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Introduction 

Consider the problem of finding maps f: M--->N that are stationary for an energy 

functional such as fM IDfl p (where M and N are compact riemannian manifolds and 

p~>l). Such maps may be found by minimizing the functional, but if we minimize among 

all maps from M to N, then the minimum is 0 and is attained only by constant maps. 

Thus in order to find nontrivial stationary maps, we would like to use the topology of M 

and N to define classes of maps from M to N in which we can minimize the functional. 

For instance one could try to minimize among maps in a given homotopy class, but this 

is not possible in general (unless p>dimM),  since a minimizing sequence of mappings 

in one homotopy class can converge (in the appropriate weak topology) to a map in 

another homotopy class. However, in this paper we show that it is possible to minimize 

among maps fwhose  restrictions to a lower dimensional skeleton of (a triangulation of) 

M belong to a given homotopy class. 

To state the results precisely we need to refer to certain Sobolev spaces and 

norms. We will assume without loss of generality that M and N are submanifolds of 

euclidean spaces R m and R ~, respectively, and we let Lip (M, N) denote the space of 

lipschitz maps from M to N. We define LI'p(M, R") to be the space of all functions 

fE LP(M, R n) such that there exist functions 

f~ E Lip (M, R n) and g E LP(M, Horn (R m, Rn)) 

satisfying 

Ilfi-fll,, +llOf,-gllp ---> O. 
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In this case we say that g is a weak derivative of f ,  and we let 

/ f \lip / f \lip 
[[f l[ l ,p : ~Jglf[ p) "~-~JMIY[ p) " 

(One can show that any two weak derivatives o f f  are equal almost everywhere, so 

]]flll,p is well-defined.) We also define: 

L1'P(M, N) = {fE LLP(M, Rn): f(x) E N for every x E M}. 

Finally, we let HI'P(M, N) be the weak-bounded closure of Lip (M, N) in LI'P(M, N). 

That is, fEHI'P(M, N) if and only if there exists a sequence ~E Lip (M, N) such that 

Ilf~-fll. ~ 0 

IlOf, ll, is bounded (independently of i) 

f(x) E N for every x EM. 

These spaces have the following nice compactness property [GT, Theorem 7.22]. 

If f / i s  a sequence of maps in LI'P(M, N) or HI"P(M, N) with [If/,lll.p bounded, then there 

is an f i n  LI'P(M, N) or HI"P(M, N), respectively, such that Itfi-ftlf-->O. 

Recall that the d-homotopy type of a continuous map from M to N is the homotopy 

class of its restriction to the d-dimensional skeleton of M. Our main results may now be 

stated. 

THEOREM 2.1. Let d be the greatest integer strictly less than p. For each K < ~ ,  

there is an e>0 such that if fl,f2 E Lip (M, N), ILfl-f211p<~ and IIDf, llp <K, then fl and f2 

have the same d-homotopy type. 

Consequently each fEH1'P(M,N) has a well-defined d-homotopy type, and d- 

homotopy types are preserved by bounded weak convergence. Thus for each continous 

map g from M to N, there is a map that minimizes fMlDfl among all maps 

fEH1"p(M,N) having the same d-homotopy type as g. 

Similarly for LIa'(M, N) we have 

THEOREM 3.4. Let d = [ p - 1 ]  be the greatest integer less than or equal to p-1 .  

Then each fELl'p(M,N) has a well-defined d-homotopy type, and d-homotopy types 

are preserved by bounded weak convergence. Furthermore, for each continuous map g 
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from the (d+l)-skeleton M d+l of  M into N, there is a map that minimizes f lOfl p 

among all fE Ll'P(M, N) having the same d-homotopy type as g. 

More generally, we can replace SMIDfl p in Theorems 2.1 and 3.4 by any other 

functional Su Q(x, f(x), Df(x)) dx that is lower semicontinuous with respect to bounded 

weak convergence in L I'p and such that IAIP~<c(1 +Q(x, y, A)) for each x E M, y E N, and 

linear map A from Tan~ M to Tany N. 

