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0. Introduction and statement of the main results

In this paper we shall prove results, extending slightly those announced in [16]. The back-
ground is some work of Hormander [9] and Egorov and Kondratev [5], which we shall
first describe briefly. We shall always use the same notations for function spaces as Hor-
mander [7].

Let () be a paracompact C® manifold without boundary, 7*(Q) the cotangent space,
T*(Q)\0 the space of non zero cotangent vecors and L™(£2) the space of pseudodifferential
operators of type 1,0, introduced by Hérmander [8, 10]. In [9] Hérmander studied a pseudo-
differential operator P€L™Q) with a principal symbol p€C®(T*(Q)\0), positively
homogeneous of degree m, such that C,+0 everywhere on the set of zeros of p. Here
C,€C™(T™* (Q)\0) is defined by

0, (@, £) = 2Im§1 P (@, &) Py (2, ). (0.1)

where x=(xy, z,, ..., x,) are some local coordinates in Q and &= (&, &,, ..., &,) are the cor-
responding dual coordinates in the cotangent space and p'” =op/o&; and p;, =0p/ox,. If
we fix a strictly positive C* density, then the complex adjoint P*€L™(Q) (i.e. the adjoint

with respect to the corresponding sesquillinear scalar product) is defined and if we write

Cyla,) = =i 3 (0 (0, ) piy .6) = 17 (2. pin . ),

we see, using the calculus of pseudodifferential operators, that C, is the homogeneous prin-
cipal symbol of [P, P*]=PP*—P*P. In particular C, is independent of the choice of local
coordinates. The expression

pp}=2 ©” o — 27 i)

is known as the Poisson bracket of p and p.
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Hoérmander proved in [9] that if €, <0 where p=0, then for every compact set K < ()
and s€R there is a constant C, such that

lully< OUPulls-mes + lullsma),  w€HT*(Q) 0 E'(K).

From this estimate it i easy to deduce regularity for the solutions of the equation Pu =v
and a local existence theorem for the equation P*x=v. In the case where C,,>0 somewhere
on the surface p =0 he proved non-existence and non-regularity theorems for the equations
P*y=v and Pu=v respectively.

Finally he applied his results to the oblique derivative problem: Let M be an open
set in R**! with smooth boundary Q. Let » be a smooth vector field in R*** and consider
the following problem: For given functions » defined in M and u, defined in £ find a func-
tion  in M, such that

n+1
;1 Pulox =v, oulev s (0.2)

This problem can be reduced to the study of a certain pseudodifferential operator P in
Q. If v is nowhere tangential to Q, we have an elliptic boundary value problem, that is P
turns out to be an elliptic operator. In certain cases when » is not everywhere transversal
to Q, the operator P is of the type above and Hérmander could apply his general results,
to prove local existence or local regularity for the problem (0.2), depending on the be-
haviour of » near the submanifold of Q, where v is tangential.

Egorov and Kondrat’ev [5] have subsequently studied (0.2) using more direct methods.
By introducing an extra boundary condition where » is tangential and adding an error
term, to the equation du/ov | =u,, they managed to get a problem for which they could
state both existence and uniqueness results.

For the corresponding operator P it should thus be possible to obtain a problem, which
is (approximately) uniquely solvable, by adding an error term to the equation Pu=v
and adding a suitable boundary condition. Ekin [6] has carried out this program and
generalized the results of [5) by studying a larger set of operators P than the set of those
resulting from the problem (0.2). Also Vigik and Grusin [19], [20] have results in this di-
rection. See also the recent paper [6'] by Eskin.

Here we shall study a class of operators which differ from those of Egkin [6] mainly
in that we impose less restrictive geometrie conditions on the manifold, where the princi-
pal symbol vanishes. On the other hand Egkin allows the principal symbols of his opera-
tors to vanish of higher order than we do. We shall also obtain a local result for operators
P satisfying only the condition €, =0 when p=0. This result is very close to a theorem of
Kawai {12].
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It should be noted that Egorov [2], [4], Nirenberg and Treves [15] and Tréves [18]
have generalized the results of [9], by studying the equation Pu=v (without extra condi-
tions) for operators P, which degenerate to high order.

We now start to formulate our main results. Let £ be a paracompact O® manifold and
let PE€L™(£2) be properly supported with a principal symbol p positively homogeneous of
degree m. (If Q, and Q, are C* manifolds and A: C5°(Q,)— D’(€),) is a continuous operator
with distribution kernel K ,, then 4 is said to be properly supported if {(, y) € supp K ;
x€K, or y€K,} is compact for all compact sets K; =, j=1, 2. This means that Au has
compact support for all ©€C§ () and that Au can be defined for all v € C®(£},). We shall
say that a matrix of operators is properly supported (or has C® kernel), if all the entries
are properly supported (or have C® kernels).) Let X =2 < T*(£2)\ 0 be the set of zeros of
p and let O, be defined by (0.1) above. We introduce the following two conditions:

(4) C, never vanishes on X,

(B) p:=(p", ..., p'™) is proportional to a real vector on %, and n=dim Q>3.

Note that p; is a complex tangent vector to Q which is independent of the choise of local
coordinates. If p satisfies (4), we define X, and X, to be the subsets of X,, where ;>0
and C, <0 respectively.

To be able to state the main theorem in the case where p satisfies both (A) and (B),
we have to define suitable auxiliary operators and to do so we first have to describe the
geometric structure of 2.

It = (xy, ..., x,_y, ,) is any n-tuple, we shall always denote by x' the (»n—1)-tuple
(@1, ooy Tp_yq). Let sz T*(Q)N0—-Q be the natural projection. The following proposition

will be proved in section 1.

ProrositioxN 0.1. If p is positively homogencous and (A) is satisfied, then X and Z;
are smooth closed conic submanifolds of T*(Q)\0 of codimension 2. If (4) and (B) are satis-
fied and p is positively homogeneous, then for every p €2, we can find local coordinates x=
(@1, -er X,) 10 @ neighbourhood W of mwo, such that the component of o in T*(Q)|w N T, is given
by the equations x,=0 and &,=1(z', &'). Here £=(&,, ..., &,) are the dual coordinates corres-
ponding to x, and v €CO(R" ' x (R"1\ {0})) 1s real valued and positively homogeneous of degree
1 with respect to &'.

Remark. Assume conversely that the surface X, can be given locally by the equations
2, =0 and &, =7(z’, &) as in the proposition. Then grad, Im p and grad; Re p are linearly
dependent on X,, because X, has codimension 1 as a submanifold of {(z, &) € T*(Q2)\ 0;

x, =0}, This means precisely that grad, p is proporuonal to a real vector.
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We now assume, that (4) and (B) are satisfied and that p is positively homogeneous.
It follows from the proposition, that any sufficiently small part of 2, is mapped by 7 into
a smooth submanifold of Q of codimension 1. However =2, is in general not a submani-
fold but only the immersion of a certain manifold I" defined as follows. In X we introduce
an equivalence relation: If o’ and o” €X then o' ~ " if and only if 7p’ =7p" =z and o' and
0" belong to the same component of X N x~'z. Let I be the corresponding set of equivalence
classes and let g: X—T be the natural map. Then we have the commutative diagram:

; 2
s

defining the map f. Now it follows from Proposition 0.1, that there is a unique O structure
on I, such that g and f are smooth maps. Moreover f is an immersion. We put I't =gX+
and I'-=¢X-. Then I is the disjoint union of the submanifolds I'* and I"~.

Consider more generally any two C® manifolds X and Y and a given smooth map f:
X — Y. The normal bundle N, < T*(X) x T*(Y) of the graph of f is given by

N, ={((,'f (=)n), (fx), —n)); 2€X, n€T,,(Y)}

where !f'(x) is the adjoint of the differential of f at z. With this Lagrangean manifold
there is associated for any real m a class I™(X x Y, N;) of distributions in X x ¥ with
wave front set contained in N,, and we can regard them as operators from O’ (Y) to C%(X).
(See Hormander [10}.) If z,, ..., z, and ¥y, ..., ¥, are local coordinates near 2°€ X and y°=
f(x°) respectively then N, is defined by the phase function {f(z)—y, 0>, x€R’, y, GER"
and the restriction of any 4 € I"(X x Y, N,) to a neighborhood of (9, ¢°) is of the form

Aulz)=(2 ﬂ)‘(”?’")"*ffe’(f‘“‘”’ ®o(x, y, 0)uly)dy d6, €Oy (Y)

where a € 8™/,

I f is an immersion we can choose a symbol b(z, y, 0), defined for (z, ) in a neigh-
bourhood of »° x4° so that a(z, ¥, 0) = b{f(z), ¥, ). Thus du= (Bu)offor a pseudodifferen-
tial operator B of order m + (v — n)/4. Conversely, if 4 € D'(X x Y), if sing supp A<graph f
and 4 is of this form in a neighbourhood of (x°, f(x%))for any 2°€ X then A €I™(X x ¥, N).

When f is an immersion we shall write
LMX,Y,f)y=I"""""4Xx Y,N,).

We can identify N, with the pullback 7% (Y) of T*(Y) to X for
Yy p
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T%(Y)={(z,7), € X, n€ T}, (Y)}.
The fact that N < T™*(X) x T*(Y) gives us two maps

fx: T%(Y)3 (2, ) > (&, 'f () ) € T*(X)
fr: Tx(Y)3 (z, ) ~ (f(z), n) €ET*(Y).

If f is an immersion it is clear that fy is an immersion.

The principal symbol of elements in I™(X x ¥, N,) can be considered as defined on
T%(Y)\0 and the wavefront set can be considered as a closed conic subset of T%(Y)\0.
More precisely the wavefront set WF(4)< T%(Y) of an element A€ I™(X x Y) N,) is given

by
= {(fxl0), f+(0)); € WF(4)}.
See Hormander [10].

We can apply the preceding discussion to the immersion f: ['t—>£Q. With the local co-
ordinates in Proposition 0.1 f is locally the map R*"'3z'—(2’, 0) ER". Denote the zerosec-
tion in 7%(I'*) by O and put N+= fr,+0c T*+ (Q) which is the line bundle of normals of
f(I'+), and put

Iy ={e€fa'Z"; gfale)=n(0)},

where 7t is the projection in T;+(Q). Then X is a smooth closed conic submanifold of

T%.,(Q) of codimension 1 and
N' O =0. (0.4)

In fact, in the local coordinates of Proposition 0.1 we have

N+={(, (0, &,))ER" xR"}
and 5 ={@, &, @, &) ER" T xR" & +0}.
It is easy to see that the maps Ty —X+ and Zj —T*I+)\ 0 defined by fq and fp+ are
diffeomorphisms which together give a diffeomorphism G.: Z+—T*I'*+)\0. We define
N-, 2y and @G_ analogously.

Since T and N+ U ((fg'Z)\Z;) are dlS]omt closed conic subsets of T5+(Q)\ 0 it fol-
lows by a partition of unity that there exist operators R+< LO(I'+, Q, f) satisfying

(C+) R+ has a principal symbol, positively homogeneous of degree 0, which is different
from zero on Xj, but
WE(E+) N (N*+U (o' Z)\Z¢)) =2
Let (C-) be the analogous condition, obtained by replacing all + signs by — signs.
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Once for all we fix some strictly positive C° densities on I't, I'~ and Q. Then the
complex adjoint of a continuous operator: Oy (Q)-D'(I') is a well defined continunous
operator CF(I'")—=D'(Q). Suppose RteLXI'+, Q, f) and R-*€LI'-, L, f) are properly
supported and satisfy (C+) and (C-) respectively and let B be the complex adjoint of
R~*. Then it follows from [10 section 2.5] that R+ and R— can be extended to continuous
linear operators D'(Q)—D’(I’*) and D'(I'~)— D'(QQ) respectively. Moreover we have.

ProPosITION 0.2. R+ and B~ are continuous
HY(Q)~ HY*, () and HP® (D7)~ H,(Q)
respectively for all s€ER.

This proposition will be proved in section 1. We can now state the main result:

TEHEOREM 1. Let Q be a paracompact C® manifold of dimension n=>3 and assume that
PeIr™Q) is properly supported and has a principal symbol p, positively homogenous of de-
gree m, satisfying (A) and (B). Let

p= (; (1)2 ) :D'(Q) x D7) > D'(Q) x D'(T™)

be the operator mapping (u, u”)ED(Q)x D'(I) to (Pu+ R u-, RTu)eD'(Q) x D'I),
where R+ and B~ satisfy the hypotheses of Proposition 0.2 and
(fa WE(EH)) 0 (fo WF(R—)) =0. (0.5)
Then there exists a properly supported operator
E! +
&= (E 0 ) :D'(Q)x D'(TF) = D'(Q) x D),
such that:
(i) EoP—Iand Po&—1 have O kernels. Here the first I denotes the identity operator in
D'(Q) x D'(I'~) and the second the identity operator in D'(Q2) x D'(I'+).
(i) E, E* and B~ are continuous HY (Q)—~ Hi%_y (Q), HY (M) > HY 4 (Q) and HY*(Q)—
H% 3 (T7) respectively for all s€R.
(iil) WF'(E")<={(G- 0,0); ¢€Z7}
WE'(B*)<={(o, G+ 0); 0€X"}
WE'(B)< {(¢0, 0) €(TH()\0) x (T*(Q2)\0)}
U{(fae: fa u) €(T*QN0) x (THQ)\0); g€X5, u € WF(RY), fr+ o= fr+u}
U{(fa @ fo o) €(THQN0) x (THQN0); 0€Zg, p€WF(R™), fr-0= fr-p}.
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From the proof of Theorem 1 it will follow that E+ and E- are Fourier integral opera-
tors. If the condition (0.5) is not satisfied, we still have an operator £ satisfying (i) and (ii).
This can be proved with the methods of section 5 where we study extensions of Theorem

1 when R+ and R~ are replaced by more general operators.
CoROLLARY. Let P and Q be as in Theorem 1. Then P induces a bijection:
(D'(Q)/C=(Q)) x (D' (I'7)/C=(I'7)) > (D'(Q)/C=(2)) x (D' (T'H)[C>(I™)).
If Q is compact, then P induces a Fredholm operator
C°(Q) x (') = C=(LQ2) x Co(I'+).
In the case when only (4) is satisfied, we have a very local result.

