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Introduction

Let A, V be smooth algebraic varieties with V projective (and therefore compact). We
wish to study holomorphic mappings
(1) a1y
The most important case is when 4 is affine, and is thus representable as an algebraic
subvariety in Y, and we shall make this assumption throughout. Then the mapping f is
generally not an algebraic mapping, but may well have an essential singularity at infinity
in A. Nevanlinna theory, or the theory of value distributions, studies the position of the
image HA) relative to the algebraic subvarieties of V. Given an algebraic subvariety
Zc 'V, we set Z,=f"YZ) and assume throughout that

codim, (Z,) =codimy, (Z)

at all points 2€4. There are two basic gquestions with which we shall deal:
(A) Can we find an upper bound on the size of Z, in terms of Z and the “growth” of the

mapping f?
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(B) Can we find a lower bound on the size of Z;, again in terms of Z and the growth of the
mapping?

We are able to give a reasonably satisfactory answer to (A) in case codim (Z)=1 and to
(B) in case codim (Z)=1 and the image f(A4) contains an open set in V.
Let us explain this in more detail. The affine algebraic character of 4 enters in that 4

possesses a spectal exhaustion function (cf. § 2); i.e., an exhaustion function

@) A—T SRy {— o}
which satisfies

T is proper
(3) dd°z>=0

(dd°7)™ 140 but (dd°z)" =0 where dimg 4 =m. ()

We set A[r]={x€A: 7(x)<r}, and for an analytic subvariety W < A4 define

(W, t)= f (dd°r)?  (d=dimcW)
(4) e

dt . .
n (eounting function).

T
N(W,r)= f n(W,t)

0
(The reason for logarithmically averaging n(W, ) is the usual one arising from Jensen’s
theorem.) We may think of the counting function N(W, r) as measuring the growth of W;
e.g., it follows from a theorem of Stoll [17] (which is proved below in § 4 in case codim (W) =1)

that
W is algebraic < N(W,r}=0 (logr).

Suppose now that {Z;},.a is an algebraic family of algebraic subvarieties Z, <V
(think of the Z, as being linear spaces in PV, in which case the parameter space A is a Grass-
mannian). Suppose that dA is a smooth measure on A, and define the average or order
function for f and {Z,;}, by
(5) T(r)=| N({(Za),r)dl

e
The First Main Theorem (F.M.T.) expresses N(f~1(Z,), r) in terms of 7(r), and leads to
an inequality
(6) N(HZy), ) < T(r) +8(r, A)+0(1)

(*) A by-product of the construction is a short and elementary proof of Chow’s theorem; this

is also given in § 2.
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in case the Z, are complete intersections of positive divisors (cf. § 5). The remainder term
8(r, A) is non-negative, and for divisors the condition (dd°r)"=0 in (3) gives S(r, )=0. In
this case (6) reduces to a Nevanlinna inequality

(7 N(f-4(Za), )< T(r)+0Q1),

which bounds the growth of any f~1(Z;) by the average growth. Such inequalities are
entirely lacking when codim (Z;)>1 [7], and finding a suitable method for studying the
size of f~(Z,) remains as one of the most important problems in general Nevanlinna
theory.

Our F.M.T. is similar to that of many other authors; cf. Stoll [18] for a very general
result as well as a history of the subject. One novelty here is our systematic use of the local
theory of currents and of “blowings up” to reduce the F.M.T. to a fairly simple and essen-
tially local result, even in the presence of singularities (cf. § 1). Another new feature is the
isolation of special exhaustion functions which account for the ‘“parabolic character”
of affine algebraic varieties.

Concerning problem (B) of finding a lower bound on N(f1(Z,), r), we first prove an
equidistribution in measure result (§ 5 (c)) following Chern, Stoll, and Wu (cf. [18] and the

references cited there). This states that, under the condition

(8) LEAS(T, A)di=o(T(r))

in (6), the image f(4) meets almost all Z, in the measure-theoretic sense. In the case of
divisors, S(r, ) =0 so that (8) is trivially satisfied, and then we have a Casorati-Weierstrass
type theorem for complex manifolds having special exhaustion functions.

Our deeper results occur when the Z, are divisors and the image f(4) contains an open
subset of ¥V (Nofe: it does not follow from this that f(4) =V, as illustrated by the Fatou-
Bieberbach example [3]). In this case we use the method of singular volume forms (§ 6(a))
introduced in [6] to obtain a Second Main Theorem (S.M.T.) of the form (§ 6(b))

d2T* (r)

(9) T*(r) + Ny(r) S N(f~(23), ) +log —5

+ O(log 7)

under the assumptions that (i) the divisor Z; has simple normal crossings (cf. § 0 for the
definition), and (ii)

(10) o(Zz) > c(KY)

where K3 is the anti-canonical divisor and ¢(D) denotes the Chern class of a divisor D.
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In (9), T#(r) is an increasing convex function of log » which is closely related to the order
function T'(r) in (5), and the other term

Ny(r)=N(R, 1)
where B< A is the ramification divisor of {. It is pretty clear that (9) gives a lower bound on
N{(f~1(Z,), ), and when this is made precise we obtain a defect relation of the following sort:
Define the Nevanlinna defect

— N(+1!
(11) 6(Z,1)=1—rlin;—(/—T(<fl)—’r).

Then 0<d(Z,) <1 because of (7), and 6(Z;)=1 if f(A) does not meet Z,. Then, under the

above assumptions,

(12) 8(Zn) < o(EY)

o(Z;)

+ 2

where =0 in case 4=0C" or f is transcendental. As a corollary to (12), we have a
big Picard theorem. In case Z; has simple normal crossings and ¢(Z,) > ¢(K7), any holomorphic
mapping 4V —Z, such that f(4) contains an open set is necessarily rational. (1)

For V=P! and Z;={0, 1, oo} we obtain the usual big Picard theorem, and in case
dim¢ V =dim¢ 4 and ¢(Ky) >0 (so that we may take Z, to be empty), we obtain the main
results in [11].

It should be remarked that our big Picard theorems are presented globally on the
domain space, in that they state that a holomorphic mapping f: 4—V between algebraic
varieties is, under suitable conditions, necessarily rational. The corresponding local state-
ment is that a holomorphic mapping f: M — 8-V defined on the complement of an analytic
subvariety S of a complex manifold M extends meromorphically across S, and these results
will be proved in the Appendix. The reason for stating our results globally in the main
text is to emphasize the strongly geometric flavor of the Nevanlinna theory.

In addition to finding an upper bound on N(f~1(Z;), r) when codim (Z,) >1, the other
most important outstanding general problem in Nevanlinna theory is to obtain lower
bounds (or defect relations) on the counting functions N(f-1(Z,), r) when Z, is a divisor but
where the image f(4) may not contain an open set. In addition to the Ahlfors defect rela-
tion [1] for

cLe,
there has been some recent progress on this question by M. Green [10]. Since it is always
the case that

(*) Our terminology regarding Picard theorems is the following: A little Picard theorem means
that a holomorphic mapping is degenerate, and a big Picard theorem means that a holomorphic
mapping has an inessential singularity. '
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(13) 6(Z,) di=0,

AeA

it at least makes sense to look for a general defect relation.

To conclude this introduction, we want to discuss a little the problem of finding
applications of Nevanlinna theory. The global study of holomorphic mappings certainly
has great formal elegance and intrinsic beauty, but as mentioned by Ahlfors in the introduc-
tion to [1] and by Wu in [21], has suffered a lack of applications. This state of affairs seems
to be improving, and indeed one of our main points in this paper has been to emphasize
some applications of Nevanlinna theory.

In § 4 we have used the F.M.T. to give a simple proof of Stoll’s theorem [17] that a

divisor D in (" is algebraic <
v(D[r
D= o)

where v(D[r]) is the Euclidean volume of D N {z: ||z|| <7}. This proof is in fact similar to
Stoll’s original proof, but we are able to avoid his use of degenerate elliptic equations by
directly estimating the remainder term in the F.M.T. (this is the only case we know where
such an estimate has been possible).

In § 9(b) we have used a S.M.T. to prove an analogue of the recent extension theorem
of Kwack (cf. [11] for a proof and further reference). Our result states that if V is a quasi-
projective, negatively curved algebraic variety having a bounded ample line bundle (cf. §9 (b)
for the definitions), then any holomorphic mapping f: 4—V from an algebric variety 4
into V is necessarily rational. Our hypotheses are easily verified in case ¥V =X/I" is the
quotient of a bounded symmetric domain by an arithmetic group [2], and so we obtain a
rather conceptual and easy proof of the result of Borel [5] that any holomorphic mapping
f: A—X|T is rational. This theorem has been extremely useful in algebraic geometry; e.g.,
it was recently used by Deligne to verify the Riemann hypothesis for K3 surfaces.

In § 9(a) we have used the method of singular volume forms to derive a generalization
of R. Nevanlinna’s “lemma on the logarithmic derivative” [16]. Here the philosophy is
that estimates are possible using metrics, or volume forms, whose curvature is negative
but not necessarily bounded away from zero. Such estimates are rather delicate, and we
hope to utilize them in studying holomorphic curves in general algebraic varieties.

Finally, still regarding applications of value distribution theory we should like to call
attention to a recent paper of Kodaira [14] in which, among other things, he uses Nevan-
linna theory to study analytic surfaces which contain C? as an open set. In a related develop-
ment, Titaka (not yet published) has used Nevanlinna theory to partially classify algebraic

varieties of dimension 3 whose universal convering is C2.
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As a general source of “big Picard theorems™ and their applications, we suggest the
excellent recent monograph Hyperbolic manifolds and holomorphic mappings, Marcel
Dekker, New York (1970) by 8. Kobayashi, which, among other things, contains the ori-

ginal proof of Kwack’s theorem along with many interesting examples and open questions.

0. Notations and terminology
(a) Divisors and line bundles

Let M be a complex manifold. Given an open set U< M, we shall denote by M(U) the
field of meromorphic functions in U, by O(U) the ring of holomorphic functions in U,
and by O*(U) the nowhere vanishing functions in OQ(U). Given a meromorphic function
o €M(T), the divisor («) is well-defined. A divisor D on M has the property that

DNU=(x) (x€MD))

for sufficiently small open sets U on M. Equivalently, a divisor is a locally finite sum of
irreducible analytic hypersurfaces on M with integer coefficients. The divisor is effective
if locally D N U =(«) for a holomorphic function « € O(U). Two divisors Dy, D, are linearly
equivalent if D; — D, =(a) is the divisor of a global meromorphic function & on M. We shall
denote by [D| the complete linear system of effective divisors linearly equivalent to a
tixed effective divisor D.

Suppose now that M is compact so that we have Poincaré duality between H (M, Z)

and H¥-%M, Z). A divisor D on M carries a fundamental homology class
{D}€H;, _o(M, Z)=~H*M, Z).

We may consider {D} as an element in Hpr(M, R), the de Rham cohomology group of
closed C= differential forms modulo exact ones. Then the divisor D is said to be positive,
written D >0, if {D} is represented by a closed, positive (1, 1) form . Thus locally

V-1

o= *2—7"5—5 9iidz; A dz,

where the Hermitian matrix (g;;) is positive definite. In this way there is induced a partial
linear ordering on the set of divisors on M.

We want to have a method for localizing the above considerations, and for this we
will use the theory of line bundles. A line bundle is defined to be a holomorphic vector
bundle

L-M

with fibre C. Relative to a suitably small covering {U,} of M, there will be trivializations
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L|U,=CxU,

which then lead in the usual way to the transition functions «;;€ O*(U,; N U,) for L. These
transition functions obey the cocycle rule o; a=ay in U;NU,;N U,, and indeed it is
well-known that the group of isomorphism classes of line bundles on M is just the Cech
cohomology group HY(M, O*). The vector space of holomorphic cross sections HY(V, L)
is given by those collections of functions ¢ ={0;} where ¢,€ O(U ;) and

0;=0;;0;

in U,N U;. For each cross-section ¢ the divisor D, given by D, N U;=(s,) is well-defined,
and any two such divisors are linearly equivalent. We shall denote by |L| the complete
linear system of effective divisors D, for € HY(V, L). Clearly |L| =P(HY(V, L)), the projec-
tive space of lines in the vector space H(V, L).

Let D be a divisor on M. Then D N U, ={x;) and the ratios

ofe;=ay;€OMU 0 U,

give transition functions for a line bundle [D]—+ M. Moreover, if D is effective, then there
is a holomorphic section ¢ € H(V, [ D]) such that D= D,. The mapping D-[D] is a homor-
phism from the group of divisors on M to the group of line bundles, and we obviously have

the relation
| D] =|D]]
for any effective divisor D.

Returning to our consideration of line bundles, the coboundary map‘
1 0 , 1o
H(M,0%)—— HM,Z)

arising from the cohomology sequence of the exponential sheaf sequence 0—Z—> 0—(0*—1
allows us to define the Chern class ¢(L)=0({«;,}) for any line bundle L—-M. We wish to
give a prescription for computing ¢(L) in the de Rham group H3z (M, R). For this recall
that a metric in L is given by positive C® functions p; in U, which satisfy o, = |;;|? 0;in
U;nU,. Thus, if 0 ={0,} is a section of L, then the length function
(0.1) lo)*= L
o

is well-defined on M. The closed (1, 1) form w given by
(0.2) o|U;=dd° log (¢;)

is globally defined and represents the Chern class ¢(L) in Hag (M, R). We call w the curvature
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form (for the metric {p,}) for the line bundle L->M. If {p;} is another metric leading to its

curvature form «’, then the difference
(0.3) w—o' =dd°p

where ¢ is a global C* function on M.

If M is a compact Kihler manifold, then every closed (1, 1) form @ in the cohomology
class ¢(L)€Hpr (M, R) is a curvature form for a suitable metric in L—M. In particular,
any two representatives of ¢(L) in Hpg (M, R) will satisfy (0.3). We shall say that the line
bundle L— M is positive, written L >0, if there is a metric in L whose curvature form is a
positive-definite (1, 1) form.

Now suppose again that D is a divisor on M with corresponding line bundle [D].
Then we have the equality

(D} ~c([ D)) €H*(M, Z)
between the homology class of D and the Chern class of [D]. Moreover, the divisor D is
positive if, and only if, the line bundle [D] is positive. Thus, between the divisors and line
bundles we have a complete dictionary:
D+ [D]
| D] = |1D]|
(D} (D)
D>0<{D]>0.

As mentioned above, the reason for introducing the line bundles is that it affords us a
good technique for localizing and utilizing metric methods in the study of divisors. More-
over, the theory of line bundles is contravariant in a very convenient way. Thus, given a
holomorphic map f: N—M and a line bundle L-> M, there is an induced line bundle L,~ N.
Moreover, there is a homomorphism

o->0;

from HY(M, L) to HYN, L,), and the relation
(0)=1"(D) = D,

holds valid. Finally, a metric in L— M induces a metric in L,—~ N, and the curvature forms
are contravariant so that the curvature form w, for L, is the pull-back of the curvature
form o for L. In summary then, the theory of line bundles both localizes and functorializes
the study of divisors on a complex manifold.
~ One last notation is that a divisor D on M is said to have normal crossings if locally
D is given by an equation ” ‘ ' k
Z ..o 2=0
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where (2, ..., 2,) are local holomorphic coordinates on M. If moreover each irreducible
component of D is smooth, then we shall say that D has simple normal crossings. In case
M =P™ is complex projective space and D=H; + ... +Hy is linear combination of hyper-
planes, then D has normal crossings if, and only if, the hyperplanes H, (u=1, ..., N) are

in general position.

(b) The canonical bundle and volume forms

Let M be a complex manifold and {U,} a covering of M by coordinate neighborhoods
with holomorphie coordinates z;=(z}, ..., 27) in U,. Then the Jacobian determinants

6 o
;= det (5'33)

define the canonical bundle x,— M. The holomorphic cross-sections of this bundle are the
globally defined holomorphic n-forms on M.
A volume form ¥ on M is a 0 and everywhere positive (n, n) form. Using the notation

V=1 V-1

1 _ 1 .
0, = (dzi NdZD A ... A g, (@2 NdE),
a volume form has the local representation
(0.4) ¥=0,0,

where p; is a positive C* function. The trausition rule in U, N U, is

0= |%i,|20;

so that a volume form is the same as a metric in the canonical bundle. The curvature form
is, in this case, called the Ricci form and denoted by Ric ¥. Thus, in U,

(0.5) Ric W =dd* log ;.
The conditions

(0.6) Ric¥'>0
Ric)"=c¥ (c>0)
will play a decisive role for us. Geometrically, they may be thought of as saying that

“the canonical bundle has positive curvature which is bounded from below.” To explain

this, suppose that M is a Riemann surface. Using the correspondence
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0 2;1 (dzNd2y > pdz®dZ,

we see that a volume form is the same as a Hermitian metric on. M. Furthermore, the Ricei
form

(0.7) Ric {9 y-1

2;1 (dz/\dé)}= —x{g in (dzAdZ)}

where x = —(1/p)/(8® log 0)/(0z %) is the Gaussian curvature of the Hermitian metric g dz ® dZ.
We see then that (0.6) is equivalent to

%< —¢y <0,

the Gaussian curvature should be negative and bounded from above. We have chosen our
signs in the definition of Ric ¥ so as to avoid carrying a (—1)™ sign throughout.

