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Introduction 

Let A, V be smooth algebraic varieties with V projective (and therefore compact). We 

wish to s tudy  holomorphie mappings  

(]) A f , V. 

The most  impor t an t  case is when A is affine, and  is thus  representable as an  algebraic 

subvar ie ty  in  (~N, and  we shall  make  this assumpt ion  throughout .  Then  the mapping  / is 

general ly not an algebraic mapping,  bu t  m a y  well have an  essential s ingular i ty  a t  in f in i ty  

in  A. Nevanlinna theory, or the  theory of value distributions, studies the  posit ion of the  

image f(A) relat ive to the  algebraic subvariet ies  of V. Given an  algebraic subvar ie ty  

Z c  V, we set ZI=]-I(Z ) and  assume th roughout  t h a t  

codimx (Z~) = eodiml~x~ (Z) 

a t  all points  x EA. There are two basic questions with which we shall deal: 

(A) Can we f ind an  upper bound on the size of Z I in  terms of Z and  t h e  "growth"  of the 

mapping  ]? 
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(B) Can we find a lower bound on the size of Zs, again in terms of Z and the growth of the 

mapping? 

We are able to give a reasonably satisfactory answer to (A) in case codim (Z) = 1 and to 

(B) in case codlin (Z)=1 and the image/(A) contains an open set in V. 

Let us explain this in more detail. The affine aIgebraic character of A enters in that  A 

possesses a special exhaustion/unction (cf. w 2); i.e., an exhaustion function 

(2) A ~ , R V { - ~ }  

which satisfies 

(3) I 
T is proper 

dd~ 0 

(dd%) m-1 =~0 but (dd%) ~ = 0 where dimcA = m. (1) 

We set A[r] = (x EA: v(x) ~< r}, and for an analytic subvariety W c A define 

(4) I n(w, t)= fw~,(ddC~)~ 

N(W,r)= ;n(W,t) dt 

(d = dimcW) 

(counting function). 

(The reason for logarithmically averaging n(W, t) is the usual one arising from Jensen's 

theorem.) We may think of the counting function/V(W, r) as measuring the growth of W; 

e.g., it follows from a theorem of Stoll [17] (which is proved below in w 4 in case codim (W) = 1) 

that  
W is algebraic ~ N( W, r) = 0 (log r). 

Suppose now that  {Z1}ie  A is  an algebraic family of algebraic subvarieties Z~c  V 

(think of the Z~ as being linear spaces in pN, in which case the parameter space A is a Grass- 

manaian). Suppose that  d2 is a smooth measure on A, and define the average or order 

/unction for / a n d  {Z~}2 'e i  by 

(5) T(r) = f N(/-1 (Z~), r) d2. 
J~ EA 

The First Main Theorem 

an inequality 

(6) 

(F.M.T.) expresses N(/-I(Z~), r) in terms of T(r), and leads to 

N(/-I(Z~), r) < T(r) + S(r , ~) + 0(1) 

(1) A by-produeS of She construction is a short and elementary proof of Chow's theorem; Shis 
is also given in w 2. 
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in case the Za are complete intersections of positive divisors (cf. w 5). The remainder term 
S(r, ~) is non-negative, and for divisors the condition (ddCT) m =0 in (3) gives S(r, ~)=-0. In 
this case (6) reduces to a Nevanlinna inequality 

(7) N([-I(Zx), r) < T(r) +0(1),  

which bounds the growth of any /-I(Zx) by the average growth. Such inequalities are 

entirely lacking when codim (Z~) > 1 [7], and finding a suitable method for studying the 

size of /-1(Z~) remains as one of the most important problems in general 5Tevanlinna 

theory. 

Our F.M.T. is similar to that  of many other authors; cf. Stoll [18] for a very general 

result as well as a history of the subject. One novelty here is our systematic use of the local 

theory of currents and of "blowings up"  to reduce the F.M.T. to a fairly simple and essen- 

tially local result, even in the presence of singularities (cf. w 1). Another new feature is the 

isolation of special exhaustion functions which account for the "parabolic character" 

of affine algebraic varieties. 

Concerning problem (B) of finding a lower bound On ~(/:I(Z~), r), we first prove an 

equidistribution in measure result (w 5 (c)) following Chern, Stoll, and Wu (el. [18] and the 

references cited there).  This states that,  under the condition 

(8) f ~AS(r, ~) d,~ = o(T(r) ) 

in (6), the image [(A) meets almost all Z~ in the measure-theoretic sense. In the case of 

divisors, S(r, ~) =-0 so that  (8) is trivially satisfied, and then we have a Casorati-Weierstrass 
type theorem for complex manifolds having special exhaustion functions. 

Our deeper results occur when the Z~ are divisors and the image ](A) contains an open 

subset of V (Note: it does not follow from this t ha t / (A)  = V, as illustrated by  the Fatou- 

Bieberbach example [3]). In  this case we use the method of singular volume ]orms (w 6(a)) 

introduced in [6] to obtain a Second Main Theorem (S.M.T.) of the form (w 6(b)) 

. d 2 T  ~ ( r )  
(9) T~(r) + Nl(r ) <~ N(/-*(Z~), r) +log dr 2 + O(log r) 

under the assumptions that  (i) the divisor Z~ has simple normal crossings (cf. w 0 for the 

definition), and (ii) 

(lO) c(Z~) > c(K*) 

where K* is the anti-canonical divisor and c(D) denotes the Chern class of a divisor D. 
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In  (9), T~(r) is an increasing convex function of logr  which is closely related to the order 

function T(r) in (5), and the other term 

- X l ( r )  = 2V(R,  r )  

where R c  A is the ramification divisor of 1. I t  is pret ty clear that  (9) gives a lower bound on 

_~'(/-I(Z~), r), and when this is made precise we obtain a de/ect relation of the following sort: 

Define the Nevanlinna de/ect 

(11) 8(Z~) = 1 - l i~ N(/-I(Z~)' r) 
r-~ ~ T(r) 

Then 0~<8(Z~)~<l because of (7), and 8(Z~)=I if ](A) does not meet Z;. Then, under the 

above assumptions, 

(12)  . . . .  .< c (K*)  
o ~  -~ v(Z~) • ~ 

where ~ =  0 in ease A = (~N or / is transcendental. As a corollary to (12), we have a 

big Picard theorem. In  case Z~ has simple normal crossings and c(Z~) > c(K~), any holomorphie 

mapping A-~ V - Z ~  such tha t / (A)  contains an open set is necessarily rational. (i) 

For V = P  1 and Z~={0, 1, co} we obtain the usual big Picard theorem, and in case 

dimc V =d imc  A and c(Kv) > 0 (so that  we may take Z~ to be empty), we obtain the main 

results in [11]. 

I t  should be remarked that  our big Picard theorems are presented globally on the 

domain space, in that  they state that  a holomorphic mapping/ :  A-> V between algebraic 

varieties is, under suitable conditions, necessarily rational. The corresponding local state- 

ment is that  a holomorphie mapping/:  M - S - +  V defined on the complement of an analytic 

subvariety S of a complex manifold M extends meromorphically across S, and these results 

will be proved in the Appendix. The reason for stating our results globally in the main 

text is to emphasize the strongly geometric flavor of the Nevanlinna theory. 

In  addition to finding an upper bound on N(/-I(Z~), r) when codlin (Z~) > 1, the other 

most important outstanding general problem in  Nevanlinna theory is to obtain lower 

bounds (or defect relations) on the counting functions N(/-I(Z~), r) when Z~ is a divisor but 

where the image/(A) may not contain an open set. In  addition to the Ahlfors defect rela- 

tion [1] for 

C/--~ p~  

there has been some recent progress on this question by M. Green [10]. Since it is always 
the case that  

(1) Our terminology regarding Picard theorems is the following: A little Pieard theorem means 
that a holomorphie mapping is degenerate, and a big Pieard theorem means %hat a holomorphie 
mapping has an inessential singularity. 
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(13) J~A~(Z~) d~ = 0, 

it at least makes sense to look for a general defect relation. 

To conclude this introduction, we want to discuss a little the problem of finding 

applications of Nevanlinna theory. The global study of holomorphie mappings certainly 

has great formal elegance and intrinsic beauty, but  as mentioned by Ahlfors in the introduc- 

tion to [1] and by Wu in [21], has suffered a lack of applications. This state of affairs seems 

to be improving, and indeed one of our main points in this paper has been to emphasize 

some applications of Nevanlinna theory. 

In  w 4 we have used the F.M.T. to give a simple proof of Stoll's theorem [17] that  a 

divisor D in C ~ is algebraic 
v(D[r]) 

r2,_ 2 - 0(1) 

where v(D[r]) is the Euclidean volume of D n {z: [[z]] <r ) .  This proof is in fact similar to 

Stoll's original proof, but  we are able to avoid his use of degenerate elliptic equations by 

directly estimating the remainder term in the F.M.T. (this is the only case we know where 

such an estimate has been possible). 

In  w 9 (b) we have used a S.M.T. to prove an analogue of the recent extension theorem 

of Kwack (cf. [11] for a proof and further reference). Our result states that  if V is a quasi- 

projective, negatively curved algebraic variety having a bounded ample line bundle (cf. w 9 (b) 

for the definitions), then any holomorphic mapping/ :  A-+ V from an algebric variety A 

into V is necessarily rational. Our hypotheses are easily verified in case V =X/F is the 

quotient of a bounded symmetric domain by  an arithmetic group [2], and so we obtain a 

rather conceptual and easy proof of the result of Borel [5] that  any holomorphic mapping 

/: A-~X/F is rational. This theorem has been extremely useful in algebraic geometry; e.g., 

it was recently used by Dehgne to verify the Riemann hypothesis for K3 surfaces. 

In  w 9 (a) we have used the method of singular volume forms to derive a generalization 

of R. Nevanlinna's "lemma on the logarithmic derivative" [16]. Here the philosophy is 

tha t  estimates are possible using metrics, or volume forms, whose curvature is negative 

but  not necessarily bounded away from zero. Such estimates are rather delicate, and we 

hope to utilize them in studying holomorphic curves in general algebraic varieties. 

Finally, still regarding applications of value distribution theory we should like to call 

attention to a recent paper of Kodaira [14] in which, among other things, he uses Nevan- 

linna theory to study analytic surfaces which contain (32 as an open set. In  a related develop. 

ment, I i taka (not yet  published) has used Nevanlirma theory to partially classify algebraic 

varieties of dimension 3 whose universal convering is C a. 
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As a general source of "big Picard theorems" and their applications, we suggest the 

excellent recent monograph Hyperbolic mani/olds and holomorphic mappings, Marcel 

Dekker, New York (1970) by  S. Kobayashi,  which, among other things, contains the ori- 

ginal proof of Kwack 's  theorem along with many  interesting examples and open questions. 

O. Notations and terminology 

(a) Divisors and line bundles 

Let M be a complex manifold. Given an open set U c M ,  we shall denote by  ~ ( U )  the 

field of meromorphic functions in U, by  O(U) the ring of holomorphic functions in U, 

and by  O*(U) the nowhere vanishing functions in O(U). Given a meromorphie function 

6 ~ ( U ) ,  the divisor (~) is well-defined. A divisor D on M has the property tha t  

DA V=(:r ( ~ 6 ~ ( U ) )  

for sufficiently small open sets U on M. Equivalently, a divisor is a locally finite sum of 

irreducible analytic hypersurfaces on M with integer coefficients. The divisor is e//ective 

if locally D ~ U = (~) for a holomorphic function = 6 0 ( U ) .  Two divisors D1, D2 are linearly 

equivalent if D 1 - D  2 = (~) is the divisor of a global meromorphic function ~ on M. We shall 

denote by  I DI the complete linear system of effective divisors linearly equivalent to a 

fixed effective divisor D. 

Suppose now tha t  M is compact so tha t  we have Poinear6 duality between Hq(M, Z) 

and H2m-~(M, Z). A divisor D on M carries a fundamental  homology class 

(D} 6H2m_2(M, Z) ~H2(J]/ / ,  Z) .  

We may  consider {D} as an element in H2DR(M, It), the de Rham cohomology group of 

closed C r176 differential forms modulo exact ones. Then the divisor D is said to be positive, 

writ ten D > 0 ,  if {D} is represented by  a closed, positive (1, 1) form o). Thus locally 

= ~ 1 ~ g~)dz~ A dSj 
2~ ~,~ 

where the I{ermitian matr ix  (g~i) is positive definite. In  this way there is induced a partial  

linear ordering on the set of divisors on M. 

We want  to have a method for localizing the above considerations, and for this we 

will use the theory of line bundles. A line bundle is defined to be a holomorphie vector 

bundle 
Z - + M  

with fibre (~. Relative to a suitably small covering (U~) of M, there will be trivializations 
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L I Us ~C • U~ 

which then lead in the usual way to the transition functions ~ j  E O*(Us N Uj) for L. These 

transition functions obey the coeycle rule ~sj ajk = ~k in U i N Uj f~ U~, and Ladeed it is 

well-known that  the group of isomorphism classes of line bundles on M is just the ~ech 

eohomology group Hi(M, O*). The vector space of holomorphie cross sections H~ L) 

is given by those collections of functions a = {a~} where a~ ~ O(U~) and 

G i = OQ: ~1 

in U~ f~ Uj. For each cross-section a the divisor D~ given by  D~ f~ U~ = (as) is well-defined, 

and any two such divisors are linearly equivalent. We shall denote by IL l  the complete 

linear system of effective divisors D~ for a E H~ L). Clearly ILl "~P(H~ L)), the projec- 

tive space of lines in the vector space H~ L). 

Let  D be a divisor on M. Then D N U~ = (~) and the ratios 

give transition functions for a line bundle [D]---'--M. Moreover, if D is effective, then there 

is a holomorphic section a E H~ [D]) such that  D = De. The mapping D-~ [D] is a homor- 

phism from the group of divisors on M to the group of line bundles, and we obviousIy have 

the relation 
IDI = l [ D ] l  

for any effective divisor D. 

l~eturning to our consideration of line bundles, the eoboundary map 

HI(M, 0") (} , He(M, Z) 

arising from the cohomology sequence of the exponential sheaf sequence 0-~ Z--> O -~ O *--> i 

allows us to define the Chern class c(L)=(3({~j}) for any line bundle L-+M. We wish tO 

give a prescription for computing c(L) in the de Rham group /~D~ (M, R). For this recall 

tha t  a metric in L is given by positive C ~ functions @t in Ut which satisfy @~= [~j] 2 @j in 

U~ f? Uj. Thus, if a={a~} is a section of L, then the length function 

1 12= 
@t 

is well-defined on M. The closed (1, 1) form m given by 

(0.2) w ] U~ =dd c log (@t) 

is globally defined and represents the Chern class c(L) in/~DR (M, R). We call (o the curvature 
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/orm (for the metric {Q~}) for the line bundle L-~M.  I f  {~;} is another metric leading to its 

curvature form co', then the difference 

(0.3) co -co' =dd c q~ 

where ~ is a global C ~ function on M. 

I f  M is a compact Ki~hler manifold, then every closed (1, 1) form co in the cohomology 

class e(L)E//2DR(M, R) is a curvature form for a suitable metric in L-->M. In  particular, 

any two representatives of c(L) in H~R (M, It) will satisfy (0.3). We shall say tha t  the line 

bundle L-->M is positive, written L >0,  if there is a metric in L whose curvature form is a 

positive-definite (1, 1) form. 

Now suppose again tha t  D is a divisor on M with corresponding line bundle [D]. 

Then we have the equality 
{n} =c([n])  EH2(M, Z) 

between the homology class of D and the Chern class of [D]. Moreover, the divisor D is 

positive if, and only if, the line bundle [D] is positive. Thus, between the divisors and line 

bundles we have a complete dictionary: 

D~ [D] 

IDI ~I[D]I 
{D}~c([D]) 

D > 0 ~  [D] >0.  

As mentioned above, the reason for introducing the line bundles is tha t  it affords us a 

good technique for localizing and utilizing metric methods in the study of divisors. More- 

over, the theory of line bundles is contravariant  in a very convenient way. Thus, given a 

holomorphic m a p / :  N ~ M  and a line bundle Z-+M, there is an induced line bundle LI-~N.  

Moreover, there is a homomorphism 
~--->a: 

from H~ L) to Ho(N, L:), and the relation 

(c:r) = / - I ( D )  = .D: 
defn. 

holds valid. Finally, a metric in L ~ M  induces a metric in Li-~_hr, and the curvature forms 

are contravariant  so tha t  the curvature form co: for L I is the pull-back of the curvature 

form co for/5. In  summary  then, the theory of line bundles both localizes and funetorializes 

the s tudy of divisors on a complex manifold. 

One last notation is tha t  a divisor D o n  M is said to have normal crossings if locally 

D is given by  an equation 
Z 1 . . i  Z k = O  
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where (zx . . . . .  zn) are local holomorphic coordinates on M. I f  moreover each irreducible 

component of D is smooth, then we shall say tha t  D has simple normal crossings. In  case 

M = P  z is complex projective space and D =H~ + ... + H ~  is linear combination of hyper- 

planes, then D has normal crossings if, and only if, the hyperplanes Hz (# = 1 . . . . .  N) are 

in general position. 

(b)  The canonical bundle and volume forms 

Let  M be a complex manifold and {U~} a covering of M by  coordinate neighborhoods 

with holomorphic coordinates z~ = (z~ . . . .  , z~) in U~. Then the Jacobian determinants 

z~j = det [ az~/ 

define the canonical bundle ~M'-->M. The holomorphic cross-sections of this bundle are the 

globally defined holomorphic n-forms on M. 

A volume/orm l'F on M is a C ~ and everywhere positive (n, n) form. Using the notation 

2~ 
- -  l~__ 1 

(dzi A d~) A ... A ~ (dz~ A dS?), 

a volume form has the local representation 

(0.4) ~F = ~ r  

where 0~ is a positive C OO function. The transition rule in U~ N Uj is 

~ = I x , 1 2 e j ,  

so tha t  a volume form is the same as a metric in the canonical bundle. The curvature form 

is, in this case, called the Ricci/orm and denoted by  Ric LF. Thus, in Us, 

(0.5) Ric ~F =dd ~ log ~.  

The conditions 

(0.6) Rie ~F > 0 

(RicW)n>~cW (c>0) 

will play a decisive role for us. Geometrically, they  may  be thought of as saying tha t  

" the canonical bundle has positive curvature which is bounded from below." To explain 

this, suppose tha t  M is a Riemann surface. Using the correspondence 
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0--2~ (dz A dS) e--~ ~dz| 

we see that  a volume form is the same as a ttermitian metric on M. Furthermore, the Ricci 

form 

where ~ = - (1/~)/(a 2 log ~)/(Oz ~g) is the Gaussian curvature of the Itermitian metric ~ dz | d~. 

We see then that  (0.6) is equivalent to 

~<  --c1<0 , 

the Gaussian curvature should be negative and bounded from above. We have chosen our 

signs in the definition of Ric ~F so as to avoid carrying a ( -  l) ~ sign throughout. 

The theory of volume forms is eontravariant. If  M and N are complex manifolds of 

the same dimension and ]: M - ~ N  is a holomorphic mapping, then for a volume form ~F 

on N the pull-back ~FI=]*/F is a pseudo-volume form on M. This means that  ~F I is positive 

outside an analytic subvariety of M (in this case, outside the ramification divisor of ]). 

