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0. Introduction

Our basic goal is to develop an index theory for almost periodic pseudo-differential
operators on R". The prototype of this theory is [5] which has direct application to the
almost periodic Toeplitz operators. Here, we study index theory for a C*-algebra of opera-
tors on R" which contains most almost periodic pseudo-differential operators such as those
arising in the study of elliptic boundary value problems for constant coefficient elliptic
operators on a half space with almost periodic boundary conditions.

Our program is as follows: We begin with a discussion of a C*-algebra with symbol
which contains all of the classical pseudo-differential operators on R". Precisely, if 4 is a
bounded operator on L2(R") and A€R", let ¢,(4) denote the conjugate of A with the func-

tion etz

acting as a multiplier denoted e;. We first study the C*-algebra of those A4 for
which the function A+>¢g;(A4) has a strongly continuous extension to the radial compacti-
fication of R". The restriction of this function to the complement of R” then gives the usual
(principal) symbol ¢(4) when A is a pseudo-differential operator of order zero (of a suitable
type). We characterize the Fourier multipliers in this algebra and the image of the symbol
map. We give sufficient conditions for the usual construction of a pseudo-differential
operator as well as one of Friedrichs’ constructions to give an element of this algebra. In
particular, the latter gives a positive linear right inverse for the symbol map—at least when
the symbol is sufficiently smooth. In fact, we show in § 3 that the Friedrichs map is a
right inverse to the symbol map in the almost periodic case. We expect this to be true in

the general case also.
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Our next step is to discuss almost periodic operators. In a general C*-algebra, we
think of these as continuous almost periodic maps from a subgroup of the automorphism
group to the C*-algebra. In the case of operators on I2(R"), we use the automorphisms 7,
obtained by conjugation with translation by u, u€R" Indeed, Fourier multipliers and
almost periodic multipliers are almost periodic in this sense.
~ For an almost periodic operator 4 on L(R™), u+>7,(4) has a continuous extension to the
Bohr compactification. Its Haar integral E(A) defines an expectation with values in the
algebra of Fourier multipliers. Since this is essentially L®(R"), the image of E is easy to
understand. In particular, we are able to distinguish closed translation invariant *-ideals
in C*-algebras of almost periodic operators by their image under E. One also has the analo-
gue of a Fourier transform by considering the function A+> E(e;4) which can be used to
distinguish almost periodic operators. Finally, the usual trace on L*(R")* composed with
E provides a trace for the algebra of almost periodic operators which is the cornerstone of
the representation and index theories of § 4.

By combining the notions of symbol and almost periodicity, we arrive at our algebra
A—the C*.algebra of almost periodic operators on L2(R") which have symbol in the above
sense. The image of .4 under ¢ is CAP ® O(8™1), where CAP is the algebra of continuous
almost periodic functions on R". The Friedrichs construction gives a positive linear right
inverse defined on all of CAP ® C(S8™-1).

We close § 3 with a simple structure theorem for 4 and a proof of the fact that the
commutator ideal in 4 is the kernel of ¢.

In § 4 we discuss the IT_-factor representations of ,4 and the resulting analytic index
for relative Fredholm operators ([2, 3]). We first review the group-measure space con-
struction of Murray and von Neumann to obtain a faithful representation of 4 in a Il-
factor. We then show that this is unique in the sense that any faithful Il ,-factor representa-
tion factors through a faithful representation of this II -factor with equivalence of trace.
We would like to compute the analytic index of the relative Fredholm operators in the
image of 4, but the algebra seems to be too large for us.

We therefore restrict our attention to a subalgebra 4, which contains all practical
examples. This is the algebra generated by the almost periodic multipliers, the Fourier
multipliers which are homogeneous near oo, and the operators with relatively compact
image in the Il -factor. Here we show that the usual theorem for scalar singular integral
operators on a compact manifold generalizes. In particular, the index is zero for n>1 and
 is determined by the difference of the mean motions of the symbol when n=1.

We can characterize the elements 4 of A4, in several different ways. One interesting

way is that the Fourier transform E(e;4) is always the uniform limit of Fourier
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multipliers corresponding to the sum of an L' function and a homogeneous continu-
ous one.

We close this section by giving an intrinsic meaning of the index in the C*.algebra 4.
We also show that index zero together with one-sided invertibility is equivalent to inverti-
bility. Since elements of A4, when »>1, always have zero index, invertibility of 4 € 4, is
equivalent to an apriori estimate for 4 or A*.

§ 5 contains a discussion of the systems case.

1. Notation

For the sake of brevity, we have not indicated the domain of function spaces on R”.
CAP thus denotes the continuous almost periodic functions on R". HC denotes the funec-
tions homogeneous of degree 0 whose restriction to the unit sphere S*-! is continuous. L’
denotes the bounded measurable funetions with compact support and O¢° the infinitely
differentiable ones. For €L, M, denotes the corresponding multiplication operator:
M u=gu, w€L2. M, denotes the conjugate of M, with the Fourier transform F: 3 ,=
F'M,F. For'A€R", e; =M, where p(x)=e*'%, x€R" &,=T_,, translation by —A1. Thus,
T yu(x) =u(r—2), z€ER,. When 4 € B(L?), the bounded operators on L2, set7,(4)=T_,4T,
and ¢;(A4)=e_; de;, AER™.

2. The symbol map

ProrositioN 2.1. Let A4 be a C*-algebra and H a Hilbert space. If {p,} is any net of
representations of A4 on H, then

A, ={AE€ A: 0,(A4) and g,(A)* converge strongly}
is o C*-algebra and o: A~ limp,(A) (2.1)
is a representation of A4, on H.

Proof. Sinee representations are norm decreasing and multiplication is strongly conti-
nuous on bounded sets, A, is & *-algebra. Since operator norm is strongly lower semi-

continuous, (2.1) is a norm decreasing *-homomorphism. It follows that A, is closed.

Remark 2.2. The strong topology can be replaced by other topologies. For example,
the ultra-strong, the Mackey topology induced by the trace class (pre-dual of B(H)), and
the topology of uniform eonvergence on compact sets in H all induce the same topology
on norm bounded sets in B(H) and hence lead to the same algebra for a given net.
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Much of our analysis will concern the behavior at oo of semi-groups of automorphisms
applied to the standard representation M of L®. Recall that M is a faithful representation.
We shall use LY to denote L® equipped with the locally convex topology induced by the
strong operator topology via M.

PrOPOSITION 2.3. On norm bounded sets in L®, LY and Li,., 1 <p<oo, each induce
the topology of convergence in measure on compact sets in R”.

Consider a bounded operator 4 on L? such that for every A€8"1,
0;,(4) =tlim g(4) (2.2)

exists in the strong operator topology. This defines an extension of the function 4+>¢;(4)
to the radial compactification of R". Since ¢;(4) is strongly continuous in 4, the extended
function is strongly continuous iff the above limit is uniform. We shall think of ¢,(4) as
defining an operator valued function ¢(4) on R™\ {0} which is homogeneous of degree 0

in 2. Then the uniformity of (2.2) is equivalent to

lim ||e;(4)u—61(4)u] =0, w€ LA (2.3)

[A}>e0

PrOPOSITION 2.4. The set U of bounded operators A on L2(R") such that (2.2) exists
untformly for both A and A* is a C*-algebra. o defines a *-homomorphism of W into
C(8™1, M(L®),), the continuous functions from 8"t to M(L>),.