The theory of volume forms is contravariant. If M and N are complex manifolds of
the same dimension and f: M—N is a holomorphic mapping, then for a volume form ¥
on N the pull-back ¥;=f*¥ is a pseudo-volume form on M. This means that ¥, is positive
outside an analytic subvariety of M (in this case, outside the ramification divisor of f).

(c¢) Differential forms and currents

(Lelong [15].) On a complex manifold M we denote by A*%M) the vector space of
C* differential forms of type (p,q) and by A %M) the forms with compact support.
Providing A?~>""9(M) with the Schwartz topology, the dual space C?¢(M) is the space
of currents of type (p,q) on M. Given a current 7' and a form ¢, we shall denote by
T(gp) the value of T on ¢. The graded vector space of currents

C*(M)= ® CP*(M)

»,q

forms a module over the differential forms 4*(M)= @ A>YM) by the rule

b.q
eAT)=T(@An)
where g € A*(M), T €C*(M) and 5 € A% (M).
We shall use the notations
d=20+0;
—1

(0.8) ¥ =g 0=y

dde = (V—;;) ae.
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The factor 1/4w is put in front of d° to eliminate the need for keeping track of universal
constants, such as the area of the unit sphere in €®, in our computations. As usual, all

differential operators act on the currents by rules of the form
oT(p) =T (@p).
The action of A*(M) is compatible with these rules.
A current T€C??(M) is real if T =T, closed if d7 =0, and positive if
(Y — 1)ypeo-br2 TyA7)=0

for all n€AP~»°(M). In case p=1, we may locally write T€C" (M) as

r-V=1

—1 _
-‘Hg ti,-dzi A dz,

where the #; may be identified with distributions according to the rule
(=1 m (@) =T(adz, ... d%; ... dz, A dZy ... 7 ... d2y).
Then T is real and positive if, the distributions

T(}») = %tiizizj (/1160)

are non-negative on positive functions. In this case, by taking monotone limits we may
extend the domain of definition of T(4) from the C® functions to a suitable class of functions
in I'(loc, M) which are integrable for the positive Radon measure

a—>T'(2) ()

initially defined on the C® functions. A similar discussion applies to positive currents of
type (p, p).

For any positive current 7', each of the distributions ¢,; is a Radon measure; in addition
each t;; is absolutely continuous with respect to the diagonal measure 3, ¢;; [15].

The principal examples of currents we shall utilize are the following three:

(i) A form €47 ¢(M) may be considered as a current by the rule

0.9) vlg)= fM«pA«p (pEAP->m-2(a1))

By Stokes’ theorem, dy in the sense of currents agrees with dy in the sense of differential
forms. Moreover, the A*(M)-module structure on C*(M) induces the usual exterior multi-
plication on the subspace A*(M) of C*(M).
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(i) An analytic subvariety Z of M of pure codimension ¢ defines a current Z € 0% 4(M)
by the formula [15]

(0.10) Z((P)=L ¢ (p€AF™TT7(HM)).

This current is real, closed and positive. By linearity, any analytic cycle on M also defines

a current.

Note on multiplicities. We say that the current Z is a variety with multiplicities if there
is a variety |Z| and an integer-valued function n(z) on Reg|Z| which is locally-constant on
this manifold. Then Z is the pair (|Z|, n) and Z(gp) = {3 n(z) ¢. It is clear that dZ =d°Z =0.

Now given holomorphic functions f;, ..., f, and |Z]|={f,;= ... =f,=0}, there is an
integer multiplicity mult, Z defined algebraically at each 2z and which is locally constant on
Reg|Z|, [8]. This is what we will mean by saying Z={f,=... =f,=0} with algebraic
multiplicities. Multiplicities on the set sing|Z| will be ignored since sing|Z| is a set of
measure 0.

(iii) We shall denote by L{, 5 (loc, M) the vector space of (p, ¢) forms whose coeffi-
cients are locally L! functions on M. Each y €L, (loc, M) defines a current by the formula
(0.9) above. In the cases we shall consider, y will be O outside an analytic subset S of M.
Moreover, y will have singularities of a fairly precise type along S, and dy in the sense of
differential forms on M — 8 will again be locally Lt on all of M. Tt will usually not be the
case, however, that dy in the sense of currents agrees with dy in the sense of differental
forms. This is because the singularities of ¢ will cause trouble in Stokes’ theorem, and we

will have an equation of the type

dy in the dy in the current
(0.11) sense of =3 sense of -+ supported
currents forms on 8.

The relation (0.11) Wﬂl‘ be the basis of all our integral formulas.

1. Differential forms, currents and analytic cycles
(a) The Poincaré equation

Let U be an open set in a complex manifold of dimension 7 and let & €NM(U) be a
meromorphic function on U. Denote by D =(«) the divisor of «. Then both D and log|«|?
define currents as deseribed in § O (¢). We wish to show that

D=ddlog|«|%
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this is a kind of residue formula as will become apparent from the proof. In fact, we will

prove the following stronger result, which will be useful in the next two sections:

(1.1) ProProsiTION. For « and D=(x) as above, let X< U be a purely k-dimensional
subvariety such that dim (X N Dy=k—1. Then

(1.2) dd*(X A log|a|2)=X-D (Poincaré equation).

Remark. What this means is that, for any ¢ € A¥"%"(U), we have

(1.3) f logloc|2ddc(p=f @
x X-D

where the integral on the left always converges, and where X.D is the usual intersection

of analytic varieties. If X =U, then we have

f log |a[dd°p = f .
U D

To prove the result, we need this lemma, whose proof will be given toward the end of

this section:

(14) LEMMA. If o is not constant on any component of X, log|e|? is locally L* on X, or
equivalently §xlog|e|2u is defined for all u€A¥*(U). Also, dd*(X A log|e|?) is a positive

current.

Proof of proposition. Since both sides of the equation are linear, we may use a partition
of unity to localize the problem. Initially we may choose U small enough that « is a quo-
tient of holomorphic functions o,/a,. Since log|oy /oty |2=log| e, |2 —log|x,|? and (ay/fo) =
(ot;) —{ots) we may assume that « is holomorphic in U.

First, let us assume that both X and X n D are nonsingular; by localizing further, we
can choose coordinates (wy, ..., w,) on X such that X n D {w;,=0}. In this case the restric-
tion of « to X equals fwj, where f is a holomorphic function which never vanishes on U.
Thus on X, X « D=r(w,).

Furthermore, since log|a|2=Ilog|8|2+r log|w,]? and dd°log|B|2=0, it suffices to
show the proposition assuming x=w,. For p € A ¥ 1(T),

(1.5) f log |wy|*dd°@ =1im | log|w,[*dde
x &0 J X,

where X,={w€X=|wy(x)|>¢c}. Thus 06X,= — 8, where S,={zx€X:|w(x)]=¢} is
oriented with its normal in the direction of increasing |w,|. Then by Stokes’ theorem
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(1.6) f log |w, [Pddp = —f dIog[wku/\d%p—f log |w,[?d°g.
Xe XE

Sg

Since d log |w|* A d°p = — d° log |w;|* A dp and dd¢log |w,|*=0 on X,
‘4 P x

(1.7) - f dlog |w, P Adop = — f d(d¢ log |w, [* A ) = f d°log [we[* A @.
x, X 5
Now clearly f log |w, [*d°p = (2 log &) f d°p->0 as ¢—0.
' Se Sé'

Furthermore, if we write w, =re’?, d° log |w,|>= (27)'df. Thus

(1.8) f dlog |w > A~ .
A {wz=0>
This completes the proof of the nonsingular case.

Next we show that it suffices to prove (1.2) on the complement of a small analytic
set. More precisely, if Y < U is a subvariety of dimension <k—1 and if the restrictions of
the currents X - D and dd°(X Alog|«|?) to U —Y are equal, then (1.2) holds.

One approach is to cite a theorem. Both of these currents are so-called flat currents
and it can be proved that two such currents of real dimension 7, which differ only on a set
of real dimension [ —2, are in fact equal (see [13] and [91).

We can actually prove this here, however, since T=X - D and 7" =dd*(X A log|«|?)
are positive. Choosing coordinates (zy, ..., #,) near any point in U, it suffices to show that
T New=1T" Ay, where wr= (4/2)'dz, ANdZ, A ... Adzy_, NdE;, | for every (k—1)-tuple I.
For in the notation of § 0, it follows that 75 =7"3. Thus Y is a set of 77 measure zero
since Y N X N D<=X N D is a set of 2k — 2 measure zero. Consequently the 713 measure of
Y is also zero since by positivity this measure is absolutely continuous with respect to
Zi T 1'3.

To show T Awr=T" Ay, let 7= U~ C** be the coordinate mapping 2 (2;,, ..., Ziy_ )
For any @€42°(U), T Awilp)=T Ap(rfw)=(mxT Ag) (), where o is the volume.
form on €*~*. Similarly 7" A wi(p) = (T’ A g)(w). Now both g = s T A @ and g’ =7 T A Q€
0% %(C*~1). The current y is the current defined by the continuous function > . X071 @(y)
(each y counted with suitable multiplicity). If we knew that u’ was also given by an Ly,
function we would be through, since the two currents agree on the complement of x(Y),
which is a set of measure zero. We can show that ' €L} by the Radon Nikodyn theorem,
i.e., we show that u’ is absolutely continuous with respect to Lebesgue 2k —2 measure on
C*7'. Let E be a set of Lebesgue measure zero, then W(EB)=Jxn2-1 @ log | | 2ddp A oy
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But this integral is zero because 7y '(E) N Reg (X) has 2k measure zero since 7 has maximal
rank on Y except for a set of 2k measure zero (a subvariety of X of lower dimension). Thus
the extension part of the proof is complete.

Lastly, we wish to show equality except on a subvariety ¥ < U of dimension <k—1.
Observe that if the variety X is normal then the nonsingular case applies except on the
singular locus of X which has dimension <%—1 ([15]). If X is not normal there is a unique
normalization X and a finite proper map p: X —~X which is one-to-one over the regular
locus of X. Localize so that o extends to a map U—U, for £< U. Then [ log|«|2dd% =
Jzlog|aog[? dd%*p = [%wopo*y since (1.1) holds for X. But Z =X (x0p) is a variety of dimen-
sion k—1 and p: Z—~X N D is a finite map. Thus this last integral equals {-xnp»@, where
“XND”is XN D counted with the appropriate number of multiplicities. It can be verified
that these multiplicities define X - D as it is defined by local algebra (on the regular points
of X - D which is all that effects integration). See [13].

Proof of Lemma 14. Let m: X—~AcC* be a proper finite holomorphic map of
degree d, ie., a finite branched cover; we may assume that log|a|2<0 on X. Then if
p€AFA), §xlog|a|m*p=T,(X A log|x|?) @, where m,(X A log|«|?) is the function {(x) =
2 vexnn—1w logy[ é(y) [2. On A —n(X N D), dd¢ = (X Addc log|e|2) =0 so { is a smooth pluri-
harmonic function. Since {= —co on w(X N D) this shows that { is plurisubharmonic [15]
and hence locally L* on C*. On X we see that {on < log|a|2 Since fx({or)n*p=d falp
is finite, so is § log|x|2n*p.

Now we may assume X< U<(" with coordinates chosen so that each coordinate
projection m;: X—n(U)<C* is as above. Then [y log|a|2d (volume)=(1/k!) §x log|a|?ew,
where =2 o; and w; =7 @, where g is the volume form on ¢*. This proves the first part
of the lemma. |

The second part is immediate since there is a monotone decreasing sequence &; >, > ...
of smooth plurisubharmonic functions converging to log|a«|? (let £, =log (]oc|2+1/r). For
any positive form p €455 1(T),

0< [ arcnp= [ cnaro— | toglaf ndizp =i ntog|al) 9)
x x x
by the monotone convergence theorem. Q.E.D.

(b) The Poincaré equation for vector-valued functions
We now wish to establish a Poincaré formula for more than one function. First we
define forms that play the role analogous to that of log|z|? in the one-variable case. If

(23, ..., 2,) are linear coordinates in C" let
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{01=(ddc log ||z
®l=10g"Z"20,.

(1.9)

If F=(f, ..., f,): U=0C" is a holomorphic mapping of a complex manifold U, then
F*0,=(dd° log||f|[?)* and F*O,=log||f||* F*0".

(1.10) ProrositioN (Poincaré-Martinelli formula). Let U be a complex n-manifold and
F: U-C" be a holomorphic map. The forms F*6, and F*®' are in L}, (U, loc) for all 1. If
W =F-Y0) has dimension n—r, then dd°® F*®,_, =0, for I<r and dd°F*Q@,_=W where W
is counted with the appropriate algebraic multiplicities, i.e., for p €A7™""7"(U)

(1.10) f F*®,_y A ddop = f .
U w

Remark. The proof will show that if X< U is a k-dimensional subvariety and the
dimension of X A W is k —r, then

dd*(X A F*0,_)=X - W.

Before beginning the proof we will study the forms 6, and ©, further by blowing up
the origin in €' to get a manifold ¢ If (215 ..., 2,) are linear coordinates in C" and [w,, ..., w,]
are homogeneous coordinates in P™1, 6’C C'xP—! is defined by w;z—w;z,=0,
(1<14,j<n). The first coordinate projection gives a proper map =: -0 It E =1"1(0),
O~ B0 - {0} is a biholomorphism and the divisor E is {0} x P™-1. In fact, the second
coordinate projection g: C—-p1 gives C" the structure of a holomorphic line bundle.

If U;={w,+0}<P! and C =0 nex U, local coordinates on 6§ are given by

(Wygs ooy Wig, 45 253 Uipq 45 - o5 Upy) WheTe Uy, =w;fow;. In these coordinates the maprc=6,?—>(}'
18 given by m(Uys, - o5 25 oney Upy) = (By4 245 ovvy 245 oeny Upy Z5).
Now in €},
(1.11) 7* log [|2]|* =1og |2,|* + log (1+Zi|u,-,~|2)
i+

where the second term is evidently a O function. Then
(1.12) a*dd? log |[z[|*=dd’log (1 + > |u;|*) =p* w
jFi
where w is the usual Kéahler form on P
Proof of Proposition (1.10). Now suppose we are given F: U—C,. Let I be the graph
of F={, F(2))}<UxC". Let PcUxC be the closure of m '~ W x0} and
W=T"-(0xP1); these are varieties of dimension »n and n—1, respectively, and the fol-

lowing diagram is commutative (identifying U with I'):
11— 732905 Acta mathematica 130. Imprimé le 11 Mai 1973
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é U X 6’—-9—>P'_1

B
N =
oo

(1.13) n

Lux ¢

<__
=

 e——
Q

3
N

Furthermore, each m is proper, = F-W-T-Wis biholomorphic and w—(w)=w x P!
for each weW.

Now we wish to show that (,F*®, ;dd°¢p=fwep. The left hand integral equals
Jrps©, 4 Add° pTp where p,, p, are the projections of U xC" onto U, €', respectively.
This in turn equals fp=*p3®, ; Add’ w*p} @ since = is a map of degree 1.

Now by (1.12) in U x (f,

7 ps O, 1= (log Izi l2 +log (1 +1§t l“u[sz)) (* wy

Furthermore, dd° (log]1+ 2 |%;;|?) o*w*~1=p*w"=0 since P! has no r-forms. Thus our

integral becomes [t log|z,|2dd°(0*w™ A *p¥ @) which equals
2! g 0 b1 @

f Q*w'"l/\n*pftp=f g*w"l/\n*f)ft}?=f ®
T-oxPh 14 w

since fpr-10™1=1 and each fiber of =W~ W is P, Strictly speaking we have only
shown here that dd°F*@,_, =“W”, that is integration over W with some multiplicity. That
this is the correct algebraic multiplicity is easily shown once enough properties of the alge-
braic multiplicity are established [13].

To show the rest of the proposition, we observe that both F*®; and F*6,; are
L., (U, loc) because n*pf FO, and n*p; F*0, are Ly ;, (U, loc) on I\ by Lemma 1.4. Now check
that dd°F*@,_,= F*0, for I<r by the same method observing at the last step that:
fwo*o' 1 Am*pY =0 if I<r (the integrand is a form which involves more than 22— 2r

coordinates from the base).

(¢) Globalization of the Pomcare and Martinelli equations

Using the notation and termlnology of § 0(a) we let M be a complex manifold, L—-M
a line bundle having a metric with curvature form w, and O'EHO(M L) a holomorphic
cross-section with divisor D. The function log|c|2€LY(M, loc) and the global version of
(1.1) is:

(1.14) PROPdSITION. On M we have the equation of currents,

dd°log|o|*=D —w.
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Proof. This follows immediately from (0.1), (0.2), and (1.1).
This proposition says that D and w are cohomologous. More precisely, we can take the

cohomology of the complex of currents:
d_ e
e O"(M) ——= O (M)~ ...

in analogy with the de Rham cohomology arising from the complex of C* forms:

c. > AT (M) —d-+A’“(M)—>
Standard arguments involving the smoothing of currents show that
HE(M,R)=H%:(M,R),

and by de Rham’s theorem both yield the usual cohomology. Thus the proposition says
that the cohomology class of D is ¢(L) in H2(M, R). This may also be interpreted to say
that, viewing D as a chain, the homology class represented by D in H,, ,(M, R) is the
Poincaré dual of ¢(L).

