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O. Introduction and statement of the main results 

In  this paper we shall prove results, extending slightly those announced in [16]. The back- 

ground is some work of HSrmander [9] and Egorov and Kondratev [5], which we shall 

first describe briefly. We shall always use the same notations for function spaces as HSr- 

mander [7]. 

Let  ~ be a paracompact C ~ manifold without boundary, T*(~) the cotangent space, 

T*(~)~,0 the space of non zero cotangent vecors and Lm(~) the space of pseudodifferential 

operators of type 1,0, introduced by HSrmander [8, 10]. In [9] HSrmander studied a pseudo- 

differential operator PELm(C2) with a principal symbol p E C ~ ( T * ( ~ ) ~ O ) ,  positively 

homogeneous of degree m, such that  C~ # 0 everywhere on the set of zeros of p. Here 

C~,EC~(T * ( ~ ) ~ 0 )  is defined by 

C~ (x, ~) = 2 Im ~ p(~)(x, ~) p(j)(x, ~). (0.1) 

where x = @1, x2, ..., xn) are some local coordinates in E2 and ~ = (~1, ~2 ..... ~n) are the cor- 

responding dual coordinates in the cotangent space and p(J> = ~ p / ~ j  and p(j)=~p/~x~. If 

we fix a strictly positive C ~ density, then the complex adjoint P* ELm(~) (i.e. the adjoint 

with respect to the corresponding sesquillinear scalar product) is defined and if we write 

C~(x, ~) = - i ~ (p(J) (x, ~) p(j) (x, ~) - p(J) (x, ~) p(j) (x, ~) ), 
)=1 

we see, using the calculus of pseudodifferential operators, tha t  Cp is the homogeneous prin- 

cipal symbol of [P, P*] =PP* - P * P .  In particular C~ is independent of the choice of local 

coordinates. The expression 

{p,/5} - (p~J~ p(j~ _ pl ,  P,s) ) 
1 

is known as the Poisson bracket of p and i5. 
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H6rmander  proved in [9] tha t  if C~ < 0 where p = 0, then for every compact set K c t l  

and s E tt  there is a constant C, such tha t  

IIuIIs~< c(llpuH~_~+~+ Ilull~_~), u e H ~ ~ 1 7 6  N 8 '  ( g ) .  

From this estimate it is easy to deduce regularity for the solutions of the equation P u  = v  

and a local existence theorem for the equation P * u  = v. In  the case where C~ > 0 somewhere 

on the surface p = 0 he proved non-existence and non-regularity theorems for the equations 

P * u  = v and P u  = v respectively. 

Finally he applied his results to the oblique derivative problem: Let  M be an open 

set in t t  s+l with smooth boundary g2. Let  v be a smooth vector field in R n+l and consider 

the following problem: For given functions v defined in M and u 0 defined in ~ find a func- 

tion u in M, such that  

n+l I ~ u l ~ x ~  = v> ~ula~ = uo. (0.2) 

This problem can be reduced to the study of a certain pseudodifferential operator P in 

~ .  I f  v is nowhere tangential to ~ ,  we have an elliptic boundary value problem, tha t  is P 

turns out to be an elliptic operator. In  certain cases when v is not everywhere transversal 

to g2, the operator P is of the type above and HSrmander could apply his general results, 

to prove local existence or local regularity for the problem (0.2), depending on the be- 

haviour of v near the submanifold of gl, where v is tangential. 

Egorov and Kondra t ' ev  [5] have subsequently studied (0.2) using more direct methods. 

By  introducing an extra boundary condition where v is tangential and adding an error 

term, to the equation ~ u / ~ ,  ]a = Uo, they managed to get a problem for which they could 

state both existence and uniqueness results. 

For the corresponding operator P it should thus be possible to obtain a problem, which 

is (approximately) uniquely solvable, by  adding an error te rm to the equation P u  = v  

and adding a suitable boundary condition. E~kin [6] has carried out this program and 

generalized the results of [5] by  studying a larger set of operators P than the set of those 

resulting from the problem (0.2). Also Vi~ik and Grugin [19], [20] have results in this di- 

rection. See also the recent paper [6'] by E~kin. 

Here we shall s tudy a class of operators which differ from those of E~kin [6] mainly 

in that  we impose less restrictive geometric conditions On the- manifold, where the princi- 

pal symbol vanishes. On the other hand E~kin allows the principal symbols of his opera- 

tors to vanish of higher order than  we do. We shall also obtain a local result for operators 

P satisfying only the condition C~ 4 = 0 when p = 0. This result is very close to a theorem of 

Kawai [12]. 
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I t  should be noted tha t  Egorov [2], [4], Nirenberg and TrOves [15] and Trbves [18] 

have generalized the results of [9], by  studying the equation P u  = v (without extra condi- 

tions) for operators P, which degenerate to high order. 

We now start  to formulate our main results. Let  ~ be a paracompact  C ~ manifold and 

let P EL~(~) be properly supported with a principal symbol p positively homogeneous of 

degree m. (If ~1 and ~2 are Coo manifolds and A: C~(~1)-> ~'(g22) is a continuous operator 

with distribution kernel KA, then A is said to be properly supported if {(x, y) E supp K~; 

xEK~ or yEK1}  is compact for all compact sets K j c ~ j ,  ]=1 ,  2. This means tha t  A u  has 

compact support for all uEC~(~I )  and that  A u  can be defined for all uECoo(~l). We shall 

say tha t  a matr ix  of operators is properly supported (or has Coo kernel), if all the entries 

are properly supported (or have Coo kernels).) Let  E =Y,v~ T * ( ~ ) ~ 0  be the set of zeros of 

p and let Cp be defined by  (0.1) above. We introduce the following two conditions: 

(A) C~ never vanishes on E~. 

(B) /~'-- t/~/~(1), ..., p(n)) is proportional to a real vector on E~ and n =d im f2 ~> 3. 

Note tha t  p~ is a complex tangent vector to ~ which is independent of the choise of local 

coordinates. I f  p satisfies (A), we define E + and E~ to be the subsets of E~, where C~ > 0 

and C~ < 0 respectively. 

To be able to state the main theorem in the case where p satisfies both (A) and (B), 

we have to define suitable auxiliary operators and to do so we first have to describe the 

geometric structure of ~ .  

If  x =  (x~ ..... x~ 1, xn) is any n-tuple, we shall always denote by  x' the (n -1 ) - tup l e  

(x~ .. . .  , x~_~). Let  ~: T*(f2)~O->f2 be the natural  projection. The following proposition 

will be proved in section 1. 

P I~ o P o s I T I 0 N O. 1. I / p  is positively homogeneous and (A) is satis/ied, then E + and E~ 

are smooth closed conic submani/olds o/ T*(f~)~0 o/codimension 2. I / ( A ) a n d  (B) are satis- 

lied and p is positively homogeneous, then/or  every ~ E E~ we can l ind local coordinates x = 

(x D ..., x~) in a neighbourhood W o/ 7~, such that the component o/ ~ in T*(s N E~ is given 

by the equations x~=0 and ~ =~(x',  ~'). Here ~=(~1 . . . . .  ~ )  are the dual coordinates corres- 

ponding to x, and ~ECoO(R ~ 1 x ( R ~ - l ~  (O}) ) is real valued and positively homogeneous o/ degree 

1 with respect to ~'. 

Remark.  Assume conversely tha t  the surface E~ can be given locally by the equations 

x~ =0  and ~ =~(x' ,  ~') as in the proposition. Then grad~ I m p  and grad~ Re p are linearly 

dependent  on Y~, because Zp has codimcnsion 1 as a submanifold of {(x, ~) E T * ( ~ ) ~ 0 ;  

x n =0}. This means precisely tha t  grad~ p is proporu,onal to a real vector. 
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We now assume, tha t  (A) and (B) are satisfied and tha t  p is positively homogeneous. 

I t  follows from the proposition, tha t  any sufficiently small par t  of Zp is mapped by  ~ into 

a smooth submanifold of ~ of codimension 1. However x~Zp is in general not a submani- 

fold but  only the immersion of a certain manifold F defined as follows. In  Z we introduce 

an equivalence relation: If  Q' and ~" EZ then ~' ~ "  if and only if z~'  =gQ" = x  and ~' and 

Q" belong to the same component of Z N g-ix.  Let  F be the corresponding set of equivalence 

classes and let g: :Z~F  be the natural  map. Then we have the commutat ive  diagram: 

5 

I' ' f ~  

defining the m a p / .  Now it follows from Proposition 0.1, tha t  there is a unique C ~176 structure 

on F, such tha t  g and / are smooth maps. Moreover / is an immersion. We put  F + =gZ+ 

and F - = g Z - .  Then F is the disjoint union of the submanifolds F + and F- .  

Consider more generally any two C ~ manifolds X and Y and a given smooth map [: 

X-~ Y. The normal bundle zVic T*(X) • T*(Y) of the graph of / is given by  

iv r = {((x, *l'(x)n), (l(x), -n ) ) ;  x e x ,  neTs( , , (Y)} 

where t/'(x) is the adjoint of the differential of ] at  x. With this Lagrangean manifold 

~here is associated for any real m a class I " ( X  • Y, Nf) of distributions in X • Y with 

wave front set contained in N~, and we can regard them as operators from C~(Y) to C ~ (X). 

(See HSrmander [10].) I f  xl, ..., x~ and Yl . . . .  , y~ are local coordinates near x~ and yO= 

](x ~ respectively then N r is defined by  the phase function ( / ( x ) - y ,  0~, x eR  ~, y, O~R n 

and the restriction of any  A E I'~(X • Y, Nf} to a neighborhood of (x ~ y0) is of the form 

Cv+3n)/4.1.t ~<f(xJ y O> Au(x )=(2~) -  e - '  a(x,y,O)u(y)dydO, u E C ~ ( Y )  

where a E srn + (v-n) /4, 

I f  / is an immersion we can choose a symbol b(z, y, 0), defined for (z, y) in a neigh- 

bourhood of y0 • so tha t  a(x, y, O) = b(/(x), y, 0). Thus A u =  (Bu)o/ for a pseudodifferen- 

tial operator B of order m + (v - n)/4. Conversely, if A E O ' (X x Y), if sing supp A c  graph / 

and A is of this form in a neighbourhood of (x ~176 for any x ~ EX then A E Im(X x Y, 2Vl). 

When I is an immersion we shall write 

Lm( X,  Y, l) =Im-(~-~)14( X x Y, Ns). 

We can identify Nf  with the pullback T* (Y) of T* (Y) to X for 
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T~(Y) = {(x, ~), xE X, ~ E T~(~)(Y)}. 

The fact that  N I c  T*(X)  • T* (Y )  gives us two maps 

Ix: T * ( Y )  ~ (x, ~) ~ (x, ~l'(x) ~) E T* (X) 

/ r  : T* ( Y) 9 (x, ~ ) -> (/(x), ~) e T* ( Y). 

If / is an immersion it is clear t h a t / r  is an immersion. 

The principal symbol of elements in I'~(X x Y, Nf)  can be considered as defined on 

T*( Y ) ~ 0  and the wavefront set can be considered as a closed conic subset of T * ( Y ) ~ 0 .  

More precisely the wavefront set W F ( A ) c  T*(Y) of an element A E Im(X x Y) NI) is given 

by 
WF'(A) = {(Ix(e), It(0)); 0 eWF(A)}. 

See H6rmander [10]. 

We can apply the preceding discussion to the immersion/:  P + - ~ .  With the local co- 

ordinates in Proposition 0.1 ] is locally the map R n-1 ~ x ~ --~ (X ' ,  0) E R n. Denote the zerosec- 

tion in T*(F +) by 0 and put  N + = / r l 0 c  T r + ( ~  ) which is the line bundle of normals of 

tiP+), and put  
§ 

where 7~ is the projection in T r+(~  ). Then F~ is a smooth closed conic submanifold of 

Tr+(~  ) of codimension 1 and 
2r n z ;  = ~ .  (0.4) 

In fact, in the local coordinates of Proposition 0.1 we have 

N + = {(x ' ,  (0, ~n)) ~ R  n-1 x R  n} 

and E~ = {(x ' ,  (~', T(X', ~ ' ) ) ) E R  n-1  •  ~ ' : # 0 } .  

I t  is easy to see that  the maps E ~ E  + and E3--~T*(F+)~0 defined b y / a  a n d / r  + are 

diffeomorphisms which together give a diffeomorphism ~+: Z+--~T*(F+)~0. We define 

h r-, E o and ~_ analogously. 

Since E~ and N + U ((/5~E)~E~) are disjoint closed conic subsets of T ~ + ( ~ ) ~ 0  it fol- 

lows by a partition of unity tha t  there exist operators R+~L~ +, ~ , / )  satisfying 

(C +) R+ has a principal symbol, positively homogeneous of degree 0, which is different 

from zero on Z~, but  

WF(R+) N (N+ 0 ((/~IE)~-]~0+)) = ~ .  

Let  (C-) be the analogous condition, obtained by replacing all + signs by - signs. 
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Once for all we fix some strictly positive C ~ densities on P +, F -  and ~.  Then the 

complex adjoins of a continuous operator: C~(~) -+~ ' (F - )  is a well defined continuous 

operator C?(F-) ->O' (~) .  Suppose R+EL~ +, ~ , / )  and R-*eL~163 h are properly 

supported and satisfy (C +) and (C-) respectively and let R -  be the complex adjoins of 

R-*. Then it follows from [10 section 2.5] that  R + and R-  can be extended to continuous 

linear operators D'(~)-~ ~ ' (F  +) and D'(F-)-~ D'(~)  respectively. Moreover we h~ve. 

])I~OPOSITIO]~ 0.2. R+ and R -  are continuous 

H I~176 r ~  H 1~176 H I~176 F -  loc , , s-�89 ~ ( )-~ H~_~(~) 

respectively ]or all s e R. 

This proposition will be proved in section 1. We can now state She main result: 

T ~ E o  RE~  1. Let ~ be a paracompact C ~ manifold o/dimension n >~3 and assume that 

P EL'n(~) is properly supported and has a principal symbol p, positively homogenous o] de- 

gree m, satisfying (A) and (B). Let 

D = R+ : ~'(~)  x ~ ' ( p - ) ~  ~ ' (~)  x ~'(p  +) 

be the operator mapping (u, u-)E D'(~)  x ~ ' (F - )  to (Pu+ R - u - ,  R + u ) e D ' ( ~ )  x D'(F+), 

where R + and R -  sat]sly the hypotheses of Proposition 0.2 and 

(I~WF(R+)) n (/~WF(R-*)) =@. (0.5) 

Then there exists a properly supported operator 

s = _ : O'(~) x D'(F +) -+ ~'(f~) x D'(P-), 

such that: 

(i) Eo ~ -  I and Oo E -  I have C ~ kernels. Here the/irst I denotes the identity operator in 

~'(s • ~)'(F-) and the second the identity operator in D'(~)  • ~'(P+). 

(ii) E, E + and E i are continuous r41~176 loo 1oo + 1oc -*~ Hs (P)-+Hs+~(~2) and H~~ -> (~)-~ H~+~_ ~ (~), 

H~~176 (P-) respectively/or all s e R. 

(iii) W F ' ( E - ) c { ( ~ _  e,e);  e e E - }  

w~'(E+)~{(5, g+ 5); 5 ez+} 
WF'(E)~ {(e, 5) e (T*(~) \0)  x (T*(~)\0)} 

U {(/a 5, la g) e (T*(~2)\0) • (T*(~)\0);  5 e X~, ff e WF(R+), lr+ 5 = lr+~} 

U {(/~ ~, b 5) e (T*(~) \0)  x (T*(~)\0) ;  5 eZ~, ~ ~WF(R-*),/r-  5 = / r -~} .  
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From the proof of Theorem 1 it will follow tha t  E+ and E -  arc Fourier integral opera- 

tors. I f  the condition (0.5) is not satisfied, we still have an operator ~ satisfying (i) and (if). 

This can be proved with the methods of section 5 where we study extensions of Theorem 

1 when R + and R -  are replaced by  more general operators. 

COROLLARY. Let P and f~ be as in Theorem 1. Then P induces a bijection: 

(~ ' (~) /C~(~))  • (~ ' (F- ) /C~(F- ) ) -~(O ' (~) /C~(~) )  • (~'(F+)/C~(F+)). 

I / f 2  is compact, then P induces a Fredholm operator 

C~(~/) x C~(F-) ~ C~(f/) • c~(r+). 

In the case when only (A) is satisfied, we have a very local result. 