THEOREM 2. Suppose that Q is a C° manifold and that P € L™(Q) is properly supported
and has a principal symbol p, positively homogeneous of degree m, which satisfies (4). Then
for each g €Z; there exist o’ € T*(R™'Y\0 and properly supported operators

R;:D'(Q)-~DR"™), E:D'R"~>D(Q), E,:DQ)-DQ)
with the following properties, where A= B means that A — B has C° kernel:
(ia) RS BT =T and PE; T'=0 for all T" € LYR™ 1) with WF(T") close to ¢’
(ib) PE,T=T and R E,T=0 for all T €L} with WF(T) close to g.
(i) T(E,P+E; R))=T for all TE€LYQ) with WF(T) close to p.
(ia) and (ib) express that the operator
D'(Q)x D'(R*™ 1) 3 (v, v+) > B v+ Ej vt €D'(Q)
is near ¢ a local right inverse modulo C® of the operator
D'(Q)3u—~ (Pu, Rf )€ D'(Q) x D'(R™™)

and (i) expresses that is as a local left inverse. The proof of Theorem 2 gives additional
information on the operators R, E; and E,, in particular on the H, continuity and the
wavefront sets (see also section 5). There is a dual form of Theorem 2, which describes the
behavior of P near 2, . This is based on the observation that the complex adjoint of P has
the principal symbol $ and that X, =% . Recently Kawai ([12] part II th. 2.4) has ob-
tained a result, which is close to our Theorem 2. He assumes that the symbol of P is ana-
lyvic and uses the theory of hyperfunctions. Our proof will be completely different. A
consequence of our results is that if P is as in Theorem 2 and X} +=@ then the operator
D'(Q)/C*(Q)—~ D'(2)/C~(Q) induced by P is not injective and if X, #0 then it is not
surjective. (See Hormander [11] for more general results of this type.)
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The plan of the paper is the following: In section 1 we prove Propositions 0.1 and 0.2.
In section 2 we state as Theorem 2.1 a local form of a special case and show that it implies
Theorems 1 and 2. In section 3 we reduce the proof of Theorem 2.1 to the study of an ex-
plicitly given first order pseudodifferential operator. In section 4 we make this study,
which completes the proof of Theorems 1 and 2. In section 5 we discuss generalizations of
Theorem 1, where R+ and R~ are replaced by more general operators.

I would finally like to thank Professor Lars Hérmander, who has suggested the sub-
ject of this paper and who has given me much help and advise during the work.

§ 1. Proof of Propositions 0.1 and 0.2

Proof of Proposition 0.1. Since p is positively homogeneous it is clear that X is conic.
In Q we introduce local coordinates x=(z, ..., z,) and we let £=(§,, ..., &,) be the cor-
responding dual coordinates in the cotangent space. Put p, =Re p and p,=Im p. Then =
is defined by the two real equations p(x, £) =0 and py(z, £)=0. If we write (0.1) in the

form
Cy(®, &) =2 ((pac, Py — {P1&> Pi))s (1.1)

we see that grad p; =(p1,, p1¢) and grad p, = (ps,, ps;) are linearly independent on X if (4)
is satisfied. Here (, > is the bilinear form on R”, defined by <z, &> =X}, z,§,, =, EER™
Hence X is a closed submanifold of codimension 2 of 7*(Q)\ 0, so only the second half of
the proposition remains to prove.

Thus we assume that (4) and (B) are satisfied and we shall first study X infinitesi-
mally. For 2€Q, put 2, ={(z, £)€X} =X Na-lx. In general, if M is a C* manifold and
m€M we denote by T',,(M) and Ty (M) the fibers over m of the tangent space 7'(M) and
the cotangent space T%#(M) respectively.

Leuma 1.1. Let (x, §)€X and let 7, be the natural projection: T, g(X)— To(Q). Then
7ty has rank n—1. Let N=Tm a p,, where the complex number a +0 s such that t=a p; is
real. Then <¢, N» +0 and N is orthogonal to 71, T, ¢ (X) and transversal to T, 5(Z,).

Proof. Let (z, &) and a be as in the lemma. Then
Oap(xa 5) = ZImjzlap(n (Z, 5) ap(f) (x7 E) = laP 011 (xy 5) +0.

On the other hand C,(x, §)= —2<¢, N) so we get
0=, N). (1.2)
In particular both ¢ and N are ==0.
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Y can be defined by the two equations Re ap=0 and Im ap=0. Thus 7', () is

the set of all (£, t;) ER” x R", such that {Im a p;, t,> + {Im a p;, &> =0 and (Re a Pt +
(Re a p;, t;> =0, or equivalently

(N, 1> =0. (1.3)

(Re a pi, t>+<t, t> =0. (1.4)

Since ¢ 40, we can, for any ¢, satisfying (1.3), find ¢, such that (1.4) is also satisfied. Thus
74T (z,£)(Z) is the orthogonal space of N and has dimension »—1. Since Tpo0 () is de-
fined by the equation <, t;> =0, it follows from (1.2), that N is transversal to 7', ()
and the proof is complete.

Next we study X locally. Note that 7, in the preceeding lemma is the differential of
the projection x| 3 (x, £)—>2€ Q.

LuMMA 1.2. For every point (x,, &) € Z there is an open conic neighbourhood U < T*(2)\0
and two real valued, smooth functions g(z, £) and v(x) defined in U, such that:

(i) e, vy +0 in U.
(ii) EnU={(x, &EU;pa) =gz, &)=0}.

Proof. By Lemma 1.1 the differential of |y has rank n— 1. Thus (see [17] pp. 39-41)
there is an open neighbourhood U of (%, &), such that #(U N X) is a C* manifold of di-
mension n—1, given by an equation yp(x) =0, where y €C®(nU) and y,*0 everywhere.
Since X is comic, we can assume that U is conic. By Lemma 1.1 we have either
{grad; Re p, yz> +0 or {grad; Im p, ye>+0in U if U is small enough. We put g equal to
Re p or Im p so that (i) holds. Thus {{z, £} € U; gz, &) =y{x)=0} is a {2n —2)-dimensional
manifold, which contains the (2rn—2)-dimensional manifold £ n U. If U is small enough
they have to be equal and the proof is complete.

It follows from the lemma, that X, is an (r—1)-dimensional closed submanifold of
TH(Q)N{0}. Let g=(xy, &)EZ and let X, ;, be the component of (%), &) in X,,. Since
Sz, & 18 conic and {(2y, £)€ (s, ; | €| =1} is a compact manifold, we can cover X, ¢,
by a finite number of open conic sets U, = T*(Q)\0, v=1, 2, ..., N, where we have smooth
functions y,(z) and g,(x, &) such that (i)-(iii) of Lemma 1.2 are fullfilled.

LemMA 1.3. In a neighbourhood of x,, the equations y,(x)=0 define the same hyper-

surface.

Proof. Since X, s, is connected and {U,}1<,<y is a finite open covering of X, ¢,), it
suffices to prove, that if X, ¢y N U, N U, =+, then y, (x) =0 and y, (x) =0 define the same
hypersurface in some neighbourhood of z,. Let (xy, ) €%, & N U, N U,. By Lemma 1.2
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the projection of a small neighbourhood of (g, %) in X, ¢, is a hypersurface which can
either be given by the equation y,(x) =0 or y, (x)=0. This completes the proof.

We now choose local coordinates with the origin in z,, such that the equations y,(x) =0
are equivalent to the equation z,=0. Put W;={2'€R"""; |2’| <6} and let T, ; be the
component of ¢ = (xy, &) in Z Na~1{(z’, 0)€Q; «' € W;}. Then it follows from the proof of
the preceeding lemma, that 7%, y={(x', 0)€Q; &' € Ws}, if >0 is small enough. Hence
Lemma 1.2 implies:

2, s is locally given by the equations z, =0 and
(1.5)
g(x, &) =0, where 9g/0&, 0 if >0 is small enough

Thus we have X, ; N {((x, 0), (0, £,)) € T*(Q)\0; 2’ € W5} =0 since X, ; is conic and since
2. is closed we get

If >0 is small enough‘there is a constant C' >0 such that

|€.] <C|&| for all ((a',0),£)EZ, s (1.6)

We now fix § >0, such that (1.5) and (1.6) hold and let G: X, ;— W5 x (R" "\ {0}) be
the projection ((2, 0), §)—(«', &). It follows from (1.6), that GX, , is closed in Wy x
(R {0}) and from (1.5), that it is open. Since W;x (R""\ {0}) is connected (n>3),
we have G2, ;= W; x (R*1\ {0}). Now put

(2, &) =inf &,; G=, &) = (', &).

Then by (1.5) and (1.8) it follows that v€C®(Wj x (R* "\ {0})) and that = is positively ho-
mogeneous of degree 1 with respect to &'. Moreover X, ; is defined by the equations z, =0
and &, =z(x', &), (¢, &)EWsx (R™IN\{0}). If § is small enough, = has an extension to
R™ < (R"\{0}) and Proposition 0.1 follows, if we let W ={z€R" |z| <4}

Proof of Proposition 0.2. Locally we identify Q with R” and I'+ with the hyperplane
%, =0. Then E* is locally of the form »@, where y is the restriction operator C°(R")—
Co(R™7), defined by yu(z’) =u(z’, 0), 2’ €R"". Here Q€ LO(R") is properly supported and
satisfies WF(Q) N {(z, &) € T*(R")\0; & =0} =0. Now it is wellknown (see for instance [7}),
that y is continuous HES_y, (R")~> H%, (R™™!) for all s€ R. From Proposition A.2 in the
appendix it follows, that @ is continuous HP°(R™)~HE%_1,(R") for all s. Thus R+ is
continuous H°(Q) ~ H> (I'+) for all s and by the same argument R~* is continuous
oo, ()~ H™%(I"") for all s. Since R~ is properly supported, we get by duality, that B~
is continuous Hy°(I"")— H?, (Q) for all sER.
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2. Reduction of the proofs of Theorems 1 and 2 to the proof of a certain local theorem

In this section we shall show how Theorems 1 and 2 follow from a local version
where the characteristics have a special position. Thus assume that PEL™R") and
00 = (g, 0), (&5, 0)) € T*(R™)™\0 satisfy:

1°. P is properly supported and has a principal symbol p,, positively homogeneous of
~ degree m.

2°. There is a neighbourhood of g, where C,,>0 and where p,, vanishes precisely when
z,=&,=0.

Suppose @ €LYR") is properly supported and satisfies:
3°. WF(@Q)n{(z, §) e THB")\0; &'=0}=0.

4°. @ has a principal symbol g, positively homogeneous of degree 0, such that g(g,) #0.
5°. p,, does not vanish anywhere in {((z;, 0), (£, £,)) EWF(@Q); &,=0}.

Let y be the restriction operator C°(R™)—C*(R""!), defined by yu(z’) =u(z’, 0), u € C®(R").
By I we shall always denote the identity operator in the appropriate space.

TaeorEM 2.1. If the operator

P
p=("): DR~ D'®)xD'®R"?

is defined by Pu=(Pu, yQu), w€ D'(R"), there is a properly supported operator
E=(E, B+):D'R") x D'(R*)~>D'(R")

(u, ut) - BEu+ Etut,
which is a parametrixz of P near g, in the following sence:

(1) If ZeLYR") and WF(Z) is sufficiently close to g, then
Z(EP—I)=0.
(Here we recall that = denotes equality modulo an operator with C® kernel.)

(ii) If ZELOYR™) and Z' €LOR™Y) and if WF(Z) and WEF(Z') are sufficiently close to g, and
0g = (25, &) respectively, then

(Z 0\ _
Moreover £ has the following properties:

(ili) B is continuous HY® (R*)—>HYS,_, (R for all s€R and E+ is continuous HY*(R"™*)~

H%, (R™) for oll s€ER.



12 JOHANNES SJOSTRAND

(iv) WE'(B)={((z, &), (z, &) €(T*R"\0) x (T*R")\0)}
U {(e", 0), (&, 0)), ((=, 0), £)) €(T*(R*)\0) x (T*(R")\0); ((+, 0), §) EWF(Q)}
and WEF (BH)<={(((x', 0), (£, 0)), (=, §)) E(T*(R")N0) x (T*(R")\0)}

Proof that Theorem 2.1 implies Theorem 2. We shall use the important idea of Ego-
rov [3], {4] and Nirenberg-Treves [15, part II], to simplify the study by using a suitable
canonical transformation. For that purpose we shall use the theory of Fourier integral

operators, developed by Hérmander [10].

Leuma 2.2. Let o, P, and Z+ be as in Theorem 2. Then there is an open conic neigh-
bourhood U of ¢ and an injective, homogeneous canonical transformation x: U—T*R")\0
which maps U N X+ into {(x, £) € T(R")\0; z,=§,=0}.

Proof of Lemma 2.2. Choose local coordinates z=(x,, ..., ,) with the origin in mp.
Since C,(p) +0, either grad; Re p <0 or grad; Im p =0 near p. It is no restriction to assume
that grad; Re p+0 and we can even assume that (¢/05,) Re p<+0 near g. In a conic
neighbourhood of ¢ the surface Re p=0 is then given by an equation &, =1(z, &), where
TE€C®(R™ x (R""™\ {0})) is real valued and positively homogeneous of degree 1 with
respect to &. By the Hamilton-Jacobi theory there is a real valued C® function ¢ =4¢(z, &),
positively homogeneous of degree 1 with respect to &', defined for || <const.>0,
& €R" "™\ {0}, such that

L e ) =i .8 Blayo= @ 21

oz,

Put é(=, y, &) =z,&, +d(x, &) —<y, £. Then it is easy to verify that @ is a non-degenerate
phase function for small x (see [10]). The corresponding canonical relation Rg is given by
Ro: ((be- (@, &), %), £) > (3, (o (. &), 04(2, &) | 00, + £2))-

By [10], this relation is locally a canonical transformation x;, which maps the surface
£,=0 into the surface &,=7(x, &). Since the functional determinant of every canonical
transformation is +0, we can assume (after having restricted x, suitably), that x, is a
diffeomorphism and that »;* maps the surface &, =t(x, £) in a homogeneous neighbour-

hood of ¢ into the surface £, =0. Since canonical transformations leave Poisson brackets

invariant it follows from the condition (4), that
C,, +0 near x;'g, where we have put p, = pox,. (2.2)

Now Re p,=0 for &,=0. Thus (2.2) implies that (¢/0z,) Im p, +0 and therefore the sur-
face p,=0 can be given by the equations &,=0 and z,=y(z’, &) near x»;'p, where
y €ECOR™ T x (R™"™\_{0})) is positively homogeneous of degree 0 with respect to &'
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Put Yz, y, §) =<2, & +y(a', £, — <y, &

Then ¥ is a non-degenerate phase function for small |&,]/|&'| and the corresponding

canonical relation Ry is given by
(.’I)+ (&;72' (x’7 EI)» V(x', 5,)): 5) e (x9 (5’ + En'y; (x,’ 5,)’ fn))

Locally, this relation is a homogeneous canonical diffeomorphism x,, mapping the surface
&,=x,—p(a’, &)=0 in a neighbourhood of x;'g into the surface &, ==, =0. It is now clear

that % =x,0%; " has the properties required in the lemma.