Since intersection in homology is the dual of cup product in cohomology (wedge

product in de Rham cohomology) the following proposition is not surprising.

(1.15) ProrositioN. If oy, ..., 0, are holomorphic sections of the line bundle L~ M with

curvature form w, and if the divisors D, intersect in a variety of codimension r, then

@ =Dy, Dy, .. Dy, = dd°A
as currents, where the locally I} form

A 1 < 1-% _k

=log -——— 71— ,
o (207

with wy=w+dd° log||o||2=w +dd° log (3]_,]0;|?). Furthermore, if » >0 and ||o|| <1, then
A >0. ‘

Proof. If ¢, is given in local coordinates by s, and the metric by the function a,, then
llollz=(1/as) (|s1]2+ ... +|s,|%). Thuslocally wf =s*8,; also, log ||o|| -2 =log | a, |2 —log||s||2.
In these local coordinates,

r—1
dd°A = kZI (%011 0" —dd°(s* Oy 1k A ©°)) = @ — Do, ... D,

by the Martinelli equation (1.10). Since s*0;,>0, >0 and log ||¢||~2>0 together imply
A=0. '
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(d) Lelong numbers
Let U be an open set containing the closed R-ball C"[R] in C". We maintain the pre-

vious notation:
0,=(dd°log ||z||?)*

= (dde||=]|*)".

Suppose that Z< U is an analytic set of dimension k; let Z[r]=Z N C*[r] and for r <R,
Z[r, B1=Z[R]—Z[r]. Then the 2k-dimensional area v[Z, r] is

v(zﬁ 7‘) = fZ[ ](pk'
g

(1.16) LemwmA. The area v(Z, r) satisfies

J‘ v(Z,R) v(Z,r)
ek = .
ZIr.R1

= _—R2—k_ 72k
Proof. An easy computation shows that
¢ 2
d¢Jog |22 A 61 =C}'”%Ilz““/;c(p—k_l +dfjz[* A4
where 1 is some form. Thus by Stokes’ theorem, noting that 6, =d(d° log |[z||* A 0x-1),
dejlz||® - de 2| -
f 0"=f d° log "zuz/\ok_lzf il /;k‘l’k l_f [l=] /;k?’k 1
ZIr.R) 92lr.R] oz 2] omn |l
since the restriction of d||z||? to 8Z[r] is zero. But ||z||** = R* on 8Z[R], etc., so

1 1 .
f O = 7 f d°[|2]* A @11~ f d°[i2l|* A @i
Zir.E] GZ[R] 8211

1 1 _w(Z,R)_v(Z,1
—Rﬁk Z[m(pk T2Ic 2t D= R?k ,,.2k .

Remark. This lemma remains true if we replace Z by any closed, positive current, cf.

[15].
It follows from the lemma that the limit
£2)= lim *%7)
r—>0+ T

exists and is called the Lelong number of Z at the origin. Although not strictly necessary for
our purposes, we shall prove the following result of Thie [20] and Draper [8].
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(1.17) ProProSITION. Ly(Z) is an integer and, in fact, @ is the multiplicity of Z at the origin.

Proof. We first show, following roughly the argument of 1.10, that for any A€ A4%(U),
dd*(Z A ©),_;) () =Mult, (Z)A(0).

We again use the blow-up r=0r—>C" and preserve the notation of § 1(b). Let Z be the

closure of ©=1(Z —{0}). Then if x—%(0) = E=P"-1, the intersection 7 B is the Zariski tangent

cone and Mult, (Z) is the degree of Z-E in E~ P-1, which in turn equals f[3.z0*w* 2.
Now by (1.11) and Theorem (1.1)

f Op_1dd°A = J. log ||z||*dd® (* 20* 0*77) = f a*lp* = /‘l(O)J‘A o**
z Z Z-E

Z-E

On the other hand, if A=1 for small r,

dd°(Z A ©y_y) (1) = lim Oy_1 A ddA

>0+ J Z-2Z[r1

and the right-hand integral is by Stokes’ theorem (for small r, d°A=0)
—‘J‘ d@k_l/\dcl =f dc®k~1/\d},
Z-2mn Z-2mn
= "‘J‘ d(ldc(’)k_l)
Z-2Zn

1 1 v(r)
LT T T e
YA ™ Jozn ™ Jzin

¥

2. Special exhaustion functions on algebraic varieties
(a) Definition and some examples

Let M be a complex manifold of dimension m. We will say that a function v: M —
[—oo, + o) has a logarithmic singularity at z,€M if, in a suitable coordinate system

(215 ..., 2) aTOUNd 2,
7(2) =log ||z]| +7(2)

where r(z) is a O function. An exhaustion function is given by
T M—~[—o0, 400)

which is 0% except for finitely many logarithmic singularities and is such that the half-
spaces
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Mr}={2€M: & <r}

are compact for all r€[0, + o). The critical values of such an exhaustion function 7 are, as
usual, those r such that dv(z)=0 for some z€0M[r]= {z: 7(z)=r}. If r is not a critical
value, then the level set oM [r] is a real O hypersurface in M and we shall denote by
T3 (0M[r]) the holomorphic tangent space to'dM[r] at z.

. Definition. A special exhaustion function is given by an exhaustion function z: M —
{ —oce, 4 oo ) which has only finitely many critical values and whose Levi form dd satisfies

the conditions

dd¢r >0
@e.1) (dd°t)™*=0 on T (@M[r])
(dd°r)"=0

Examples. (i) Let M be an affine algebraic curve. Then M —M —{z1, ..., 2y} where
M is a compact Riemann surface. Given a fixed point z,€ M, we may choose a harmonic
function 7, on M such that

7o~ log|z—2,| near z,

7.~ —log|z—2z,| near z,

where z is a local holomorphic coordinate in each case. The sum 7 =2J_,7, gives a special
exhaustion function { =harmonic exhaustion function) for M.

(ii) On €™ with coordinates (zy, ..., z,,), we may take v =log ||z|| to obtain a special
exhaustion function. We shall explain the geometric reasons for this, following to some
extent the proof of Proposition (1.5).

Observe first that the level set 0M[r] is just the sphere ||z|| =r in C™ There is the
usual Hopf fibration

7 OMr]—>Pm-t
of @M[r] over the projective space of lines through the origin in C™. The differential
(2.2) e TS (OM[r]) > Ty (B™ )
is an isomorphism, and the Levi form is given by

2.3) 2 dd°log ||z]| ==*(w)

where w is the (1, 1) form associated to the Fubini-Study metric on P™-1. It follows from
(2.3) that dd°log ||z|| >0 and (dd°log ||z||)™ =0, while (2.2) gives that (dd°log ||z])™! is
positive on T¢"? (@M[r]). Consequently log ||z|| gives a special exhaustion function on C™.
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(b) Construction of a special exhaustion function

These two examples are combined in the

(2.4) PrRoPOSITION. Let A be a smooth affine algebraic variety. Then there exists a special
exhaustion function T on A.

The proof uses resolution of singularities and proceeds in two steps.

Step 1. We shall first describe the exhaustion function on €™+ given by example (ii)

in a somewhat different manner.

Let P* be complex projective space and H Z, P the standard positive line bundle.
There are distinguished holomorphic sections 6, ..., o, of H—P" such that the associated

map
[ogs - .., On): PP>P"

is just the identity. On the other hand, there is a tautological section { of the pull-back

bundle
H—-H

such that £ =0 defines the zero section embedding of P* in H. The induced map
[n*0g, ..., w*0y; C]: H->PH!

is an embedding of H into P™! such that the zero section P" of H goes into the hyperplane
given in homogeneous coordinates [&,, ..., &,41] on P"+ by &,., =0. The image of H is the
complement of the point &=[0, ..., 0, 1] in P"+1, and the fibration H—~P" is geometrically
just the projection from & onto the hyperplane &,,, =0 in P*+1,

The metrie in €*+! induces a metrie in H-—> P" whose curvature form ¢(H) is the usual
Kihler form o on P*. This metric in turn induces a metric in w*H — H, and we consider the

function
7o=—log|{|

on H —P", The level sets {z€H: 7,(z) =r} are just the boundaries of tubular neighborhoods
of the zero section P" in H. Using the inclusion H<> P*1, we see that 7, gives a special
exhaustion function on P*1 —P" = (", In fact, this is the same as the exhaustion function
‘constructed in example (ii) above, only we are now focusing our attention around the hyper-
plane at infinity for €*+!. The distinguished point & is just the origin in C"*2.

Step 2. Let A be a smooth completion of A satisfying the following conditions: (i) 4
is a smooth, projective variety; (ii) Do, —=A —4 is a divisor with normal crossings on 4;

and (iii) there is a projective embedding 4 <> P¥ such that D, =4 NP¥"! isa hyperplane
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section of 4 (not counting multiplicities). Such an embedding exists by [12] and the assump-
tion that 4 is affine.

Assume that dim¢ 4 =m and choose a linear subspace P¥~-"-1 of P¥ which lies in the
hyperplane P¥-1 and does not meet 4. Selecting a generic P™ not meeting P¥-™""1, we

consider the projections
AC—ppV_pi-n-1qe— py-1_p¥-m-1

w P ETTTT

Pr — P - b} pr-1

Then n-1(P™1) N A = D, so that (2.5) induces a finite branched covering mapping
(2.6) . 4->C™

where C"=P™ —P"-1, We let 7=mn017, where 7, was constructed in Step 1. From the geo-
metric discussion there together with example (ii} we see that the A[r] are compact and the
conditions (1.1) on the Levi form are satisfied. What we must show is that 7 has only
finitely many critical values, which is not immediately clear since the branch locus of
(2.6) extends to infinity if m >1.

We now localize around infinity. Let L—~A4 be the pullback ©*H in (2.5), take the
metric in I induced from that in H, and let { € HY A, O(L)) be the section which defines
D, on A. Then 7= —log|Z| near D, on 4.

Around a point on D, we choose holomorphic coordinates w;, ..., w,, such that

é‘:wi‘l ...wzk‘
Then it follows that

k
(2.7 T=— Elocﬂ log |w,| + o(w)
fm
where g(w) is a C* function. From (2.7) we obtain
k
d
or = “%Z “/L—@",'a&’:
u=1 Wy

from which it follows that dv=0 for ||w]| <e. Using the compactness of D, we see that
dt =+ 0 outside a compact set of A. ‘ Q.E.D.

(¢) Some properties of the projection (2.5)
If 4 is a smooth affine variety of dimension m, then we have constructed an algebraic

branched covering
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(2.8) 4-"¢n

such that 7=log ||w(z)| gives a special exhaustion function on A. We may assume that v

is unramified over the origin, so that
7 1(0)={zy,..., 2, (d=degree of 4)

where z,, ..., 2, are the logarithmic singularities of 7. There are several properties of the

covering (2.8) which we wish to record here.

Let ® =TI, (V —1/2x) (d2; A dz,) be the Euclidean volume form on ¢ and @, —=n*®
the pull-back of @ to 4. Suppose that  is an everywhere positive C® volume form on 4,
and write Q ={®, where {>0 on 4 and log { €L'(loc, A).

(2.9) LEMMA. In the sense of currents, we have
dd®log ,=Ric Q- B
where Rie Q) is the Ricci form of Qb and B is the branch locus of the projection (2.8).

Proof. Using local holomorphie coordinates wy, ..., w, on A, we have the relations

@, = l?(w) lzigll/T (dw; \ div,;)

Q=a(w) li ——;—1- (dw, A dib,)

where j(w)=0 is the local equation of B and a{w) > 0is the coefficient of Q. It follows that

_ aw)
=i

so that using the Poincaré equation (1.1) we obtain

dd¢ log { =dd°log a — B
as an equation of currents. Q.E.D.

Before proving our next property of the sitnation (2.8), we need to have the following

(2.10) LEMma. Suppose that Z is a k-dimensional analytic subset of C* such that in P™ there
is a P"1 in the P! at infinity with Z N P* "1 =@, Then Z is algebraic.

Proof. Assume first that k=n —1, so that Z< C" is a hypersurface and there is a point
£€P"—(" with £nZ =@. The projection P" —Si P! is the total space of the standard
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positive line bundle H Z pt (cf. Step 1 in the proof of Proposition (2.4)). The restriction

Z Z. P! is proper and realizes Z - €*~! as a finite analytic covering with d sheets. Thus

we may write
Tl z) ={oy(2), ..., 04(2)}

where ¢,(z) are multi-valued holomorphic sections of A 2, ¢* 1. Each homogeneous symme-
tric function of the ¢,(z), such as

61(2) .. 0al2),
may be considered as a single-valued holomorphic section {(z) of H® Z, O™ for suitable b.
Moreover, around the P"~! at infinity in (, the {(z) are locally given by bounded holomorphic
functions in a punctured polycylinder. Applying the Riemann extension theorem, it follows

that any such {(2) is a holomorphic section of 22, P!, The holomorphic sections of

o pret are, essentially by definition, given by holomorphic functions F(z) on € —{0}
which satisfy

Fy(dz) =2"F¢(2).
By Hartogs’ theorem, F; extends to give a holomorphic function of C*, which is then a
polynomial of degree b by the homogeneity condition. Thus any such { is algebraic, and it
follows from this that Z is algebraic. In fact, for each such it follows that Z satisfies the

polynomial equation
EZ =F§(§0’ ceey 57{,—1)-
In general, the situation _
ZcZcpr—prkt

I

gives a vector bundle E—P* such that Z may be considered as a multi-valued section over
C*< P . Choosing coordinates such that = is given by

[50’ R ] En]'_)[go’ L] Ek]

gives an isomorphism

E~Hop..0H.
N et
n—k

Using this we may repeat the above argument to find a homogeneous polynomial P(,,...,£,)
such that P(§) =0 on Z but P(£) =0 at a given point £ €P" — Z. This P(£) will be a section of
a symmetric power of n*E. 7

One may also note that for a generic P"~! there is an open set U<P""! at infinity so
that for each €U, and m,: P* — {x} -~P"-1, the set m,(Z) C;c:(.Zﬂ) c Pr-t _g(P"*-1) gatisfies
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the hypotheses of the theorem. Thus by induction on codimension Z, 7; ' (r,(Z)) is algebraic
and Z< N ,eym; ' (m,(Z)), an algebraic set. These two sets are actually equal, since if y €C" —Z
the set of €U such that 7, (y) € w,(Z) has dimension equal to dimension Z <dimension U.
Therefore, Z = N ;eu 75 1(7,(Z)) is algebraic.

CoroLLARY (Chow’s theorem). Any analytic set in P" is defined by polynomial equa-

tions, and is therefore algebraic.
Remark: The above proof uses only the Riemann extension theorem and Hartogs’
theorem, and is thus both elementary and reasonably simple.

Now we return to the finite algebraic projection 4%, ¢m given in (2.8). Let Z< 4 be

an analytic subset and n(Z) its projection onto C".
(2.11) LEMMA. Z 55 an algebraic subset of A if, and only if, m(Z) is an algebraic subset of C™.

Proof. Tt will suffice to assume that w{Z) is algebraic and then prove that Z is also.
There is a linear P™*-1<Pm1—Pm_(" such that w(Z)NP"*1=@. Considering the

situation
A < PY_py-m1

o
¢t < pm

it follows that n~2(P"*-1) is a P¥*-1 in P¥Y — (" such that Z N P¥~*-1 =@, By Lemma (2.11),
Z is algebraic. Q.E.D.

3. Some integral formulas and applications
(a) Jensen’s theorem

Let 3 be a complex manifold having an exhaustion function 7: M—~[— oo, 4. o0),
We set M[r]={x€M: v(x)<log r} and assume that r, is such that 7(z) has all of its critical
values in the interval [ — oo, log r,). We denote the Levi form of 7 by

p=dd°7>0.

Let D be a divisor on M and set D[r]=D N M[r]. If D does not pass through any of the
logarithmie singularities of 7, we define

n(D,t)= fumwm_l

N(D,r)= f "D, %

o ¢

3.1)

(counting function).
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In case D passes through some of the logarithmic singularities of 7, the formulae in (3.1)
must be modified by using Lelong numbers as discussed in § 1(d). We shall assume without

further comment that this has been done whenever necessary.

(8.2) ProrosiTioN (Jensen’s theorem). Let o be @ meromorphic function on M with divisor
D. Then we have
N0 |

1
10g|a|2n+f log T,y +O(1)  (r>1)
A Mir) M) |°‘|

where =d°v Ay™ >0 on 6M[r] and where the term

O(1)=N(D, ro)-l-f

Mirol

log |-1—2 Y- f log |a*n
o OMIr4)
depends on D but not on r.
Proof. We recall the Poincaré equation of currents (1.1)
dd°log|a|2=D.