Proof. If A€, then by the above remarks, o(4)€C(S™ 1, B(L?),). If also BEH and
AER™ {0},
ex(BA)—~03(B) 01(4) =[ex(B) —0o(B)] 0,(4) +e3(4) [2(4) —02(4)].

Since &,(B) —0(B) is bounded in norm by 2||B|| for every A0, it follows that for any

compact set J{ in L?,
i&g]l[s;(B)—o’;(B)]v”»O as |i|— .

In particular, for each u€L2, take
K={o,(4)u: A€8™1}.

By the continuity of ¢(4), X is compact and it follows that &,(BA)—0y(B) 0,{4)—~0 as
|A] = co. Thus 3 is a *-algebra and it is easily seen to be closed in norm. Finally observe
that for 4, w€8™!, ueL?,

eu(oa(4))u =t1ini ea+p(A)u=o0x(A)u,

since |#A+u| > ¢—1 and tends to oo with ¢. Thus ¢,(4) commutes with e,, i.e., o2(4) € M(L®). 7
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Remark 2.5. We shall identify o(4) with its corresponding element of C,(S" ', LY),
the norm bounded functions from 8™ to L® which are continuous when L® has the strong
topology induced by the representation M. We shall see in Theorem 2.14 that ¢ is surjective.

It is clear that every multiplication operator M, is in H with oy(M,)=¢ for every
A =0. To describe the convolution operators in # we introduce the following.

Definition 2.6. Ly is the set of those ¢ in L*® such that for each compact K in R",

flzp(w+y)|dx—>0 as |y|—oo.
K

Our interest in this set centers on the fact that for p€EL® and A€R", 7,(M,) is multi-
plication by T'_p and 7;(M,)~ =¢,(M,). Applying Proposition 2.3, we have that y €LY iff
M »EH and o(M »)=0. Thus, L’ is closed in L*® and is easily seen to be a *-ideal in L®.

More importantly, it provides a direct summand for the convolution operators in .

ProrosiTioN 2.7. Lety€L®. M, €W iff y € HC + LY. Moreover, for A€S™ ™, 0,(M ) =
p(4) when pE€HC and =0 when p €LY . Thus the sum is direct.

Proof. When ¢ €HC,
ple+tA) —pd) =y e+ 1) —pA)—>0 as {—>oo,

and the convergence is uniform for compact sets of z and 4 (1=0). By Proposition 2.3 and
the above remark, M ,€ and ¢; (M ,)=y(d). Also by the above remark, M, €} when
wELY with o(M »)=0. Conversely, if /7 »EH, then 'rﬂ(M ,,,)=M » for every u and since
Tu€)=81Ty o (M ) is a translation invariant function on R" for every 1. Thus o,(} y)isa
constant say w(4). Defining yy=y—w we see that &;(y,) =0 strongly as |1]>co, and by
continuity of @ and above remark, y € HC +Lg°.

A word of caution about Ly is in order. Although it contains LZ° (the compactly
supported functions in L®) and L' N L®, the norm closures of these are ideals in L distinct
from L3 and each other. (Look at characteristic functions of sets which are thin but non-
trivial near oo.)

Another important subspace of H is the compact operators. Indeed, if A has rank 1
and is given by f®g, then ¢,(4) = (e_; /)@ (e_, g) which clearly tends to 0 strongly as |4| —co.
Thus, not only are the compact operators in 3 but they are in the ideal ker o (of course).
An immediate consequence is that 3 is irreducible.

From these facts it follows that H contains all operators of the form M, SM, where
@ and y are compactly supported and § is a singular integral operator (see Seeley [17],
[18]). Also, the symbol agrees with the usual one by virtue of Proposition 2.7.
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A word of caution about the localization properties of 3 is in order. It is obvious that
A€W and p€L® implies M, A €. But there are bounded operators A on L? such that
A¢H while M ,A €N for every ¢ €C. Fourier transform is such an operator. Thus, for
some purposes it may be desirable to enlarge the algebra J, but that will not concern us
here since that is really a question of what one wishes to accept as the kernel of .

What will be important is that if for a given function on R* x R” one can construct a
family of operators which locally have this function as a symbol, then there is an operator

in 3 with this function as its symbol. Precisely,

ProrosiTiON 2.8. Let s be a function on R™xR"™ such that s(-,td)=s(+, ), t>0.
Let {K )2, be a measurable partition of R*. For each j, let y, be the characteristic function of
K. Further, assume that there exists a bounded operator A, on L?(K ) such that

El(AJ-)—MS(.'Z)%O as IZI"’OO
strongly in L*(K ). Finally, assume that || A,|| is bounded independent of j. Then

A=23,4,%
defines a bounded operator on LA(R"™) which is in W, and a(4)=s.

Proof. {y;}721 is a sequence of mutually orthogonal projections whose sum is 1. Thus 4
is bounded. Also, when » € L3(R") and 3,4 =0 for all but a finite number of 7,

llea(Ayu—s(-, A) ul|*=2lxsea(d)) xu—s(-, 4) gyul?~>0, as [A]|->co,
since the sum is finite. But, the set of such « is dense in L2(R"). Thus, 4 €Y and o(4) =s.
Remark 2.9. Observe that the map
{43—~4

is linear and positive in the sense that if 4,>0 in L* K,) for all § then 4>0.

Another class of operators in H are the operators of negative order. More precisely,
let A be the operator such that A is multiplication by (1+ |£]2)V2. We shall say that a
linear map A4 from C° to its dual has order 7 if for all j€Z, A~/""AA! extends to a bounded

operator in L2,
ProrositioN 2.10. If A has negative order, then A€ ker c< .
Proof. Let A have order r <0. Then

llea(4) ull =l ea(AA™) sx(A") ul| <[| AA~"]} |ex(A") ]| >0
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as |A| = oo since g,(A")~ is multiplication by (1-+(£+=)?)", and this converges to 0 uni-

formly on compact sets.

Remark 2.11. In Proposition 2.10 it is sufficient to assume that 4AA¢ and A%A are
bounded in I? for some §>0.

We continue our discussion of the algebra H by showing that certain of the pseudo-
differential operators considered by Hoérmander in [11] are in . In particular,let 0 <d <p <1
and let s €C*(R" x R") be such that

(L+[&])-* @ D Dfs(z, &) (24)
is bounded on R™ X R™ for each «, § and there is a function s,, such that
8(+,t8) ~8uw (+, &0 in Lj, as t->oo . (2.5)

uniformly for |£|=1. By Theorem 3.5 of [11], the operator defined by
W ou(x) = (2n)‘"fs(x, £) e iq(g)dE, z€R", w€C?, (2.6)

extends to a bounded operator on L?(R"). Further, it is shown in the proof of that theo-

rem that when z is not in the support of «,

Vule)= fK (@, 2 ~y) uly) dy

where K(z, 2) is C® for z=+0 and satisfies an estimate of the form
| K(z, 2)| <ck (2), z€R", zER™\0,

with k& smooth and integrable on the complement of every neighborhood of 0. Thus, if u
has support in compact set L and L’ is a set whose distance from L is positive, then

(W) ule) = f K(w, z—y) ™ V"D uly) dy
L
converges to 0 as ||~ oo for each € L' and
|es (W) ()| < OJ kr—y)|uy)|dy, z€L’, all A
L

Since the right hand side of this last inequality is in L2 on L', &;(¥’;) #—0 in L2 on L’. Thus,
to show that W' €, it is enough to study the behavior of &;(¥’;) » on the support of u for
each v €CY. We may then apply Theorem 3.6 of [11] to obtain
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. O ou -
ea(F)u— i o,l)u+zza§j(~,l)g};|l<0|ll Jlull,

where ||-]| is the L? norm on the support of  and || - ||, is the L* norm of the gradient.
Since

08

—1<0(1 e

o (1+]a)

by assumption, &;(¥,)—>s,(, 4) strongly as |A] -0, as desired.
Actually, when it comes to defining pseudo-differential operators which lie in {,
much weaker assumptions on the symbol will suffice. Moreover, in view of Proposition 2.8,

it is enough to construct such operators locally.