Remark. Instead of making an explicit construction one can derive Lemma 2.2 from
classical theorems on canonical transformations. (See e.g. Duistermaat-Hérmander [1]
Proposition 6.1.3.)

From the results in [10] and [1] it follows that there exist properly supported Fourier
integral operators G: D'(Q)~ D'(R") and @': D'(R")—> D’'(Q) with the following properties:

G and & are continuous from HX° to H° for all s (2.8)
WI'(G) and WEF’(G’) are contained in the graphs of » and »~! respectively (2.4)

If A€eL¥Q) and BELF(R") have principal symbols a and b respectively then
GAG € L¥R™ and G’ BG €LF()) and they have principal symbols equal to aosx~!
and bok near x(p) and o respectively. Moreover WF(GAG')<x(WF(4)) and
WE(G" BG)< % "WF(B). 2.5)

#(0)¢ WF(GG' —I) and o ¢ WF(G'G - I). (2.6)

We put g,=x(0) and gq=(xy, &), where ((x,, 0), (&, 0))=g,- Moreover we put P =
GPG', where P is the operator in Theorem 2. Then the pair (P, g,) satisfies the assumptions
1° and 2° of Theorem 2.1. In fact, by (2.5), P belongs to L"(R") and has a homogeneous
principal symbol p,, which is equal to pox~! in a neighbourhood of gy By the choice of »
the equation p,, =0 is equivalent to x,=&,=0 in a conic neighbourhood of g,. Moreover,
since canonical transformations preserve Poisson brackets, we have 0, =C,o0x1>0in a
neighbourhood of g,.

With this choice of (P, g,), let @ €L(R™) satisfy the assumtions 3°, 4° and 5° of Theo-

rem 2.1 and also satisfy:
WE@Q) N (WF(I -GG UxWF(I—-G'Q)) =2. (2.7

Let £=(E, E*) be the corresponding local parametrix in Theorem 2.1 and put
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R =9QG, E,~G'EG, E;=G'E" and ¢’ = 00

To verify (ia) of Theorem 2, let 7"€LYR"') with WF(T') close to o'. Then
(Bg By — DT = (yQGG E+— )T = (yQE+— 1) T" — yQ(I — GG"Y E+T’. Theorem 2.1 im-
plies that (yQE*+—I)T" has C® kernel if WF(7") is sufficiently close to o’. Moreover
Y@ —GQ') E+T" has O kernel in view of (2.7). (We assume that the reader is familiar
with the calculus of wave front sets, developed by Hérmander [10, section 2.5].) This
proves the first half of (ia). ,

Now look at PE;T' =PG'E*T' =GGPGE*T +(I-GGPGFET =@PE*T +
(I—G'G)PG'E+T". The term G'PE+T"' has O kernel by Theorem 2.1. By a simple wave-
front calculus we see that this is the case also with the last term. (WF'(¥) is contained
in the graph of x~! by (2.4.)). This proves the second half of (ia).

To prove (ib), we write (PE,—I)T=P& EGT —T. Looking at the wavefront sets it
is easy to see that (I -G'G)(PG'EGT —T) and (P'EGT — T)(I —G'G) have C= kernels
i WEF(T') is sufficiently close to g. Thus, if = denotes equality modulo an operator with
0= kernel, we get

(PE,~I)T=G'G(PG'EGT - T)G'G = ¢ (GPY¥ EGTG — GTG)G = ¢(PE—1I) 86,

where §=GT¢ . By (2.5) we have S€LYR"™) and WF(S) is close to g, when WF(T) is close
to g. Thus by Theorem 2.1, the operator (PE — I)8 has C® kernel and the first part of (ib)
follows.

To prove the second part, we write ‘
By E,T =yQGQ' EQT =yQEGT —yQ(I - GF) EQT.

By (2.7) we have yQ(I—-GG')EGT=0. Moreover yQEGQT =yQESG++QEGT(I—G'Q),
where as already observed §=GTG €LYR") and WE(S) is close to 0y Thus y@ESG =0
by Theorem 2.1 and yQEGT(I—G'G)=0 since WF(T)n WF(I —G'G)=0 it WE(T) is
close to p. This proves (ib).

To prove (ii), we write

TE,P=TGEGP.

Looking at the wavefront sets, we see that we get an operator with 0= kernel if we multiply
TG EGP from the left or from the right with (I —G'G) when WF(T) is close to g. In fact,
this is obvious in the case of left multiplication, since WF(T) N WF(I —@' () =3 when
WE(T) is close to g. From (2.7) and (2.4) we see that WF'(Q)o WF'(GP(I - X' G))=%D.
Thus from (iv) of Theorem 2.1 we see that TG’ EGP(I —G'®) has O kernel, when WF(T)
is close to g, so our statement is true also in the case of right multiplication. Using this
result and (2.6) we get
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T(E,P+ E;R; ~)=G GTFEGPG'G+ TG E*yQG—T
‘ =@ SEPG+ GTG'E*vQG — @SG=G'S(EP+ E*yQ—1)G=0,

where the last equivalence follows from Theorem 2.1. This completes the proof that Theo-
rem 2.1 implies Theorem 2.
We shall next prove that Theorem 2.1 implies Theorem 1. The first step is to prove

the following local result:

Prorosition 2.3. Let Q, P and Rt be as in Theorem 1. Let g€ X, and put o' =
GLo ET*(TH)N\0, where (. ts the natural diffeomorfism: T —T*TH)\ 0 defined in section
0. Then there exist properly supported operators E,: D'(Q)—D'(Q) and Ey: D'(I't)=D'(Q)
with the following properties.

(ia) If T" € LOI+) and WE(T") is sufficiently close to o’ then (R* Ey —I)T' =0 and PE, T =0.
(ib) If T€LYQ) and WE(T) is sufficiently close to g, then (PE,—I)T=0 and R*E,T=0.
(i) For T asin (ib): T(E,P+E;y Rt—1)=0.
(iii) B, s continuous HY*(Q)—>Hy 3 (Q) and E} is continuous HY*(I')~H YL (Q) for
all seR. Moreover:
WE'(B ) {(t, 1) € (TH(QN0) x (THQN0)} U {(far, fa ) vEZS, pEWE(RY) and
frev =frrp}
WE'(B))={(n, Gop); pEXH}
Here fo, 2, WF(R*) and fr+ are defined in section 0.

Note that (ia) and (ib) can be expressed more briefly, by stating that

P (T 0\_ (T ©
(R*) (EQE")(O T’):(o T’)'

The proof of this proposition is very similar to the proof of Theorem 2 above, but we
have to be more explicit. Note that Eskin [6'] uses a canonical transformation similar to

the one in Lemma 2.4 below.

Proof. In view of Proposition 0.1 we can assume that 0 =R" and that the component
of p in X is given by x,=§&, —7(2’, &) =0. In fact, since Proposition 2.3 is a purely local
statement and (iii) gives us a good control over the singular supports of the distribution
kernels of E, and. Ej it is eaéy to prove the proposition in the general case, once we have

established it in this special one.
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We can identify the component of #g’ in I't with the hyperplane x, =0 and assume
that o’ =(0, &), where o =(0, (&, 7(0, &,))). In this component B+ is of the form yA, where
A €L*R") is properly supported and has principal symbol a, positively homogeneous of
degree 0 and different from 0 when z,=§, ~z(z’, &) =0. Moreover WF(4) does not inter-
sect the other components of X or {(z, &) € T*(R")\0; &' =0}.

Consider the phase function ®(x, y, &) =d(x, &) — <y, &, =, y, EER", where

P, &) = <@, & +apq(ek, [[E )o@, &) (2.8)

Here £>0 and y €C%(R) is equal to 1 near the origin. Then we have the following explicit

analogue of Lemma 2.2.

LeMMA 2.4. If >0 is small enough, ® is a non-degenerate phase function for small
x and induces a homogeneous canonical diffeomorphism x~1 from some neighbourhood of
Ty (R™N\{0} (the set of non zero cotangent vectors at the origin) onto some neighbourhood of
Ty (BYN\{0}, mapping the surface x,=&,= 0 into the surface x,=&,—7(x’, §') =0, and such
that if (x, &)=x"Yy, 1) then x,=0=y,=0and x,=y,=0=E=y', ' =y’

Proof. Choose £>0 so small that [8y(e£,/|&'|) (2, £)/8&,] <} for all £+0 when 2’
is small. Then it is easy to see, that ® is non-degenerate for small . The corresponding

canonical relation Eg is given by

(o) . £0.8) = s (o e () 02 ()

Then we have: By =R,0E;", (2.9)
. eéy » €&,

where R,:(x, &)~ |2, &+ |2, grad, X ] @, &), % E (', &) (2.10)

and Ry: (x, &)~ (x—r— x, grads X (|§ ‘) (', §'),§) . (2.11)

Then:

1°. R, and R, have bijective differentials for small .

2°. The restrictions of R, and R, to T (R"\ {0} are diffeomorphisms onto T (R")\ {0}.

Sinee B, and R, are homogeneous, we conclude from 1° and 2°, that they are injective
for small # and thus by (2.9), that Bg near (T5(R")\{0}) x (T5(R*)\{0}) coincides with the
graph of a canonical diffeomorphism »~!, mapping some neighbourhood of T (R {0}
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onto some neighbourhood of Ty (R")\{0}. The other properties of x~1 follow from our
explicit formulas. The proof is complete.

Choose yp €CF (R"), with w(x) =]in a neighboui‘hood of the origin and let ¢': D'(R™)—~
D'(R™) be the Fourier integral operator given by

G u(z) = ffw(x) P(y) (1 — (&) 6OV Dy (y) dy dE [ (27, w€C™(R™), (2.12)

where ¢ is given by (2.8). If p has its support sufficiently close to the origin, it follows from
Lemma, 2.4 and the results in [1] and [10] that there exists a properly supported Fourier
integral operator G: D'(R*)— D’'(R") such that

@ and @ are continuous H2°—~HY° for all s and WF'(G) and WF'(G) are con-
tained in the graphs of » and %=1 respectively. (2.13)

For every T €LM(R") with principal symbol ¢, the operators GTG’ and ' TG
belong to L*(R") and their principal symbols are equal to fox~1 and tox respec-
tively in a neighbourhood of T (R*)\ {0}. Moreover WF(GT'G')<»(WF(T')) and
WF(G' TG)< %Y (WF(T)). (2.14)

(TyR N0} N (WEGG —I)y WF(@F G—1I))=0 (2.15)
If p is the restriction operator C**(R") 3% ~> u|, —o, we have:

The distribution kernels of the operators y ~y@ and ¥ —yG are smooth near

(0, 0)ER™ 1 x R™. (2.16)
In fact, by (2.8) we have ¢((z’, 0), £) ={(z’, 0), & and using the Fourier inversion formula
in (2.12), we get:

y@ k)= f fw«x", 0)) ply) &< 00-w- D (y) Gy dg| 2

- [ [vte. op pmy ey s 0-2--00utg) ay a2y

= (ptu) ) = Kula)- w€C® R,
where K is an operator with C® kernel. Thus y —y@ has smooth kernel near (0, 0) and the
corresponding statement about y —y @G follows if we multiply y —yG’ with G and use (2.15).
Now put P=GPG" and Q=GAG" and g,=(0, (£, 0)), where (0, (£,7(0, &)))=p in
Proposition 2.3. Then it follows from (2.14) and Lemma 2.4, that (P, @, o) satisfies the
assumptions of Theorem 2.1. Let E and E+ be the dorresponding local parametrix operators

and put
2 — 732904 Acta mathematica 130. Imprimé le 30 Janvier 1973
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E,=G'EG: DB DR
and B} =G E+G: D'(T'Y) > DB,

where § means multiplication with the characteristic function of the component of I't

which we have identified with the plane x,=0.

Proof of (iii) of Proposition 2.3. The H,-continuity properties follow at once from the
construction. The estimates of the wavefront sets follow from Theorem 2.1 and Lemma
2.4, since WF'(@) and WF'(G") are contained in the graphs of x and »x~* respectively.

Proof of (ia). Let T"€LYI'+) with WF(Z") close to (0, &)=g¢’. Then, combining the
estimate of WF'(R+) given by (C+) in section 0 with the estimate for WF'(E,’) just proved,
we find that WE'(( —8) R+E; T") = and consequently that (I —6)(R+E; —I) T’sO. To
prove the first half of (ia) it therefore suffices to prove that ( R+ E; — I)T' =yAE;T'— T' =0.
We have

YAE; T' =yAG B 0T =yAG E* T'=y0AG E* T = yQE* T'=T",

where the second congruence follows from (2.16) and the third from Theorem 2.1. This
proves the first part of (ia). The proof of the second part is exactly the same as in the proof

of Theorem 2, so we omit it.

Proof of (ib). The first half is proved exactly as in Theorem 2. To prove the second
half, we observe (as in the proof of (ia)), that (I —0)RB+E,T has C= kernel it WF(T) is

sufficiently close to p. Moreover
OR+E, T =yAG' EGT =yGAG EGT =yQEGT =yQE(GTE)G,

where the first congruence follows from~(2.16) and the second from (2.15). Now GT'G'€
Lo (R*) and WF(QTG') is close to g,=(0, (&5, 0)) in view of (2.14). Thus by Theorem 2.1,
we have yQE(GTG’)=0 and (ib) follows.

