + a e  ~a, 0--<v~<2zt ,  0 < a < e .  

(ii) follows from the argument  for the case of  an unbounded G (a, al) in the 

proof of Lemma 7. 

10. As a further preliminary to the proof of the main theorem in the large 

we prove 

T h e o r e m  8. I] ] (z) is meromorphic in ] z ] <  1, then the ]ollowing relations are 

satis]ied : 

(10.1) Interior o/ R(/)C_interior o/ C(/) 

(lO.11) r 
(10.12) ~ C(/) 

a/nd /rom these, by taking complements, 

(10.2) C C( / )~  interior o] C R ( ] )  

(10.21) ~ C C(/) 

(10.22) c C R (/). 

Of these relations only (10.11) and its inverse (10.21) are not trivial. I t  is 

therefore sufficient to prove (10.21). This relation was first proved by  Noshiro*, but  

we give here a new and ra ther  more direct proof based on dimension theory. ~ 

Let  a be an interior point of C R (/) so that ,  for some s > 0, U (a, s)r C R(/). 

Choose a sequence y~--> 0 as n - +  oo and define )in(l) as the set of values taken a t  

1 lqos~I~o (27 p. 230. The argument is reproduced in I~OSHIRO (4) p, 67. 
We refer to KAR~ MENG-ER, D~e~o~A~theorie, Leipzig 1928; or WITOLD HUREWICZ and 

H~I~rRy WA~J, MAN, Dimension Theory, Princeton 1941. 
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least once in the ring I - - ~ / = < [ z [ < l .  Now X.([) is an open set. For i fbEXn([)  

there is a point z (b) in 1 --  ~ < I z I < 1 such tha t  ] (z(b)) = b and a neighbouxhood 

U (z (b), ~), 8 > 0 in 1 --  ~ < I z ] < 1 in which / (z) takes all values in a neighbourhood 

U(b, e'), e ' >  0, in the w-plane so tha t  U(b, e')c_Xn(]) and b is an interior point 

of Xn (]). Hence C X ,  (]) is closed. 

Now not all of the sets CXn(]) can be of dimension --< 1. For if they were 

then, by Menger's summation theorem 1, C R([)= O CX, ( / )  would be of dimension 
n 

--< 1 which is impossible since U(a, e), which is contained in CR(/ ) ,  is of dimen- 

sion 2. The same is true of the sets C Xn(/)fl U (a, e).. We can therefore find n o 

and ~0 such that  C X,, (])rl U (a, e) is of dimension 2, and hence, by a theorem of 

Menger and Urysohn 2, contains a domain. Let d be such a domain. Then d c_ C C(/) 

and since d c _ U (a, e) and e > 0 is arbitrary it follows that  a e C C(]). This proves 

(10.21) and Theorem 8 follows. 

The theorem has the following three corollaries. 

C o r o l l a r y  8.1. I] ](z) is meromorphic in I z] ~ 1 and i] there is an interior 

point o[ C(/), then R(/) is dense in the interior o/ C(/); and i/ R(/) is nowhere 

dense, then C(/)= 9: C (]) so that C ([) is a Cantor curve. 

Immediate from (10.11). a 

C o r o l l a r y  8.2. A necessary and su]]icient condition that C C(/) shall be void is 

that C R (/) contains no interior point, i.e. C R ([) ~ 9: R (/). 

The condition is necessary, for i] C C(~) is void then R(/)  is everywhere 

dense and it follows that  there is no interior point of C R(]). I t  is sufficient be- 

cause if the interior of CR(]) is void then CC(]) is void by (10.2). 

We require two further lemmas about the frontier sets 9: C(/), 9:R (]) and 9: X (/). 

L e m m a  9. I /  /(z) is meromorphic in [z I< 1, then 

(10.3) 9: R ([) o 9: C (/) = C R (/) N C (/). 

We note tha t  

(10.31) C R (]) = 9: R (/) 0 interior of C R (/) ; 

1 ~[ENOER p. 91, or  ~IUREWIcs-WALLMAN p. 30. 

2 MEI~GER p. 242, or  H U R E W I c s - W ~ L ~ A N  p. 44, 
a T h e  weake r  resul t :  I n t e r i o r  of C (]) n o t  vo id  impl ies  R (]) n o t  vo id  was  p roved ,  in  qu i t e  a 

d i f fe ren t  way ,  b y  I~OSHIRO (1) T h e o r e m s  5 a n d  6. 
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(10.32) ~ R(/) N C(/) =:~ R(/) 

since :~ R (/) c C(/); and b y  (10.21), 

Interior of C R (]) c C C(]) = C C(]) U :~ C(]). (10.33) 

From (10.33), 

But also 

and so 

(lO.4) 

Now 
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C (/) fl interior of C R (]) c :~ C (]). 

Interior of C R (]) ~ C Y R (/) 

C (/) N interior of C R (/) ~ ~ C (]) fl C :~ R (]). 

C :~ R (/) c interior of R (/) U interior of C R ([) 

c interior of C(/)0 interior of C R(]) 
so that  

:~ C (/) N C :~ R (/) c :~ C (/) N interior of C R (]) 

(10.5) c_ C(/) N interior o/ C R(/) 

since ~'C(/)~C(]). Combining (10.4) and (10.5) we have 

(10.6) C (/) N interior of C R (/) = :~ C if) N C :~ R (/). 

Now from (10.31) and (10.32) we have 

CR(/)N C(/)=Y R(/) 0 (C(/)N interior of CR(/)) 

= :~ R (1) u :~ C (1). 

by (10.6). This proves the lemma. 

L e m m a  t0 .  I] ](z) is meromorphic in ] z ] <  1, then 

(10.7) :~ X (/) a :~ R (/) u :~ C (]). 

We see first that  

(10.71) :~.X (/) ~ C (/). 

For if a E C C ( / )  we can find e > 0  and v / > 0  such that  [ / ( z ) - - a [ > ~  for 

1 - - ~ < [ z l < l  and hence the number N of a-points of /(z) in I z l < l  is finite. 

Now if N > 0 then a e interior of X(/) and is therefore not a point of :~ X(/ ) ;  and 

1 is regular in I z ] < l  so that  ] / ( z ) - - a l >  e in } z ] < l  and if N = 0  then / ( z ) _ a  

a e interior of C X (/) and is again not a point of :~ X (/). Hence C C (1) c_ C :~ X (/) 

and (10.71) follows. 

:Now suppose aq~'X(/) is not a point of ~C(/). Then, by (10.71) and (10.11), 

a E Interior of C (/) c ~ (/). 
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Now a cannot be an interior point of R (/) for it would then be an interior point 

of X (/). Hence a E :~ R ([). This proves the lemma. 

Lemma 10 implies a theorem of Persidskij i which in our notation may be 

stated as follows: I /  ](z) is meromorphie in ] z ] <  1, C C(/) is not void and A is 

any component o] C C (]), then either A ~ X (]) or A c C X (j). For :~ X (J) ~ C (]). 

Further, we observe that  i] C (])= ~ C (]) then at least one component o] C C(]) 

is contained in X (/). 

11. We are now in a position to prove our main theorem in the large, namely 

T h e o r e m  9. I] ](z) is meromorphic in [z I < 1, then the ]ollowing relations are 

saris/led : 

(i) I] I'(]) is unrestricted 

(11.1) :~ R (]) U :~ C (j) = C--R (]) n C (]) c ~(]) ;  

(ii) i/  1~([) is o/ linear measure zero 

(11.2) C R (/) c F(]). 

To prove (i) we use Lemma 5. By that  lemma 

(11.3) C -P(/)-cC C(]) U interior of R(]) 

and so, taking complements, 

(11.4) C R (/) n C (/) _=/'(/). 

The complete relation (11.1) now follows from Lemma 9. Alternatively, 

:~ R (J) U :~ C (l) g /~(] )  

also follows immediately from (11.3). For, by (10.2) we have C P ( ] ) g  C :~R(/) and, 

by  (10.1), C F ( ] ) c C : ~ C ( / )  so that  C F ( / ) ~ C : ~ R ( / ) n C : ~ C ( ] )  and the result 

follows on taking complements. 

To prove (ii) we use Lemma 7. I t  is convenient at  this point to introduce a new 

notation. We define the set /1+ ( ] ) g F ( / )  as follows: a q F§ (/) i], ]or all e > O, 

U(a, e)n F(]) is o/ positive linear measure. A point of /~  (]) is not necessarily a 

point of F(J). Now from Lemma 7 we have 

C F(/) n C/ '§ (/) g C V (J) u R (/) 
and hence 

(11.5) C R (/) ~ C C (/) 0 / ' ( / )  tt F .  (/). 

1 PERSIDSKIJ (1). The result  is quoted by  DOOB (3) p, 450, who gives a proof. 
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But if / ' ( / )  is of linear measure zero, /'§ (]) is void and, by Theorem 7, C C(~) is 

also void. Therefore, under this condition C R(]) c- F(]) and (ii) is proved. 

The corollary to Lemma 3 may be recalled at this point as supplementing (ii). 

We shall now shew by an example that  Theorem 9 (i) is best possible in the 

sense that  in the general case F(]) cannot be replaced in (11.1) by F(]). In fact 

we prove that  there exists a /unction u,=g(z) meromorphic in [z[ ~ 1 such that 

C R(g)N C(a)fl C F(g) is not void. 

Using a well-known theorem of Koebe on the conformal mapping of symmetrical 

sht regions it is in principle a simple matter  to construct an automorphic function 

g (z) having the desired property. 
1 

Put  w = u + i v  and denote by sn the segment u = - ,  - - l _ < v g l .  We define 

the domain D, symmetrical about the real axis, by cutting the w-plane along all 

the segments sn for n =  _+ 1, • 2 . . . .  so tha t  the frontier 3tD of D consists of all 

the sn and the segment s~ defined by u = 0, - -  1 --~ v --< 1. All internal points of 

s~ are inaccessible points of :~D. Let t~(n=O, _+ 1, • 2 . . . )  be the segment of 

the real axis joining sn and sn+l with the convention tha t  the segments (--  co, - -  1) 

( + 1 ,  + c o )  are both designated t o . Cut D along the real axis and let D x be the 

part above this axis and D 2 the part below. Denote by ss(1) the segments 

1 
U=n,  (n=___ 1, •  . . . .  ), 0 < - v - - < l  and by s~(1) the segment u = 0 ,  0<v-----1.  

These together with the real axis form the frontier of D 1. We map D x conformally 

on the half-plane ~ ~ > 0, the mapping function being denoted by ~(w). The seg- 

ments sn and tn are then mapped upon alternate segments an(n = • 1, • 2 . . . .  ) and 

vn (n=0 ,  • 1, • 2 . . . .  ) of ~ ~ = 0  having a unique common hmit  point ~ff corre- 

sponding to the segment s~ (1). We suppose ~(w) to be normalised so that  ~ = 0  

and ~ (1 + i) = co. The vn then will Lie in a finite segment --  k < !}t ~ < k. 