ProPOSITION 2.12. Let s be a measurable function on R™ x R such that every derivate

8" of order <1 +n/2 in the first variables satisfies
oup [ 11, 8)| o< = (27
¢ Jrk

for every compact set K. Moreover, assume that s has a symbol s, in the sense that s+, 1) is
homogeneous of degree O and
8(x, E+4) —s(x, 1)—~0

as |A| > for ae. (x, &). Then ¥, is bounded in LK) and has s, as its symbol for every
compact K.

Proof. Let 6€CY with 0 =1 near K. Then 0(x) s(z, &) satisfies the hypotheses of Kohn-
Nirenberg [13], Remark 3.1. Thus Wy, is a bounded operator on L(R"). Now, if v; =¢,;(Vy) u,
then

Baly) = fdg da e PO (x) s(x, £+ 1) 4(E).
By assumption, jdx e EMY(x) [s(z, £+ A) — 8o (2, 1)]>0

as [A]— oo for a.e. (&, 7). Moreover, by the Kohn-Nirenberg remark, there exists w€ll
such that

] f de o D0 () sz, £+ 2)| < (& —7).

Therefore, if 4 €L2, v, is dominated independent of A by an L? function. We may therefore

use pointwise limits. It follows that
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llea(¥os) u—0s(:, ) ul| >0 as |A]—>oco

for u€Cy and hence for w€L2% If w€L?K), then extend by zero to obtain a function u,
in L2(R™). As an operator in L2(K), ¥, is given by the restriction of ¥';u, to K and hence

the restriction of Wy, u, to K. The result now follows.

Remark 2.13. 1t is clear from the proof (due to the choice of §) that the norm of ¥,
in L¥(K) depends on the estimates (2.7) for a larger K. Actually, it is not difficult to show
that for each §>0, there is a constant C3>0 such that if K; is the set of points whose
distance from K is at most §, then the norm of W in L?(K) is dominated by C; times the
maximum of (2.7) taken over K;. Thus, if one has estimates of (2.7) which are uniform
when K runs through a collection of balls of fixed radius, then one can combine this Proposi-
tion with 2.8 to get an element of H with s as its symbol.

Applying the above constructions we can now prove the surjectivity of ¢.

THEOREM 2.14. ¢ maps H onto Cy(S™ 2, LY).

Proof. Given s € 0,,(S™, L¥), we shall construct an operator S in | with s as its symbol
following a method suggested by Hérmander. By Proposition 2.8 it suffices to assume that
s has compact support. Extend s as a homogeneous function of degree 0. Choose a non-
negative @ in C (R") such that {p(x) dx =1 and ¢ has support in the unit ball. Let 0<¢<1/4
and let p denote the function (1+ |4|2)*. Define

amm=ﬁwﬁm¢%@ww»¢«§ﬁd%m

and bz, )= fdyg‘2”(p ( =

ﬁﬂ%M~

Then fdx |b(x, ) — s(z, A)| < fd,u,(p (/1

;2”) 9‘2"f|s(x, w) — 8z, 2)| dz

converges to zero as || —>co by the continuity of s and the fact that when |A—pu| <g,
ullu] —>2/|A] as |A]| > oo. Hence, it follows that b is continuous on the radial compactifica-
tion of R™ with values in L. In particular, {b(-, 1): A€R"} is totally bounded in L. Since

a(*, A) =g % b(+, )

where @,(x) =¢"@(px), and @, % converges to the identity strongly in L*, a(-, 1) —s(+, 1)~ 0
in L' as |A| —>co. Now, a is a C® function on R" x R* which vanishes off a set of the form

K xR* K compact. Moreover, if we differentiate,
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|2 Dlta, | <sup s | lw‘“’l) ([lg1) g

and hence, for each multi-indices «, 3,
(1 -+ |l|)4€‘ﬁl‘2"“lD§D§a(a¢, }.)

is bounded on R". Therefore a satisfies (2.4) and (2. 5) with s, equal to the s of this proof.
Therefore ¥, € } and o(¥,) =s.

Remark 2.15. The map s+—>a considered above is a positive linear map of O(S"~*, L)
into an order zero symbol class of the Hérmander type, and we have shown that the
restrictions of a to spheres define elements of C(8""1, L7°) which converge to s as the radii
tend to oo.

One of the undesirable features of the map ¥ from symbols to operators is that it is
not positive. For a positive linear map we shall use the Friedrichs construction ([9], § I-12)
which is valid for systems as well. The construction is possible under a variety of assump-
tions about smoothness and behavior at oo of the symbols. Combined with remarks 2.9
and 2.15, this construction leads to many positive linear right inverses for the symbol
map. Even in the almost periodic case where localization is not possible and smoothing
is more delicate, the Friedrichs construction leads to a positive right inverse (see § 3).
Therefore, we shall devote the remainder of this section to the construction and discuss
some of its basic properties.

First, let 0€CY be a positive function supported in the unit ball of R* with f62=1.
Let w(£) =(1+]&|2)"* and

9L, &) =0((L —&) w(£)) w(&)™.
Lrmma 2.16.

Jaza eyacm
is bounded independent of & and 1.
Proof. The integrand is supported by
(& 1£-8| <Uol®) and |2—n] <o)},
This set is empty unless [&—n] <lw(&)+1jwm).
For such £, 7, E] = L&) < 0] + o)

Thus, for |¢| sufficiently large, |£] <2|7|. Similarly, for |5| sufficiently large, || <2|&|.
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Since the integral is continuous in & and 7, it is enough to prove boundedness as |&| and

|| = oo with |&] |#|~* bounded. Using a change of variables, we must consider

f 4262 0([w0(E)C+ & — ] () i)™ (@)™

which is bounded as desired.
Next, define the operator

Qz,g(u):fdfﬂi, §e=tag),  4€Cy, =, (ER™

For such u, @, ((u) is C* in , { and compactly supported in . Using the identity

5% (&1 8) = iw,et®

repeatedly, it is easily seen that every polynomial in « times @, ¢ (u) is bounded. In particu-
lar, we may define the operator ¥, (for a €L*(R" xR")) by

<Fau= vy = fdx dea(% C) Qz,{(u) Qz,{(v)'
It is clear that a+> F, is a positive linear map.
ProrosiTioN 2.17. F, extends to a bounded operator on L2(R") for each a €L™.