THEOREM 2. Suppose that s is a C~mani/old and that P 6Lm(f~) is properly supported 

and has a principal symbol p, positively homogeneous of degree m, which satisfies (A). Then 

for each ~ E Z + there exist ~' E T*(R n-~)~O and properly supported operators 

with the following properties, where A = B means that A - B has C ~ kernel: 

(in) R e+ Eq* T'  ~- T" and P E  + T'  =-0/or all T'  EL~ ~-1) with WF(T ' )  close to ~'. 

(ib) PEoT=-  T and R + E o T = O  /or all TEL~ with W E ( T )  close to ~. 

Ee R o ) = T  for all TEL~ with W F ( T )  close to ~. (if) T ( E o P +  + + - 

(in) and (ib) express tha t  the operator 

O ' (~)  x D'(R n-l) 9 (v, v +) -~ E o v +  E~v + e O'(f2) 

is near ~ a local right inverse modulo C ~176 of the operator 

V ' ( ~ ) g u - ~  (Pu, R~u)e  ~ ' ( a )  x ~ ' ( R  n-l) 

and (if) expresses tha t  is as a local left inverse. The proof of Theorem 2 gives additional 

information on the operators R +, E~ and Ee, in particular on the H~ continuity and the 

wavefront sets (see also section 5). There is a dual form of Theorem 2, which describes the 

behavior of P near ~ .  This is based on the observation tha t  the complex adjoint of P has 

the principal symbol/5 and tha t  Y-$ = E  +. Recently Kawai ([12] par t  I I  th. 2.4) has ob- 

tained a result, which is close to our Theorem 2. He assumes tha t  the symbol of P is ann- 

lyric and uses the theory of hyperfunctions. Our proof will be completely different. A 

consequence of our results is tha t  if P is as in Theorem 2 and E + 4 O then the operator 

~'(~)/C~(f~)-+O'(f~)/C~(s induced by  P is not infective and if E ;  4 0  then it is not 

surjective. (See HSrmander [11] for more general results of this type,) 
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The plan of the paper is the following: In  section 1 we prove Propositions 0.1 and 0.2. 

In  section 2 we state as Theorem 2.1 a local form of a special case and show tha t  it implies 

Theorems 1 and 2. In  section 3 we reduce the proof of Theorem 2.1 to the s tudy of an ex- 

plicitly given first order pseudodifferential operator. In  section 4 we make this study, 

which completes the proof of Theorems 1 and 2. In  section 5 we discuss generalizations of 

Theorem 1, where R+ and R -  are replaced by more general operators. 

I would finally like to thank Professor Lars HSrmander, who has suggested the sub- 

ject of this paper  and who has given me much help and advise during the work. 

w 1. Proof of Propositions 0.1 and 0.2 

Proo/o I Proposition 0.1. Since p is positively homogeneous it is clear that  Z is conic. 

In  ~ we introduce local coordinates x =(x  I .. . . .  xn) and we let ~ =(~1 .. . .  , ~n) be the cor- 

responding dual coordinates in the cotangent space. Put  Pl =Re p and p 2 = I m  p. Then 

is defined by the two real equations pl(x, ~ )=0  and p2(x, $)=0.  I f  we write (0.1) in the 

form 
r i / t C~(x, ~) = ((r2~, p ,x)  - (p1~, p ~ ) ) ,  (1.1) 

we see tha t  grad p l =  (P~z, P;~) and grad p~ = (P~z, P~g) are linearly independent on Z if (A) 

is satisfied. Here ( , )  is the bilinear form on R n, defined by (x, ~) =Z~-I  xj~j, x, ~eR ~. 

Hence Z is a closed submanifold of codimension 2 of T * ( ~ ) ~ 0 ,  so only the second half of 

the proposition remains to prove. 

Thus we assume tha t  (A) and (B) are satisfied and we shall first s tudy Z infinitesi- 

mally. For x e ~ ,  put  Zz={(x ,  ~ ) e Z } = Z  Az~-lx, In  general, if M is a C ~ manifold and 

m E M  we denote by T,n(M) and T*(M) the fibers over m of the tangent space T(M) and 

the cotangent space T*(M) respectively. 

LEMMA 1.1. Let (x, ~ )eZ  and let z ,  be the natural projection: Tr Tx(~). Then 
! 

7~, has rank n - 1 .  Let N = I m  a P'x, where the complex number a:~O is such that t = a  p~ is 

real. Then (t, N )  4 0  and N is orthogonal to 7~, T(z.r ~ (~) and transversal to T(x.g)(Zx). 

Proo 1. Let (x, ~) and a be as in the lemma. Then 

n 

co~(x, r = 2 I m  F a p (j' (x, ~) a p(j, (x, ~) = ]a]~ C.  (x, ~) 4 o. 

On the other hand Cap(X, ~)= - 2 ( t ,  N )  so we get 

o ~(t ,  ~ ) .  (1.2) 

In  particular both t and N are :~0. 
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Z can be defined by the two equations Re ap=O and Im ap=O. Thus T(~,~)(Z) is 

the set of all (4, t~) ER n • R n, such that  <Im a p~, 4> § <Im a p~, t~> = 0 and <Re a P'z, t~> + 

<Re a p~, t~> =0, or equivalently 
<iv, t~> = 0. (1.3) 

<Re ap'z, t~> +<t, t~> = 0. (1.4) 

Since t #0,  we can, for any 4 satisfying (1.3), find t~ such that  (1.4) is also satisfied. Thus 

~r.T(,.~) (E) is the orthogonal space of N and has dimension n - 1 .  Since T(,.~ (E,) is de- 

fined by the equation <t, t~} =0, it follows from (1.2), that  N is transversal to T(,.~I(E,) 

and the proof is complete. 

Next we study Z locally. Note that  ~.  in the preceeding lemma is the differential of 

the projection ~r ]z : Z ~ (x, ~)-+ x E ~.  

L ~ M M A 1.2. For every point (x o, ~o) E E there is an open conic neighbourhood U ~ T * ( ~ ) ~ 0  

and two real valued, smooth/unctions g(x, ~) and y(x) de/ined in U, such that: 

(i) <g~, %> # 0 in v.  

(ii) E n U = {(x, ~) E U; 7(x) = g(x, ~) = 0}. 

Proo/. By Lemma 1.1 the differential of ztlz has rank n -  1. Thus (see [17] pp. 39-41) 

there is an open neighbourhood U of (x 0, ~0), such that  ~(U ;1 Z) is a C Oo manifold of di- 

mension n - l ,  given by an equation 9,@)=0, where ~,ECOO(~U) and 9,~#0 everywhere. 

Since E is conic, we can assume that  U is conic. By Lemma 1.1 we have either 

<grad~ Re p, 7"> # 0  or <grad~ Im p, 7~'> # 0 in U if U is small enough. We put g equal to 

Re p or I m p  so that  (i) holds. Thus {(x, ~)E U; g(x, ~) =7(x) =0} is a (2n-2)-dimensional 

manifold, which contains the (2n-2)-dimensional manifold Z fl U. If U is small enough 

they have to be equal and the proof is complete. 

I t  follows from the lemma, that  Z~ is an (n-1)-dimensional closed submanifold of 

T*(~)~{0}.  Let  ~=(x  0, ~0)EE and let E(~~176 I be the component of (x 0, ~0) in E~~ Since 

2,~..~0) is conic and {(~0, ~)~ 2,~..~.,; I~1 = 1) is a compact manifold, we can cover E(~..~~ 

by a finite number of open conic sets U ~  T* (~ )~0 ,  v = 1, 2 .. . .  ,2V, where we have smooth 

functions ?v(x) and ff~(x, ~) such that  (i)-(iii) of Lemma 1.2 are fullfilled. 

LwMMA 1.3. In  a neighbourhood o/ xo, the equations ~r(x)=0 de/ine the same hyper- 

8~/ace. 

Proo/, Since Z(~0.~~ is connected and {U~)~<~<N is a finite open covering of Z(~~ it 

suffices to prove, that  if Z(~~176 N U~ N U ~ # ~ ,  then ~ ( x )  =0  and ~,(x) =0  define the same 

hypersurface in some neighbourhood of x 0. Let  (x0, ~)~Z(~0.~,)N U~ N U,. By Lemma 1.2 
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the projection of a small neighbourhood of (xo, ~) in E(,od.) is a hypersufface which can 

either be given by the equation y~(x) = 0 or ?s (x) = 0. This completes the proof. 

We now choose local coordinates with the origin in Xo, such that  the equations T~(x) = 0 

are equivalent to the equation xn=O. Put W~={x'~Rn-~; Ix'l <(~} and let :E0. ~ be the 

component of e = (x0, ~0) in Z 0 z-~{(x ', 0)eg2; x 'e  W~}. Then it follows from the proof of 

the weceeding lemma, that  nE~.~ = {(x', 0)fi~; x 'e  W~}, if ~ > 0 is small enough. Hence 

Lemma 1.2 implies: 

Zo.~ is locally given by the equations x~ =0 and 

g(x, ~)=0, where ~g/~,~ =~0 if ~ >0 is small enough 
(1.5) 

Thus we have X e.s N {((x', 0), (0, ~n))~ T*(~)~0;  x 'e  Wj} =@ since Z ~., is conic and since 

X is closed we get 

If 5 >0 is small enoughthere is a constant C >0 such that  

]~[ <~C}}' I for all ((x', 0), })e2~.~. (1.6) 

We now fix ~ >0, such that  (1.5) and (1.6) hold and let ~: EQ.s-+ W~ • (R~-~{O}) be 

the projection ((x', 0), ~)-~(x', ~'). I t  follows from (1.6), that  ~ ,~ ,~  is closed in Wj • 

(Rn-~{0})  and from (1.5), that  it is open. Since W~ • (Rn-~,{0}) is connected (n~>3), 

we have ~ 0 . ~  = W~ • (Rn-~{0}) .  Now put 

, (x ' ,  ~') = inf  ~ ;  O(x, ~) = (x', ~'). 

Then by (1.5) and (1.6) it follows that  vEC~176 • (R~-~{O})) and that  T is positively ho- 

mogeneous of degree 1 with respect to $'. Moreover E e. ~ is defined by the equations x~ = 0 

and ~n =v(x', ~'), (x', ~') E W'~ • (Rn-l~{0}). If ~ is small enough, ~ has an extension to 

R n - 1  x (Rn-l~{o}) and Proposition 0.1 follows, if we let W={xeR~; Ix] <~}. 

Proot o] Proposition 0.2. Locally we identify ~ with R ~ and F+ with the hyperplane 

xn=0. Then R + is locally of the form ~Q, where T is the restriction operator C~176 

C~176 defined by yu(x') =u(x', 0), x' ER ~-1. Here Q EL~ n) is properly supported and 

satisfies WF(Q) D {(x, ~)E T*(R~)'~0; ~' =O} =~D. Now it is wellknown (see for instance [7]), 
that  ~ is continuous lor n r~loo ~ D n - ~  H(1.s_I)(R )--> for all sER. From Proposition A.2 in the 
appendix it follows, tha t  Q is continuous xo~ n loo n H~ (R)-~Ha.~_I)(R ) for all s. Thus R + is 

continuous H~~162 H~r189 (F+) for all s and by the same argument R-* i s  continuous 
H l o c  l o t  - -s+�89 (~)-~H_~ ( F )  for all s. Since R-  is properly supported, we get by duality, that  R-  

is continuous H~ ~176 (F-)--*H~'2�89 (~) for all s e R. 
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2. Reduction of the proofs of Theorems 1 and 2 to the proof of a certain local theorem 

In this section we shall show how Theorems 1 and 2 follow from a local version 

where the characteristics have a special position. Thus assume that  P ELm(R n) and 

00 = ((%, 0), (~0, 0)) E T*(Rn)~0 satisfy: 

1 ~ P is properly supported and has a principal symbol Pro, positively homogeneous of 

degree m. 

2 ~ There is a neighbourhood of O0 where Cp,, > 0 and where pm vanishes precisely when 

x~ = ~  =0. 

Suppose Q EL~ =) is properly supported and satisfies: 

3 ~ WF(Q) n {(x, ~)ET*(R")\0;  ~ ' = 0 }= O.  

4 ~ Q has a principal symbol q, positively homogeneous of degree 0, such that  q(~o) ~:0. 
! ! 

5~ Pm does not vanish anywhere in {((x0, 0), (~0, ~n))EWF(Q); ~n =~ 0}. 

Let ~ be the restriction operator Coo(R n)-~Coo(R~-I), defined by 7u(x ' )=  u(x',  0), u E COO(Rn). 

By I we shall always denote the identity operator in the appropriate space. 

T~EORE~ 2.1. I]  the operator 

~ = ~,Q : ~ ' (R~/ - - ,  D'(R~) • ~ ' (R~-~/  

is defined by ~ u  = (Pu, yQu), u E ~'(R'~), there is a properly supported operator 

s E+):O'(Rn) x D'(Rn-1)-+ O'(R n) 

(u, u+) -> E u  + E+ u+, 

which is a parametrix o/ 0 near ~o in the ]ollowing sence: 

(i) / / Z  EL~ n) and WF(Z) is su//iciently close to ~o, then 

z(EO-1)=-o. 

(Here we recall that ~- denotes equality modulo an operator with C ~ kernel.) 

(ii) / / Z E L ~  n) and Z '  EL~ n-l) and i / W F ( Z )  and WF(Z') are su//iciently close to Qo and 
! ! 

~o = (Xo, ~o) respectively, then 

(pS-I) o , - = o .  

Moreover ~ has the/ollowing properties: 

(iii) E is continuous r41oo n loo . ~  (R)-~H~+~_�89 ) /or all s E R  and E + is continuous--sr41~176 --> 

HlOO i ~  ]or all sER .  s + � 8 8  ~-~ I 
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(iv) WF'(E)c  {((x, ~), (x, ~)) 6(T*(R")~0) x (T*(R")~0)} 

{(((x', 0), (~', 0)), ((x,' 0), ~)) ~(T*(R~)\0)  • (T*(R~)\0); ((x', 0), ~) eWF(Q)} 

and WF'(E+)c  {(((x', 0), (~', 0)), (x', ~')) e (T*(R~) \0)  • (T*(R~-~)\0)}  

Proof that Theorem 2.1 implies Theorem 2. We shall use the important idea of Ego- 

roy [3], [4] and Nirenberg-Treves [15, part II], to simplify the study by using a suitable 

canonical transformation. For that  purpose we shall use the theory of Fourier integral 

operators, developed by HSrmander [10]. 

LE~MA 2.2. Let ~, P, and E + be as in Theorem 2. Then there is an open conic neigh- 

bourhood U o/ ~ and an in]ective, homogeneous canonical trans]or~nation ~: U ~ T*(Rn)~0 

which maps U Q Z + into {(x, ~)6 T(R~)~0;  x~ = ~  =0}. 

Proo/o /Lemma 2.2. Choose local coordinates x = (x 1 . . . . .  xn) with the origin in ~@. 

Since C~(~) 4=0, either grad~ Re p 4 0  or grad~ I m p  ~=0 near ~. I t  is no restriction to assume 

that  grad~ Re p +0  and we can even assume that  (~/~n) Re p =~0 near @. In a conic 

neighbourhood of ~ the surface Re p =0 is then given by an equation ~n =v(x, ~'), where 

v6Cc~215 is real valued and positively homogeneous of degree 1 with 

respect to ~'. By the Hamilton-Jacobi theory there is a real valued C ~~ function r =r ~'), 

positively homogeneous of degree 1 with respect to ~', defined for Ix I <coast .  >0, 

~ '6R~-1~{0},  such that  

~x~ r ~') = ~(x,r (x, ~')) r ]~0  = <x', ~'> (2.1) 

Put  r y, ~) = x ~  +r ~') -<y ,  ~}. Then it is easy to verify tha t  r is a non-degenerate 

phase function for small x (see [10]). The corresponding canonical relation Re is given by 

Re: ((r (~, ~'), x~), ~) -~ (x, (r (x, ~'), ~r ~') / ~x~ + ~)) .  

By [10], this relation is locally a canonical transformation u~, which maps the surface 

~n=0 into the surface tn=z(x ,  ~'). Siuce the functional determinant of every canonical 

transformation is =~0, we can assume (after having restricted ~ suitably), that  ux is a 

diffeomorphism and that  z f  ~ maps the surface ~n=z(x, ~') in a homogeneous neighbour- 

hood of @ into the surface ~n =0. Since canonical transformations leave Poisson brackets 

invariant it follows from the condition (A), that  

C~ + 0 near ~ - ~ :  where we have put  p~ = p o ~ .  (2.2) 

Now Re p~=O for tn=0 .  Thus (2.2) implies tha t  (@/~x~) Imp~ 4 0  and therefore the sur- 

face p~=0 can be given by the equations ~ = 0  and x~=?(x', ~ ' )near u{~ ,  where 

? s Cr n-~ • ( R n - ~ { 0 } ) )  is positively homogeneous of degree 0 with respect to ~'. 
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Put  tF(x, y, ~)=(x ,  ~)+~(x ' ,  ~ ' ) ~ , - ( y ,  ~). 