Now consider the domain A of connectivity co formed by cutting the E-plane 

along the segments vn(n=0,  ___ 1, • 2 . . . .  ). By a theorem of Koebe 1 there is a 

function ~= ~(~) which maps A conformaUy upon a symmetrical domain K (Kreis- 

bereich) bounded by an infinity of distinct circles ~n(n=O, • 1, • 2 . . . .  ) corre- 

sponding to the rn all lying outside of one another and all having their centres on 

the real axis ~ = 0 .  We normalise the mapping so that  ~ (co) = c<) and ~ = 0  is 

the unique limit point of the yn. We now cut K along the real axis ~ ~ = 0  and 

denote by K 1 the upper part belonging to ~ ~ > 0 and by K9 the lower part belonging 

1 Se  KOEBE (3) w 3 p p .  2 7 3  e t  s e q .  

8 - 6 3 2 0 8 1  A c ~  ~ , t h e ~ t i c a .  87 
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Fig. 2. 

1 
to ~ < 0. We also denote by s~ ) the segments u = - (n = + 1, + 2 . . . .  ), --1 -- v ~ 0, 

n 
in the w-plane. (See figure 2). 

The function ~(~(w)) maps D 1 conformally upon K1. Mapping the half plane 

~ > 0  upon the unit circle ]z I <  1 so tha t  ~ = 0  is mapped on z = l  and ~ = c o  on 

z = -  1 we obtain a function z(~($(w)))= ~(w) which maps D 1 upon a domain Jx in 

I z ] < 1 bounded by an infinity of arcs en (1) (n = • 1, + 2, . . .) of the circ-mference 

]z[ = 1 corresponding to the segments s~ } and an infinity of circular arcs 

~,(1) (n=0 ,  + 1, + 2 . . . .  ) in ] z ] < l  and orthogonal to the circumference [ z [ = l .  

The point z= 1 is the unique limit point of the two sequences of arcs en(1) and 

8n(1). Denote by w=g(z)  the inverse of z=cp(w). This function g(z)is  meromorphic 

in J1 which it maps conformally upon D1 and is real and continuous on all the 

arcs 8n(1). By the symmetry principle g(z) is therefore meromorphic on all the 

8n(1) and in the domains obtained by reflecting J1 in these arcs. Denote by J9 the 

reflection of J1 in 8o(1) and  let Io be the domain consisting of J1, Jz and their com- 

mon frontier ~o (1). Then by the symmetry principle, g (z) takes every value belonging 

to D once and once only in Io but takes no value belonging to :~D in I0. The 

domain I o is bounded by the two sequences of arcs 

en(1) (n= + 1, _+ 2 , . . . ) ,  ~,(1) (n=  +__ 1, +_ 2 , . . . )  

and their transforms with respect to ~o(1) which we may denote by 

~.(2)  (n = _+ 1, + 2 . . . .  ) 
and 

~.  (2) ( n =  + 1, + 2 . . . .  ). 
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\ "  ' . . . .  ) ~ b /  

/0 --,s, 0 4 

Fig. 3. 

The boundary arcs of I0 thus have the two limit points z = l  and its transform 

with respect to (~0(1) which we may denote by z = e  ~~ (See figure 3.) 

Since g(z)  is real and continuous on the arcs ~ (1 )  and 8~(2) ( n =  ++_ 1, + 2  . . . .  ) 

successive reflections with respect to these arcs and their transforms generate a 

group T of linear transformations of Io into a set of domains I1, I2 . . . .  Im . . . .  

which together with their common frontiers fill the unit circle ] z [ <  1. The frontier 

of each such domain Im consists of two sequences of arcs emn(1) and e~n(2) of the 

c i rcumference]z]= 1, the transforms of en(1) and e=(2), and two sequences of ortho- 

gonal arcs 6~n(1) and 6~,n(2) in [ z [ <  1, the transforms of (~(1) and 0~(2), and the 

two limit points of these sequences, the transforms of z = 1 and z = e i~ The function 

g(z) is thus automorphic with respect to the group T and the points z=  1, z =  e i~ 

and their transforms are limit points of the group. 
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We have thus shewn tha t  g (z) is meromorphic in ] z I < 1 and tha t  R (g) = D 

and C R (g)= ~D.  Further, it follows from the structure of D that  

C R (0) = C R (g) = ~ D 
and that  

C C (O) = C R (0) 
is void. Now 

i 
- ~ C R (0) = C R (0) n C (g);  
2 -  

i 
and it is easily shewn tha t  ~-_cC F(r 

For consider any continuous path in ]z I < 1 tending to the circumference 

I z [ = 1, and let it  be defined by a continuous function z = ~ (t), 0 < t < o% where 

[ ~ (t) I < 1 and lira [ ~ (t) ] = 1. Suppose first tha t  for all t > to, say, z = ~ (t) lies in 
Ib-+ co 

one of the domains Im which without loss of generality we may take to be Io. 

i 
Since ~ lies outside D~ and is an inaceessibh frontier point of Dx which is mapped 

i 
conformally on Jx it follows tha t  w=O (l~(t)) cannot tend to ~ as t tends to oo. 

Secondly, suppose tha t  the path z = ~  (t) has points in an infinity of the domains Ira. 

I t  must therefore cut an infinity of arcs ~ , ( 1 )  or ~ s ( 2 ) .  But  at  each point of 

intersection with one of these arcs w = r  (~(t)) is real and it follows tha t  r (~(t)) 

i 
cannot tend to ~ as t -~  oo. This proves our assertion. Finally, we note with re- 

gard to r tha t  it  is analytic or algebraic on the arcs e~n(1) and e~as(2) corre- 

sponding to %~(1) and ~n 2) so tha t  / ' (g) is of positive linear measure. The function 

generated by continuation of r across the arcs ~ n ( 1 )  and ~ a ( 2 ) ,  is a multiform 

function of which g(z) is a nniform branch. 

12. We proceed to deduce some of the consequences of Theorem 9 and the 

preceding lemmas. In the first place, if CR( f )  is restricted in some way so as to  

make CR( / )c_~R( / )  results for CR( / )  follow at once from (11.1). For example, 

we have 

Coro l l a ry  9 . t .  

(12.1) 

A ,~x~.ssarz, and sutl~ient ~o,ut~tioa lot 

C R (/) =_ P(t) 

is that C R(]) should contain no interior ~oint; and i/  a value a e C R ff) is not in 

Pq),  then a e C O ff) =_ inzer~ el C R (/). 



Boundary Theorems for a Function Meromorphic in the Unit Circle. 117 

The condition is necessary since by (11.1) 

C R (/) fl C (/) c_ C R (/) fl C (/) c F(/) 
and so 

CR(t)n C P(/)-= C o(1). 

It  is sufficient since it implies that 

CR(])~:~R(])c_~([) by (11.1). 

An equivalent statement of the corollary follows from Corollary 8.2. 

A necessary and su//ieient condition ]or (12.1) to be satisfied is that C C(/) should 

be void. 

Since, by Theorem 1, C C(/) is void if T(r , / )  is unbounded we have therefore 

Corollary 9.2. I] ] (z) is meromorphic in [ z [ <  1 and T (r,/) is unbounded, then 
C R (/) c ~(]). 

Further corollaries follow if we impose a restriction upon the set F(]). 

Corollary 9.3. I~ I" (/) is void then C R(/) is void. 

This follows immediately from (11.2). 

This result was originally proved by Noshiro 1, but in quite a different way. 

More generally, from (11.2) we have 

Corollary 9.4. I/  1".(]) is an isolated set then C R(])c  1"(/) is also isolated. In 

particular, i/ 1"(/) is /inite then CR(/)c_1"(]) is also /inite. 

By this corollary and Theorem 6 we have 

Corol lary  9.5. I~ CR(/)  is infinite, then 1"(/) is in/inite and i~ CR([) is not 

an isolated set, then 1"(/) is not an isolated set. In either case 1"(])---1"~(/) and q~(]) 
is void. 

Corollaries 9.4 and 9.5 are illustrated by the modular function /~ (z) regular in 

[ z ] < l  for which CR(]) and 1"(]) both consist of 0, 1, c~ and by Q(z)=log/~(z) 

for which CR(/)  and 1"(/) consist of c~, + 2 n ~ i  (n=O, 1, 2 . . . .  ).2 

Two other special cases are of interest. 

Corol lary  9.6. (i) I/  C R(/) is o~ positive capavity, then 1"(/)is o/ positive 

capacity; and (ii) i] C R(/) is o/ positive linear measure, then I ' ( ] ) i s  o/ positive 
linear measure. 

1 :NOSHIRO (3) T h e o r e m  4. 

2 j .  E .  LITTLEWOOD, Theory o/ Functions, Oxford  1944, p.  185; or  LITTLEWOOD (1), p. 489. See 

also A. H u R w I T Z - - R .  Cou-xtA~r, Funktionentheorie, Ber l in  1929, p. 432. 
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Of these, (i) is a known result. For by Frostman's Theorem, if C R(/) is of 

positive capacity T(r, ] )=0(1)  and it follows from a theorem of Nevanlinna I that 

F(/) is of positive capacity. As regards (ii), this is a stronger form of Theorem 7 

which, in virtue of Corollary 8.3, may be stated in the form: I / C  R(/ ) is  o/positive 

plane measure, then 1"(t) is o/ positive linear measure. 

Finally, combining TheOrem 9 with Lemma 10 we have 

(loroUary 9.7. 
7 x (1)_~ r( l ) ;  

and i/ F(]) is o/ linear measure zero, then 

:r x (/) ~_ r (1). 

For since X(J) is open we have R ( / ) _ c X ( J ) c C T X ( ] )  and so, if F(]) is of 

linear measure zero, 
:r x (1) _~ C R (f)_~ r( / ) .  

13. I t  follows from (11.1) that :~C(/)c_I'(]), and since 

Interior of F(/) c- interior of C(/) 

it follows that 
(13.1) :~ C(/) c_ :7 _P(/). 

Further, :~ C (]) not void implies that / ' ( / )=/~p (/) by Theorem 7. 

We can, however, prove a stronger result, namely 

T h e o r e m  t0.  I/ [(z) is meromorphie in I z l <  1, then 

(13.2) 7 C (1) c 7 F(]) I1 7/ '+  (1). 

From Lemma 7 we have 

C r ( / ) n  C F+ (/) c_ C C (/) U interior of /~(/) 

(13.3) c C C ([) tl interior of C ([) ; 

and from Lemma 8 (if) 

F([) tl C F+ (/) _c interior of R (/) 

(13.4) a interior of C (]). 

Combining (13.3) and (13.4), 

C F+ (/) c C O (/) tl interior of C ([) 

_~ C ~ c ' ( / )  

1 E . A . F . p .  198 Satz. 
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so that  ~ C (/) c F§ (/), and since 

Interior of F§ (])~ interior of C (/) 

it follows that 

(13.5) :~ C (1) _~ :~ F§ (/). 

Combining (13.1) and (13.5) the theorem is proved. 

Theorem 10 supplements Theorem 7. For, since /'§ (/) is closed, it associates 

with the frontier set ~ C(/) a set of asymptotic values of positive linear measure 

while Theorem 7 merely asserts tha t  if ~t C(/) is not void then F§ (/) is not void. 

C o r o l l a r y  10.1. A component o/ one o/ the open sets C/ '+( / )  or C / ' ( ] )  is 

either a component o/ C C([) or is interior to C(/). 