The proof of (ii) is almost the same as the proof.of the corresponding part of Theorem

2, 80 we omit it.

The next step in the proof of Theorem 1 will be to construct global left and right para-
metrices near X+,

Since X+ s closed and conic, we conclude from Proposition 2.3, that for each jin some
index set J there-exist operators B;: D'(Qy~ D'(Q) and Ej: D'(I'+)~D’(Q), an open conic
set V,< T™*(Q2) and an open set W;,= < with the following properties:
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The H,-continuity and the properties of the wave front sets stated in

Proposition 2.3 for (E,, E;) are valid for (E;, E). (2.17)
T(E,;P+ Ej R"—I)=0 for every T € L*(Q) with WF(T)c V,. (2.18)

= C,EJ, V; and V;n fqWE(R™*)=0 for all j. (2.19)

{W ;},e; is a locally finite covering of Q and 7V,c W, for all j. (2.20)

Moreover we can assume that

supp B, W,;x W, and supp B < W, x f-1W,, where supp denotes the support
of the distribution kernel. - (2.21)

In fact, by the estimates (2.17) of WF'(E,) and WF'(E}), we see that we can replace E,
by v, E;p; and Ef by y,Ef (y;of), without changing (2.17) and (2.18) if ,€C3’ (W) and
;=1 near ;—V—j (Here f: I'>Q is defined in section 0.)

Now take functions 0<t,€C®(T*Q)\0), positively homogeneous of degree 0 with
supp £,< V,, such that 2, ¢;(z, £)>0 on X+ and take T;€LQ) with principal symbol ¢,,
such that WF(T',)<supp ¢, and supp 7;< W, x W,. Then it follows from (2.20) and (2.21)
that the operators

F=2T;E;: DQ)—~D(Q),
F+=3T,E{: D'(T~->D(Q)
and T =2%T,€L%Q) are well defined and properly supported. Moreover

T has a principal symbol, positively homogeneous of degree 0, which is >0
- on Z+, but WE(T) N fo WF(R™*)=0. (2.22)
From (2.18) we get

FP+F+*R+=T, (2.23)
From (2.17) we get )

(F, F+) has the H continuity properties stated for (E, E+) in Theorem 1. (2.24)
WE'(F)<{(0, 0) EWF(T) x WR(I)} U {(fao: fam); @€ Zi, u€WF(R®), fr+ 0= fr+ p}-

(2.25)

WE'(FH)< {(e, G+ 0) €T+ x (THI)\0)} (2.26)

(2.23) means that we can think of (F, F'+) as the product of a left inverse of P to the

left by T'. The construction of a ‘right inverse” is quite similar, so we only sketch it. As

above we cover X+ with small open conic sets V,, j€J but this time we also have to cover
T*([+)\\0 with small open conic sets V;, j€J. Let (E,, E;) be the corresponding local in-
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verse in the sense of Proposition 2.3 and let §,€ELY(Q) and S;j€LYI'+) be such that
WEF(S;)< V;and WF(S;) < V;. With an appropriate choice of E,, E}, S,;and S; the operators

L=3E,8:D'(Q)»D'(Q), L*=3ES8:D{I")~D(Q)
S=36,6L°Q) and 8’ = 3 8, € L)

are all welldefined and properly supported and we have:

S8 and 8’ have principal symbols which are positively homogeneous of
degree 0 and strictly positive on Z+ and 7%(I"+)\ 0 respectively. Moreover
WEF(8) N fo WE(R*)=0. (2.27)

The operators PL—S8, PL*, R*L+—8" and R+L have C*™ kernels. (2.28)

(L, L*) has the same H-continuity properties and analogous estimates of the
wavefront sets as (F, Ft) in (2.24), (2.25) and (2.26). (2.29)

Now we shall study P near 3. This is easily done by duality. In fact, the complex

adjoint P* of P has the principal symbol p. Since P satisfies (4) and (B) in section 0 and
C;=—0C,, we see that P* satisfies (4) and (B) and that E;’: =3%_,. For the operator u—

(P*u, R~*u) we have therefore results analogous to those just obtained for the operator

u—>(Pu, Rut). Passing to complex adjoints we get the following results for the adjoint

operator (u, u~)~Pu + R~u—: There exist properlv sunvorted overators

WFr

Fy, Ly: D'(Q) > D'(Q),
Fg,L;:D(Q)->D'(T),
Ty, 8p€L°(Q) and S,€L°(I'") such that:

S, and T, have principal symbols, positively homogeneous of degree 0, which -~ =

are >0.on X7, but (WF(S,) UWE(T)) N fa WF(R+)=0. (2.30)

S, has a principal symbol, positively homogeneous of degree 0, which is strictly

positive. (2.31)
PF+ R Fy=1T, (2.32)

(Fo, Fg) and (Ly, Ly) have the same H, continuity properties as (E,E7) in
Theorem 1. (2.33)

"(Fo) = (e, @) €W (To) x WE(To)} U {{fa fav); v€ Eg, n€WE(R™), fr-»=fr- u}

©(2.34)
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WEF'(Lo) = {(0, 0) € WF(So) x WE(So)} U {fap, fa»); vE X5, uEWF(B™*), fr-v = fr-u}

(2.35)
WF' (Fg) U WF'(Ly) = {(G-0,0) € (T*(I")\0) xZ7} (2.36)
The operators LyP—8,, Ly P, LyR~—8, and LyR~ have C* kernels. (2.37)

We now construct a right parametrix of PD. It follows from (2.27) and (2.30) that the
principal symbol of S+ T is >0 on L =X+U X~ Thus we can find 4 €L¥Q), properly
supported, such that 7'y +.4 +8 is elliptic and

WFA4)n X =2. (2.38)

Since the principal symbol of P is different from zero outside X, it follows from (2.38),
that there exists P’ €L-™(Q)), properly supported, such that
PP =A. (2.39)

The construction of such a P’ is practically the same as the construction of a pseudodif-
ferential parametrix of an elliptic operator and we omit the details. Let (7, +4 +8)-1€
L%Q) and S'-1€L%I'+) be properly supported parametrices of the elliptic operators
Ty+A+8 and S’ respectively, so that

(To+A+8)(Ty+A+8)1=1and §'8-1=1.

.
Now put E= (g_ f ) :D(Q) x DTN -D(Q)x D'(T7),
where E = (L+P + Fo) (S +T,+A)1—L+§'-1R+P'"(S + T, + A)-1

B+ =L+§—1

E-= Fy(S+T,+A)1.

Then (ii) and (iii) of Theorem 1 follow from (2.29), (2.33), (2.34), (2.36) and Proposi-
tion 0.2.

To prove the second half of (i), means to prove the following equations:

PE+R-E-=1 (2.40)
PE+=0 (2.41)
R+E+=1 (2.42)
R+E=0. (2.43)

Since PL+=0 by (2.28), we get
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PE+ R B~ =(PL+ PP 4+ PF)(8+To+ A) '+ R"F;(S+Ty+ A)™"
=(PL+PP'+ (PFy+ R™F;)) (S+To+ 4) ' =1.

Here the last equivalence follows from (2.28), (2.39), and (2.32). This proves (2.40).

(2.41) and (2.42) follow at once from (2.28).

To prove (2.43), we note that R*L=0 and R+L*§'1=1, by (2.28). Moreover, if we
combine (2.30), (2.34) and the condition (0.5) in Theorem 1, we conclude that R+F;=0.
Thus we get

R+E = (R*L+ R*P'+ R+Fo) (S + Ty + Ay — RTL+S-1R+P' (8 + T, + A)L =
= R+P/(S+Ty+ Ay — R+P'/(S+ T, + A)-1 = 0.

This proves (2.43) and the second half of (i) is now proved.
Applying this result to the complex adjoint

P* R+*
® :
(5o )
and then passing to complex adjoints, we see that there exists an operator
B B+ s 4 17 ’
B-(5. § ) D@ x0T - D@D/,
which is continuous: H(Q) x Hy—3 (T+) > Hy 3 (Q) x HYS3 (-) for all s and such that
BPD=1. It then follows that B= £ and therefore the first half of (i) in Theorem 1 holds

also. In fact, E=IE=BPE=BI=B. This completes the proof that Theorem 2.1 implies
Theorem 1.

3. A factorization and further reduction of the proof

In this section we shall reduce the proof of Theorem 2.1 to the study of the system:
Au=vEC®R". pu =u,€C=R"1). (8.1)

Here A is the operator given in Lemma 3.1 below and y is the restriction C°(R?)->C®(R""1)
given by (yu)(z') =u(z’, 0).

The next lemma will be the essential step in our reduction. Before reading it, the
reader should have a look at the appendix, where we define and state some facts about the
paces T™(R™). Let P, p,, @, 0o={(%,, 0), (&, 0)) and g, =(x;, &) be as in Theorem 2.1. Then
there exists an open conic neighbourhood V of Ag={((zy, 0), (& &.)) EWF(Q)} such that
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in a neighbourhood of V the equation P,(z,£)=0 is equivalent to z,=§,=0 and
Vn {=),8) ET*R"\0; §'=0} =D. We can even assume that

V =A{(x, ) ET*R"N\0; («', &)EV", || <y, &,/|&'|€By} (3.2)

where V”€T*R"!)\0 is an open conic neighbourhood of g, and B,< <R is an open
neighbourhood of {£, /|&; (%5, 0), (€5, £,)) EWF(Q)} and 8, >0.

LemMA 3.1. There exist properly supported operators P,€L™Y(R") and A=
D, —ixr(x, D')+s(x, D) with the following properties:
(i) WE(Py)n{( §ETRYNG; &=0}=0.

(ii) r(x, D'YETL(R") is properly supported and its symbol is modulo S* equal.to r(x, &)
where r is positively homogeneous of degree 1 and Re r >0.

(iii) s(x, D') € TO(R™) is properly supported.
(iv) WE(P—P,A)N V =0@. (Note that P,A €L™R") in view of (i)-(iii) and the appendix.)
(v) P, has a principal symbol pg' m_1, Which is positively homogeneous of degree m —1 and

never vanishes in V.

Proof. We take a conic neighbourhood W of ¥ with the same properties as V. Thus

in particular -

W = {(z, ) €T*R)\0; (&', EVEW", |a,| <9, &,/|€|€By}. (3.2)
Put W' ={(, &)ER " x (R*"\ {0}); ((&',0),5)eW}
and (—8,8) x W" = {(x, &) ER" x (R*IN{0}); || <6, (#',&)EW"}.

The main step in our proof is the following “preparation theorem’:

LeEMMA 3.2. For every a(x, £)€ES*(W) there exist b(x, E)ES*™(W) and c(x, &)€E
S*((—6, 8) x W") such that
a(x, &) = b(x, &) pa(x, &) +e(x, &) (3.3)
If a is positively homogeneous of degree k then b and ¢ can be chosen positively homogeneous
of degree k—m and k respectively.

Proof of Lemma 3.2. By considering Taylor expansions with respect to x, we shall
fiest find &’ €S¥™(W) and c€S%((—4, 8) x W”) such that (3.3) holds to infinite order at
x,=0. By the assumptions in Theorem 2.1 we have C,,, =0 when x, =&, =0. In particular

opy, [0, 0 when z, =&, =0. (3.4)
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0p,,J0E, +0 when z, =&, =0. (3.5)

Let p,,~ 220 d;(2', &) 27, be the Taylor expansion of p,,. By (3.5) we have ddy(z’, (&', 0))/0€, 0.
Since p,, vanishes in W precisely when =z, = &,=0, we see that d, vanishes precisely when
£,=0. Let a have the Taylor expansion

alw, &)~ 5 o(, 8 4, €8 (W)
We look for b" and ¢ with the expansions
V@8~ S, Had om )~ 3o, E)al
That (3.3) holds to infinite order at x, =0 is equivalent to the system:

) e, &) =bla’, E)dy(a’, &) +by(x, §)d; (2, &) +... by, E)do(2’, &) Fe,(x", &),
§=0,1,2,3, ...

This sytem is solved with respect to b; and c; as follows: Put cy(2’, §') =ay(z’, (§', 0)). Then
(0) holds for £, =0 and if we then put

bo(x” 5) = do(xl: 5)_1 (% (.’I)', 5) - 60 (x,’ E,))

it will hold for all £,. ¢, and b, will belong to S¥(W") and S*"™(W’) respectively in view of
(3.5). Assume inductively that we have already found b, b,, ..., b,_; in S¥™(W’) and c,,
€15 -y €51 i S¥(W") such that (0), (1), ..., (j—1) hold. Then we can determine ¢;ES¥(W")
such that (§) holds for &, =0 and after that b,€ S*""(W') such that it holds for all £,. :
We now apply a standard proof of the Borel theorem: Let y(x,) €C5’(R) be equal to 1

near x,=0. If 0 <2,~ + co sufficiently fast when j-> + o, we can put
b'(x, &)= ;-gob" @, &) XAyza) xh,  ola, &) =]_=ZO ¢ (', &) X (Ay,)

b and ¢ will then belong to S*"™(W) and S*((—4, ) x W") respectively and have the de-
sired Taylor expansions. (We omit the details.) We have thus constructed b’ and ¢ such that
a—b'p,,— ¢ vanishes to infinite order at z, = 0. Put b=5"+b", where b" = p,;'(a — b'p,, — ¢).
It follows from (3.4) that b"€S* ™(W) and it is trivial to verify that (3.3) holds. This
completes the proof of Lemma 3.2.

LemMA 3.3. There exist r(x, £&'YECP((— 8, 8) x W") and p,, n(x, &) EC(W) positively
homogeneous of degree 1 and m —1 respectively, such that Re r>0 and pgy p,_, =0 and

P, §) = Do, m-1(%, &) (§n — 12, 7(x, £)).
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Proof. Apply Lemma 3.2 with a(z, £) =£,. Then we get
&, = b(, &) pul, &) +o(x, &)

Since p,, vanishes when z,=§,=0, we have ¢((z’, 0), &')=0. Thus c(z, &) =1x,r(x, &) for

some r€C®((—4, §) x W") positively homogeneous of degree 1 and we get -
&y —iwyr(x, &) = blw, £) pu(w, &). (3.6)

(8.5) implies that b({z', 0), (&', 0)) 0. From the condition Cp,((z', 0), (§', 0))>0 it then
follows that Re r((2’, 0), &) >0. Using this inequality and the fact that p,(x, §) 0 when
z,+0, we can modify r and b outside z, =0 so that Re >0 in (=4, ) x W” and (3.6) still
holds. Now put p,, 1 (®, &) =b(z, &)~ and the lemma follows.