(e) Differential forms and currents 
(Lelong [15].) On a complex manifold M we denote by AP'q(M) the vector space of 

C ~ differential forms of type (p,q) and by A~'q(M) the forms with compact support. 

Providing A~ -~' m-q(M) with the Schwartz topology, the dual space C~.q(M) is the space 

of currents of type (p, q) on M. Given a current T and a form 9, we shall denote by 

T(9) the value of T on 9. The graded vector space of currents 

C*(M)= | C~'~(M) 
P, q 

forms a module over the differential forms A*(M)= | AP, q(M) by the rule 
P,q 

A T(2]) = T(q~ A •) 

where ~o~A*(M), T EC*(M) and ~ EA*(M). 
We shall use the notations 

I d=a+~; 
(0.8) d o:  V:--~ (~_ a); 
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The factor 1/4~ is put  in front of d ~ to eliminate the need for keeping track of universal 

constants, such as the area of the unit sphere in (~, in our computations. As usual, all 

differential operators act on the currents by rules of the form 

~T(~) = T(3~). 

The action of A*(M) is compatible with these rules. 

A current TECP.~(M) is real if T = T ,  closed if dT=O, and positive if 

for all ~ EA~ -~'~ (M). 

(~/-  1)~('-1)/2T(~ A ~) ~> 0 

In case p =  1, we may locally write TECI'I(M) as 

T -  ~--- 1 Z t~jdz~ h d~j 
2~ ~,s 

where the t~ may be identified with distributions according to the rule 

( -- 1)t+ J+ m-1 t~j (zr = T(zr dZl . . ,  d~,i.., dz n A d,~l... ~gj. . .  dzm). 

Then T is real and positive if, the distributions 

are non-negative on positive functions. In this case, by taking monotone limits we may 

extend the domain of definition of T(A) from the Coo functions to a suitable class of functions 

in Ll(loc, M) which are integrable for the positive Radon measure 

a-~ T(~) (a) 

initially defined on the C OO functions. A similar discussion applies to positive currents of 

type (p, p). 

For any positive current T, each of the distributions t~j is a Radon measure; in addition 

each t~j is absolutely continuous with respect to the diagonal measure ~ t~ [15]. 

The principal examples of currents we shall utilize are the following three: 

(i) A form ~0 EA~.q(M) may be considered as a current by the rule 

(0.9) ~(~) = fMyJ h ~ (?eAy-~"~-q(M)).  

By Stokes' theorem, d~ in the sense of currents agrees with d~ in the sense of differential 

forms. Moreover, the A*(M)-module structure on C*(M) induces the usual exterior multi- 

plication on the subspace A*(M) of C*(M). 
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(ii) An analytic subvariety Z of M of pure codimension q defines a current Z E C q:q(M) 

by the formula [15] 

(0.10) Z@)= f z ,  o Cf ( c p e A 2 - q ' m - q ( M ) ) .  

This current is real, closed and positive. By linearity, any analytic cycle on M also defines 

a current. 

Note  on mult ipl ici t ies .  We say that  the current Z is a variety with multiplicities if there 

is a variety IZI and an integer-valued function n(z) on Reg IZI which is locally-constant on 

this manifold. Then Z is the pair ( [Z 1, n) and Z(q0) = ~z n(z) % I t  is clear that  dZ  = dCZ = O. 

Now given holomorphic functions fl . . . . .  fr and I Z ] =  {]1 . . . . .  ]r = 0}, there is an 

integer mul t ip l ic i ty  mult~ Z defined algebraically at each z and which is locally constant on 

ReglZ I, [8]. This is what we will mean by saying Z={/1 . . . . .  Jr=0} with algebraic 

multiplicities. Multiplicities on the set sing I ZI will be ignored since sing I ZI is a set of 

measure 0. 

(iii) We shall denote by L~,q) (loc, M) the vector space of (p, q) forms whose coeffi- 

cients are locally L 1 functions on M. Each y~ EL~v.q )(loc, M) defines a Current b y t h e  formula 

(0.9) above. In the cases we shall consider, ~v will be C ~ outside an analytic subset S of M. 

Moreover, yJ will have singularities of a fairly precise type along S, and dy) in the sense of 

differential forms on M - S  will again be locally L 1 on all of M. I t  will usually not be the 

case, however, that  d~ in the sense of currents agrees with d~o in the sense of differental 

forms. This is because the singularities of ~v will cause trouble in Stokes' theorem, and we 

will have an equation of the type 

[d~p i n t h e ]  [d~  i n t h e ]  [current  

(0.11) l sense ~ ~= lsense of ~+]suppor ted  
[ currents ] forms J [ on S. 

The relation (0.11) will be the basis of all our integral formulas. 

1. Differential forms, currents and analytic cycles 

(a) The Poincar~ equation 

Let U be an open set in a complex manifold of dimension n and let ztE~(U) be a 

meromorphie function on U. Denote by D = (~) the divisor of ~. Then both D and log I ~ 12 

define currents as described in w 0 (e). We wish to show that  

D = d d  ~ log[ a l~; 
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this  is a k ind of residue formula  as will become appa ren t  f rom the  proof.  I n  fact ,  we will 

p rove  the  following s t ronger  result,  which will be useful in the  nex t  two sections: 

(1.1) P R O P O S I T I O n .  For ~ and D = ( ~ )  as above, let X ~  U be a purely k-dimensional 

subvariety such that dim (X N D) = k - 1 .  Then 

(1.2) dd~(X A log ] o~] 2) = X .  D (Poincard equation). 

Remark. W h a t  this means  is tha t ,  for  a n y  ~0 EA~ -~' k-l(U),  we have  

(1.3) f xlog i=l  ddo = f x / 

where the  integral  on the  left  a lways converges, and  where X . D  is the  usual intersect ion 

of analyt ic  varieties.  I f  X = U, then  we have  

To prove  the  result,  we need this lemma,  whose proof will be given toward  the  end of 

this section: 

(1.4) LEMMA. I /  ~ iS not constant on any component o/ X,  log[col 2 is locally L1 on X,  or 

equivalently ~x log l ~ [ ~# is de/ineg /or all # e A~'k(V). Also, dd~(Z h log] a [2) is a positive 

current. 

Proo] o/ proposition. Since bo th  sides of the  equat ion are linear, we m a y  use a par t i t ion  

of un i ty  to  localize the  problem.  In i t ia l ly  we m a y  choose U small  enough t h a t  ~ is a quo- 

t ient  of holomorphic  functions 0~1/~ 2. Since log[a l /~  z [~ = logic1[  2 -10g [a s  [2 and  (~1/~2) = 

(~1) - (62)  we m a y  assume t h a t  a is holomorphic  in U. 

First ,  let us assume t h a t  bo th  X and X fi D are nonsingular;  b y  localizing fur ther ,  we 

can choose coordinates (w I . . . .  , wk) on X such t h a t  X fi D = {w~ =0}.  I n  this case the  restric- 

t ion of a to X equals flw~, where fl is a holomorphic  funct ion which never  vanishes on U. 

Thus  on X, X .  D = r(wk). 

Fur the rmore ,  since log I ~ ]2 = log  ]fi[ 2 + r log [ wk] 2 and  c/d e log ]fi ]3 = 0, i t  suffices to 

show the  proposi t ion assuming ~ =wk. For  ~ EA~ 1. ~-I(U),  

(1.5) fx l~ [wkl2ddc~~ = ~-*01im fxlOg [wd2ddCcf 

where X ~ = { x e X = l w k ( x ) l > ~ e } .  Thus  ~ X ~ = - S ~ ,  where S ~ = { x e X : [ w k ( x ) l = e  } is 

or iented with  its normal  in the  direction of increasing [wk[. Then b y  Stokes '  t heorem 
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(1.6) f x log lwd3ddCq~= - f x d log lwd~ A d%P- fs  log lw~13d~cf. 

Since dlog Iw,01 A = -aOlog 1  I3A and dd~ log Iw l = 0 on 

(1.7) - f aloglw 13Aao =- f a(aOloglw 13 w)= f aologlwd3  . 

N o w  clearly . fslog[wd2dCcf=(21oge) ,~s~d%f~O as e-+ 0. 

Fur thermore,  if we write w~= rd ~ d ~ log ]wk] 3=  (2z~)-ld0. Thus 

(1.8) fs aClog lw 13 A g-+ f<w.=o 

This completes the  proof of the nonsingular case. 

2~ext we show t h a t  it suffices to  prove (1.2) on the complement  of a small analyt ic  

set. More precisely, if / r  U is a subvar ie ty  of dimension < k - 1  and if the restrictions of 

the currents X .  D and  dd~(X A log[ ~] 3) to U -  U are equal, then (1.2) holds. 

One approach is to cite a theorem. Both  of these currents are so-called flat currents 

and it can be proved tha t  two such currents of real dimension l, which differ only on a set 

of real dimension 1 - 2 ,  are in fact  equal (see [13] and [9]). 

We can actual ly  prove this here, however, since T = X .  D and T '  = ddc(X A log [ ~ 13) 

are positive. Choosing coordinates (zl, ..., z=) near any  point  in U, it suffices to show tha t  

T A cox = T '  A cox, where co~ = (i/2)Z-Xdz~, A d~, A ... A d z ~  A d~_x for every ( k -  1)-tuple I. 

For  in the  nota t ion of w 0, it follows tha t  Tx5 = T' - xa. Thus Y is a set of T ~  measure zero 

since Y fl X N D ~  X fl D is a set of 2 k -  2 measure zero. Consequently the T~5 measure of 

Y is also zero since b y  posit ivi ty this measure is absolutely continuous with respect to 
ZT; . 

To show T A cox = T '  A cox, let 7:~ = U-~ C k-x be the coordinate mapping  z-~ (z~ . . . . . .  z~_l ). 

For  a ny  q~EA~176 TAo.~x@)=TAcf(rc*co)=(rz~,TA~f)(co), where co is the  volume. 

form on C ~-x. Similarly T '  A co~(cv) = (zzi, T A ?)(co). Now both  # = r:x, T A ~ and/x '  = ~ ,  T '  A q E 

C o. ~ The current/~ is the current  defined by  the continuous function~u~xn ~iq(x)r 

(each y counted with suitable multiplicity). I f  we knew tha t / x '  was also given by  an L~'oo 

funct ion we would be through,  since the two currents agree on the  complement  of z:~(Y), 

which is a set of measure zero. We can show tha t /x '  EL~oo b y  the R a d o n  Nikodya  theorem, 

i.e., we show t h a t  # '  is absolutely continuous with respect to  Lebcsgue 2k -2  measure on 

C ~-x. Let  E be a set of Lebesgue measure zero, then # ' ( E )  = ~xn ,~  (~ log] ~] 3aloe�9 A cox. 
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Bu t  this integral  is zero because rz~l(E) f? Reg (X) has 2k measure  zero since ~ has max ima l  

r ank  on Y except  for a set  of 2k measure  zero (a subvar ie ty  of X of lower dimension). Thus  

the  extension pa r t  of the proof  is complete.  

Last ly ,  we wish to show equal i ty  except  on a subvar ie ty  Y c U of dimension < k -  1. 

Observe t h a t  if the  va r i e ty  X is normal  then  the  nonsingular  case applies except  on the  

singular locus of X which has dimension < k  - 1 ([15]). I f  X is not  normal  there is a unique 

normal iza t ion ~ and  a finite proper  m a p  9 : J~->X which is one-to-one over  the  regular  

locus of X. Localize so t h a t  ~ extends  to a m a p  U-+ U, for s  ~ .  Then ~x loglccl2ddC~ o=  

~y~ log [=o Q[2 ddC~,~ = ~.(~oo) e*~ 0 since (1.1) holds for J~. But  Z = )~. (~o O) is a va r i e ty  of dimen- 

sion k - 1  and  ~: Z-->X fl D is a finite map .  Thus  this last  integral  equals .[..XrlD-Cy, where 

" X  Cl D "  is X f3 D counted with  the  appropr ia te  number  of multiplicities. I t  can be verified 

t h a t  these multiplicit ies define X .  D as it  is defined by  local algebra (on the  regular  points  

of X .  D which is all t h a t  effects integration).  See [13]. 

Proo/ el Lemma 1.4. Le t  ~: X + A c f J  k be a proper  finite holomorphic  m a p  of 

degree d, i.e., a finite b ranched  cover; we m a y  assume t h a t  l o g [ ~ [ 2 < 0  on X. Then  if 

cy 6 A~k(A), .Ix log [ ~ [ 2r:* 9 = 7:, ( Z  A log [ ~ [2) ~, where ~ ,  (X A log[ c~ [2) is the  funct ion ~(x) = 

~_,wzn~-~(~) log'[ ~(y) [ 2. On A - ~ ( X  N D), dd~  =r~,(X A d4 c log[~ [2)= 0 so ~ is a smooth  pluri- 

harmonic  function. Since ~ = - ~ on =(X fi D) this shows t h a t  r is p lur isubharmonie  [15] 

and  hence locally L ~ on C k. On X we see t h a t  Cot: < log l~l 2. Since Ix(COt:)=*q---dyar 

is finite, so is y log I a l2r:*~0. 

Now we m a y  assume X c U c 13 ~ with  coordinates chosen so t h a t  each coordinate  

project ion r X~7:~(U) c ~3 k is as above.  Then  Yx log[ cr [2d (volume) = (l/k!) ~x log l :r ]~w, 

where r = ~  wx and ro~=~*~0, where ~v is the  volume form on C e. This proves  the  first  pa r t  

of the  l emma.  

The second pa r t  is immedia te  since there  is a monotone  decreasing sequence ~ >~ ~2 >~ .. .  

of smooth  p lur isubharmonic  functions converging to  log [a  [2 (let ~r = log  (I ~ ]~ + 1/r). For  

a n y  posi t ive form q0 6A~-~'~-~(U), 

( 0 ~< 
d x  z x  3 x  

b y  the  mono tone  convergence theorem.  Q.E.D.  

(b) The Poincar6 equation for vector-valued functions 

We now w i s h  to establish a Poincar6 formula  for  more  t h a n  one function.  Firs t  we 

define forms t h a t  p lay  the  role analogous to  t ha t  of log lzl 2 in the one-var iable  case. I f  

(zl, �9 :., zr) are l inear coordinates in C r let 
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(1.9) 
{ 0,=(dd logll ll ) 

O =logll ll 0 . 

If  -P=(fl . . . . .  /~): U->C ~ is a holomorphic mapping of a complex manifold U, then 

F*O,  = ( d d  ~ log II/ll,) , and F * O ,  = log Iltll ' p 0 1 .  

(1.10) PROPOSlTIOI~ (Poincard-Martinelli /ormula). Let U be a complex n-maul/old and 

F: U-~C r be a holomorphic map. The/orms 2'*0~ and F*O l are in L~m)(U, loe) /or  all I. I~ 

W=F-I (0 )  has dimension n - r ,  then dd c F*@l_x=0z /or l <r  and ddCF*Or_l= W where W 

is counted with the appropriate algebraic multiplicities, i.e., ]or ~ E A~ . . . . . .  (U) 

(1.10) fv F* 0~-1A dd~ = f w  9. 

Remark. The proof will show that  if X =  U is a k-dimensional subvariety and the 

dimension of X A W is k - r ,  then 

ddC(X A F*Or_l) = X .  W. 

Before beginning the proof we will study the forms 01 and @l further by blowing up 

the origin in C r to get a manifold ~r. If (z I . . . .  , z~) are linear coordinates in C r and [w 1 . . . . .  wr] 

are homogeneous coordinates in p~-l, ~=C~•  is defined by w~zs-wjz~=O, 

(1 < i, j <n) .  The first coordinate projection gives a proper map ~: Cr-+CL If E ==-1(0), 

7~: ~r_  E_+Cr_. {0} is a biholomorphism and the divisor E is {0} • pr-1. In  fact, the second 

coordinate projection ~: ~_~p~-i gives C~ the structure of a holomorphie line bundle. 

If  U ~ = { w , # O } = P  r-1 and C~=CrNC~• V~, local coordinates on C~ are given by 

( u ,  . . . . .  u~_~. ~, z~, U~+l. ~ . . . . .  u~) where uj~ =wdw ~. in  these coordinates the map = = C[ -+tY 

is given by  ~(ul~ . . . . .  z~ . . . . .  u~d = (uli z~ . . . .  , z~, .. . ,  u,t zt). 

Now in % 

(1.11) ~* log II ll = log I I + log (1 + X [ us ] ~) 
I:M 

where the second term is evidently a C ~ function. Then 

(1.12) ~r*dd c log I1 11 = ~ o  log (1 + ~)ur [2) = ~. o 

where to is the usual K/~hler form on P~-~. 

Proo] o/Proposition (1.10). Now suppose we are given F: U-~C~. Let  F be the graph 

of F = { ( x ,  2 ' (x ) ) }=U•  Let F = U •  ~ be the closure of = - ~ { F - W •  and 

W = F .  (0 • these are varieties of dimension n and n - l ,  respectively, and the fol- 

lowing diagram is commutative (identifying U with P): 

1 1 -  732905 Aeta  mathematica 130. I m p r i m 6  le 11 Mai 1973 
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(1.13) 
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^ ~  
W c f  ~ ~ U •  ~r O ,pr-1 

WcP  ~ U •  

Furthermore, each ~ is proper, 7~: 1 ~ -  I V - + F - W  is biholomorphie and ~- l (w)=w • 

for each w E W. 

Now we wish to show that  SvF*@r_xddCq~=~wq~. The left hand integral equals 

~ ~ * ,~ /~ dd ~ ~ *~ r~2 ~r-1 ~1~ where ~ ,  P2 are the projections of U • lY onto U, C ~, respectively. 

This in turn equals S~7:*~o*@~_ 1A dd ~ n 'p*  ~v since 7~ is a map of degree 1. 

Now by (1.12) in U • C~, 

p~ 0r-1 = (log [~, I s + log (1 + ~ I~,sls)) (e* ~)~-1. 

Furthermore, dd~ (logll+Yl~J,l  s) e * ~ * - l - e * ~ = o  since pr-1 has no r-forms. Thus our 

integral becomes ~ log]z, 12 dd~(e,w,-1 A ~:*p* ~) which equals 

since ]p~-lo)~-x= 1 and each fiber of 7: = W-+ W is p~-l. Strictly speaking we have only 

shown here that  dd~F*| = "  W", tha t  is integration over W with some multiplicity. That  

this is the correct algebraic multiplicity is easily shown once enough properties of the alge. 

braie multiplicity are established [13]. 

To show the rest of the proposition, we observe that  both F*@t and F*0z are 

L~l.o (U, loc) because ~*p*2'| t and ~*p*F*0l are L~m~ (U, loe) on F byLemma 1.4. Now check 

that  dd~F * | = F*Oz for l<  r by the same method observing at the last step that  

~Q*eo ~-~ A~ :*p~- -0  if l < r  (the integrand is a form which involves more than 2 n - 2 r  

coordinates from the base). 