Let y; be the characteristic function of M[t]. Since the current d° log| «|? is a Radon
measure, d°log|a|2 Ay, is defined. We claim that

(3.3) d(d°log|a|2 Ay,)=D Ay, —oM[r] A d° log|e|2.

By Equation (1.1) or by the usual Stokes’ theorem this is clearly true around all
2¢D N oM[r]. As in (1.10) there are two ways to verify this on D N dM[r]. One way is to
observe that these are flat currents of dimension 2m — 2 in the sense of Federer. Since the two
sides differ on D N 8M[r], a set of real dimension 2m —3, the two sides must be equal [13].

The other way is the method used in the proof of (1.10). In this case it will be better
to blow up the origin by inserting a real sphere instead of a complex projective space. This
leads to a real analytic set with boundary [ and 7 I'—~M such that n*(d° log|e|?) is
smooth and the usual Stokes’ theorem gives (3.3) for the forms pulled up to f and this
implies (3.3) (cf. (1.13) and the proof of Proposition (1.10)).

Now given Equation (3.3), apply these currents to the form ™1, replacing y, by
¥Yt—7Vr. Then since dyp™-1=0,

(3.4) f p" = J‘ d°log |a| A ™t
DA oMt

(one must check also that the boundary term arising from the logarithmic singularities of
7 in zero). In (3.4) we have assumed that D does not pass through any of the logarithmic
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singularities of 7 and that log ¢ is not a critical value of 7. As mentioned above, the first
of these restrictions may be disposed of using Lelong numbers.

Now we integrate (3.4) with respect to dt/t from r, to r and apply Fubini’s theorem to
have

(3.5) N(D, r)=f dr Adlog Jaft Ap™ 1+ 0(1).

Miro, 7]

Using the relation
dv Ad°log [a|® Ayt =d(log |«|?n) — log |a[2y™

and applying Stokes’ theorem to the R.H.S. of (3.5) gives Jensen’s theorem. Q.E.D.
Suppose now that o€ O(M) is holomorphic and let
M, (r)= maxlog | x(z)[*

zeMlr]

be the mazimum modulus log |x| on M[r]. From (3.2) we obtain the estimate

(3.6) N(D,ry<s M, (r) (f 7])+f log —1~—21p'"+0(1).
aMLr] MIn |°‘|

In general, this inéquality does not seem to be very useful because, at least on the face of
it, the zeroes of a will contribute positively to the term [, log (1/]|2) y™ However, if
7T is a special exhaustion function as defined in § 2, then ™ =0 and S oartn 1 is & constant
independent of 7. Taking this constant to be 1/2, (3.6) reduces to the Nevanlinna inequality

(3.7) N(D, r)<M,(r)+0(1).
Although simple to derive, this inequality has the remarkable effect of bounding the size

of the divisor ¢ =0 in terms of the maximum modulus of «. To illustrate the strong global

consequences which result from a special exhaustion function, we shall prove the

(3.8) ProrosiTioN (Casorati-Weierstrass theorem). Let M have a special exhaustion
function and o be a non-constant meromorphic function on M. Then the image (M) is dense
in PL

Proof. If the proposition were false, then after a suitable linear fractional transforma-
tion we may assume that o« is a bounded holomorphic function such that the divisor «=0
is non-empty and does not pass through any of the logarithmic singular points of 7. Thus,

for some ¢>>0, we will have from (3.7) the inequality
clog r<N(D, r)<O(1)

for arbitrarily large r. This is a contradiction. Q.E.D.
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Remark. For a Riemann surface M, there is a notion of what it means for M to be
parabolic (cf. Ahlfors-Sario,. Riemann Surfaces, Princeton University Press (1960), pp. 26
and 204). It is then a theorem that this is equivalent to M having a special exhaustion
function in the sense of § 2 (cf. M. Nakai, On Evans Potential, Proc. Japan Acad., vol. 38
(1962), pp. 624-629). This together with Proposition (3.8) perhaps suggests a generalization

of the notion of parabolic to general complex manifolds.

(b) The Nevanlinna characteristic function

Let M be a complex manifold with a special exhaustion funection 7: M —[— oo, + o).
Following R. Nevanlinna [16], we shall put Jensen’s theorem in a more symmetric form.

Let « be a meromorphic function on M and denote by D, the divisor
a(z)=a
for a point @ €PL. Then, using the notations
1

(3.9) log*t=max (log ¢, 0), (¢=0), m(a, 1) = f log* =57,

aMIrl ||
Jensen’s theorem (3.2) may be rewritten as
(3.10) N(D,, r)+m(a, r)=N(Dy, r)+m(l]e, r) +O(1).

The R.H.S. of (3.10) will be denoted by 7'y(«, r} and called the Nevanlinna characteristic

function of «. Using the inequalities

logt (t,t,) <logt t; +logt £,
log* (¢, +1,) <logt t; +log+ t,+log 2,

we obtain from (3.10) the relations

Tolagor, 1)< Toloy, 1)+ Tolotg, 1)
(3.11) Tolagon, 1) < Toloy, 1)+ Tolotg, 7} +0(1)
' Tyl —a, r) = To(at, 7) +O(1)

(

To(1/e, ) =To(ex, r) +O(1).
From (3.11) we immediately deduce

(8.12) ProrosiTIiON. Let A(r) be a positive, increasing function of r such that
lim, 00 A(r) = + co. Then the set of all meromorphic functions o on M which r—> co satisfy
the growth condition

To(a, 1) =O(A(r))

forms a subfield My of the field M of all meromorphic functions on M.
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Following still the classical theory, we let N(r, ¢)=N(D,», r) and shall prove an
identity due to H. Cartan when M =C.

(3.13) ProrosiTIiON. The Nevanlinna characteristic jdnction satisfies
1 27
— J N(r, e®)d =Ty (x, r) + O(1).
2n J,

Proof. Jensen’s theorem applied to the function x(z) =z — @ on the complex plane gives
1 27
(8.15) %), log |a— €| d6 =1og™|al,
even including the limiting case a = co. Replacing a(z) by a(z) — ¢ and using (3.2) we have
N(r,e®y=N(D,, )+ f log |a(z) — € |*5(z) + O(1).

aM(ry

Integrating this equation with respect to df and using (3.14) yields

27
1 f N(r, e = f log* |a(z) [*9(z) + N(D, r) + O(1).
2n J, oM

Comparing the R.H.S. of this relation with the R.H.S. of (3.10) gives the proposition.
Q.E.D.

It follows from (3.13) that T'y(e, r) is an increasing convex function of log r, an asser-

tion which may be viewed as a sort of “‘three-circles’’ theorem.

(¢) Jensen’s theorem for vector valued functions

We continue to let M be a complex manifold with exhaustion functionv: M —[ — oo, + o)
and Levi form p=dd°t. Let f: M- C" be a holomorphic mapping such that Z = f-1(0) has

pure codimension ». Using the notations

Mir\={z€M :1(z) <log r}
Zir] =Z n M[r]

(3.15) } oz - f o
Zi)

0

N(Z,r)= frn(Z, t)%—t

we want to have a formula for the counting function N(Z, r) in terms of fand . EReferring
to (7.6), we let '
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w;=(dd"log |If [P
(3.16) Q,=log |If [P,
pi=a°Q,=d’log ||f|* A,

(3.17) ProrosiTioN. Using the notations (3.15) and (3.16) we have

Nz, r)= Qs A"?m—n_f Qny A'Pm_m_l'{‘o(l)
oM} Ml

f w Ay"l= Qi1 Aoy — f Qi Ay +0(1) (I<n—1)
M oM Mir

where m,=d°t Ay* >0 on oM[r].

Proof. This proposition follows in the same manner as 3.2 by integrating twice the

equations of currents
dd° ;= 0

(3.18) ddQ=cw,,, {I<n-1)
dd'Q, =2
The restriction of these equations to M({r] is handled in the same way as in 3.2.

Remarks. For f: M —C" introduce the notations

M ,(r)= max log ||/(z)||?
2eM(r]
V(W’) =J wn—l A wm~n+1
M[r]

1
S — n~1 A m-n+1.
O Lol

Then Jensen’s theorem gives the estimate
(3.19) ‘ N(Z, r) <M, (r) V(r)+8(r) + OQ1).

The first term M (r)V(r) on the R.H.S. is infrinsic and involves, so to speak, only the
growth of the mapping f and not the particular value “0” where Z =/-1(0). On the other
hand, the remainder term S(r) is not intrinsie. One’s initial hope might be that M (r)V (r)
is the more important term. If, e.g., we have the special case of a holomorphic mapping

02 ,f= (fpfz) 02
where f is of finite order in the sense that M,(r) <c,r*, then the relative unimportance of
S(r) would imply an estimate

(3.20) N(Z, r) <cyr*
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for the number of common zeroes of f; and f, in the ball [[z[| <r. A recent example of
Cornalba and Shiffman [7] shows that the Bezout estimate (3.20) may be false (cf. Stoll [19]
for a Bezout estimate “on the average”). Thus in general there will be no Nevanlinna ine-
quality (3.7) in higher codimension. Moreover, the Casorati-Weierstrass theorem (3.8) fails
also in higher codimension, as illustrated by the well-known Fatou-Bieberbach example.
Outside of the one result due to Chern-Stoll-Wu (cf. Proposition (5.20) page 186), the

value distribution theory for higher codimensional subvarieties remains a mystery.

4. Conditions that a divisor be algebraic
Let 4 be an m-dimensional affine variety, and
wA->C",  7(z)=log [In(z)|]*

the generic projection and special exhaustion function constructed in § 2(b). Let D be an
effective analytic divisor on 4, p=dd°r the Levi form of 7, and

r d
HiDn)= fo {fb[t] wm—l} —:

the counting function for D (cf. (3.1)).
(4.1) PROPOSITION. D is an algebraic divisor if and only if,

N(D, r)=0(og r).

Proof. It is immediate from the definition (3.1) that N(D, r) is O(log 7} if, and only if,
(4.2) f Y"1t =0(1)
_ orn

for-all . On the other hand, by Lemma (2.10), D is an algebraic subset of A4 if and only if,
7(D) is an algebraic subset of (™. Using this together with (4.2) we are reduced to the
following result of Stoll [17]:

(4.3) Pro?oSITION. Let D be an effective analytic divisor in €™ and y=dd° log ||z||2. Then
D is algebraic if, and only f,

DIr]

We will give two proofs of this result. The first uses elementary properties of plurisub-
harmonic functions together with the Cousin II problem in C*. The second uses Nevanlinna
theory and provides one of the few occasions where the remainder term in the First Main
Theorem 5.14 can be dealt with. In giving this proof we shall use the F.M.T. (5.14) below
and refer the reader to that section for its pfoof.

12 - 732905 Acta mathematica 130. Imprimé le 14 Mai 1973
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First Proof. Suppose that D is algebraic of degree d in C™. Assuming that the origin

does not lie on D, we consider the projection
D-pm-1

of D over the lines through the origin in €™ For each such line & the intersection &+ D

consists of <d points, counted with multiplicities, on §. It follows that

f DIr) wm‘l <d {f pmt wm*l} - d’ rlggo (f Drr} 1/)'”‘1) =4

where @ =dd° log ||z||? is the usual (1, 1) form on P™-1,

Conversely, suppose that [, 9™ 1<d for all . Then, on the average (cf. (5.18) page
186), each line & through the origin meets D in at most d points. Our main step is to show
in an a priori manner that this happens for all lines &.

For this we use the Cousin II problem on €™ to find an entire holomorphic function
o(z) such that («)=.D. Normalizing so that «(0)=1, Jensen’s theorem (3.2) gives

(4.4) N(D,r)= fl por O (2] 7 (2)

where 7(z) =d°log |jz |2 A (dd° log ||z]|2)"~". For each point z==0 in €™, we let &, be the
line determined by z and &,[r]=§, N C™[r]. Then Jensen’s theorem applied to «(z)|&, gives

4.5) ND 0 &rfel)=5 fo”log afren)| 0.

From (4.5) we see that the counting function N(D N &,, r ||2||) is a pluri subharmonic function
of z€C™ since it is the mean value of the pluri subharmonic functions log|a(re® z)|.

We want to apply the sub-mean-value property of pluri subharmonic functions to
N(Dn&,, r||z)]). For this let B(z, o) be the ball of radius g around z in €™ and @ be the
Euclidean volume element normalized so that f.<1®(z)=1. Then the sub-mean-value

property gives the inequality

1
ND &)< - f N(D 0 £yt J])) D (w)
e weB(2,0)

1
< Tf N(D n &, r|jw|)) D(w)
weB©,[|2]|+0)

2m
( ;9) f o YD 0 Er (el + )y (6)

< (ELE8) " 10g o+ .
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Taking ||2|] = 1, we obtain the estimate,

NDngr

(4.6) log r

)<d (1 ’; @)2,,, 1O(1), (E€P™Y),

It follows from (4.6) that D N & is a divisor of degree <d((1-+¢)/p)?™ for every g >0. Letting
p—>co we find that all intersections D N & are divisors of degree <d on the line & through
the origin in €™,

Let d be the smallest integer with the property that degree (DN §)<d, for all £ Let
&, be some & at which the maximum is attained; then there is a neighborhood U of &, and
0 < B,< oo such that DN &< B(0, R,) for £€U. Thus D satisfies the hypothesis of Lemma
(2.10) and is algebraic.

Second proof. As before, we must show that
(4.7) deg (DN&)<d<oo

for all lines & through the origin in C*. Suppose we are able to prove the estimate

(4.8) f P i<d < oo
HAD

for all hyperplanes H passing through the origin in C*. Then we may repeat the proof of
(4.8) with H n D replacing D, and in this way work our way down to the desired estimate
4.7).

We consider the residual mapping

(4.9) p—t prt

which sends each point z€ D to the line f(z) determined by z (here we assume that {0}¢ D).
The function 7(z) =log [|z||? gives an exhaustion function on D, and the Levi form

(4.10) ddr = f*w) =w;

where w is the standard Kibler form on P"-1. We wish to apply the F.M.T. (5.14) for
divisors to the mapping (4.9) and exhaustion function r. Even though D may have singulari-
ties, this is possible because of Proposition (1.1).

Let L->P"1 be the standard line bundle whose sections are the linear functions on
C" and where |L| is the complete linear system of hyperplanes in P*-1. We take in L the
standard metric such that ¢(L) = w, and denote by H, the hyperplane in C" determined by
the section o € HO(P"?, L). Using the notations
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r dt
N(Hmr)=f {f w}”'z} —;
o WJam ¢
T dt
T(r): f {J w}z_l} —;
o Wom ¢

)
logm Wy L

S(Hy, 1) = f

Dt
the F.M.T. (5.14) together with (4.10) yields the estimate
(4.11) N(Hq, r) <T()+S{Hg, 7).
From (5.18) we have the averaging formula

Pir)— f N(Hy,7) dut (o),

ceHo (P, L)
sup jo|=1

and (4.8) will follow from an estimate

(4.12) tim > (g(';) o,
Proof. From (4.11) and (4.12) we have
N(H,, 1)
}Loo Tr) <!

Now T(r)<dlogr since fpw} ' =d< oo, and if [ o™ =¢, then N(H,,1)>clog r+0(1)
for large r. Thus ¢<d for all ¢, and consequently

f op?<d.
Ho

To prove (4.12), we consider the singular volume form

1
QU:WCO

n—1

on P**. We normalize |o| so that fp._1 Q¢ =2, and then use the concavity of log to obtain

(4.13) S(H,,r)<log { Q,+ 0(1)}.

DIrl
On the other hand, we have
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dde (ot 0™ %) =Q,+ 0

where © is a bounded volume form on P*~1. Tt follows that
(4.14) S(H,,r)<log {j dde|o|t wp %+ ca)}‘_l} (¢>0).
DIn

Now we may apply Stokes’ theorem twice to obtain

R dr
(4.15) f U ddc|o|*w}“2}—=f Ioi*w}“l-—f lo|twf 2 Ad°T
o tJo r DR} dDIR]

(cf. the proof of Proposition (3.2)). Since |o]is bounded and [ pim wf = fopm @} 2 A d°r = O(1),
we may combine (4.14) and (4.15) to have an estimate

R
(4.16) J‘ eS(H"")d%= O(log R).
0

Since S(H,, r) is a non-negative increasing function of r, (4.12) follows from (4.16). Q.E.D.
Remark. The above proof works for an arbitrary divisor D< (" and yields an estimate
N(Hg, r)<T(r)+o{T(r)} I

(cf., the proof of Lemma (7.22) for an explanation of the symbol ||). This estimate bounds
the growth of H N D in terms of the growth of D for ail hyperplanes H. There is no analogous
inequality known in case codim (D)>1.

5. The order function for holomorphic mappings
(a) Definition and basic properties

Let M be a complex manifold having a special exhaustion function 7: M —{ — oo, -+ co)
(cf., § 2). Suppose that V is a smooth, projective algebraic variety, and that L—>V is a
positive line bundle having a metric with positive curvature form o (cf., § 0). Let f: M~V

be a holomorphic mapping, set w,=f*w, and define order functions 7, ..., T,, by

(5.1 2= [ [ ot naarar-a 2.
o (/i ¢

The total order function T (f,r) is defined by

Lihr)= 3 Tofr).
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Here, Ty(r) = fo{fmn(dd°T)"} dt/t = constant since 7 is a special exhaustion function.
Geometrically, if we let I';= M x ¥V be the graph of f, I';[t]=T,n (M[t] x V) that part of
the graph lying above M{t], and

v(t) = f (dd°t+ )™
Ty

the volume of I',[f] on M x V relative to the pseudo-Kahler metric dd°t -+ w, then

T dt
(5:2) OB f "),
modulo some inessential constant factors.