Although the values of d that occur in Theorems 2. i and 3.4 are different, in each 

case the result is in some sense optimal. For instance let l<p~<2 and let f/: OB3---)aB 3 be 

a sequence of conformal diffeomorphisms that converge almost everywhere to a 

constant map. Then ~u ]Df~] p is uniformly bounded and the f,., each of which is 2- 

homotopic to the identity map, converge weakly to a constant map, which is not 2- 

homotopic to the identity. This shows that d may not be replaced by d+ 1 in Theorem 

2.1. Similarly, although the map f." B2--->aB 2 defined byf(x)=x/lx I is in LI'P(B 2, OB 2) for 

l~<p<2, curves that are homotopic in B 2 can have images (under f )  that are not 

homotopic in aB 2. This shows that d may not be replaced by d+ 1 in Theorem 3.4. 

Note that these theorems imply that each f i n  LI'P(M, N) or in HI'P(M, N) induces 

homomorphisms of the k-dimensional homology groups (with any coefficients) for 

O<.k<~d. Likewise for O<-k<~d, fdetermines a conjugacy class of homomorphisms of the 

k-dimensional homotopy groups. These homomorphisms (or conjugacy classes of 

homomorphisms) are preserved by bounded weak convergence. 

The regularity theory developed by R. Schoen and K. Uhlenbeck [SUI] for p=2  

and extended by R. Hardt and F. H. Lin [HL] to general p >  1 applies to the minimizers 

fELI'P(M,N) given by Theorem 3.4. In particular, such an f is H61der-continuous 

outside of a closed singular set Z c M  with Hausdorff (m-p)-dimensional measure 0. 

(Indeed, for the particular functional SM IDTI p, the Hausdorff dimension of Z is at most 

m - [ p ] - l . )  

On the other hand, there are no known partial regularity theorems for the minimiz- 

ers fEH1'P(M,N)given by Theorem 2.1. (The proofs of the regularity theorems 

mentioned above do not readily generalize to H~'P(M, N) because they involve com- 

parison maps that may not lie in H~'P(M, N).) 
In case M is a manifold with nonempty boundary, one can also find nontrivial 

stationary maps by minimizing the functional subject to Dirichlet boundary conditions 

(indeed, this is the setting considered in [SU1] and [HL]). Thas is, if for a given 

lipschitz map q0: aM--.~N there exists any fE L~'P(OM, N) with boundary values or trace 



4 B. WHITE 

(in the Sobolev space sense) q0, then there exists a n  fELI'P(M,N) that minimizes 

.fM [DfF among all such maps. That raises the question: for which ~ E Lip (aM, N) is 

there an fELi 'P(M,N) with boundary trace ~p? Our third main result (Theorem 4.1) 

gives the simple answer: q0 is the trace of a map in LI'p(M, N) if and only if it can be 

extended to a continuous map from aM 0 M tpj to N. 

The question of when a map tp: aM---~N is the trace of some fEHI'P(M,N) is a 

more difficult one and is not answered in this paper. Again, a regularity theory of such 

maps is lacking. 

We remark that there is a third Sobolev space W~'P(M, PO, which is defined to be 

the strong (i.e., IIll,,p) closure of Lip(M,N) in LI"P(M,N). This space lacks nice 

compactness properties and therefore is not suitable for finding minima of energy 

functionals. But it is well suited for questions about the infima of energy functionals in 

homotopy classes of smooth (or lipschitz maps). We have [W]: 

THEOREM. Let d=[p] be the greatest integer less than or equal to p. Then each 

f E  WI'P(M, N) has a well-defined d-homotopy type, and these d-homotopy types are 

preserved by II'll ,  convergence. Furthermore, the infimum of  f~tlDf[ p among all 

lipschitz maps homotopic to a given map g depends only on the d-homotopy type o f  g. 

In particular, the infimum is zero if  and only i f  g has the d-homotopy type o f  a constant 

map. 

Some cases of the results presented here were already known. In particular, 

R. Schoen and S. T. Yau [SY] proved that an L ~'p map from a p-dimensional manifold 

to any manifold determines a conjugacy class of homomorphisms from 

~rp_l(M) to ~rp_l(N), R. Schoen and K. Uhlenbeck [SU2] proved that an L l'e map 

induces homomorphisms f#:  I-I~(N, R)-.-,I-fl'(M, R) on the real cohomology groups for 

O<-..k<-..[p - 1], and F. Burstall [B] showed that L L2 maps determine conjugacy classes of 

homomorphisms of the fundamental groups. 

