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1. The essential property of the factorials occurring in finite differences
is that, when the proper difference operator is applied to the factorial, we obtain
the factorial of the preceding degree, while every factorial of degree > o vanishes
for x =0. It is this property which makes factorials suited to expansion pur-
poses. Therefore the question naturally presents itself, to find the most general
class of polynomials possessing this property. A still more general class has
been considered by Aitken' who introduces a new operator at each step; but
it appears that there is considerable advantage in investigating separately the
case where all the operators are identical, because in that case we may avail
ourselves of certain theorems belonging to the calculus of operations and thus
obtain convenient explicit expressions for the polynomials.

It will be assumed in this paper that the reader is familiar with certain
elementary notions belonging to the calculus of operations, such as the defini-
tion and general properties of omega-symbols and their sub-class the theta-sym-
bols. For details, and for the notation which will be employed in this paper,
the reader is referred to the work quoted below.?

Where nothing else is said, the object of the operations will be a polynomial,

' A. C. AITREN: On a generalization of formulae for polynomial interpolation. Journal of
the Institute of Actuaries, Vol. LXI (1930), p. 107. See also Proceedings of the Edinburgh Mathe-
matical Society, Series z, Vol. T (1929), p. 166.

* J. F. STEFFENSEN: Interpolation (Baltimore 1927), § 2 and § 18, er the same articles in
the Danish edition of 1925.
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so that expansions in powers of theta-symbols are permitted.? All theta-symbols
occurring in this paper will be of the form

0=¢(D)=2wkvl)” (k, + o), (1)

the expansion being convergent if the symbol of differentiation D is replaced
by a sufficiently small number. In other terms: the function ¢ (t) is assumed to
be analytical at the origin.

If, therefore, Q(z,, 2,,...2,) can be developed in powers of z,, 2,, ... £n,
and if 6,6, ...0, are various theta-symbols, then £2(6,, 6, ... 6,) is a well-
defined operation, because £ can be developed in powers of 6,, 8, ... 6, and,
therefore, in powers of . £ itself is not always a theta-symbol, because its
expansion may contain a constant term, but

9(017 027 e 011)_ Q(O, o, ... O)

is a theta-symbol which, however, will only be of the form (1), if the first power
of D is not missing in its expansion.

After these preliminaries we proceed to prove that, 6 being given by (1), a
polynomial which we shall denote by 27 of degree r exists, this polynomial being
completely determined by having to satisfy the conditions

al=r1; ol=o0 (7‘>O); (2)
6 2 = y 27—1| (r>o) (3)

Since x0 = 1 is already known, we may assume 7 > 0, in which case there
is, according to (2), no constant term. We may, therefore, write zll=«wx, and
it follows from (3) and (1) that %, & = 1, so that « is determined, since %, = o.

We now proceed by induction. If, for a certain degree r — 1, the coeffi-
cients a, in

r—1

ar—l = Z au ot

n=1

have been determined, then the coefficients b, in the polynomial of the following
degree

! This important remark is due to J. L. W. V. JENSEN: Sur une identité d’'Abel et sur
d'autres formules analogues. Acta mathematica, vol. 26 (1902), p. 314.
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x71=zr: b, x*

v=1

are completely determined by comparing the coefficients of ## in 7271 and 6 a1,
Now

o= ZT kstj by
§=1 ry=1

or, putting » = p + s,

r—s

0{1)7-‘ = Z k,g 2 b‘u+s (Hz + 8)(8) friad

§=1 u=0

r—n

r—1
= 32> by b e+ 8)0.
u=0 s=1

We therefore have

r—u
ra, = 2 (!i + S)(s) ks b/.t+5 (4)
§=1
which is valid for u=o0, 1,... r — 1, if we put ¢, =o0. Thus we may calculate
in succession by, by—1, ... by, b, by the equations

e =1k s

¥ Ap—n = (7' —_ I) kl Z),_1 -+ 7‘(2) ]Cg br

ra, =kib +2 kb + o+l ke by,
the solution being possible and unique, since %, # o.

To a given 8 corresponds, then, a completely determined polynomial of degree

r, satisfying the conditions (2) and (3). The simplest of these polynomials is
obtained by putting 6 = D and is evidently «". On account of the close analogy
between the polynomials 27 and the powers " we suggest for the former the

name »poweroids».