14. We have seen (Corollary 8.1) that  if R([) is nowhere dence then C(/)= :~C(f). 

In particular this is true if R (/) is an isolated set. We denote by  Ri (/) the set of 

isolated points of R (/). With this definition we see more generally, that  Ri (/)c :~ C (f). 

For Ri (/) ~ C (/) ; and if a e Ri (]), then for all e > 0, u (a, e) contains interior points 

of C C (/) and so also points of C C (/). Therefore a e :~ C(/). In virtue of Theorem 

10, we have thus proved 

T h e o r e m  t t .  I /  ](z) is meromorphic in ] z ] < l  and i] R(/) contains a set 

Ri([) o/isolated values, then 

(14.1) Ri (1) =- ~ F(/) fl ~ F+ (1). 

Also, i/ R (/) is nowhere dense, then 

(14.2) R(/) ~ :~F(]) fl ~ F§ (/). 

Corollary 11.1. / ]  R(/) is nowhere dense, then 

F(/) = 1"+ (/) = ~ F(1) = C (1). 
:For 

:~ o (1) _: ~+ (t) -~ F ( t )  -~ :~ F (1)-~ ~ (1) = 7 c (1). 

On comparing Theorem 11 with Lemma 8 (i) we see that,  in a certain sense, 

the isolated points of R(/) and the isolated points of F(/) have a reciprocal pro- 

perty. For Lemma 8 (i) shews that,  denoting by /'i (/) the set of isolated points of 

/ ' ( / )  and by (CR(/))i the set of isolated points of C R(f), we have 

(14.3) I~i(/)~ (C R(]))~ 0 interior of R(/), 

which we may regard as the counterpart to (14.1). 
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For (CR(]))~ we also have the complementary relation 

(14.4) (C R(])),_ c F(/) O F§ (/). 

For plainly (CR(/))ic_CR(/)fl C(/) and (14.4) follows from (11.5). On the analogy 

with the case of F(z) meromorphic in the plane ]z I <  co, where 

C R (F) = (C R ((F))~ ~ r (F), 

it is natural to ask whether the set F+([) on the right of (14.4) can be eliminated; 

but this question remains open. 

Theorem 11 is illustrated by the function h(z) defined as follows. Put  

~0(~)=e - e  cos ~1 

~g ~g 
and consider ~(~) in the angle ]arg ~ l ~ - -  0, when 0 < 8 < - ~ .  ~0(~) tends uni- 

formly to zero as ~ tends to infinity in this angle and takes the value 0 an infinity 

of times and every other value a finite number of times only. Let z=z(~) be the 

function which maps the angle on the unit circle putting ~ ~ 0 and ~ = oo onto z = --1 

and z = l  respectively and let ~(z) be its inverse. Now put h(z)-~(~(z)). Then 

plainly R(h) consists of the single value O; h(z) is bounded; and every point of 

I z ]=  1 with the exception of z=  1 is a regular point. So the set F(h) consists of 

the whole circumference ] z [ = 1. Evidently 0 E F+ (/). 

P A R T  I I .  

Boundary Theorems in the Small. 

Preliminaries. 

15. Let e i~ be any point of the circumference ] z ] = l .  Although these are well 

established ~ we give here, for completeness and consistency of notation, the formal 

definitions of the cluster set and range of values of /(z) at the point e ~~ The de- 

finitions of the sets Fp([, e i~ and r (/, e is) have already been given in paragraph 4. 

(i) The Cluster Set C([, ei~ af.C(/,  e ~~ if there is a sequence {zn}, [ z n [ < l ,  

such that lim z ,=e ~~ and l im/(z~)=a.  The complementary set is denoted by 

CC([, e i~ and the frontier by :~C(], e~~ 

I T h i s  e x a m p l e  was  g iven  in a d i f fe rent  connec t ion  b y  NOSHIRO (1) p. 29. 

2 These  concep ts  were f i r s t  f o r m u l a t e d  b y  PA~rLEV~. (1 a n d  2). 
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(ii) The Range of  Values R(/ ,  ei~ aER(] ,  e i~ if there is a sequence {zn}, 

I zn[ < 1, such that  lira zn = e ~~ and ] (z,)= a for all values of n. The complementary 
n - - >  g o  

set is denoted by C R (], e i~ and the frontier by :~ R (], el~ 

If  b e C R ( ] ,  e i~ we can find a positive number ~ such that  ] ( z ) ~  b in the 

domain I=--e'~l <a,  I=l < a. 
As before, we denote closures by C, R etc. and derived sets by 6 m, R' etc. 

We observe trivially that  C (], e ~~ is not void ]or any value o/ O. I t  is known 1, 

and can obviously be proved by the method of Theorem 2, that  C(/, e ie) is 

either a single point or a continuum. 

Conversely, we have the following 

T h e o r e m  of Gross .  3 Given any continuum C and any O, there is a ]unction 

/ (z) me~omorphic in I z ] < 1 such tho~ c = v (], e~~ 

Theorem 12. I[ /(z) is meromorphic in [ z [ < l  a~ut i[ /or some value of 0 the 

set C (/, e ~ o) consists o/ a single value a, then Fp (/, e ~ o)= a = C (], e ~ o). 

The proof is immediate. Let  z=z( t )  ( 0 < t ~ l )  define any continuous path 

such that  z(1)=e ~~ and ] z ( t ) [ < l  for t < l .  Then l im/(z( t ))=a.  For if not, we 
t--->l 

can find a sequence fi < t3 < " "  < tn < . - - ,  tn < 1 and a number e > 0 such tha t  

[ / ( z ( tn ) ) - -a[>e .  We can therefore find a limit point b of the set {](z(~n))} such 

tha t  [ b - - a [  ~--e and since b e C ( / ,  e ~e) the theorem is proved. The point e ie is a 

Fatou point for /(z). 

We need to be able to describe the behaviour of ](z) at the boundary" of 

I z l <  1 near a given point z--e i~ For this purpose we adopt the following addi- 

tional notations and definitions: 

We write in general 

(15.1) C(],  0 1 ~  0 <~ 03) = 0 C(],  e i~ 
Oz~O~Os 

with a similar definition for C (/, 01 < 0 < 03); and, in particular, 

c (], o < ] o - go I < ,7) = u c (], e ~o) 
O<JO-Ool<'~ 

and 
c(],1O-Oo1<,7)= u C( / , e~~  

1O-Oo1<~ 

1 GROSS (1) p.  20 w 6; or  (2) p. 248 w 6: or  D o o ~  (I) p. 753. 
2 GROSS (1) p. 20 w 7. More precise t heo rems  were p roved  in GROSS (2) pp.  248-253, see foot-  

note  2, p. 123 below. 
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Then the cluster set at e ~~ with respect to the boundary is defined as the intersection 

of all the sets C(/, 0 < 1 0 - - 0 0 1 < 7 ) ,  where 7 is arbitrarily small. This set 1 is 

denoted by 

(15.2) c~(/, e'~ = .  C(l, o < 1 o -  ool <7).  

The set Fp(],  01 < 0 < 09) was defined in paragraph 

generalised as follows. We say that  

aEF(], 0x<0<03)  
or  

aEF(/, 0 x g  0 ~  03) 

8. The definition is 

if there is an asymptotic path on which /(z) tends to a and whose end is contained 

in the open arc z = e  ~~ 01 < 0 < 03 or the closed arc z = e  i~ 01 ---- 0 ~ 09, respectively. 

For brevity we write 

and, in particular, 

r ( t ,  o - 7 < o ' < o  + 7 ) = r ( / , I O ' - O 1 < 7 )  

F(I, - 7 <  o < 7)= r( / ,  I ol <7) ,  

and similarly for Fp and Fa.  

The intersection of the sets F ( / ,  I 0' - -  0 ] < 7), which we denote by 

05.~) z (1, e ~~ = n r( l ,  10' - 01< 7) 

plays a similar role in the theory in the small to that  of 1-'(/) in the theory in 

the large. I t  is convenient also to have the notation 

and 

Then 

We note tha t  

and, writing 

zP( l ,  e'~ = n/'p (/, t 0 ' - 0 1 < 7 )  

X.'(/, c'O)= n F~(/, 10'-- 01<7) .  

z (l, e~~ ZP (t, e i~ o Za (t, eie). 

z'  (/, ~~ _~ n r '  (/,  I o' - o l < ~) 
~7 

1 This definition, general]sing the original concept of Painlev6, was introduced by GROSS (2) 
pp. 248-249. 



(15.4) 

we have 

(15.5) 
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Z*(/,  r  n -P(I, 10 ' - -  0 l < ~ ) ,  

Z (/, d~ c- 2 (/, d~ X* (/, do) �9 

set g (/e i~ may be void even though / ' ( / ,  I O" - -  01 < ~/) is not void for 

any ~ > 0; but  g *  (/, d ~ is not void unless F(/ ,  10 ' - -  0[ < y) is void for some ~/>0. 

Plainly 

(15.6) Z* (/,  ei~ c C (], el~ 

The analogues in the small of  Theorems B and C. 

16. The characteristic Picard Theorem in the small is that  of Gross and 

Iversen. 1 I t  is evident that  
C~(/, e~~ C(/, e~~ 

CB (], d ~ is closed but  not necessarily connected; but  its two sub-sets 

~ r  (/, d~ = n Off, - - v  < o ' -  0 < o )  

and CBI(], d~ = 0 0( / ,  O <  O' - -O<z l )  are both connected. ~ I t  is known 3 that  

(16.1) ~ C (/, e ~~ c ~ C~ (/, do). 

Doob 4 has given a strikingly simple proof of the theorem of Gross-Iversen, which 

in our notation is stated as follows. 

T h e o r e m  B' ( G r o s s - I v e r s e n ) .  I /  /(z) is meromorphic in ] z l <  1, then]or any 

value o/ O, ] (z) takes every value belonging to C (], e ia) but not to CB (/, ei~ with two 

1 GROSS (2) p. 291 w 6; IVERSEIr (2) p. 13 w 12. 
2 We shall not  be fur ther  concerned with the sets CBr (/, e i o) a n d  CBl  (], e i 0). However, the 

relations between these sets and the sets C (J, e i o) a n d  CB (J, e i o) are significant and were studied in 
considerable detail  by  Gross and Iversen. See particularly GRoss (2) pp. 248-253 and pp. 281-284 
and Ivm~sE~ (3) pp. 8-18. 

Quite recently, interest ing theorems on the s t ructure  of C (/, e i o) of a ra ther  different type  
from those proved by  previous writers have been proved by  CAR&THEODORY (1) and WEIOAND (l) ,  
The principal theorem of Weigand does, however, contain Gross' theorem, quoted in w 15 above. 
B u t  the methods  of Gross and Weigand, which are similar in principle, do not  apparent ly  enable 
us to prove, irl the abscenc~ of any restriction on the cont inuum C, t ha t  G = G (]) for some ] (z) 
meromorphic in I zJ < 1. 

a This was first proved by BEURLING (l)  p. 101. See also NOSHIRO (2 and 4). 
4 Doos (1). 
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possible exceptions, in every neighbourhood of z=e  ~~ contained in I z[ ~ 1; i.e. the set 

C R (/, e~~ Off, e~~ C CB(t, d ~ 

contains at most two values. Also, if this set contains two values, then C R (/, e ~~ con- 

rains no other values and C C (/, d ~ is accordinoly void. 