The organization of this paper is as follows. Section 1 contains some basic 

definitions and lemmas. Sections 2 and 3 are about H ~'p and L ~'p maps, respectively, 

and are independent of each other. Section 4 is about the dirichlet problem for L Lp 

maps and depends on Section 3. 

1. Preliminaries 

Throughout this paper, M and N are compact riemannian manifolds. We will assume 

without loss of generality that M and N are submanifolds of euclidean spaces R m and 
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R n, respectively. More generally, N need not be compact, or even be a manifold: the 

proofs only require that N be a closed subset of R n and that there be a retraction of an 

e-neighborhood of N onto N. 

We will also assume that M has been triangulated. 

I fX is a polyhedral complex, we let X k denote the k-dimensional skeleton of X. We 

say that a d-dimensional polyhedral complex X is a regular polyhedral complex if it is 

the union of its d-dimensional cells and if for every connected open set UcX,  the set 

U \ X  <d-2) is also connected. Note in particular that the d-skeleton of a manifold is 

regular. 

If X is a polyhedral complex or an open subset of R m, we define the spaces 

LI'P(X, R~), LI'P(X, N), and HI'P(X, IV) exactly as LJ'P(M, R~), LI.P(M, N), and 

HLP(M,N) were defined in the introduction. It is essential that elements of these 

spaces be thought of as maps rather than as equivalence classes of maps. That is, we do 

not identify maps that differ on a set of measure 0 (even though the I1 norm of their 

difference is 0). The reason is that we sometimes refer to the restriction of an 

f E  L~'P(M, R n) to a low dimensional subset of M; if f were merely an equivalence class 

of maps this would not be well defined. 

If f is a continuous map, we let I l l  denote its homotopy class. 

The following two basic theorems will be used repeatedly. 

MORREY-TYPE THEOREM 1.1. Let X be a regular d-dimensional polyhedral com- 

plex, d<p, and 0<F<l-d/ /~.  For every e>0, there is a C(e)<~ such that if f:X-->R is 
lipschitz, then 

Ifl0,~ ~ ~llOf[Ip+C(e)[If lip. (1) 

Consequently if f E L t'P(X), then f • equal almost everywhere to a C ~ function that 

satisfies (1). 

Proof. First note that (1) holds f o r f t ha t  are compactly supported in flcRd. For if 

not, then there exists a sequence f k 6 Co(fl) such that 

1 = IIAll0,~ 

>>- ellDfkl p+(k+e) fk p (2) 

=ellAIl,,,+kllAIIr 

Since L~'P(Q) embeds compactly in C O, Y(~) (cf. [GT, Theorem 7.17]) and since (by (2)) 
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Ilfklll.p~<e -1, it follows that there is a subsequence offk  that converges in C ~ to a limit 

f .  But then letting k--->~ in (2) gives Ifl0,e= I and Ilfl lF0, a contradiction. 

Now consider the case where X is the unit d-dimensional cube [0, 1] d. By reflecting 

we can extend a lipschitz functionfdefined on X to be a lipschitz function F defined on 

X' = [ -  i, 2]dl Let h: X'--~[0, 1] be a C = function on X'  that is I on X and that vanishes on 

0,I". Then 

Iflo, e ~ lh : l~o,r 

e[[O(h" F)llp +C(e) }}h'FIIp 

(because h-F  is compactly supported) 

<~ EllOF" hll,, + ellF" Ohll,, + C(e) tlh " ~ql,, 

~< ellOFIIp + (e sup IOh}+ C(e)) I IE[Ip 

= 3dJp(ellOfllp+(e sup IOhl+C(e))II flip) 

as desired. 

Now let X be any regular d-dimensional polyhedral complex, We may by subdivid- 

ing ([W, p. 129]) assume that X consists of cubes Qz, Q2 .... , Qk rather than simplices. 