(c) GlobMization o[ the Poincar~ and Martinelll equations 

Using the notation and terminology of w 0 (a) we let M be a complex manifold, L ~ M  

a line bundle having a metric with curvature form to, and a E H ~  L) a holomorphic 

cross-section with divisor D. The function log Ia ] 2ELl(M,  loc) and the global version of 

(I.1) is: 

(1.14) PROPOSITION. On M we have the equation o] c~rrents, 

ddC l o g l a l S =  D~o~.  
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Proo/. This follows immediately from (0.1), (0.2), and (1.1). 

This proposition says that  D and co are cohomologous. More precisely, we can take the 

cohomology of the complex o/ currents: 

d 
. . . ->C~(M) , C t+~( i ) ->  ... 

in analogy with the de Rham cohomology arising from the complex of C ~ forms: 

d 
. . . -+A~(M)  , At+I(M)-~ .... 

Standard arguments involving the smoothing of currents show that  

H~*(M, R) = H*~ (M, R), 

and by de Rham's theorem both yield the usual cohomology. Thus the proposition says 

that  the cohomology class of D is c(L) in H2(M, R). This may also be interpreted to say 

that,  viewing D as a chain, the homology class represented by D in H2n_2(M, R) is the 

Poincar6 dual of e(b). 

Since intersection in homology is the dual of cup product in cohomology (wedge 

product in de Rham cohomology) the following proposition is not surprising. 

(1.15) PROPOSITION. I 1  al, . . . ,  at are holomorphic sections o] the line bundle L ~ M  with 

curvature [orm a), and i / t he  divisors Dr intersect in a variety o[ eodimension r, then 

o t - D # , . D # , . . . D , ~ , = d d ~ A  

as currents, where the locally L 1 /orm 

r - l - k  k A = l o g l ~  k w~ c0 , 

with o~ o = co + dd ~ log 11(7 ]l 2 = co + dd ~ log (5[=1 l(7, Is). Furthermore, if c0 >~ 0 and I[a ]] <. 1, then 

A~>O. 

_Proo/. If  (~ is given in local coordinates by s~ and the metric by the function a~, then 

I[ (7 []2 = ( 1 / a a )  (18112 -~- �9 �9 �9 "~- [Sr [2). T h u s  l o c a l l y  cop ~-~ s*Op; a l s o ,  l o g  [[ (7 l I-2 = log [ a= [u - l og  H 8 [[ a. 

In these local coordinates, 

r--1 
dd~A = ~ (s* Or-l-k oJ ~+1 -- ddC(s * Or-l-~ A ~ok)) = co t - D~I ... D~, 

k= l  

by the Martinelli equation (1.10). Since s*0t~>0, eo>~0 and log ]](7l]-2~>0 together imply 

A~>0. 
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(d) Lelong numbers 
Let  U be an open set containing the closed R-ball Cn[R] in CL We maintain the pre- 

vious notation: 
o , = ( ~ O l o g  II~ll~) ' 

Suppose tha t  Z c  U is an analytic set of dimension k; let Z[r] =Z N Cn[r] and for r < R, 

Z[r, R] =Z[R] -Z[r]. Then the 2k-dimensional area v[Z, r] is 

v(Z, r) = f zEjJk. 

(1.16) L~MMA. The area v(Z,r) satis/ies 

f z ok=v(Z' R) 
R2k [r, RI 

Pro@ An easy computation shows tha t  

v(Z, r) 
r 2k 

d~ log I1~11 ~ A o ~ _ l -  ~ 11~II~ A ~ _ ,  + ~ I1~11 ~ A 

where i is some form. Thus by  Stokes' theorem, noting tha t  0k = d(d c log ]l~ll2A Ok-l), 

fZ[r.R]Ok= fOz[r,R]d c 10g HzH2A Ok_l = ~Oz[R] de I[%[[]2]~ k-1 ~OZ[r] dc [[%']';[~k-1 

since the restriction of dllzll 2 to ~Z[r] is zero. But  [I~II2~=R ~ on aZER], etc., so 

1 

1 f z  1 f z  v(Z,R) v(Z,r) 
= ~ ~R3~k-- ~ Cr~ ~k R2k r2k 

Remark. This lemma remains true if we replace Z by  any closed, positive current, cf. 

[15]. 

I t  follows from the lemma tha t  the limit 

v(Z, r) 
s  lim r- -  ~ -  

r-->O + 

exists and is called the Lelong number of Z at  the origin. Although not strictly necessary for 

our purposes, we shall prove the following result of Thie [20] and Draper [8]. 
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(1.17) PROPOSITION. ~o(Z) i8 an integer and, in/act, it is the multiplicity o /Z  at the origin. 

Proo/. We first show, following roughly the argument of 1.10, that  for any ;t 6A~ 

ddC(Z A @k-l) (;{) = Mult0 (Z)2(0). 

We again use the blow-up ~=C~-+C ~ and preserve the notation of w l(b). Let  Z be the 

closure of x-l(Z - (0}). Then if ~-1(0) = E-~ pn_l, the intersection Z .  E is the Zariski tangent 

cone and Mult 0 (Z) is the degree of Z .  E in E ~ P  n-l, which in turn equals S~.EO*Of1-1. 

Now by (1.11) and Theorem (1.1) 

fzO~_lddC2= f logHzll2dd~ f ~*~ *~-~=2(o)f~.Ee*~o~-~ 
JZ.E ~ 

On the other hand, if ~ = 1 for small r, 

ddC(ZAOk_l)(~) = lim f @~_lAddC~ 
r-->0+ d Z - Z [ r ]  

and the right-hand integral is by Stokes' theorem (for small r, dOl = O) 

- fz_zMdO -  Ad X= fz_z  d~ AdX 

f 1 v(r) 
j Ozt,]~dOOk_ 1 = 1 ~  f oz~, dOllz[[~ 9~_e= ~ f zE~ ~ _ r ~ 

2. Special exhaustion functions on algebraic varieties 

(a) Definition and some examples 

Let  M be a complex manifold of dimension m. We will say that  a function 7: M-+ 

[ - o o ,  + oo) has a logarithmic singularity at z 0 6M if, in a suitable coordinate system 

(z 1 . . . .  , Zm) around z0, 
=log Ilzll 

where r(z) is a C ~~ function. An exhaustion/unction is given by 

~: M - ~ [ -  oo, +oo)  

which is C ~ except for finitely many logarithmic singularities and is such that  the half- 

spaces 
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M[r]  = (z e M:  e *c~ < r} 

are compact  for all r q [0, + oo ). The critical values of such an  exhaust ion funct ion T are, as 

usual, those r such tha t  dz(z)=O for some zE~M[r]= {z: z ( z )= r ) .  I f  r is not  a critical 

value, then the level set ~M[r] is a real C ~ hypersurface in M and  we shall denote by  

T~. 0> (~M[r]) the holomorphic tangent  space to ~M[r] at  z. 

De/inition. A special exhaustion/unction is given by  an exhaust ion funct ion z: M-+ 

[ -  ~ ,  + ~ ) which has only finitely m a n y  critical values and  whose Levi/orm dd% satisfies 

the  conditions 
[ dd%:)O 

(2.1) ~(dd%) m-1 ~ 0 on T~l"~ 
l (ddC~) m=O 

Examples. (i) Let  M be an affine algebraic curve. Then M - - / 1 1 - { z  1 . . . . .  zN} where 

M is a compact  Riemann surface. Given a fixed point  zoEM, we m a y  choose a harmonic  

funct ion z~ on ~ r  such tha t  

T~ ~ log [ z - z 0 [ near z 0 

~ ~  - l o g I z - z ~ ]  near z~ 

where z is a local holomorphic coordinate in each case. The sum z = ~ - l z ~  gives a special 

exhaust ion funct ion ( = harmonic exhaustion/unction) for M.  

(ii) On C a with coordinates (z I . . . . .  we m a y  take = log I1 11 to  obtain  a special 

exhaust ion function. We shall explain the geometric reasons for this, following to some 

extent  the  proof of Proposi t ion (1.5). 

Observe first t ha t  the level set ~M[r] is just  the sphere I1 11 =~ in c~. There is the 

usual Hopf  f ibration 
=: ~M[rJ-+P ~-1 

of ~M[r] over the projective space of lines th rough  the  origin in C m. The differential 

m~l. o~/~ ~rr~l~ _,,. ,v(1, o~ (2.2) ze, : - z  ~v~,~ L-JJ ~n(z) (pro-l) 

is an isomorphism, and  the Levi form is given by  

(2,3) 2 ddC log Ilzll 

where o is the  (1, 1) form associated to  the Fubin i -S tudy metric on pro,1. I t  follows f rom 

(2.3) t ha t  gdClog Ilzll ~>0 and  (ddClog Hzll)m=o, while (2.2) gives t h a t  (ddClog llzl) m-1 is 

positive on T~ 1'~ (OM[r]). Consequently log IIz II gives a special exhaust ion funct ion on C m. 
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(b)  Construction of a special exhaust ion function 

These two examples are combined in the 

(2.4) PROPOSITIOn. ]Let A be a smooth a]]ine algebraic variety. Then there exists a special 

exhaustion ]unction ~ on A. 

The proof uses resolution of singularities and proceeds in two steps. 

Step 1. We shall first describe the exhaustion function on C ~+1 given by  example (ii) 

in a somewhat different manner. 

Let  P~ be complex projective space and H - ~  ~ P= the standard positive line bundle. 

There are distinguished holomorphic sections a 0 . . . . .  an of H - P =  such tha t  the associated 

map 
In0 . . . .  , an]: pn_+pn 

is just the identity. On the other hand, there is a tautological section $ of the pull-back 

bundle 
~ * H ~ H  

such tha t  ~ = 0  defines the zero section embedding of pn in H. The induced map 

[~r* a0 . . . . .  ~r*~r~; ~] : H - + P  ~+1 

is an embedding of H into pn+l such tha t  the zero section pn of H goes into the hyperplane 

given in homogeneous coordinates [~0 . . . .  , ~n+l] on pn+l by  ~n+l = 0. The image of H is the 

complement of the point ~ = [0 . . . .  ,0 ,  1] in pn+l, and the fibration H-+P  ~ is geometrically 

just the projection from ~ onto the hyperplane ~+1 = 0  in p~+l. 

The metric in C n+1 induces a metric in H ~  pn whose curvature form c(H)is the usual 

K/~hler form co on pn. This metric in turn  induces a metric in 7:*H-+H, and we consider the 

function 
-loglCl 

on H - P n .  The level sets {z EH: r0(z)=r} are just the boundaries of tubular neighborhoods 

of the zero section P~ in H. Using the inclusion Hr p~+l, we see tha t  ~o gives a special 

exhaustion function on p=+l _ p n =  r In  fact, this is the same as the exhaustion function 

constructed in example (ii) above, only we are now focusing our at tention around the hyper- 

plane at  infinity for r The distinguished point ~ is just the origin in C "+1. 

Step 2. Let  .71 be a smooth completion of A satisfying the following conditions: (i) 

is a smooth, projective variety; (ii) D c o = ~ - A  is a divisor with normal crossings o n / i ;  

and (iii) there is a projective embedding Ar pN such tha t  D~ = z~ N pN-1 is a hyperplane 
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section of ~ (not counting multiplicities). Such an embedding exists by [12] and the assump- 

tion that  A is affine. 

Assume that  dime A = m and choose a linear subspace p~-~-i  of P~ which lies in the 

hyperplane pN-1 and does not meet A. Selecting a generic pm not meeting pN-m-1, we 

consider the projections 

(2.5) 

C ~ p a r _ p N - m - ~  ) pN-1 p~r-m-1 

Then ~-l(pm-i) N ~ = D~, so that  (2.5) induces a finite branched covering mapping 

(2.6) ~: A-~C ~ 

where c m = p m - p  m-1. We let z = ~ o T  0 where % was constructed i n s t e p  1. From the geo- 

metric discussion there together with example (ii) we see that the Air] are compact and the 

conditions (1.1) on the Levi form are satisfied. What  we must show is that  ~ has only 

finitely many critical values, which is not immediately clear since the branch locus of 

(2.6) extends to infinity if m > I. 

We now localize around infinity. Let L - + ~  be the pullback ~*H in (2.5), take the 

metric in L induced from that  in H, and let ~EH~ O(L)) be the section which defines 

Doo on ~ .  Then ~=  - logiC[ near Doo on .4. 

Around a point on Doo we choose holomorphic coordinates w 1 . . . .  ,wm such that  

~=w~ . . . .  w~. 
Then it follows that  

k 

(2.7) ~ = - Z ~ log Iw.l + q(w) 
~=1 

where ~(w) is a C oo function. From (2.7) we obtain 

/~=1 0r t~ W'-~ 

from which it follows that  d~=~0 for ]]wH< e. Using the compactness of D, we see that  

d~=~ 0 outside a compact set of A. Q.E.D. 

(c) Some properties of the projection (2.5) 

If  A is a smooth affine variety of dimension m, then we have constructed an algebraic 

branched covering 
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(2 .8 )  A ~ , C m 

such t h a t  T = log  H~:(x)I] gives a special exhaust ion funct ion on A. We m a y  assume t h a t  

is unramified over the origin, so tha t  

re-i(0) = {x 1 . . . . .  x~} (d=  degree of A) 

where x 1 . . . . .  x~ are the logarithmic singularities of ~. There are several properties of the  

covering (2.8) which we wish to record here. 

Let  (I)= l~-rn-1 (V- i/2;Tg) (dzj A dZj) be the  Euclidean volume form on C m and (P~ =r:*(I) 

the  pull-back of (I) to  A. Suppose tha t  g~ is an everywhere positive C ~ volume form on A, 

and  write ~ =~(I)~ where ~>~0 on A and log ~ eL~(loc, A). 

(2.9) LwM~A. In  the sense o/currents, we have 

dd c log ~ = Ric ~ - B 

where Ric ~ is the Rieei /orm o / ~  and B is the branch locus o/the projection (2.8). 

Proo/. Using local holomorphic coordinates w I . . . . .  Wm on A, we have the  relations 

% = I j (w) I~ l - I  (,~w, a d~,,) 
i = l  

m V "  - - 1  
= a(w) 1-I L'W-- (dw~ A d ~ )  

i=1  

where ?'(w) = 0 is the  local equat ion of B and a(w) > 0 is the  coefficient of ~ .  I t  follows t h a t  

a(w)  

= I j (w)  t ~ 

so tha t  using the Poincard equat ion (1.1) we obtain  

dd ~ log ~ = dd ~ log a - B 

as an  equat ion of currents.  Q.E.D.  

Before proving our next  p roper ty  of the si tuation (2.8), we need to have the following 

(2.10) LEMMA. Suppose that Z is a k-dimensional analytic subset o/C n such that in P~ there 

is a pn-e-1 in the p , - I  at in/inity with Z n p~-k-1 =~). Then Z is algebraic. 

Proo]. Assume first t ha t  k = n - 1, so t h a t  Z ~ (3" is a hypersufface and  there is a point  

~ e P ~ - ( 3  ~ with ~ N Z = O .  The projection p ~ _ ~  ~ p ~ - i  is the  total  space of the s tandard  
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positive line bundle H ~-~ pn-1 (cf. Step 1 in the proof of Proposition (2.4)). The restriction 

~ pn-z is proper and realizes Z ~ C n-1 as a finite analytic covering with d sheets. Thus 

we may write 
~- "  (~) -- (o"~(~) . . . . .  ~ (~)} 

where aT(z) are multi-valued holomorphie sections of H ~-~ C n-1. Each homogeneous symme- 

tric function of the at(z), such as 
~l(z) . . .  ~ (z), 

may be considered as a single-valued holomorphic section ~(z) of H b ~ C ~ for suitable b. 

Moreover, around the pn-1 at infinity in (J=, the ~(z) are locally given by  bounded holomorphic 

functions in a punctured polycylinder. Applying the Riemann extension theorem, it follows 

that  any such ~(z) is a holomorphic section of Hb~-~P n-1. The holomorphic sections of 

H~ ~---~P =-I are, essentially by  definition, given by  holomorphic functions F~(z) on C ~ -  {0} 

which satisfy 
F~(~z) - -~F~(z ) .  

By Hartogs' theorem, F~ extends to give a holomorphie function of C ~, which is then a 

polynomial of degree b by the homogeneity condition. Thus any such ~ is algebraic, and it 

follows from this tha t  Z is algebraic. In fact, for each such ~ it follows that  Z satisfies the 

polynomial equation 

~ = F ~  (~0 . . . . .  ~ - ~ ) .  
In general, the situation 

C~cp~ =p~ 

gives a vector bundle E~P k such that Z may be considered as a multi-valued section over 

C k ~ P~. Choosing coordinates such that r: is given by 

[~0 . . . .  , ~,]-~[~0 . . . . .  ~ ]  
gives an isomorphism 

E~H| ... |  

Using this we may repeat the above argument to find a homogeneous polynomialP(~o . . . .  , ~ )  

such that  P(~) =0  on Z but  P(~) =t = 0 at a given point ~ EP ~ - Z .  This P(~) will be a section of 

a symmetric power of =*E. 

One may also note tha t  for a generic P=-~ there is an open set U ~ P  "-~ at infinity so 

that  for each x E U, and 7zx: P~ - {x} ~pn-1, the set ~=(Z) ~ r~r(Z) ~ Pn-X -w(Pn-~-~) satisfies 
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the hypotheses of the theorem. Thus by induction on codimensionZ, 7:/l(~x(Z)) is algebraic 

and Z c  n x~v~;!(7:~(Z)), an algebraic set. These two sets are actually equal, since if y 6 C n - Z  

the set of x 6 U such that  ~x(Y) 6 ~:x(Z) has dimension equal to dimension Z < dimension U. 

Therefore, Z =  N ~v~:;l(7:x(Z)) is algebraic. 

C OR OLLXRY (Chow's theorem). Any  analytic set in P~ is defined by polynomial equa- 

tions, and is therefore algebraic. 

Remarlc: The above proof uses only the Riemann extension theorem and Hartogs'  

theorem, and is thus both elementary and reasonably simple. 

Now we return to the finite algebraic projection A~-~ C ~ given in (2.8). Let  Z c A  be 

an analytic subset and 7:(Z) its projection onto CL 

(2.11) LEMMA. Z is an algebraic subset o / A  if, and only if, ~(Z) is an algebrai c subset o/C ~. 

Proof. I t  will suffice to assume that  ~z(Z) is algebraic and then prove that  Z is also. 

There is a linear P m - ~ - l c P ~ - l = P m - C m  such that  ~(Z)NPm-~-I=O. Considering the 

situation 
A : pN_ pN-~-1 

C m c p~ 

it follows that  ~-l(pm-k-1) is a pN-u-1 in P ~ - C  N such that  Z N pN-k-1 = 0 .  B y L e m m a  (2.11), 

Z is algebraic. Q.E.D. 

3. Some integral formulas and applications 

(a) Jensen's theorem 

Let  M be a complex manifold having an exhaustion function T: M ~ [ - o o ,  + oo). 

We set M[r] = {x 6 M: T(x) ~ log r} and assume that  r 0 is such that  ~(x) has all of its critical 

values in the interval [ -  oo, log r0). We denote the Levi form of ~ by 

v=ddC ~ >~O. 