(5.3) PrRoPOSITION. If we choose another metric in LV which leads to a new curvature

form & and order functions T (r), then

T,(r)—T,(r)=0 (—%Jr 1).

Proof. Let §€ A» "1 (M) be a C°(n— 1, n— 1) form on V. Then by Stokes’ theorem

o \Jart: t Jo\Jomm t o Jum
which gives

(5.4) f (f ddce) iﬁf OAndr— | OAddT.
o \J M 4 aMIn Ml

From (0.3) we have & = w -+ dd°g where p€ C” (V). Plugging this into the definitions and

using (5.4) we obtain

a1
(6.5) T, )T, ")=73 a, o(dde)? * 1 A * Adr + bkf o(dd®0)* "1 A ¥ Add‘t.
Mir]

k=0 o Mlr]

Now p(dd® p)**1 <0**-1, and using this together with Stokes’ theorem in (5.5) gives the
result. Q.E.D.

(5.6) COROLLARY. The order functions associated to two different metrics in L—V satisfy
Ty(r)=T4(r)+0(1).

Remark. The above proposition and corollary suggest that 7',(r) should perhaps be
the most interesting term in the total order function Z'(f, r). Thus, e.g., the order of growth
of T, (r) for ¢>1 will be well-defined only if
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dTqs(r)
. dr
(5.7 rhjlolo 7.0 =0,

We shall now give two more indications that 7',(r) is the most important term in
T(f, r) For the first we write T';(r)=1(f, r) in order to emphasize the dependence on f.
Suppose given two holomorphic mappings f: M~V and g: M —~ W of M into smooth projec-
tive varieties ¥V and W, so that we may consider the product mapping fxg: M~V x W.

(5.8) ProPOSITION. The mappings f, g and f x g satisfy
Ty(f xg, r)=Tu(f, )+ Ta(g, 1)+ O(1).
Moreover, this funciorial property is not necessarily true jor the terms Ty (r) (¢=2).

Proof. The equality follows immediately from the definition. The observation that,
e.g., To(r) does not necessarily have the functoriality property may be seen by letting
dimg M =2. Then what we need to do is to be able to estimate §w,Aw, in terms of
fw;Nw; and § w, A w,. In general this is not possible.

The second proposition will be proved at the end of § 5(c) below. To state it we assume
that M is a smooth affine variety 4 with the special exhaustion function v constructed in

§ 2(b).

(6.9) ProrosiTIioN. The mapping f is rational if, and only if,
T(r)=0(log 7).

This estimate s, in turn, satisfied if, and only +f,

T(t, r)=0(og r).

(b) The First Main Theorem (FMT)

We continue with the situation f: M-V of § 5(a). The F.M.T. for divisors, which is
the global version of Jensen’s theorem (3.2) for meromorphic functions, will be presented
first. Let D€ |L| be an arbitrary effective divisor given by the zeroes of a holomorphic
section 0 € HY(V, L). Since ¢ and Ac (13 0) define the same divisor, we shall assume that
lo(@)| <1 for x€ V. Let L,—~ M be the pull-back of LV and o, the pull-back of 6. Assume
that o, 0 and define the proximity form

(5.10) m(D, r)= f log —1—2 n=0
omry - | oy

where 7 =d% A (dd°r)™! is positive on 6 M[r].
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(5.11) PropositioN (F.M.T. for divisors). Letting D, be the divisor of a,€ HY(M, L;), we
have

'N(Df, 7’) +m(D, 7‘) =T1(f') +0(1)
where O(1) depends on D but not on r.

Proof: This follows by integrating twice the equation of currents (1.5) applied tc
L,~M and gy, in exactly the same way as Jensen’s theorem (3.2) followed by integrating
twice the equation (1.1). Q.E.D.

Remark. Combining (5.10) and (5.11) gives the estimate
(56.12) N(Dy, r)y<T,(r)+0(1) (DE|L)),

which is a variant of the basic Nevanlinna inequality (3.7). In both cases, the effect of the
estimate is to bound the growth'any particular divisor by the average growth of all the
divisors in the same linear system (cf. (3.10), (3.13), and Proposition (5.18), page 186).

To give the general F.M.T., we assume that oy, ..., 0,€H%V, L) are holomorphic
sections such that the subvariety Z defined by o, = ... =0, =0 has pure codimension 7
on V. Assume that f: M~V is a holomorphic mapping such that Z;=f*Z) has pure
codimension n on M. We use the notations (1.15) and set

O'fz(f—l(ol), 7f—1 (o4)); A,=f*A
Y= (ddc’t)l, 7’}1=dc1’ A wl—l
(6.13) 1 m(Z,r)= A Ayt T (proximity form)
O Mlr}
S, (Z,r)= Af Apn_mat (remainder).
Mlrl

(5.14) ProrositioN (F.M.T.—the general case). Using the nofations (5.13) and (1.15),
N(Zf: 1’) +m(Z: 7’) = Tn(r) +Sn(z: ’I’) +0(1)’
where O(1) depends on Z but not on .

Proof. This follows by integrating twice the equation of currents (1.18) cf. the proof of
(3.17). :
Remarks. As in the case of divisors, we may assume that |o(x)|<1 for all z€V.
Then by (1.22) the proximity form m(Z, r) =0 and (5.14) gives the estimate

(5.15) N(Zy, 1) <Tolr) +8,(Z, 1) +O(1).
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When n=1, (5.15) reduces to the Nevanlinna inequality (5.12) because ™ =0 and so the
remainder 8,(Z, r)=0. However, for n>1 in general the remainder term will be positive

and we are in the analogous situation to Proposition (3.17).

(¢) Averaging and density theorems

In this section we assume that L—V is sufficiently ample, which means that the
complete linear system |L| should give an embedding of ¥ in P¥-1 where dim¢ H(V, L) =N,
and that the image of ¥V should contain no proper linear subspaces. Choosing a metric in
H(V, L) induces the usual Fubini-Study form « on P¥-! which is invariant under the
unitary group, and we may assume that the metric and curvature form on LV are
induced from these on P¥~1,

Let G(n, N) be the Grassman manifold of all n-planes in H(V, L), and denote by
C{G@(n, N)} the Grassman cone of all decomposable vectors =0, A ... A, € A"HYV, L).
For any such ¢ we denote by Z(c) the subvariety o =0 on ¥ and note that codim (Z(¢)) =n
since L~V is ample. The proximity form A=A(c¢) given by (1.15) may be constructed,
and A(o) is the restriction to ¥V of the analogous form on P¥-! which is given by the same
formula. In particular, if T: HY(V, L)-~H®V, L} is any unitary linear transformation, then

by linear algebra 7' induces actions of C{G(n, N)} and P"-1, and
(5.16) A(To)=T*A(0).
We denote by C,{G(n, N)} the vectors in C{G(n, N)} of length one and let du(s) be
the measure on C,{G(n, N) which is invariant under the unitary group. Explicitly,
du(o) =cd®log ||o|| A (dd° log ||a|)*¥—™
where ¢ is a constant to be determined.

(6.17) LEMMA. For a suitable choice of constant ¢, the average

1
log ToFF A(o)du(c) = o™

0eC1{G(n.N)}

Proof. From our construction it follows that [cm log (1/]|a]|?) A(o) du(s) is an
n—~1,n—1) form on P¥! which is invariant under the unitary group. It follows that
§ oy log (1/|o|?) Alo) du(o) =c ™ since any invariant form is a multiple of ™. We may
easily check that ¢, + oo, and so we arrange that ¢, =1 by a suitable choice of ¢. Q.E.D.

Let f: M~V be a holomorphic mapping such that codim {Z/(¢)}=n for almost all
c€C{G(n, N)}.
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(6.18) ProPOSITION. We have the averaging formula

 N(Z{0),r) dp(0) = T (1) + O(1).
oeCi{G(n.N)}

Proof. We shall give the formal computation. The convergence follows by justifying
Fubini’s theorem in the same way as in Stoll [18]. Referring to (5.14) it will suffice to prove
that

(5.19) f m(Z(o‘),r)dp(a)=f 8, (Z{o), vy dulo) + O(1).
{o> {o>

Interchanging the order of integration in (5.17) and using (5.17) we are left to verify that

f " pm = f O™ Pn_pmi1+ O(1),
o M(r] Mlr]

which follows from d#,_,,=v, .., together with Stokes’ theorem. Q.E.D.

Remark. The averaging formula (5.18) is a version of Croffon’s formula from integral
geometry, which says that the length of any piecewise smooth closed curve C in R? is the
average over the lines L in R? of the number of points of intersection of L and C.

As an application of (5.18), we shall prove the following result which is a variant of
those of Chern, Stoll and Wu (cf. Stoll [18]).

{(6.20) PrROPOSITION. Let f: M—V be as above and assume that

Taal) o0
m— % "y
e Taln) '

Then the image f(M) meets almost all Z(c) for o€ G(n, N).
Proof. Suppose that the set I of all € C,{G(n, N)} such that f(M) intersects Z(c)

has measure 1— ¢ for some s >0. Combining (5.15) and (5.18) we have
2,00~ [ N 001 o) (by (5.18)
- Le[ N(Z,(0), 7) du(c) obviously
<[ _morsaonroniue by 61s)

Tn ~1 (lr)

<(1-¢ Tn(r)+d i +0(1),

where the last step follows because of
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[ szonuos | s.@ondue

{o>

=f wlf 1A Wn-m+1 (by (5.17))
Mirl

_ ATy (1)

ar (by definition).

Combining the above inequalities gives

d——T’;l“;(” +0(1)
< —_
(5.21) 1<(l-—-¢)+ T.(r)
Taking lim-inf in (5.21) gives the proposition. : Q.E.D.

(5.22) CoroLLARY. If M has a special exhaustion function, then the image f(M) meets
almost all divisors D€ |L]|.

Remarks. (1) This corollary is obviously the same type of assertion as the Casorati-
Weierstrass theorem (3.8).
It is interesting to observe that the condition

d————T’Zl‘; ™+ oq)
R N R

which allows the density theorem to hold is the same as the condition (5.7) that the order
function T',(r) be intrinsic.

(ii) Suppose now that our map
f M-V

satisfies the estimate

(5.23)

Then certainly the image f(M) meets almost all Z(g) for o €G(n, N).

Question. Assuming the estimate (5.23), do we then have the Nevanlinna inequality
N(Z{0), 1) S T(r) +0(N(Z{o), 1)
valid for any Z(o)?
The motivation for this question is that the presence of an estimate bounding the
growth of every Z,(¢) in terms of the average growth seems geometrically to be about the
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same as saying that the image f(M) meets almost all Z(¢). In order to prove (5.24}, it would
seem necessary to estimate the remainder term in the F.M.T. (5.14), and (with perhaps the
exception of our proof of Stoll’s theorem in § 4) nobody has been able to successfully do

this, even in the case of divisors.
Proof of Proposition (5.9). Replacing the positive line bundle L by
L'=L®..®L
o

k-times

changes T,(r) into k7(r), and therefore does not alter the conditions of the proposition.
Choosing k sufficiently large, we may assume that L—V is ample so that the complete
linear system |L| induces a projective embedding of V. Then it is clear that f: A~V is
rational if, and only if, the divisors

D,;=f~Y(D)
are algebraic and of uniformly bounded degree for all D€ |L]|.

Suppose first that f is rational. Then, referring to § 4, we see that for any D€ |L|

(5.24) N(D,,r)<dlogr+0(1)

where d is the degree of w(D;) in C™. Here the O(1) depends on D, but from the discussion
of Lelong numbers in § 1(d) it follows that, for fixed r, the estimate (5.24) holds for all
De|L]. Integration of (5.24) with respect to the invariant measure du(D) on |L| and an
application of (5.18) gives
T,(r)<dlog r+0(1)

where, as is easily checked, the O(1) term is now independent of ». This proves one half of
our proposition.

To prove the other, and more substantial, half we assume that 7',(r) =d log r 4+ O(1).
From the Nevanlinna inequality (5.12) it follows that

N(D;,ry<dlogr-+0(1)

for any D€ |L|. Applying Proposition (4.12) we find that all divisors D, are algebraic and
of degree <d on 4.
It remains to prove that:

Ty(r)=0(log r) = Z(f, r) =0O(log r).
Under the assumption T',(r) =0(log ) we have just proved that f is rational. Choose

a rational projective embedding g: A —~P¥. Replacing f by the product h=f xg: 4~V xP¥,

we obviously have that
L, )<Lk, 7).
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On the other hand, % has the advantage of being an algebraic embedding of 4 info a
complete projective variety, and we may obviously assume that the image (4} is in general
position with respect to a given family of algebraic subvarieties of the image variety. In
conclusion, it will suffice to prove that T(f, r)=0O(log r) under the assumption that L~V
is ample and that
codim [{~HZ(c)]=n

for all subvarieties Z(¢) corresponding to 00 € A"H%(V, L).

Now then all Z,(o)=f"1Z(o)] are algebraic subvarieties of dimension m-—n on 4,
and the degrees of n[Z;(0)] in C™ are all bounded by some number d. It follows that

N(Zo), r)<dlog r+0(1),

and our result follows by averaging this inequality over all Z(o) and using (5.18).

(d) Comparison between the order function and Nevanlinna characteristic function.

Let M be a complex manifold with special exhaustion function 7: M~ — co, -+ c0)
and «(z) a meromorphic function on M. In § 3(b) we defined the Nevanlinna characteristic
function (cf. (3.10))

(5.25) To(x, ) = N(Dy, 1) + f log* |a|*n
9 Mlr}

where 7 =d° A (dd°t)"1 >0 on 0M[r]. This characteristic function has the very nice alge-
braic properties given by (3.11). Moreover, in case M is an affine algebraic variety A4, it
follows from (3.10) and Proposition (4.1) that o« is a rational function for the algebraic

structure on 4 if, and only if,
Ty(e, )= O(log r).

At this time we want to introduce another order function T,(e, #) Which, in case «
may be interpreted as a holomorphic mapping «: M —P1, is just the order function 7';(r)
for the standard positive line bundle over P! introduced in (5.1). Locally on M we may

write o=f/y where § and y are relatively prime holomorphic functions. From the relation
log (L+||?) =log (|y[*+|B|*) —log|¥|®
it follows that the locally L! differential form of type (1, 1)
0, =dd® log|(y|*+]8|*)

is well-defined, and we have the equation of currents
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(5.26) : dd®log (1 + | x|?) =w, — De.

Using the by now familiar notations

r t
Ty(a, )= f {f wa A (ddc'f)m_l} i ’ my (o, 1) = f log (1+ I“Iz) 7=>0
Mz ¢ oMIn

0

we may integrate (5.26) twice as in the proofs of (5.11) and (3.2) to have the formula
(5.27) N(D, r)+my(e, ry=Ty(a, r)+O(1).

Classically, (5.27) is called the spherical F.M.T. in Ahlfors-Shimizu form. Using the rela-

tions
log*|«|2<log (1 + |a|2) <log*|e|2+log 2,

we may compare (5.25) and (5.27) to obtain
(5.28) Tola, r)="T,(e, r)+O(1).

Consequently, for studying orders of growth, the functions Ty(e, r) and T'y(«, r) are inter-
changeable.
It is hoped that (5.28) will tie together the discussion in § 3(b) with that in § 5(b).

6. Volume forms and the second main theorem (SMT)
(a) Singular volume forms on projective varieties

Let V be a smooth projective variety of dimension » and L—V a holomorphic line
bundle. Our aim is to construct volume forms on ¥V which are singular along certain divisors
and which have positive Ricei forms; we will follow the proof in [6]. We shall consider
divisors D of the following type:

De|L] is a divisor with normal crossings;

6.1
(6.1) D=D,+ ... +D,, where each D, is nonsingular;

that is, D has simple normal crossings (§ 0).
Let L; be the line bundle [D;]; there is a section ¢, of L, such that (¢;)=D;. Then
L=L,® ... ® L, and the section 6 =0,® ... ® o, has divisor (¢)=D.

(6.2) PROPOSITION. Suppose that ¢(L)+c(Ky) >0 and that D€ | L| satisfies (6.1); then there

s a volume form C on V and there exist metrics on the L, such that the singular volume form
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(6.3) W= Q
1108 oo,
satisfies
(6.4) Ric¥ >0, [Ric¥)=>Y, f (Ric ¥) < oo,
v-D

Proof. We know that there is a metric on L with curvature form o such that

o +Rie Q>0. Choose metries on L, ..., L,_, arbitrarily and set

Gl =] ® ... @ &l /1] -+ 1l

for any nonvanishing sections {; of L,. Multiplying the metries by a constant, we can require
that |o;| < 6 for any fixed 6 > 0.
Using (0.1), (0.2) and (0.5) we have

k
(6.5) Ric ¥ = o+ Ric Q — >.dd° log (log | o,|?)>
i=1

—2dd°log |gi|? | 4d log|o|? Adtlog]a;f?
l !2 + 1 22 ‘
og|o (log |a[")

Now —dd° log (log |o;?)*=

The first term is a continuous form on ¥V, so perhaps choosing a smaller § we have, setting
we= w -+ Ric Q, for some ¢, >0
kdl 2 Ad°l 2
oglof' Adloglaf_
4 (log |o|?)