It may be noted at once that
0 2l = !, (5)

and, since "2 = r! k], it follows that the coefficient of z" in the expansion of
an is kT
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Further, we have
O(x + o)l = r(x + a)r—11; (6)

for, putting z + a =¢, it is seen that D, = D, so that 0, =0..
Any polynomial f(x) of degree n can be expressed in the form

fle) = 3, ere,

since this is a polynomial of degree n with n + 1 arbitrary constants. In order

to determine these, we observe that

0 flx) = 3 ev =l
and hence, putting x =0, !¢, = 6"f(0), so that
flay= 3 = o)

This is the expansion of a polynomial in poweroids of x. The analogy

with the corresponding Maclaurin expansion is obvious.

2. The solution of equations of the form (4) is, of course, not a suitable
process for obtaining the poweroid corresponding to a given . But several

direct expressions can be given for the poweroid. One of them is

r+1
al =6 (%) x* (8)
where we have put
L) (0
db

In order to show that (8) satisfies the conditions (2) and (3), we observe

that, applying the operation 6 to (8), we get, for » > o,

020 = (]0))1) %

=20 (g)wx"—‘ =y x|,

or (3). Further, it follows from (8) that
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oD kit 2k DA+ 38D+
A =0g1= B+ ks D + ks DE+ -

or, developing in powers of D,

xa=(1+%’D+ --~)-I=1.

1
Finally, we must prove that ol =0 for » > 0. This is equivalent to requiring

v+1
that the development of 6’ (%—) in powers of D does not contain D, or that

the development of

¢ (1) (w—’(t—)): ~Lpnp (m)

does mnot contain ¢*. But this is obvious, because differentiation term by term
of the expansion of (——I—) does not lead to —-
o (1) t

Another expression for the poweroid which is sometimes preferable is
D v
=z (—0—) L (IO)

It is seen at once that this expression satisfies the condition o*=o0 for » > o.
Further, for v =0, (10) becomes

0
xal=x(%)) x~

D\o
but (—5) is the identical operation which may evidently be applied to z™!

although 2! is not a polynomial. We therefore have x0l = x- 2! = 1. Writing,
finally, for a moment, instead of (10),

o) ==(3) =,

it remains to prove that 0 Q,(x) =v Q.—(x). Now we have, by (1), f(z) being
a polynomial so that the series is, in reality, finite

Oxf(@)= 3 kv lwf® () + v f0" ()]

DM s

It

y=1

Oxflx)=260f(x) + & f(x). (11)

or

22
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Hence

0Q,(x)=1x6 (—102)1' x—1+ 6 (—g)v:ﬂ_l

»—1 »
o ()= e+ (D)

0Q.(x) = — 1) @ (z) + 2z

or, by (8),

which may be written

0Q.(z)=v @rlx) + [T — @ ()].

Hence, if for a particular value of » we have proved @,—i(z)= 21, then we
have 0 Q,(z) = Q. (x), and therefore also @,(xr)=2". But we have evidently
as initial value @,(x)= 1 =29 so that the proof by induction is complete.

1f, instead of (1), we write

o=17(D—) W +o), (12)

(10) assumes the form _
al =z’ (D)2 (y ©) = o). (13)

In this expression () may be any function which is analytical at the origin
and does not vanish there.

3. It is also possible to calculate the poweroids by recurrence. From (8)

,_aD{oy+
@ = (D) M. (14)

we obtain

Replacing now, in (10), » by » + 1 and inserting the expression (14), we find
the desired formula

xm=x%—g:ﬂ. (13)

It is on several occasions useful to write

=
21 = - (16)

and to consider the polynomial 2v+11—1 along with 2%, both of these having the
degree ». In this notation (15) may be written

@ zr+il—1 = g, (17)
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It should be noted that 6 is not a theta-symbol, since its expansion in powers

of D, or
0=k +2k,D+3kD*+ -, (18)

contains the non-vanishing constant term %;.. The degree of a polynomial is,
therefore, not diminished by applying the operation & to it.
Also the operation 6, applied to z*+11-1, leads to a simple result, viz.