Let D be a divisor on M and set D[r] = D ~ M[r]. If D does not pass through any of the 

logarithmic singularities of % we define 

n(D, t) = ,J vl-m V'n-1 
(3.1) 

p r  

N (D, r) = jo| n(D' t)t" (counting function). 
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In  case D passes through some of the logarithmic singularities of ~, the formulae in (3.1) 

must be modified by using Lelong numbers as discussed in w l(d). We shall assume without 

further comment that  this has been done whenever necessary. 

(3.2) PROPOSITION (Jensen's theorem). Let ~ be a meromorphic /unction on M with divisor 

D. Then we have 

N(D, r )=  log ] ar r /+  0(1) (r~> r0) M[r] [r] log ~-1~ ~0 m -1-" 

where ~7 = de'c A ~pm-1 ~ 0 on OM[r] and where the term 

O ( 1 ) = N ( D ,  ro)+ f l~ fo~t,~176162 
j ~,~roj I~1 

depends on D but not on r. 

Proo/. We recall the Poincard equation of currents (1.1) 

ddelogl~l~=D. 

Let 7t be the characteristic function of M[t]. Since the current d e log/~I 2 is a Radon 

measure, d c log I ~ [ ~ A 7t is defined. We claim that  

(3.3) d(d c log[~ ]~ A 7t) = n A 7 t - a M [ r / A  d e log/~]2 

By Equation (1.1) or by the usual Stokes' theorem this is clearly true around all 

x ~ D  N aM[r/. As in (1.10) there are two ways to verify this on D N aM[r/. One way is to 

observe that  these are flat currents of dimension 2 m -  2 in the sense of Federer. Since the two 

sides differ on D f~ aM[r/, a set of real dimension 2 m - 3 ,  the two sides must be equal [13]. 

The other way is the method used in the proof of (1.10). In  this case it will be better  

to blow up the origin by inserting a real sphere instead of a complex projective space. This 

leads to a real analytic set with boundary F and ~: Ir such that  ~:*(d~ 2) is 

smooth and the usual Stokes' theorem gives (3.3) for the forms pulled up to F and this 

implies (3.3) (cf. (1.13) and the proof of Proposition (1.10)). 

Now given Equation (3.3), apply these currents to the form yjm-1, replacing ~t by 

~t-Tro. Then since d~o m-1 =0,  

(3.4) f~ttl~m-i= fo~,t, de log '~' A W m-~ 

(one must check also that  the boundary term arising from the logarithmic singularities of 

in zero). In  (3.4) we have assumed that  D does not pass through any of the logarithmic 
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singularities of T and tha t  log t is not a critical value of 7. As mentioned above, the first 

of these restrictions may  be disposed of using Lelong numbers. 

Now we integrate (3.4) with respect to dt/t from r 0 to r and apply Fubini 's  theorem to 

have 

(3.5) N(D,r)= fM d~Ad~log]o~12hy/~-!+O(1). 
It0, r/ 

Using the relation 
dv A delog [~]2 A V m-1 = d(log ]~]2~)_ log ] ~]2Vm 

and applying Stokes' theorem to the R.H.S. of (3.5) gives Jensen's theorem. Q.E.D. 

Suppose now tha t  ~fi O(M) is holomorphie and let 

Ms (r) = maxlog  I~(x)I ~ 
xeM[r] 

be the maximum modulus log l~ I on M[r]. From (3.2) we obtain the estimate 

~ , e  +o(1/. 

In  general, this inequality does not seem to be very useful because, at  least on the face of 

it, the zeroes of ~ will contribute positively to the term IMEr] log  Iowever, if 

~ is a special exhaustion function as defined in w 2, then  ~0 m = 0  and ~0MEr] ~ is a constant 

independent of r. Taking this constant to be 1/2, (3.6) reduces to the Nevanlinna inefluality 

(3.71 N(D, ,'/~< M~(r) +0(1/. 

Although simple to derive, this inequality has the remarkable effect of bounding the size 

of the divisor ~ = 0  in terms of the maximum modulus of ~. To illustrate the strong global 

consequences which result from a special exhaustion function, we shall prove the 

(3.8 5 PROPOSITION (Casorati-Weierstrass theorem 5. Let M have a special exhaustion 

/unction and cr be a non-constant meromorphic /unction on M. Then the image g(M) is dense 

in p1. 

Proo]. I f  the proposition were false, then after a suitable linear fractional transforma- 

tion we may  assume tha t  ~ is a bounded holomorphic function such tha t  the divisor cr = 0  

is non-empty and does not pass through any of the logarithmic singular points of T. Thus, 

for some c>0 ,  we will have from (3.7) the inequality 

c log r <~N(D, r) ~<O(1) 

for arbitrarily large r. This is a contradiction. Q.E.D. 
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Remark. For a Riemann surface M, there is a notion of what it means for M to be 

parabolic (cf. Ahlfors-Sario, l~iemann Surfaces, Princeton University Press (1960), pp. 26 

and 204). I t  is then a theorem that  this is equivalent to M having a special exhaustion 

function in the sense of w 2 (cf. M. Nakai, On Evans Potential, Proc. Japan Acad., vol. 38 

(1962), pp. 624-629). This together with Proposition (3.8) perhaps suggests a generalization 

of the notion of parabolic to general complex manifolds. 

(b) The Nevanllnna characteristic function 

Let M be a complex manifold with a special exhaustion function 3: M - f - c ~ ,  + ~) .  

Following R. Nevanlinna [16], we shall put Jensen's theorem in a more symmetric form. 

Let a be a meromorphic function on M and denote by Da the divisor 

a(z) = a  

for a point a EP 1. Then, using the notations 

(3.9) log + t = max (log t, 0), (t 1> 0), re(a, r) = [ log + 
1 

,J OM[r] ~ '~  7' 

Jensen's theorem (3.2) may be rewritten as 

(3.10) N (D o, r) +re(a, r) =N(Do~, r) +m(1/a, r) +0(1). 

The R.H.S. of (3.10) will be denoted by T0(a, r) and called the Nevanlinna characteristic 

function of a. Using the inequalities 

log+ (tits) <. log+ tl + log + t2 

log+ (t 1 + is) <log+ t 1 +log+ t 2 + log 2, 

we obtain from (3.10) the relations 

[T0(alas, r) -<< T0(a, r) + T0(as, r) 
! 
~ Z o ( a l a 2 ,  r) ~. To(a1,  r) + To(as ,  r) +O(1) (3.11) 
| T o ( a - a ,  r) = To(a , r) § 
/ 
/To(I/a, r) = To(a, r) +O(1). 

From (3.11) we immediately deduce 

(3.12) PROPOSITIOn. Let A(r) be a positive, increasing function o f t  such that 

limr-.~ A(r)= + ~ .  Then the set of all meromorphic /unctions a on M which r ~  oo satisfy 

the growth condition 
To(a, r )=  O(A(r)) 

forms a subfield ~ A  Of the field ~ of all meromorphic functions on M. 
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Following still the  classical theory ,  we let N(r,  e t~ =iV(De~0, r) and  shall p rove  an  

ident i ty  due to  H.  Car tan  when M = t3. 

(3.13) PROPOSITION.  The Nevanlinna characteristic/unction satis/ies 

�9 1o N(r, eiO)dO = To(a , r) + 0(1). 

Proo/. Jensen ' s  theorem applied to the  funct ion a(z) = z - a on the  complex plane gives 

(3.15) ~ log l a -  d~ dO = log+[a], 

even including the  l imiting case a = c~. Replacing e(z) b y  ~(z) - e! ~ and  using (3.2) we have  

e ~~ = N(D~,  r) + fOMErlog [e(z) -- e'~ + N(r, 0(1). 

In tegra t ing  this equat ion with  respect  to dO and using (3.14) yields 

2-~ N(r, e '~ = log + [~(z)12~(z) + N(Do, r) + 0(1). 
MCr] 

Comparing the  R. I t .S .  of this relat ion with  the  R.H.S.  of (3.10) gives the  proposit ion.  

Q.E.D.  

I t  follows f rom (3.13) t h a t  T o (~, r) is an increasing convex funct ion of log r, an  asser- 

t ion which m a y  be viewed as a sort  of " three-circles" theorem.  

(c) Jensen's theorem for vector valued functions 

W e  continue to let  M be a complex manifold  wi th  exhaus t ion  funct ion 3: M -+ [ - ~ ,  + co) 

and  Levi  fo rm ~0= ddC~. L e t / :  M-+  C" he a holomorphic  mapp ing  such t h a t  Z = / - 1 ( 0 )  has  

pure  codimension n. Using the  nota t ions  

M[r] = {z E M  : ~(z) ~< log r} 

Z[r] = Z N M[r] 

(3.15) n(Z, t) = ~ V, "-n 
d Zttl 

N(Z,r)  = n(Z, t) T 

we wan t  to have  a formula  for the  counting funct ion N(Z, r) i a  t e rms  of / and  % !Referring 

to (7.6), we let 
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[ co, = (dd ~ log II/I1~) ' 
/ 

(3.16) ] ~ z = l o g  II/11% 
J 

[tzl=dC~z=dC log ][/112A~. 

(3.17) PROPOSITIOn. Using the notations (3.15) and (3.16) we have 

nZ' r)= fOM[r] a'-: A ~m-=-- fMErl ~n- l  A ~flm-n+l + O(1) 

fMCr CO'A m-*=fOM[r]a*-  A Vm-*-- ~z-1A ~~ + O(1) ( /~<n-  1) 

where ~1~ = d%: h y? >10 on ~M[r]. 

Pro@ This proposition follows in the same manner as 3.2 by integrating twice the 

equations of currents 
dd~o~l=O 

(3.18) ~ ddC~2 =m z+l ( / < n - l )  
/ 

Ldd%2._l =Z. 

The restriction of these equations to M[r] is handled in the same way as in 3.2. 

Remarks. For / :  M-+C n introduce the notations 

Mr(r ) = max log ]J/(z)l] 2 
z r M [ r ]  

= fm~l ~ h V(r) ~m-n+l 

( 1 n-1 wm-n+: S ( r ) =  o, A 

Then Jensen's theorem gives the estimate 

(3;19) 2v (z, r) < M~(r) V (r) + S(r) +0(1). 

The first term Mr(r)V(r ) on the R.H.S. is intrinsic and involves, so to speak, only the 

growth of the mapping / and not the particular value "0" where Z =/-1(0). On the other 

hand, the remainder term S(r) is not intrinsic. One's initial hope might be that  Mr(r ) V(r) 

is the more important term. If, e.g., we have the special case of a holomorphic mapping 

C~ t = ( h , h )  C~ 

where I is of finite order in the sense that  Mi(r ) <~c2r ~, then the relative unimportance of 

S(r) would imply an estimate 

(3.20) N (Z, r) ~ c~r ~a 
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for the number of common zeroes of/1 and ]2 in the ball ]lzll ~<r~ A recent example of 

Cornalba and Shiffman [7] shows that  the Bezout estimate (3.20) may be/alse (cf. Stoll [19] 

for a Bezout estimate "on the average"). Thus in general there will be no Nevanlinna ine- 

quality (3.7) in higher eodimension. Moreover, the Casorati-Weierstrass theorem (3.8) fails 

also in higher codimension, as illustrated by the well-known Fatou-Bieberbach example. 

Outside of the one result due to Chern-Stoll-Wu (el. Proposition (5.20) page 186), the 

value distribution theory for higher codimensional subvarieties remains a mystery. 

4. Conditions that a divisor be algebraic 

Let A be an m-dimensional affine variety, and 

~: A ~ C  m, ~(z)=log ll~(~)[l 2 

the generic projection and special exhaustion function constructed in w 2 (b). Let D be an 

effective analytic divisor on A, y~ = ddCT the Levi form of ~, and 

N(D,r)= r Ir 
J0 (J~E~ J t 

the counting function for D (cf. (3.1)). 

(4.1) PROPOSITION. D is an algebraic divisor i /and only i/, 

_hT(D, r) = O(log r). 

Proo/. I t  is immediate from the definition (3.1) that  N(D, r) is O(log r) if, and only if, 

(4.2) f DEr] ~pm-1 = 0(1) 

for all r. On the other hand, by Lemma (2.10), D is an algebraic subset of A if and only if, 

~(D) is an algebraic subset of C m. Using this together with (4.2) we are reduced to the 

following result of Stoll [17]: 

(4.3) PROPOSITIOn. Let D be an e]]ective analytic divisor in C m and y~=dd ~ log Hz]] 2. Then 

D is algebraic i/, and only q, 

f DErJ ~ ~-1 = 
0(1). 

We will give two proofs of this result. The first uses elementary properties of plurisub- 

harmonic functions together with the Cousin I I  problem in C ~. The second uses Nevanlinna 

theory and provides one of the few occasions where the remainder term in the First Main 

Theorem 5.14 can be dealt with. In giving this proof we shall use the F.M.T. (5.14) below 

and refer the reader to that  section for its proof. 
12 - 732905 Acta mathematica 130. I m p r i m 6  le 14 Mai 1973 
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First Proo/. Suppose that  D is algebraic of degree d in C m. Assuming that  the origin 

does not lie on D, we consider the projection 

D.-> pm-1 

of D over the lines through the origin in C m. For each such line ~ the intersection ~. D 

consists of ~< d points, counted with multiplicities, on ~. I t  follows that  

fD [r] lPm-l~d{fP '~- ~ ~~ -1 } = d '  r~cclim(f \ J  D[r] ~Pm-ll=d'/ 
where co =dd c log IlzlI~ is the usual (1, 1) form on Pm-L 

Conversely, suppose that  ~Dtrl Yjm-l<d for all r. Then, on the average (cf. (5.18) page 

186), each line ~ through the origin meets D in at most d points. Our main step is to show 

in an a priori manner that  this happens for all lines ~. 

For this we use the Cousin I I  problem on C ~ to find an entire holomorphic function 

~(z) such that  (~)= D. Normalizing so that  ~(0)= 1, Jensen's theorem (3.2) gives 

(4.4) N(D, r) = fllzll= log l~(z) ] ~ (z) 

where ~(z)=d~ []z IIUA (ddClog Hz]]U) m-x. ) 'or each point z # 0  in C m, we let ~z be the 

line determined by  z and ~[r]  = ~  n Cm[r]. Then Jensen's theorem applied to ~(z)]~z gives 

(4.5) N(D n ~,r  I1~11)= log I~(re%)ldO. 

f r o m  (4.5) we  see that  the counting function N(D N ~, r I1~11) is a Curi  subharmonic function 

of z E (3 m since it is the mean value of the pluri subharmonic functions log In(re ~~ z)[. 

We want to apply the sub-mean-value property of pluri subharmonic functions to 

N(D n~z, ~ll~ll). For this let B(z, ~) be the ball of radius ~ around z in C m and qb be the 

Euclidean volume element normalized so that  ~llzll<l(I)(z)=1. Then the sub-mean-value 

property gives the inequality 

1 N(nn~,rllwlllO(w) 2V(D n 5 ,  r IHI) < e ~  ~.(z.o) 

-<e~ lf~o~<0,tlo,+J(D n e~, r Ilwll)r 

< CEp._ /Y(D n e, r (11~11 + e)) v ,'~-~ (r 

~< d log (r(ll~ll + e))  
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Taking ]l ll = 1, we  obtain  the  est imate ,  

(4.6) ~V(D fl ~:, r) < d (1 + ~)I 2m + O(1), (~E pro-l). 
log r \ ~ / 

I t  follows from (4.6) tha t  D N ~ is a divisor of degree <d((1 +~)]Q)~m for every~ >0.  Letting 

e-~ ~ we find that  all intersectiorLs D fl ~ are divisors of degree < d on the line ~ through 

the origin in C m. 

Let  d o be the smallest integer with the property that  degree (D N ~) <d  0 for all ~. Let  

~0 be some ~ at which the maximum is attained; then there is a neighborhood U of ~0 and 

0 < R 0 < oo such that  D N ~ B(0, R0) for ~ E U. Thus D satisfies the hypothesis of Lemma 

(2.10) and is algebraic. 

Second proo/. As before, we must show that  

(4.7) deg (D N ~) < d <  oo 

for all lines ~ through the origin in C ~. Suppose we are able to prove the estimate 

fHND~) n-2 ~ d < (4.8) oo 

for all hyperplanes H passing through the origin in CL Then we may repeat the proof of 

(4.8) with H N D replacing D, and in this way work our way down to the desired estimate 

(4.7). 

We consider the residual mapping 

(4.9) D / , P~-~ 

which sends each point z E D to the line/(z) determined by z (here we assume that  {0} ~ D). 

The function ~(z)=log [[z II ~ gives an exhaustion function on D, and the Levi form 

(4.10) ddCr =/*(re) ~r I 

where r is the standard Ki~hler form on pn-1. We wish to apply the F.NI.T. (5.14) for 

divisors to the mapping (4.9) and exhaustion function ~. Even though D may have singulari- 

ties, this is possible because of Proposition (1.1). 

Let  L ~ P  n-1 be the standard line bundle whose sections are the linear functions on 

C n and where IL [ is the complete linear system of hyperplanes in Pn-L We take in L the 

standard metric such tha t  c(L) = ~o, and denote by  Hr the hyperplane in C ~ determined by 

the section ~ EH0(p n-l, L). Using the notations 
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f at w[ --; 
l ,  

the F.M.T. (5.14) together with (4.10) yields the estimate 

(4.I1) N(/-/~, r) ~< T(r) +S(H~, ~'). 

From (5.I8) we have the averaging formula 

T(r) = ~ N(Hr r) dl~ ((~), 
id 

aeH0 (][~a- 1, L) 
~up lal=l 

and (4.8) will follow from an estimate 

(4.12) lim 
S(H~, r) 

T(r) =0 .  

Proo/. From (4.11) and (4.12) we have 

lim N(H~, r_____) <~ 1. 
r-,r T(r) 

Now T(r) <~ d log r since SD (-O~ -x = d < ~ ,  and if Snattl ~~ = c, then N(H~v, r) >1. c log r + 0(1) 

for large r. Thus c ~< d for all t, and consequently 

~T 

To prove 4.12), we consider the singular volume form 

1 

on pn-1. We normalize l a] so that  Sp~-l~a = 2, and then use the concavity of log to obtain 

(4.13) S(Hc~,r)<log{fDcra~+O(1) ). 

On the other hand, we have 
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dd~ ~l ~ o~ "-~) = a . +  o 

where (9 is a bounded volume form on P"-~. I t  follows that  

Now we may apply Stokes' theorem twice to obtain 

r dr oj~_ 1 _ 
(4.15) fo {foadOl, l  T= fot,  foDt~ l@ ~?-2 A dCT: 

(el. the proof of Proposition (3.2)). Since 1~1 is bounded and Xo~ ~7 -~ = $0~t~ ~ - 2  A d% = 0(1), 

we may combine (4.14) and (4.15) to have an estimate 

~ R dr 
(4.16) e s(~"'~)- = O(log R). 

�9 ] 0  r 

Since S(H~, r) is a non-negative increasing function of r, (4.12) follows from (4.16). Q.E.D. 

Remark. The above proof works for an arbitrary divisor D ~  C n and yields an estimate 

N(H~, r )<  T(r)+ o{T(r)} II 

(el., the proof of Lemma (7.22) for an explanation of the symbol II). This estimate bounds 

the growth of H f]D in terms of the growth of D for all hyperplanes H. There is no analogous 

inequality known in case codim (D) > 1. 