This theorem follows easily from another theorem of Gross and Iversen which 

is an analogue in the small of Theorem C, namely 

T h e o r e m  (2' (Gross - Ive r sen ) .  / f  t(z) is mero~wrphic in [ z [ <  1, then for any 

value of O, we have 

(16.2) CR( ] ,  e~~ fl C(f, e~~ C CB (], e~~ do). 

In other words, a Picard value at  a point e ~~ which belongs to C (/, e ~~ but 

not to CB (/, e ~~ is an asymptotic value. We observe tha t  it  follows at  once from 

this theorem tha t  if R (f, e ~~ is void then C(f, d ~  (f, do). For, in virtue of 

(16.1) and the fact tha t  CCs( f ,  e ~~ is an open set, O(/, d ~  d ~ is either 

void or an open set; but  by LindelSf's theorem / ' e ( f ,  e i~ contains at  most one 

value since R(f ,  e i~ is void and hence C(f, d~ CCB(/ ,  e ~~ is void. 

The relation (16.2) has an obvious analogy with (11.5). However, the limitations 

of Theorem C' are severe since it has no significance unless C~ (f, d ~ differs from 

C(f, e~~ For example, in the case of the modular function /~(z) the omitted values 

0, 1, cx~ belong to C R ( f ,  d ~ but both C C ( / , e  ~~ and CCB(f,  e ~~ are void for all 

values of 0 and Theorem C' tells us nothing about the set C R (f, e~~ Our main 

theorem in the small (Theorem 16 below) leads to a generalization of Theorem C" 

which is free from this limitation and leads to a generalization of Theorem B. 

The Main Theorem in the Small. 

17. Our method differs only in detail from that  used to prove Theorem 9. 

We begin by proving the lemmas and collateral results analogous to those proved 

in paragraphs 9 and 10. 

By analogy with the definition of the set F§ (/) we say that  a E ~, (/, e ~~ i / /or  

all ~7 > 0 and e > 0 the set U (a, e) fl 11 (], [ 0 - -  Oo [ < ~) is of positive linear measure. 1 

We now prove the analogue in the small of Lemma 5, namely 

1 This does not of course imply that U (a, e) fl ~ (f, e i~ is of positive ~near measure. But 
a e C X* (h e ~ 0) does imply that ~or some ee, U (a, eo) N ;C (f, J 0) is of linear measure z e r o .  
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L e m m a  l i .  I] /(z) is meromorphic in I z l < l  and i] a e C z * ( t ,  ei~ theneither 

(i) aeCC(] ,  ei~ or 

(ii) a is an interior l~oint o/ R ([, d ~ ; or 

(iii) a 6 ~ (/, e ~ 0) and, /or some e > O, 

U (a, e)--(a)C_R (/, e*~ 

We may clearly put  0=0. Denote by E = E ( 1 ,  7) the domain [ z - -  1] < 2  sin ~/2,  

[ z [ ~  1, cut off from the unit circle by a circle of centre z = 1 through the points 

z = e +-i,, and by )] = ~ (a, a, 7) the set of domains G (a, a) fl E. 

By hypothesis we can find e > 0 and ~1 > 0 such tha t  U (a, e) f l /1 ( / ,  [ 0 [ < ~/) 

is void and we have to consider the following possibilities. 

(i) a e C C ( / , 1 ) ;  i.e. for some a g e  and some ~ / > 0 ,  ] ] ( z ) - - a l > a i n  E so 

tha t  27 is void. 

Otherwise, for all a ~ 0 and ~1 ~ 0 the set 27 is not  void. In  this case z - -1  is 

a limit point of contours of Z'. For  if not  we can find y such that ,  for some ~, 

E is identical with ~" so tha t  I] ( z ) - - a  I <  a in E and so, by  Lemma 4, 

r(/, 101<7)  

is of positive linear measure, contrary to hypothesis. Case ( i )be ing  excluded we 

are now left with the two following alternatives. 

(ii) For all a < eo ~< e the frontier of 27 contains either an infinity of closed 

contours or an open contour having an end in the arc z=e ~a, [0[ < v}. Then i t  

follows by the method of Lemma 5 (ii) that ,  since there is no point of F ( / ,  101 <~/)  

on the circumference r(a) defined by  I w - - a [ =  a, there is an infinity of zeros of 

[(z)--b in E for any b on r(a) so tha t  beRq, 1). 

(iii) The frontier of ~" does not  contain either an infinity of closed contours or 

an open contour having an end in the arc z=e  i~ 10[<~?,  but  contains an infinity 

of open contours in E having no ends in this arc and therefore having their end 

points on the arc Iz- -  11=2 sin , /2 ,  Izl < 1. Sinc /(z) is meromorphic in Izl < 1 
only the points e + i '  can be limit points of these end points. This clearly holds for 

all smaller ~1 and hence such a set of contours converges to a t  least one of the 

arcs z = e i~ _ y < 0 --< 0 or 0 --< 0 --< 7. If  this condition is satisfied for any  arbi- 

trarily small a > 0 ,  then aEq~([, 1); and so if aECq~([, 1) this condition is not  

satisfied for a < e0, say. 



126 E . F .  Collingwood and M. L. Cartwright. 

Suppose now that  a E C �9 (/, 1). Then ire can find e0 such tha t  1 satisfies con- 

dition (if) for all a < eo and it follows by the argument above that  ? (a )=-R( / ,  1) 

for all 0 < a < e 0 .  We now shew that  it  also follows that  a E R ( / ,  1). Choose a 

sequence a l > a 2 > ' ~ ' > a n ' " , h m a , = 0 ,  a n < e ,  and let bl by a point of ?(al) .  
n--->rjo 

Since b i E R ( l ,  1) we can find a bl-point zl of / (z)  i.e. a zero of / (z) - -  bl, in E(1,7/2) .  

The corresponding element ezl (w, bl) of the inverse function z (w) can be continued 

along the radius of ? (al) to the centre a and the continuation maps this radius on 

a curve ul in I z [ <  1 one of whose end points is the point Zl while the other is an 

a-point. Similarly, let b~ be a point of 7 (a2) and choose a b~-point zz of /(z) in 

E(1,  7/3) and continue the corresponding element along the radius to a. This con- 

t inuation maps the radius on us joining z2 to an a-point of [ (z). Repeat the process 

for ba on ?(an), za in E(1, 7/4), and generally for b, on ?(an), z, in E ( 1 ,  7 / n + l ) .  

In this way we obtain a sequence of curves un for which z = 1 is a limit point and 

on which 

] ( / ( z ) - - a [ < a n  --<an if a = o o  . 

Now suppose tha t  a E C R (/, 1) and tha t  7 has been so chosen that  E contains no 

a-point of /(z). Then all the curves ~ cross the circumference ] z - - l  i = 2  sin 7[2. 

Further, they have no limit point in E since at  such a limit point Zo we should have 

] (%)= a contrary to hypothesis. Therefore the sequence of curves u~ converges to 

at  least one of the arcs z = e  i~ _ 7  ~ - 0 - ~ 0 , 0 ~ 0 - < 7 , s ~  I t  there- 

fore follows that  under the hypothesis of the lemma U (a, e)_~R (/, 1) if 

aEC(I, 1)n C~(/,  1). 

Finally, a E �9 (1, 1) implies U (a, ~ ) -  (a)_~R (I, I) since, by Theorem 6 and Lemma 
2 a, C R (1, 1) contains at  most two values. This completes the proof of the lemma. 

As the analogue of Lemma 7 we prove 

Lemma 12. I] ](z) is meromorphic in [z [ < 1 and i / a  E C g (/, e i~ [1 C X. (/, eia) 

then either 

(i) a E C C ( / ,  ei~ or 

(if) a is an interior point o] R (], e in) and 

a E R ( / ,  e~e); or 

(iii) a E q5 (/, e ie) and, /or some e > O, 

U (a, e ) -  (a) C_R (/, el~ 
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Put  0 = 0  and define E and 27 as in the proof of Lemma 11. Then, just as in 

that  proof, if a f iC( / , 1 ) f lCq~( / , 1 )  we can find e0 such that  for all a < e o  the 

frontier of 27 contains either an infinity of closed contours or an open contour having 

an end in the arc z = e  i~ 1 0 ] < 7 .  Now for almost all al in 0 < 0 - 1 < e  there is no 

point of F(/ ,  10[ < 7 )  on ~(al) ;  and it follows tha t  ~(0-1)_~R(/, 1) and hence that  

U(a, e)_cR(/, 1). To prove that  a e R ( / ,  1) we now choose a sequence 

O " 1 1 > 6 1 2 > ' ' ' >  (Tin . . . ,  lim aan=0,  

of numbers belonging to the set al and, as by Lemma 6 we may do, we choose a 

point bin on each y(aln)  such tha t  there is no point  of F ( / , 1 0 1 < 7 )  on the 

diameter of y (al,)  through bin. We now repeat with the points bin the argument 

of Lemma 11 (iii) for the points b,, which applies without modification. The lemma 

is therefore proved. 

As the analogue in the small of Lemma 8 we prove 

L e m m a  13. Suppose that /(z) is meromorphic in ]z] < 1 and that a f ig ( / ,  ei~ 

(i) /], [or some 7 < O, a is an isolated point o/ F( / ,  [ 0 ' - - 0 1 <  7), then 

U (a, e) - -  (a) ~ R (/, e i 0) ]or some ~ > O. 

(ii) I /  a e Z (/, ei~ n C •* (/, d~ then a is an interior point o/ R (/, el~ 

To prove this we use the methods of Lemmas 11 and 12. E and 27 are defined 

as before and we observe tha t  a e C(/, 1) so tha t  27 is not void. If q~ (/, 1) is not 

void it follows, since C R (/, 1) then contains at  most two values, that  

U (a, e) - -  (a) _c R (/; 1) 

for some e > 0  independently of any condition on X(], 1). We need then only 

consider the case when �9 (/, 1) is void. Then, as we shewed in the proof of Lemma 

11, we can find e o such that  the frontier of 27 contains either an infinity of closed 

contours or an open contour having an end in the arc z = e  i~ 1 0 ] <  7. The argu- 

ment of Lemma 11 (fi) then proves U(a, e) - -  (a) c_R(], 1) if a is an isolated point of 

F(/ ,  [0] < 7); and the argument of Lemma 12 (ii) proves tha t  U(a, e)~_[g(], 1) if 

a fi X (], 1) N C g. (], 1). The lemma is therefore proved. 

18. The analogue in the small of Theorem 7 is the following theorem. 

T h e o r e m  14. I] /(z) is meromorphic in I z ] <  1 and i/ /or some 0 the set 

C C (t, ei~ is not void, then the set 
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r ( ] ,  I o ' - -  ol < ~ ) = r ~ ( / , I  O ' -  01 < ~ )  

is o/ positive linear measure for all ~1 > 0 and thus the set Z, (1, ei~ is not void. 

Put 0 = 0  and choose a E C C (], 1). Then we can find ~1o such that the function 

l l ( l ( z ) - -a)  is regular and bounded in the domain E (1, 70)- The theorem then follows 

immediately from Lemma 4. 