Since (as we have just seen) (1) holds on each cube, 

If~x)l+ dist (x, y y  

is bounded by the fight hand side of (1) provided x ~ y  and x and y lie in the same cube 

Qi. More generally this is true provided x and y belong to distinct cubes Qi and Qj that 

have a common (d-1)-dimensional face, since Qi u Qj is then bilipschitz equivalent to a 

single cube. But ifx and y are any two points in X \ X  d-2, then they are joined by a path 

in X \ X  d-2 whose length is ~2 dist (x, y) (because X is regular). The conclusion follows 

immediately. [] 

FUBINI-TYPE LEMMA 1.2. Let  h be a lipschitz map from a compact polyhedral 

complex X to an open subset U of R m and let 6= dist (h(X), a U). For every k >- 1, there is 

a c=c(6,k)  such that i f F  I . . . . .  FkELI(LO, then 

(1 ~i<~k) (I) IFi(h(x)+t,)l dx < ~ 
EX 
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for almost all v E Bm(r and 

fxexlFi(h(x)+v)ldx<'clXIfvlFi[ (l<~i~<k) (2) 

on a set of v E Bin(b) of positive measure. (Here Bin(6) is the ball of radius 6 centered at 
the origin in Rm.) 

Proof. 

ftol<~fxexlFi(h(x)+v)ldxdv=f~exftol<lFi(h(x)+v)ldvdx 

<'f~eXfz~v 'Fi(z)'dzdx 

= [Xl fu IF, I. 

This immediately gives (1), and implies that for each i 

~'m( v~ Bm(6): fxlFi~ hol > clXl fvlFi' } <" c-' 

(where ho(x)=h(x)+v) so 

~ ' u  veB~(O): IF, ohol>clXl If~l <~kc-'. 
i=l 

Thus we may let c=2k(.~Pm(Bm(6))) -l, for example. [] 

2. H l'p maps 

THEOREM 2.1. Let M and N be compact riemannian manifolds, p>>-l, and d be the 
greatest integer strictly less than p. For every K<oo, there is an e>0 such that if 
3~,f2: M--->N are lipschitz maps with 

Ilf,.lll,p<~K (i= 1,2) 

IIA-AIIp < e 

then fdM ~ and f21M d are homotopic. 

Consequently each fEHI"(M,N)  has a well-defined d-homotopy type, and d- 
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homotopy types are preserved by bounded weak convergence. Thus for  each continu- 

ous map g f rom M to N,  there is a map that minimizes Su IDfl p among all maps  f E H I'p 

having the same d-homotopy type as g. 

Proof. Let U be a small tubular neighborhood of M and R: U---~M be the nearest 

point retraction. Define Fi: U---)N by 

Fi(x ) = f,(R(x)). 

Then clearly 

IlF,-F211,, ~ c,llf~-f211,, ~ c, 

IIF;II,,,, ~ Clllf~ll,,p ~ c, g 
(1) 

IIF! o h o - F  2 o hoH p ~ c 2 c~ e 

II(DFi) o hollp ~ c2 cl K 

and thus 

IlO(Fi o ho)llp ~ c3 g 

where c3=c 2 c I Lip (hv). 

Let l < y < l - d / p .  By the Morrey theorem 1.1, we have for each r/>0, 

IF~ o h o - F 2  * holo, y <~ r l l l O ( f  , o h o ) - D ( F  2 0 ho) lip 

+ C(,7)liE, o ho-F 2 o hvllp 

<~ 2r/c 3 K +C(rl) c 2 c I e. 

(2) 

Let W be a small tubular neighborhood of N o R  ~ that retracts onto N, and let 

6=dis t (N,  OW). Now we can choose r/ small enough that 2ric3K<6/3, and, having 

chosen r/, we can choose e small enough that C(rl) c 2 c I e<6/3. Then by (2) 

IF I o h o - F  2 o hvl0,y ~ ]6 

where cl depends only on R: U---~M. 

Let h: Md---~U be the inclusion map, and for v E R  m write ho(x)=h(x)+v. Then by 

(1) and the Fubini lemma 1.2, there exists a v with Ivl<dist (M d, OU) such that 
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and so for every t E [0, 1 ], 

(1 - t) (E l o h o) (x) + t(F 2 o h o) (x) E W. 

Thus F~ 0 h ~ and F 2 0 h ~ are homotopic in W and, since W retracts onto N, therefore 

homotopic in N. Finally, F i 0 h is homotopic to F i 0 h ~ in N (t,->F i 0 h w is a homotopy),  

so F 10 h is homotopic to F 2 0 h in N. 