5. The order function for holomorphic mappings 

(a)  Definition and basic properties 

Let M be a complex manifold having a special exhaustion function 3: M-+ [ -  ~ ,  + ~ )  

(el., w 2). Suppose that  V is a smooth, projective algebraic variety, and that  L-+ V is a 

positive line bundle having a metric with positive curvature form co (el., w 0). Le t / :  M-+ V 

be a holomorphic mapping, set wr=/*co, and define order functions T 1 . . . . .  Tm by 

(5.1) Tq(r)= f~ { f Mttjw~ A (dd~ ~. 
The total order/unction ~ (/, r) is defined by 

g( l ,  r) = Y T~(r). 
q~O 



182 P H I L L I P  G R I F F I T H S  A N D  JA_~IES K I N G  

Here, To(r ) = ~o{;,nm(dd~)m}dt/t  = constant since T is a special exhaustion function. 

Geometrically, if we let F I c M  x V be the graph o f / ,  Fr[t ] = F r f i  (M[t] • V) tha t  par t  of 

the graph lying above M[t], and 

V(t) = Jr(l(t) (dd~T + e~ 

the volume of Ps[t] on M • V relative to the pseudo-K~hler metric ddCT § w, then 

[~ dt 
(5.2) T (r) = J0 v (t) 7 '  

modulo some inessential constant factors. 

(5.3) PBOPOSITION. I /  we choose another metric in  L--> V which leads to a new curvature 

/orm t5 and order/unctions Tq (r), then 

[dTq_l (') ) 
T q ( r ) - T q ( r ) = O \  dr q- 1 . 

Proo/. Let  0 E A n-l" ~-1 (M) be a C ~ (n - 1, n - 1) form on V. Then by  Stokes' theorem 

Y -- JM[r] A d cO, 

which gives 

f~(fMct~ddC ) dt fo O AdCv- f~ O AddCT" (5.4) 0 - f =  Mc~l ~c~1 

From (0.3) we have (5 = eo + ddC~ where ~ E C ~ (V). Plugging this into the definitions and 

using (5.4) we obtain 

~-1 foMCrle(ddo~V_k_ ~ fM (5.5) Tq (r) - ]'q (r) = ~ a k A (o k A dOT + b k ~(ddC~) q-k-1 A co ~ A dd%. 
k = 0 It/ 

Now ~(dd ~ Q)q-k-x ~.CkO)q--k--1 and using this together with Stokes' theorem in (5.5) gives the 

result. Q.E.D. 

(5.6) COROLLARY. The order/unctions associated to two di//erent metrics in L---> V satis/y 

Tx(r ) =~l(r)  q- 0(1). 

Remark. The above proposition and corollary suggest tha t  Tl(r ) should perhaps be 

the most  interesting te rm in the to~al order function T(/, r). Thus, e.g., the order of growth 

of Tq (r) for q > 1 will be well-defined only if 
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dTq_l(r) 
dr 

(5.7) lim - -  : 0. 
r-~r162 Tq(r) 

We shall now give two more indications tha t  Tl(r ) is the most important  te rm in 

T(/, r) For the first we write Tl(r ) = Tz(/, r) in order to emphasize the dependence o n / .  

Suppose given two holomorphic mappings/ :  M-~ V and g: M-> W of M into smooth projec- 

t ive varieties V and W, so tha t  we m a y  consider the product mapping / xg: M-~ V • W. 

(5.8) PROPOSITION. The mappings/ ,  g and / • satis/y 

T~(/• g, r) = TI(/, r) + T~(g, r) + 0(1). 

Moreover, this ]unctorial property is not necessarily true ]or the terms Tq(r) (q >~ 2). 

Proo/. The equality follows immediately from the definition. The observation tha t ,  

e.g., Tu(r) does not necessarily have the functoriality proper ty  m a y  be seen by  letting 

dime M =2.  Then what  we need to do is to be able to estimate S e~ A e% in terms of 

co I A o~ and S wg A wg. In  general this is not possible. 

The second proposition will be proved at  the end of w 5(c) below. To state it we assume 

tha t  M is a smooth affine variety A with the special exhaustion function T constructed in 

w 2(b). 

(5.9) PROPOSITiOn.  The mapping / is rational if, and only i/, 

Tl(r) = O(log r). 

This estimate is, in turn, satisfied i], and only i/, 

T(I, r) = O(log r). 

(b) The First Main Theorem (FMT) 

We continue with the s i tuat ion/ :  M-~ V of w 5(a). The F.M.T. for divisors, which is 

the global version of Jensen's  theorem (3.2) for meromorphic functions, will be presented 

first. Let  D E ILl be an arbi trary effective divisor given by  the zeroes of a holomorphie 

section aEH~ L). Since a and ha (~t~=0) define the same divisor, we shall assume tha t  

In(x) I ~< 1 for x E V. Let  L~-+ M be the pull-back of L-~ V and a r the pull .back of a. Assume 

tha t  a ~  0 and define the proximity/orm 

(5.10) m(D,r)= ( log i~11~ ~ ~> 0 
Jo~[,] I~il 

where ~ =d% A (ddcT) m-1 is positive on ~M[r]. 
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(5.11) PROPOSITIO~ 

have 

(F.M.T. for divisors). Letting D I be the divisor of arEH~ Lr), we 

IV(Dr, r) + m(D, r) = Tl(r ) + 0(1) 

where 0(1) depends on D but not on r. 

Proof: This follows by integrating twice the equation of currents (1.5) applied tc 

L / ~ M  and a I, in exactly the same way as Jensen's theorem (3.2) followed by integrating 

twice the equation (1.1). Q.E.D. 

Remark. Combining (5.10) and (5.11) gives the estimate 

(5.12) IV(Dr, r) < Ti(r ) +0(1) (DE ILl), 

which is a variant of the basic Nevaniinna inequality (3.7). In both cases, the effect of the 

estimate is to bound the growth a n y  particular divisor by the average growth of all the 

divisors in the same linear system (cf. (3.10), (3.13), and Proposition (5.18), page 186). 

To give the generM F.M.T., we assume that  al . . . .  , anEH~ are holomorphie 

sections such that  the subvariety Z defined by al . . . . .  an=0 has pure c0dimension n 

on V. Assume that  f: M-~ V is a holomorphic mapping such that  Zr=/-l(Z) has pure 

codimension n on M. We use the notations (1.15) and set 

(5.13) 

ar = (1-1 (m) . . . . .  / -1 (an)), 

Yh = (dd%) l, 

m (Z, r) = fo~trAI A Vn-m 

Sn (Z, r) = JM(E,~ A~ A 

(5.14) P~OPOSXTION 

A~ = /*A 

~ = dOT A yj~-i 

(proximity form) 

(remainder). 

(F.M.T.--the general case). Using the notations (5.13) and (1.15), 

IV(Zr, r) + m(Z, r) = Tn(r) + Sn(Z, r) + 0(1), 

where 0(1) depends on Z but not on r. 

Proof. This follows by integrating twice the equation of currents (1.18) cf. the proof of 

(3.17). 

Remarks. As in the case of divisors, we may assume that  Ila(x)H ~<1 for all x e V .  

Then by (1.22) the proximity form m(Z, r)>~0 and (5.14) gives the estimate 

(5.15) Iv(zs, r) < T~(r) +S.(Z,  r) +0(1).  
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When n = 1, (5.15) reduces to the Nevanlinna inequality (5.12) because V m =0  and so the 

remainder Sx(Z , r)=-O. However, for n > 1 in general the remainder term will be positive 

and we are in the analogous situation to Proposition (3.17). 

(e) Averaging and density theorems 

In  this section we assume that  L ~  V is sufficiently ample, which means that  the 

complete linear system [L I should give an embedding of V in pN-x where dimc H~ L) = N, 

and that  the image of V should contain no proper linear subspaces. Choosing a metric in 

H~ L) induces the usual Fubini-Study form co on pN-1 which is invariant under the 

unitary group, and we may assume that  the metric and curvature form on L-> V are 

induced from these on pN-X. 

Let  G(n, N) be the Grassman manifold of all n-planes in H~ L), and denote by 

C{G(n, •)} the Grassman cone of all decomposable vectors a=axA ... A a~E A "H~ 

For any such a we denote by Z(a) the subvariety a =0  on V and note that  codim (Z(a)) =n 

since L-~ V is ample. The proximity form A =A(a) given by (1.15) may be constructed, 

and A(a) is the restriction to V of the analogous form on pN-x which is given by the same 

formula. In  particular, if T: H~ V, L)-*H~ V, L) is any unitary linear transformation, then 

by linear algebra T induces actions of C{G(n, N)} and pN-x, and 

(5.16) A(Ta) = T*A(a). 

We denote by Ox{G(n, N)} the vectors in C{G(n, N)} of length one and let d/x(a) be 

the measure on CI{G(n , N) which is invariant under the unitary group. Explicitly, 

d#(a) =cdC log [Jail A (dd~ log [[aiI) n(~-n) 

where c is a constant to be determined. 

(5.17) LEM~A. For a suitable choice o/constant c, the average 

f 1 fon_l. log ] ~  h(a)  d#(a) = 
a e C,{G(n,N)} 

Proo[. From our construction it follows that  ;<,> log (1/ll~]l 2) A(a) d#(a) is an 

n - 1 , ~ - 1 )  form on p•-i which is invariant under the unitary group. I t  follows that  

S<,> log (1/lid ]] 2)A(a) d#(a)= el w=-I since any invariant form is a multiple of co ~-1. We may 

easily check that  Cx4 _ oo, and so we arrange that  ex= l  by  a suitable choice of c. Q.E.D. 

Let  /: M-+V be a holomorphic mapping such that  codlin {Zr(a)}=n for almost all 

e c{a(n, x)}. 
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(5.18) PROPOSITIOn. We have the averaging/ormula 

f N(Zr(a), r) d#(a) = T,(r) + 0(1). 

a e CI{G(n.N)} 

Proo]. We shall give the formal computation. The convergence follows by justifying 

Fubini's theorem in the same way as in Stoll [18]. Referring to (5.14) it will suffice to prove 

that  

(5.19) dl,(q)= f r)d (a) + O(1). 

Interchanging the order of integration in (5.17) and using (5.17) we are left to verify tha t  

o) ~n-m = ~ YJn-m+l + 0(1), 
M[r] [r] 

which follows from d ~ _  m =V~-m+l together with Stokes' theorem. Q.E.D. 

Remark. The averaging formula (5.18) is a version of Crofton's formula from integral 

geometry, which says that  the length of any piecewise smooth closed curve C in R 2 is the 

average over the lines L m R z of the number of points of intersection of L and C. 

As an application of (5.18), we shall prove the following result which is a variant of 

those of Chera, Stoll and Wu (cf. Stoll [18]). 

(5,20) PROPOSITIOn. Let/: M-+ V be as above and assume that 

dT~_l (1) 
d ~  e 0(1) 

lim 0. 
,.~oo T~(r) 

Then the image/(M) meets almost all Z(a) /or a 6 G(n, N). 

Proo]. Suppose that  the set I of all a6  CI{G(n, N)} such t h a t / ( M )  intersects Z(a) 

has measure 1 - ~  for some ~ >0.  Combining (5.15) and (5.18) we have 

__f ~o>N(ZI(a)' r) din(a) (by (5.18)) Tn(r) 

j~aN(Zr(a), r) d#(a) obviously 

foez{T~ (r) + S,~ (Z(a), r) + 0(1)} dr(u ) (by (5.15)) 

dT~_l (r) 
~< ( l - e ) T n ( r ) +  d ~  + 0(I),  

where the last step follows because of 
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o~ s .  (z(a), r) d~(a) < f<o>S. (Z(a), r) d~(a) 

=/M[r o7-1 A ~0n_m+ 1 

_ dTn-1 (r) 
dr 

(by (5.17)) 

(by definition). 

Combining the above inequalities gives 

(5.21) 1 ~< (1 - e ) +  

dT~_l(r) 
d ~ / -  0(1) 

~'.(r) 

Taking lim-inf in (5.21) gives the proposition. Q.E.D. 

(5.22) COROLLARY. I] M has a special exhaustion /unction, then the image /(M) meets 

almost all divisors D e]L  I" 

Remarks. (i) This corollary is obviously the same type of assertion as the Casorati- 

Weierstrass theorem (3.8). 

I t  is interesting to observe that  the condition 

dTn-1 (r) 
t- 0(1) 

dr 
lim 
r~  ~ T .  (r) 

which allows the density theorem to hold is the same as the condition (5.7) that  the order 

function T~(r) be intrinsic. 

(ii) Suppose now that  our map 
/: M ~  V 

satisfies the estimate 

(5.23) ds (r) dr o (T n (r)) (q <~ n). 

Then certainly the image ](M) meets almost all Z(a) for ~ E G(n, N). 

Question. Assuming the estimate (5.23), do we then have the Nevanlinna inequality 

~v(zr(~), r) < T.(r) +o(N(Z~(q), r) 
valid for any Z(a)? 

The motivation for this question is that  the presence of an estimate bounding the 

growth of every Z1(a ) in terms of the average growth seems geometrically to be about the 
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same as saying that  the image/(M) meets almost all Z(~). In order to prove (5.24), it would 

seem necessary to estimate the remainder term in the F.M.T. (5.14), and (with perhaps the 

exception of our proof of Stoll's theorem in w 4) nobody has been able to successfully do 

this, even in the case of divisors. 

Proo] o] Proposition (5.9). Replacing the positive line bundle L by 

L ~ = L | 1 7 4  
k - t i m e s  

changes Tl(r ) into kTl(r), and therefore does not alter the conditions of the proposition. 

Choosing k sufficiently large, we may assume that  L-~ V is ample so that  the complete 

linear system ILl induces a projective embedding of V. Then it is clear that  [: A-~ V is 

rational if, and only if, the divisors 

D:=/-I(D) 

are algebraic and of uniformly bounded degree for all De  ILl. 

Suppose first that  J is rational. Then, referring to w 4, we see that  for any D 6 ]L] 

(5.24) N(D:, r) <~d logr  + 0(1) 

where d is the degree of ~(D:) in C m. Here the 0(1) depends on D, but from the discussion 

of Lelong numbers in w l(d) it follows that,  for fixed r, the estimate (5.24) holds for all 
De ]L l . Integration of (5.24) with respect to the invariant measure d#(D) on ILl and an 

application of (5.18) gives 
Tl(r ) <.d log r +0(1) 

where, as is easily checked, the 0(1) term is now independent of r. This proves one half of 

our proposition. 

To prove the other, and more substantial, half we assume that  T~(r)=d log r+O(1). 

From the Nevanlinna inequality (5.12) it follows that  

IY( D:, r) <d log r +0(1) 

for any D 6 [L[. Applying Proposition (4.12) we find that  all divisors D: are algebraic and 

of degree ~<d on A. 

I t  remains to prove that: 

Tl(r ) =O(log r) ~ Y(/, r) =O(log r). 

Under the a~sumption T1(r ) =O(log r) we have just proved that  ] is rational. Choose 

a rational projective embedding g: A-~PN. Replacing / by the product h =/• g: A-+ V • pN, 

we obviously have that  
T(/, r) <~(h, r). 
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On the other hand, h has the advantage of being an algebraic embedding of A into a 

complete projective variety, and we may obviously assume that  the image h(A) is in general 

position with respect to a given family of algebraic subvarieties of the image variety. In 

conclusion, it will suffice to prove that  T(], r) =0(log r) under the assumption that  L-~ V 

is ample and that  
codim ~-l(Z(a)] = n  

for all subvarieties Z(a) corresponding to 0 4= a E A nH~ L). 
Now then all Zs(a)=l-l[Z(a)] are algebraic subvarieties of dimension m - n  on A, 

and the degrees of 7:[Zr(a)] in C m are all bounded by some number d. I t  follows that  

N(Zr(a), r) <<.d log r + 0(1), 

and our result follows by averaging this inequality over all Z(a) and using (5.18). 

(d) Comparison between the order function and Nevanllnna characteristic function. 

Let  M be a complex manifold with special exhaustion function 7: M - ~ [ -  ~ ,  + co) 

and ~(z) a meromorphie function on M. In w 3(b) we defined the Nevanliuna characteristic 

function (ef. (3.10)) 

(5.25) T O (~, r) = N(Doo, r) + f log+ ]~ ]2 
Jo M[r] 

where ~/=dCv A (ddC~) m-x >~0 on ~M[r]. This characteristic function has the very nice alge- 

braic properties given by (3.11). Moreover, in case M is an affine algebraic variety A, it 

follows from (3.10) and Proposition (4.1) that  ~ is a rational function for the algebraic 

structure on A if, and only if, 

T0(~, r) = 0(log r). 

At this time we want to introduce another order function TI(~, r) which, in case 

may be interpreted as a holomorphic mapping a: M-~P 1, is just the order function Tx(r) 
for the standard positive line bundle over p1 introduced in (5.1). Locally on M we may 

write ~ =fl/~, where fl and 7 are relatively prime holomorphie functions. From the relation 

log (1+ [~12)=log (1713+ I /~ l~ ) - log ly l  ~ 

it follows that  the locally L 1 differential form of type (1, 1) 

is well-defiaed, and we have the equation of currents 
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(5.26) 

Using the by now familiar notations 

f0(f  } T 1 (a, r) = o9~ A (ddC'r) m-z dt 
t] t ' 
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ddc log (1+ I a12) =~o~-D~. 

m~(a'r)= fo ~E,J l~ (l+lal2)V~>~ 

we may integrate (5.26) twice as in the proofs of (5.11) and (3.2) to have the formula 

(5.27) hr(D~, r )+  ml(a, r )=  Tl(a, r )+  0(1). 

Classically, (5.27) is called the spherical F.M.T. in Ahlfors-Shimizu form. Using the rela- 

tions 
l~ + I a [2 ~<log (1 + I a [ 2) ~<log+ ] a ]2 +log 2, 

we may compare (5.25) and (5.27) to obtain 

(5.28) T0(a , r) = Tl(a, r) + 0(1). 

Consequently, for studying orders of growth, the functions T0(a, r) and Tl(a, r) are inter- 

changeable. 

I t  is hoped that  (5.28) will tie together the discussion in w 3(b) with that  in w 5(b). 

6. Volume |orms and the second main theorem (SMT) 

(a) Singular volume forms on projective varieties 

Let V be a smooth projective variety of dimension n and L ~  V a holomorphic line 

bundle. Our aim is to construct volume forms on V which are singular along certain divisors 

and which have positive Ricci forms; we will follow the proof in [6]. We shall consider 

divisors D of the following type: 

DE ILl is a divisor with normal crossings; 
(6.1) 

D = D I §  ... +Dk, where each D~ is nonsingular; 

that  is, D has simple normal crossings (w 0). 

Let L~ be the line bundle [D~]; there is a section ~ of L~ such that  (~)=D~. Then 

L = L I |  ... | Lk and the section a = a l |  ... | ak has divisor (0)=D. 