To complete the preliminaries to the proof of our main theorem in the small, 

we observe that Theorem 8 holds for the sets C(], e ~~ and R(I, e~~ In fact we have 

Theorem iS. I/ /(z) 

(18.1) 

(18.11) 

(18.12) 

is meromo~hic i~ ]zl<l, then lot any O, 0--<0<2~, 

Interior of R (t, ei~ c_ interior of C (f, e ~~ 

_~ i~ (/, e ~~ ) 

_c O(f ,  e ~~ ) 

a n d / t o m  these, by takino complements, 

(18.2) C C (], e~~ cinterior o/ C R (], e ~~ 

(18.21) _c C C (1, e ~~ 

(18.22) c CR 0 ~, e~~ 

Again, only (18.11) and (18.21) are not trivial. Putting O=O and defining 

Xm(f, 1) as the set of values taken at least once by t(z) in the domain E(1,~}n) 

when ~], -~ 0 as n -~ oo (18.11) is proved by precisely the same argument as (10.11) 

applied to the set CR(/ ,  1)= UCXn(] ,  1). 
B 

Corol lary 15.t.  I /  C(f, e '~ has an interior point then R (f, e i~ is dense in 

i n t e ~  Of C (f, ei�9 and if R ~, e i~ is nowhere dense th~y~t C!~f,J~ ei~ 1 

Immediate from (18.11). 

Corol lary t5.2. A necessary and sulf~ient condition that CC(] ,e  i~ shag/be 

void is that C R (I, e ~o) c o , i n s  no interior poi~,  i.e. C R (/, e~~ ~ R (f, e~~ 

Just as for corollary 8.3, necessity follows from 08.21)and sufficiency from 

(18.2). 

1 This latter result generalises a theorem of GRoss (2), p. 260, w 10, who- proved it  for a 
function of bounded vaIency in I zl ~ 1. 
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Finally we have 

L e m m a  i4 .  I]  ] (z) is meromor~hic in [ z I < 1, then ]or any O, 0 ~ 0 < 2 ~, 

(18.3) :~ R (/, e i~ U :~ C (/, e i~ = C R (/, e i~ fl C (], ei~ 

This lemma is deduced from (18.21) by precisely the same argument as Lemma 9 

was deduced from (10.21). In view of this complete formal identity it is sufficient 

to refer to the proof of Lemma 9. 

We now prove our main theorem in the small, namely 

T h e o r e m  16. I]  ](z) is meromo~phic in [ z [ < l ,  then /or any O, O < O < 2 ~ t ,  

the /ollowing relations are satis/ied : 

(i) I /  g (], e i~ is unrestricted 

(19.1) : ~ R ( ] , e i ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  

(ii) 1/ g .  (/, e i~ is void i.e. i /  / ' ( / , ] 0 " - - 0 [ < • )  is o/ linear measure zero /or 

some ~ > O, 

(19.2) C R (], e i~ ~ Z (], ei~ U ~ (/, e ~a) 

and i], /urther, C R (], e i~ contains more than two values, q~ (], e i~ and ZA (/, e~a) are 

both void and 

(19.3) C R (], e i o) c X, (/, el~ = XP (/, el~ �9 

To prove (i) we use Lemma 11. By that  lemma 

C X* (], ei ~ c C C (], e i 0) U interior of R (], e i o) u q~ (], d o) and hence 

(19.4) C R  (/, d ~ fl C (/, ele) c_ Z* (], e ~~ U �9 (/, d~ 

The complete relation (19.1) now follows from Lemma 14. 

To prove (ii) we use Lemma 12. This gives 

CZ (/, ei~ CZ, (/, e~~ ~- C C (/, e ~~ U R (/, e ~~ O r (/, d ~ 
and hence 

(19.5) C R (/, d ~ _~ C C (/, e ~~ u Z (/, e~~ u Z* (/, e~~ u �9 (/, ei~ 

Now, by Theorem 14, if Z, (/, e in) is void C C (/, e ~a) is also void and so we have 

(19.2) and if C R ( / ,  e i~ contains more than two values (19.3) follows by Theorem 6. 

The function g(z), which we constructed in paragraph 11 to shew bhat Theorem 

9 (i) is best possible, also shews that  Theorem 16 (i) is best possible in the sense 

that  the set g* (/, e in) cannot be replaced in (19.1) by  g(/ ,  e~a). We have only to 

consider g (z) in the neighbourhood of the point z = 1. 
9 - -  6 3 2 0 8 1  Acta  mathematica. 8 7  
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Theorem 16 is a concise s ta tement  of a somewhat  complicated situation. We 

set out  the various implications of the  theorem in the general case, i.e. Theorem 

16 (i), in order  to  shew tha t  it  is exhaust ive.  

For  a given a E C R (], e i~ fl C (/, e ~ 6) the a l ternat ive  possibilities are t abu la ted  

as follows: 

(i) a e 2:* (], el 6). In  this case for all 7 > 0 we have a e F ( / ,  ] 0' - -  0 [ <: 7). 

This does not  exclude the possibili ty t h a t  a t  the  same t ime a E �9 ([, e~~ 

(ii) aeC%*(] ,d6) ,  bu t  a E r 1 7 6  In this case we can find ~o and eo such 

t ha t  U(a ,  e0) N P ( ] , ] 0 ' ~ 0 [ < 7 0 )  is void. Also C R ( ] , e  ~~ contains a t  most  two 

values, one of which must  be a since then  a e C R (], d~ = C R (], e ~~ On fur ther  

analysis we find three  a l ternat ives  of this case. 

(a) There is a set of curves C,  on which /(z) tends  uniformly to a as n ~ c~ 

and which converges to  an arc z ~- e ~6', [ 0' - -  0 ] < 71 ~ ~0. Then,  since 

F ( / , I  O ' - O I  < 7 1 )  is void. 

(8) There are two sets of curves C~ and C~n converging respectively to  arcs 

z=e  ~6', 0 ~ O' <-- 0 + 71, 0 --71 <- O' ~ 0 on w h i c h / ( z )  tends  uniformly to  a as n -~ oo. 

Then  / ' ( ] ,  0 . < ] 0 ' - -  0 1 <71) and U(a, eo)N/'p (/, e ":6) are bo th  void. 

(y) There is one set of curves C~ 

above and the corresponding set I"([, 0 

void. The opposite arc e i~ 0 - -  71 < O' < 

or C~ with the p roper ty  described in (8) 

< 0 ' < 0 + 7 1  ) or F ( / , O - - T x < O ' < O  ) is 

0 or 0 < 0' < 0 + 7, which we denote  by  

~, is then  a Fa tou  arc almost  all points of which belong to the set F{])  and the  

corresponding s e t / ' p  (], 0 - -  71 < 0' < 0) o r /~p  (/, 0 < 0' < 0 + 7) lies outside U (a, ~o)- 

For  consider a point  d r of this opposite arc. Since 7t--<70 we have a E C % * ( / ,  e i~ 

so t ha t  
a C V (/, e U R (/, e 

by  Lemma  11. Hence,  since aECR(] ,  e i~ we can choose 72 such t ha t  in E @  ~ 7~) 

1/(](z ) -  a) is regular  and bounded and it  follows t ha t  the arc z = e i~ [ 0 " - -  0'] < 71, 

is a Fa tou  arc by  L e m m a  2 a. Since e ~~ is an a rb i t ra ry  point  of the  arc 8 our 

assertion is proved.  

Ev iden t ly  the three subsidiary cases (a), (fl) and (y) exhaus t  case (ii) and,  by  

Theorem 16 (i), this together  with case (i) exhausts  all the  possibilities when no 

restr ict ion is imposed on Z (], e~~ �9 
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Case (i) is illustrated by g(z) and by the modular function # ( z ) w h e n  a is 

one of the omitted valueu 0, 1, co. But in this case F( / ,  [ 0 ' - - 0 [  < ~ ) i s  finite 

for all 0 and ~/> 0 so that  a E Z (/, ei~ �9 Other illustrations are Koenigs' function 

K(z) ,  for which co E Z (/, ei~ fl q~ (/, e ~~ for all 0, and a function / (z) constructed 

by Cartwright 1, for which co E I 'p (/, e i~ fl q~ (/, e ~~ while F( / ,  0 < [ 0 ' - -  O[ < ~), 

< ~/0, is void. 

Case (ii) (a) is illustrated by Valiron's regular function / (z)  tending to infinity 

on a spiral asymptotic path which was referred to in paragraph 4 above. 2 

20. The pattern of corollalies of Theorem 16 and collateral results is closely 

similar to tha t  arising from Theorem 9. We have first 

C o r o l l a r y  16A. A necessary and su][icient condition /or 

(20.1) C R (/, e i~ _cZ* (/, e i~ U q5 (/, e i~ 

is that C R ( ] ,  e i~ should contain no interior point; and i] a value a E C R ( [ ,  e i~ is 

not in Z* (/, e i~ U r (/, e i~ then 

a E C C (/, e i o) c interior of C R (/, e i o). 

The condition is necessary since by (19.1) 

C R (/, e ~~ n C (1, e i~ ~ C R (/, e i~ n C (/, e i~ 

=-- Z* (1, e~ o) u r (1, e ~ ~) 
and so 

C R (/, e i~ fl C Z* (/, e~~ n C r (/, e i~ ~ C C (/, e i~ 

interior of C R (/, e i~ 

The condition is sufficient since it implies 

C R (/, e ~ o) ~ :~ R (/, e i o). 

An equivalent statement of this corollary follows from Corollary 15.2. 

A necessary and su][icient condition /or (20.1) to be satisfied is that C C(], e i~ 

should be void. 

If now we impose a restriction upon the set X (/, el a) we obtain a further group 

of corollaries. 

1 CARTWRIOHT (1) w 4.3 pp. 177--181. Cartwright's function is actually asymmetrical with 
respect to e iO. The symmetrical flmction f (z) is the sum of two such functions. 

V~moN (2). 
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(:lorollary 16.2. / ]  X* (/, el~ is void, then C R (/, e ~~ contains at most two values and 

C R ( t ,  e~~ qi (f, do); 

and i] both g* (/, e i~ and q~ ([, e i~ are void then C R (/, e ~~ is void. 

This follows immediately from Theorem 16 (if). For g (/, e i 0) tl g.  (/, e i 0)c_ g* ([, e ~ o). 

More generally, from Theorem 16 (if) we have 

Coro l l a ry  t6.3.  / / ,  /or some ~/> 0, -P(/, [ 0'-- 01 < ~/) is an isolated set, then 

C R (/, e i~ is an isolated set. In  particular, i/ I" ([, I 0 ' - -  0 ] < 7) is a finite set, then 

C R (/, d ~ is also a finite set. 

We may assume that  C R (/, d ~ contains more than two values, so tha t  r (/, do) 

is void, otherwise the assertion is trivial. So (19.3) is satisfied and the corollary 

is proved. 