Then tF is a non-degenerate phase function for small ]~, [/]~'1 and the corresponding 

canonical relation R~ is given by 

(x+  (~.r~' (z', ~'), r(x', ~')), $) ~ (z, (~'+ ~.r'.' (x', ~'), #.)). 

Locally, this relation is a homogeneous canonical diffeomorphism ~,, mapping the surface 

$~ =x,  -y(x ' ,  $') =0 in a neighbourhood of ~ ; ~  into the surface ~, =x, =0. I t  is now clear 

that  ~ =n~oni -1 has the properties required in the lemma. 

Remark. Instead of making an explicit construction one can derive Lemma 2.2 from 

classical theorems on canonical transformations. (See e.g. Duistermaat-H6rmander [1] 

Proposition 6.1.3.) 

From the results in [10] and [1] it follows that  there exist properly supported Fourier 

integral operators G: O ' ( ~ ) ~  ~ ' (R  n) and G': ]0'(Rn) -+ O'(~)  with the following properties: 

G and G' arc continuous from r41oo to r41oo for all 8 (2.3) 

WF'(G) and WF'(G') are contained in the graphs of u and u-1 respectively (2.4) 

If A ELk(~) and BEL~(R n) have principal symbols a and b respectively then 

GAG' ELk(R n) and G'BG ELk(~) and they have principal symbols equal to aou -1 

and bok near z(Q) and ~ respectively. Moreover WF(GAG')cu(WF(A)) and 

WF ( G' BG) c u-IWF(B). (2.5) 

.(q) r WF(GG' - I)  and q r W F ( G ' G -  I). (2.6) 

t ! ! ! v 
We put  ~o=U(~) and ~0=(xo, ~o), where ((xo, 0), (#o, 0))=Q0" Moreover we put  P =  

GPG', where P is the operator in Theorem 2. Then the pair (t5, ~o) satisfies the assumptions 

1 ~ and 2 ~ of Theorem 2.1. In  fact, by  (2.5), P belongs to Lm(R ") and has a homogeneous 

principal symbol 19m which is equal to pou  -1 in a neighbourhood of Q0. By the choice of 

the equation pm=0 is equivalent to x , = ~ , = 0  in a conic neighbourhood of ~o. Moreover, 

since canonical transformations preserve Poisson brackets, we have Cv~ =C~ou -1 >0  in a 

neighbourhood of ~0. 

With this choice of (/5, Qo), let Q fiL~ ") satisfy the assumtions 3 ~ 4 ~ and 5 ~ of Theo- 

rem 2.1 and also satisfy: 

WF(Q) N (WF(I -GG')  U u W F ( I - G ' G ) )  =0.  (2.7) 

Let  E = (E, E+) be the corresponding local parametrix in Theorem 2.1 and put  
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+ p t R e - y Q g ,  E~=G'EG, E~ ~=G'E  + a n d ~  =Q0. 

To verify (in) of Theorem 2, let T'EL~ n-l) with W F ( T ' )  close to ~'. Then 

(R~ E[  - I) T'  = (yQGG'E+ - I) T'  = (TQE + - I)  T'  - 7 Q ( I -  GG') E+T'. Theorem 2.1 im- 

plies t ha t  (~ ,QE+- I )T  ' has C ~ kernel if W F ( T ' )  is sufficiently close to ~'. Moreover 

7 Q ( I - G G ' ) E + T  ' has C ~ kernel in view of (2.7). (We assume tha t  the reader is familiar 

with the calculus of wave f ront  sets, developed by  HSrmander  [10, section 2.5].) This 

proves the first half of (in). 

~ o w  look at  P E S T '  = P G ' E + T  ' = G'GPG'E+T'+ ( I -  G'G)PG'E+T" = G'PE+T ' + 

( I - G ' G ) P G ' E + T  ". The term G'PE+T'  has C ~ kernel by  Theorem 2.1. B y  a simple wave- 

f ront  calculus we see tha t  this is the case also with the last term. (WF'(G')  is contained 

in the  graph of u -1 by  (2.4.)). This proves the second half of (ia). 

To prove (ib), we write (PE o -  I ) T = P G ' E G T - T .  Looking at the wavefront  sets it 

is easy  to see tha t  ( I - G ' G ) ( P G ' E G T - T )  and  ( P G ' E G T - T ) ( I - G ' G )  have C ~176 kernels 

if W F ( T )  is sufficiently close to Q. Thus, if -= denotes equali ty modulo am operator  with 

C ~ kernel, we get 

(PEQ -- I)  T ==- G'G(PG'EGT - T) G'G = G'(GPG'EGTG' - GTG') G = G'(PE - I)  SG, 

where S = G T G ' .  By (2.5) we have SEL~ ~) and WF(S)  is close to ~0 when WF(T)  is close 

to ~. Thus by  Theorem 2.1, the operator ( P E - I ) S  has C ~ kernel and the first par t  of (ib) 

follows. 

To prove the second part ,  we write 

R~ EQ T = ~QGG'EGT = ~ Q E G T - ~ Q ( I -  GG') EGT.  

B y  (2.7) we have ~Q(I-GG')EGT=-O.  Moreover 7 Q E G T = T Q E S G + T Q E G T ( I - G ' G ) ,  

where as already observed S = G T G '  EL~ n) and WF(S) is close to ~o. Thus 7QESG=-O 

by  Theorem 2.1 and 7QEGT(I -G'G)=-O since W F ( T )  N W F ( I - G ' G ) = ~ )  if W F ( T )  is 

close to ~, This proves (ib). 

To prove (if), we write 
T E  qP = TG'EGP. 

Looking at the wavefront  sets, we see tha t  we get  an operator  with C ~176 kernel if we mult iply  

TG'EGP from the left or f rom the  right with ( I - G ' G )  when W F ( T )  is close to ~. I n  fact, 

this is obvious in the case of left multiplication, since W F ( T ) N W F ( I - G ' G ) = Q  when 

W F ( T )  is close to  Q. F rom (2.7) and (2.4) we see tha t  W F ' ( Q ) o W F ' ( G P ( I - G ' G ) ) = O .  

Thus f rom (iv) of Theorem 2.1 we see tha t  T G ' E G P ( I - G ' G )  has C ~176 kernel, when W F ( T )  

is close to ~, so our s ta tement  is t rue also in the case of r ight  multiplication. Using this 

result  and (2:6) we get  
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T(EQP + E~ R~ - I) =-- G' GTG'EGPG'G + TG'E+yQG - T 

G'SEPG + G'GTG'E+ yQG - G'SG~-- G'S(EP § E+~,Q - I) G = O, 

where the last equivalence follows from Theorem 2.1. This completes the proof tha t  Theo- 

rem 2.1 implies Theorem 2. 

We shall next  prove tha t  Theorem 2.1 implies Theorem 1. The first step is to prove 

the following local result: 

PROPOSITION 2.3. Let ~ ,  P and R + be as in Theorem 1. Let ~ 6 Z  + andpu tQ '=  

~+~ E T* (F+)~0,  where ~+ is the natural di//eomor/ism: Z + -+ T*(F+)~0  de/ined in section 

O. Then there exist properly supported operators Ee: ~ ' (~ ) -~  ~ ' ( ~ )  and E~: O'(F +)-> ~ ' ( ~ )  

with the/ollowing properties. 

(ia) I / T '  6L~ +) and WF(T' )  is su//iciently close to ~' then ( R + E + - I) T'  - 0  and P E~ T' - 0 .  

(ih) I /  T 6L~ and WF(T)  is su/]iciently close to ~, then ( P E e -  I ) T - - O  and R+Eq T--O.  

(ii) For T as in (ib): T ( E o P  + E[  R + - I ) - ~ O .  

l o c  . ~ .  l o c  + (iii) EQ is continuous H~ (~) Hs+m-�89 and Eq is continuous H~~176 +) ~,1oc -~ns+~(~) /or 

all s E R. Moreover: 

WF'(EQ)c  {(#,/~) E (T*(~)~O) • (T*(~)~O))  U {(In ~, /a  #); ~ E Zo, 

/ r+  v = l r + ~ }  

WF'(E+)c{(/~,  0+#); #EE+} �9 

Here ]n, Y,~, WF(R+) and/r+ are de/ined in section O. 

Note tha t  (ia) and (ib) can be expressed more briefly, by stating tha t  

# EWF(R+) and 

The proof of this proposition is very similar to the proof of Theorem 2 above, but  we 

have to be more explicit. Note tha t  E~kin [6'] uses a canonical transformation similar to 

the one in Lemma 2.4 below. 

Proo]. In  view of Proposition O.1 we can assume tha t  ~ = R  ~ and tha t  the component 

of Q in N is given by x~=~ n - z ( x ' ,  ~') =0. In  fact, since Proposition 2.3 is a purely local 

s tatement  and (iii) gives us a good control over the singular supports of the distribution 

kernels of E o and E~ it is easy to prove the proposition in the general case, once we have 

established it in this special one. 
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We can identify the component of ~ '  in F + with the hyperplane x~ =0  and assume 

that  Q' =(0, 40), where e =(0, (40, T(0, ~'0)))" In this component R+ is of the form 7A,  where 

A EL~ ") is properly supported and has principal symbol a, positively homogeneous of 

degree 0 and different from 0 when x==4n--c(x',  4 ' )=0.  Moreover WF(A) does not inter- 

sect the other components of Z or {(x, 4)E T*(R")~0; 4' =0}. 

Consider the phase function O(x, y, ~) =r ~ ) - ( y ,  ~>, x, y, 4ER n, where 

r 4) = <x, ~> +x.z(e&/14' l)r(x ' ,  43 (2.8) 

Here e > 0 and Z E C~ (R) is equal to 1 near the origin. Then we have the following explicit 

analogue of Lemma 2.2. 

L ~ M A  2.4. I]  e > 0  is small enough, �9 is a non.degenerate phase /unc t ion /or  small 

x and induces a homogeneous canonical di//eomorphism ~-1 ]rom some neighbourhood o/ 

T~(Rn)~{0} (the set o / n o n  zero cotangent vectors at the origin) onto some neighbourhood o/ 

T~(Rn)~{0}, mapping the sur/ace x~ = 4~ = 0 into the sur/ace x~ = 4~-~;(x', ~ ')=0, and such 

that i/ (x, ~) = u-l(y,  ~1) then xn = O~y~ = 0 and x n = Yn = 0 ~ ~' = fl', x' = y'. 

Proo/. Choose e > 0  so small that  I~z(e~/]~ '[)T(x ' ,  ~)/~4,1 < �89 for all ~ 4 0  when x' 

is small. Then it  is easy to see, tha t  qb is non-degenerate for small x. The corresponding 

canonical relation Rr is given by 

[a~  v(x, 4,), ~) ~ (x,~+ (x n grad,. Z [l~,l].r(x ,4 ),z t~l).r(x, x + x.  grad~ Z ~,l~' I] 
I] 

Then we have: R~ = RloR~  1, (2.9) 

P t ~ r t  where Rl : ( x ,  4 ) o ( x , ~ + ( x n g r a d x ,  Z ( e ~ l ) ~ ( x , ~ ) , Z ( [ ~ ) T ( x ' , ~ ' ) ) )  (2.10) 

[edn~ , , ~'),4). (2.11) R~: (x, 4) -+ (x + x, grad~ Z ~ - ~ )  v t x ,  and 

Then: 

1% R 1 and R~ have bijective differentials for small x. 

2 ~ The restrictions of R 1 and R2 to T o (R~)~{0} are diffeomorphisms onto T~ (R")~{0}. 

Since R 1 and R 2 are homogeneous, we conclude from 1 ~ and 2 ~ that  they are injective 

for small x and thus by  (2.9), that  Rv near (T~(R")\{0}) • (To(R")\{0 }) coincides with the 

graph of a canonical diffeomorphism u -1, mapping some neighbourhood of T~ (R")~{0} 
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onto some neighbourhood of T*,(Rn)~{0}. The other properties of ~-1 follow from our 

explicit formulas. The proof is complete. 

Choose %0 E C~ (R~), with %0(x) = 1 in a neighbourhood of the origin and let G': ~ ' (R n)-~ 

~0'(R ~) be ,the Fourier integral operator given by 

ff%0(x) %0(y) (1 - %0(~)) et(r dyd~/(2 ~)n, uE C *r (Rn), (2.12) G'u(x) 

where ~ is given by (2.8): If %0 has its support sufficiently close to the 0rigin, it follows from 

Lemma 2.4 and the results in [1 i and [10] that  there 'exists a properly supported Fourier 

integral operator G: O'(Rn)-~O'(R n) such that  

G and G' are continuous 3,1oo T,loo a s  ~1~8 for all s and WF'(G) and WF'(G')are  con- 

tained in the graphs of z and z-1 respectively. (2.13) 

For every TELM(R '~) with principal symbol t, the operators GTG' and G'TG 
belong to LM(R n) and their principal symbols are equal to toz -1 and toz respec- 

tively in a neighbourhood of T* (R~)~{0}. Moreover WF(GTG')c ~(WF(T)) and 

WF(G'TG) = ~-~(WF( T) ). (2~14) 

(To(R~)~{0}) N (WE(GG' - I) U WF(G'G" I)) = O~ (2.15) 

If F is the restriction operator C r162 (R ~) ~ u-> u Ix~=0, we have: 

The distribution kernels of the operators y~-yG' and y - T G  are smooth near 

(0, 0) ER ~rl • R u. (2.16) 

In fact, by (2.8) we have r 0), ~)=<(x', 0), ~> and using the F0urier inversion formula 

in (2.12), we get: 

= f f o) ) %0(y) e!(<(z ''~ ~>)u(y) dy d~ / (2~)~ 

f f %0( (x', 0)) %0(y) %0(~) e ~(((~'' ~162 d~ / (2~) n 

= (~,%0~u) (x') _2 guix,);~ u-e C ~ (R~); 

where K is an operator with C ~ kernel. Thus y - y G '  has smooth kernel near (0, 0) and the 

corresponding statement about  ~ - z G  follows if we multiply ~ - ~ G '  with G and use (2.15). 

Now put P=GPG' and Q=GAG' and Co=(0, (~0, 0)), where (0, (~0, T(0., ~0)))=e in 

Proposition 2.3. Then it :follows from (2:14) and Lemma 2.4, that  (P,Q, Qo) satisfies the 

assumptions of Theorem 2,1. Let  E and E+ be the c0rresuonding local uarametrix ouerators 

and put 
2 -- 732904 Acta mathematica 130. I m p r i m ~  le 30 J a n v i e r  1973 
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EQ = G'E~: ~ ' (R  ~) -~ ~ ' (R ~) 

and E~ = G'E+O: D'(F § ~ D'(Rn), 

where 0 means multiplication with the characteristic function of the component ,of F + 

which we have identified with the plane xn =0.  

Proof o/(iii) of Proposition 2.3. The Hs-continuity properties follow at once from the 

construction. The estimates of the wavefront sets follow from Theorem 2.1 and Lemma 

2.4, since WF'(G) and WF'(G') are contained in the graphs of ~ and ~-I respectively. 

Proof of (in). Let  T'EL~ +) with WF(T' )  close to (0, ~)=~' .  Then, combining the 

estimate of WF' (R +) given by (C +) in section 0 with the estimate for WF'(E~ ) just proved, 

we find that  W F ' ( ( I - 0 )  R+E~T')  = ~  and consequently tha t  (I-~0) (R+E + - I )  T'  - 0 .  To 

prove the first half of (ia) it therefore suffices to prove that  O( R+ E~ - I) T'  = ~ A E + T'  - T'  ~ O. 

We have 

yAE~ T'  = ~AG' E+ OT'~) ,AG'  E + T'~-~GAG' E + T' = ~QE + T ' ~ T ' ,  

where the second congruence follows from (2.16) and the third from Theorem 2.1. This 

proves the first part  of (ia). The proof of the second part  is exactly the same as in the proof 

of Theorem 2, so we omit it. 

Proof of (ib). The first half is proved exactly as in Theorem 2. To prove  the second 

half, we observe (as in the proof of (ia)), tha t  ( I - O ) R + E e T  has C ~- kernel if WF(T)  is 

sufficiently close to ~. Moreover 

O R+ Eq T = ~,A G' EG T =- rGA G' EG T = :yQEG T =--- rQ E( G TG') G, 

where the first eong~ence follows f r o m  ('2 16) and  th~ se~ond from (2.15), Now GTG' E 

L ~ (R n) and WF~GTG') is close to ~0=(0, (~0, 0)) in view of (2.14 i. Thus by  Theorem 2.1, 

we have ~,QE(GTG') =-0 and (ib) follows. 