(6.2) PROZ'OSITZO~. Suppose that c(L) §  >0 and that D E[L[ satis/ics (6.1); then there 

is a volume/orm ~ on V and there exist metrics on the L,  such that the singular volume/orm 
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(6.3) ~F= 
I-I (log ]or, I~)~ I ~51 ~ 
5=1 

satis/ies 

(6.4) Ric ~F > 0, (Ric ~F) = >~ ~F, fv -D  (Ric u~) < cr 

Proo/. We know t h a t  there  is a metr ic  on L with  curva tu re  fo rm r such t h a t  

oJ + R i c  ~ >0 .  Choose metr ics  on/51 . . . .  , Lk_ x arb i t rar i ly  and  set  

1r = 1r |  | r162 . . .  1r 
for any  nonvanishing sections ~g of Ls. Mult iplying the  metr ics  b y  a constant ,  we can require 

t h a t  lag[ < ~ for any  f ixed ~ > 0 .  

Using (0.1), (0.2) and  (0.5) we have  

k 

(6 .5)  R i e  ~F = o~ + R i c  ~ - ~ d d  ~ log (log ] a5]2) 2. 
i = l  

:Now - dd ~ log (log l a5 I2) 2 - 2 dd ~ log ]o', 12 4d log lag [z A d ~ log  [a5 [z 
log lal 2 t- (log 1~51~) ~ 

The first  t e rm  is a continuous form on V, so perhaps  choosing a smaller ~ we have,  set t ing 

eo 0 = r + Ric ~ ,  for some c a > 0 

(6.6) Ric ~ >  ca ~ o + ~  ~ log I~,I ~ A a~ 1~51 ~ 
i = l  (log I ~1~) ~ /> 0. 

The la t te r  fo rm is >t0 because d2 A dC2 = (2~) -1 i~z h ~d~> 0 for any  real ~. 

Around any  point  x E V, one can choose coordinates (z 1 . . . . .  z~) in a neighborhood U 

of x such t ha t  x = (0 . . . . .  0) and  D~ = (z~) in U, this being because D has normal  crossings. 

Thus  log [a, 12 = log b~ + log I z 5 ]e where b > 0 is a C ~176 function. Hence  

~/ -  1 dz5 h d25 
(6.7) d l ~ 1 7 6  2 ~  [z~[~ +5" 

~ / -  1 (Ob A ~b + ~b A dSg + dzg A ~b~ 
The form 55 = ~ [ ~  b~g zsb ] 

has the  p roper ty  t h a t  I z~]25i is a smooth  form whose coefficients vanish on D t. 

Thus we see tha t ,  not ing co0 >~ c2 l / -  1 ~g~=ldz~ A d55 for  some c 2 > 0 

(6.8) (Ric W) ~ >~ c 3 (~ - -1 )~  dZl A d2~ A ... A dzn A d~ + c4A 
k 

VI (~og I~1~)~1~1 ~ 
g = l  
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where the coefficients of A are 0 at  (0 . . . . .  0) and ca, ca >0 .  There is then  a c 5 > 0  such tha t  

(Ric ~F)n> cb~F in some neighborhood U ' c  U of x where the  coefficients of A are small. 

Since V is compact ,  we cover V b y  a finite number  of such U'  and get  (Ric/F)n > c61F for 

c 6 >0 .  Now we can redefine ~F b y  replacing ~ by  c6fL This does no t  affect Ric tiP, thus  we 

have 
(Ric ~F) ~ >~F. 

Finally, we mus t  see tha t  ~V-D (Ric~F) n<  c~. B y  compactness it suffices to show 

convergence on a neighborhood of each x. Choose a compact  neighborhood U ' ~  U of x, 

and  we see by  our previous calculations tha t  locally 

O 
(Ric W)" = k 

1-I (log 1 ,1')2 I ,1 ' 
i= l  

where (I) is a smooth  form on U'. Thus  ~ w _ v ( R i c W ) " <  ~ since the funct ion 

1-I~=~ (log Iz~12)2lz~ 12 is locally L ~ in @" because of ~ (log t) -2 t-~dt< co. Q.E.D. 

We can modify  the  preceding proposit ion somewhat  to include the c a s e  tha t  

c(L) +c(Kv)=0 if we assume tha t  c(L)>0. 

(6.9) PROPOSITXON. SuppoSe that e(L) +c(Kv) = 0 and that DE ILl satis/ies (6.1); then there 

is a volume/orm ~ on V and there exist metrics on the L~ such that the singular volume ]orm: 

f~ 
(6.10) ~Fe= k 

satis/ies 

(6.11) 

Proo/. 

Then for a ny  volume form f2', 

1-I (log [a,12)~ la,[ e+2" 
1=1 

We choose metrics on the L, so tha t  co = - dd ~ log - ~7-~dd ~ I~,1 ~ > o. 

co + R i c  ~ '  =ddcp 

for some C ~ real-valued function ~; let ~ =  e -e~ ' ;  then  the  form co + R i e  ~ =  O. 

Proceeding with the same computa t ion  as in (6.5) we have 

(6.12) Ric We = er - ~ d d  ~ log (log la,  l~) 2 
i = l  

and since co9 > 0, as in (6.6) 

(6.1z) 
dlogl~ , ]  2 Ad~ la,12>0. 

(log I o,12) 
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We continue as before and get, in the same notation: 

(6.14) (Rio ~F~)~ ~> f i  I~,1 ~ ~ V---~ndZlk h dSk h . . .  A dz,~ A dS~ + c ,A >~ c~ I~1~%. 

'ffi~ 1-[ (log I~,l~) ~ I ,1 
i=1 

Replacing ~ by  %~ we have (Ric ~F~) = 1> l a[ 2~ ~F~. 

The rest follows exactly the same as in the proof of (6.2). Q.E.D. 

(6.15) Example. We can apply (6.9) to the case when e(K*)>0, especially the case where 

V =P~ and D =~P-o Hi  is the union of (n + 1) hyperplanes in general position. 

Remark, In  case n = 1, V is a compact Riemann surface of genus g and D = {x 1 . . . . .  xN} 

consists of N distinct points. The condition e(L)+c(Kv)>0 in (6.2) is 

2 g - 2 + N > 0 ,  

and in this case Proposition (6.2) amounts to finding a metric of Gaussian curvature 

K(x)<<. - 1  on V - { x l  . . . .  , x~}. I f  g > l ,  we may  take N = 0 ;  if g = l  we may  take N = I ;  

and for V = P  1 we must  have N~>3. In  all cases the metric given by  (6.3) is complete. 

Proposition (6.10) apphes only to 1 )1, and it says tha t  we may  find a metric on 

1 ) 1 -  {0, 1} = C* whose Gaussian curvature is everywhere negative and satisfies K(z) <~ - [z [ ~ 

near z = 0 and similarly near z = oo. I t  follows from results of R. Greene and H. Wu tha t  

this estimate is sharp. 

Our last proposition on volume forms deals with the opposite extreme to Proposition 

(6.10). Namely, recall tha t  a smooth projective var iety V~ is said to be of general type if 

dim H ~ (V, K~) 
lim sup k~ > 0. 

k---> Oo 

For example, this condition is satisfied whenever the canonical bundle is positive. From 

[14], we see that,  if V is of general type and L-~ V is an ample line bundle, then 

H~ K~| # 0 
for some sufficiently large k. 

(6.16) PROrOSITION. I f  ~ is a C ~ volume form on the complex manifold V, L ~  V is a 

positive holomorphic line bundle, and 0 ~ a E HO( V, K~ | L *), then the volume form �9 = l al21k~ 

satisfies the condition 
Ric~F>0  

on all o I V. (The metric on Kv is that induced by ~.) 
13 - 732905 Acta  mathematica 130. I m p r i m 6  le 14 M a i  1973 
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Proo/: Referring to (0.1), (0.2) and (0.5) we obtain 

Ric ~F = k-~dd c log l al ~ + Ric 

= k -1 [ -  kc(Kv) + c(L)] + c(Kv) 

= l c ( L )  >0.  Q.E.D. 

(b) The Second Main Theorem 

We keep the notations from w 6(a), and shall consider a holomorphic mapping 

]: A,3 ~ Vn (m>~n) 

from a smooth affine variety A into V where we assume that  / has maximal rank n. Equi- 

valently, the image/(A) should contain an open set on V. We shall also use the generic 

projection 
7:: A ~ C  m 

discussed in w 2(b). The notations concerning = which we adopt throughout are: 

�9 = log [[~r(x)[I 2 ( z E A L  ~ / = d ~  A ~ _ ~ ,  

O=w. 

Before stating and proving our S.M.T., we need a local lemma about singular volume 

forms. For this we let U=  C m be an open set, (I)(w) = 1-[~n=1 ( ] / -~ /2~)  (dw~ A d~j) the Euclidean 

volume form on C m, and 

[rl 
(6.17) tF = (log [(3[z) 2 [~[~ 

a singular volume form where 7 =~  ea and ~ =f l#  wi th  ~, fl EO(U) and a, b EC~~ Clearly, 

Ric ~F ELi1.1) (loe, U). 

(6.18) LE~MA. Writing ~'F = ~(~(w), the /unct ion  log ~ is locally L ~ on U and satisfies the 

equation o[ currents 
dd c log ~ = Ric ~F + Da -~D p  

where D~ = (ct) and D B = (fl). 

Proo/. Using (0.5) and (1.1), we must show that  

in the sense o f ~ =  in the sense of 

currents J differential forms 
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What  this amounts to is proving that  

for all aEA~-I"~-I(U). This equation is, in turn, easy to verify by a direct computa- 

tion. Q.E.D. 

Returning now to our holomorphic mapping/ :  A-~ V, we consider a divisor D on V 

which satisfies (6.1) and let ~FI=/*:F be the pull-back of the volume form constructed in 

Proposition (6.2). Since / has maximal rank, ~F 1 is not identically zero. Thus we may choose 

linear coordinates z I . . . . .  zm on (]m such that  

(6.19) ~t?IA z {1=1~1 ~ (dziA dSj)}= ~(P 

where ~ >/0 is not identically zero. Roughly speaking, the local behavior of $ is as follows: 

(i) ~ = + ~ along the divisor DI=/-I(D); 

(ii) ~ = + co along the branch locus B of A ~ (]m; 

(iii) ~ =0  along the ramification divisor R o f / ;  
~-~ V~-- 1 } 

(iv) ~ = 0, along the divisor T given by  ~l?r A ~* .  ~I - - x - -  (dzj A dSj) = 0 but ~F + 0 

(v) otherwise, ~ is finite and non-zero. 

(6.20) LEMMA. Setting S = R  § T, the /unction log~ is locally L: on A and satis/ies the 

equation o/currents 

(6.21) dd c log ~ = S -  B - D  I + Ric ~I .  

Proo/. This follows from Lemma (2.9), (6.3), (6.17), and Lemma (6.18). Q.E.D. 

Our S.M.T. will be the twice integrated version of (6.21), in the same way tha t  the 

F.M.T. (5.11) was the twice integrated form of the equation of currents (1.5). Taking into 

account the discussion of Lelong numbers in w l(c) and following (3.1), we assume that  

none of the divisors S, B, D r passes through ~:-:(0) and introduce the notations 

t2rn-:; 

(6.22) N(E, r) = -~; (E = divisor on A) 

/~(r) = f0Ar~ log ~ ,  

(6.23) PROPOS:TION (S.M.T.). For r >~ro, we have the equation 

T~(r) +N(S,  r) =N(B,  r) + N ( D  I, r) +#(r). 
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Proo/. Following the procedure used in the proof of Proposition (3.2), we may integrate 

(6.21) once to have for all but  finitely many t 

Now Ric ~FfiL~x.1)(loc, A)and  d R i c e r = 0  in the sense of currents. Since z~: A-~C ~ is a 

finite and therefore proper mapping, we may integrate Ric ~F~ over the fibers to obtain 

7:, Ric ~tP~ELXl. 1) (loc, C m) which is still closed. Thus ~,  Ric ~ = d~ for ~ a locally L x differ- 

ential form on gin, and 

f RicV, ~.,-1 t" ~, v,  (aaOlogll~ll~r -1  A gic  A 
Ct3 dCmEtl 

foc,,m e A (dd ~ log II~ll~r -1 (Stokes') 

- t  ~-~ fo~.E,fl A (dd~ [ [~l l~r -1  (by (1.24)) 

- t~_~ fr =, ~ic V ,^  (daOll~ll') ~'-1 (Stokes') 

Using this relation and integrating (6.24) with respect to dt/t from 0 to r gives 

(6.25) T~(r) + N(S,  r) = N(B,  r) + N(D r, r) + ~ ~ d~ A d ~  /~ (dd~z) m-1. 
JA[  3 

Now d~: A d~ A (dd~z) "~-1 = - d~T A d~ A (drifT) m-1 

= d{d% A (dd%) ~-1} 

= d ( ~ )  

since (dd%) m =0.  Using this and applying Stokes' theorem to the last term on the R,H.S. 

of (6.25), we obtain our formula. Q.E.D. 

7. The defect relations 

(a) Nevanlinna defects and statement of the main result 

Let A be a smooth affine algebraic variety and V a smooth projective variety having 

a positive line bundle L-+ V with curvature form e0. We want to s tudy a holomorphic 

mapping 
/: A-*  V 
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with particular attention to the position of the image/(A) relative to the divisors D E]L I . 

For this we set o~1=it*o and let ~ be the special exhaustion function of A constructed in 

Proposition (2.4). Define the order/unction for the line bundle L--> V by the formula 

(7.1) T(L, r) = { fA[t] eoj A (ddcT)"-ll d-~. 

In Section 5, this order function was denoted by Tl(r), but  here we want to emphasize 

the dependence on L. Referring to (5.3), (5.8) and (5.9) we find that  T(L, r) has the following 

properties: 

(7.2) 
(T(L, r) is well defined up to an 0(1) term; 

T(LI| r) = T(L1, r) + T(L~, r); and 

i t is ra t iona l~  T(L, r)= 0(log r) 

For any divisor D e ]L[ we have the First Main Theorem (5.11) and subsequent Nevanlinna 

inequality (5.12), repeated here for easy reference: 

(7.3) 
N(DI, r) +m(D, r)=T(L, r) +0(1)  

N(Df, r) < T(L, r) § 0(1). 

We refer once more to w 3(e) where the 0(1) term, which depends on D but not on r, is 

discussed. Using the inequality in (7.3) we may define the deject for the divisor D by 

(7.4) 8(D) = 1 - li-m N(D~, r) 
r ~  T(L, r) ' 

which has the basic properties 

(7.5) 0 ~<5(D)< 1; and 6(D)= 1 i f / (A) does not intersect D. 

In  general, divisors D E ]L[ with 6(D) > 0 are said to be de/icient; this means that  the divisor 

D~=/-I(D) is smaller than on the average. From (5.10) we obtain the relation 

(7.6) IL, ~(D) dlx(D ) = O, 

which may be interpreted as stating that,  in the measure-theoretic sense, almost all divisors 

D I have the same asymptotic growth given by the order function T(L, r). Roughly speaking, 

the basic problem in the value distribution of divisors on algebraic varieties is the following: 

(*) Show that  there is a constant c =c(V, L) with the property that  if D 1 . . . . .  DkE ILl 

are divisors such that  each D~ is smooth and D = D 1 + ... + D~ has normal crossings and 

if the image/(A) satisfies a mild general position requirement, then 
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k 
(7.7) ~ O(Dj) ~< c. 

t=1 

In particular, the deject relation (7.7) would imply that ,  if L-+ V is ample, then the 

deficient divisors lie on a countable family of subvarieties in ILl. Thus, if dimc]L I = N  

and if A = ( D e  [LI :O(D)>0 } is the set of deficient divisors, then the 2 N - 1  Hausdorff 

measure 749N-x(A) should be zero. Thus far, even this weak statement is not known. 

Geometrically, the simplest situation to understand is when the image ](A) contains 

an open set on V. In  this case our main result is the following defect relation (D.I~.): 

(7.8) T H w O R E M. Assume that the image/ (A)  contains an open subset o / V  and D1, . . ., Dk E ILl 

are divisors such that each D ~ is smooth and D = D 1 + ...  + Dk has normal crossings. Then 

(D.R.) ~ ~(Dj) < c(K*) 
j=l c - - ~  + ~  

where ~ is a constant which is zero i /ei ther A =C m or / is transcendental. 

Remark. Before embarking on a formal proof of (D.R.), let us give the heuristic 

reasoning behind it. For this purpose we let LI-> V be a positive line bundle satisfying 

c(L1) + c(Kv) > O, 

and let DE ILl[ be a divisor with normal crossings. (In the proof of (7.8), we will take 

L1 =Lk.) Then we may construct the volume form 1F given by  (6.3) which has singularities 

along D. Writing out the F.M.T. (5.11) and S.M.T. (6.23) together, we obtain the inequali- 

ties 
N(DI ,  r) ~< T(LI,  r) + O(1) 

(7.9) [ T~(r) < N ( B ,  r) + N ( D  I, r) +l~(r). 

The first equation in (7.9) gives an upper bound on the counting function N(D/, r), and 

the second equation will turn  out to  give a lower bound on N(Ds,  r). Playing these off 

against each other will lead to (7.8). 

More precisely, using the curvature condition (Rie xF)n >~F, we will obtain an approxi- 

mate inequality 

(7.10) #(r) ~< log - -  

From (6.5) we will also have approximately 

(7.11) 

d2T ~ (r) 
dr 2 

T"(r)  = T (L  1, r) + T (Kv ,  r). 
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By (7.10) it seems plausible tha t  

lira /t(r) _ 0, 
~ T ~ (r) - 

so tha t  using (7.11) we may  rewrite the second equation in (7.9) as 

2Y(D r, r) 
(7.12) 1 ~< u l +  [T(L1, r) + T(Kv, r)] b o(1) 

where Ul = limr_,~ [N(B, r)/T'~(r)] is a term not involving D and which is zero if A = C z. 

Neglecting u~, the inequality (7.12) illustrates clearly how the S.M.T. acts as a lower bound 

on N(DI, r). When this is made precise, we will obtain (7.8). 

(h) A prdlminary defect relation 

In  this section we l e t / :  A-~ V be a holomorphic mapping such t h a t / ( A )  contains an 

open subset of V, LI-~ V a positive hne bundle satisfying 

c(L1) +e(Kv) >0,  

and D E ILl] a divisor with simple normal crossings. Then the discussion in w 6(b) applies, 

and in particular the S.M.T. (6.23) may  be used to s tudy the divisor D I on A. Referring to 

Lemma (6.20), we let Nl(r) = 5~ {5~u~ ~vm_l} dt/t be the counting function for the ramification 

locus o f / :  A-~ V and rewrite (6.23) as the inequality 

(7.13) T ~ (r) + NI (r) <<. N(B, r) + N(Dr, r) + #(r). 

(7.14) LEMMA. There is a constant c > 0  such that,/or r>~ 1, 

T ~ (r) ~> e log r. 

Proo/. Referring to the proof of (6.23), we have for r/> 1 

dt 
Tr (r) = f o { f c~t, ~* (Ric ~Fr) /\ ~m-1} -i >~ e~ l~ r + O(1) 

where e~= fc.r~{~,(Ric "~'A A ~_~}= fc.~ {~, Ric % A q~_~ ~ 

is a positive constant by  the first condition in (6.4). Q.E.D. 