Conversely, we have at once 

C o r o n a r y  t6.4.  I /  C R ( t ,  e ~~ is infinite, then /or all , />0 ,  F( / ,  1 0 ' - - 0 [ < ~ )  

is infinite; and i/ C R ( / , e  ~~ is not isolated, then /or all 7 > 0 ,  F ( [ , l O ' - O l  < ~) 

is not. isolated. In  either case qi (/, e io) is void, and /or  all su//icicntly small ~ > O, 

r(l, Io'-ol<,7)=rP(/, Io ' -  ol < 
We conclude this group with the analogue of Corollary 9.6. 

Coro l l a ry  16.5. (i) I /  C R (/, e i~ is o] positive capacity then ~ (l, e ~~ is void and 

/or all su//iciently small ~ > 0 ,  

r(/ ,  I o ' - o l  rP(/, I o ' -  o1< ) 

is o/ positive capacity; and (ii) i[ C R(], e i~ is o/positive linear measure then �9 ([,e i~ 

is void and /or all su/[icicntly small ~ > O, 

r(/, Io'-ol<,j)=rP(/, I o ' -  ol 

is o[ positive linear measure and consequently g,  (1, e i~ is not void. 

This again follows immediately from Theorem 16 (if), remembering that  if 

C R (], e ~ 0) contains more than two values ~ ([, e i~ is void and -PA (], [ 0' - -  0 [ < ~/) 

is void for sufficiently small ~/:> 0. 

The second part of this corollary is a stronger form of Theorem 14. 

21. A further strengthening of Theorem 14 is given by the following theorem, 

which is the analogue in the small Theorem 10. 
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Theorem 17. / /  /(z) is meromorphic in I z [ <  l, then 

(21.1) 3: C (], ei~ :~g* (], el~ 3:Z, (], el~ �9 

If 3: C (], e i~ is not void, then �9 (/, e i~ is void and g (], e i a) = ZP (], el~ 

follows then from (19.1) that  3: C (/, e i o) ~ Z* (/, ei o). But 

Interior of g*(], el~ -C interior of C(/, e i~ 

and therefore 
(21.2) 3: C (/, d e) ~ 3:g* (], ei~ 1. 

From Lemma 12 we have 

(21.3) CZ(/ ,  ei~ CZ.  (/, ei~ e i~ u interior of R(],  e i~ 

_~ C3:0(/, e i~ 
and from Lemma 13 (ii) 

(21.4) g (/, ei~ fl C g, (], e i~ _c interior of _~ (/, e i~ 

_~ C 3: 0(t,  eie). 
Combining (21.3) and (21.4) we have 

CZ, (/, ei~ =- C ~V V (t, e '~ 
so tha t  

3:C(/, ei 'y =_ Z. (/, e'~ 
Hence, since 

(21.5) 

Corollary i 7 . i .  

is either a component el C C(/, e i~ or is interior to C (/, el~ 
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I t  

z ,  (/, e' 0) ~_ z* (/, e'*), 

3: C (/, ei ~) r 3: z .  q, el~ 

A component o/ one o/ the open sets C Z. q, e i~ or C Z* (/, ei~ 

22. The considerations of paragraph 14 apply equally in the small. H R (], e i~ 

is an isolated set then C R ( / , e  i~) is everywhere dense so that, by (18.11), the 

interior of C(/, e i~ is void and hence C(/, ei~ ele). We denote by Rift, e i~ 

the set of isolated points of R(],  do). If a e R i ( / ,  d e) then, for all e > 0 ,  U(a, e) 

contains interior points of CR(] ,  e i~ and hence, by (18.21), points of C C(/, e i~ 

and so also points of CC( / ,  ei~ But aEC(D and it follows that  

Rift ,  ei~ el~ 

In  virtue of Theorem 17 we have thus proved 

1 The relation (21.2) was recently proved, by a different method, by OnTsu~ (1). 
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T h e o r e m  18. I]  /(z) is meromorphic in ] z ] <  1, then 

(22.1) Ri (/, ei~ ~ :; C ([, d~ ~Z* (/, e i~ tl YZ ,  (/, ei~ �9 

Also, i] R (], e ~~ is nowhere dense, then 

(22.2) R (/, e i~ ~_ :~ Z* (], el~ I1 :~ ;~, (/, ei~ 

Coro l l a ry  t8 .1.  I /  R (/, e i~ is nowhere dense, then 

Z* (/, e~ 0) = X* (/, el~ = :~ Z* (/, ei % 

For 
C (/, e i ~ c g .  (], e i o) c Z* (/, ei o) ~ :~ C (/, e i o) c ~ Z* (], ei o) c_ :~ C ([, e i o). 

A similar remark to that  following Theorem 11 applies here also on comparing 

Theorem 18 with Lemma 13 (I). For by that  lemma 

(22.3) gi (], ei~ =- C R (/, ei~ U interior of R (L ei~ 

where we define Zi (], e i~ as the sets of points a such that, for some ~ ( a ) >  0, a is 

an isolated point of / ' ( / ,  [0 ' - -0[<~(a))  and (CR( / ,  ei~ is the set of isolated points 

of C R (], e i~ 

We also have the complementary relation 

(22.4) (C R (/, e~~ c_ Z (/, ei~ U Z, (/, ei~ r (/, el~ 

For ( C R ( / ,  ei~ C R ( / ,  ei~ C (/, e i~ and (22.4) follows from (19.5). 

Theorem 18 is illustrated by the function h (z) defined in paragraph 14 in the 

neighbourhood of z = 1. 

Generalisation o f  Theorems B' and C'. 

23. We consider first the relation between Theorem 16 and the known result 

Theorem C. We observe that, for a given ~ > 0, 

/ '(/, lo'-ol<,~)=rp(/, IO'--Ol<~)uF~r I 0 '--  OI <,7) 
(23.1) 

= F~ (/, e io) u Fp(/ ,  0 < I 0 ' - -  01 < 7 ) U F A  (/, 10'- -  el <~). 

Now if a e F~ (], [ 0' - -  0 ] < 7) and if there is an asymptotic path on which ] (z) 

tends to a and whose end contains the point e i~ then a e qb (/, eiO). Hence 

(23.2) Fa( / ,  [ 0 ' - -  0[ < r / ) _  a F~ (/, 0 < [ 0 ' - -  01 < r / )  O ~b(], e r 

and combining (23.1) and (23.2) we have 

(23.3) r(l, lo'-ol<,7)~_r~(/,e,O)ur(/,o<lo'-ol<,l)ug,(/,r176 
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e'~ n F(/, o<1o'-o1< ) 
and 

u (1, ei~ = n ~ ( I ,  o <  1o'-ol < 7);  

and we have from (23.3) 

(23.4) )~* (1, ei~ 1He(l, e i~ U~* (1, e i~ U r (1, ei~ 

Applying (23.4) to (19.1) we have 

(23.5) C R (], e i~ fl C (], e i~ fl C 7 t* (/, e i~ 

=_ l"p (l, ei o) O ~ (1, e i o). 
-N'ow 

~ *  (/, e ~ o) =_ CB (], e i o) and �9 (/, e i o) = CB (], el o). 

So (23.5) gives 

(23.6) C R (], e i~ fl C (/, e i~ n C Ca (], e i~ =- T'p (/, ei~ 

Now suppose that  a E C R ( / ,  ei~ C( / ,  eiO)fl C C n ( / ,  e iO) so that  a E . F p ( I ,  ei~ 

If a is an isolated point of Fp(/ ,  e i~ then a E F p ( / ,  e i~ and (16.2)follows from 

(23.6). Setting aside this trivial case, suppose that  a is not an isolated point of 

I ' p ( / ,  el~ Then a E F ~ , ( ] ,  e i~ and there is a sequence {an}, l i m a n = a  such that  

a~ E F p  (/, e i~ We can thus find distinct asymptotic paths ~'n such that  ] (z) -~ an as 

z ~ e i~ on ~ .  Without loss of generality we may take a =  co and an finite. We can 

choose ~o < 1 such that  the circumference [ z - - e l  ~ = Qo intersects two of the paths 

~,, say ~1, and ~2- Let  D o be the domain having the point e i~ as a frontier point 

and bounded by arcs of ~1, ~2 and the circumference [z - -e i~  = Oo. Since co E C R (/, e i~ 

we can choose ~o such that  the function ](z)  is regular in Do and since ](z)--> al as 

z--> e i~ on ~1 and ] ( z ) ~  az as z--+ e i~ on ~z it follows from LindelSf's Theorem that  

/ ( z )  is unbounded in Do in the neighbourhood of the point e i~ Let ~0 = m a x  ]/(z)] 

on the arcs of ] z - - e i ~  belonging to the frontier of Do and put  M o =  m a x  (2[ a~ ], 

2Jai l ,  #o). Then we can find zo in Do such that  ] ( zo )=wo ,  ] w o [ >  4Mo. By 

choice of eo we can ensure that  I/(z)l<max (2la~l, 2]a , ] ) -<  M o on the ares of r~ 

and ~2 belonging to the frontier of D o. There is thus a domain Go(~176 1/2Mo) 

containing z o and this domain is contained in Do, since on its frontier in I z l <  1 

we have I](z)  l = 2 M o ,  and it has e i~ as a frontier point since Do contains no poles 

of / ( z ) .  Now since, given e >  0, I / ( z ) l  < 2 M o  + e in some neighbourhood of every 

frontier point of Go (co, 1/2Mo) except perhaps e ~8 it follows that  ] (z) is unbounded in 
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Go in the neighbourhood of e ~~ For otherwise we should have I / ( z ) [ ~ 2 M o  in G O 

and in particular [/izo)]-- ~ 2 Mo contrary to hypothesis. We can therefore find a se- 

quence zx, z2, . . .  zn, . . .  in Go such tha t  lira zn=e ~~ and lira [ f i z n ) [ = ~ .  Take 01=0o/2 

and  let D 1 be the domain common to Go and [ z - - e  i~ and having e i~ as a 

frontier point, and denote by Px the maximum of [fiz)[ on the arcs of [z--e~~ 

contained in the frontier of D 1. We can choose zi in /)1 such tha t  [ / ( z l ) ] >  4M1 

where M1--max (2Mo, Pl). There is then a G1 (c~, 1/2Mx) containing z I and having 

e ~~ as a frontier point. Repeating the previous argument, we see that  f(z) is un- 

bounded in Gx in the neighbourhood of e i~ 

Proceeding in this way we obtaine a sequence of domains 

G o - ~ G I ~ G ~  ... ~ G , ' ,  ... 

each having e i o as a frontier point and such that  in (~n we have [ f (z) [ ~ 2 M~ where 

Mo < M1 < M2 < -'" M .  < ... lira M . -  oo. 

We can therefore find a continuous path 7 defined by z = ~  it), 0 < t < c~, such 

tha t  l i m ~ ( t ) = e  ~~ and given any n we can find tn such that  z=~(t )EGn for all 

t ;> t~. Y is thus an asymptotic path on which f (z) -~ c~ so that  vo E Fp if, e~ o). We 

have thus shewn that  in either case a E F e i f ,  e i~ so that  i16.2) again follows from 

(23.6). Theorem C' is thus implied by Theorem 16. 