The proof o/(ii) is almost the same as the proof~of the corresponding part  of Theorem 

2, so we omit it. 

The next  step in the, proof of Theorem 1 will be to construct global left and right para- 

metrices near Z +. 

Since Z+ :is closed and conic, we conclude from Proposition 2.3, tha t  for each ]iin some 

index set J there exist operators E j: ~) ' (~-~  ~)'(~) and E~" ~)'(D+)~ ]O'(~), an open conic 

set Vj~ T*(~) and an open set W jc  c ~ with the following properties: 
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The H~-continuity and t h e  properties of the wave front  sets stated in 

Proposition 2.3 for (Ee, E~) are valid for (Ej, E+). (2.17) 

T(EjP + El- R +~- I} - 0 for every T e L ~ (~l) with WF(T) ~ Vj. (2.18) 

Y~+~ U Vj and Vj f l / ~ WF( R- * ) = O for all j. (2.19) 
1 e i  

{Wj}j~s is a locally finite covering of ~ and ~Vj~  Wj for all j. (2.20) 

Moreover we can assume that  

supp E j ~  Wj x Wj and supp E~ c Wj x/-1Wj, where supp denotes the support 

of the distribution kernel. (2.21) 

In fact, by the estimates (2.17) of WF'(Ej) and WF'(E~), we see that  we can replace E~ 

by y~jEjyJ~ and E~ by yJjE~;(~pjo]), without changing (2.17) and (2.18) ify~jfiC~(Wj) and 

~pj=l near ~eVj. (Here/: 1 ~ - ~  is defined in section 0.) 

Now take functions 0 ~tjEC~176 positively homogeneous of degree 0 with 

supp t i c  Vj, such tha t Zj~j tj(x, ~) >0 on Z + and take TjEL~163 with principal symbol tj, 

such that  WF(Tj )csupp  tj and supp T i c  Wj x W r Then it follows from (2.20) and (2.21) 

that  the operators 
F = Z T j E ~ :  ~O'(~) -~ O'(~), 

F+ = ZT~E~: D'(F +)-~O'(~) 

and T =ZTi~L~ are well defined and properly supported. Moreover 

T has a principal symbol, positively homogeneous of degree 0, which is >0 

on Z +, but WF(T) N ]aWF(R-*) = 0 .  (2.22) 

From (2.18) we get 
FP + F+R+ - T. (2.23) 

From (2.17) we get 

(F, F+) has the H8 continuity properties stated for (E, E+) in Theorem 1. (2.24) 

WF'(F) c ((e, e):6WF(T) x WF(T)} U {(1~, In#); e E Z~, # EWF(R+),/r+~ =/r+/~}. 

(2.25) 

WF'(F+) c {(e, 0+ e)e Z + x (T*(F+)~0)} (2.26) 

(2.23) means that  we can think of (F, F+) as the product of a left inverse of ~ to the 

left by T. The construction of a "right inverse" is quite similar, so we only sketch it. As 

above we cover Z + with small open conic sets V~, ~" EJ  but this time we also have to cover 

T*(F+)~0 with small open conic sets V~, j eJ .  Let (Ej, E~) be the corresponding local in- 
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verse in the sense of Proposition 2.3 and let SjEL~ and S; EL~ +) be such that 

WF(Sj) c Vj and WF(S~) c V~. With an appropriate choice of E j, E~, Sj and S~ the operators 

L = ~ j S ~ :  ~)'(~) -~ O'(~), L + = ~ E ? S ~ :  O ' ( r  +) ~ O'(~) 

S = ~ S t E L ~  and S '=  Y~sie L~ 

are all welldefined and properly supported and we have: 

S and S' have principal symbols which are positively homogeneous of 

degree 0 and strictly positive on Z + and T*(F+)"~O respectively. Moreover 

WF(S) f)/~WF(R-*) = ~ .  (2.27) 

The operators P L - S ,  PL +, R+L+-S ' and R+L have C ~ kernels. (2.28) 

(L, L +) has the same Hs-continuity properties and analogous estimates of the 

wavefront sets as (F, F+) in (2.24), (2.25) and (2.26). (2.29) 

Now we shall study ~) near E; .  This is easily done by duality. In fact, the complex 

adjoint P* of P has the principal symbol p. Since P satisfies (A) and (B) in section 0 and 

C~ = -C~, we see that P* satisfies (A) and (B) and that Z+=Z~.  For the operator u-~ 

(P'u, R-*u) we have therefore results analogous to those just obtained for the operator 

u-+(Pu, Ru+). Passing to complex adjoints we get the following results for the adjoint 

operator (u, u-)-§ + R-u-:  There exist properlv suuDorted oDerators 

F0, L0 : ~ ' (~) -~0 ' ( f i ) ,  

F~, Lo: ~0'(~) -~ ~0'(r-), 

T o, SoEL~ and SoEL~ -) such that: 

S O and T o have principal symbols, positively homogeneous of degree 0, which : 

are >0On Z: ,  but (WF(So) U WF(To) ) N]nWF(R+)=~. (2.30) 

S o has a principal symbol, positively homogeneous of degree 0, which is strictly 

positive. (2.31) 

P.F o + R - F  o =~ T o. (2.32) 

(F0, Fo) and (L0, Lo) have the same H s continuity properties as (E, E-) in 

Theorem 1. (2.33) 

WF'(Fo) c {(e, Q) E W(To) • WF(To) } U {(/~#, fay); v E Zg, # EWF (R:*),/r5 v =/r-  #} 

(2.34) 



OPERATORS OF P R I N C I P A L  T Y P E  W I T H  I N T E R I O R  B O U N D A R Y  C O N D I T I O N S  

WF'(Lo) c {(5, 5) 6 WF(So) • WF(So) } U {/n/z,/nv); v C E o,/z 6 W F (R-* ) , / r -  v = / t - / z }  

WP'(Fo) u WF'(L0)c {(q_ 5, 5)~ (T*(F-)\0) • Z-} 

The operators L o P - S o ,  L o P  , L o R - - S  o and L o R -  have C ~ kernels. 
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(2.35) 

(2.36) 

(2.37) 

We now construct a right parametrix of ~.  I t  follows from (2.27) and (2.30) tha t  the 

principal symbol of S + T  o is >0  on E = E + U E  -. Thus we can find AeL0(~)), properly 

supported, such that  T o +A + S  is elliptic and 

WF(A) fl E = 0 .  (2.38) 

Since the principal symbol of P is different from zero outside Z, it  follows from (2.38), 

that  there exists P '  6L-re(f/), properly supported, such that  

P P '  -~ A .  (2.39) 

The construction of such a P '  is practically the same as the construction of a pseudodif- 

ferential parametrix of an elliptic operator and we omit the details. Let  (T o +A  + S)-16 

L~ and S ' - 1 6 L ~  be properly supported parametrices of the elliptic operators 

T o +A + S  and S' respectively, so that  

(T  O + A + S) (T O + A + S) -1 ~ I and S ' S  '-1 - I .  

Now put ~ = _ : D'(~2) x D'(F § ~D'(~) x D'(F-), 

where E = (L + P '  + F0) (S + T O + A) -1 - L + S ' - I R + P ' ( S  + T O + A )  -1 

E+ = L+ S'-1 

E- = F~(S + To + A) -~. 

Then (ii) and (iii) of Theorem 1 follow from (2.29), (2.33), (2.34), (2.36) and Proposi- 

tion 0.2. 

To prove the second half of (i), means to prove the following equations: 

P E  + . R - E -  - 1 (2.40) 

p E +  =_ 0 (2.41) 

R + E  + - I (2.42) 

R + E  -- O. (2.43) 

Since p L +  =_ 0 by (2.28), we get 
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P E  + R - E -  =-- (PL  + P P '  + P$'o) (S + To+ A )-~ + R-Fo(S  + T O +A)  -~ 

- - ( P L +  P P '  + (PFo+ R - F o ) )  ( S +  To+ A ) - I = - I .  

Here the last equivalence follows from (2.28), (2.39), and (2.32). This proves (2.40). 

(241) and (2.42) follow at once from (2.28). 

To prove {2.43), we note that  R + L - O  and R+L+S'- I=-I ,  by (2.28). Moreover, if we 

combine (2.30), (2.34) and the condition (0.5) in Theorem 1, we conclude that  R+F0-=0. 

Thus we get 

R+E = (R+L + R+p'  + R+Fo) (S + T O + A )  - I  - R+L+S'-IR+.P'(S + T O + A )  -1 =- 

=- R+P ' (S + T O + A ) - I  _ R+p,  (S + T O + A ) -1 = O. 

This proves (2.43) and the second half of (i) is now proved. 

Applying this result to the complex adjoint 

0 

and then passing to complex adjoints, we see that  there exists an operator 

B =  _ : E) ' (a )  x ~0'(r  § ~ D ' ( a )  x ~0 ' (p - ) ,  

which is continuous: H~~176 • H~Tm-t (P+)-~H~%~189 (~) • H~Zt (F-) for all s and such that  

B 0 - I .  I t  then follows that  B - E  and therefore the first half of (i) in Theorem 1 holds 

also. In fact, E = I E - - B 0 5 - B I  = B. This completes the proof that  Theorem 2.1 implies 

Theorem 1. 

3. A factorization and further reduction of the proof 

In this section we shall reduce the proof of Theorem 2,1 to the study of the system: 

Au = veC~176 ~u = u0eC~176 (3.1) 

Here A is the operator given in Lemma 3.1 below and Y is the restriction C~176176176 n-~) 

given by (ru) (x') =u(x ' ,  0). 

The next lemma will be the essential step in our reduction. Before reading it, the 

reader should have a look at the appendix, where we define and state some facts about the 

paces Tm(R~). Let P, Pro, Q, eo = ((xo, 0), (~o, 0)) and @o --- (x~, ~;) be as in Theorem 2.1. Then 
t r there exists an open conic neighbourhood V of AQ ={((x o, 0), (~'o, ~n))6WI~(Q)} such that  
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in a neighbourhood of V the equation Pm(X, ~)= 0 is equivalent to xn-~n  = 0 and 

V N {(x), ~)e T,(R~)~0; ~' =0} = 0 .  We can even assume that  

V = {(x, ~)eT*(R")~0; (x', ~')EV", [x,I <~v, ~./I~'[  eBv}  (3.2) 

where V " E T * ( R " - I ) ~ o  is an open conic neighbourhood of ~ and By C c R  is an open 
] t ! 

neighbourhood of {~,/] ~0 J; ((%, 0), (~0, ~,)) fi WF(Q)} and 0v > 0. 

LEMMA 3.1. There exist properly supported operators PoELm-I(R n) and A-- 

D~ - ixnr(x , D') + s(x, D') with the ]ollowing properties: 

(i) WF(Po)  N {(x, ~) fi T * ( R " ) ~ 0 ;  ~' = 0} = O,  

(ii) r(x, D')ETI(R ") is properly supported and its symbol is modulo S r equa! to r(x, ~') 

where r is positively homogeneous o/degree 1 and Re r > 0. 

(iii) s(x, D')E T~ n) is properly supported. 

(iv) W F ( P - P o A  ) N V = O. (Note that  PoAfiLm(R n) in view of (i)-(iii) and the appendix.) 

(v) Po has a principal symbol Po. m-a, which is positively homogeneous o/degree m - 1 and 

never vanishes in V. 

Proo]. We take a conic neighbourhood W of V with the same properties as V. Thus 

in particular 

W=((x ,~)eT*(g '~)~O~ (x ' ,~ ' )eW",  ]x,] <0,  ~ / l ~ ' ] e B w ) .  (3.2') 

P u t  W'={(x~,~)eRn-l• ((x ' ,  0),  ~) e W} �9 

and (-O,O)• Ix.I 

The main step in our proof is the following "preparation theorem": 

LEMMA 3.2. For every a(x, ~)ESk(W) there exist b(x ,~)Esk-m(w) and c(x,~')E 

Sk(( - 0 ,  O) • W") such that 
a(x, ~) = b(x, ~)pm(x, ~) +c(x, ~') (3.3) 

I f  a is positively homogeneous o/degree ]c then b and c can be chosen positively homogeneous 

o/degree I c - m  and k respectively, 

Proo] o /Lemma 3.2. By considering Taylor expansions with respect to x n we shall 

first find b'ESk-m(W) and cESk((-(~, ~))• W") such that  (3.3) holds to infinite order at 

Xn = 0. By the assumptions in Theorem 2.1 we have Gp~ 4=0 when xn = ~n-0 .  In particular 

~Pm/OXn 4:0 when xn = ~n = 0. (3.4) 
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Op,n/O~n =~0 when xn = E. = 0. (3.5) 

L e t p m "  Z~0 dj(x', E) x~ be the Taylor expansion of pro. By (3.5) we have ~do(x' , (E', 0))/aE, 40.  

Since Pm vanishes in W precisely when x~ = ~n =0,  we see tha t  d o vanishes precisely when 

~,~ = 0. Let  a have the Taylor expansion 

oo  

a(x, E) ~ ~. at (x', ~) xJn, a i E S ~ (W'). 
1 = 0  

We look for b' and c with the expansions 

b'(x,;)~ ~bt(x',E)~, c(x,~')~ 5c~(x,~')~. 
t=0 t~0 

That  (3.3) holds to infinite order a t  x, = 0  is equivalent to the system: 

= d t i p t (j) as(x', E) bo(x', E)dj(x', E) +bi(x' ,  E) j-l(X, E) +.. .  +bj(x,  E)do(x, E) +cj(x,  E'), 

i=0 ,1 ,2 ,3  . . . . .  

This sytem is solved with respect to b s and cj as follows: Pu t  Co(X', ~') =ao(x', (E', 0)). Then 

(0) holds for E~ = 0  and if we then put  

bo(x', ~)= do(x', E)-l(ao(X ', E)-Co(X', E')) 

i t  will hold for all ~ .  c o and b o will belong to Sk(W ") and Sk-m(W ') respectively in view of 

(3.5). Assume inductively tha t  we have already found bo, b 1 ... . .  bj_ 1 in Sk-m(W ') and co, 

C1, . . . ,  Cj_ 1 in Sk(W ") such tha t  (0), (1) . . . .  , ( ] - 1 )  hold. Then we can determine cjES~(W ") 

such tha t  (j) holds for ~ - - 0  and after tha t  bjeSk-m(W') such tha t  i t  holds for all E,. : 

We now apply a standard proof of the Borel theorem: Let  Z(xu)EC~(R) be equal to 1 

near xn=O. I f  0 <2t  -~ § oo sufficiently fast  when i-~ § ~ ,  we can put  

oo o~ 

b'(x,E)= ~ bj(x', ~) Z(~xn) x~, c(x ,~ ' )=  ~ Cj(X', ~') Z (~jXn) XJn 
i=0  i=0  

b' and c will then belong to ~k-m(W) and Sk(( -~ ,  ~) • W') respectively and have the de- 

sired Taylor expansions. (We omit the details.) We have thus constructed b' and c such tha t  

a - b'pm - c vanishes to infinite order a t  x~ = 0. Pu t  b = b' § b", where b" =p~l(a - b'I~m- c). 

I t  follows from (3.4) tha t  b"ES~-~(W) and it  is trivial to verify tha t  (3.3)holds, This 

completes the proof of Lemma 3.2. 

L~M~A 3.3. There exist r(x, ~ ' )EC~((-  ~, ~) • W") and p0,m_z(x, :~)EC~176 ~aositively 

homogeneous o/ degree 1 and m -  1 respectively, such that Re r > 0 and P0:m-140 a n d  

p,n(X, E) =Po.m--I(X, E)(E~--ix,~r(x, ~')). 
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Proo/. Apply Lemma 3.2 with a(x, ~)=~,. Then we get 

~n = b(x, ~)pm(X, ~) +c(x, ~'). 

Since Pm vanishes when xn =~,, =0, we have e((x', 0), ~') =0. Thus e(x, ~') =ixnr(x, ~') for 

some r E C~176 5, (~) • W") positively homogeneous of degree I and we g e t  

~, - i x ,  r(x, ~') = b(x, ~)pm(X, ~). (3.6) 

(3.5) implies that  b((x', 0), (~', 0))=~0. From the condition Cp~((x', 0), (~', 0 ) )>0  it then 

follows that  Re r((x', 0), ~ ')>0.  Using this inequality and the fact tha t  pro(x, ~)=~0 when 

xn~=0, we can modify r and b outside xn =0 so that  Re r > 0  in ( - ~ ,  ~$) • W" and (3.6) still 

holds. Now put  p0.m_l(X, ~) =b(x, ~)-1 and the lemma follows. 