(7.15) LEMMA. We have that 

- -  N ( B ,  r) 
lim T~(r ) =Ul < c~. 
r - - - > ~  
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Proo[. Since the branch locus B of ~: A-~C m is an algebraic divisor, it follows from 

for all large r. Q.E.D. 

N(B, r) <-<d log r 

T~(r)  

Our preliminary defect relation is the following. 

(7.16) PROPOSITIOZr Using the above notations 

N1 (r) -< - -  N(D,, r) 
1 + lira T~--~-~ g , +  lim T~(r ) 

r---> oo ~---> oo 

Proof. We want to use the curvature condition 

(7.17) (Ric ~Fy) ~ ~>xFf 

to obtain a lower bound on Tr For this we adopt the following notations: 

(i) z = (a, . . . . .  zm) are coordinates in Cm; 

(ii) 1={1,  ..., m} and A c  I runs through all subsets containing n distinct elements; 

(iii) A 0 = {1 . . . .  , n}; and 

(iv) �9 B =]-Ij~, {�89 ~ (dzj h d~j)} for any subset B c  I.  

Setting ~F=~.A~AOA, the definition (6.19) gives ~=~A.. We define the auxiliary 

order function 

(7.18) T~(r )  = n~llno 
i t ]  2m - 1" 

(7.19) LEMMA. We have the estimate 

T~(r )  <~ Tr 

Proo]. Writing (Ric ~FI) ~ = ~A~AO (~A/>0), the curvature condition (7.17) gives ~A >~A 

for all A, and in particular 

( 7 . 2 0 )  n~ TM < n ~lln. 

We now write Rie ~F, A q~_, = ~ {,~ Ric ~F, A qA_<,>} A q,_A. 

Using the inequality trace (H) >/n(det H) 1/n for a positive Hermitian matrix, we have that  

(4.7) that,  for some constant d >0,  

for large r. Using (7.14) we obtain 
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(7.21) n~l~(I) ~< ~ Ric ~F I A ~0Ao-<j> A ~,-Ao ~< Ric ~F s A ~m-1- 
JGAa 

The lemma now follows by  combining (7.20), (7.21) and integrating. Q.E.D. 

(7.22) LwMMA. Setting d/ds= r ~m-1 (d/dr), we have 

d~T,~,'(r) 
~u(r) ~< n log ds 2 n(4m - 2) log r. 

Proo/. Using the definition (6.17) and concavity of the logarithm function, we obtain 

= n l o g  drr r2m-1 dr J = 2 n l o g  r-~:  ~ + n l o g  [- d-~ -j. Q.E.D. 

Now we must eliminate the derivatives in front of T ~ ( r ) .  l~or this we use the fol- 

lowing real-variables lemma from [16], page 253: 

(7.23) LwMMA. Suppose that /(r), g(r), ~(r) are positive increasing /unctions o/ r where 

g' (r) is continuous and ]' (r) is piecewise continuous. Suppose moreover that ~oo (dr/o~(r) ) < oo. 

Then 
l'(r) <. g'(r) ~(l(r)) 

except/or a union o/intervals I c R + such that 

f x dg <<" a(r)" 

except/or a union o/intervals I c R+ such that 

o~ dr 

We use the notation 
a(r) <~b(r) 11o 

to mean that  the stated inequality holds except on an open set I c  R + such that  ~ d g  < oo. 

Taking [(r)= T ~ ( r ) ,  g(r)=r#/lz, o:(r)=r v with # and v > 1, we obtain from (7.23) that  

(7.24) g T  ~ (r) < r ,_l  ( T ~ ) ~  ]]o. 
dr 

Keeping the same ~ and g and taking/(r)  = r ~ 1 (dT~( r ) ) / d  r = ~aE~n~llnr we find 

d (r2m_i dT~#($')~ l:.%_~/,'dT',,,,.,'," (7.25) Iio. 

Combining (7.24) and (7.25) we obtain 
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(7.26) d2T~(r )  <- r4m-2+8(T~+(r)) T M  I]~ 
ds 2 

where e, ~ > 0 may be made as small as we wish by choosing # and v close to 1. Combin- 

ing (7.26) with (7.22) and (7.19), we have 

(7.27) #(r)~ne log r +  (2+ ~) log T~(r). Hg. 

Now we are almost done, because (7.13) and (7.27) together give the estimate 

,/Yl(r) N(B,r) N(Dr, r ) nelogr T~(r) 
(7.28) 1 •  T - - - ~ +  T~(r ) + T g ~ - + ( 2 + ~ ) l ~  113. 

Passing to the limit in (7.28) using (7.15) and (7.14) yields the inequality 

N1 N(DI) ns 
1 + tim ~ u l +  lim ~ + - - .  

r-+---~ r-~oo T c 

Letting s-~0 we obtain our proposition. Q.E.D. 

(c) Proof of the main defect relation 

We use the notations and assumptions from Theorem (7.8). Because of (7.6), almost 

all divisors D ~ E ILl will have defect zero. Adding a finite number of such D ~ to the L.H.S. 

of (7.8) will increase k without affecting the sum ~j (D j). Thus we may assume that  

(7.29) c(L k) +c(Kv) = lec(L) +c(Kv) >0. 

We want to use Proposition (7.16) with L k playing here the role of L 1 in that  result. In 

order to do this, it is necessary to be able to compare T~(r) given by  (6.22) with leT(L, r) + 
T(Kv, r). 

(7.30) L ~ M A .  We have the inequalities 

0 <~ [leT(L, r) + T(Kv, r)] - T ~ (r) ~< 2 log [kT(L, r) + c]. 

Proo/: Let zeHo(V,  L k) define D. Then from (6.5) we have, using leT(L, r)= T(L k, r), 
that 

(7.31) leT(L, r) + T(Kv, r) - T~(r) = m dd~ log (log [ar[~) 2 A ~Om-1 �9 

By the same argument as in the proof of the S.M.T. (6.23) (cf. the proof of (6.18)), the R.t t .S.  

of (7.31) is equal to 
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~oAm log (log I v. 

Making IlaHv sufficientIy small, this term is non-negative, which gives the left hand 

inequality in (7.30). To obtain the other one, we use concavity of the logarithm together 

with (5.10) and (5.11) to have 

f oAmlog (log l @]~)2 ~ <" 21og ( f oAmlog [~[~ ~l) 

= 2 log [re(D, r)] ~< 2 log (T(L, r) + c). Q.E.D. 

Referring to (7.29), we let 1 >0  be any real number such that  

(7.32) lr c(K~). 
c(L) 

Then, using the definition (7.4) we have 

~ N(Dj, r)] N(D, r) 
- - ( ~ ( D J ) = - -  1 - n m - - I < ~ k - l i m  

j=l j=l ~-~ T(L, r) J ~_~ T(L, r) 

- -  N ( D ,  r) .< N ( D ,  r) 
~</c - / l im l T ( L, r ) -.~ k - I lim ~-~r162 ~-~:~ bT(L, r) + T(Kv, r) 

= b - l l i -~ N (D,  r) 
~_~ T ~ (r) < k -  l[1 - ~1]. (by (7.30)) 

Combining, we obtain the inequality 

k 

~(Dj) < (/r - l) + 
1-1 

where ~ =lu 1. Since 1 is subject only to (7.32), we have proved our theorem except for the 

assertion that  ~ =0  if either A =C m or / is transcendental. 

Referring to Lemma (7.15), it is obvious that  ~ =~1 =0  if A = C% since in this case the 

branch divisor B = 0 .  If  now Z=Ull>0,  then by the proof of (7.15) 

~:- log r 
im ~ = c > 0 .  

r - ~  T (r) 
Using (7.30) this converts into 

log r 
(7.33) r-~clim T(L, r) cl > O. 

Setting v(L, r) = SaE~I wl A ~fm-1, by definition 
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l "~ dt 
T(L, r) = Jo v(L, t) 

Since v(L, r) is an increasing function of r, the order function (T(L, r) =0(log r) if, and 

only if, there is an estimate 

(7.34) v(L, r) <<-ca 

for all r. If  (7.34) does not hold, then given e > 0  we will have 

1 
v(L, r) > -  

for r~ro(e ). I t  follows that  
1 - m  

T(L,r)  > (log r ) - - 1  (log r 0 (e)) 

log r log r 
for r ~> r 0 (e). Thus T (L, r--~ '< ~ log r - log r 0, 

log r 
from which it follows that  r-~lim ~, (L, r) ~< s. 

Comparing this with (7.33), we arrive at the statement: 

: ~ 0  ~ T(L,  r) =O(log r). 

Using Proposition (5.9), it follows that  / is rational. Q.E.D. 

8. Some applications 

(a) Holomorphie mappings into algebraic varieties of general type 

Let  V be a smooth projective variety. We recall that  V is of general type if 

li-~ dim H 0 (V, K~) >0,  

where Kv-~ V is the canonical bundle of V. If Kv is positive, then V is of general type, 

but  the converse is not quite true. Indeed, the concept of being of general type is biration- 

ally iuvariant, whereas the positivity of K v is not. Special cases of the following result 

were given in [11] and [14]. 

(8.1) PROPOSITIOn. Let A be an algebraic variety. Then any holomorphic mapping 

/: A ~ V whose image contains an open set is necessarily rational. 



NEVANLINNA THEORY AND HOLOMORPHIC MAPPINGS BETWEEN ALGEBRAIC VARIETIES 205 

Proo/. Obviously it will suffice to assume that  A is smooth and affine. Let  ~: A-~C ~ 

be the generic projection constructed in w 2, and consider the volume form ~F given in 

Proposition (6.16). Since ] is of maximal rank,/*~F = ~ I  is not identically zero on A, and 

we may choose coordinates on C m such that  

~V I A =* b~m-~ 2= A d~j)} = ~o 

where }>~0 is not identically zero. Using (6.11), the same proof as tha t  of Lemma (6.20) 

gives the equation of currents on A 

(8.2) dd c log ~ = S + ~ (Dr) - B + Ric ~F~. 

The proof of the S.M.T. (6.23) may now be repeated to give, using the notations (6.22), 

1 
(8.3) T~(r) + N(S, r) + -~ N(D/, r) = N(B, r) + ia(r). 

Using that  Ric W is C ~ and positive definite on V, we set 

/ ,rf C ~l~(p ) dt 
T ~ ( r ) =  Jo l L m ~  It2m-1 

and, as in the proof of (7.19), have an estimate 

(8.4) cT~(r )  <~ T~(r) (c >O). 

Utilizing now the facts that  N(B, r) ~<c~ log r (cf. (4.1)) and 

d~T~(r)  
#(r) ~< n log ds ~ + c a log r 

we obtain from (8.4) and (8.3) the inequality 

(8.5) T ~ ( r )  + eN(D I, r) <. c 4 logr  + log 

(cf. (7.22)), 

d~T~(r)  
ds 2 

Proceeding in the same way as just below Lemma (7.23), (8.5) leads to 

N(D s, r) log r 
~< c 4 lim ~ -~ -  (8.6) 1 + e  lim T++(r) r-~:~T (r)" 

T--~OO 

The R.H.S. of (8.6) gives that  
T++(r) <~c 5 log r, 

and using this the L.H.S. yields the estimate 
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N(Df, r) ~< ca log r. 

By  Proposition (4.1), all the divisors D I are algebraic and of bounded degree. This implies 

that  ] is rational. Q.E.D. 

(8.7) COROLLil~Y (Kodaira). Let Vm be an algebraic variety o/ general type. Then any 

holomorphic mapping/: C ' ~  V~ has everywhere rank less than n =dimc V. 

(b) Gener~llzations of the Picard theorems 

In one complex variable, the big Picard theorem implies the following global version: 

"Let A be an affine algebraic curve. Then any non-degenerate holomorphic mapping 

/: A - * P 1 -  {0, 1, co} is rational, If A =C, then no such mapping exists." 

To give our generalization of this result, we assume that V is a smooth projective 

variety, L-+ V is a positive line bundle with 

c(L) +c(Kv) >0, 

and that  D E ILl is a divisor with simple normal crossings. 

(8.8) P~oPOSlTIO~.  Let/:  A ~  V - D  be a holomorphic mapping/rom an algebraic variety 

A into V such that the image/(A) contains an open set on V. Then / is rational, and i] A =C m 

no such mapping exists. 

Proo]. Referring to Proposition (7.16), the counting function N(Ds, r ) -  0 since/(A) 

misses D. Thus u l > 0  and so / is rational. Q.E.D. 

Remark. This big Picard theorem will be proved in local form on the domain space 

A in the Appendix below. This alternate proof will only use Proposition (6.2), the Ahlfors 

lemma (cf. Proposition (2.7) in [11]), and elementary properties of currents and plurisub- 

harmonic functions. 

(c) Holomorphic mappings of finite order 

Let V be a smooth, projective variety, L--> V a positive line bundle with order function 

T(L, r), and 
/: A-+ V 

a holomorphic mapping of an affine variety A into V. 

Definition. The holomorphic mapping / is of / ini te  order if T(L, r)=0(r 1) for some 

~t>0. 
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Remarks. From (7.2) we see that  the maps of finite order have the following functorial 

properties: 

(i) The definition is intrinsic (i.e., it is independent of the positive line bundle L and choice 

of metric in L); and 

(ii) Given two maps/ :  A-~ V and g: A-~ W, the product / • g: A-~ V • W is of finite order 

if, and only if, both of / and g are of finite order. 

One importance of finite order maps is that  these form the class of transcendental 

maps which turns up most naturally in the study of the analytic Grothendieck ring of an 

affine algebraic variety. Moreover, classically the finite order functions on t3 include most 

of those transcendental functions which appear in analysis and number theory. 

In value distribution theory the maps of finite order have the very pleasant property 

that  the exceptional intervals which appeared in the proof of Proposition (7.16) are no 

longer necessary. 

(8.9) P~OPOSITION. Keeping the notations and assumptions o/Theorem (7.8), we assume 

that / is o/ /inite order. Then the F.M.T.  and S.M.T. yield the/ollowing inequalities, valid/or 

all large r, 
iV(Dr, r) <~kT(L, r) +0(1) 

T~' (r) <~N( DI, r) + O(log r) 

T~'(r) =kT(L, r) + T(Kv, r) +O(log r) 

Remark. These inequalities again clearly illustrate just how the F.M.T. and S.M.T. 

act as upper and lower bounds respectively on the counting function hr(Di, r). 

Proo/. The first inequality is just a restatement of (5,12), and the third one follows 

from (7.30) and the finite order assumption 

(8.10) T(L, r)=O(r~). 

For the remaining inequality, we will utilize the S.M.T. (6.23) 

(8.11) T~(r) + N(S, r) =N(B, r) + N(DI, r) +#(r). 

Using (8.11) and (4.1), our proposition follows from 

(8.12) LEMMA. The term iz(r) in (8.11) satis/ies, /or all large r, 

#(r) =O(log r). 

Proo/. Referring to (7.22) and (7.19) we obtain 
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I d2T  ~ (r) ~- O(log r) 
(8.13) /~(r) ~< n log ds 2 

L T d ' ( r )  <. T*(r). 

By the argument following Lemma (7.23), given any #0 > 0, the inequalities (8.13)lead to 

the estimate 

(8.14) #(r) ~<c log T~(r) + O(log r) IIg 

where the exceptional intervals I satisfy ~zdr~~ < oo. 

Using (8.10) we will be done if we can show that  (8.14) holds for all large r. 

Choose ~u 0 >2 where 2 appears in the estimate (8.10). Setting 

n(Dr, r) = fDltr~,~_l 

the usual integration by parts formula for N(DI,  r) and n(Di, r) ([16], page 217) gives 

n(Dr, r) = O(ra). 

I t  follows that  f f(n"-r)dr<'g f r 
Let  r l<  r <  r~ be a component of the exceptional set I .  Then by (8.11) and (4.1), 

# (r) = T~(r) + N(S ,  r) - N(B ,  r) - N ( D  I, r) <. T~(r~) § N(S ,  r~) - N ( D  r, rl) + O(log r) 

<~ #(r2) § N (D I, r2) - N ( D  I, rl) § O(log r) = O(log r2) + f r'n(Df-' r) dr = O(log r~) + 0(1). 
Jr1 r 

Furthermore, log r~ = log r + ~" (dr~r) < log r + 0(1), and it follows that  

#(r) = 0(log r) § 0(1). Q.E.D. 

(d) Sharpness of results 

In  the case of a holomorphic mapping 

A / , V  

where dimc A = 1 =dimc V, the defect relation (7.8) and its applications, such as Proposi- 

tion (8.8), are well-known to be sharp. In  the case where dimc V > 1, the conditions on 

the divisor D in which we are interested are 

(8.15) c(D) +c(Kv)  >0, and 
D has simple normal crossings. 
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The question arises as to whether the conditions (8.15) are sharp. There is some evidence 

tha t  this is so, but it is by  no means proved. 

To present this evidence, let V = P  2 and D = L I +  ...  +L  k be a sum of lines. We ask 

whether a holomorphic mapping 
]: C 2 - * P  2 - D 

is necessarily degenerate. I f  k ~< 3, then c(D)+ c(Kp,)~<0, and there are non-degenerate 

rational mappings if k < 2  and non-degenerate transcendental mappings if k < 3 .  For 

example, if/c =3  and D has normal crossings, then 

1 )3 - D - ~  C* x C*. 

Suppose now tha t  k = 4  but  D = L  1 + L  2 + L  a +L~ does not have normal crossings; for exam- 

ple, we m a y  assume tha t  Z1, L2, L a all pass through a point. Taking L 4 to be the line at 

infinity, it follows tha t  
P ~ - D ~ P I - ( 0 ,  1, oo} • 

Then any map (~2 ~ p2 _ D is degenerate, but taking A = px _ (0, 1, ~o } • C, the mapping 

A / , P~ - D, l(z, w) = (z, e ~) 

is transcendental and so the big Picard theorem (8.8) fails. 

In  general, suppose tha t  M is a (possibly non-compact) complex manifold of dimension 

n having a C ~ volume form ~ .  Let  ~ = (~1 . . . . .  ~n) and P(e) be the polycylinder 

P ( o ) = ( z = ( z l  . . . . .  zn)eCn: [zj[ <~OJ}. 

We denote by  (I)=I-I?~ {�89 - ~ / - 1  (dzj A dh~)) the standard volume form on C ~, and say 

tha t  M has the Schottky-Landau property if for any  normalized holomorphic mapping 

1: P ( o ) ~  M,  (/*~) (0)>/r 

i t  follows tha t  the product of the radii 

(8.16) PROPOSlTIO~I. I / R i c  ~ > 0  and (Ric ~ ) n > ~ ,  then M 8atis/ies the Schottky-Landau 

property. 

Proo]. This follows from the Ahlfors lemma; cf. Proposition (2.7) in [11]. Equiva- 

lently, (8.16) may  be proved using the S.M.T. as was done in w 6(a) of [6]. Q.E.D. 

Suppose now tha t  V is a projective variety, D is a divisor on V, and M = V - D .  

Then M satisfies the Schottky-Landau property if the conditions 8.15 are met. Conversely, 

1 4 -  732905 Acta mathematica 130. I m p r i m 6  le 14 Mai  1973 
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in case V---Pn and D is a sum of hyperplanes, then if V - D  satisfies the  Sebot tky-Landau 

property,  the conditions 8.15 are met  for some d iv i so r / )  ~< D (we verified the case n = 2 

above). 