(6.6) Ric ¥'>¢, o+ 4

The latter form is >0 because di A d°A= (27) ' idr A 8d > 0 for any real A.

Around any point €V, one can choose coordinates (z,, ..., ?,) in a neighborhood U
of z such that x=(0,...,0) and D,=(2;) in U, this being because .D has normal crossings.
2

Thus log |¢;|*=log b, + log |z|* where b >0 is a O® function. Hence

V—1 dz Ad3,

_ log o[> Ad° P="—
(6 7) d Oglo'zl d loglo'zl 27'6 ‘zi|2
V—1[ebAdb obAdE dz Adb
The form e="5_ ( 7 5, + 2b )

has the property that |z;|?g; is a smooth form whose coefficients vanish on D,.
Thus we see that, noting wy=c, V — 1 D dz; A dz, for some ¢, >0

(68) (Ricqﬁ)n>cs(m)ndzl/\d§1k/\.../\dzn/\d5+64A
T1 log |29 =
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where the coefficients of A are 0 at (0, ..., 0) and ¢;, ¢,>0. There is then a ¢; >0 such that
(Ric ¥)">¢,¥" in some neighborhood U’'< U of x where the coefficients of A are small.
Since V is compact, we cover V by a finite number of such U’ and get (Ric )" > ¢ for
¢ >0. Now we can redefine ¥ by replacing Q by ¢gQ. This does not affect Ric ¥, thus we

have

(Ric V)" >W.

Finally, we must see that f,_p (Ric ¥')"< co. By compactness it suffices to show
convergence on a neighborhood of each z. Choose a compact neighborhood U'< U of z,

and we see by our previous calculations that locally

(Ric V)" = —k—g,———
i=H1 (log lzz‘ 12)2 |Zi|2

where @ is a smooth form on U’. Thus [y_y (Ric ¥)"< oo since the function
[Tk (log |2:]2)%| 24| 2 is locally Lt in C* because of [ (log #)—2 t-1dt < oo. Q.E.D.

We can modify the preceding proposition somewhat to include the case that
c(L) +¢(Ky) =0 if we assume that ¢(L)>0.

(6.9) PROPOSITION. Suppose that ¢(L)+c(Ky) =0 and that D€ |L| satisfies (6.1); then there
is a volume form Q on V and there exist metrics on the L such that the singular volume form:

(6.10) Y.== ¢

[T (log |, [*)? "2
satisfies ,
(6.11) Ric W, >0,  (Ric¥o)">|of*¥e.

Proof. We choose metrics on the L, so that = —dd°log |¢|*= — >1dd°log|g;|* > 0.

Then for any volume form €',
o +Ric Q' =dd

for some C® real-valued function g; let Q=¢¢Q’; then the form w4 RicQ=0.
Proceeding with the same computation as in (6.5) we have

k
(6.12) Ric W= e~ 2 dd° log (log |o,[)*
i=1

and since ¢w >0, as in (6.6)
k

. dlog|o[* Ad° log |oy*
> =20.
(6.13) Ric V.= ¢ e + ]Zl log [o,[? 0
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We continue as before and get, in the same notation:

V=1"dz, Adz, A ... Ndz, Az, + c, A
k . .
1—]; (lOg Izil2)2 Izil2+2s

k
614)  (Ric¥,p> ]|l % > cg|o** W

Replacing Q by ¢;Q we have (Ric V)" > |o|* V..
The rest follows exactly the same as in the proof of (6.2). Q.E.D.

(6.15) Example. We can apply (6.9) to the case when ¢(Ky) >0, especially the case where
V=P"and D=2[¢H,is the union of (n+1) hyperplanes in general position.

Remark. In case n=1, V is a compact Riemann surface of genus g and D={x,, ..., zy}
consists of N distinct points. The condition ¢(L)+¢(Ky) >0 in (6.2) is

29—~2+N >0,

and in this case Proposition (6.2) amounts to finding a metric of Gaussian curvature
K@) <—1on V—{x ..., zy}. If g>1, we may take N=0; if g=1 we may take N=1;
and for V =P! we must have N >>3. In all cases the metric given by (6.3) is complete.

Proposition (6.10) applies only to P!, and it says that we may find a metric on
P1—{0, 1} ~ C* whose Gaussian curvature is everywhere negative and satisfies K(z) < — | 2|
near z=0 and similarly near z= co. It follows from results of R. Greene and H. Wu that
this estimate is sharp.

Our last proposition on volume forms deals with the opposite extreme to Proposition
(6.10). Namely, recall that a smooth projective variety V,, is said to be of general type if

dim H(V, K&

lim sup ) >0.

k—>o0 kn
For example, this condition is satisfied whenever the canonical bundle is positive. From

[14], we see that, if V is of general type and L—V is an ample line bundle, then
HYV, Ky ®@L*)+0
for some sufficiently large k.
(6.16) ProrosIiTION. If Q is @ C® volume form on the complex manifold V, L=V is a

positive holomorphic line bundle, and 0% 6 € H(V, K§ ® L), then the volume form V' = |¢|2*Q

satisfies the condition
Ric¥>0

on all of V. (The metric on Ky is that induced by Q.)
13 — 732905 Acta mathematica 130. Tmprimé le 14 Mai 1973
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Proof: Referring to (0.1), (0.2) and (0.5) we obtain
Ric ¥ =% 1dd log |¢|* + Ric Q
=k —ke(Ky)+e(L)]+c(Ky)

=7lc-c(L) >0. QE.D.

(b) The Second Main Theorem
We keep the notations from § 6(a), and shall consider a holomorphic mapping
A=V, (m=n)
from a smooth affine variety A4 into V where we assume that f has maximal rank »n. Equi-

valently, the image f(4) should contain an open set on V. We shall also use the generic

projection
m 4->C"

discussed in § 2(b). The notations concerning w which we adopt throughout are:

r=log [[n(@)|® (x€4), N=d°T Ayn_1,

p=dd°r, @ = dd* ()],

=P A Ay, Q=g,.
[

k
Before stating and proving our S.M.T., we need a local lemma about singular volame
forms. For this we let U< €™ be an open set, ®(w) =], (V:—1/2n) (dw; A div;) the Euclidean
volume form on €™, and

| ®(w)

o ~log 3P I8P

a singular volume form where y = ¢ and 8 =f¢® with o, €O(U) and a, b€C=(U). Clearly,
Ric ¥ €L, 1y (loc, U).
(6.18) LEMMA. Writing ¥ = {®(w), the function log { is locally L' on U and satisfies the

equation of currents
ddlog { =Rie ¥ + D, —ADy
where D, = () and Dg=(f).

Proof. Using (0.5) and (1.1), we must show that
dd* log (log|68]%? dd°log (log| 6|22
in the sense of {={in the sense of

currents differential forms
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What this amounts to is proving that
f 80 log (log |8 Ao = f log (log |8%)® A 880
U 78

for all €42 ""2(U). This equation is, in turn, easy to verify by a direct computa-
tion. Q.E.D.

Returning now to our holomorphic mapping f: A—V, we consider a divisor D on V
which satisfies (6.1) and let ¥, =f*1" be the pull-back of the volume form constructed in
Proposition (6.2). Since f has maximal rank, ¥, is not identically zero. Thus we may choose

linear coordinates z,, ..., 2, on C™ such that

(6.19) ¥, A {n V=1 0 nas )}=5q>

where &0 is not identically zero. Roughly speaking, the local behavior of & is as follows:
(i) £= + oo along the divisor D,=f-1(D

(ii) &=+ co along the branch locus B of 4 z, o™,

(iii) &=0 along the ramification divisor R of f;

_ 1/—

(iv) £=0, along the divisor T given by ¥, A { [T —— (dz A dzj)} =0 but ¥=+0

(v) otherwise, ¢ is finite and non-zero.

(6.20) LeEMMaA. Setting S=R+T, the function log & is locally L' on A and satisfies the

equation of currents
(6.21) dd°log §=8—B—-D,+RicY,.
Proof. This follows from Lemma (2.9}, {6.3), {6.17), and Lemma (6.18). Q.E.D.

Our S.M.T. will be the twice integrated version of (6.21), in the same way that the
F.M.T. (5.11) was the twice integrated form of the equation of currents (1.5). Taking into
account the discussion of Lelong numbers in § 1(c} and following (3.1), we assume that

none of the divisors §, B, D, passes through n—1(0) and introduce the notations

r ) dt
T#(r) = f { Ric ¥, A (}Dm—l} st
0 Alt]

(6.22) N(E,r)= fr{ Yoo 1} dt (& = divisor on A)
En)

t ’
wn= | 1og .
g Alrl

(6.23) ProProsiTIiON (S.M.T.). For r=r,, we have the equation
T#(r)+N(8, r) =N(B, r) + N(Dy, ) +u(r).
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Proof. Following the procedure used in the proof of Proposition (3.2), we may integrate

(6.21) once to have for all but finitely many ¢

(6.24) f Ric W', A ypmy + f Y1 == f Y1 T f Ym_1+ f d’log & A ym_yq.
A8 st Bia Dyli 3

ALt]

Now Ric W,€L},y, (loc, A)and d Ric'¥',=0 in the sense of currents. Since n: A—>C™ is a
finite and therefore proper mapping, we may integrate Ric ¥'; over the fibers to obtain
7, Ric ¥, €L, 1) (loe, C™) which is still closed. Thus m, Ric ¥, =dp for ¢ a locally L* differ-

ential form on €™, and

f Rie ‘Ff ANpm_1= f 7« Ric \Ff A (dd°log ”2”2)’“—1
Arel Cmit

= f o A (dd° log |lz[*y"* (Stokes’)
a0mt1
1
—as [ o ML (by (1.24)
2 a0mity
m s [ m BT A @R (Stoker)
Cmit]

1 .
= tzm—zfAlec WA g

Using this relation and integrating (6.24) with respect to dift from 0 to r gives

(6.25) T*(ry+ N(S,r)=N(B,r)+ N(D;,r)+ fA[ ]dr ANdCE A (dd° 7)™t
Now dr AdE N (dd°T)" = —d°r AdE A (dd°T)™ !
=d{d°t A (dd°z)™}
=d(&n)
gsince (dd°7)™=0. Using this and applying Stokes’ theorem to the last term on the R.H.S.
of (6.25), we obtain our formula. Q.E.D.

7. The defect relations
(a) Nevanlinna defects and statement of the main result

Let 4 be a smooth affine algebraic variety and V a smooth projective variety having

a positive line bundle L—V with curvature form . We want to study a holomorphic

mapping (AT



NEVANLINNA THEORY AND HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC VARIETIES 197

with particular attention to the position of the image f(4) relative to the divisors D€ |L|.
For this we set w,=f*w and let 7 be the special exhaustion function of 4 constructed in
Proposition (2.4). Define the order function for the line bundle L~V by the formula

dt

(7.1) T(L,r)y= {f,«m] wy A (ddc-r)’""l} 7

In Section 5, this order function was denoted by 7,(r), but here we want to emphasize
the dependence on L. Referring to (5.3), (5.8) and (5.9) we find that T'(L, r) has the following

properties:
(T'(L, r) is well defined up to an O(1) term;

(12) T(Ly®Ly, 1) = T(Ly, 1)+ T(Ly, 7); and
f is rational< T(L, r) =O(log r)

For any divisor D € | L| we have the First Main Theorem (5.11) and subsequent Nevanlinna
inequality (5.12), repeated here for easy reference:

N(Dy, r)+m(D, r)=T(L, r)+ 0(1)

(7.3) N(Dy, r)<T(L, r) +O(1).

We refer once more to § 3(c) where the O(1) term, which depends on D but not on 7, is
discussed. Using the inequality in (7.3) we may define the defect for the divisor D by

T T N(Dﬂ 7‘)
(74) D)=~ lm =7 5
which has the basic properties
(7.5) 0<4(D)<1; and (D) =1 if f(4) does not intersect D.

In general, divisors D€ | L| with 6(D) >0 are said to be deficient; this means that the divisor
D,={-1(D) is smaller than on the average. From (5.10) we obtain the relation

(76) [ s,
DelL|

which may be interpreted as stating that, in the measure-theoretic sense, almost all divisors
D, have the same asymptotic growth given by the order function 7'(L, 7). Roughly speaking,
the basic problem in the value distribution of divisors on algebraic varieties is the following:

(*) Show that there is a constant ¢=¢(V, L) with the property that if Dy, ..., D€ |L|
are divisors such that each D, is smooth and D=D,+ ... +.D, has normal crossings and

if the image f(4) satisfies a mild general position requirement, then
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k

(1.7) > é(D)<ec.
=1

In particular, the defect relation (7.7) would imply that, if L->V is ample, then the
deficient divisors lie on a countable family of subvarieties in |L|. Thus, if dim¢|L| =N
and if A={D€|L|:3(D)>0} is the set of deficient divisors, then the 2N —1 Hausdorif
measure Hay_1(A) should be zero. Thus far, even this weak statement is not known.

Geometrically, the simplest situation to understand is when the image f(4) contains

an open set on, V. In this case our main result is the following defect relation (D.R.):

(7.8) THEOREM. Assume that the image f(A) contains an open subset of V and D, ..., D, € |L|
are divisors such that each D, is smooth and D =D, + ... + D, has normal crossings. Then

(D.R.) > (D)< 5

where % 18 a constant which s zero if either A =C" or f is transcendental.

Remark. Before embarking on a formal proof of (D.R.), let us give the heuristic

reasoning behind it. For this purpose we let L~V be a positive line bundle satisfying
o(Ly) + (K ) >0,

and let DE€|L,| be a divisor with normal crossings. (In the proof of (7.8), we will take
L,=ILF.) Then we may construct the volume form ¥ given by (6.3) which has singularities
along D. Writing out the F.M.T. (5.11) and S.M.T. (6.23) together, we obtain the inequali-
ties
9) {N(D,, N <T (L, 1) +O0()

T#*(r)<N(B, 1)+ N(Dy, r)+u(r).

The first equation in (7.9) gives an upper bound on the counting function N(D,, r), and
the second equation will turn out to give a lower bound on N(Dy,r). Playing these off
against each other will lead to (7.8).
More precisely, using the curvature condition (Ric ¥)" =W, we will obtain an approxi-
mate inequality
d*T* (r)

(7.10) plr)<log — 5.

From (6.5) we will also have approximately

(7.11) T*(r)=T(Ly, )+ T(K y, 7).
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By (7.10) it seems plausible that

o M) _
im 7. (r)_O’

r—>00

so that using (7.11) we may rewrite the second equation in (7.9) as

N(D;,r)

(7.12) 1<+ [T(Ly, r)+ T(Ky, )]

+o(1)

where %, =1im, ., [N(B,r)/T%(r)] is a term not involving D and which is zero if 4=C™.
Neglecting »,, the inequality (7.12) illustrates clearly how the S.M.T. acts as a lower bound
on N(D;,r). When. this is made precise, we will obtain (7.8).

(b) A preliminary defect relation

In this section we let f: A~V be a holomorphic mapping such that f(4) contains an
open subset of V, L,—V a positive line bundle satisfying

e(Ly) +¢(Ky) >0,

and D€ |L,| a divisor with simple normal crossings. Then the discussion in § 6(b) applies,
and in particular the S.M.T. (6.23) may be used to study the divisor D, on A. Referring to
Lemma, (6.20), we let N, (r) = {7 {§ res Wm_1} dt/t be the counting function for the ramification
locus of f: A~V and rewrite (6.23) as the inequality

(7.13) T# (r) + N, (r) < N(B, r) + N(D,, r) + p(r).
(7.14) LeMya. There is a constant ¢ >0 such that, for r=1,
T#(r)>c log r.

Proof. Referring to the proof of (6.23), we have for »>1

T*(r)= f {Jcm[t]n* (Ric ¥)) A zp,,,ﬂl} d—tt =c log r4-0(1)

0

where €= f {n* (Rie W) A 'Pm—l} = f {7« Ric ¥} A s}
o1 e

is a positive constant by the first condition in (6.4). Q.E.D.

(7.15) Lemma. We have that
Joorr N(B7 T)
e T )

=5, < o0
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Proof. Since the branch locus B of n: A—C™ is an algebraic divisor, it follows from
(4.7) that, for some constant d >0,

N(B,ry<dlogr
for large r. Using (7.14) we obtain

N(B,r) _ (g)
T#*(r) \c

for all large r. Q.ED.
Our preliminary defect relation is the following.