To handle the lower order terms in the factorization (iv) in Lemma 3.1, we need the 

following easy consequence of  Lemmas 3.2 and 3.3: 

L~MMA 3.4. For every p~ES~(W) there exist p~.~_IES~-I(W) and 8k_(m_l}(X,~')~ 
Sk-(m-1)((--~, ~) • W") such that  

p~(x, ~) = Po. k-l(x, ~) ( ~ , -  ix~r(x, ~')) +Po. m-l( x, $)sk-(m-i)(x, $'). (3.7) 

Proo/. By Lemma 3.3 (3.7) is equivalent to 

- 1  P t 
Po,,,-I Pk = Po.e-1 (Po.m-1)-2Pm + 8k-(m-i). 

--1 r Thus we can apply Lemma 3.2 with a~-po.m-~pe. 

End o /proo /o /Lemma 3.1. We shall construct P0 ~ S~-~(W) with principal part  Po. m-~ 

and s(x, ~')~S~ ~) • W") such that  

p(x, ~) ~ Z P(o ~) (x, ~) D~ (~  - ixn r(x, ~') + s(x, ~')) / ~ ! (3.8) 

in W. Here p is the symbol of P, so p has the principal part  p~. We look fo r Po and s with 

the asymptotic expansions: 

Po ~ ~ Po, ~-~, Po, ~-~ ~ S~-~ W) 

o~ 

~~ ~:~_~, s~_jeS~-~(( '~ ,~)  • W"). 
J ~ 2  

By Lemma 3.3 the following statement is satisfied for N - -  1 : 
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N iv 
(~) ~ �9 t (N) ~ • po.~_~(x, ~)) D~ ( ~ -  *xnr(x, ~ ) + ~ s~,j(x, ~'))/~! 

"~ p(x, ~) + pm_~(x, ~) for some pm_~Esm-N(W). 

Assume inductively that  P0. m-j e S m-j, 1 < j ~< N and s~_: E S ~-j, 2 < ?" < N have already been 
Sm-(N+I) constructed such t h a t ( N )  holds. Then by Lemma 3.4 we can find Po.m_cv+x) E : 

and s~_(N+l~ ES ~-(N+I~ such that  ( N + I )  holds. If we let P0 and s be the asymptotic sums 

above, (3.8) follows. 

N o w : e x t e n d  r, s and P0 to C~(Rn•  So(Rn• and 

Sm-~(R n • (Rn,!~{0})) respectively so that  r satisfies (ii) in Lemma 3.1 and P0 is of order 

- c~ in a conic neighbourhood of {(x, ~) E T*(Rn)~0; ~!:=0}. This is possible at least if we 

first shrink W a little. Let  r(x, D'), s(x, D') and P0(x, D) be properly supported with 

symbols ~modulo 2 -c~ equal to r(x,~') ,  s(x,~') and po(x,~) respectively and put  

A=Dn-ixnr(x, D')+s(x, D'). Then it follows from (3.8) and the  results in the appendix 

that  (iv) of Lemma 3.1 holds. The properties (i), (iii) and (v) also follow from the construe- 

tion and Lemma 3A is proved. 

By condition 4 ~ of Theorem 2.1 we can choose V in Lemma 3.1 so small tha t  

q((x', 0), (~', 0)) ~=0 in V. Here q is the principal symbol of Q. The following lemma will 

help us to pass from the boundary condition yu = %  in (3.1) to the condition 7Qu = u o in 

Theorem 2.1. 

L ~ I ~ A  3.5. There exist properly supported operators UEL~ n-l) and TEL-I(Rn), 

such that U is elliptic, WF(T) N {(x, ~) E T*(R~)~0; ~' =0} = O  

and 7Q Z =- UTZ + 7 T A Z  

]or all Z ELM(R ~) w~th WF(Z) ~ V, M E R. 

Proo/. Let the symbol of Q be q +q', where q' ES-!(R n • ( R ~ ( 0 } ) ) .  Let  W be as in the 

proof above such that  q((x', 0), (~', 0 ) )~0  in W. As in the end of the proof of Lemma 3.1, 

it is easy to construct u E S~ and t E S-I(W) such that  

(q+9')((x',O),~),,~u(x',~')+ ~t(~l((x',O),~)(D~2(x,~))L~o/a! ( 3 . 9 )  

where ~(x, ~ )=~n- ix ,  r(x, ~')+s(x, ~'). From the construction it follows that  the homo- 

geneous principal part  of u is different from 0 in W". I t  is now easy to find our operators 

U and T. (Of. the end of the proof of Lemma 3.1.) 

Let  the spaces H(~.s~(R~), ,~(~.,)~~ ~ and H(~.~)(R ) be the Sobolev spaces defined in 

[7] and let ,~(~._~)~|176 ~ be the space of all u~O ' (R ' )  locally belonging to H(~. ~) (R n) for 

some s. The following proposition will be proved in Section 4 .  
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PROPOSITION 3.6. Let A(x, D ) = D n - i x n r ( x ,  D')+s(x,  D') be the operator given in 

Lemma 3.1. Then there exist properly ~upported operators 

/_/loo I ]~n~  .._> / . / lo t  /]I~n~ �9 /~+ Ioo n F:I~(0._~)~** ] "~(1.-~)~*''], :D'( R~I) -~H(1 . -~) ( I t  ) 

with the jollowing properties: 

(i) F is continuous 1or . ~Ior I,~.~ H(m s)(R ) -+ ]or all s 6 R  and integers m >~ O. 1~ (m+l . s -~ )  \~r ) 

(if) F + is continuous HI~ n-l~ --> ~1oo I~n~ /or all s, m 6 R .  s ~ / l~ t (m.s -rn+�88174 ] 

(iii) WF ' (F  +) c {(((x', 0), (~', 0)), (x', ~'))6 (T*(R")~0)X (T*(R"-I)~0)} �9 

(iv) W F ' ( F Z ) ~  {((x, t), (x, ~))e (T*(R") \0)  • (T*(R") \0)}  

U {(((x', 0), (~', 0)), ((x', 0), (~', ~))) e T*(R n) x (T*(R")~0)} 

/or all Z6L~(R~), M 6 R  with 

WF(Z) fl {(x, ~) 6 T*(R~)~0; ~' = 0} = 0 .  

rzloo i ~  ~ HlOO which are continuous H 1~176 (v) Let M -~  be the space of operators ~(1. -~)~*. j (2.-~) (,,.~) ~ 

HlOO /or all s, t 6 R  and integers m > 0 .  Then A F = - I  mod (M-~r A F  + has C ~ (rn+l. t) 

kernel, 7 F  = 0 and 7 F  +-- I .  

(vi) FA + F+ r - I mod (M-~176 

In the rest Of this section we shall prove that  Theorem 2.1 follows from Proposition 

3.6. Let U' 6L~ ~-1) be a properly supported parametrix of U in Lemma 3.5. By Lemma 

3.1 we can find Po 6L-(m-l~ (R~), properly supported such that  

(WF(PoP 0 - I) U WF(PoP o - I)) t] A o = ID (3.10) 

WF(Po) c V. (3.11) 

! ! 

Here we recall that  AQ ={((x o, 0), (~o, ~n))6WF(Q)}. With T as in Lemma 3.5 we put 

E = F P o - F + U ' z T P o  

E+ = F + U'. 

I t  follows at once from Propositions 3.6 and A.2 tha t  (iii) and the estimate for WF'(E+) 

in (iv) of Theorem 2.1 are valid. 

To show the first part of (iv) it is sufficient in view of Proposition 3.6 to show that  

EZ eL-~(R ~) for all Z6L~ ~) such tha t  

WF(Z) t] WF(Q) =O. (3.12) 

If  Z satisfies (3.12) then WF(P'oZ ) does not intersect 
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{(x, ~) E T * ( R n ) ~ 0 ;  xn = ~n --- 0 or ~' = 0}. 

Now ~- ix~ r (x ,  ~') (the principal symbol of A) is =~0 and belongs to S 1 outside this set. 

In view of Proposition A.2, we can therefore construct Z0 EL-~(R n) with WF(Z0) =WF(PoZ ) 

such that  P'o Z ==- A Z  o. (This is the same construction as that  of a parametrix of an elliptic 

operator.) Thus E Z  = FP'oZ - F + U' TTP'oZ - F A Z  o - F + U' ? T A Z  o. (Here -= denotes equal- 

i ty  modulo an operator with C ~~ kernel .)Now U ' z T A Z o = U ' y Q Z o - U ' U y Z o  =- - T Z o  in 

view of Lemma 3.5 and (3.12). Thus E Z = ( F A + F + z ) Z o = - ( I + K ) Z o = - Z o + K Z o  in view of 

Proposition 3.6. Here K E M  -~176 and it follows from Proposition A.2 tha t  K Z  o has C ~~ ker- 

nel. (Note that  WF(Z0) (1 {(x, ~)E T*(R~)~0; ~' =0} =O,) Thus E Z  is a pseudodifferential 

operator and (iv) of Theorem 2.1 follows. 

To prove (i) of Theorem 2.1, we let ZEZ~ n) with WF(Z) close to ~0- Then Z ~ ) =  

Z E P + Z E + ? Q .  By (iv) of Theorem 2.1 there exists ZoEL~ ~) properly supported with 

WF(Z0) close to AQ such that  

Then 
Z E P  -~ Z E P Z  o, ZE+TQ =- ZE+TQZo, Z Z  o =- Z. 

+ t 
Z,~ 0 = - Z E P Z  o + Z E  7QZo = Z F P  o P Z  o - Z F  + U' 7 TP'oPZ o + Z F  + U' 7 QZo. 

By Lemma 3.1 we have PoPZo=-AZo. Thus Z ~ O = - Z F A Z o - Z F + U ' y T A Z o + Z F + U ' ~ , Q Z o  . 

By Lemma 3.5 and Proposition 3.6 we get Z,~)~ZFAZo+ZF+~,Zo=--ZZo-~Z.  This proves 

(i) of Theorem 2.1. 

To prove (ii) means to prove the following equations: 

P E Z =  Z 

~,QEZ ~ 0 

P E + Z  ' =- 0 

~,QE+Z ' =- Z'.  

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Here ZEL~ Z'EL~ n-l) and WF(Z) and WF(Z') are close to ~0 and ~o respectively. 

By (iv) of Theorem 2.1 and Lemma 3.1 we have P E Z ~ P o A E Z .  Thus by Proposition 3.6 

we get 
P E Z  =- P o A F P ~ Z -  P0 A F + U'TTP'oZ  =- PoPoZ -~ Z, 

which proves (3.13). 

Combining (iv) of Theorem 2.1 with Lemma 3.5 we get 

y Q E Z  ~ (U 7 +TTA) EZ.  

Combining this with the definition of E and Proposition 3.6, we see that  (3.14) is valid. 
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(3.15) and (3.16) are easy consequences of Lemma 3.1 and Proposition 3.6. We omit the 

details. This completes the proof of Theorem 2.1. 

4. Proot of Proposition 3.6 

Proposition 3.6 states essentially tha t  the system 

A u = v  ~ u = u  0 (4.1) 

is uniquely solvable for . . . .  lor given v ~ 0 . - ~ )  and u 0 E/)'(Rn-1). Stated in this way the result is 

not new. E~kin [6] has treated much more general problems than (4.1). The new feature 

here is tha t  we obtain explicit formulas for the solution operators, which enable us to 

estimate their wavefront sets. This has been essential in the chain of proofs leading from 

Proposition 3.6 to Theorems 1 and 2. 

We begin with an informal discussion. For given functions v i n  R ~ and u 0 in R n-1 we 

put  

f(] ) + q(x,(y', 0), ~') e~<X'-Y"~'>uo(y ') dy' d~'/(2~) n-l, (4.2) 

where the symbol q has to be determined in a suitable way. Then we have at  least 

formally: 

Au(x) = f ( f q(x,(y', x,), ~') e'<x'-~"~'> v(y', x.) dy') d~'/ (2~) "-1 

) ~- i(2~) ~-n A(x, Dx) (q(~, y, ~') e~:"~'~) e -~"  ~'~ v(y) dy' dyn d~' 
q} \ t ] O  * 

) + (x, D~) (q(x, (y', 0), ~') e ~(~''~'~) e -~<Y"~'~uO(y' ) dy' d~'/(27~) ~-~, (4.3) 

The first integral here is the boundary term ,we get when we apply the term D~ in A on 

the first integral in (4.2.) 

We shall construct q E C ~176 such tha t  

q(x, (y', xn), s = (I)(x' - y ' ) ,  (4.4) 

where (I)EC~ (R n-l) and ( I )=l  near the origin, and such tha t  A(x, Dx)(q(x, y, s ~<x''~'>) 

and all its derivatives are rapidly decreasing as functions of ~'. Then  if u is given by  (4.2) 

it follows from Fouriers inversion formula tha t  
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ru(x ' )  = r  -x')Uo(X') = u0(x'). (4.5) 

Using Fouriers inversion formula in the first integral hi (4.3) and carrying out the ~'- 

integratious in the other two, we get: 

z~ 

u ' " d '  Au (x )=v (x )+ i fo  ( f k ( x , y ) v ( y ) d y ' ) d y , +  fk(x,(y ' ,O)) o~Y) Y ,  (4.6) 

where k is smooth. We shall see later tha t  the first integral is in M -~. Then (4.5) and (4.6) 

show tha t  u; given by  (4.2), is an approximate solution of (4.1), 

The program will now be as follows: First we define and investigate certain symbol  

spaces. After tha t  we define (F, F+), prove the continuity properties in Hr and tha t  

(F, F +) is a right parametr ix of (4.1). By an analogous construction (which we only sketch) 

there is a left parametr ix and this implies tha t  (F, F+) is also a left parametrix.  Finally 

we estimate WF ' (F )  and WF'(Iv+). 

We recall the definition of ~ (X x R N) in [8] and make the following generalization 

in the case when X is the product of two open sets: 

De/inition 4.1. Let  X'  Q R n" and X" c R ~" be open and Q, 5', 5", m be real numbers. Then 

we let ~ ,6~ (X' x X  ~ x R  N) be the set of all pEC~176 ' x X "  x R  ~) such tha t  for all compact  

subsets K c  X '  x X" and multiindices ~, fl and 7, there is a constant 0 such tha t  

IDx.D,.n~p(x,~ ~ ~ ' x", ~)I~<C(I+I~I)  ~+~'1~1+*'1~1-~1~1, f o r a l l ( x ' , x ' , ~ ) e K x R  ~. 

I f  X '  and X" are as in Definition 4.1 and X" is the closure of X ~ in R n', we let 

C~176 ' x X ~ x R N) be the set of all functions 1 e Coo(X' x X" x R~), such tha t  I and all its 

derivatives have continuous extensions to X'  x X" x R N. We now de/ine S~,a. (X' x _~" x R N) 

by replacing X ~ by X"  everywhere in Delinition 4.1 (except in the lirst line). 

Next  we extend the notion of asymptotic  convergence. 

De/inition 4.2. Suppose tha t  p~E S'q'J.~.(X' x X" x RN), i = 1, 2, 3 . . . .  and tha t  m s -~ - cr 

when j -~ + oo. I f  p E C ~ (X' • X" x RN), and  if for every ~o 

~o 

where M(j0) = maxj>jomj, we write p ~- ~ = l P j  and say tha t  p is asymptotically equal to 

5~1Pi" 
~We define asymptic convergence in the space S~,~. ( X ' x  X~ x R N) in exactly the 

same way. 
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L ~ ~ A  4.3. Suppose p~ E S~,~. (X' • X ~ • RN), ~ = 1, 2, 3 . . . .  where m~ -~ -- c~ when 

]--> + ~ Then there exists TE ' Q m a x ( m i ) l Y '  X . ~  n xR~), such that p N  Z ~ p ~ .  The corre- 

sponding statement holds also in the spaces S~.~, (X'  • X"  • R~). 

The proof of the lemma is identical with that  of the corresponding statemen~ for the 

spaces S ~ ( X •  ~) (see [8]): We put p(x',x~,~) = F~=~(1-)~(e~))p~(x',x",~), where 

Z E Cff (R ~) is equal to 1 near the origin and 0 < e~ ~ 0 sufficiently fast when ?" -~ § oo. 

We let the reader check the details himself or consult [8]. 

Definition 4.2 and Lemma 4.3 have immediate extensions to asymptotic sums of the 

form p ~ ~p~ where the sum is taken over n-tuples of integers >~0. 

Let  U =  {(x~, yn) ER2; 0< yn < X n or x~< y~< 0} and let ~ be its closure in R ~. 