This proves the first assertion. Now given f E H  I'p, we can find a sequence 

fi:M--->N of lipschitz maps such  that IIf~-fll;-'0 and such that IIf/lll,p is uniformly 

bounded. It follows from the first assertion that for i sufficiently large, the f~ all have the 

same d-homotopy type. I f  we define this common d-homotopy type to be the d- 

homotopy type o f f ,  then the remaining conclusions follow immediately. [] 

3. L I'p maps  

LEMMA 3.1. Let  X be a regular polyhedral  complex,  U be an open subset  o f  

Rm, h:X--'>U be a lipschitz map,  f ELI"u(U, Rn), and g be a distribution derivative o f f .  

Let  6=dist(h(X), OU). Define ho:X--->U by 

hv(x) = h(x) + v. 

Then fo r  almost  every v E Bm(6), f o  h v E L i'p and g(ho). Dh v is a distribution derivative 

o f f o  h o. 

Proof. Let  f/: U---~R n be a sequence of smooth maps such that 

Ilf~-f4h,~-< 2-'. 

Then 

where 

fu F(z)  dz  < oo 

F(z) = ~ (If~(z)-j(z)lP +lDfii(z)-g(z)lP). 
i 

By the Fubini lemma 1.2, we have that for almost all [v[<b 
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i.e., 

f~ (ho(x)) dx < oo 
EX 

2 fx(If~~176176176 )< 0r 

Thus since h is lipschitz 

2 f ( l f i  o hv - fo  ho[v + tD(fi o hv)-g(h~). Dh~)  < 

3x 

SO 

II f ,  o h o - f o  h o I1~ +l iD( f ,  o h o) - g (h o)" O h o I I, ~ 0. 

Hence f o  h ~ E L I'p and has distribution derivative g(h o) .Dh o. [] 

P~oPosixioN 3.2. Let U be an open subset o f R  m and let f E L I'P(U, N). Let X be a 

regular polyhedral complex o f  dimension d~<[p-1] that is contained in the d-skeleton 

of  a regular (d+ l)-dimensional polyhedral complex Y. Let h: X---~ U be a lipschitz map 

that extends to a lipschitz map o f  Y into U. Then there is a homotopy class f#[h] o f  
continuous maps from X to N with the following properties. For almost every v with 

Ivl<6=dist(h(X), aU), there is a continuous map gO: X - o N  such that 

(1) fohv(x)=gV(x) for ~(k-almost every x E X  k (O<~k~d). 

(2) g~ extends to a continuous map from Y to N. 

(3) gOEf~[h]. 

Furthermore, i f  ~p E Lip (X, U) is homotopic to h, then f~,[v2]=f#[h]. 

Proof. Define XcXx[0 ,  1] d and h:.,('--+ U by 

d 
X "= t.J (Xkx[O]kx[o, 1] a-k) 

k=O 

~((x,  t)) = h(x) .  

Then X" is a regular polyhedral complex. By Lemma 3. I, for almost every v ~ Bin(b), 

fohoEL~'P(ff, N). By the Morrey theorem 1.2, for each such v, there is a continuous 

map gO: X ~ N  such that foho(x , t)=g~ t) for almost every (x, t) E.~, i.e., 

f(ho(x)) = g~(x, t) for ~a-almost every (x, t)E~'. (4) 
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For each x, {t: (x, t) E,~} is connected, so (4) implies that g~ t) is a function o f x  alone. 

Thus we may write 

f o  hv(x ) = g~ (5) 

for ~d-almost all (x,t)E,~. In particular, (5) holds for ~d-almost every 

(x, t) EXkx[0]kx[0, 1] d-k and therefore ~k-almost every xEX  k. This proves (1). 

To prove (2), let Vd:Y--+U be a lipschitz map that extends h. Let  

I?=(Xx[0, 1])U(Y• and define ~: Y--->U so that ~(y, t)=~p(y). Then for almost all v, 

foV)oELI'P(~',N). Let  D(foV3o) be a distribution derivative. As in the proof of (1), 

f o  ~b ~ is essentially continuous on Xx  [0, 1]. 

Let  e>0. For  rE(0,  I], let H(y, r) be the point in R n that minimizes 

fzE I:', dist (z, (y, r))<er If~ (O~ r)lp dz. 