Proof. Since for real a
e a(z, £) <e ™ ||af| Lo

and e 41 as o 0, it is enough to assume that a(z, &) =¢~**" =b(x) and the bound is

independent of «. But then

A

(P ouyvy = f dejdn f 4z — &) a(C, &) alC ) 618 5)

and by Lemma 2.16, [(Fu,v>|<C (flm) A IE
where C depends only on ¢. Thus

|7, < Oflél =Ofl3=0b(0)=0

as desired.
19 — 732905 Acta mathematica 130. Imprimé le 17 Mai 1973
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Remark 2.18. Taking a =1, we see that Q is a bounded operator from L*R") to L*(R?"),
and F,=Q*M Q, where M, is the multiplication operator defined by the function & on
R2"=T*R"). In the next theorem we shall see that F, is a pesudo-differential operator
whose principal symbol is the same as that of ¥,. Thus @ provides a specific spatial trans-
formation of pseudo-differential operators into multiplication operators, modulo operators
of lower order. We also note in passing that an alternate approach to the definition of ¥,
can be based on the fact that @ is in fact an isometry from L#R*) to L2(R?") (but is not
unitary).

The following is a special case of the Lax-Nirenberg Theorem as given in [9], § I.12.

TaEOREM 2.19. Let a satisfy (2.4) and (2.58) with p=1 and 6 =0. Further assume that
a(x, £) =0 for x outside of a compact set. If a is self-adjoint matriz valued, then

AYR[2F, -, Wi A2
defines a bounded operator in L*(R").
CorROLLARY 2.20. With a as above, F,€H and o(F,)=a.

Proof. See Proposition 2.10 and Theorem 2.14.

Lrmma 2.21. If a€L>® and has compact support, thenF, is a Hilbert-Schmidt operator.

Proof. Let a*(&, £) denote the Fourier transform of a(z, {) with respect to x. Then
a”(&, £) is bounded and supported in a compact set of . Observe that

A

ooy~ [a [an [aza (- .06 0 46 20 T,
Since as |£| = oo, the support of ¢((, &) in ¢ lies exterior to the ball of radius |£/2,

fdéa”‘ n—&8)a( &) q(l n)

is a bounded, compactly supported function. Thus, F, is an integral operator with L2

kernel.

TarEorEM 2.22. Let a satisfy (2.4) and (2.5) with p=1 and 6=0. Further assume that
&=+ a, where ay(x, £) is independent of x and every polynomial in x times a, satisfies
(2.4) with =1 and §=0. If a is self-adjoint matriz valued then

AV2[2F, ¥, —W*] AV

defines a bounded operator in L2,
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CoroLLARY 2.23. With a as above, F, €N with o(F,)=a.
Proof. See Propositions 2.10 and 2.12.
CoroLLARY 2.24. If a€CQHC, then F,€H with o(F,)=a.
Proof. For such a, ¥',= M, and result follows from Proposition 2.7.
Lemma 2.25. If a(x, &)=, then F,EHN and o(F,)=a.

Proof. A straightforward computation shows that
P A
Fou(n)=iln+pu) |dlo(l, n+ p) a(C, 7).
Thus, ¢;(F,) amounts to multiplication of the shifted Fourier transform by

f g+ ptA) gl + ).

Since w(n+ u+A)/w(n+21)—>1 as |1|—> o for each 4, a change of variables leads to the

fact that the above converges to

Jacor-1

for each #. Hence, F,€ N and g,(F,) =e, for every A.

3. Almost periodic operators

Definition 3.1. Let £ be a C*-algebra and § a subgroup of the automorphism group
of L. BEL is said to be almost periodic relative to § if the function

x> o B)
from G to L is almost periodic.
Given a C*-algebra £ and group §G of automorphisms on L, we have

ProrositioN 3.2. The following are equivalent:

(i) B is almost periodic relative to G,
(i) {«(B): «€G} is totally bounded in L,
(iii) B* is almost periodic relative to .

Proof. Since automorphisms of £ are isometries, we have for each «, 8, y€G and BEL,

l2(B(B)) — aly ®))]| = [|B(B) —p(B)|| = || B(B*) —y(B*||.
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These are independent of « and hence give the same pseudo-metric on (§ as their supremum

over «. Thus, total boundedness is the same for each.

ProrosiTioN 3.3. The set of BE L which are almost periodic relative to G is a closed

*_subalgebra of .

Proof. It is clear from (ii) above that this set is a closed linear subspace and is *-invari-
ant by (iii). If B and € are almost periodic relative to §, then for «, S€(,

lo(BC) —B(BC)|| < [ B) - BB O] + || Bl [| e« C) =B,

and it follows that BC is almost periodic relative to .

In the case of singular integral operators we shall use the notion of almost periodic
relative to the translation group {z,: u€R"} since M, is almost periodic in this sense iff
@ is a. p. in the usual sense, and M, commutes with translations. Let 4 be the C*-algebra
of almost periodic operators in }{. Observe that 7,(4) is strdngly continuous in 4 and, when
A € A, lies in a norm compact set of operators. Thus, u+>7,(4) is in fact norm continuous.

ProrosiTioN 3.4. For each u, AER", &;7,=1,¢, and for each A€ A, 1,(e:(4))€ A.

&, by straightforward verification. If A€ A, then {z,(4)}ucrs is
compact and hence ;(t,(4)) has a strong limit as |A] = oo (radially) uniformly in u. Thus
7,(4)€H and a fortiori in 4. Since e; € 4 for évery A, the result follows.

Observe that like |, A4 is an irreducible algebra of operators on L2(R"), even though it
does not contain a non-zero compact operator. Indeed, A contains all 7 » Where p€L®
and is compactly supported, and thus the weak closure of 4 contains all Jf,. Similarly,
the weak closure of A4, contains all (almost) periodic multipliers, and hence all multipliers.
It follows that 4 is weakly dense in B(ZL2(R™)) and hence is irreducible. Using the irredu-
cibility and the fact that 4 has a faithful IT,, representation (see § 4), one can show that

A4 contains no non-zero compact operators. One can also see this more directly since if

Proof. &7,=7

A contained a non-zero compact operator, it would contain all of them. In particular, it
would contain an operator of rank one of the form A =f®g where f has compact support.
For such an operator 4
llza(4)—A] =||4]|, || sufficiently large,

and hence {r;(4): A€R"} is not totally bounded in norm. Thus 4 contains no non-zero
compact operator. [The simplest proof of this fact follows from Propositions 3.12 and 3.13
applied to the ideal of compact operators in 4.]

On the other hand, the operators in ker ¢ N 4 play the role in A4 that the compact
operators play in the C*-algebra generated by the singular integral operators on a compact

manifold. We shall discuss this in section 4.
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ProrosivioN 3.5. If A€ A, then for each A, 0,(4)ECAP. Moreover, the continuity

of 0;(4) (%) in x is uniform on S™1 x R™

Proof. By assumption, {r,(4)} is totally bounded in norm. The strong topology is
then the same as the norm topology on {r,(4)}, and hence, u+>7,(4) is uniformly norm

continuous on R”. Since ¢;07,=1,0¢,, one has ¢,07,=1,90; for every 4 and u. Thus

“
[7u(04(4)) —Tulos(AD]| < [|7(4) ()| (3.1)

and it follows that 7,(c;(4)) is norm continuous and almost periodic in 4 uniformly in A.
Since for each 2, 0,(4) is a multiplication operator, we may choose a ¢, €CAP such that
0,(4)=M,,. Inequality (3.1) then implies the uniformity of the continuity in 2 of g,(2).