In  general, the converse question is quite interesting, even in the case where D is 

empty.  To state the question which arises here, we first remark tha t  (8.16) is too strong 

in order tha t  a smooth, projective var iety V satisfy the Schottky-Landau property. Indeed, 

it follows from (6.16) tha t  V satisfies this property if it is of general type (cf. [14] for details). 

(8.17) Question, I f  V satisfies the Schottky-Landau property,  then is V of general type~. 

Remark. For V a curve, this question is obviously O.K. For V a surface, it can be 

verified with the possible exception of K3 surfaces. One does this by  checking the classifica- 

tion of surfaces, where only the elliptic case is nontrivial. 

In  general, the problem in verifying (8.17) is the absence of a uniformization theorem 

for dimc V > 1, so tha t  there is no obvious way of constructing holomorphic mappings to V. 

9. Two further variations on curvature and the second main theorem 

(a) An analogue of R. Nevanlinna's "lemma on the logarithmic derivative" 

All of the results in w167 7 and 8 were based on having available a volume form ~F: on 

V - D  satisfying the three conditions in (6.4). The middle inequality there may  be thought  

of as being "negative curvature bounded away from zero" (cf. the discussion following 

(0.6)), and the point we wish to make here is tha t  it is sometimes possible to relax this 

condition to " the curvature is negative, but  m a y  tend to zero as we approach D" .  When 

this method applies, it seems likely to yield somewhat more delicate estimates than  the 

previous case. 

Let  V be a smooth, projective variety whose anti-canonical bundle K*-~ V is ample. 

We consider a meromorphic n-form A on V which does not have zeroes and whose polar 

divisor D has simple normal crossings. 

Example. Let V =pn  with affine coordinates (w 1 . . . . .  wn) and homogeneous coordinates 

[~o, " ' ,  ~]-  Then the rational n-form 

( -  1)~4~0 A .. .  A a l L . . ,  d~n) _ dw,  A .. .  A dwn 
(9.1) A -~=~ 

~o. . .  ~ w l  . . .  w~ 

satisfies our requirements. 

Suppose tha t  /: cn-~ V is a transcendental, non-degenerate, equidimensional, holo- 
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morphic mapping. T h e n / * A  = A  s is a non-identically zero meromorphic n-form on C", 

and we set 

A1=~dz 1A ... Adz,, vi(r ) =f0c,[~ log+l$1~ (9.2) 

Denote by Tl(r ) = T(K*, r) the order functioa (7.1) for the anti-canonical bundle. 

(9.3) PROPOSITIO75T. We have the estimate 

lim vI(r)_ = 0. 
T1 (r) 

Remark. To see better what this proposition amounts to, consider the classical case of 

an entire transcendental meromorphie function w=/(z). Taking A to be given by (9.1) 

in the ease n = 1, we have from (9.2) tha t  

f +/(z) vr(r ) = log ~ dO (z =rei~ 
zl=, 1() 

Denoting the order function of [ simply by T(r), Proposition (9.3) becomes 

/ ,  /(=) 
(9.4) lim J~='l~ dO 

/(z) o. 
, ~  T (r) 

This result is a weak form of R. Nevanlinna's "lemma on the logarithmic derivative", 

given on [16], pages 241-247. We recall that  Nevanlinna proved the stronger estimate, 

valid for any ](z) which need not be transcendental, 

(9.5) log + dO = O(log r + log  T(r)) H~ 
zl=r 

and it it possible that  our method might be refined to give (9.5) (of. [16], page 259). At 

any event, (9.4) is sufficient to deduce R. Nevanlinna's defect relation from his rather 

elementary Second Main Theorem given on page 240 of [16]. 

ProoJ. Let ~EHo(V, K*) be a holomorphie section which defines the polar divisor 

D of A, and take a Coo volume form f~ on V such that  Rief2=Cl(Kv)=dd~ 2. As 

usual we may assume that  11o I[ v < do for any given do > 0. We consider the singular volume 

form 

given by (6.10). Writing/*~F~ = ~(I), it follows directly that  
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(9.6) l~ + I ~l ~< l~ } }~] + e log ~ + log (log l a13) 2. 

Setting /,~ (r) = (l/n) Soc"[r] log + [ }~ [ ~ and recalling (5.10), it follows by integrating (9.6) 

and using concavity of the logarithm that  

2v(r) ~< n/~ (r) + era(D, r) + 2 log Ira(D, r)] + 0(1). 

Using (5.11) we obtain lim v(r) ~< (hi  lim/~8 (r) + e. 
,~--~ T1 (r) \ 2 / , ~  T1 (r) 

Since e > 0 is arbitrary, our proposition will follow from the estimate 

(9.7) l im/~  (r) 
,-.-% T~ (r) < e. 

We will prove (9.7) by deriving a S.M.T. for the volume form ~F~. Referring to (6.9), 

the function log ~8 is locally L 1 and we have the equation of currents 

(9.8) dd c log ~ = R - (1 + e) Dr+ Ric ~F~ 

where R is the ramification divisor of / .  Integrating (9.8) twice as in the proof of (6.23) 

leads to the relation 

f0lf0 } f0 (9.9) "mRic]*VlZeAq~n-z ~ :y+Ni ( r )=( l+e)N(Dt ' r )+  c~[r]l~ ~8~. 

From (9.9) and the F.M.T. we deduce the inequality 

f0{;0 (9.I0) .[tjRie ]* ~Ie, A ~0,,_l -~ cTz (r) + n/~ (r). 

Using Proposition (6.10) and the same reasoning as in the proof of (7.19), the estimate 

(9.10) leads to 

;oI;o t (9.11) It] I $~--~-~<~ciTi(r)+~8(r)" 

Because of a >/e I~+= - 1, (a >~ 0) and log I a] ~< 0, 

exp(  l l ~  ~8§ l~ laP) < #P ]aP~"+ 1" 

Plugging this into (9.11) and interating the integral, we arrive at the inequality 
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To eliminate the integrals in (9.12), we refer to the calculus Lemma (7.23), and taking 

g(r) = r and ~(r)= rx+x(2 >0), we have 

(9.13) ]' (r) ~< [/(r)] 1+~ [I 

Applying (9.13) when ](r) is the L.H.S. of (9.12), we obtain 

Utilizing (9.13) once more where ](r) is again the L.H.S. of (9.14) yields the estimate 

where (~1 and (~2 may be made as small as we wish. Now using concavity of the logarithm 

on the L.H.S. of (9.15) together with log + (0~ +/~) ~ log + ~ + log +/~ + log 2 gives 

l~(r) <~ ~ re(D, r) + c~ log T 1 (r) + eL log r + c 5 log/us (r). (9. 16) 

Dividing by T 1 (r) and using that  / is transcendental, so that  l ' ~ , _ ~  log r/T 1 (r) = O, 

we obtain from (9.16) tha t  

lira /~ (r) ~< e .  Q.E.D. 
r ~  Tl (r ) n 

Remarlr The above proof gives the estimate 

tuB(r) <~ ( e)  Tl (r) + O(log Tl (r) ) + O(log r) lie (9.17) 

where the exceptional intervals depend on e. Evidently, this is not as strong as (9.5). 

(b) Holomorphie mappings into negatively curved algebraic varieties 

Thus far our applications of the S.M.T. have been restricted to holomorphic mappings 

/: A-~ V where the image/(A) contains an open set on V. This method is also applicable 

to other situations, and as an illustration we shall prove a variant of the recent theorem of 

Kwack. 

We begin with two definitions: 
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De/inition. A complex manifold V is negatively curved if there exists an Hermit ian 

metric ds~ on V all of whose holomorphic sectional curvatures K satisfy K < - c  < 0. 

The following lemma is s tandard (cf. [11] for further discussion and references). 

(9.18) L]~MMA. Suppose that V is negatively curved, that S is a complex mani/old, and S /-/~ . V 

is a holomorphic immersion. Then the holomorphic sectional curvatures o/the induced metric 

]*ds~) are less than or equal those o/ds~. In  particular, S is negatively curved. 

We denote by  co v the (1, 1) form associated to ds~. 

Definition. Suppose tha t  V is a quasi-projective negatively curved complex manifold. 

An ample line bundle L-~ V is said to be bounded if there exist a metric in L and sections 

a0 . . . . .  aNEH~ L) such tha t  (i) the curvature c(L) of the metric satisfies 

0 <c(L) <Acov (A = constant); 

(ii) the sections a0 . . . .  , aN have bounded length and Is0 . . . . .  aN]: V r pN induces an algebraic 

embedding of V. 

Example 1. I f  V is projective (thus compact) and negatively curved, then any ample 

line bundle is bounded. (Remark. I t  does not seem to be known whether a negatively 

curved compact manifold is necessarily projective.) 

Example 2 .  Suppose tha t  X is a bounded symmetric domain and F is an arithmetic 

subgroup of the automorphism group of X. In  general, F may  not act freely on X, but  a 

subgroup of finite index will act without fixed points, and we lose no essential generality 

in assuming tha t  this is true for X. I t  is well known tha t  V = X/F is negatively curved, 

since in fact the Bergman metric on X has negative holomorphic sectional curvatures 

- c  <0  and is F-invariant. I t  is a basic theorem of Baily-Borel [2] tha t  V is quasiprojec- 

tive. 

(9.19) LE~MA. There exists an ample, bounded line bundle on V. 

Proo/. Let K-+X be the canonical line bundle with unique (up to a constant) metric 

invariant  under the automorphism group of X. For this metric the curvature form 

c(K) =COx 

is the (1, 1) form associated to ds2x. Thus, it will suffice to show tha t  for sufficiently large 

/z, there are F-invariant  holomorphic sections a0, . . ,  aN of K~-->X which have bounded 

length and which induce a projective embedding of X/F. Such sections a are generally 

termed automorphic/orms o/weight/z for F, and among these automorphic forms are the 
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cusp/orms which, so to speak, "vanish at  infinity" on X/F [2]. These cusp forms have 

bounded length, and by  the results in [2] will induce a projective embedding of X/F for 

large #. Q.E.D. 

(9.20) PROPOSITIOn. Suppose that V is a quasi-projective, negatively curved complex 

maRl/old having a bounded ample line bundle L-+ V. Then any holomorphic mapping/: A-~ V 

/rom an algebraic variety A into V is rational. 

Remark. This big Picard theorem will be proved in local form in the appendix below 

(the following proof m a y  also be localized). 

(9.21) C o R OLLA~Y (Kwack). In  case V is negatively curved and projective, any holomorphic 

mapping A ~ V is rational. 

(9.22) COROLL).~Y [5]. In  case V = X / F  is the quotient o] a bounded, symmetric domain by 

an arithmetic group, any holomorphic mapping A/-~  X /F is rational. 

Proo/: Obviously we may  assume tha t  A is affiue. Let  a be a section of L having 

bounded length and divisor D. We must  show tha t  the divisors 

D/=/-I(D) 

are algebraic and of uniformly bounded degree on A. Simple considerations of the alge- 

braic curves lying in A show tha t  for this it will suffice to prove tha t  

deg (Ds) ~<c< 
in case A is itself an affine curve. 

Thus let A ~ (3N be an affine algebraic curve with harmonic exhaustion function 

~(x) =log l (x) I 

where A ~-~ (3 is a generic projection (cf. w 2). We want to prove an estimate 

(9.23) N(Dr, r) = 0(log r) 

for the courting function associated to D r and with a uniform "0". We may  assume tha t  

lo(z) l 1 for all z e r and set 
q~ = d d  c I~(x)12,  

(9.24) 

T(r)= f2 (order function) 

where w1=/*w v and a1=/*(a ) EH~ I t  follows from Lemma (9.18) and the definition 

of L-~ V being bounded tha t  
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(9.25) Ric Oe = - e / * c ( L )  +Ric o~>~ c1~ol (cl >0) 

provided we choose e sufficiently small. Combining (9.24) and (9.25) we have the equation 

of currents on A (el. w 6(b)) 

(9.26) dd c log ~ = R + eD r -  B + Ric 0~ >~ R + eD~-  B + caeo f 

where R is the ramification divisor of / and B is the branch locus of A ~-~ C. Setting 

e g f = ~ o ~ > ~  (since latin< 1) 

we may integrate (9.26) twice to obtain the estimate 

fo  log ~dCv, • ( r )  = AErJ 

(9.27) ClT(r ) + N(R,  r) +eN(Dt, r) <~N(B, r) +/~(r). 

Now N(B,  r)<~d log r where d is the number of branch points of A~-~C, and by  (7.22) 

�9 d~T(r) d d 
/~(r) < m g  ~-i  ( ~ =  r~-r)" 

Using these two inequalities in (9.27) gives 

(9.28) T(r) + (~ll) N(D,, r) <~ c~ log r + c 3 1 o g - -  
d2T(r) 

dr 2 �9 

Dividing by T(r) and taking limits in (9.28) leads, as in w 7 (b), to 

(9.29) 1 + _e lira N(Dr' r) - -  log r 
c 1 ~ T(r----~ <~ ca r-~lim T(r) '  

From the R.tt .S. of (9.29) we obtain 

T(r)4c4 log r, 

and then using this the L.H.S. gives 

N(D~, r) ~<c5 log r. 

This is the desired estimate (9.23). Q.E.D. 

Remark. The original version of Kwack's theorem goes as follows: Suppose that  17 

is a compact analytic space which contains the complex manifold V as the complement 

of a subvariety S. Suppose that  V is negatively curved and let dr(p, q) be the distance from 

p to q using the ds~ on V. We assume the following condition: 

"If {p.}, {q.} e v and p , ~ p ,  q,-~q where 
(9.30) 

p, qEl7 and dv(pn, qn)~O, t h e n p = q . "  
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Then any holomorphic map /: D*-~V from the punctured disc D*={0<  It[ <1} into V 

extends across t--0 to give ]: D ~  where D={]t I <1}. 

Our Nevanlinna-theoretic proof applies to give an analogue of the above result. To 

state this, we assume that  17 is projective (it may be singular) and has a K~hler metric 

~ .  Let COy be the (1, 1) form associated to a negatively curved ds~ on V, and let Kv(~) 

be the holomorphic sectional curvature for the (1, 0) vector ~ E T'(V). Assume the following 

condition: 

(9.31) cKv(~)cov(~) < -~f ,  (2) (~ E T'( V), c > 0). 

(In particular, this is satisfied if 

(9.32) ~ (~) ~< ceo v(~) (~ e T'(V)), 

which is a sort of analogue to (9.30.) 

(9.33) PROPOSITIOn. Under condition (9.31), any holomorphic mapping A A V is necessarily 

rational. 

We do not know whether (9.31) is automatically satisfied in case ds~ is complete. 

Appendix 

Proof of the big Pieard theorems in local form 

Let M be a connected complex manifold, S c  M an analytic subset, and 

(A.1) /: M - S - ~  W 

a holomorphic mapping into a quasi-projective variety W. We say that  / extends to a 

meromorphic mapping M?--~ W if the pull-back/*(~) of every rational function ~ on W 

extends meromorphieaUy across S. 

(A.2) PROPOSITION. Suppose that (i) W= V - D  where V is a smooth, projective variety 

and D is a divisor with simple normal crossings satis/ying e(K*) +c(D) >0, and (ii) that the 

image/(M-S) contains an open subset o/W. Then any holomorphie mapping / is meromorphie. 

Remarks. (i) Since an affine algebraic variety 

A = ~ I - s  

where -4 is a smooth, projective variety and S c / / i s  a divisor, and since a meromorphic 

function ~ on A extends meromorphically across S ~  is rational for the algebraic structure 
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on A, it follows the Proposition (A.2) implies Proposition (8.8.)(ii)Our proof of (A.2)will 

apply equally well to the situation of w 9(b) to yield the following result. 

(A.3) P R O P O S ITI  O~. Let V be a quasi-projective, negatively curved complex mani/old having 

a bounded ample line bundle L-+ V (c]. w 9(b)). Then any holomorphic mapping (A.1) extends 

meromorphically across S. 

In  particular this will give Borel's theorem (9.22) in its original form. 

Proo]. We will assume for simplicity tha t  dimc M =dime V, so tha t  the Jacobian 

determinant o f f  is not identically zero. Since every meromorphic function defined outside 

an analytic set of codimension at  least two automatically extends (theorem of E. Levi, 

we may  assume tha t  S is a smooth hypersurface in M. Localizing around a point x E S, 

we m a y  finally assume tha t  

M = {(z 1 . . . . .  zn): ]zi [ < 1}; S = {z 1 =0}; so tha t  M - S  is a punctured polycylinder. 

We let P~--+M-S be the universal covering of M - S  by  the usual polyeylinder P,  and 

denote by  @ the volume form on M - S  induced by  the Poincard metric on P (cf. [11]). 

Explicitly, there is the formula 

(a.4) o = I ,1 =(log = b : 2  (1 - I*,l=)=J 

(cf. Lemma 3.4 on page 447 of [11]). 

Let  L-+V be an ample line bundle. For each divisor EE ILl,  we set Ey=/7~(E) con- 

sidered as a divisor on M -  S. I t  will suffice to show tha t  every such E ,  extends to a divisor 

E~ on M(E?~closure  of E ,  in M). This is because a meromorphic function W on M - S  

extends to a meromorphic function on M<~each level set W = a  extends as a divisor to M, 

as is easily seen~ from the ordinary Riemann extension theorem. 

Confider the volume form iF on V - D  given by  (6.3). Choose a metric in L-~ V and 

let ~EHo(V, L) be the section whose divisor is E e  ILl.  Define the new volume form 

(A.5) % =  

From the relation Rie ~e = ec(L) + Ric 

on M -  D, we see that ,  after choosing ~ sufficiently small and adjusting constants, we m a y  

assume 

(A.6) {Ric ~F~ > 0, (Ric ~F~) ~ >~F~. 

I t  follows from the Ahl/ors' lemma (Proposition 2.7 in [11]) tha t  

(a.7) I*W'~ < O. 
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Now let ~ be the Euclidean volume form on Mc C ~ and set 

(A.8) l * ~  = ~ r  

On M - S  we have the equation of currents (cf. (6.16)) 

(A.9) R + e E I§  vF~) =dd c log 5.  

This gives the basic inequality 

between the positive currents EI  and dd ~ log ~'~ on M - S .  Taking into account the Ahlfors' 

lemma (A.7) and explicit formula for 0 given by  (A.4), we have 

(A.11) 0 <  ~ <  izli2(10g [z112) ~ _izjl~)~ . 

I t  follows from (A.11) that,  .given x E S ,  there is a neighborhood U of x in M and ~ >O such 

tha t  in U the function 

(A.12) ~ ,~  =log ;~ + (1 + ~) log[~ ~ l ~ 

is everywhere plurisubharmonic, including on U n S where it is - o o .  Using [4] we may  

solve the equation 

/- 

f o r  holomorphic functions u EO(U),  u ~-0, and N sufficiently large. Taking into account 

(A.5), (A.9), and (A.12) we see tha t  

RU E~U S c  {u=0} .  

I t  follows tha t  E I Ci U is an analytic divisor in U. Q.E.D. 
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