(If p >  1, this point is unique since the L p norm is strictly convex. For  p = 1, let H(y, r) be 

the average o f f o  v)o over the set of z E ~" such that dist (z, (y, r))<er.) 

It is easy to see that H is continuous for r>0.  And because f o  ~b ~ is essentially 

continuous on Xx[0,1] ,  we may extend H continuously to all of Y so that 

H(x, O)=f(t~o(x)) for almost every xEX. Now 

dist (H(x, r), N) p <~ C(er) -(d+ 1) f ]f(~o(z))-n(Y, r)l p dz 
3z 6 I;', dist (Z, (Y, r))<er (6) 

t "  

/ I D(f~ ~bo) (z)l p C' dz 
Jz E I;', dist (z, (Y, r))<3e 

by the Poincare inequality [W, 2]. (The proof in [W] for p=d+ 1 easily generalizes to 

p>~d+l.) 

By choosing e small enough, we may can make (6) as small as we like. In particular, 

we can choose e>0 small enough that the image of H lies in a tubular neighborhood W 

of N such that there exists a retraction R: W--->N. Then RoH(.,O)=g~ which is 

homotopic to Rol l ( . ,  1)IX, which extends to Rol l ( . ,  1): Y--->N. This proves (2). 

To prove (3), fix a small vector u E R m. Consider the map h: (Xx [0]) U (X• [1])---~ U 

defined by ~(x, t)=h(x)+tu and note that h extends to a lipschitz map of Y=Xx [0, 1] 

into U. Then by (1) and (2), for almost all (small) v, f o  ho is (essentially) continuous and 

extends to a continuous map of  X x  [0, 1] into N. But that means f o  ho and fo  ho+u are 
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essentially continuous and homotopic in N. Thus for almost every (small) u and v, gu 

and gu§ are homotopic. Now let f,~[h] be the common homotopy class. Then (3) is 

immediate. 

To prove the last statement, let 

h : X x { 0 , 1 } ~  U 

h(x, O) = h(x) 

h(x, 1) = ~p(x). 

Then exactly as in the proof of (3), f o  h ~ and f o  ~Po are essentially continuous and 

homotopic in N for almost all small v. Thus f~,[h]=f~,[~p]. [] 

PROPOSITION 3.3. Let  X be a regular polyhedral complex o f  dimension d=[p-1] ,  

U be an open subset of R m, and hELip(X,  U). For every K<oo, there is an e>0 such 

that i f  

fl ,f2 ~ LI'P(U, N) 

IIf, lh,p < g (i = 1,2) 

I lfl-f211p < e 

then (fO# [h]=(f2)# [h]. 

Proof. Let 6=dist  (h(X), 0U). By the Fubini lemma 1.2, there is a set ofvEBm(6) of 

positive measure such that 

fxIf,  o o < E~ (I) ho-f2 hol p (Cl 

fx[(Dfi) o < K) p (i = 1,2) (2) hol p (Cl 

where c~ depends only on X and h. 

By Lemma 3.1 and Proposition 3.2, for almost every vEBm(6), fioho is essentially 

continuous, has distribution derivative Df,(ho).Dho, and 

fi o h ~ E (f/)~, [h]. (3) 

Let r/>0. By the Morrey theorem 2.1 there is a C(r/) such that 
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If, o h o - A  o hol <~ r/llD(f~ o h o ) - D ( f  2 o ho)l[p+C(~) IlL o h o - A  o holl, 

~< 27/(Lip (h)) c I K+C(r !) c I e 
(4) 

(where Lip (h) is the lipschitz constant of  h). Le t  WcR"  be a neighborhood of  N that 

retracts onto N. Choose r/>0 so that 

2r/(Lip (h)) c~ K < dist (N, a W)/3 

and then choose e>0 so that 

C(r/) c I e < dist (N, aW)/3. 

It then follows from (4) that 

tfl(ho(x))+(1-t) f2(ho(x)) E W 

for 0~<t~ < 1 and x E X. Thus ft  o h ~ and f2 o h ~ are homotopic in W and, since W retracts 

onto N, therefore homotopic in N. This with (3) implies that (fl)~ [h]=(f2)# [h]. [] 

THEOREM 3.4. Let d = [ p - 1 ]  be the greatest integer less than or equal to p - l .  