By a straightforward adaptation of Doob's proof of Theorem B' we now prove 

a generalisation of that  theorem, namely 

T h e o r e m  19. I f  f(z) is meromo~hic in [z[ < 1, then /or any value o/ O, f(z) 

takes every value belonging to C if, e~ o) but not to ~J* if, e~ o), with two 2)oes~7)le ezeel~- 

a=,., ,   ou heod 'o co, inea < 1; i.e. the set 

C R ( f ,  e~~ C(f, e~~ C ~ *  (/, e ~~ 

contains at most two values. Also, if this set contains two values, then C R ( / ,  e ~~ con- 

tains no other values. 

Suppose there is a value 

a~CR(/, e~~ C(/, e~~ C ~ *  (t, e~~ �9 

Now if a ~ C F P i f ,  e ~~ it  follows from (23.5) tha t  a~FJ,  it, e~~ e~~ If  

a ~ �9 (/, e~e), �9 if, e~e) is not void and it follows tha t  C R if, e~e) can contain only 
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one other value; if a E _P~, (/, e i~ there are two asymptotic pa ths  ending in the point 

e i~ on which /(z) tends to different values and it follows from LindelSf's well-known 

theorem that  C R ([, e i~ contains at  most two values. If there arc two values a 

and b both belonging to C R (/, e i~ N C (/, e i 8) N C ~* (/, e i o) and both belonging to 

/,p (/, e ie) then it follows from LindelSf's Theorem that  a and b are the only values 

belonging to C R (/, ei~ This proves the theorem. 

Since ~*  (/, ei~ e i~ Theorem 19 contains Theorem B'. 

PART III. 

The classification and distribution o f  singularities o f f ( z )  on the , ,nit circle. 

24. The points of ]z I= 1 which are not regular points may be classified in 

terms of the excluded range C R at those points. The appropriate definitions for the 

purpose of this classification are obvious enough. To begin with, we de]ine W =  W (]) 

as the set of ~oints e i~ for which C C ([, e ie) is void. Such a point we call a We@r- 

trass ~ooint /or /(z). By Corollary 15.1, R(/ ,  e ie) is everywhere dense /or e ~ E W ( / ) .  

In considering W we require a further definition, namely tha t  of Fz= Fz(/). This 

is defined as the set of points e ie at  which the set F =  F(]) of Fatou points is of 

density 1. The complements with respect to the circumference I z[ = 1 are denoted 

by C W and C Fz. Evidently W is closed. 

By a quite trivial argument we prove 

T h e o r e m  20. I~ / (z) is meromorphic in [ z I < 1, then every ~oint of the circum- 

]erence [z]= 1 belongs either to W or to F z. 

Suppose e i~ E C W. Then there is a number a E C C (f, e i~ and so we can find 

7 > 0 such that  1 / (] (z) --  a) is bounded in E = E (e ~ 0, 7) defined by [ z --  e ~ 0 [ < 2 sin 7 / 2 

and [z[< 1. We map E conformaUy on [ ~ [ <  1 by the function ~(z) whose inverse 

is z(~). The function 
1 

(~:) = / (z (~)) - a 

is then bounded in I ~ [ <  1 and it follows from Fatou's theorem that  the set of 

points of C F(q~) is of measure zero and hence, by Lemma 2 a, tha t  the set 

C F(/)N ~ (0, 7) is of measure zero, where ~ ({9, 7)denotes the arc z=e  i~ [ 0'--0] < 7, 
so that  we have proved that  e i~ E Fz. T]ds proves the theorem. 
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A more  delicate a r g u m e n t  gives a s t ronger  theorem due to  Lit t lewood.  We 

define H = H (/) as the set o] points e ~ o ]or which C R (/, e i o) is o/capacity zero. Such 

a point  we call a Frostman point. H is closed. For  if for a sequence 0~-~ 0 as 

n - ~ ,  C R ( / , e  i~ is of capac i ty  zero then  C R ( / , e  i ~  ~~ is also of 
n 

capac i ty  zero. We begin b y  proving  

T h e o r e m  21 (Lit t lewood).  I] /(z) is meromorphic in I z l <  1, then every point 

o] the circum]erenee I z l= 1 belongs either to H or to F1. 

For  completeness  we reproduce Li t t lewood ' s  proof  1 in our own nota t ion .  

Suppose e i~  Then  we can find ~ > 0  such t h a t  /(z) omits  a set of val~es 

of posit ive capac i ty  in the  domain  E = E ( e  i~ ~?). For  if not ,  given a n y  sequence 

y ~ - > 0  as n ~ oo, the  set  
C R (], e ~ e) = U C X~ (], e i 0) 

is of capac i ty  zero con t ra ry  to hypothesis ,  where Xn(], e ~~ is the  set  of va lues  

taken by  /(z) in E(e  i~ ~n). We now m a p  E on the  uni t  circle I~1 < 1, the  m a p p -  

ing funct ion being ~(z) and its inverse z(~). The funct ion [(z) t r ans fo rms  into 

(~) = / (z (~)) for which C R (~) is of posit ive capaci ty .  Hence,  b y  F r o s t m a n ' s  Theorem,  

T ( ] ~ I ,  ~) is bounded and so C F(~) is of measure  zero. I t  now follows f rom 

L e m m a  2 a, as in the  proof  of Theorem 20, t h a t  C F([)fl  0r (0, 7) is of measure  zero 

so t h a t  e i~ e F t .  

Since evident ly  C W c- C H this  t heo rem contains  Theorem 20. 

C o r o l l a r y  21.1.  I /  C F is o] positive measure then there is at least one point 

ol H on Iz[=l. 
For  if H is void then  every  point  of ]z I= 1 belongs to  C H -  c F 1 .  Bu t  if C F  

were of posit ive measure  we could find a po in t  a t  which C F is of dens i ty  1. 

Therefore C F is of measure  zero if H is void. 

As a fur ther  corollary of Theorem 21 we have  

T h e o r e m  D (Littlewood). 2 / ]  [(z) is meromorphic in [ z ] <  1, then almost all 

points o] I z l= 1 belong either to H or to F. 

Suppose,  on the cont rary ,  t h a t  C H fl C F is of posi t ive measure .  Then there  is 

a poin t  e ~~ a t  which this set  is of dens i ty  1. But ,  by  Theorem 21, e ie belongs to  

1 This result is a stage in the proof of Theorem D, but deserves separate enunciation. 
2 The theorem was stated in a rather weaker form in CARTWRIGHT (I) p 18~, where H was 

de ined as the set of e i o for which C R (/, e i 0) is an G-set. Our proof is the same except that Frost- 
man's theorem is used in place of the earlier and weaker theorem of Ahlfors. 
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FI  since it belongs to C H  so that  C F  is of zero density at e i~ Hence C H f l  C F  

is of zero density at  e i". We thus have a contradiction and the theorem is proved. 

In this context it is interesting to recall Plessner's important generalisation, 

for functions of unbounded characteristic T (r , /) ,  of Fatou's theorem. To state the 

theorem we require a further definition. Given an angle /~ of vertex e i~ and con- 

tained in ] z ] < l ,  i.e. a Stolz angle at  e i~, the sets CA(/ ,e  i~) and RA( / , e  i~ are 

defined as in 15 (i) and (ii) except that  the sequence {zn} is restricted to the angle 

/k. We now define I = I ( / )  as the set o/ point, s e i~ /or which C CA (/, e i~ is void 

/or every A .  Such a point we call a Plessner point. Evidently I-~ W. But it is 

also clear that  Theorem 15 holds for CA (/,e i~ and RA (/, e ie) so that  for eiOC_I(/) 

not  only is R(/ ,  eke) everywhere dense but, by Corollary 15.1, RA(/,  e io) is every- 

where dense for every Stoltz angle /k at  e i~ We recall also tha t  for eiaa_F(/), 

CA (/, e i~ consists of the single asymptotic value /(e io) for every Stolz angle A.  

The theorem in question is 

T h e o r e m  E (Plessner) I. I[ / (z) is meromorphic in [ z I ~ 1, then almost all points 

o] ] z l = l  belong either to I or t~ F. 

I t  will be noted that  H does not contain I ,  nor does I contain H ;  and while 

F and H may have common points F and I cannot. 

25. The results of the previous paragraph depend upon familiar theorems. 

However, Theorem 16 enables us to prove a new result of the type of Theorem 20. 

We define P = P ( / )  as the set o/ points e ie /or which C R ( / ,  e i~ contains at most two 

values: and we write F' =F '  (/) /or the derived set o/ F. Then P a_H and F i e F ' .  

P is the set of Picard points of /(z). 2 P is closed since C P is open. With these 

definitions we prove 

T h e o r e m  22. I] /(z) is meromorphic in I zl < 1, then every point o~ the circum- 

/erence I z]= 1 belongs either to P or to F'. 

Suppose d ~  Then we can find three numbers a, b and c in the set 

C R ( / ,  eke) so that  q)(/, d ~ is void. Now suppose that  e ~ E C F  '. Since C F ' c _ C F 1  

1 PLESBNER (1). 

2 This definition of Picard points is tha t  first formulated by VALIROI~ {2 a) and (3) p 265 
i n  a later paper, VALII~O~ (4) p 13, he defined four categories of Picard points P1 ~ P~ ~ Pa ~ / ) 4 ,  
of which P1 = P as we have defined it, while H ~ P4. I t  is easily seen, however, tha t  Valiron's 
method will allow P4 to be replaced by H. I t  is only necessary to use Fros tman 's  theorem in place 
of the theorem of Ahlfors referred to in footnote 2 on p. 138. 
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it follows from Theorem 20 that  CC(/ ,  e ~~ is void. Therefore, by Corollary 16.1 

(equivalent form), 

(25.1) CR( I ,  ei~ Z* (1, ei~ c F(I ,  I 0 ' - -  0 [ < ~l) 

for all ~1 > 0. 

Now we can find ~lo such that  /(z) omits the values a, b and c in g = g  (e ~~ ~lo) 

and it follows from Theorem 5 and Lemma 2 a that,  for ~1 ~ ~1o, 

I ' ( / ,  I o ' - o l < n ) = r ~ , ( t ,  1 0 ' -  ol < n )  

and that  for any 0' in I 0' - -  01 < ~/ for which Fp  (], e i~ is not void e i~ E F and 

/ ,p (], ei O ') __ ] (e ~ 0'). In particular, / 'p (/, e i o) is either void or contains only one value 

which may be one of the values a, b or c. 

Since F(I ,  1 0 ' - 0 I < ~ ) = F ( / ,  o < l o ' - o l < ~ ) o r ~ ( / ,  e '~ and since by (25.1) 

-P(/, 10 ' - -0 ]  < 7 )  contains all the values a, b and c it follows that if t (e  ~~ is equal 

to one of these values, say a, then F ( / ,  0 < 1 0 ' - - 0 1 <  ~/) contains the other two b 

and c; and if ](e  i ~  b or c then F ( ] , 0 < ] 0 ' - - 0 ] < ~ / )  contains a, b and e. 

Therefore, for any ~ < ~/o, the arc a ( 0, ~/) contains points of F at which the asymp- 

totic values are equal or arbitrarily near to a, b and c. This proves the theorem. 

A known result follows at  once, namely 

C o r o l l a r y  22.1. I /  C R (/) contains more than two values then the ~oints o/ F 

are everywhere dense on [z I= 1. 