ProposiTioN 3.6. 6(A4) contains as a dense subspace in the uniform topology those
bounded functions f on 8" ' x R" such that
(i) for each AES™ 1, f,€0,
(ii) each derivative of f, is continuous and almost periodic uniformly in A,

(iil) each derivative of f, is continuous as & function of A from 8*1to Li,.
Proof. Let g €05 with p>0 and fp=1. Define
oi{x) =t"o(tx), x€R", ¢>0.

Then for f€o(A4), p:% f has the above properties and lies in ¢( 4). Indeed, (i) is immediate.
If D is a derivative, then

T, (D(gi % f2)) =(Doy) % T f
and the right hand side defines a continuous linear operator on the bounded measurable
functions f; with sup norm. Thus, the uniform continuity and almost periodicity of f,
implies that of D(gxf;), i.e., (ii) holds. For (iii) we simply use the fact that ¢ >p % ¢ is

continuous from Li, to L. Finally, we have
[£2(2) = g % f1 () | = \ fR”t"Q(ty) [fa(®) —falz—y)]dy
Ssup!fl(x)_fﬂ(x—t_lyﬂa xERn:
yekK

and hence g; % f;— f; uniformly as £ - co by the uniform continuity of /.

LeEMwmA 3.4. Let X be a compact space and a a bounded function on R™ x X. Assume that
x>a(-, x) is continuous from X to Li,. and that the set of translates {a(+,—2, +)} is totally
bounded in the space of bounded functions. Then a is uniformly continuous and belongs to
CAP®C(X).
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Proof. The closure (with respect to sup norm) of the set of translates is compact.
Further, {a(-, )},ex is compact in Lj,,. Thus translation is continuous uniformly on this
set. Since the topology of convergence in L},, uniformly on X is a coarser Hausforff topo-
logy than that of uniform convergence on R*x X, A+>a(- —4, -) is continuous from R” to
the bounded functions. Let ¢>>0 be given. Then there is a finite set 4,, ..., 4, in R" such

that
U,={A:sup |a(4, x) — a(;, x)| < &}

form an open cover of R*. Choosing a compact set K,< U, and averaging, we have

(A, z) dh—a(dy, z)

| ! <eg w€X.

T a
LK | g,

Therefore,

[a(A, x) — a{l, )] dA

K

1
Lxy—a(d, x)|<4e+ T
la(d, ) —a(l, 2')| < 4e max ]

and hence, by the assumed continuity of a( -, x),
sup la(2, )~ a(2, z")| >0

as z—>z'. We have already shown the uniform continuity in A. Thus ¢ is uniformly con-
tinuous and since a(-, ) € CAP for each z, a € CAP® C(X).

COROLLARY 3.8. If A€ A, then o(4)€ CAPRC(S™ ).

ProrosiTioN 3.9. Let a be g bounded measurable function on R" x R* whose transiates
a(x —A, &) are totally bounded in L*(R" x R"). Then F, is almost periodic relative to {z,}.

Proof. It is immediate that
Qz’.{ (Tp ) =@ —p,;(%)

and hence T_,FT,= FT/N
where T a(x, &) =a(x—u, §).
Since a+ F, is continuous on L® the result follows.

THEOREM 3.10. ¢ is a *-homomorphism of A onto CAPQHC, and F is a positive

linear right inverse.

One of the distingunishing features of the algebra 4 is that the usual localization methods
are not applicable. Indeed, if p €0 and A4 is any bounded operator on L2, then AM € 4
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it Ap=0 since v (AM,)—AM,| =] AM,|| when |u| is sufficiently large. This is not
surprising, since almost periodicity is not a local notion.

As concerns the pseudo-differential operators in 4, observe that the suprema of
(2.4) define a countable collection of semi-norms. The functions a for which (2.4) are boun-
ded form a Frechet space with the corresponding topology. The map a ¥, is continuous
for this topology. Thus, if the translates {a(- +u, <)} are totally bounded in this topology,
Y, €A

Remark 3.11. Tt is enough to require the total boundedness relative to a finite number
of the semi-norms which gives the continuity of ¥'. It does seem necessary, though, to
use the differentiability in both variables. This is in contrast to the standard requirements
of the original theory of Kohn-Nirenberg where it can be assumed that sufficiently many z
derivatives are globally integrable in x uniformly in & Although such assumptions give
W', € A, the desired almost periodicity makes these assumptions useless.

In addition to the symbol on A4, there is another natural positive linear map obtained
by averaging the function 7,(4). More precisely, when 4 € A4, u+7,(d4) being almost pe-
riodic extends to a (norm) continuous map of the Bohr compactification Rz to 4. The

integral of this function with respect to Haar measure defines an element of 4. Explicitly,

. 1
E’(A)=Rh_r)1:°(§R—)n [_R,mnT”(A)d'u'
By the translation invariance of Haar measure, E(7,(4))=E(4)=1,(E(A4)) for every A.
It is clear that E is a norm-decreasing positive linear map.
Now, when A€ 4 and 7,(4)=A for every u, H(AB)=AE(B) for every BE 4. On
the other hand, the image of E consists of operators in /4 invariant under 7. Since (L)
is the set of all translation invariant operators on L2(R"), we have by Proposition 2.7

Prorosition 3.12. If M=M(HC+LY), then M is a subalgebra of A and E is a
positive M-linear map of A onto M.

Another important feature of A4 is that M(L®) N 4= M(CAP). Further, when ¢ €CAP,
E(IM ) is the usual Haar integral, which we also denote by E. From Proposition 3.4 one
has ¢,(E(A4))=E(e,(4)), A€ 4, AER", and it readily follows that

E(o,(4))=0,(E(A)), AER", A€ A

We may summarize these facts by the following commutative diagram:
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A—">CAP @ (8"
E } E®id (3.2)
m— o5
We shall say that a set § in 4 is translation invariant if 7 WS8)ES, when S€S, ucR".

ProrositioN 3.13. If A, is any translation invariant C*-subalgebra of 4 and F is
any closed, translation invariant *-ideal in A, then for positive semidefinite A€ 4,, B(A)€ ¥
iff A€ ¥.

Proof. By translation invariance, {r,} defines an automorphism group on A4/¥, and
every element is almost periodic relative to this group. If B, is the corresponding average.
We want to show thatfor [ 4] >0, the class of 4 in the quotient algebra, E,([A]) =0iff [4]=0.
For this, we faithfully represent the quotient algebra on some Hilbert space and observe
that only trivial positive semidefinite operator can have zero average. Thus, 4>0 and
E(A4)€ J implies that A€ J.

It is an immediate corollary (assuming translation and *-invariance) that every

closed ideal in every closed subalgebra is generated by its intersection with 7M.

Example 3.14. Let 4, be the subalgebra generated by {e;};.r» and those M, where
p€C°(R") and ¢ has (uniform) radial limits at o. ker o N A4, is then such an ideal and
hence is generated by kera N 4, N 7M. It is not too difficult to see that this is precisely
M C,(R™), where O, denotes the functions vanishing at co. One can also consider the algebra
generated by {e;};cr» and M(HC). This gives a larger set of translation invariant operators
of the form M, where g is bounded and has suitable discontinuities. The generator of the
relative kernel of ¢ i.e., ker ¢ N A, in this case is the set of all such functions which vanish
at co. In both cases the relative kernel of ¢ is the commutator ideal [14]. Also, the relative
kernel has a rather simple form.