Then each f E L l ' P ( M , N )  has a d-homotopy type f#[Ma]. This d-homotopy type is a 

homotopy class o f  continuous mappings from M a into N such that: 

(1) I f  f~EL"P(M,N),  IIf:fll:--,0, and IIDf, llp is uniformly bounded, then 

(~)~ [M"] =f~[M ~] 

for sufficiently large i. 

(2) I f  f E L t ' p ( M , N )  is continuous at each x E M  a, then 

f~[M a] = [flMa]. 

(3) (f~[Ma]: f E L"P(M, N)} = {[q0lMa]: tp ~ C ~  d+l , N)}. 

Proof. Let U be a small tubular neighborhood of M c R  m and R: U---~M be the 

nearest point retraction. Note that if f is an L 1'p function or map defined on M then f o R  

is an L ~'p function or map defined on U, and 

[IfoRl[p ~< cllfll p 

liD(foR)lip <~ cllOfll, 
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(for some constant c). Now (using the notation of Proposition 3.2), we define f#[M a] to 

be (foR)** [t], where t: Ma---~U is the inclusion map. Then (1) and (2) are immediate 

consequences of Propositions 3.2 and 3.3. 

To prove (3), recall that f**[Ma]=(foR)** [t] is the homotopy class of a certain 

lipschitz map 

gV =(foR)oto:Md--+ N 

which (by conclusion (2) of Proposition 3.2), extends to a continuous map from M d+l 

into N. Thus 

{f#[Ma]: f E LI'p(M, N)} c {[~01Md]: ~0 e C~ d+l, IV)}. 

To prove the reverse inclusion, recall that since d+ l~<p, there is a map FEL~'P(M, M) 
that (continuously) retracts M \  Y onto M d+l, where YcM is an (m-d-2)-dimensional  

set disjoint from M a+l. (See [W, p. 129], where F is written Fo, l.) Thus if 

q0ELip(Md+l,N), then q)oFELI'P(M,N). By (2), 

(q~ o F)** [M a] = [q~lMa]. 

Thus 

{[q~lMa]: q~ E Lip (M a+~, N)} c {f#[Ma]: fEL~'P(M, N)} 

and therefore (since continuous maps can be uniformly approximated by lipschitz 

maps) 

{[q~JMa]: 9 E C~ a+ l, N) } c { f**[ Ma]: f E LI'P(M, N)). [] 

The reader may wonder if it is possible for two maps in LI'P(M, IV) to have the 

same [p-1]-homotopy type with respect to one triangulation of M but not with respect 

to another. More generally, one can ask if it is possible to have two maps 

f~,f2 ELl'V( M, N) with the same [p-1]-homotopy type (with respect to a triangulation 

of M) such that (f0** [q'] .4=(f2)** [~P] for some lipschitz map ~ of a polyhedral complex of 

dimension ~<[p-1] into M. (Here (f~)# [~] is defined to be (f,.oR)** [~] with R as in the 

proof of Theorem 3.4.) In fact it is not possible: 

PROPOSITION 3.51 Let fl,f2 ELl'P( M, IV), X be a regular polyhedral complex of  

dimension ~<[p-1], and ~p be a lipschitz map from X to M. I f  (fi)**[MtP-II] = 

(f2)** [MfP-11], then (fO# [~P]=(f2)# [~P]. 
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Proof. By subdividing X, we may assume that ~0 is homotopic to a map u such that 

u(Xk)cM k for O<~k<~[p-1] and such that u is affine on each simplex of X. 

Recall that for almost all v E R "  with Iv[ sufficiently small, there exist maps 

g~ E Lip (M tp-1], N) such that for O<~k<~[p - 1] 

and such that 

By (I), 

fi(x+v) = g~(x) for ~k-almost every x E M  k (i)  

(fi)# [ M4p-II] = [gi~ �9 (2) 

f (u(x)+v)  = g~(u(x)) for Yg~-almost every x E X  k. 