(7.16) ProrosiTioN. Using the above notations

Ny(r) +— N(D;, 1)
i R (T

Proof. We want to use the curvature condition
(7.17) (Rie¥ ) >¥,

to obtain a lower bound on T#(r). For this we adopt the following notations:

@) =z=(ay, ..., 2,) are coordinates in C™;
(i) I={1,..., m}and A< I runs through all subsets containing 7 distinct elements;
(iii) 4o={L, ..., n}; and
(iv) Oz=[Les 37! /=5 (dz; A dz;)} for any subset B< 1.
Setting ¥'=2,&,®,, the definition (6.19) gives £=£&,. We define the auxiliary
order function

#H# — ! n dt
(7.18) T (r) = fo {Lmngl' CI)} Py

(7.19) LeMMA. We have the estimate

T##(r)y < T*(r).

Proof. Writing (RicW,)"=>,¢,® (,>0), the curvature condition (7.17) gives { ,>&,
for all 4, and in particular

(7.20) nE < mEyn,
We now write RicV, Agpy=2 { > Ric¥, A (pA_{j}} A@r_a
4 ljed

Using the inequality trace (H) > n(det H)'" for a positive Hermitian matrix, we have that
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(7.21) nCPO< S Rie W, A Apra, <Ric Y, Agy_s.
jed,
The lemma now follows by combining (7.20), (7.21) and integrating. Q.E.D.

(7.22) LEMMA. Setting d/ds=r*""" (d/dr), we have

2 ##(7.)
w(r)<nlog s n(4m—2)logr.

Proof. Using the definition (6.17) and concavity of the logarithm function, we obtain

‘u(r)=J' n log '™y < nlog {J' 51’"17}=n log {%i gn CI)}
94171 a4 r dr J am
_ 1 df g dT** (0] _ 1 d2T*#(r)
=n log {72,”_1 o [r o =2n log ey log e K Q.E.D.

Now we must eliminate the derivatives in front of 77#(r). For this we use the fol-
lowing real-variables lemma from [16], page 253:

(7.23) LeMma. Suppose that f(r), g(r), a(r) are positive increasing funciions of r where
g'(r) is continuous and f'(r) is piecewise continuous. Suppose moreover that [ (drfa(r)) < oo.
Then

f)<g'(r) alf(r))

except for a union of intervals I « R™ such that

a(r) <b(r) Il

‘We use the notation

to mean that the stated inequality holds except on an open set I < R* such that [,dg <co.
Taking f(r)=T##(r), g(r) =r*[u, a(r)=r" with g and » >1, we obtain from (7.23) that

dT** ()

(7.24) oSNy llo-

Keeping the same o and ¢ and taking f(r) =r>""1 (dT**(r))/dr = [ yynE' " D@, we find

# # ot v
(725) g;. (7-2""1 gl_%{r_)) < ph—1,Em-Ty (der (7’)) "0 .

Combining (7.24) and (7.25) we obtain
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2 A #
a*T (r)<r

(726) ds2 4m—2+e(T##(r))2+6 "g

where ¢, >0 may be made as small as we wish by choosing x and » close to 1. Combin-
ing (7.26) with (7.22) and (7.19), we have

(7.27) u(r) < ne log r 4 (2 + 8) log T#(r). Il-
Now we are almost done, because (7.13) and (7.27) together give the estimate

Nl(r)<N(B,r)+N(D,,r)+nalogr
T*(r) ~ T*(r) = T*r) = T

+e+ole 70y

(7.28) 1+ o

Passing to the limit in (7.28) using (7.15) and (7.14) yields the inequality

. N — N(Dy)  ne
—_— < _— —_—
1+111n:°T# M1+r]111°1° T + p
Letting ¢ >0 we obtain our proposition. Q.E.D.

(¢) Proof of the main defect relation

We use the notations and assumptions from Theorem (7.8). Because of (7.6), almost
all divisors D* € | L| will have defect zero. Adding a finite number of such D* to the L.H.S.
of (7.8) will increase k without affecting the sum ,(D,). Thus we may assume that

(7.29) o(IF) +o(K y) =ke(L) +¢(K ) >O0.

We want to use Proposition (7.16) with L* playing here the role of L, in that result. In
order to do this, it is necessary to be able to compare 7% (r) given by (6.22) with kT'(L, r) -+
T(Ky, 7).

(7.30) LEMMA. We have the inequalities
O<[AT(L, r)+T(Ky, r)]—T*(r) <2 log [kT(L, r) +c].

Proof: Let 6 €H(V, IF) define D. Then from (6.5) we have, using ¥T(L, r) = T(L*, r),
that

dt

,
(7.31) ET(L, r)+T(Ky, 1)~ T*(r) = f ( dd* log (log [ay[%)? A 1/),,,_1) 5
e

0

By the same argument as in the proof of the S.M.T. (6.23) (cf. the proof of (6.18)), the R.H.S.
of (7.31) is equal to
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f log (log |0, "%y
dAln]

Making ||o||, sufficiently small, this term is non-negative, which gives the left hand
inequality in (7.30). To obtain the other one, we use concavity of the logarithm together

with (5.10) and (5.11) to have

1
f log (log |o,]*)*n <21log (f log —p3 n)
84Ir aAIr I O'/I

=2log [m(D, r)] < 2log (T(L, r)+c). Q.E.D.
Referring to (7.29), we let { >0 be any real number such that

c(K*)
(7.32) R

Then, using the definition (7.4) we have

k N(D,;,7) N(D,r)
D)= z{l_rlﬁm T(L, )] k= lim

3=1 roo0 T(Ly 1)
N(D,7) N(D,r)
le IT(L, )\’C lrlika( r+T(K,,7)
—k—lrl_m 1\;(5( )) <k—I[1—2]. (by (7.30))

Combining, we obtain the inequality
k
EI(S(D,) <(k—1)+x

where % =1x;. Since [ is-subject only to (7.32), we have proved our theorem except for the
assertion that % =0 if either 4 =C™ or f is transcendental.

Referring to Lemma (7.15), it is obvious that s =3, =0 if 4 =C™, since in this case the
branch divisor B=0. If now » =2,l>0, then by the proof of (7.15)

— logr
1 = .
om0
Using (7.30) this converts into
=— logr
7. logr _ . ~o.
(7.33) rlinclc T, 7) ¢ >0

Setting v(L, r) = § sp1 05 A -1, by definition
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dt

T(L,r) = f "o(L, & T
0

Since »(L, r) is an increasing function of r, the order function (7'(L, r)=0(log r) if, and

only if, there is an estimate
(7.34) (L, r)<cq

for all r. If (7.34) does not hold, then given £>0 we will have

(L, 1) >%
for r =ry(¢). It follows that

T(L,7) > - (g r) = (log ro(e)

log r < log r

> }
for r>7¢(e). Thus T(L,7r) logr—logr,

- — logr
f hich ! h -
rom which it follows that }Lrg (L7

<e.

Comparing this with (7.33), we arrive at the statement:
x+0 = T(L, r)=0(log r).

Using Proposition (5.9), it follows that f is rational. Q.E.D.

8. Some applications
(a) Holomorphic mappings into algebraic varieties of general type
Let ¥ be a smooth projective variety. We recall that V is of general type if
— di (1 k
i dim HO(V, K%) -0

k—>o0 kn ’
where K,—V is the canonical bundle of V. If K, is positive, then V is of general type,
but the converse is not quite true. Indeed, the concept of being of general type is biration-

ally invariant, whereas the positivity of K, is not. Special cases of the following result
were given in [11] and [14].

(8.1 ProposSITION. Let A be an algebraic variety. Then any holomorphic mapping
f: A—V whose tmage coniains an open set is necessarily rational.
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Proof. Obviously it will suffice to assume that A4 is smooth and affine. Let n: 4—~C™
be the generic projection constructed in §2, and consider the volume form ¥ given in
Proposition (6.16). Since f is of maximal rank, f*¥" =¥, is not identically zero on 4, and
we may choose coordinates on C™ such that

‘F,/\n*{ g Y=t

jem—n 27

(dz; A dz,)} =D

where £ >0 is not identically zero. Using (6.11), the same proof as that of Lemma (6.20)
gives the equation of currents on 4

(8.2) dd°log£=8+ % (Df) =B+ Ric ¥,

The proof of the S.M.T. (6.23) may now be repeated to give, using the notations (6.22),
(8.3) T(r)+ N(S, 7) + -]1; N(D,,r)=N(B,r)+ ulr).

Using that Ric W is C* and positive definite on ¥V, we set

w0 [{] ool il
o Jam !

and, as in the proof of (7.19), have an estimate

(8.4) cI#*?(r)<T#(r) (c>0).
Utilizing now the facts that N{(B, r}<¢, log » (cf. (4.1)) and

dET**(r)

< R S 4
/,L(T) n IOg d82

+clogr (cf. (7.22)),

we obtain from (8.4) and (8.3) the inequality

2 A
(8.5) T**(r)+ eN(Dy, r) < ¢y log r +log Q%Q
Proceeding in the same way as just below Lemma (7.23), (8.5) leads to

. N(Ds1) — logr
8.6 1 < —.
oo Fe T ST

The R.H.S. of (8.6) gives that
T#**(ry<c;log r,

and using this the L.H.S. yields the estimate
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N(D;, r)<cglogr.

By Proposition (4.1), all the divisors D, are algebraic and of bounded degree. This implies
that f is rational. Q.E.D.

(8.7) CoroLLARY (Kodaira). Let V, be an algebraic variety of general type. Then any
holomorphic mapping f: C*—V, has everywhere rank less than n=dim¢ V.

(b) Generalizations of the Picard theorems

In one complex variable, the big Picard theorem implies the following global version:
“Let A be an affine algebraic curve. Then any non-degenerate holomorphic mapping
f: A-=P1—{0, 1, oo} is rational. If 4 =C, then no such mapping exists.”

To give our generalization of this result, we assume that V is a smooth projective

variety, LV is a positive line bundle with
(L) +c(Ky)>0,
and that D€ |L| is a divisor with simple normal crossings.

(8.8) ProrosiTION, Let f: A~V — D be a holomorphic mapping from an algebraic variety
A into V such that the image f(A) contains an open set on V. Then f is rational, and if A =0"

no such mapping exists.

Proof. Referring to Proposition (7.16), the counting function N(D,, r)=0 since f(4)
misses D. Thus », >0 and so f is rational. Q.E.D.

Remark. This big Picard theorem will be proved in local form on the domain space
A4 in the Appendix below. This alternate proof will only use Proposition (6.2), the Ahlfors
lemma (cf. Proposition (2.7) in [11]), and elementary properties of currents and plurisub-

harmonic functions.

(¢) Holomorphic mappings of finite order

Let V be a smooth, projective variety, L—V a positive line bundle with order function

T(L,r), and
f A=V

a holomorphic mapping of an affine variety 4 into V.

Definition. The holomorphic mapping f is of finite order if T(L, r)=0(r") for some
A>0.
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Remarks. From (7.2) we see that the maps of finite order have the following functorial
properties:

(i) The definition is intrinsic (i.e., it is independent of the positive line bundle L and choice
of metric in L); and

(ii) Given two maps f: A~V and g: A— W, the product f xg: A~V x W is of finite order
if, and only if, both of f and g are of finite order.

One importance of finite order maps is that these form the class of transcendental
maps which turns up most naturally in the study of the analytic Grothendieck ring of an
affine algebraic variety. Moreover, classically the finite order functions on C include most
of those transcendental funetions which appear in analysis and number theory.

In value distribution theory the maps of finite order have the very pleasant property
that the exceptional intervals which appeared in the proof of Proposition (7.16) are no

longer necessary.

(8.9) Prorosition. Keeping the notations and assumptions of Theorem (7.8), we assume
that f is of finite order. Then the F.M.T. and S.M.T. yield the following inequalities, valid for

all large r,
N(D;, r)y<kT(L,r)+0(1)

T*(r) <N (D, r)+O(log r)
T*(r)y=kT(L, r)+T(Ky, r)+0(log 1)

Remark. These inequalities again clearly illustrate just how the F.M.T. and S.M.T.

act as upper and lower bounds respectively on the counting function N(Dy, r).

Proof. The first inequality is just a restatement of (5:.12), and the third one follows

from (7.30) and the finite order assumption

(8.10) T(L, r)=0(r*).

For the remaining inequality, we Will utilize the S.M.T. (6.23)

(8.11) T#(r)+ N(S, r)=N(B, r)+ N(Dy, r) + u(r).

Using (8.11) and (4.1), our proposition follows from

(8.12) Lemma. The term u(r) tn (8.11) satisfies, for all large r,
u(r)=0(log r).

Proof. Referring to (7.22) and (7.19) we obtain
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d2 T## (7.)
< =
(8.13) plr)Snlog = =5

T##(r) < T*(r).

+ O(log 1)

By the argument following Lemma (7.23), given any u,>0, the inequalities (8.13) lead to

the estimate
(8.14) u(r)<clog T#(r)+O(log r) Il

where the exceptional intervals I satisfy f,dr <oo.
Using (8.10) we will be done if we can show that (8.14) holds for all large r.
Choose y,>2 where 4 appears in the estimate (8.10). Setting

n(Df: T) = f 1/)m—~1

Dyin

the usual integration by parts formula for N(D,,») and n(Dy,r) ([16], page 217) gives
n(D;, ) = 0(r%).

It follows that f M< df d(rk) < oo,
z I

Let r,<r<r, be a component of the exceptional set I. Then by (8.11) and (4.1),

p(r)=T*()+N(S,r) = N(B,r) = N(D;, r) < T*(ry) + N(8, 75) = N(Dy, r1) + O(log r)

< (ry) + N(Dy, 1) — N(Dy, ) + Ollog ) = O(log r3) + f D9 oog ry) +0(0).
Furthermore, log r,=log 7+ f;* (dr/r)<log r+ O(1), and it follows that
p(r) = Olog 1) +0(1). Q.E.D.

(d) Sharpness of results

In the case of a holomorphic mapping
a1ty

where dim¢ 4 =1=dim¢ V, the defect relation (7.8) and its applications, such as Proposi-
tion (8.8), are well-known to be sharp. In the ease where dim¢ V >1, the conditions on

the divisor D in which we are interested are

(D) +c(Ky)>0, and

(8.15) . .
D has simple normal crossings.
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The question arises as to whether the conditions (8.15) are sharp. There is some evidence
that this is so, but it is by no means proved.
To present this evidence, let V=P2 and D=L, + ... +L, be a sum of lines. We ask

whether a holomorphic mapping
fC2—>P2—-D

is necessarily degenerate. If k<3, then ¢(D)+ ¢(Kp:) <0, and there are non-degenerate
rational mappings if £<2 and non-degenerate transcendental mappings if £<3. For
example, if k=3 and D has normal crossings, then

P2 DC* x C*.

Suppose now that k=4 but D=L, + Ly +L;+ L, does not have normal erossings; for exam-
ple, we may assume that L,, L,, L, all pass through a point. Taking Z, to be the line at

infinity, it follows that
PP—Dx=PL—{0,1, o} xC*

Then any map 02l>1’2 — D is degenerate, but taking 4=P*~ {0, 1, oo } x C, the mapping

A 1, P2—-D, H(z, w) = (2, €¥)

is transcendental and so the big Picard theorem (8.8) fails.
In general, suppose that M is a (possibly non-compact) complex manifold of dimension
n having a C® volume form Q. Let p=(g,, ..., g,) and P(p) be the polycylinder

Plo)={z=C(z1, ..., 2,) €C™ |2,] <p,}.

We denote by @ =]T%; {3771V —1 (de; A dz;)} the standard volume form on C", and say
that M has the Schottky-Landau property if for any normalized holomorphic mapping
f:Ple)—=M, Q) (0)=D(0),
it follows that the product of the radii
01 OnSC<oo0.
(8.16) ProrosiTioN. If Ric Q>0 and (Ric Q)*=Q, then M satisfies the Schottky-Landau
property.

Proof. This follows from the Ahifors lemma; cf. Proposition (2.7) in [11]. Equiva-
lently, (8.16) may be proved using the S.M.T. as was done in § 6(a) of [6]. Q.E.D.

Suppose now that V is a projective variety, D is a divisor on V, and M =V —D.
Then M satisfies the Schottky-Landau property if the conditions 8.15 are met. Conversely,
14~ 732005 Acta mathematica 130. Imprimé le 14 Mai 1973
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in case V =P" and D is a sum of hyperplanes, then if ¥ — D satisfies the Schottky-Landau
property, the conditions 8.15 are met for some divisor D<D (we verified the case n=2
above). ’

In general, the converse question is quite interesting, even in the case where D is
empty. To state the question which arises here, we first remark that (8.16) is too strong
in order that a smooth, projective variety V satisfy the Schottky-Landau property. Indeed,
it follows from (6.16) that V satisfies this property if it is of general type (cf. [14] for details).

{8.17) Question. If V satisfies the Schottky-Landau property, then is ¥ of general type? -

Remark. For V a curve, this question is obviously O.K. For V a surface, it can be
verified with the possible exception of K3 surfaces. One does this by checking the classifica-
tion of surfaces, where only the elliptic case is nontrivial.

In general, the problem in verifying (8.17) is the absence of a uniformization theorem

for dim¢ V> 1, so that there is no obvious way of constructing holomorphic mappings to V.