To handle the lower order terms in the factorization (iv) in Lemma 3.1, we need the

following easy consequence of Lemmas 3.2 and 3.3:

LEMMA 34. For every py€S¥(W) there exist pgi_1€S* Y (W) and 8 (n-1)(x, &) E
SF=m=D((—§, §) x W") such that

pl’c(x: &) =p(l),k—1(xa &) (En —im,r(, &) + Do, ma (%, &) Sk—m-1r(, E'). 3.7)

Proof. By Lemma 3.3 (3.7) is equivalent to
D6, m-1D= D0.1-1 (D0,m-1) P+ Spmtm-1-
Thus we can apply Lemma 3.2 with a = pg »_12;.

End of proof of Lemma 3.1. We shall construct p,€S™ (W) with principal part py
and s(z, &) €8%(( 4, 6) x W") such that

Pz, &)~ 2 p(w, &) DE(E, — iz, r(z, &)+ s(z, &) «! (3.8)

in W. Here p is the symbol of P, so p has the principal part p,. We look for p, and s with
the asymptotic expansions:

Do~ ,;1 Dom-i>  Pom-sES"I(W)
0
s~ Sh s €8T(=0,0)x ).

By Lemma 3.3 the following statement is satisfied for N=1:
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N N .
@) 5 (2, P6h1(2, £) DI~ imar(a €) + 3002, £))/ o
~ p(&, &) + Py (x, §) for some p,,_ €SV (W).

Assume induetively that p, ,_,€8" 7, 1 <j< N and s,_,€827/, 2<j< N have already been
constructed such that (N) holds. Then by Lemma 3.4 we can find p, .y € S? VY
and $,_(y+q) €8* @D gsuch that (N +1) holds. If we let p, and s be the asymptotic sums
above, (3.8) follows.

Now. extend 7, s and p, to C®®R"x R\ {0}), SR"xR"™{0})) and
S™HR® x (R {0})) respectively so that r satisfies (ii) in Lemma 3.1 and p, is of order
— oo in a conie neighbourhood of {(x, &) € T*(R")\\0; & =0}. This is possible at least if we
first shrink W a little. Let r(x, D’), s(x, D') and Pz, D) be properly supported with
symbols .,modulo 8~ equal to r(z,&’), s(x, &) and p,(x, &) respectively and put
A=D,—~z,r(z, D')+s(z, D'). Then it follows from (3.8) and the results in the appendix
that (iv) of Lemma 3.1 holds. The properties (i), (iii) and (v) also follow from the construc-

tion and kemma 3.1 is proved.

By condition 4° of Theorem 2.1 we can choose V in Lemma 3.1 so small that
g((', 0), (£, 0))==0 in V. Here ¢ is the principal symbol of @. The following lemma will
help us to pass from the boundary condition yu=wu, in (3.1) to the condition yQu = u, in
Theorem 2.1.

LemmaA 3.5. There exist properly supported operators U€ELYR"™') and TEL-YR™),
such that U is elliptic, WE(T) 0 {(z, &) € T*(R")\0; § =0} =0
and YRZ=UyZ +yTAZ
for all Ze€IMRB™) with WF(Z)=V, M€R. ;

Proof. Let the symbol of @ be ¢+g', where ¢’ €S-Y(R" x (R™\ {0})). Let W be ds in the
proof above such that ¢((z’, 0), (&, 0))==0 in W. As in the end of the proof of Lemma 3.1,
it is easy to construct « €SYW") and t€S~L(W) such that

g+ (', 0), &) ~ulx', &) + 2t (2, 0), &) (DFA®, €)) |z,mo ! ' (3.9)

where A(x, §) =&, —ix,r(x, &) +s(x, &'). From the construction it follows that the homo-
geneous principal part of # is different from 0 in W"”. It is now easy to find our operators
U and 7. (Cf. the end of the proof of Lemma 3.1.)

Let the spaces H, ,,(R"), His (R and HE"S (R™) be the Sobolev spaces defined in
[7] and let H{ _),(R™) be the space of all »€D'(R") locally belonging to H, 5 (R") for
some s. The following proposition will be proved in Section 4..
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ProroSITION 3.6. Let A(x, D)=D,—ix,r(x, D')+s(x, D) be the operator given in
Lemma 3.1. Then there exist properly supported operators
F:HE oy (RY) > HE (B, F*:D'(R™™) > HEY .., (BY)
with the following p'roperties':
(i) F is continuous Hip 5, (R") > H{3,°+1,3_%)(R") for all sSER and integers m > 0.
(i) F* is continuous H®(R™) — HSo_mi1y(R™) for all s, mER.
(iii) WE'(F+) = {(((«', 0), (€', 0)), (#', &) E(T*(R*)\0) x (T*R"™")\0)}.
(iv) WE'(FZ)<{((z, &), (@, £) €(T*(RY\0) x (T R)N\0)} |
U {(((=', 0), (£, 0)), (2, 0), (&', £,))) € T*(R™) x (T*(R")\0)}

for all ZELMR"), MER with
WE(Z) 0 {(z, ) ET*BYNO; & =0} = .

(v) Let M~> be the space of operators H%‘l’f’_w)(ﬁ") > H®_ ., which are continuous Higy s —
Hi%a.p for all s,t€R and integers m>0. Then AF=1 mod (M~*), AF* has C*
kernel, yF =0 and yF* <1.

(vi) FA+ F+y = I mod (M—=).

In the rest of this section we shall prove that Theorem 2.1 follows from Proposition
3.6. Let U’ €LYR""') be a properly supported parametrix of U in Lemma 3.5. By Lemma
3.1 we can find P €L~V (R"), properly supported such that

(WE(P,P,—I) UWE(P,P,—I)) N Ag=D (3.10)
WE(P,)< V. (8.11)
Here we recall that 4, ={((z,, 0), (£, &,)) EWF(Q)}. With 7 as in Lemma 3.5 we put
E = FP,— F+U'"yTP,
E+=F+U",

It follows at once from Propositions 3.6 and A.2 that (iii) and the estimate for WF'(E+)
in (iv) of Theorem 2.1 are valid.
To show the first part of (iv) it is sufficient in view of Proposition 3.6 to show that
EZeL ™R") for all Ze€L(R") such that
WF(Z) N WF(Q) =2. (3.12)

If Z satisfies (3.12) then WF(P,Z) does not intersect
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{(x’ E)ET*(R")\O, Tn =§n =0 or E' = O}

Now &, —iz,r(z, £') (the principal symbol of A) is 50 and belongs to S outside this set.
In view of Proposition A.2, we can therefore construct Z,€L™~™(R") with WF(Z,) =WF(P,Z)
such that P,Z=AZ,. (This is the same construction as that of a parametrix of an elliptic
operator.) Thus EZ= FP,Z ~ F*U'yTP,Z= FAZ,~ F*U'yTAZ, (Here=denotes equal-
ity modulo an operator with C® kernel.) Now U'yTAZ,=U'yQZ,— U'UyZy= —yZ, in
view of Lemma 3.5 and (3.12). Thus EZ=(FA+F*y)Zy=(1 + K)Zy=Z,+ KZ, in view of
Proposition 3.6. Here K € M~® and it follows from Proposition A.2 that KZ, has O ker-
nel. (Note that WF(Zy) N {(z, §) e T*R")\0; & =0}=0.) Thus EZ is a pseudodifferential
operator and (iv) of Theorem 2.1 follows.

To prove (i) of Theorem 2.1, we let Z€LYR") with WF(Z) close to g,. Then ZEP =
ZEP+ZE*Q. By (iv) of Theorem 2.1 there exists Z,EL(R") properly supported with
WF(Z,) close to 4, such that

ZEP=ZEPZ, ZE+yQ=ZE+yQZ, ZZ,=Z.
Then
ZEP=ZEPLy+ ZE"yQZy~ZF P PL,—~ LF U’y TP\ PZy+ ZF U’y QZy

By Lemma 3.1 we have P PZ,=AZ, Thus ZEP=ZFAZ)—~ZF+U'yTAZy+ZF*U'yQZ,.
By Lemma 3.5 and Proposition 3.6 we get ZEP=ZFAZ,+ZF+yZ,=ZZ,=Z. This proves
(1) of Theorem 2.1.

To prove (ii) means to prove the following equations:

PREZ=Z (3.13)
yQEZ=0 (3.14)
PE*Z'=0 (3.15)
VvQEZ =2 (3.16)

Here Z€LYR™), Z'€LOR"") and WF(Z) and WF(Z') are close to g, and g, respectively.
By (iv) of Theorem 2.1 and Lemma 3.1 we have PEZ=P,AEZ. Thus by Proposition 3.6

we get
PEZ=P,AFP,Z— Py, AF*U' yTP,Z=P,PZ=Z,

which proves (3.13).
Combining (iv) of Theorem 2.1 with Lemma 3.5 we get

YQBZ= (Uy+yTA) EZ.

Combining this with the definition of E and Proposition 3.6, we see that (3.14) is valid.
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(3.15) and (3.16) are easy consequences of Lemma 3.1 and Proposition 3.6. We omit the
details. This completes the proof of Theorem 2.1.

4. Proof of Proposition 3.6

Proposition 3.6 states essentially that the system
Av=v yu=u, 4.1)

is uniquely solvable for given v€ Hi®_,,, and %, € D'(R"'). Stated in this way the result is
not new. Ekin [6] has treated much mere general problems than (4.1). The new feature
here is that we obtain explicit formulas for the solution operators, which enable us to
estimate their wavefront sets. This has been essential in the chain of proofs leading from
Proposition 3.6 to Theorems 1 and 2.

We begin with an informal discussion. For given functions v in R™ and %, in R*™! we
put

u(x) =1 f (f ”fq(x, Y, &) eV u(y) dy dyn) d&'|@m)"?
0
+f( Jq(x,@/,ox f’)re“"'"y"é?%(y’)?’y') @) (42)

where the symbol ¢ has to be determined in a suitable way. Then we have at least
formally:

Aulz)= f ( J (@, 5), &) 5V Dy, 3,) d?/) d&'} 2y
+iay = [( [ [Aw Do atogn )60y ooy i) a8’
. vo
+ f ( f Az, Dy) (gla, (¢, 0), &) <) ¢ =<V (3 dy') dE[@m . (43)

The first integral here is the boundary term we get. when we apply the term D, in A on
the first integral in (4.2.)

We shall construct ¢ €C®, such that
a@, @', %), &) =0 ~y'), (4.4)

where ®€CF (R*™!) and ® =1 near the origin, and such that A(z, D,)(q(, y, &)e"*"*?)
and all its derivatives are rapidly decreasing as functions of &. Then if u is given by (4.2)

it follows from Fouriers inversion formula that
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yu(x') = Q@' —z")uy(x’) = ug(x’). (4.5)

Using Fouriers inversion formula in the first integral in (4.3) and carrying out the &-

integrations in the other two, we get:

In

Au(z) =v(z)+1 f ( f k(x, y) v(y) dy’) dy, + fk(x, (', 0)) uo(y") dy/, (4.6)

0

where k is smooth. We shall see later that the first integral is in M. Then (4.5) and (4.6)
show that u, given by (4.2), is an approximate solution of (4.1).

The program will now be as follows: First we define and investigate certain symbol
spaces. After that we define (F, F+), prove the continuity properties in H,, ;, and that
(F, F+) is a right parametrix of (4.1). By an analogous construction (which we only sketch)
there is a left parametrix and this implies that (F, F+) is also a left parametrix. Finally
we estimate WF'(F) and WF'(F+).

We recall the definition of Sg (X xR¥) in [8] and make the following generalization

in the case when X is the product of two open sets:

Definition 4.1. Let X’ <R™ and X" <R be open and g, ', 8", m be real numbers. Then
we let Sgs o0 (X' x X" x R¥) be the set of all p€C®(X’ x X" x R¥) such that for all compact
subsets K< X' x X" and multiindices «, § and y, there is a constant €' such that

| D% DS Dip(a’, ", §)| < O(1+ |&|yn+olel+tbl-etrl | for all (2, 2", £)€ K x RY.:

If X’ and X” are as in Definition 4.1 and X” is the closure of X” in R", we let
Co(X’ x X" xR¥) be the set of all functions fE0®(X' x X" x R¥), such that f and all its
derivatives have continuous extensions to X’ x X’ x R¥. We now define Sgy.s» (X' % X" xRY)
by replacing X" by X" everywhere in Definition 4.1 (except in the first line).

Next we extend the notion of asymptotic convergence.

Definition 4.2. Suppose that p,€ 874, (X’ x X" xRY),j=1,2,3, ... and that m; > — oo
when § > + oo, If p€ (X’ x X" xR¥), and if for every f,

Iy
p— 2. p,€ESEP (X' x X" x RY),
Pas

where M(j,) = max,.,m,, we write p~ >32;p, and say that p is asymptotically equal to

251Dy
:We define asymptic convergence in the space ST, (X' x X” xRY) in exactly the

same way.
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Lemma 4.3. Suppose p,€ 8%, (X' xX"xR¥),j=1,2,8,... where m;~ — oo when
j— +oco. Then there exists p€ SBx™ (X' x X" x RY), such that p~ Z21p;. The corre-
sponding statement holds also in the spaces Sgyrar (X' x X" x RY).

The proof of the lemma is identical with that of the corresponding statement for the
spaces Sp(X xRY) (see [8]): We put p(a',2", &)= Z2; (1 —X(58)) py(#', 2", §), where
L€ CZ(RY) is equal to 1 near the origin and 0<g— 0 sufficiently fast when j S 4 oo,
We let the reader check the details himself or consult [8].

Definition 4.2 and Lemma 4.3 have immediate extensions to asymptotic sums of the
form p ~ > p, where the sum is taken over n-tuples of integers >0.

Let U={(%,,y,)€R* 0<y, <=, or 2,<y,<0} and let U be its closure in R

Definition 4.4. Let §™ be the space of symbols p(x, y, &), z, y€ R”, £ €R™"!, belonging
to Sk (R2*DPx U xR™1'), when regarded as functions of ((z',¥y), (., ¥n), &)€
RED x U x R*™. We lot § = (1 er ™.