For every point of ] z ] = 1 belongs to C P ~ F'. We may observe, for comparison 

with this corollary, that  it follows from the theorem of Frostman and Fatou- 

Nevanlinna that  if C R(  D is of positive capacity then C F is of measure zero. The 

lrroo] o/ Theorem 22 has in /act shewn that i], /or a given 0, CR(] ,  e ie) contains three 

or mare values, o/ which a is any one, and i/ C C (], d e) is void and ] (eie) ~ a, then 

e i a is a limit point o/points  o] F at which the asymptotic values are equal or arbitrarily 

near to a. Familiar examples of functions with this property are the modular function 

p(z) which omits the values 0, 1, oo and Q(z)=log p(z) which omits the values 

0% + 2n:~i, n = 0 ,  1, 2 . . . . .  For both these functions every point of [ z l = l  is a 

limit point of points of F at vertices of the modular figure at which the asymptotic 

values are equal to the omitted values. 

On the other hand, if CC(],  e ie) is not void and a e C C ( / ,  e ie) then a is at  a 

positive distance from / ' ( / ,  ] 0 ' - - 0 ] <  ~) for all sufficiently small ~ />  0. 
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I t  should be mentioned in conclusion that while our methods do not give 

existence theorems for the sets W, H or P such theorems have been proved by 

Valiron. 1 In particular, he proved that H is not void i] T (r, ]) is unbounded ~ and 

that P is not void i/ 

lira r (r, t) = o o .  
~-.1 - -  log ( l - - r )  

APPENDIX. 

Application to Jordan domains .  

26. The definition of the sets P and r can be generalised so as to apply to 

any Jordan domain Di whose boundary ~ Dj is a closed Jordan curve. I t  is easily 

shewn that  the genera]ised sets F and ~ are invariant under conformal mapping 

of D~ onto any other Jordan domain. The definitions of the sets C, R and Gs 

already given are immediately applicable to any Jordan domain and these sets are 

also evidently invariant under conformal mapping. I t  follows that  the theorems 

have 1)roved in parts 1 and I I  remain valid /or any bounded Jordan domain. For the 

enunciations of these theorems involve only invariant sets. 

Let ](z) be meromorphic in D i. For a simple continuous curve z = z(t), 

0 < t < l ,  we denote by C(z(t)) the cluster set of z(t) as t ~ l ,  i.e. the set of points 

p such that  p = h m  z(tn) for some sequence t n ~ l  as n-->oo. We say that  such 
n-~OO 

curve contained in a Jordan domain D i converges to the boundary if C (z(t))c_:~ Di, 

and that C (z(t)) is its end. 

(i) The Asymptotic Set F(], Di) is now defined as follows, a e / ' ( ] ,  Dj) if there 

is a continuous simple path z=z(t)  contained in D1 such that  G(z(t)c_:~Di and 

lira ] (z (t)) = a. 

If now D i is mapped conformally upon the circle I~1< 1 by a function ~--~(z), 

,~ D i is mapped upon the circumference I~l = 1 and the path z= z (t) upon a path 

= ~ (z (t)) such that  I ~ (z (t))l < 1 and lim I ~ (z(t))l = 1. Hence a e F(~), where 
t--~l 

~(~) = ](z(~)) and z(~) is the inverse of ~(z). The set F(], Di) is  therefore in- 

variant under conformal mapping onto the unit circle and therefore onto any other 

Jordan domain. 

1 VALIROI~ (3 and 4). 
VALmON (4) pp. 28---30 aetuaUy proves tha t  P4 is ~ot void if T (r, ]) is unbounded ; but  P4 

can be replaced by H;  see footnote 2 p. 139 above. 
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By Lemma 1 the cluster set C (~ (z(t))) is either a point or an arc on the cir- 

cumference ] z ] =  1 and it follows tha t  C(z( t )  is either a point or an arc on ~Di .  

If  the end C(z(t)) is an arc a ~ F ~ ( / , D j )  and if it is a point a ~ P p ( / , D j ) ;  and 

these sets are invariant. 

Let  ~ be an arc and p a point of :TDj. Then we may write a E / ' ( / , D S , ~ )  

or a E Fp (/, Dj, V) according as C (z (t)) _a :t or C (z (t)) ---- p; and a E Fp (/, Dj, =) if 

p E ~ and a E T'a (/, Dj, =) if C (z (t)) ~ a is not a point. Then if Dj is mapped con- 

formally upon another Jordan domain Ej we plainly have F(g,  Ej, fl) = F(/, Dj, =); 

I~p (g, Ej, q) = Fp (/, Dj, ~o); F,  (g, Er fl) = Fp (/, Dj, ~) and F~ (g, Ej, fl) = F~ (/, Ds, ~) 
where g(~), q and fl are the transforms of /(z), p and a. 

In order to generalise the definition of the sets q)(/) and q~(/, e ~~ we require 

a definition of the convergence of a sequence of arcs in D~ such tha t  the property 

is preserved by a conformal mapping. The required definition is tha t  of metrical 
convergence of a sequence of bounded sets due to Hausdorff. z 

Let  M and N be two bounded sets and denote by U(M,  e) and U(N, r) the 

e-neighbourhoods of M and N. The Hausdorff distance dH (M, N) between M and 

N is defined as the lower bound of the numbers e for which 

N_a U (M, ~) and M a U (N, e). 

Then d H ( M , N ) = d H ( N , M )  and d H ( M , N ) = O  if and only if M = N .  Suppose 

tha t  for a sequence of closed bounded sets ca there is a closed set c such tha t  

lira dR (cn, c )=  0. Then the sequence c, is said to converge metrically to c. 

For  a function /(z) meromorphic in a Jordan domain DS we now define the 

set �9 (/, Dj) as follows. 

(ii) a e q~(/, Dj) if there is a sequence of continuous arcs c, (the end points 

being included) contained in Di and converging metrically to an arc c~_~D~, and 

a sequence y , > 0 ,  lira ~/,=0, such that ,  for all n, [](z)--a] < ~ ,  for z on c,. Also, 
/t--r- OO 

by definition, a E r (/, Di, p) for any point ~ E c. We see tha t  for a circle this de- 

finition is equivalent to tha t  given in w 5. 

Now suppose tha t  for q ($) meromorphic in [~ [<  1 the set ~5 (r is not void 

and tha t  a e q~ (~0). Then there is a sequence of arcs ~,, in [~ [<  1 converging met- 

rically to an arc ~, of = and such tha t  [~o ( $ ) - - a [ <  ~,, lira 7/, = 0, for all ~: 
n - - ~  oo  

1 F. HAUSDORFF, Merujenlehre, Berlin 1927, pp. 145---146; or P. ALEXANDROFF and  H. ~-IoPF, 
Topologie, Berlin 1935, pp. 112--114. 
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on 7-. The circle ]~1 < 1 is now mapped upon D~ and we denote by c the arc of 

:~ Dj corresponding to 7 and by  cn the arcs corresponding to 7-. We have to shew 

that  the sequence c, converges matrically to c. Suppose the contrary. Then we 

can find e > 0  and a subsequence c~ such tha t  

either there is a point p~ E c such tha t  U (p,,, 

is a point qm Ecm such tha t  U (q~, e) contains 

case first. We may assume the condition to 

du (c~, c) > e. There are. two cases: 

e) contains no point of cm or there 

no point of c. Consider the former 

be satisfied for the whole sequence 

p~. There is then a subsequence ps of the sequence p~ converging to a point 

PoEC. The domain U(po, e/2) is contained in all the domains U(ps, e) for s > s ( e )  

and hence contains no point of any of the curves cs for s>s (e). Now U (Po, el2)fl Dj 

corresponds to a domain ~(e ~~ in the unit  circle whose boundary contains an arc 

of 7 containing the point e i~ corresponding to Po. All the curves 78 lie outside 

(e ~~176 and there is therefore an e ' > 0  such tha t  7 is not contained in U (Ts, e'). 

But this is contrary to hypothesis and we conclude tha t  e =_ U(c,, e) for all 

n > n (e). 

Now consider the second case. Assuming the condition to be satisfied for 

the whole sequence qm, there is a subsequence qs converging to a point qo and all 

contained in U(qo, el2) while U(q~, e) contains no point of c. Now U(q o, el2) is 

contained in all the U (q~, e) so that  it contains no point of c and is therefore 

interior to D i. The corresponding domain is interior to ]~1< 1; it  contains points 

of all the 78 which therefore do not converge to any are of [ ~ ] =  1 and in parti- 

cular not  to 7, contrary to hypothesis. We conclude tha t  cn_ c U(c, e) for all 

n > n (~). 

We have thus proved tha t  cn converges metrically to c so that  a E ~ ( / ,  Di) 

and hence r (~0)~ ~b (/, Di). We have only to reverse the argument, starting from 

the hypothesis tha t  c, converges metrically to c, to shew tha t  7- converges met- 

rically to 7 and hence tha t  ~ ( / ,  l ) / )_  C ~b(~). Therefore ~b(/, D i ) =  r  and it 

follows tha t  the set �9 (/, Di) is invariant under eon]ormal mapping o] D1 onto any 

bounded Jordan domain. Further,  ~5 (g, Ei, q) = ~ (f, Di, p), where Ej, q and a (~) 

are the transforms of Di, p and f (z) under conformal mapping. 

This establishes the validity of the results of Parts  I and I I  for a general Jor- 

dan domain. The validity of the classical theorems of Gross and Iversen for such 

a domain is of course already well known. 

27. On the other hand, the theorems of Par t  I I I  cannot be generaUsed so 

widely since they  relate to the measure of sets on the boundary of the domain 
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and to angular domains oriented with respect to the tangent to the boundary. I t  

is therefore necessary to impose restrictions on the boundary. For the most part 

it is sufficient to assume that the boundary is a closed rectifiable curve. The mea- 

sure of boundary sets is then determined in terms of the lengths of boundary arcs. 

Under conformal mapping boundary sets of measure zero are mapped upon boundary 

sets of measure zero. Further, a rectifiable curve has a unique tangent except per- 

haps at a set of measure zero. Leaving out of account the exceptional set, the sets 

~v and I for a function meromorphie in such a domain are defined as for the circle. 

The definitions can indeed be enlarged to be applicable to corners at which there 

are distinct right and left tangents. The sets IT', H and P are defined on the 

whole boundary as for the circle. 

If ] (z) is meromorphic in D having :~ D rectifiable and if D is mapped con- 

formally upon [~ ]< 1 and / (z)  transforms to ~ (~), then W(]), H(]) and P(])  are 

mapped on W(~), H (~) and P (~) respectively, while F (/) and I ( / )  are mapped on 

F (~) and I (~) excluding points corresponding to the exceptional set on :~ D. This 

set being of measure zero, F 1 (]) is mapped on F 1 (~). I t  follows from this that the 

theorems of w 24 can be extended by conformal mapping to any Jordan domain 

with a rectifiable boundary. 

Finally, in order to extend the result~ of w 25 to a Jordan domain it is 

necessary that F '  should be invariant under conformal mapping. F must therefore 

be defined except for a finite set of boundary points�9 This is secured if the boundary 

is sectionally smooth, i.e. consists of a finite set of arcs with a continuously turning 

tangent at every point. 
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