Definition 4�9 Let ~ be the space of symbols p(x, y, ~'), x, y E R',  ~'E R ~-1, belonging 

to ST01(R2(~-I)•215 when regarded as functions of ( (x ' ,y ' ) , (x , ,y~) ,~ ' )E 

R 2(~-1)  • U • R ~-~.  We let ~ -~  = ['1 mcR ~m. 

L v . ~ A  4.5�9 I / T  E T m (R ~) is properly supported with symbol t(x, ~') and i /q  E ]~, then 

e-t<~"~'> T(x, D'~) (q(x, y, ~') e t<~''~')) ,,, ~ t (~'~ (x, ~') D~:q( x, y, ~') / ~' !. 

Proo/. Clearly t(~')D~;qE~ k+'~-I~l. Thus by Lemma 4.3 there exists Q(T,q)E~ k+'~, 

such that  Q(T, q),~ ~t(~')D~:q/a ~ !. Put  R(T, q)= e -i<x''~'> T(q et<X"~;>). Then for all T and q 

as in the lemma, N > 0 and multiindices ~', fl~ and ~' we have: 

D~: D~i D~:(Q(T, q) -- R(T, q)) :- 0(]~'1 ~ )  when ~' -~ ~ ,  

uniformly when (x ~, y', xn, Yn) belongs to any compact subset of R ~(~-1) x U. (4.7) 

In fact, this follows if we regard T as a pseudodifferential operator in R n-l, depending 

on the parameter x~ and regard q as an element of S~0 (R 2(n'I) X R~I ) ,  depending on the 

parameters x~ and Yn and apply weUknown results on asymptotic expansions (see Theo- 

rem 2.6 in [8]). 

Let  T~,ET m (R")be the operator with symbol Dxnt. Then: 

Dx~Q(T, q) ~ Q(T~,, q) § Q(T, D~,q) and Dy, Q(T, q) - Q(T, Dy~q) mod (~-~). 

Similarly: D x n R ( T , q ) = R ( T ~ , q ) §  and D~R (T ,q )=R (T ,D~ ,q ) .  

Thus by induction we see that  for all an and fin the difference Dx~D~,(Q(T, q) R(T,  q)) 

i s  asymptotically equal to a finite sum of terms of the type:  Q(T', q') - R(T' ,  q'), where 

T '  and q' are as in the lemma; Then (417) implies that  
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D~D~yD~:(Q(T, q) - R(T ,  q) )= O(]~'] -~) when ~'-~ ~o, 

uniformly when ((x', y'), (x~,y~)) belongs to any compact subset of R 2(n-1) x U. This is 

precisely the s ta tement  in the lemma. 

We can now state how to choose q in (4.2), 

LE•MA 4.6. Let (I)EC~(R n-l) be equal to 1 near the origin and have support in 

(X' e R n-1 ; IX'I< i} .  Then there exists q e ~o with the/ollowing properties: 

(i) q(x, (y', xn), ~!) = O(x' - y'). 

(if) eZ~<~":~'>A(x, Dx) (q(x,y, ~') e ~<x''r>) e ~-~.  

(iii) ~F(x, y) q(x, y, ~') e ~ - ~  /or all ~J" e C ~ (R z ~), vanishing near {(x, y) e R'~n; x n = Yn}" 

(iv) q(x, y, ~') ~: 0 implies that I x "  y[ < 2. 

[~" t), ~ ) dt, (v) Let R(x, y~, ~') = - t r((x', ' 
~I Y n  

where r is given in Lemma 3:1 and let g e C o (R n-l) be equal to 1 near the origin. Then 

t q(x, y, ~ ) " O ( x '  - y') (1 - Z(~')) e R(x'~''~') e ~-�89 

We shall first define and investigate a very special class of symbols. After that  the 

proof of Lemma 4.6 will be easy. 

De]inition 4.7. For mE R, let ~m be the smallest set, closed under addition, that  con- 

tains all p e  C| 2(~-~) x U x t t  ~-~) for which there are integers 0 ~< k 1 ~ k 2 and 

a(x, y, ~') e ST0 +(k'+k')/~ (R 2n x lt~-l), 

X t such that  p( ,y ,~)=y~ ' (x~- -y~)k 'a (x ,y ,~ ' )eR(Z ,Y"~ ' )  ~'~ J~'l>�89 

Here :R(X, yn, ~') = " j '~ :  t r((~x ', t) i$')  dt as  above, 

t - -  k l  k2 X Lv,~MX 4.8. Let c(x, y, ~ ) - y ,  (xn-Yn) a( ,y ,  ~'). where k 1 and  Ic2 are integers >~0 

and h e r o .  Then there is a symbol be  STo such that 

f :': c( (x', t), y, ~') dt = y~' (x, - y , )"+ ' b( x, y, ~'), 

Proo]. Put  Xn - Yn = s. Then 

c((x , t), y, ~') dt=y~'s~'+l d(x', s, y, ~'), (4.8) 
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/i where d(x', s, y, ~') = tk'a( (x ', y~ + ts), y, ~') dr. 

Thus dE ST0(R ~" • R "-~) and the lemma follows if we pu t  b(x, y, ~')=d(x', x~-yn ,  y, ~'). 

If  we write xnr(x , ~') = ynr(x, ~') + (x~ - yn) r(x, ~'), we see from Lemma  4.8 and the 

definit ion of R tha t :  

R(x,y~,~ ' )=yn(xn-y~)Rl(x ,  yn,~')+(x~-yn)~Ra(x, yn,~ ') for  1~r189 (4.9) 

where R 1 and R2 e S~0. F rom (4.9) one obtains easily: 

pe  Sm =~ D~D~yD~:pe S~+=,+Z,-I,'J for  all ~r ~,'. (4.10) 

L~MMA 4.9. S m c  ~a. 

Proo/. B y  (4.10) i t  suffices to  prove t ha t  if p E S  ~, then  

p(x,y,~')=O(l~'lm), ~ ' - ~ ,  

uniformly when ((x', y'), (x~, y~)) belongs to  any  compact  subset of R a(n-~) • U. 

If  K is such a compact  set, there  is a constant  C~: > 0, such tha t  Re  R(x, y~, ~e,)< 

--CKlx~llx~--y~ll~'l, when ((x ' ,y ' ) ,  (x~,y~))eK. In  fact,  by  L emma  3.1 we then  have 

Re r(x, ~') > 2 CK I~'1 for  some C K > 0, thus 

L" ,f; ReR(~ ,y~ ,~ ' l=  - tRe , ' ( (x ' , t / ,~ ' /dt<  - 2 C ~ 1 ~ '  td t=  - ~ I ~ ' I ( ~ - Y ~ /  

Let  p ~ Sin. We can assume tha t  

p(x,y, ~')=y~'(xn:-yn)~'a(x,y, ~')e a(~'~'~') for  ]~'] >�89 

where/c  a ~>/ct >/0 are integers and a e S~0 +(~'+~')~e. Then  for ((x', y'), (xn, Yn)) e K and I~'[ > �89 

we have I z ~ - ~ l <  I~l >1 ly~l, thu~ 

< e lt' I m sup t ~;*~,)'a ~-~ < e ' l t '  I ~. 

This proves Lemma  4.9. ,~ 

In  the same way  we obtain from (4.9): 

-- 732904 Ac ta  ~nathsma$~a 130. I m p r i m 6  le 30 J a n v i e r  1973 
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L~M~A 4.10. I] p e S  ~, then pl~--oe S~0 �89 2Cn-1) • It  • Rn-1), when regarded as a/unc- 

tion of ( ( x', y'), x n, ~') E R ~(n71) • R • R n-1. 

We omit  the  simple proof. The  nex t  lemma is the essential step in our  proof of 

Lemma  4.6. 

L E p t A  4.11. I f  uEC:C(R 2(n-1) x 0 x R  n-~) satisfies u}z~=y,=0 a n d  

X ! t t Dxnu( , y ,$  ) - ixnr(x ,  ~ )u(x ,y ,~  )=v(x, y,~') /or I~'[ >3 ,  where y e s  k, then u e S  ~-�89 

Proof. We may  assume tha t  v(x, y, ~') = y~' (xn - y~)k'a(x, y, ~') e R(~'~'r) for ]~'1 > 3, 

where/c  1/> k~ ~> 0 are integers and a e S~o +(k'+k')/2. Then  for: I ~'l > �89 : 

u(x, y, ~') = eR(~'~'~')i e-R((~"t)'Y~'~')v((x ', t), y, ~') clt 
,,1 Y n  

= e ~(~'~''~') i f~ ~ ~ (t - yD~'a((x ', t), y, ~') dt. Y 

Thus by  Lemma  4.8: 

u(x, y, ~') = eR(~'Y~'~')y~ ' ( x ~ - ~  '~'§ Yn~ ~ ,y ,~ ' )  for 1~'[>�89 

where b ~ .~+(~,+~)m __ ~(~- ~}+(~+(k~+i))/~ ~ J 1 0  - -  * ~ 1 0  �9 

Therefore  u E S~- �89 as asserted. 

Proof o /Lemma 4.6. Recursively we shall construct  q~ ES - ~ ,  j---0, 1, 2 . . . . .  satisfying: 

q~(x, (y', xn), ~ ' )=  ( I ) ( x ' - y ' )  if ~ = 0  and = 0  if ~ >0 ,  (4.11) 

such tha t  for each integer N ~> 0: 

(N) e-'(x"~'>A(x, D~)(~ q~e ~(~''r>) ~ ~ q~, where qN, e S  -'~+~)m. 
0 ~ = 0  

Take qoe& ~ equal to  ~P(x ' -y ' )e  n(z'~'i') for [~'1 > 3  and such t ha t  qolz,=~,=O(x ' - y ' ) .  

(This is possible because R(x, xn, ~') = 0:) Then  Dz~qo - ixnr(x, ~')q0 = 0 for ]~'[ > 3. Thus  

by  L e m m a  4.5: 
oo 

e - ~ "  ~'~A(x, D~) (% e ~ '  ~'~) ~ ~(x, ~') qo + ~ (ix~ r (~') (x, ~ ' )+  s (~') (x, ~')) D~'"~'~o~ a'~. ~ ~ q0, 

where qo~ e ~-~/e. (Here I~'! = ~r + . . .  + ~n-~, ~' = (:r . . . . .  ~n-~))" 

This proves (0). Suppose now tha t  q0 . . . . .  q~_~ have already been constructed,  such t ha t  

(0) . . . . .  ( N -  1) hold. Then  let qx~ C ~r be a solution of the sys tem.  
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Dx~qN--ix~r(x,~')qN= --qN-~.0, I~'] >�89 

Then qNES -N/2 by Lemma 4.11 and it follows from ( N -  1) and Lemma 4.5 that  (N) holds 

with suitable qN~ E S-(N+~)I~. 

Since (I)(x' - y ' )  =0  for Ix' ~y'] > l,  it follows from our construction that  we can choose 

our q~ such that  
qj(x, y, ~') =0 when ] x ' - y '  I >1. (4.12) 

If 1FEC~176 vanishes near ((x, y); Xn=Yn} , w e  have IF(x,y)p(x,y,  8')E]~-~176 for every 

p E ~m. In particular: 
~F(x, y) qj(x, y, ~') ~ S -~162 (4.13) 

From Lemma 4.3 and its proof it follows, that  there exists q E~ ~ satisfying (i) of Lem- 

ma 4.6, such that: 
oo 

q ~ E q~ (4.14) 
t=0 

anu q(x, y, ~') =0 if I x ' - y ' l  >1. (4.15) 

From all the equations (N) it then follows that  (ii) of Lemma 4.6 is satisfied, and (iii) 

follows from (4.13) since 
00 

UF(x, y) q(x, y, ~') ~ ~ tF(x, y) qj(x, y, ~'). 
1=o 

(v) follows directly from the construction. 

To make (iv) satisfied, we have to modify q. We replace q(x,y,~') by 

X(x,~-y,~)q(x,y,~'), where zEC~~ i s = l  near the origin and has its support in 

{tER; It I <1}, Then (iv) will be satisfied i n  view Of (4.15) and the other properties of q 

will be preserved, since we have only added the term (Z(xn--yn)- 1)q(x, y, ~'), which be- 

longs to ~-oo in view of (iii). This completes the proof of Lemma 4.6, 

Now take a fixed q as in  Lemma 4.6 and define the operators 

F :  C~176 ~) -> C~176 and F+: CoO(R n-l) -> Co0(R n) 

by the equations: 

 v(x) 

where x E R ~, v E C~176 (R~) and u 0 E C r (It n, 1). 
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To prove (i) and (ii) of Proposition 3.6, we shall follow TrOves [18]. I f / / 1  and Hs are 

complex ttilber~ spaces, let L(Hx, Hs) be the Banaeh space of bounded linear operators 

H~->It~; the operator norm will be denoted by If I1" 

T ~ o ~ M  4.12. Let s(x', y', ~') be a C ~176 /unction o/(x', y', ~') ~R ~-~ •  n-x x R  n-~ with 

values in L(H~, He) and s u ~  in K x R n-~, where K ~  ~ R ~-~ • R n-~. 8uTpose that/or all 

multiindieea od, fl' and ~' there is a constant C, such that 

v', e')l( -< + on K • a "- ' .  (4.16) 

Then the operator S: C~ (R ~-1, HI) ~ C~ (R ~-*, H~), defined by 

[ . ?  
Sw(x') = JJs(x ' ,  y', ~') e'<~'-~"i'>w(y ") dy" d~', we C~ (R ~-~, H1), (4.17) 

can be extended to a bounded linear operator Hs(R ~-1, H1) -~ H,_~(R n-l, Ha)/or all s6R. 

When H 1 = Hs = C the theorem is a wellknown result about presudodifferential oper- 

ators (see [8] p. 154) and the same proof works in the general ease. Using this theorem we 

shall prove: 

PROPOSITION 4.13. I] p e ]~k U ~k+I1~, then the operator 

& :  cg  (It -. c 
deJined by 

f(H, A~v(x) (x, y, $') et~'~v"~'>v(y) d ' d . . . .  ~= y Yn)ar xeRn, veCg(Rn),  

can be extended to a continuous linear operator f./comp/l~n~ ~ T_/loc 

Pro@ I t  suffices to prove that  for arbitrary ap, ~FEC~(R n) the operator 

8:G~(Rn)gv-*aPAp(Wv)EC~(R n) can be extended to a continuous linear operator 

H(o.8~-~Ht0.8_k) for 'all s. In fact, A~can be written as a locally finite sum of operators of 

this type. 

Now the map: 

H(o.,~(R~)3 u ~ (x' ~ (x~ -~ u(x', x~))) EH~(R n-l, L~'(R)) (4.18) 

is a bijeetive isometry. By the same map we can regard C~r n) as a subspace of 

C~(R~-I, L2(R)) and we can write S in the form (4.17) with HI=H~=L~(R) and 

s(x', y', ~') being the operator LZ(R)~-L2(R), defined by 

f; s(x', y', ~') u(xn) ~-- alP(x) p(x, y, ~') u~.(y) u(v, ) dyn. (4.19) 
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There  remains  only to  prove  (4.16) for then  we can app ly  Theorem 4.12. N o w  

D~:D~:D~:s(x', y', ~') is a sum of opera tors  of the  fo rm (4.19) wi th  some (I), ~FEC~(R ") 

and  p ~ - M  0 ~ + ~ - I r q .  Thus  it  suffices to  prove  (4.16) in the  case when ~' =~' =7'  = 0 .  

Le t  us use an e lementa ry  l emma  (see [18] pp. 93-94 for a proof). 

LEMMA 4.14. Let (X, dx), (Y, dy) be two measure spaces and let k(x, y) be a measurable 

/unction on X • Y, such that the/unctions S]k(x, y)[dy and ~ [k(x, y) ldx belong to L~(X,  dx) 

and L~( Y, dy) respectively and their L ~ norms are both less than or equal to C. Then 

Ku(x)  = f k(x, y) u(y) dy, ueL~( Y, dy) (4.20) 

de/ines a bounded linear operator L2( Y, dy)-->L~(X, dx) with norm less than or equal to C. 