Lemma 4.5. If TET™(R") is properly supported with symbol t(x, &') and if qES", then
e 'O T (x, Dr) (g, y, €') €°5) ~ 24 (2, &) Dig(@,y, &) [

Proof. Clearly t*’D%q€8**™- 1| Thus by Lemma 4.3 there exists Q(T,q)€S**™,
such that Q(T, q)~ St D%gq/&'1. Put R(T,q)=e"**"¥>T(qe"**?). Then for all T and ¢

as in the lemma, N >0 and multiindices &', 8’ and 5’ we have:
D% Dj.DE(Q(T, q)—~ R(T, ) =O(|&1™") when & oo,
uniformly when (2, ¥, z,, y,) belongs to any compact subset of R0 x T, (4.7)

In fact, this follows if we regard 7 as a pseudodifferential operator in R"!, depending
on the parameter z, and regard 'q/ as an element of S%(R¥*~Y x R">!), depending on the
parameters x, and y, and apply wellknown results on asymptotic expansions (see Theo-
rem 2.6 in [8]).

Let T, € T™(R") be the operator with symbol D,,t. Then:

D, QT, )= Q(Ts,, ) + Q(T, Deog) and Dy, QT q)=Q(T, Dy,q) mod (§).
Similarly:  Duy B(T, g) = B(Ts, q) + B(T, Dsq) and Dy R(T, g) = R(T, Dyq).

Thus by induction we see that for all &, and §, the difference D7} D™ (QET, q)— R(T, q))
is_asymptotically equal to a finite sum of terms of the type: @7, ¢') — R(Z",¢'), where
T’ and ¢’ are as in the lemma. Then (4.7) implies that
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DD DEAQT, q)— R(T, )= O(|&'|™) when &> oo,

uniformly when (2, %), (,,¥,)) belongs to any compact subset of R2* D x U. This is
precisely the statement in the lemma,

We can now state how to choose ¢ in (4.2).

LeMMA 46. Let QECY (R™) be equal to 1 near the origin and have support in
{' €R" ;2’| < 1}. Then there exists g€ 8° with the following properties: k

() 9@, (¢, ,), &) = @' — yf).

(i) e N (@, D,) (q(x, y, &) 87) €S,

(iil) Wz, y)qlx,y, £)ES for all ¥ € 0 (R*™), vanishing near {(x,y) ER*™ x,=y,}.
(iv) qlz,y, &) F0 implies that |z —y|< 2.

(v) Let R(z, y,, &)= — fw”t r((z', 1), &) dt,

where  is given in Lemma 3.1 and let € Cy (R") be eqdal to 1 near the origin. Then
g(, 3, &) = O —y) (L = 4(§)) X F L,

We shall first define and investigate a very special class of symbols. After that the
proof of Lemma 4.6 will be easy.

Definition 4.7. For m€R, let gm be the smallest set, closed under addition, that con-
tains all p€ 02 (RED x U x R™1) for which there are integers 0< k, <k, and

a(x, y, &) € St hoR (R2n 5 RA-1),
Sueh tha,t p(x, y? 5') = yﬁ‘ (xn —\yﬂ)kxa(x" Y, EI) eR(l‘,yn,f') far IE’I > %'
Hero E(2, yn, E,)‘= - jz: tr((x', 1), E’) dt as above,

LeMMA 48, Let ofx,y, £)=yh (@, — y.)"o(x,y, §). where k, and k, are integers >0
and a€ Sip. Then there is a symbol b€ STy such that

frnc((x,’ t), ¥, EI) dt= ylvct‘ (xn - :’/n)kr‘-lb(x’ Y, E,)’

Yn

Proof. Put z,—y,=s. Then

f "c‘((x', ),y &)dt=yl o4, s, y, &), (4.8)
Yn
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1
where A=, 8,9, &)= f *a((2, y, +1s), y, &) dt.
0

Thus d€ 87 (R*" x R""?) and the lemma follows if we put b(z, y, &) =d(z’, %, — ¥, ¥, £).
If we write z,r(x, &)=y, r(z, &)+ (x, — y,) r(z, &), we see from Lemma 4.8 and the
definition of R that:

R, Yo, &) =Y (@, — Yn) B (% Y, &) + (@ — ) Ry (2, 9, &) for [€]>14, (4.9)
where R, and R,€8]y. From (4.9) one obtains easily:
pEST = D:DfD’g,pG;S.""*“”ﬁ""”" for all o, 8,9’ (4.10)
Lemuma 4.9. 8™< §m.
Proof. By (4.10) it suffices to prove that if pES™, then
p(@,y, &) =0(|&'|"), &> oo,

uniformly when ((’, ¥'), (2,, ¥,)) belongs to any compact subset of R x U.

If K is such a compact set, there is a constant O >0, such that Re R(x, y,, &)<
—Cx|a,| |7, — 9] |&'), when ((«',¥'), (%,,¥,))€EK. In fact, by Lemma 3.1 we then have
Re r(z, &) >2Cx|£'| for some Cy >0, thus

Re R(z, 9,, &) = —j:ntRe (@, 1), &) di< —2CK[§’|f:ntdt= — Ok|&| (@2~ 92)
= Cal &1 (00 ) (80— 9) < — Ol 70— €]
Let pES’”. We can assume that
P, Y, &) =yr (T, — Y 2, y, &) 5D for |E'] >4,

where k; >k, > 0 are integers and a € 875" ***»2, Then for ((2', ¥/), (%,, ¥,)) €K and |£'| >},

we have |z, —y,|<|2,| >|y,|, thus

|p(z, 9, )| < O|§ |20y, [ |2, — g, [ exp (= O] |2, — ] |£'])
<CIE (|2l |20~ 9a| 1€ 1) exp (= O |20l |20 — 9l 1€'])

< C|&|™ sup gtk g=Cat < 07| g |m.

This proves Lemma 4.9.
In the same wav we obtain from (4.9):
' 3— 732904 Acta mathematica 130, Imprimé le 30 Janvier 1973
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LeMMA 4.10. If pESE, then ply,-0€ 8%y (RX™D x R x R"™?), when regarded as a func-
tion of (', y), x,, &) ER*""P xR x R" L.

We omit the simple proof. The next lemma is the essential step in our proof of
Lemma 4.6.

Levuma 4.11. If w€C®(RX™D x T x R*) satisfies wlopeyn =0 and
Dy u(e,y, &) — iz, r(x, &) u(x,y, &) =v(x, y, &) for |&'| >}, where vES", then w€SF%,

Proof. We may assume that v(x,y, &) =y%(x, —y,) " a2, y, &) "4 for || >4,
where k, >k, > 0 are integers and a € Sy *7¥9% Then for’|£'| > §:

T L 5
w(®, y, 51) - en(x,y,,.s')if e—R((z:'.t).Z/n.E’),U((x', t), v, 5') dt
Y

(3

Tr
= pB®Un. 8D Zf y’;il (t — yn)k"'d((x’, t)’ Y, f') dt.

Yn

Thus by Lemma 4.8:
Uz, g, &) = Iy o, — ) b, g, €) for [€] >4,
where bE Slrathni2 S(llé—%)+(kx+(kg+l'))/2‘
Therefore u €S* ~% as asserted.
Proof of Lemma 4.6. Recursively we shall construct ¢,€8772,j=0,1, 2, ..., satisfying:
g, (@, (', @), €)= D@ —y') if j=0 and =0 if j >0, (4.11)

such that for each integer N >0:
N ) .

(N) e Aw, D;) (2 ¢, )~ > g,  Where gp €8V,
] »=0

Take ¢,€8° equal to Oz’ — ') =¥ for |£'| >} and such that gole=u, = O’ —¢').
(This is possible because R(z, z,, §)=0.) Then Di,q,— ix,r(®, £') go=0 for |§'| >}. Thus
by Lemma 4.5:

KON, D) (3,6 £,>) ~s(m, £) go+ | ‘z (i, 7" (2, £)+ 8% (w, &) D¥.qy &’ 1 ~ ZOQOW
. a'i=l ‘ o

where g€ S, (Here || =0+ ...+ otyeq, & = (o3, «vn, Apy))-

This proves (0). Suppose now that gqq,..., ¢y, have already been constructed, such that
(0),..., (N —1) hold. Then let ¢gy€C* be a solution of the system:
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DfnqN_'ixnr(x, 5,) dn= —qn-1,0 If’l >%’
QleFyn:O.

Then qNE;S"—”’ 2 by Lemma 4.11 and it follows from (N —1) and Lemma 4.5 that () holds

with suitable gy, € S~ ®+"2,

Since ®(z' —y') =0 for |2’ ~y’| >1, it follows from our construction that we can choose

our ¢; such that
9;(x,y, &) =0 when |2’ —y'| >1. (4.12)

If ¥ €C®(R?") vanishes near {(z,y); ,=y,}, we have ¥(z, y)p(x, y, &) €8, for every

pE §m. In particular:
Yz, y)¢;(x,y,ENES™ (4.13)

From Lemma 4.3 and its proof it follows, that there exists ¢ €59, satisfying (i) of Lem-
ma 4.6, such that:
g~ 2.4 (4.14)

anu qz, y, &) =0 if o' —y'|>1. (4.15)

From all the equations (V) it then follows that (¢7) of Lemma 4.6 is satisfied, and (iii)

follows from (4.13) since

Y(x, y) g(», 9, & ~j=ZO‘Fw ¥) gy, &).

(v) follows directly from the construction.

To make (iv) satisfied, we have to modify ¢. We replace q(z,¥,&) by
%@, —y,) gz, 9, &), where y€Cr(R) is=1 near the origin and has its support in
{teR; |¢| <1}. Then (iv) will be satisfied in view of (4.15) and the other properties of ¢
will be preserved, since we have only added the term (y(x,~—v,) —1)¢(z, ¥, &), which be-
longs to 8~ in view of (iii). This completes the proof of Lemma 4.6.

Now take a fixed ¢ as in Lemma 4.6 and define the operators

F: C°(R" — C*(R") and F+: O°R" 1) > O°(R")
by the equations:

Folx) = @f (ff 9(@, 9, &) €O () dy' dy,) dE (2 a)™

Fruy ()= f(fq(w, (y', 0), &) <" Dy (y') dy') dE' | (2m)" 7,

where z€R”, v€ 0* (R") and u,€ 0~ (R"Y).-
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To prove (i) and (ii) of Proposition 3.6, we shall follow Tréves [18]. If H, and H, are
complex Hilbert spaces, let L(H,, H,} be the Banach space of bounded linear operators
H,— H,; the operator norm will be denoted by || ||.

THEOREM 4.12. Let s(x’, y', &) be a O function of (', y', &) ER x R** x R with
values in L(H,, H,) and support in K xR""!, where K< cR"! x R*™!, Suppose that for all
multtindices o', 8’ and y' there is a constant C, such that

1Dz DEDE st ', & < CA+ (&1 on K xR (4.16)

Then the operator S: CF (R, Hy) - COF (R"™Y, H,), defined by
Sw(x')=ff8(x', y', &) eV w(yy dy dE, weCT (R, Hy), (4.17)

can be extended to a bounded linear operator H, (R, H)) - H,_, (R, H,) for all s€R.

When H,= H,=C the theorem is a wellknown result about presudodifferential oper-
ators (see [8] p. 154) and the same proof works in the general case. Using this theorem we
shall prove:

ProPoSITION 4.13. If p€8°U S*+Y2, then the operator
A4,: 07 (R") -~ C% (R™),
defined by

A, v(x)= f(f n'(p(x, y, &) e’ v Oy(y) dy’ dy,) dE', x€R" vECT (R™),
0

can be extended to a continuous linear operator HEYZP (R™) — HI%, 1 (R”) for all sER.

Proof. It suffices to prove that for arbitrary @, Ve CF(R™ the operator
8: O (B3 v—>DA,(Tv)ECT(RY) can be extended to a continuous linear operator
Hy o+ Hg, s for all s. In fact, 4, can be written as a locally finite sum of operators of
this type.

Now the map:

Hg, (B3 u~> (@' + (2, u(z’, 2,)) €H,(R™, LX(R)) (4.18)

is a Dbijective isometry. By the same map we can regard CF(R") as a subspace of
CF(R™ 1, [?(R)) and we can write S in the form (4.17) with H,=H,=L?R) and
s(z', y', &) being the operator L2(R)—~L2(R), defined by

o o, &) ula,) = f " 0(0) e, 1. ) ¥ ) (4.19)
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There remains only to prove (4.16) for then we can apply Theorem 4.12. Now
DEDEDYLs(x',y', &) is a sum of operators of the form (4.19) with some @, ¥'€C0Z(R")
and p €&~y §¥+12-11, Thuys it suffices to prove (4.16) in the case when o' =f' =7’ =0.
Let us use an elementary lemma (see [18] pp. 93-94 for a proof).

LevmmaA 4.14. Let (X, dx), (Y, dy) be two measure spaces and let k(x, y) be a measurable
function on X x Y, such that the functions §|k(x, y)|dy and §|k(z, y)|dz belong to L*(X, dx)
and L™(Y, dy) respectively and their L® norms are both less than or equal to C. Then

Ku(x)= fk(x, y) u(y) dy, w€L*(Y,dy) (4.20)

defines a bounded linear operator LAY, dy)—L*(X, dzx) with norm less than or equal to C.