Thus for almost every v with Iv[ sufficiently small, 

g~ o u E (f/)~ [u] 

(3) 

and since u and ~0 are homotopic: 

g7 o u E (f,)~ [~0] 

(by Proposition 3.2). Since ( f0#  [MfP-q]=(fz)# [MtP-lJ], it follows from (2) that g~ and 

g~ are homotopic.  Thus g~ o u and g~ o u are homotopic.  But then by (3), (fl)~ [~P]= 

(~)~ [~]. [] 

4. The Diriehlet problem for L I'p maps 

THEOREM 4.1. Let ~p be a lipschitz map from OM to N. Then there exists a map 

f ELI'P(M,N) with boundary trace ~0 if  and only if ~p can be extended to a continuous 

map from OM U M ~pl into N. 

Proof. Suppose first that f E LI'P(M, N) has boundary trace 7) E Lip (aM, IV). Let 

V c M  be a small neighborhood of  OM. Let u: M--->M be a lipschitz map that retracts V 

onto OM and that maps M \ V  diffeomorphically onto M. Define f':M--->N by 

f ' (x )=f(u(x) )  ( x E M \ V )  

f ' (x )  = ~(u(x)) (x E V). 
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Then f '  E LI'P(M, N) (because f has boundary trace ~p; indeed we could let this define 

what it means forfELl,P(M, N) to have boundary trace ~p). 

Let U c R  m be a neighborhood of M and R: U--~M be the nearest point retraction. 

Let h: M ~ U aM---~U be the inclusion map. Then exactly as in the proofs of Proposi- 

tion 3.2 and Theorem 3.4, there exists a v E R m (with Ivl arbitrarily small) such that 

( f 'oRoho) lM t~ is continuous and extends to a continuous map of M tp] into N. 

Moreover, since f '  is continuous on V, f '  oR is continuous on a neighborhood of 

aMc  U, and thereforef '  oR o h v is continuous on aM. 

We have shown that ( f '  oRoho)[aM extends to a continuous map of aMUM ~p] 

into N. Since ~p=(f' oRoho)lOM is homotopic to ( f 'oRohv) laM (by the homotopy 

t~-~(f' o R o hto)lOM), it follows that ~p extends to a continuous map of 0M U M Ip] into N. 

Conversely, suppose ~pELip(aM, N) extends to a continuous map u2 from 

0M UM L~ into N. We may assume without loss of generality that W is in fact lipschitz. 

We recall that there is a map F~L~'P(M,M) that retracts M onto aMUM l~ (This F, 

which is discontinuous on a closed (m-[p]-1)-dimensional set disjoint from aM U M ~ 

is the F0, t of [W, p. 130], modified according to [W, Section 4].) Then since u2 is 

lipschitz, ~ o F E  LI'P(M, N), and we are done. [] 

One can also generalize Theorem 3.4 to manifolds M with boundary. Recall that 

two continuous maps f, g:A---~N are said to be homotopic relative to B if there is a 

homotopy H: [0, 1] • from f r o  g such that H(. ,x)=f(x)=g(x) for all x E A  NB. The 

corresponding equivalence class of a continuous map f is called its homotopy class 

(relB) and is noted by [f(relB)]. 

ThEOReM 4.2. Let d be the greatest integer less than or equal to p -  1, and suppose 

~ELip(aM, N). Then each f E L1'P(M, N) with boundary trace ~p has a d-homotopy 

type f~[M d (rel aM)]. This d-homotopy type is a homotopy class (rel 0M) of  continuous 

mappings from M d into N such that: 

(1) I f  fiELI"P(M,N) has boundary trace ~, IIf,-fll~--,0, and IIDf~ll, is uniformly 

bounded, then 

(f~),~ [M d (rel aM)] = fn[M d (rel aM)] 

for sufficiently large i. 
(2) I f f  E LI'P(M, N) has boundary trace ~0 and is continuous at each x E M d, then 

f,~[Ma (rel aM)] = [(fIM a) (rel aM)]. 
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(3) The set 

(f~[Md(rel aM)]: f E LI'P(M, N) has boundary trace ~} 

is equal to 

{[(91Md) ( re l  aM) ] :  ~p E c ~  d+l , N) ,  qg(x) = ~p(x) f o r  x E M d n 0M} 

The proof  is a fairly straightforward generalization of  the proof  of  Theorem 3.4, 

using the map u: M--->M as in the proof  of  Theorem 4.1 above. 
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