I n  view of the  l emma  it  suffices to  prove  

sup r p(x, y, ~') ~(y)  l < const. (1+ I~'1) ~ (4.21) 
xn 

and sup ~ I~p(x)p(x,y,~')~F(y)[dx,]<~const. (1+]~ '1 )  k. (4.22) 
Yn J xn/Yn > 1 

(4.21) and  (4.22) are obvious when pE ~ so we assume t h a t  p e S  k+�89 Then  we can even  

assume t h a t  
p(x, y, ~') = y~'(x n - y,)~" a(x, y, ~') e R(~'~-' e) for [~'1 > �89 

where k2~>kl~>0 are integers and  a E S  ~+(k1+~'+1)/~. As in the  proof  of L e m m a  4.9 we see 

t h a t  

Ir y, ~')~(y)[ < const. I~'[~+(~'+~'+~"~[~.[ ~' [ ~ -  y.[~' e~p ( -  C I r . -  Y.[ [~1 [~'1) 

for ]~'1 >�89 where C > 0 .  Thus  to  prove  (4.21) and  (4.22) it  is sufficient to  prove  

51 "x~' (xn exp ( C(xn Yn) x,~ ~) dyn y,,)~' c o a s t .  ~- (k l+k ,+l ) ]2  (4.23) 

and  

ff ~ (x n y.)k, exp ( C(x n Yn) xn]~) dxn ggknl c o n s t .  (4.24) 
n 

for all 2 > 0, x ,  >/0, y ,  ~> 0. B y  a change of variables  with T = x n (C2) �89 t = y ,  (C2) t we get  

(kl + k~+ l)12 ka k2 (C~) xn (xn--yn) exp ( -C(x ,~ -yn )  xn2)dy . 

f2 V = T ~ , ( T - t ) ~ , e x p ( - ( T - t ) T ) d t = T  k,-k,-~ ~,e-~d~, 
dO 
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which is bounded. This proves (4.23) and (4.24) can be proved similarly. The proof of 

PrOposition 4.13 is complete. 

By  applying Theorem 4.12 with H i =C and H~ =L~(R), one can prove in exactly the 

same way: 

P ~ o ~ o s I T I O ~  4.15. I / p  6]~ ~ 0 "S ~+~, thenthe operator Bp: C~(R~-l)~C~176 by 

l:~e-- ^~er~t ̂ ~ H C ~  1~162 IRn~ /or all s 6 R .  can be extended to a continuous ~,~ ~ ~,1~ ~ ~,, ~ ~ ~ (o.~-k)\ 

Let II [l(m.s~ be the norm in Hcm.~)(R~). Then if m is an integer ~>0, the norm Hvll(m,~) 

is equivalent to the norm E'~=o HD~v]l,o.,+m-k). To prove tha t  F can be extended to a lin- 

~oo ~oo such tha t  (i) of Proposition 3.6 holds it therefore suffices ear operator ,~(0._~)-~(1._~) 

to prove 

(i') I f  m and k are integers such tha t  0 ~< k ~< m + 1 ~> 1 then D~ F can be extended to 

a continuous linear operator rj~oc ~oc . u  (m, s)  "---~ ~.L (0, r e + s - k §  ~)" 

When k = 0  this follows from Proposition 4.13 since the symbol q, used in the definition 

of F,  can be writ ten q = q o + q  '~, where % 6 S  ~ and q's189 By the same argument as used 

by  HSrmander [8] to prove the composition formula for pseudodifferential operators, w e  

are allowed to calculate formally and obtain 

Note tha t  the last integral is equal to v(x) by (i) of Lemma 4.6 and Fourier 's  inversion 

formula. By induction we get 

D~Fv(x)=i f (f;" fDLq(x,y,~')c'<~'-~"~'>v(y)dy' dy~) d~[ (2~)  n-1 

k - 1  

+ ~ ~'j(x, Dx,) D~v: v e C ~ (R~), 
1=0 

where Tj6TZ-r  are properly supported. Here we can apply Proposition 4.13 on the 

first integral and the results in the  appendix on the other terms, to see tha t  (i') holds. This 

proves (i) of Proposition 3.6 and we omit  the proof of (ii) which is quite similar. 
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Definition 4.16. We let N -~  be the class of operators K: Co(R~)-+C~(R n) of the form 

f:? Ku(x) = k(x, y) u(y) dy' dye, u e C~ (R~), 

where keC~(R ~(~-1) • U) is a function of ((x', y'), (x~, y~)). 
Then we have 

comp n __>. Each KE/V -~176 can be extended to a continuous linear operator H(~.~)(R ) 

H1OO i~n~ for all s, tER and integers m~>0. (4.26) (m+l . t )~  ~ ] 

Proof o/(v) o/Proposition 3.6. I t  is evident  tha t  yF =0 and by  Fourier 's inversion 

formula we see tha t  ~E  +-- I .  

, :By the usual argument  we are allowed to operate under the sign of integration and 

get: 

T Fv(x) = i f ( f  ~" f T(x, Dx,) (q(x, y, 2') e'<~'-~"~'>) v(y) dy' dy,) d2'/ (2zF -~ 

for all v E C ~ (R n) and TE Tk(R~). Combining this with (4.25) ̀  and the immediately fol- 

lowing remark, we get: 

f(f/f ) AEv(x)=v(x)+ q_oc(x,y, 2')e~<~'-v"~'>v(y) dy' dy~ d2', veC~(Rn) ,  

where q_~ (x, y, 2') = - i ( 2 ~ )  -n+l e-~<~"~'>A(x, Dx) (q(x, y, 2') e~<X"~'>), Thus q_~ e ~  -~  by  

(ii) of Lemma 4.6 and therefore: 

f0? A_~v(x) = v(x) + lc(x, y) v(y) dy' dyn, v E C ~ (Its), 

where k(x, y) = ~q_:r (x, y, 2') el<*'-v"~'>d2 ' belongs to C ~ (R ~(n-1) x U) as a function of 

((x', y'), (xn, Yn)). This proves tha t  

A F  = I mod (N-~), (4.27) 

so by  (4.26) it follows tha t  A F - - - I  mod (M-~). That  AF+  has C ~ kernel is proved in the 

same way and we omit  the details. This completes the proof of (v) of Proposition 3.6. 

Proof of (vi) of Proposition 3.6. We shall first construct operators G: C~176 n) 
and G+: C~(R~-~)-~Co~(R~), such that:  

GA + G+~ - I mod (N-~). (4.28) 
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L ~ M A  4.17. Let tA be the real ~]oint o /A .  Then there exists gE$ ~ such ~hat: 

(i) tA(y, D~)(g(x, y, ~')e~<~'-~"r>)e~ -~ 

(ii) g(x, (y', x,), ~')=~P(x'-y'), where (I)eC~(R "-1) is =1 near the origin. 

(iii) g(x, y, ~')=0 when I x - y l  >2. 

The proof of Lemma 4.17 is almost identical with that  of Lemma 4.6, so we omit it. 

Now put: 

and 

These equations define our operators G and G +. For ~E C ~ (R n) we get Mter a partial 

integration: 

f(H ) GAu(x) = i ~A(y, Dr) (g(x, y, ~') e ~<~'-~''~'>) u(y) dy' dyn d~'/(2~r) "-~ 

Here the last two integrals are boundary terms originating f rom the term D~ in A(y, D~). 

Lamina 4.17 implies that  the first integral is =~"~ k(x, y)u(y)dy'dy~, where keC  ~176 and 

that  the second integral is = u(x). The last integral is = -G+yu(x). This proves (4.28). 

Next we show that  (G, G +) is approximately equal to (_~, F+). From (v) of Proposi- 

tion 3.6 and (4.27) it follows that  

where K1EN -~ and K~ has O ~ kernel. On the other hand (4.28) implies that  

(CI, G +) ( F , F + ) = ( I + K ~ ) ( F , F + ) = ( F + K 2 F ,  F++K2F+), 

where K~ E N-  ~0. Thus (G + OK 1, G + + GK~) = (F + K~ F, F § + K~ F +) or equivalently: 

F - G  = GK 1 - K ~ F  

F+ - G + = GK~ - K2 F+. 
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By (4.28) we get: 

FA + F+~ - I -  F A  + F + ~ - G A - G + ~  - ( F - G ) A  +(F+-G+)~ 

- (GK 1 - K 2 F)A + (GK~ - K  s F+)~ rood (N-~). 

Using Proposition 4.13, we show as in the proof of (i) tha t  G can be extended to a con- 

~1oc ~1o0 ~ for all s E R and integers m >/0. Moreover it is wellknown tinuous operator a~(m.s)-->a.L(m+l,s_l)] 

~1oo ~ n ~ t o o  ~u~-l~ for all s, so it follows that  ( G K 1 - K 2 F ) A +  that  ~ is continuous --(1.s)~-~ j---~+�89 j 

(GK + - K  s F+)~ E M -'~. This proves (vi) of Proposition 3.6. 

(iii) o/Proposition 3.6 follows from the following two facts: 

(a) By Proposition 2,5.7 in [10] we have 

W F ' ( F + ) c  {((x, (~', 0)),: (x', ~'))e (T*(R~)\0)  x (T*(R~- I ) \0}  

(b) From (iii) of Lemma 4.6 it follows that  the distribution kernel k(x, y') of F + is smooth 

outside the plane x~ = 0. 

Proo/ o/ (iv) o/Proposition 3.6. We shall first prove 

((x, ~), (y, ~ ) )eWF' (F)  ~ ~' =~ '  = 0  or ~' =~ '  4=0 and x' =y' .  (4.29) 

To do so we note tha t  

Fu(x) = f ~ Q ~ ( x ' ,  D~,) u(x', y~) dye, ue  C~ (R~), 

where Q~,~ is given by 

X ! " f f q  ! O,~v~( ,D~.)w=~ (x,y,~ )e~'-~"r>w(y')dy' d~'/(2~) ~-1, wEC~(R~-i).  

Clearly Qx~ is a locally bounded function of (xn, Yn) E U with values in L~ On any 

compact set where x' +y' we therefore have tmiform bounds for the derivatives of the 

kernel Q ~ ( x ' ,  y') with respect to x' and y'  which proves that  ~ '=~ '  =0  if ((x, ~), (y, ~))E 

WF'(F)  and x'~=y'. Let  (I)~C~(R ~-1 xR~-l) ,  ~F~ C~(R xR).  Since the wave front set of 

the kernel of a pseudo-differential operator belongs to the normal bundle of the diagonal 

the Fourier transform of the distribution ~P(x', y ' )Q~,(x ' ,  y') with respect to (x', y') is 

rapidly decreasing when (~', ~') belongs to any closed cone where @' +~'  4:0. If the kernel 

of 2' is also denoted by  F,  it follows by  integration with respect to x ,  and y,  that  the Fou- 

rier transform of (I)(x', y')~F(xn, yn)F(x, y) is rapidly decreasing when (~, ~/) belongs to a 

closed cone where ~' 4= - ~ ' .  This proves (4.29). 

Since v ) = o  when I -I < lY-I we have 

>/lY I- (4.30) 
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LV,••A 4.18. Let Z ELM(R n) and zEL~ n) be properly supported and satis/y: 

(WF(z) (J WF(Z)) N {(x, ~) e T*(Rn)~0; ~' = 0} = O  (4.31) 

W F ( I - z )  N {(x, ~)ET*(Rn)~0; x~ =8~ =0} =O.  (4.32) 

Then (I -Z ) 'FZ  ~LM-I(Rn), 80 in particular 

W F ' ( ( / - Z )  F Z ) ~  {((x, ~), (x, ~)) e(T*(R~)~0) • (T*(an)~0)}. 

Proo/. Since the principal symbol of A is + 0  and belongs to S 1 outside {(x, ~)E 

T*(Rn)~.O; xn = ~n =0 or ~' =0} we can find A' EL-I(R n) with WF(A') N {(x, ~) E T*(RS)~0; 

~' =0} =13, properly supported and such that  W F ( A ' A - I ) U  W F ( A A ' - I )  is arbitrarily 

close to {(x, ~) E T*(Rn)~0; x~ =~,  =0  or ~' --0). (See Prop. A.1.) Using such a A' it is easy 

to construct ;go ELO(RS), properly supported such that WF(I-)c0)  ~ W F ( I - g )  and 

A ( I - z )  ~ ( I - z o ) A  rood (L-~), 

where L-oo is the set of operators with C ~ kernel. With A' as above it suffices to prove that  

( / - Z )  FZ  =- ( I - x ) A ' Z .  

Put  B = ( I - z )  F Z -  ( I - z ) A ' Z .  

Then AB --- ( I - g o ) A F Z - ( I - X o ) A A ' Z  mod (L-~176 

By the choice of A' we have 

(I-)co)AA'Z = ( I - z o ) Z  rood (L-~). 

By  (v) of Proposition 3.6 we have 

( I - z o ) A F Z  -= ( I - g o ) Z  rood (M-~ 

In view of Proposition A.2 and (4.3!) we have M--~176 -~176 Thus A B = 0  rood (L-m). By 

(vi) of Proposition 3.6 we then get 

B = F A B  + F+~B + K B  =--- F+opB + K B  mod (L-~176 

where K E M -~. Using Proposition A.2 we see that  K B  EL -c~ thus 

B =- F+vB rood (L-oo). 
Take gx EL~ such that 

w F ( I - z ~ )  n {(x, ~) e T * ( R " ) \ 0 ;  x .  = ~. = 0} = O  

and (I -Z1) (I -Z)  ~" ( I - -z)  mod (L-oo). 
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Then we get B = ( I - z 1 )  B = ( I - z 1 )  F+yB = 0 mod (L-~). 

Here the last equivalence follows from two facts: 

1) ( I - z 1 ) F  + has C ~ kernel by  (iii) of Proposition 3.6. 

2) From Propositions A.2 and 3.6 and the definition of B i t  follows tha t  y B  is continuous 

H l O C l p n ~  ~loc [lI~n-ll ~L, j . . . . .  M~*~ j for a l l s 6 R .  

This completes the proof of the lemma. 

With g and Z as in Lemma~4.18 we write 

FZ = ( I - z )  F Z  + z F Z .  

To prove (iv) of Proposition 3.6, it suffices in view of the lemma to estimate WF'(z .FZ ). 

Combining (4.29) and (4.30) we get: 

((x, ~), (y, 7)) 6WF ' (zFZ)  ~ (x, ~) 6WF(z  ), (z', ~') = (y', ~/), ]y,] 4 Ix, 1. 

Now the desired estimate follows, since we can choose Z with WF(Z ) arbitrari ly close to 

{(x, ~) 6 T*(R=)~0;  ~= = x~ = 0}. 

This completes the proof of Proposition 3.6 and Theorems 1 and 2 are now completely 

proved: 

Remark 4.19. With the methods of this section one can t reat  (4.1) in the more general 

case when A(x, D ) =  D ~ - i x ~  r(x, D ' )+  s(x, D'). Here k is odd and r and s are the same 

operators as before. This shows tha t  Theorems 1 and 2 hold with appropriate modifications 

for more general operators P. 

Remark 4.20. At the AMS conference held at  Berkeley in August 1971 M Sato announced 

for the analytic case a stronger result than  the conjunction of Lemmas 2.2 and 3.1, which 

allows one to transform to A = D n - ix~D=_ r, For this operator the constructions in this 

section are of course simpler, but  we have kept  our orginal proofs rather  than  transferring 

the burden of proof from section 4 to sections 2 and 3.(1) 

w 5. Extens ions  of Theorem 1 

We let A = B mean tha t  A -  B is smooth if A and B are distributions and tha t  the 

distribution kernel of A - B  is smooth if A and B are operators. By  Theorem 1 the system 

P u = w - R - w  -, R+u-=u  +, u e O ' ( ~ ) ,  w - e O ' ( F - )  (5.1) 
is equivalent to 

(1) (Added in proof.  ) I n  a paper  to  be p u b l i s h e d  joint!y wi th  J .  J .  Du i s t e rmaa t  such t r ans fo r -  
ma t ions  will be used to  prove  a global ver ison of Theorem 2. 
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w - - E - w ,  u -  E w +  E+u +. (5.1') 

Here all the operators are given in Theorem 1. 

Now let A+: O ' ( ~ ) - ~ ' ( F + )  and A-: ~)'(F-)-~O'(~) be continuous linear operators 

which are also continuous C~(~)-~C~176 +) and C~(F-)-~C~(~) respectively. Consider the 

more general system 

P u = - v - A - u  -,  A+u=-v+, u E O ' ( ~ ) ,  u-E~0'(F-). (5.2) 

If  u + = R+u the equivalence between (5.1) and (5.1') shows with w---0 that  the first equa- 

tion in (5.2) is equivalent to the equations 

E - ( v - A - u - )  - O, u =- E ( v - A - u - )  + E+u +. 

Thus (5.2) is equivalent to 

E - A - u - - -  E - v ,  A+E+u + -- v + - A + E ( v - A - u - ) ,  u = E ( v - A - u - )  +E+u+ (5.2') 

We now assume that  there exist continuous linear operators B+: ;O'(F+)-~O'(F+) 

which are continuous C~176 -+)-+C~(F• and satisfy 

B+A+E+ - A+E+B + - 1, B - E - A -  - E - A - B -  =- 1. 