If we add ker o to these algebras, we generate all of 4. Indeed,

ProprosiTiON 3.15. Let D be a subset of A such that o(D) is dense in CAPQC(S™-1).
Then ker 6+ D s dense in A.

Proof. ¢ induces an isometry of 4/ker ¢ onto CAP® C(S"?).

Examples 31.6. Take D to be the linear span of e, M, where A€R" and ¢ runs over a
set of functions in Lg® + HC with ¢, dense in C(S™'). Other candidates for D are the ranges
of ¥ and F. In the latter case, ker ¢+ D= A.

Unfortunately, we know very little about ker o except for the following
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THEOREM 3.17. ker o is the commutator ideal of A.

Proof. The commutator ideal is translation invariant and hence is generated (as an
ideal) by its image F under E. If ker ¢ is not the commutator ideal, then J must be a
proper subspace of E(ker ¢)=M(LZ). For subalgebras of 4, the commutator ideals are
smaller and hence are mapped by E into subspaces of 7. But, the algebra 4, generated by
M(LY) and e, has A4, Nker ¢ as its commutator ideal (see [14]), and E(4, N ker ¢)>
E(HEZ) =H(LT).

4. Representation

We shall consider representations in the IT, factor given by a group-measure space
construction of Murray and von Neumann. In particular, we shall let U be the W* algebra
on LXR")QI(R™) generated by the groups {¢;®7T;: A€R") and {T;®I: A1€R"}. Observe
that the second set generates {M ,®I: p €L*} and {e;} is a unitary group acting ergodi-
cally on M(L®). For the basic facts concerning such an algebra see Dixmier [7], page 130 ff.

Since Tre,=e e, T, (4.1)

one can show that the commutant U’ of U is generated by the groups {T;®e;: AER"}
and {I®T,;: A€R"}. This facilitates the study of algebras represented in U. However, it
will be more convenient for our purposes to change the representation space to L2 (R™)®
L2RE) by means of the unitary map I xF where JF is the Fourier transform on I2(R").
Thus, if fE€BZ(R™),

Ff= ;f (4) e;.

It is immediate that F7T', =e P Fand Fe,=T_ u F. It follows that the image of U is generated
by
{€Z®€Z: ZER”} U {Tﬂ@] J.GR"}
and that the image of U’ is generated by
{TZ® T——/’L: ZER”} U {I®€23 AGR"’}

We shall actually use U to denote this representation.

The advantage of this representation lies in the fact that the commutant of {I®e;}
consists of the bounded measurable functions from R} into B(L2(R")) and a fortiori the
continuous almost periodic functions from R” to B(L?(R™)) equipped with the weak operator
topology. Moreover, conjugation with T, ® T'_, is simply 7, ®7_, on B(L}R"))® M(L*(RE)).
Thus, the almost periodic functions with values in B(L?(R"™)) which have a representation

which commutes with 7',® T'_; are exactly the functions y+> B P such that
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Ti(Bu)=B, aliu
ie., B, =7,(B,), ueR"

Thus 4 has a natural representation ¢ in U obtained by mapping 4 € 4 to the function
u+—>7,(A4) considered as an element of B(LR™) @ M(L*(RE)). It is obvious that this repre-
sentation is faithful.

It is clear that g extends as an isometry on the linear space AP, of all operators 4
on L*R™) which are weakly almost periodic with respect to 7. An important subalgebra of
this is 4D, the strong-* T-almost periodic operators. In a sense, this is the “largest” C*-
algebra in B(L*(R™)) to which ¢ extends naturally as a representation. An easy computation
gives

ProrositioN 4.1. If BEAD, and fELAR")QO(RE), then f€ ker o(B) iff T, f(u)€
ker B for every u €R",

Remark 4.2. In general this does not determine the kernel of g(B).

Next let us observe that the symbol on 4 has a natural analogue on g(4). Indeed
eog;=(,01)og
and by the proof of Proposition 3.4, if 4 € 4, then
(€20 1) (e(4)) —e(ax(4))—~0

strongly as |A|->co. Defining ¢, to be the radial limit of ¢;®, we have cop=gog. Note
that the symbols on the representation are functions on R" x R% x 8"~! which are invariant
under translations in the first two factors of the form (u, —u), pER™

In a similar fashion we see that the expectation ¥ also has an analogue on Y. Indeed,
if .J denotes the Haar integral on R}, then since U< B(LAR™)® M(L®(R™), I®(Jo M-1)
defines a positive linear map on U, which we shall also denote by E. Since J is translation
invariant, Eo(I®7,)=E for every u. When A€ 4D, (Eo(A4)) is precisely the constant
function on Rj whose value is the average of 7,(4), i.e. E(g(4))=o(#(4)). Also,” E is
M(L*®)®C-linear on Y.

The importance of £ on Y centers on the fact that it allows one to lift a trace on
M(L®)* (invariant under ) to one on U+. We shall take

tr(M,p)=fRn1p(x)dx, p=0, yeEL™.

Then (tr®@ I)o E is a trace on Y+, which we shall also denote by tr. Up to a positive scale
factor, this is the Murray—von Neumann trace on U, and is unique. In fact we have
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TaeorEM 4.3. If g, is a faithful representation of A in a Il factor U, with trace w,
then wop, =tr on 4 up to normalization and there is an isomorphism v of U tnto U, such that

wov s a positive multiple of tr.

Proof. wop,0 M is a faithful, normal, semi-finite trace on (L N L®)*+. Since ¢, € A4,
wop, is invariant under ¢, i.e., wop,0 M is translation invariant. Thus, wog, is a positive
multiple of tr on M (L' N L®)*, which we take to be 1. Now, it is easy to see that for each
AER™ and 4 € ker g, AT, € 4 and hence

wog (T _;A*AT,))=wop,(A4*) =wopg,(4*4).

Thus, wop, is translation invariant on (ker ¢)+. Since for ¢ € (L N L®), wog, (M pA) is then
(norm) continuous and translation invariant as a function of 4, we may integrate the

composite of this with 7,(4) over R to obtain
wogy (M ,A)=wop (M ,E(A))=tr (M ,4), A€ A.

It follows by normality that wog, =tr on 4. Using the left regular representation we have
that U is isomorphic to the weak closure of

{o(4): A€ A, tr (4*4) <0}

in U, with identification of traces (see [8], § 6.6).

We note in passing that the above proof can be adapted to any translation invariant
subalgebra of 4 containing all elements of the form e, ,, 2€R", p €C(R") with compact
support.

We shall let ) denote the norm closed ideal generated by the positive elements of U
with finite trace. The elements of X are called relatively compact operators.

Prorosition 4.4. As a closed *-ideal in o(A4), K N o(A) is generated by
E(X)=M(L'n L*)®C. (4.2)
(Recall that L* N L* is the norm closure of L1 N L*® in L*.)

Proof. The set {4 € Y+: tr (4) <oo} is translation invariant and is mapped by E onto
[M (L1 n L*)®C]*. Thus, X is translation invariant and (4.2) holds. Since (4.2) is contained
in g(4), we may apply the proof of Proposition 3.13 to show that E(X) is a set of genera-
tors in p(A).