9. Two further variations on curvature and the second main theorem
(a) An analogue of R. Nevanlinna’s “lemma on the logarithmic derivative”

, All of the results in §§ 7 and 8 were based on having available a volume form ¥ on
V — D satisfying the three conditions in (6.4). The middle inequality there may be thought
of as being “negative curvature bounded away from zero” (cf. the discussion following
(0.6)), and the point we wish to make here is that it is sometimes possible to relax this
condition to “the curvature is negative, but may tend to zero as we approach D”. When
this method applies, it seems likely to yield somewhat more delicate estimates than the
previous case.

Let V be a smooth, projective variety whose anti-canonical bundle K§—V is ample.
We consider a meromorphic n-form A on V which does not have zeroes and whose polar

divisor D has simple normal crossings.

Example. Let V =P" with affine coordinates (w,, ..., w,) and homogeneous coordinates

[&; - .- &,]- Then the rational n-form

o) A=a}=jo(f1)“§ad§0A... /\déw"'dfndel/\ . Aduw,
. E()---gn wl...wn

satisfies our requirements.

Suppose that f: "=V is a transcendental, non-degenerate, equidimensional, holo-
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morphic mapping. Then f*A=A, is a non-identically zero meromorphic n-form on €7,
and we set

9.2) Ap=Cldzy A ... Ndz, vy(r) =f log*|¢|n
acmr)
Denote by T',(r)=T(K?%, r) the order function (7.1) for the anti-canonical bundle.

(9.3) ProrosiTIioN. We have the estimate

lim '”_f(f)_ =
=T (7)

Remark. To see better what this proposition amounts to, consider the classical case of
an entire transcendental meromorphic function w=f(z). Taking A to be given by (9.1)
in the case n=1, we have from (9.2) that
f'(z)

”’(’)=ﬁ2,=r log" 1)

Denoting the order function of f simply by 7'(r), Proposition (9.3) becomes

f log* fe) ’ do
(9.4) lim *H21=r

)
e I

db (z=re®).

=0,

This result is & weak form of R. Nevanlinna’s “lemma on the logarithmic derivative”,
given on [16], pages 241-247. We recall that Nevanlinna proved the stronger estimate,
valid for any f(z) which need not be transcendental,

fl

(9.5) f log* 7' df = O(log »+ log T'(r)) Ilq
fz|=r

and it it possible that our method might be refined to give (9.5) (cf. [16], page 259). At
any event, (9.4) is sufficient to deduce R. Nevanlinna’s defect relation from his rather

elementary Second Main Theorem given on page 240 of [16].

Proof. Let 0 €HO(V, Ky) be a holomorphic section which defines the polar divisor
D of A, and take a C,, volume form Q on ¥V such that Ric Q=c,(K)=dd"log|c|2 As
usual we may assume that |o||, <4, for any given §,>0. We consider the singular volume

form

Q

J Fe= log PP ToP™

given by (6.10). Writing /*V, = &£ @, it follows directly that
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1
(9.6) log* | Cl <log+|§g| +elog W-&—log (log |o’|2)2.

Setting us(r)=(1/n) foemnlog™|&|n and recalling (5.10), it follows by integrating (9.6)
and using concavity of the logarithm that

29(r) < e (r) + em(D, r) + 2 log [m(D, r)]1+ O(1).

Using (5.11) we obtain lim v_(r)_ < (ﬁ) lim /48_(¢'l+ &
g 61 = 1y~ \2) 2 1, )

Since ¢ >0 is arbitrary, our proposition will follow from the estimate

lim He(")
©9.7) i <

We will prove (9.7) by deriving a S.M.T. for the volume form ¥,. Referring to (6.9),

the function log & is locally L' and we have the equation of currents
(9.8) dd°log £,=R— (14 ¢) D;+ Rie ¥,

where R is the ramification divisor of f. Integrating (9.8) twice as in the proof of (6.23)
leads to the relation

’ ]
(9.9) f { Rie f*‘P'E/\(pn_l}z—Z_—1+N1 (ry=(1+¢&) N(Dy, r)+f log &:7.
o LJomm ¢ aCmn
From (9.9) and the F.M.T. we deduce the inequality
" - & _
(9.10) . Cn[t]Rlcf W Apya PTETRS ey (r) + npe (7).

Using Proposition (6.10) and the same reasoning as in the proof of (7.19), the estimate
(9.10) leads to

4 dt

(9.11) f U §§’”lo|28’"(b}m< & Ty (r) + pe (7).
o lJom ¢

Because of o> e “—1, (x>0) and log |¢]<0,
exp (% log™ &, + 2 log Io‘|2) <&Mo+ 1.

Plugging this into (9.11) and interating the integral, we arrive at the inequality
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(9.12) fo{

To eliminate the integrals in (9.12), we refer to the calculus Lemma, (7.23), and taking

¢ dt
f (f exp (l log* &+ log la[z) n) 82”‘1d8} S S Ty (1) + co7® + pe ().
o \Jocus n n £

g(r)=r and a(r)= r'**(1>0), we have

(9.13) f' () < [+ Il

Applying (9.13) when f(r) is the L.H.8. of (9.12), we obtain

(9.14) f (facnmeXP (% log+§e+§ log |o-[2) 17) 2R 1dE < (o Ty(r) + €912 + e (1)) I

0

Utilizing (9.13) once more where f(r) is again the L.H.S. of (9.14) yields the estimate

1
(9.15) facnm exp (;z- log™ & + ;L log | alz) <18 (c, Ty (1) + Ca7> + pe (r))*+%

where J, and 6, may be made as small as we wish. Now using concavity of the logarithm
on the L.H.8. of (9.15) together with log*(x+ 8)<log™ -+ log* 8+ log 2 gives

(9.16) He(r) < 7—':: m(D, r)+ ¢3log Ty (r) + ¢, log r + ¢; log s, (r).

Dividing by T',(r) and using that f is transcendental, so that lim,_, ., log /T, (r)=0,

we obtain from (9.16) that
Q.E.D.

Remark. The above proof gives the estimate
£
(9.17) ps(r) < (ﬁ) T,(r)+ O(log T, (r)) + O(log 1) fls
where the exceptional intervals depend on &. Evidently, this is not as strong as (9.5).

(b) Holomorphic mappings into negatively curved algebraic varieties

Thus far our applications of the S.M.T. have been restricted to holomorphic mappings
f: A~V where the image f(4) contains an open set on V. This method is also applicable
to other situations, and as an illustration we shall prove a variant of the recent theorem of
Kwack.

We begin with two definitions:
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Definition. A complex manifold V is negatively curved if there exists an Hermitian
metric dsj on V all of whose holomorphic sectional curvatures K satisfy K < —c <0.
The following lemma is standard (cf. [11] for further discussion and references).

(9.18) LEMMA. Suppose that V is negatively curved, that S is a complex manifold, and S —f—> 14
1s a holomorphic immersion. Then the holomorphic sectional curvatures of the induced metric

f*ds%) are less than or equal those of dsg. In particular, S is negatively curved.

We denote by wy the (1, 1) form associated to dss.

Definition. Suppose that V is a quasi-projective negatively curved complex manifold.
An ample line bundle L—V is said to be bounded if there exist a metric in L and sections
Gg» - -+, Oy EHY(V, L) such that (i) the curvature ¢(L) of the metric satisfies

0<¢(l)<dwy (4 = constant);

(ii) the sections oy, . .., 6y have bounded length and [oy, ..., 6y]: ¥V < P¥ induces an algebraic
embedding of V.

Example 1. If V is projective (thus compact) and negatively curved, then any ample
line bundle is bounded. (Remark. It does not seem to be known whether a negatively

curved compact manifold is necessarily projective.)

Ezample 2. Suppose that X is a bounded symmetric domain and I' is an arithmetic
subgroup of the automorphism group of X. In general, I' may not act freely on X, but a
subgroup of finite index will act without fixed points, and we lose no essential generality
in assuming that this is true for X. It is well known that ¥V =X/I' is negatively curved,
since in fact the Bergman metric on X has negative holomorphic sectional curvatures
< —¢<0 and is I'-invariant. It is a basic theorem of Baily-Borel [2] that V is quasiprojec-

tive.
(9.19) LemMmA. There exists an ample, bounded line bundle on V.

Proof. Let K—X be the canonical line bundle with unique (up to a constant) metric

invariant under the automorphism group of X. For this metric the curvature form
C(K ) =Wx

is the (1, 1) form associated to ds%. Thus, it will suffice to show that for sufficiently large
1, there are I'-invariant holomorphic sections gy, ..., oy of K#—~X which have bounded
length and which induce a projective embedding of X/I". Such sections ¢ are generally

termed automorphic forms of weight u for I', and among these automorphic forms are the
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cusp forms which, so to speak, “vanish at infinity” on X/T" [2]. These cusp forms have
bounded length, and by the results in [2] will induce a projective embedding of X/I" for
large . QED.

(9.20) ProrosiTION. Suppose that V is a quasi-projective, negatively curved complex
mamnifold having a bounded ample line bundle L— V. Then any holomorphic mapping f: A—V

from an algebraic variety A into V is rational.

Remark. This big Picard theorem will be proved in local form in the appendix below
(the following proof may also be localized). '

(9.21) CoroLLARY (Kwack). In case V is negatively curved and projective, any holomorphic

f

mapping A—V is rational.
(9.22) CoroLLARY [5]. In case V=X/|I' is the quotient of a bounded, symmetric domain by

f

an arithmetic group, any holomorphic mapping A > X|I" is rational.

Proof: Obviously we may assume that 4 is affine. Let ¢ be a section of L having
bounded length and divisor D. We must show that the divisors
D,={-Y(D)
are algebraic and. of uniformly bounded degree on 4. Simple considerations of the alge-

braic curves lying in 4 show that for this it will suffice to prove that

deg (Df)<c<oo
in case A is itself an affine curve.

Thus let A< C¥ be an affine algebraic curve with harmonic exhaustion function
7(z) =log|m(x)|
where 4", Cis a generic projection (cf. § 2). We want to prove an estimate
(9.23) N(Dy, r)=0(log r)

for the counting function associated to D, and with a uniform “0”. We may assume that
|o(z)] <1 for all z€ V and set

g =dd° |n(z) ",
— 2e —
(9.24) 0= [/ w,= &cpp
T(r)= f (f wf) ud (order function)
o \Jar t

where w,=f*wy and o,=f*(c) EH(A, f*L). It follows from Lemma (9.18) and the definition
of L—V being bounded that
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(9.25) Ric 0, = —¢&f*c(L)+Ric w,=c0; (c,>0)

provided we choose ¢ sufficiently small. Combining (9.24) and (9.25) we have the equation
of currents on A (cf. § 6(b))

(9.26) dd°log &=R+eD;~B+Ric0,>R+eD;— B+cwy

where R is the ramification divisor of f and B is the branch locus of 4%, ¢ Setting

wy=Eop>Lg (since|o<1)  u(r)= J; log £d°,
Alr]

we may integrate (9.26) twice to obtain the estimate

(9.27) ¢, T(r) + N(R, r) +eN(D;, r) SN(B, r) +ulr).

Now N(B, r)<d log r where d is the number of branch points of Aic, and by (7.22)
' d2T(r) (d 3 d)

< Z=p).
pr<log=a" \&~"ar

Using these two inequalities in (9.27) gives

2
(9.28) T(r)+ (cﬁ) N(D;,r)<cylog r+c;log d ;{:).
. 1

Dividing by T(r) and taking limits in (9.28) leads, as in § 7 (b), to

£ lim N(Dy, r)< — log r
(9.29) 1+ o i T €3 rlg?o —_.T(r) )
From the R.H.S. of (9.29) we obtain
T(ry<c logr,

and then using this the L.H.S. gives
N(Dy, r)<czlogr.
This is the desired estimate (9.23). Q.E.D.
Remark. The original version of Kwack’s theorem goes as follows: Suppose that |14
is a compact analytic space which contains the complex manifold ¥V as the complement

of a subvariety S. Suppose that V is negatively curved and let d(p, ) be the distance from
p to ¢ using the ds? on V. We assume the following condition:

“If {p,}, {¢,}€V and p,~p,q,~g where

(9.30)
p? q GV a"nd dV(pn? Qn)—éo’ then p =q"’
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Then any holomorphic map f: D*—V from the punctured disec D*={0<]|¢| <1} into V¥
extends across $=0 to give f: D~V where D={]¢| <1}.

Our Nevanlinna-theoretic proof applies to give an analogue of the above result. To
state this, we assume that V is projective (it may be singular) and has a Kéhler metric
@7. Let wy be the (1, 1) form associated to a negatively curved ds> on ¥, and let K ,(£)
be the holomorphic sectional curvature for the (1, 0) vector £ € 7(V). Assume the following
condition:

(9.31) cKy(&)wy() < —@7(¢) (EET(V), c>0).
(In particular, this is satisfied if
(9.32) @7 (§) <cwy(§) (EeT(V)),

which is a sort of analogue to (9.30.)

(9.33) ProrosiTioN. Under condition (9.31), any holomorphic mapping A—,—> V is necessarily
rational.

We do not know whether (9.31) is automatically satisfied in case ds¥ is complete.

Appendix
Proof of the big Picard theorems in local form
Let M be a connected complex manifold, S M an analytic subset, and
(A.1) fM-8S—-W
a holomorphic mapping into a quasi-projective variety W. We say that f extends to a
meromorphic mapping M i» W if the pull-back f*(¢) of every rational function ¢ on W

extends meromorphically across S.

(A.2) ProPOSITION. Suppose that (i) W=7V —D where V is a smooth, projective variely
and D is a divisor with simple normal crossings satisfying c(K3)+c(D)>0, and (ii) that the
image f(M — 8) contains an open subset of W. Then any holomorphic mapping f s meromorphic.
Remarks. (i) Since an affine algebraic variety
A=A-8

where 4 is a smooth, projective variety and S< 4 is a divisor, and since a meromorphic

function { on A4 extends meromorphically across S<{ is rational for the algebraic structure
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on A, it follows the Proposition (A.2) implies Proposition (8.8.) (ii) Our proof of (A.2) will
apply equally well to the situation of § 9(b) to yield the following result.

(A.3) PROPOSITION. Let V be a quasi-projective, negatively curved complex manifold having
a bounded ample line bundle L->V (cf. § 9(b)). Then any holomorphic mapping (4.1) extends
meromorphically across S.

In particular this will give Borel’s theorem (9.22) in its original form.

Proof. We will assume for simplicity that dim¢ M =dim¢ V, so that the Jacobian
determinant of f is not identically zero. Since every meromorphic function defined outside
an analytic set of codimension at least two automatically extends (theorem of E. Levi,
we may assume that S is a smooth hypersurface in M. Localizing around a point €S,
we may finally assume that '

M={(z, ..., z): |zs| <1}; S={2,=0}; so that M —8 is a punctured polycylinder.

We let P M — 8 be the universal covering of M —§ by the usual polycylinder P, and
denote by © the volume form on M —8 induced by the Poincaré metric on P (cf. [11]).
Explicitly, there is the formula
cdz, dz r dzdz

A.4) 0= ., { — }
( PRI R
(cf. Lemma 3.4 on page 447 of [11]).

Let L—V be an ample line bundle. For each divisor E€ |L|, we set E,=f"(E) con-

sidered as a divisor on M — 8. It will suffice to show that every such E,extends to a divisor

E; on M(Ej=-closure of E,in M). This is because a meromorphic function y on M —8
extends to a meromorphic function on M<>each level set y =a extends as a divisor to M,
as is easily seen from the ordinary Riemann extension theorem.

Consider the volume form ¥ on V —D given by (6.3). Choose a metric in LV and
let 0 €H(V, L) be the section whose divisor is B € |L|. Define the new volume form

(A.5) V.= |o]*¥ (¢>0).

From the relation Ric WV, =ec(L)+Ric¥

on M — D, we see that, after choosing ¢ sufficiently small and adjusting constants, we may
assume

(A.6) {Ric'¥, >0, (Ric V)" =V..

It follows from the Ahlfors’ lemma (Proposition 2.7 in [11]) that
(A7) Y. <0.
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Now let @ be the Euclidean volume form on M < (" and set
(A.8) ¥ =L0.

On M — 8 we have the equation of currents (cf. (6.16)) -

(A.9) R+ eE+f*(Ric¥,)=dd° log Z,.
This gives the basic inequality

1
(A.10) E.< (;) dd® log .

between the positive currents E, and dd°log {; on M —8. Taking into account the Ahlfors’
lemma {A.7) and explicit formula for @ given by (A.4), we have

n 1
All 0<(,< ° { }
(A1) e aPaglaPr L T P

It follows from (A.11) that, given 2 €S, there is a neighborhood U of # in M and § >0 such
that in U the function

(A.12) ps,e =10g {e+(1+6) log |z |2

is everywhere plurisubharmonie, including on U NS where it is — co. Using [4] we may
solve the equation

J‘ Iulze—Nlog,ua’e(D< oo
U

for holomorphic functions ¥€0(U), w% 0, and N sulficiently large. Taking into account
(A.5), (A.9), and (A.12) we see that

RU E,US<{u=0}.

1t follows that £ #N U is an analytic divisor in U. Q.E.D.
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