In view of the lemma it suffices to prove

fo IHICD(W) (@, y, &) ¥(y)| dy, | < const. (1+|£'[) (4.21)

sup
Tn

and sup
Yn

f / >1|(I)(x)p(x, y, &) ¥(y)| d, < const. (1+]|&'|)" (4.22)

(4.21) and (4.22) are obvious when p€ §* so we assume that pES"H’. Then we can even
assume that
P&, y, &)=y (@, — g alz, y, §') eFI O for |§] >4,

where k, >k, >0 are integers and a€ S¥+*1*%¥D2 " Ag in the proof of Lemma 4.9 we see
that

| @) p(w, y, &) F(y)| < const. |&'|*+*+Bax D2 g 0| —y, [ exp (— Clan— yu 2] [€'])

for |&'| >4, where O >0. Thus to prove (4.21) and (4.22) it is sufficient to prove

Tn
f 2% (z, — y,)** exp (— C(x, —y,) %, A) dy, < const, A~ Fr+ks+Di2 (4.23)
0
and e
f x% (2, — 9,/ exp (— C(x, — ¥,) %, A) dx, < const. A~ FrTka+D2 (4.24)
Yn

for all 1>0,2,>0,y,>0. By a change of variables with 7' =z, (CA)}, t=y,(CA)} we get

Tn

(0}')(kl+kn+l)12f xﬁl (xn - yn)k' eXP ( - C(xn - yn) xn}‘) dyn

0

T T2
= f T (T — Y exp (— (T —t) T) dt = T"“""lf e ds,
0 0
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which is bounded. This proves (4.23) and (4.24) can be proved similarly. The proof of
Proposition 4.13 is complete.
By applying Theorem 4.12 with H, =€ and H,=L*R), one can prove in exactly the

same way:

ProPOSITION 4.15. If p€8% U 8**1, then the operator B,: C° (R™™1)—C®(R"), defined by

Bytale) = f (fp(w, (o', 0), &) €7 g () d@/’) dE', “uy€ 07 (R™Y),

can be extended to a continuous linear operator HP™(R™~1)— H{§%_1(R™) for all s€ER.

Let || {|(m, s be the norm in H, ,(R"). Then if m is an integer >0, the norm 1ol om.s
is equivalent to the norm Zi_g || D] (o, s1m_t)- To prove that F can be extended to a lin-
ear operator HEC .,—HE’ ., such that (i) of Proposition 3.6 holds it therefore suffices

to prove
(') If m and k are integers such that 0<k<m-+1>1 then D} F can be extended to

a continuous linear operator Hin o~ Hoomrs—k+ 1)

When k=0 this follows from Proposition 4.13 since the symbol ¢, used in the definition
of F, can be written g=g,+q’, where QOESO and ¢’ €§~%. By the same argument as used
by Hérmander [8] to prove the composition formula for pseudodifferential operators, we

are allowed to calculate formally and obtain
D, Fo(x) = J(L sznq(x, y, &) eV p(y) dy’dyn) d&' | (2m)
" f( fQ(x, (¥, %), §) &0y 7,) d?/‘) d&'| (27)"", vEC™ (RY). (4.25)

Note that the last integral is equal to v(x) by (i) of Lemma 4.6 and Fourier’s inversion

formula. By induction we get

Dk Fo(a) =i f ( f " f DE q(e, 3, &) VO u(y) dy dyn) dg'| @)
1]
k

-1

+ > T(», D) Div, v€C™ (R,
j=0

where 7',€ T*~*-}(R") are properly supported. Here we can apply Proposition 4.13 on the
first integral and the results in the appendix on the other terms, to see that (i’) holds. This
proves (i) of Proposition 3.6 and we omit the proof of (ii) which is quite similar.
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Definition 4.16. We let N be the class of operators K: C5° (R*)—C®(R") of the form
Kuw)= [ (b u g, weoz @),
0

where k€C®(R2" Y x U) is a function of (2, %), (2,, ¥,))-

Then we have

Each K€N-® can be extended to a continuous linear operator H{n 5(R™)—~

H%%1.4(R™ for all 5, t€ER and integers m >0. ' (4.26)

Proof of (v) of Proposition 3.6. It is evident that yF =0 and by Fourier’s inversion
formula we see that y F+=1.

By the usual argument we are allowed to operate under the sign of integration and
get:

TEo(x)= zf (f J T(z, D) (g(@, y, §') e~V v(y) dy’ dyn) dE'[(2m)"

for all v€C”(R*) and T€T*(R"). Combining this with (4.25) and the immediately fol-
lowing remark, we get:

A Fo(z) =v(x)+ f(fxnf oo (X, y, &) X5V p(y) dy’ dyn) dg¢', veEC® (R,
0

where q_ (2,7, &)= —i(27)" "1 e~ A(x, D,) (q(z, y, &) €<+¢?), Thus q_€5* by
(ii) of Lemma 4.6 and therefore:

A Fo(x)=v(x) + J.Infk(x, y)v(y) dy' dy,, v€EC” (R™),

where k(z,y)= [q_. (2, y, &) "> dE" belongs to C*(R¥*" Y x U) as a function of
(=", ), (%,,9,)). This proves that
AF =1 mod (N-), (4.27)

80 by (4.26) it follows that AF =1 mod (M~*). That AF+ has C® kernel is proved in the
same way and we omit the details. This completes the proof of (v) of Proposition 3.6.

Proof of (vi) of Proposition 3.6. We shall first construct operators G:: C°(R"*)—C®(R")
and G+: C°(R""')—>C=(R™), such that:

GA + Gy = I mod (N-). (4.28)
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LEMMA 4.17. Let tA be the real adjoint of A. Then there exists g €S0, such that:

@) ‘A, D) (g(x, y, &) V) eS~.
() gz, (¥, 2,), &) =D’ —y'), where ®ECY(R"?) is =1 near the origin.
(iii) g(z, y, &)=0 when |z—y|>2.

The proof of Lemma 4.17 is almost identical with that of Lemma 4.6, so we omit it.

Now put:
o= if (f I”fg(x, Y, £y el P (y) dy’ dy,,) dE’]@m)", veCT @Y
0

and
Gty () = f (f oz, (¢, 0), ) VO (y) dy') dE[@m)™, 5, € 0™ (R™Y),

These equations define our operators @ and G*. For € 0% (R") we get after a partial

integration:

GAu(z) = zf (f f"J‘ ‘Aly, D,) (g9(, y, &) V") uly) dy’ d%) d&'|2m)"?
0
* f (fg(x, W', %), &)V Pu(y, z,) d?/') d&g'[@m)~t

B f (f g(z, (4, 0), &) €<~V u(y’, 0) dy’) ag'| (@a)"

Here the last two integrals are boundary terms originating from the term Dy, in A(y, D,).
Lemma 4.17 implies that the first integral is = [ k(z, y)u(y)dy'dy,, where k€C® and
that the second integral is =wu(x). The last integral is = —G"*+yu(x). This proves (4.28).

Next we show that (G, G*) is approximately equal to (F, F+). From (v) of Proposi-
tion 3.6 and (4.27) it follows that

I+K, K}

(A +y + - + +
(4, G )(y)(F’F )=(G, G )(0 7 )-(G+GK1.G + GKY),

where K, € N~ and K7 has C* kernel. On the other hand (4.28) implies that
(@, G (‘;}) (F,F*)=(I+ K,)(F, F*)=(F+ K,F, F* + K, F"),

where K,€ N-*. Thus (@+ GK,,G" + GK{)={(F+ K, F,F* + K, F*) or equivalently:
F~G=GK,-K,F
F+—@Q+=GK{ — K, F+
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By (4.28) we get:
FA+F+y—I=FA+F+ty—GA—-Gty = (F-QA+(F+—G*)y
= (GK,—K,F)A+(GK{ — K, F+)y mod (N—®).
Using Proposition 4.13, we show as in the proof of (i) that G can be extended to a con-
tinuous operator Hie o~ His%1,5-1,) for all s€R and integers m >0. Moreover it is wellknown
that y is continuous HE%,(R™)—~H%; (R*1) for all s, so it follows that (GK,— K, F)A+
(GK;" — K, F+)y € M—=. This proves (vi) of Proposition 3.6.

(24%) of Proposition 3.6 follows from the following two facts:
(a) By Proposition 2.5.7 in [10] we have
WEF/(FH)= {((x, (&', 0), (2, &) €(T*R"N0) x (T*R"")\ 0}
(b) From (iii) of Lemma 4.6 it follows that the distribution kernel k(z, y’) of F* is smooth
outside the plane x,=0.
Proof of (tv) of Proposition 3.6. We shall first prove
(x, &), (4, ) EWF'(F)=> & =5’ =00r & =9 +0and 2’ =y’ (4.29)

To do so we note that

Fu(x) = f Ql'n Yn (x’a Dz') u(x,’ yn) dym ue C'(o)° (Rn),
]

where @, y, is given by
Qe o', D) w= iffq(x, ¥, &) e’V Oy ) dy' dE'[ (27)" Y, weCTR™Y).

Clearly @y, is & locally bounded function of (%,, ¥,)€ U with values in L(R""'). On any
compact set where a’' +y’ we therefore have uniform bounds for the derivatives of the
kernel @,y (2’, ¥’) with respect to =’ and ¥’ which proves that & =»"=0if ((x, &), (y, n))€
WE'(F) and ' +y'. Let D€CY R xR"1), ¥'€ O (R xR). Since the wave front set of
the kernel of a pseudo-differential operator belongs to the normal bundle of the diagonal
the Fourier transform of the distribution ®(2', ¥')Qu.v.(%’, ¥') With respect to (z", y') is
rapidly decreasing when (&, ') belongs to any closed cone where & +#’ #0. If the kernel
of F is also denoted by F, it follows by integratioh with respect to z, and y, that the Fou-
rier transform of ®(z', ¥')¥(2,, ¥.) F(z, y) is rapidly decreasing when (£, 7) belongs to a
closed cone where §’ == —#’. This proves (4.29).
Since F(z, y) =0 when |2,| <|y,| we have

(@ &), (g, M EWF(F) = || >]|ya]. (4.30)



42 JOHANNES SJOSTRAND
LEMMA 4.18. Let Z€LM(R™) and y € LO(R™) be properly supported and satisfy:
(WE(z) UWF(Z)) N {(z, §) € TR")N0; & =0} =0 (4.31)
WE(I ~ ) N {(z, & ET*BRYNO; @, =&, =0}=0. (4.32)
Then (I —y) FZELM(R), so in particular
WE'((I =) FZ)<= {((=, &), (x, £)) E(THR"IN0) x (T*R*™N0)}.

Proof. Since the principal symbol of A is +0 and belongs to S* outside {(x, &)€
T*R")YN0; z,=£,=0 or &=0} we can find A’ €L-1(R") with WF(A') N {(z, &) € T*(R")\0;
&' =0}=0, properly supported and such that WE(A'A—I)UWF(AA'—~1I)is arbitrarily
close to {(z, &) € T*(R")\\0; x, =£,=0or & =0} (See Prop. A.l.) Using such a A’ it is easy
to construct y,€LO(R"), properly supported such that WF(I —y,) <= WEF(I —y) and

AI~) = (I~ y9) A mod (L),
where L~= is the set of operators with C® kernel. With A’ as above it suffices to prove that
I—y)FZ=(I—yxA'Z.
Put B=(I—-nFZ—-(I-xANZ.
Then AB=(I—y)AFZ—(I—y5) AN'Z mod (L—).
By the choice of A’ we have
(L ~ %) AN'Z = (I —y,)Z mod (L),

By (v) of Proposition 3.6 we have

(I — ) AFZ = (I —4,)Z mod (M~Z),

In view of Proposition A.2 and (4.31) we have M—~Z<L~®. Thus AB=0 mod (L~=). By
{vi) of Proposition 3.6 we then get

B =FAB-+F+yB+KB=FtyB+KBmod (L),
where K € M. Using Proposition A.2 we see that K B€L~, thus

B = F+yBmod (L~).
Take y, €LO(R") such that

WE(I ) N {(z, &) ET*RYNG; 2, =&, =0} =@

and (I —x) (I —x) =(I~yx) mod (L~°).
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Then we get B=(I—y)B=(I—y)FryB=0mod (L).

Here the last equivalence follows from two facts:

1) (I=—y,) F+ has C® kernel by (iii) of Proposition 3.6.
2) From Propositions A.2 and 3.6 and the definition of B it follows that ¥ B is continuous

HP(R™)—~ H2% (R™) for all s€R.
This completes the proof of the lemma.
With 5 and Z as in Lemma 4.18 we write
FZ =(I—y)FZ+yFZ
To prove (iv) of Proposition 3.6, it suffices in view of the lemma to estimate WY (y FZ).
Combining (4.29) and (4.30) we get:
(@, 8), (v, M) EWF' (yFZ) = (2, §)EWF(y), (@, &)= 1), lya] <2l

Now the desired estimate follows, since we can choose y with WE(y) arbitrarily close to

{(z, &)€T*R"H\O0; &,==,=0}
This completes the proof of Proposition 3.6 and Theorems 1 and 2 are now completely

proved.

Remark 4.19. With the methods of this section one can treat (4.1) in the more general
case when A (x, D)= D, — iz r(x, D')+s(x, D'). Here k is odd and r and s are the same
operators as before. This shows that Theorems 1 and 2 hold with appropriate modifications

for more general operators P.

Remark 4.20. At the AMS conference held at Berkeley in August 1971 M Sato announced
for the analytic case a stronger result than the conjunction of Lemmas 2.2 and 3.1, which
allows one to transform to A=D,—ix,D,_,. For this operator the constructions in this
section are of course simpler, but we have kept our orginal proofs rather than transferring

the burden of proof from section 4 to sections 2 and 3.(%)

§ 5. Exiensions of Theorem 1
We let A =B mean that A — B is smooth if 4 and B are distributions and that the
distribution kernel of 4 — B is smooth if 4 and B are operators. By Theorem 1 the system

Pu=w—R-w-, Rtu=ur, w€D(Q), w D) 6.1
is eguivalent to

(*) (Added in proof.) In a paper to be ‘published jointly with J. J. Duistermaat such transfor-
mations will be used to prove a global verison of Theorem 2.
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w-=EB-w, w=Ew+Etut. 5.1)

Here all the operators are given in Theorem 1.

Now let 4+: D'(Q)->D'(I't) and 4~ D'(I')~D'(2) be continuous linear operators
which are also continuous C®(Q)—C®(I'+) and C°(I'~)—>C>(Q) respectively. Consider the
more general system

Pu=v—A4~u-, Atu=vt, w€D'(Q), weD'T). (5.2)

If 4+ = R+u the equivalence between (5.1) and (5.1’) shows with w—=0 that the first equa-
tion in (5.2) is equivalent to the equations

E-v—A~u")=0, u=Ev—A~u)+E+ut.
Thus (5.2) is equivalent to
E-A~u-=E-v, A*E+tutr=vr—A+E(w—A-u"), u=Ew—A4A-uw)+E+ut (5.2

We now assume that there exist continuous linear operators Bt: D'(I't)—D'(I'%)
which are continuous C®(I't)—»C®(I’t) and satisfy

BrA+E+=A+vE+B+=1, B-E-A~=E-A-B-=1.