Remark 4.5. Propositions 2.7 and 3.13 show that in g(A4), ker o is generated by
M(LY)®C. However, as remarked after 2.7, this is strictly larger than E(X). Hence,
X 0 o(A) % ker 6. By Theorem 3.17, o(A4)/X is not Abelian.
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In the following, we shall study elements of (*-algebras £ which are regular modulo
some closed *-ideal ¥ in £. We shall call these Fredholm (relative to (£, J)) and denote the
set of such by Fred (£, ¥). When £ = U and J=X or Lisa C*-subalgebra of 4and F=L£Nn o2
(J), we shall write Fred (L).

Prorosition 4.6. Let £; be a C*-algebra with a closed *-ideal ¥, j=1,2. If nis o
morphism of £, into Ly such that n(F,) < F., then

Fred (Ly, F1,) < Fred (G, 771 Fo)) =12 (Fred (L,, F2))-
Fugrther, we have equality iff J,=n"Y 7).

Proof. By assumption, there is a morphism # such that

El ’—_"Eg
7
£1/.71_‘—'-’52/‘72

Thus, we may assume F, = J,=0. The result is then a standard fact about regular elements
in C*-algebras.

We shall now apply Breuer’s Fredholm theory for Il factors [2, 3]. Indeed, the
relative Fredholm operators in a T1,, factor are those which are regular modulo the relati-
vely compact ideal. For U, this is Fred (U). On Fred (U), one has a real valued analytic

index given by
tan(A) =tr (N ) —~tr (Ny), 4€Fred (U),

where N4 denotes the null projection of A. The basic properties of 4,, are

(i) 2an is locally constant relative to the norm topology,
(i1} %an(4 + K) =1,,(4), A€Fred (U), KEX,
(iii) ton(AB) =iyn(A) +ian(B), A, BEFred (U),
(19) fan(4*) = ~ina(4), 4 EFred (W),
(V) %9n(4) =0 when A4 is invertible.

It follows immediately that ¢,, is determined by a group homomorphism on the
connected components of the group of regular elements of U/X and a fortiori of o( A)/X.
However, we do not know a set of generators for this latter group and hence are unable to
determine 4, on Fred (o(A4)) in terms of 4. The central difficulty is an incomplete under-
standing of ker ¢, which by Theorem 3.17 is the commutator ideal in 4.
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There are, however, subalgebras of 4 for which we can determine 4,,. Let 44, be the
closed *.subalgebra of 4 generated by {e;: AER"}, M (L n L®), and M(HO).

PROPOSITION 4.7. Ay, s the closed linear span of
{es 01, LER™, p€L1 N L* + HCY.

Proof: L* n L* ig an ideal in L*. Thus, L' N L® + HC is an algebra. Using Proposition
2.7 and the fact that L1 N L° < Ly, we know that L N L® + HC'is the closure of L' N L® + HC

in L®. Since N _
M¢GZ=GAM¢+€)_MW

where v is the translate of ¢ by —A, it is enough to show that M,€L* n L+ HC. This is

trivial when @ €L N L®. Otherwise we use
LeMmA 4.8, If p€HO and AER”, then
Typ~pele <L L~
where L¥ denotes the set of all compactly supported L® functions.

Proof: If z€R™
+ A
¢(w+/1)—¢(w)=<p(-—x| ) -9 (i)
Thus, for >0,

Ii}il:l‘l)(x‘F ) — (@) <sup {|ply+2)—o)|: || = L |2| <+,

and the right hand side tends to zero as r—oo. Since LZ is the set of L® functions whose
essential supreinum outside compact sets tends to zero as the sets increase, we are through.

It is immediate that A, is translation invariant and hence by Proposition 3.13,
ker ¢ N Ay, is generated as a closed *-ideal by E(ker g N A4q,), and by diagram (3.2) this is
ker o N E(Ay). Since E is continuous and -linear,

E(Ap)=L* N L™ + HC.

By Proposition 2.7, ker ¢ N E(Ay)=L* N L®. Combining these facts and applying Lemma

4.7 in the same fashion as we did in Proposition 4.6, we have
ProProSITION 4.9. kero v Ay s the closed linear span of

e, M, JER", g€ L' n L™},
? @ ‘
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Remark 4.10. We may replace L' N L® in Propositions 4.7 and 4.8 by any ideal in L®
whose closure lies between L and L . In fact, if we replace HC by an algebra of continuous
functions which equal functions in HC outside of the unit ball, then similar results hold
using an ideal of bounded continuous functions such that the closure of the ideal contains
the compactly supported functions and is contained in Lg’. This gives the structure of some
of the algebras in example 3.14. Our interest in 4, lies in the fact that of all such algebras,
it is the largest algebra satisfying g(Ag, N ker o) = K.

We now define 4,= Ay, +o 1(K). Since g~1(X) is an ideal in 4, A4, is an algebra. It
is immediate that ~

span {e, M : p €EHC, LER"} + 07 1(K)
is dense in A, and that g~1(X) = A, N ker o. This implies that

Fred (o( A,)) =p (Fred ( Ay, ker ),

i.e., the Fredholm elements of g(A4,) are those with invertible symbol (sometimes called
the elliptic operators). In particular we may determine 4,, in terms of the symbol. When
n=1, it is given in terms of the mean motion (of the symbol) defined by

T

o1
m(«p)=7!glg° o7 _Td(argw):

@ €CAP and regular.
THEOREM 4.11. If n>2, i, =0 on Fred (o(A,)). If n=1 and A €Fred (o(A)),
—ten(A4) =m(0,1(4)) —m(o_,(4)).

Proof. As already remarked, 7,, is given via ¢ by a group homomorphism on the group
of connected components of invertibles in CAP® C(S™1). By [15], this group is canonically
isomorphic to HY(RE x8"!), the first Cech cohomology group with integer coefficients.

Since
R+R, n=1
HYRExS" H=R*"+%Z, n=2,
R", n>2

and the mean motion on the regular elements of CAP and the winding number on the
regular elements of C(S) are homotopy invariants, we can give a set of generators of the
connected components of invertibles in CAP®C(S™') and it is sufficient to compute i,,
for any operator in A4, whose symbol is a generator. When n>2, {e,: }LER”} is a set of
generators. These are the symbols of themselves and hence have index 0 by (v). When
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n=2, the sets {e;, A€R?} and {id}, where id is the identity map of S to §* as a subset of
0, give a set of generators. Again e; is the symbol of itself and has index 0. Extending
id to an element @ in HO, we see that o(} ) =id. But M, is invertible and hence has index
0. Thus 4,, =0 when n=2. For the case where n=1, symbols are pairs of CAP functions
(6_4, 044) and a set of generators is (e;, e;) and (e_, e;) for A€ R. Since ¢, has symbol (e, ¢,),
such pairs must give index zero. For an operator in 4, with symbol (e_;, e;) let P, =M, .
where 7. is the characteristic function of + R,; then for A=P_e_; P_+P_ ¢; P, we see
that ¢(4) =(e_;, e;). 4 is easily seen to be a partial isometry and it follows that

Nyay=1—0(A4)* o(4)=p(I - A4*4).