Then we can eliminate u + in (5.2') and a simple calculation shows tha t  (5.2) is equivalent 

to the system 
u -  =- F - v ,  u -- F v +  F+v +, 

where F -  = B - E - ,  F + = E+ B + } 

F = E -  E A - B - E -  - E+B+A+E + E + B + A + E A - B - E  - (5.3) 

Thus we obtain 

PROPOSITIO~ 5.1. Under the assumptions above we have 

7}~--I,  

where F,  F+ and F -  are ffiven by (5.3). 

~ ) ~ I .  

Example 1. Let A + ELm+(F +, ~ ,  [) and A-* ELm-(F -, ~ , / )  be properly supported and 

have principal symbols positively homogeneous of degree m + and m-  respectively. Assume 

that  A + and A-* satisfy the obvious analogues of (C+), (C-) and (0.5) in section 0. Let  
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B+EL-~+(F +) and B-EL-m-(F -) be elliptic, properly supported with principal symbols 

positively homogeneous of degree - m +  and - m -  respectively. Pu t  R+- -B+A + and 

R - = A - B - .  Then R + and R-  satisfy the conditions of Theorem 1. If  E, E +, E -  are the 

corresponding solution operators, A + E  + and E - A -  have the parametrices B + and B -  

respectively. Thus we can apply Proposition 5.1. The last equation in (5.3) simplifies to 

F -- E. This gives a slight extension of Theorem 1. 

Example 2. Let  P, R +, R-,  E, E+, E -  be as in Theorem 1 and let A+EL~+(F +, ~,  ]) 

and A-*EL~-(F -,  ~ , / )  be arbitrary. Then in general A+u is not defined for all uE 0'(s 

and A -  does not map C~176 -) into Coo(~). Therefore we can not apply Proposition 5.1. 

However A +E  + and E - A -  still seem to play an essential role for the problem (5.2) so it is 

interesting to calculate them. Since E - A - = ( A - * E - * ) *  and A-* and E-* are the same 

kind of operators as A* and E +, it suffices to calculate A + E  +. 

From Theorem 1 it follows that  the distribution kernel of A+E + is smooth outside 

{(x, y )EF + • F+; /(x) =/(y)}. Therefore we can localize the study in the following way: 

By Proposition 0.1 each x0E~ has a neighbourhood WI such t h a t / F  + N W is the union of 

a finite number of hypersuffaces /F1,/Fg. ..... /FN, where F1, 1~2 . . . . .  I~N are the different 

components of ( / - 1 W ) N F  +. We can identify C~ 0 F  +) in a natural way with 

C~ x Coo(/F2) • ..- • COO(/FN) and A+ induces a map 

Coo(~) 6v ~ (yl A l  v, y~A2v .. . . .  yNA Nv) e Coo(/F1) • ... • Coo(/FN) 

where Aj ELm+(g2) and ~j is the restriction operator Coo(~)-+ Coo(/Fs). Similarly E + induces 

a map 

C~~ • ...• C~~ (u ,  ..., u~) ~ E~ u~ + E2 u~ +... + E NuN~ Coo(~ ). 

Thus A+E+ can be locally identified with the matrix: 

(yjAjE~)~,<,.k,<~: C~(/F1) • . . .  • C~(IFN)-+ C~(/F1) • ... • c~(/FN). 

Following the proof of Theorem 1 one can prove (with some work) that  in the local 

coordinates of Proposition 0.1, we have 

E + u + ( x ) = . I f b ( x , y ' , ~ ' ) e x p ( i < x ' , ~ ' ~ + ~ x n v ( x ,  ' i " ' u + ' d ' d  ' �9 , ~ ) _  ( y , ~ )  (Y) Y ~,  

u+ E C~~ y', ~'e Rn-1, xE R n. 

Here b E So�89 ((Rn• R n-l) • Rn-1), ~ is given by Proposition 0.1 and we have identified 

locally w i t h R  ~ and F + with the hyperplane x,,=O. I t  is possible to  calculate the leading 

t e rm  in the asymtotic expansion of b. 
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Now choose local coordinates with the origin in x 0 q W, such that  t he  x,-axis is trans- 

versal to all the ]Fs at  x 0. Near x 0 each/Fr is then given by  an equation x. =2Jx'). where 

2r is smooth and realvalued. Then for small x 

f f b  :' ' 
1 v * p - ~ ( x  ))~k(x, ~')-~(y, ~'?) u~(y') E~u~(x) = ~ ( x , y ,  ~') exp (i ( x ,  ~'} + i(x n ' ' dy' d~ 

for all u k E C~ (/Fk) with support close to x' =0.  Here bk E S~189 and ~k is smooth, real valued 

and positively homogeneous of degree 1 with respect to $'. By applying Aj under the sign 

of integration, we get 

~jAjEku~(x') 

ffa, = k ( x , y , ~ ' ) e x p ( i ( x ' , ~ ' ) + i ( ~ j ( x ' ) - ~ k ( x ) ) ~ ( x , ~ ' ) - i ( y , ~ ) ) u ~ ( y ' ) d y ' d ~ ' ,  

where the principal part  of a~kEST( can be determined. Thus the study of A+E+ is equi- 

valent to the study of a certain system of Fourier integral operators. I t  seems to be very 

difficult to find simple nontrivial conditions for such a system to be solvable. However, 

in the ease when all t h e / F j  coincide, we have 2 j -2k  =0 and A+E + becomes a system of 

pseudodifferential operators. This case is treated in E~kin [6]. 

Example 3. Let  P be as in Theorem 1. If we choose R+ and R-* with WF(R +) and 

WF(R-*) close to E~ and Y'o respectively, i t  follows from (iii) in Theorem 1 that  WF'(E)  

is close to 
~ T * ( ~ ) \  0 = {(5, 5) e ( T * ( ~ ) \ 0 )  • (T* (~ ) \0 )} .  

We shall now construct operators A+ and A -  such that  ~ has a parametrix 

where WF'(F)  c AT*(~)~O 

wr'(F+)~{(o, 0§ 5 ~r~§ 

WF'(F-)c {(O-e, 5); SEE-}. 

L~MMA 5;2. 1] 1/2 <5 < 1, there exists a properly supported P'  EL~ u+~-q (~) such that 

(WF(P'P - I )  D WF(PP '  - I ) )  c E. 

Proof,  Since P is elliptic outside Z it  suffices to f ind  P'EL~m+I-~(F2) such that  

W F ( P P ' - I )  c Z. Clearly it suffices to construct P '  locally. We can therefore assume tha t  

= R ~ and 
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2 = {(x, ~) e T * 0 t n ) \ 0 ;  x .  = ~ - ~ ( x ' ,  ~') = 0}.  

Let  yJ e C~ (R) be 1 near the origin and let g E C~(R n x R n) be equal to 

i for lel >2  

and equal to 1 near ]E. Then ZES~ ~ x R  n) and the restriction to ( T * ( R n ) ~ 0 ) \ Z  be- 

longs to S - ~ ( ( T * ( R ~ ) \ 0 ) \ Z ) .  I f  p(x,'~) is the homogeneous principal symbol of P we 

have 
(1 --Z(X, ~))p(X, ~)-IES;m+I-Q(Rn x (an\{0})). 

In  fact, we have 

[p(x,~)l >CK(l~lmlxn[ +I~Im-II~--V(X',~')I), x e g ~  ~ R  '~, 

where CK > 0 and thus 

IP( x, ~)l >C~I~I  re+q-1 in supp (1 -Z)  when ]~1 >2. 

The derivatives of (1 - Z ) p  -1 can now be estimated inductively if we take the derivatives 

of the identi ty 
p((1 - Z ) p  -~) = 1 - X  

and use Leibniz' formula(cf .  [8]). 

L e t  P'oEL~m+I-Q(R n) be properly supported with symbol (1 Z)p -1 rood (S-~). Then 

by  the formula for composition of two pseudodifferential operators, we get 

PP'o - I-)~(x, D) + A, 

where A EL~ aX(-q'l-2Q) and W F ( z ( x  , D ) ) ~  ~,. In  fact, if p +Pro-1 is the symbol of P, then 

A has the symbol 

" p m - l ( 1 - - ) ( , ) p - l ' b  ~ (p+pm-1)(~}D~(1--Z)p-1/~!  
I:~1>o 

Since � 8 9  1, we see tha t  I + A  has a properly supported parametrix;  ( I + A ) - I ~  

I - A  T A  2 - A  a + ... EL ~ and the lemma follows if we put  P'  =P 'o ( I+A)  -1. 

Now take R+ and R -  as in Theorem 1 and let E, E+, E -  be the corresponding para- 

matrix operators. Put  
A+ = R + ( I - p ' p ) ,  A -  = ( I - P P ' )  R- .  

Then WF'(A+) C {(~+0, 0); 0 Eye+} (5.4) 

WF ' (A- )c{ (~ ,  Q-e);  e EZ-} (5.5) 
Moreover, since p E +  ==0; 

A + E  + = R + E + -  R + P ' P E  + = I 

and similarly E - A  - =  I.  Thus we can apply Proposition 5.1 and find tha t  
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has a parametrix 

where F + = E+, F -  = E -  and 

0 

F = E -  E A ' E - -  E+A+E. 

If B EL~163 is properly supported and W F ( I - B )  N Z = ~D, we have 

(5.6) 

A + = _ R + ( I - P ' p ) ,  A - = = _ ( I - p p ' ) R ~ ,  

where R + = R + B  and R$ = B R -  satisfy the conditions of Theorem 1. Let E~, E~, E~ be 

the corresponding solution operators. Since the parametrix of ~ is unique mod. (L-~176 

we have 
F ~ E s -  E B A - E ~  - E~  A * E~.  (5.7) 

By choosing B with WF(B) arbitrarily close to Z, it  then follows from (iii) of Theorem 1 

and (5,4), (5.5) that  W F ' ( F ) c  A T * ( ~ ) \ 0  . . . .  

Since Theorem 2.1 is a local version of Theorem 1, one can modify the operator Q 

C there in such a way that  for the corresponding solution operator we have WF (E) 

AT*(Rn)~0. Using this modified version of Theorem 2.1 in the proof of Theorem 2, we 

find tha t  i t  is  possible to choose the operators RQ, Eo, E~ in Theorem 2 such that  

WF' (Ee)~  AT*(~)~0.  

Finally we claim that  the inclusions (iii) in Theorem 1 are actually equalities. To prove 

this one has to prove the opposite inclusions. To illustrate the ideas we shall only prove 

that  A c WF'(E), where we have put 

A -- {(/a q, In ~) e (T*(gt)\0) • (T*(~) \0) ;  e r  ~ eWF(R+), lr+ e =/r+~}" 

We have 
WF'(R +) = {(/r+/t,/a~u);#EWF(R+)} = ~ + o A ,  (5.8) 

where o means composition of relations. Since R + E + - I  we have WF'(R+) = WF'(R+E+R+)  

c W F ' ( R + ) o W F ' ( E + R + ) =  Q+oWF'(E+R+), where the last equality follows from the fact 

that  ~E~+ if (~,/t)EWF'(E+R+). Thus (5.8) gives ~ + o A c  ~+oWF'(E+R +) and since ~+ 

is bijeetive we get A ~ WF' (E+R+) .  

Since WF'(I)  - -AT*(~)~0  if I is the identity in ~0'(~), we see that  W F ' ( I -  E+R +) 

WF'(E+R+)~,{( e, q) EWF'(E+R+)} ~ A~{(q,  q) CA}. Since W F ' ( I -  E+R +) is closed and 

the closure of A ~ {(e, e) E A } is ,4, it  follows tha t  A ~ WF ' ( I  - E+R+). Now E P  =- 1 - E+R+ 

by Theorem I and since W F ' ( P ) c  A T*(~ )~  0, it follows that  A c WF'(E) as asserted. 
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Appendix 

Here we shall define and investigate a certain type of pseudodifferential operators. 

We let Tm(R n) be the set of operators T: C~(Rn)~C~~ n) which can be written in the form 

Tu(x) = f fs(x,  y', ~') e ~(x'-~'' ~'>u(y', xn) dy' d~'/(2 ~)n-1, u E C~ (Rn), x 6 R ~, y', 6 Itn -1, 

for some seST0((R ~ • R n-l) • R~-l). 

If T 6 Tm(R~), we can regard T as a family of pseudodifferential operators in R n-1 de- 

pending on the parameter x~. Using this observation it is easy to show that  T is continuous 
H~O. ,p  uloo r.s) -+~(r.~-~)for all x 6R and integers r >0. Using the same observation one shows, ex- 

actly as for pseudodffferential operators, that  every properly supported TET~(R ~) can 

be given by the formula 

Tu(x) = f t(x, ~') et<X"~'> ~(~',Xn) d~'/ (2:g) n-l, u6 C~ (R~), 

where ~ denotes the partial Fourier transform of u with respect to x' and t(x, ~')E 

S~0(R ~ • R~-I). t is uniquely determined by T and will be called the symbol of T. If ~ is 

the Fourier transform of u, we have 

~(~', x~) = .lexp (ix~) ~(~) d~J (2 ~), 

thus we have 

Tu(x) = j t(x,  ~') e~<~'~>~(~) d~/(2~) ~, u 6 C~ (R~). (A.1) 

PROPOSITION A.1. Let TETZ' (R n) and QELm"(R =) be properly supported with sym- 
bols t and q respectively. Suppose WF(Q)fl {(x, ~)6 T*(R=)~0;  ~ ' = 0 } =  O. Then QT and 
TQ belong to L'n'+m"(Rn). Their symbols are asymtotically ~q(~)(x, ~) D~t(x, ~')/~'! and 

t (~'~ (x, ~') D~;q(x, ~)/o~'! respectively. Here q(~) = (0/~)~q and t (~'~ = (~/~')~" t. 

Proo/. By the same argument as used in [8] to prove the composition formula for 

pseudodifferential operator s, we are allowed to apply Q under the sign of integration 

in (A.1) and get: 

QTu(x) = .Is(x, ~) e~<~'~>d(~) d$/(2~) ~, u6 C$ (R~), 

where s(x, $) = e-~<z'~>Q(x, D~) (t(x, ~') e~<~'~>). Wellknown estimates (see for instance [8] th. 

2.6) for the expression 

4- -  732904 Acta mathematica 130. Impr imd lo 30 Janv ie r  1973 



50 J o ~ A ~ s  s J h s ~ .  

e -~x'~)Q(x, D~) (v(x) e ~<~'~)) - ~ q(~ (x, ~) D~v(x)/o:! 
lal<N 

s h o w t h a t  s ( x ,~ ) -  ~ q(~'(x,~)D~t(x,~')/a!~-O(l~l-~+l'~'l§ ~ - ~ ,  
lal<N 

uniformly when x e K c  ~ R ' .  

Since Q is continuous C~176176176 we see tha t  for all K c  c R  n and multiindices 

and fl, there exists M = M ~ z ~ e R ,  such tha t  D~D~s(x, ~)=O(I~]M), ~-~r 

when x E K. 

Since by  assumption q(x, ~) is rapidly decreasing as a function of ~ in a conic neigh- 

bourhood of ((x, ~)e T*(R~)~0; ~' =0}, we have q(~D~tES~ § (R~• R~). 

Combination of these three observations with Theorem 2.9 in [8] gives tha t  

s E ST0+~"(R ~ • R ~) and s ,,, Zq(~)D~t/~ !. This proves all the statements about  QT.The State- 

ments about TQ can be proved similarly and we omit  the details. 

PROP O SITIO ~T A.2. Let  Q ELrn(Rn) be such tha t  WF(Q) f/((x,~) ~ T*(Rn)~0; ~' =()} =O.  

~oom~ rz~oo /or all r, s, N ~R, Then Q is continuous ~(r.s) -~-~(r-~+~.s-~) 

Proo/. For all r ~ R  let A(r.0~ ~Lr(R n) and A(0.r) ~ Tr(R n) be properly supported convolu- 

tion operators with symbols asymtotically equal to (1 § I~[ )r and (1 § I~'[ )r respectively. 

Put A(~.~ =A(~.o)A(o.~). Then 

A(~.~ is continuous ,~(~,~)r~~176176 -~ --(~-r.,-~)~~176 for all/~, u ~ R. (A.2) 

Proposition A.1 shows tha t  Q ' =  A(r_~+~.~_~QA(_r. _~) belongs to L ~ (R ") and tha t  

Q -  A(_(~_~+~)._(~_~ Q'A(~.~) has C ~ kernel. (A.3) 

corn, _~ ~oo Now the proposition follows if we corn- Since Q '~L~ n) it  is continuous H(o.o) -~(0.0). 

bine this with (A.3) and (A.2). 
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