Then we can eliminate u+ in (5.2') and a simple ealculation shows that (5.2) is equivalent

to the system
w=F-v, u= Fo+Ft+ot

where F-=BE-, F*=E'B* } 5.3)

F=E—-EA B E —E'B*'A*"E+E*B*A*EA B E~
Thus we obtain

ProrositioN 5.1. Under the assumptions above we have

DF=1, ID=L
Here ﬁ=(fl’+ gh), J=(§_ g"),

where F, F+ and F- are given by (5.3).

Example 1. Let A+€L™" (T+, Q, f) and A—*€L™ (', Q, f) be properly supported and
have principal symbols positively homogeneous of degree m+ and m~ respectively. Assume
that A+ and A—* satisfy the obvious analogues of (0*), (C~) and (0.5) in section 0. Let
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B+eL-""(I'*) and B-€L-" (') be elliptic, properly supported with principal symbols
positively homogeneous of degree —m* and —mni— respectively. Put R+=B+4+ and
R-=A-B~. Then R+ and R~ satisfy the conditions of Theorem 1. If E, E+, E- are the
corresponding solution operators, A+E+ and E-A—- have the parametrices B+ and B~
respectively. Thus we can apply Proposition 5.1. The last equation in (5.3) simplifies to
F = E. This gives a slight extension of Theorem 1.

Example 2. Let P, Rt, R~, E, E+, E- be as in Theorem 1 and let 4+ EL’”+(1"+, Q,
and A—*€L™ (I'-, Q, f) be arbitrary. Then in general A+u is not defined for all € D'(Q)
and 4~ does not map C®(I'-) into C*(Q). Therefore we can not apply Proposition 5.1.
However A+E+ and E-A- still seem to play an essential role for the problem (5.2) so it is
interesting to calculate them. Since E—-A~=(A—*E—-*)* and A—* and E—* are the same
kind of operators as 4* and E+, it suffices to calculate 4+£+.

From Theorem 1 it follows that the distribution kernel of A+E+ is smooth outside
{(z, y) €T+ xT+; f(x)=f(y)}. Therefore we can localize the study in the following way:
‘By Proposition 0.1 each x,€€) has a néighbourhood W; such that fI'+ 0 W is the union of
a finite number of hypersurfaces fI'y, fTs, ..., {T'y, where I';, T,, , I’y are the different
components of (f1W)nT+. We can identify Co((fW)NTI+) in a natural way with
0"‘5(3‘?1) x O®(f%) x ... x C®(fI"y) and A+ induces a map

- O(Q)€v > (py 410, pa Ag, ..., yy Ayv) ECP(Ty) X ... x OX(fTy)

where A ,GL’"+(Q) and y, is the restriction operator 0®°(€2)—~C®(fI';). Similarly E+ induces
a map
Cr () x ... x CX(fTN)3 (uy, -y uy) = Byuy + Egup+ ...+ Eyuy €C°(Q).

Thus A+E+ can be locally identified with the matrix:
(i AsEchesnsn: OF (fI13) X ..o X CF(fTy) - C=(fTy) X ... x C°(fT'y).
Following the proof of Theorem 1 one can prove (with some work) that in the local
coordinates of Proposition 0.1, we have
Eru(z)= f b,y &') exp (i<a', &) + iz, (&, §) iy, ED)u(y') dy &,
wTECTI7),y, £ ER", zER™

Here b€ S (R*xR"™') xR™"), 7 is given by Proposition 0.1 and we have identified Q
locally with'R" and I'+ with the hyperplane x,=0. It is pessible to calculate the leading
term in the asymtotic expansion of b.
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Now choose local coordinates with the origin in z,€ W, such that the z,-axis is trans-
versal to all the fT; at x,. Near z, each fT'; is then given by an equation z,=1.(z'), where
1, is smooth and realvalued. Then for small z

B (@)= f f Bel@, ', &) exp (i<, &) i, — M) Tle, &)~ i<y, £) wly)dy' d&.

for all w, €CF (fT) with support close to &’ =0. Here b,€.8?; and 7, is smooth, real valued
and positively homogeneous of degree 1 with respect to &'. By applying 4, under the sign
of integration, we get

vi4,; By, ()
- ffajk @,y &) exp (i (&, & +i(A,(&)) — Ae(@ )T (&, E) =5 Y, ED) w () Ay’ dE,

where the principal part of o€ S{"; can be determined. Thus the study of A+E+is equi-
valent to the study of a certain system of Fourier integral operators. It seems to be very
difficult to find simple nontrivial conditions for such a system to be solvable. Howéver,
in the case when all the fI'; coincide, we have 1,—1,=0 and A+E+ becomes a system of
pseudodifferential operators. This case is treated in Eskin [6].

Example 3. Let P be as in Theorem 1. If we choose R+ and B—* with WF(R+) and

WE(R—*) close to X and X respectively, it follows from (iii) in Theorem 1 that WF'(E)

is close to

ATHQ)\0 ={(g, 0) E(THQ\0) x (T*Q)\0)}.
We shall now construct operators A+ and A~ such that P has a parametrix
;
(- 0)
where WF/(F)c AT*(Q)\O
WE'(F*)<={{e, G, 0); 0€X¥}
WEF'(F)={(G-0,0); 0€Z}.

Lemma 5.2. If 1/2<¢<1, there exists a properly supported P'€L,™'~%(Q) such that
(WF(P'P—-I)UWF(PP —I))cX. '

Proof. Since P is elliptic outside X it suffices to find P'€L;m"'-° (Q) such that
WEF(PP'—I)cZ. Clearly it suffices to construct P’ locally. We can therefore assume that
Q=R" and
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Z={(z, &) ET*R"\O; =x,=§&,—(2,&)=0}
Let p €05 (R) be 1 near the origin and let y €O°(R” %R”) be equal to
P((En 7@, ENIE] ) p(a|€']70) for [£]>2

and equal to 1 near X. Then y€SJ(R” xR”?) and the restriction to (7% (R*)N\0)\Z be-
longs to S—((T*R*)N\0)\Z). If p(x,£) is the homogeneous principal symbol of P we

have ;
(1—x(=, &)@, §)LES ™ 74R" x (R*\ {0})).
In fact, we have

|p(, &)| > Ok(|&]|™ |2, | + |E] ™1 E (', &)]), z€EK< <R,
where Cx >0 and thus
|p(@, &)| >Ck|€]™ " in supp (1 —x) when |&]|>2.

The derivatives of (1 —y)p~" can now be estimated inductively if we take the derivatives
of the identity

p((l=x)p ) =1—y
and use Leibniz’ formula (cf. [8]). :
Let PyeL,;™*'=°(R") be properly supported with symbol (1 —y)p~! mod (8—). Then

by the formula for composition of two pseudodifferential operators, we get
PPy=1—y(x, D)+4,

where A €Lp**-1-20 and WF(y(», D))< Z. In fact, if p+p,_, is the symbol of P, then
A4 has the symbol

~Pug (L—=2)p™t + Ia|2>0 P+ Pu-)PDEA=2) p7H !

Since 3<p<1, we see that I+ A4 has a properly supported parametrix; (I+ 4)~1~
I—A+A%—A43%+...€L} and the lemma follows if we put P’ =Py(I+4)-1.

Now take B+ and R- as in Theorem 1 and let B, E+, E— be the corresponding para-

metrix operators. Put

A+ = RHI—P'P), A-=(I—PP)R-.
Then WE(AYS{(G.o. 0 0€5 (5.4)
WEF'(47)={(o, G_0); 0€X} (6:5)

Moreover, since PE+=0; , .
A+E+ = R*E+—R+P'PE+=1

and simila,ﬂy E-A-=1. Thus we can apply Proposition 5.1 and find that
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~ (P AT
has a parametrix
g (F F*)
\F- 0 )
where F+=FE+, F-=FE- and
F =E—EA-E-—E+A+E. (6.6)

If BELQ) is properly supported and WF(I - B) N Z =@, we have
A*=R;(I-P'P), A-=({-PP)R;,

where R;=R+B and Rz=BR- satisfy the conditions of Theorem 1. Let Ey, E}, Ez be
the corresponding solution operators. Since the parametrix of 'i) is unique mod. (L),

we have
F=E;—~E A E;-EfAE,. (5.7)

By choosing B with WF(B) arbitrarily cloée to X, it then follows from (iii) of Theorem 1
and (5.4), (5.5) that WF'(F)< AT*Q)\\ 0.

Since Theorem 2.1 is a local version of Theorem 1, one can modify the operator @
there in such a way that for the corresponding solution operator we have WF'(E)<
AT*R")\0. Using this modified version of Theorem 2.1 in the proof of Theorem 2, we
find that it is possible to choose the operators R, E, E; in Theorem 2 such that
WE'(E )<= AT*(Q)\\0.

Finally we claim that the inclusions (iii) in Theorem 1 are actually equalities. To prove
this one has to prove the opposite inclusions. To illustrate the ideas we shall only prove
that ACWF’(E), where we have put

4 ={(fae: far) E(THQ)Y\0) x (TX(Q)\0); 0€Z5 , uEWF(R*), frr0 = frap}.

We have
WE/(B) = {(fos ts fp); n€WF (B*)} = G0 4, (5.8)

where o means composition of relations. Since R+ E+=1I we have WF'(R+)=WF'(R+E+R+)
< WE'(R+)o WE'(E+R+)= (G, o WF'(E+R+), where the last equality follows from the fact
that g€X+ if (o, u) EWF'(E+R*). Thus (5.8) gives G,04< G,oWF'(E+R*) and since G,
is bijective we get A < WEF’'(Z+R+).

Since WEF'(I)=AT*(Q)\ 0.if I is the identity in D’'(Q), we see that WF'(I — E+R+)>
WF(E+B+)\{(¢, o) EWF'(E+R+)} o AN {(o, @)€A}. Since WF'(I— E+R+) is closed and
the closure of A\ {(p, p)€4} is 4, it follows that A< WF'(I — E+R+). Now EP=1—E+R+
by Theorem I and since WF'(P)< AT*(Q)\\ 0, it follows that 4 < WF'(E) as asserted.
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Appendix

Here we shall define and investigate a certain type of pseudodifferential operators.
We let T™(R™) be the set of operators T': Cg° (R")->C®(R") which can be written in the form

Tu(x)= Jfé‘(w, Y, &)V Ouly 2, dy' dE'] (27)" T, w€OF (R™),z€R" Y, £ €ER™,

for some s€ST ((R* x R*™!) x R™™1).

If T€T™R"), we can regard T as a family of pseudodifferential operators in R"~! de-
pending on the parameter z,. Using this observation it is easy to show that T is continuous
HEP—>HES_y for all x€ B and integers r>0. Using the same observation one shows, ex-
actly as for pseudodifferential operators, that every properly supported 7€ 7™(R") can
be given by the formula

Tu(z) = f Hx, &) O UE ) dE ] (27)" 7, w€CP (RT),

where 4 denotes the partial Fourier transform of % with respect to 2’ and #(z, §')€
(R xR"1). tis uniquely determined by 7' and will be called the symbol of 7'. If 4 is
the Fourier transform of «, we have

W&, x,) = feXP (ix,&,) 4(E) dE,/(2m),
thus we have

Tu(x) = ft(x, &) O q(g) dEf(2m)", w€EOT (RM). (A1)

. ProrosiTioN A.l. Let TET™ (R*) and QEL™ (R™) be properly supported with sym-
bols ¢t and g respectively. Suppose WF(Q) n {(z, &) € T*(R")\0; &' =0} =D. Then QT and
TQ belong to L™ ™ (R"). Their symbols are asymitotically > q'® (z, £) Dii(x, &)/ o't and
D) (x, &) DEg(x, £)]o ! respectively. Here ¢\ = (9/08)*q and =) = (9/0&")* t.

Proof. By the same argument as used in [8] to prove the composition formula for
pseudodifferential operators, we are allowed to apply @ under the sign of integration
in (A.1) and get:

QTu(x) = [s(x, &) XV E) dEN (20)", wECT (RY),

where s(#, £) =e %P Q(z, D,) (t(x, &) e“*®). Wellknown estimates (see for instance [8] th.
2.6) for the expression
4 — 732904 Acta mathematica 130, Imprimé le 30 Janvier 1973
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i ® Q(x, D,) (v(z) ei(x.«S)) - I IZNq(“) (@, &) Div(x)/ !
show that s(z, &) — | Iqu(az; (z, &) DEt(z, &)/ a! =0(l§l_N+lm'|+m’)’ & o0,

uniformly when z€ K< < R”

Since @ is continuous C®(R™)-C°(R"), we see that for all K< <R” and multiindices
« and B, there exists M =M,5x€R, such that DZDis(x, £)=0(|&|™), & oo, uniformly
when z€K.

Since by assumption g(z, §) is rapidly decreasing as a function of £ in a conic neigh-
bourhood of {(z, & € T*(R")\\0; &' =0}, we have ¢'* D5t €STs*™ 1 (R” x R").

Combination of these three observations with Theorem 2.9 in [8] gives that
$€87" ™ (R™ x R") and s~ Xq'” D%t«!. This proves all the statements about Q7.The state-
ments about TQ can be proved similarly and we omit the details.

ProrosiTIioN A.2. Let @ €L™(R") be such that WF(Q) N {(x,£) € T*(R")\\0;§’ =0} =02.
Then Q is continuous HE5P—~ Hi v s—m for all r, s, NER.

Proof. For all r€R let A, o €EL7(R") and A, € T"(R") be properly supported convolu-
tion operators with symbols asymtotically equal to (1+ |£])" and (1+ |&’|)" respectively.
Put A 5y =Ay, 0,9 Then

A, ) is continuous HESSS™ — HE%eom?) for all u, vER. (A.2)
Proposition A.1 shows that Q@ = Aty c-m@A(-r, o belongs to L°(R") and that
Q— A tr-m+m. —e-an @ Aoy has 0% kernel. (A.3)
Since @' €L°(R") it is continuous HEH — Hg%, Now the proposition follows if we com-

bine this with (A.3) and (A.2).
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