Now letting y{a, b} denote the characteristic function of the interval (a, b), we see by
direct computation that
Noay= M yimincs,00, max(-1.03 @I

Nowan =M yiminc 2.0, maxn, 00 ®
and hence —ian(0(A4)) =24
Since the difference of mean motions is a group homomorphism, and

mie;) —mle_y) =24
the result follows.

Remark 4.12. The case n =1 is essentially that of [5] and is included here for complete-
ness.

Although we can only determine the index on ,4,, this is enough to cover most basic
examples. We shall now proceed to show that the algebras of Example 3.14 are all con-
tained in A4,. This will follow from 4.6, 4.7, 4.8, 4.12 and 4.13.

PRrROPOSITION 4.13. The Friedrichs map F maps CAP®C(S™) into A,.

Proof. Tt is enough to consider F, when a=¢,®¢, AER", p €HC. As in Lemma 2.25,
Fa=M'pe,1 where

p(n)= fdéq(é, utA) o, 1) &),

and we have identified ¢ with its corresponding element of HC. This will give the desired
result provided that we can show p—¢ €L?. Now,

win) —gln) = f dEa(l, 2 allom) [0 — plp)]+ i) [ fd:g(c, 0+ 2 aCon) - 1]
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and we know that the second term tends to 0 as |7|—>oco (see 2.25). As observed in the
proof of Lemma 2.16, the integrand of the first term is supported in {{ €R™ |{ —n| <w(n)~'}
and thus if € is a bound from 2.16, the first term is bounded by

C sup {|p(0) —pm)|: [{~n| <w@m)}.
Since p €HC and w(n)* is 0(|n|*?), this bound tends to zero as || oo, as desired.
TuEOREM 4.14. Let A€ 4. A€ A, iff
E(e; A)eM(I* nL* + HO), A€R™

Proof. The result is immediate when A € A4, since M (m) generates o 1(K) as an
ideal in A4 and E is M-linear. Conversely, if 4 satisfies this condition, then so'does 4 — Fo
since Fo) € Ag- Thus it suffices to assume that 4 € ker ¢. Then E(e; A) € ker o for every
2 and by Proposition 2.7, E(e; A)€M (m), AER”™. Consider the algebra A/o~1(X).
Since p~1(X) is translation invariant, the automorphism group 7 induces one on 4/o=*(X)
relative to which each element is almost periodic. Since 7, (e; 4) —ethhe 17, (4), the assump-
tion amounts to the statement that as an element of 4/o—1(X), e”'/‘rﬂ(A) hags zero Haar in-
tegral with respect to u on R”. By the uniqueness of the Fourier transform on Rz, 7,(4) =0,
mod g~1(X). In particular, 4 €o=(K) < A,.

COROLLARY 4.15. If for some £>0, AN € A, then o(4A)EX.

' Proof. A® is translation invariant. Hence A€ 4 and for every A€R”, E(e; AN)=

E(e; A) A®. Since A™°€ M(L®), H(e, A) € oY (X) for every AER™.
We would now like to give an intrinsic meaning to the index for the algebra 4.

THEOREM 4.16. Let ¢, be a decreasing sequence of real valued continuous functions such
that for each n,

(i) gu(2) =1, <0,
(ii) @, (x) =0, x=1/n.

If A€ A, and o(A) is regular, then

tr (NQ(A)) = lim tr Pn (A*.A.).

In particular ¢, (A*A) and @, (AA*) eventually have finite trace and

a(Ad) = lim tr [p, (4*4) — p, (A4%)].
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Proof. For any self-adjoint operator 8 in U, ¢,(8) ¢ Ng as n—> co. Moreover, if A€ 4
and is self-adjoint,'then @a(4) =@,(0(4)). Suppose 4 is an elliptic operator in 4. Then so
are A*4 and A4*. If ¢ is a continuous function on R, then o(p(4*4)) =¢p(c(4*4)). Since
o(A*4) is invertible, p(c(4*4))=0 when ¢ is supported sufficiently near 0. Thus, since

ker o N A,=07Y(X), ’
p(o(4*A)) € X, p €C(R), supp ¢ near 0.

Since each positive operator which is dominated by an opera,tbr in X is also in X, the same
is true for each Borel measurable function ¢ supported near 0. In particular, the spectral
projections of g(4*4) near 0 are in . But the projections in X all have finite trace. There-
fore )

tr p(A*A) =tr p(p(4*4)) < oo
for p €C(R), ¢ >0, @ supported sufficently near 0. In particular, tr ¢,(4*4) is eventually

finite and hence converges to tr (N 4+4). Since N 4, =N, the result follows.

CorOLLARY 4.17. If ¢ is any faitkf&l Hw-fdctor representation of A, then the analytic

index is given by Theorem 4.11 up to normalization.
Proof. Theorems 4.3 and 4.16.
COROLLARY 4.18. If A€ A, is elliptic and has closed range, then N, and N 4 € A, and
fan(A) =tr Ny —tr N 4.

Proof. If A has closed range, then 4*4 has an isolated eigenvalue at 0. Thus ¢,(4*4) =

N, for » sufficiently large.

COROLLARY 4.19. If A€ A, is elliptic and 1,,(A)=0, then A has a one sided inverse
iff A is invertible. In particular, when n>1, invertibility of an elliptic A€ A, is equivalent

to the existence of a ¢ >0 such that

|[Aul| =e||u|, w»€LXR").

5. Remarks on the “systems” case

For systems, let 4,=A® M, where M, is the algebra of k x &k ‘complex matrices and
A is the algebra of almost-periodic operators on L2(R") described in section 3. We also
consider (Ao)e= Ao®@ M, for A, the sub-algebra of 4 described in section 4. Clearly Ak
and (A4,). act on the Hilbert space of k-tuples of functions in L*(R"). We can construct a
symbol homomorphism ¢, =0¢®1; mapping A4, into CAP@C’(S"")@M » with ker g, =
20 — 732905 Acte mathematica 130. Imprimé le 17 Mai 1973
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ker c® M,. We can also extend the representation g to 4,. First, we form the [],, factor
7 W,=URM,; then 0x=0®]1; is a faithful representation of A, in U,. The trace ideal
in U, is just Ky=XOM,.

It is easy to see, as in section 4, that g;*(X;) < ker oy, and so we consider only (A);.

We now get
QEI (Kie) N (Ao, = Eer gy, N (A

For A in Fred {g,[(A,)x]}, the analytic index 4,,(4) can be computed in terms of
o(4). Recently, D. Schaeffer [16] found

tan(A) = —{m(det o (4)) —m(det o_,(4))}

for n=1 and arbitrary k. Here, det is the determinant function on G1, and ¢, (4) are the
values of ¢(4) on the unit sphere S°.

The formula for % >1 is completely analogous to the ordinary integer valued index for
elliptic operators on hypersurfaces [1, p. 601]. That is, the cohomology of G, is an exterior
algebra generated by elements h;€ H2*-(G1,). Then

( - l)k+n-—1

Tan (A) = Tn—_—I)“— fR” J‘sn—lo(A)*hn.

Here, fg» is to be interpreted as the almost periodic mean, i.e., as fra.

The proof of this formula will appear elsewhere. It follows from general functorial
properties once it is known for n=1 and n=2. For n=2, the formula is verified by a
direct (and long) computation involving the residues of the zeta function for 4*4 [18].

Finally, we remark that the analytic index for systems is also unique, with the proof

a slight variation of the one given in the previous section for k=1.
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