0 2 FT1—1 = p g1, (19)
In order to prove this, we observe that, according to (10)

v+1
-1 = (]‘7)) z’ (20)

G v +111 = (%)v Dax

whence

=y (%) 27l =y gl
Any polynomial f(x) of degree » may be expressed in the form

n
= D\ a, a1,

»=0

In order to determine the coefficients, we have first, by (19),

0 f(x) 2 a, ¥ gy +i—rl—1
y=r

and thereafter, by (17),
06 f(x) Z @y ¥ =71

Y =T

so that, putting x=o0, we find a,= ’l' 6’0" f(0). The required expansion is, there-

fore,

é: _Of_ rril—t (21)

which should be compared with (7).
22%
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4. In the expressions (8), (10) and (13), 21 is obtained by operating on a
power of w, that is, on the poweroid corresponding to the operator D. It is,
however, also possible to obtain z’l by operating on any other poweroid, if the
operator corresponding to the latter is introduced. Let xil be such a poweroid

and 0; the corresponding operator. Then it can be proved that

';|._.d_£9, QIv+1 1
v=qe\a)

corresponding to (8), and

=z (%I)vw_;,l -1,

Or
corresponding to (10), or, putting 6 = ——.,
p (10), or, putting w00

wl = xp (Or) a7

corresponding to (13).

(W) +o),  (24)

In order to prove (22) we observe that, applying (14) to 8, and «7, we have

«'_@(e_fyﬁ 0]
¥ =36,\D) %

and, inserting this in (8),

v »+
a0 138

T dD\6 do;\D
_iq Q{ v+1 :]
—d01 ) xl,

or (22).

Further, applying (10) to 6; and a7, we obtain

= (%)v -1

and, inserting this in (10)

or (23).



The Poweroid, an Extension of the Mathematical Notion of Power. 341

A more symmetrical form may be given to (23) if we divide by = on both
sides; we then have

o = (%), (25)

and it is seen that solution with respect to xi’l*l produces an expression of the

same form, as is already the case if (22) is solved with respect to xg'

5. While the operation & is perfectly determined, the inverse operation
6! is not, but introduces an arbitrary additive constant, owing to the presence
of D! in the expansion of 6—'= D~y (D). But among the possible inter-
pretations of the »theta integration» #—' we may select one which is perfectly
determined. We denote it by I (the first letter in the word Integration) and
define it by

I=Dy(D) (26)

where D stands for that particular determination of D~1 which means integration
from o to x (or whatever the variable may be). In (26) the operation vy (D)
must always be performed before D).

Caution is thus required in handling the operation I. For instance, if the
operator obtained by expanding 6! and replacing thereafter D—! by D is called
6, then I and 6 are not identical. As a simple example, let w(D)=1 + D,
then 8 =D + 1, but I=1D + DD, and DD cannot be identified with 1, since

DDfE) = [ 1 @)dz=fle) - flo)
On the other hand DD = 1, because

DDf&) =D f fl)de= 1),

The trouble is evidently that D and D are not commutative; this is why we
may not exchange D and (D) in (26); and if the operation I is repeated »
times, it must be written (D¢ (D))" and not D* (D).

It can now be proved that
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al=y! I"1, (27)

because this expression satisfies the conditions (2) and (3).

We have evidently @ == 1; and, since the operator ) which always comes
after (D) introduces the factor z, we have ol=o0 for » >o0. Further, we
have 0= 1, because

Therefore
Gaxd=9101 =961 I"11
=yl "l =y,

This completes the proof of (27).
By means of (27) we may write (7) in the form

fle)= 36700 T, (28)

which is included in the form given by Aitken 1. c., when all his theta oper-
ators are made identical.
By (27) we find immediately

i =y T, (29)

which, like (15), may be used for caleulating the poweroids by recurrence. As
direct expressions for the poweroid, (8) and {10) are preferable to (27), owing
to the peculiarities discussed above of the operation I.

6. Instead of (7) we may write symbolically

wx;]

B = Z Tlm (30)
v=0
or
X, < x;' v
D = Z —1}—10 5 (31)
»=0

On both sides of these equations f(o) is, as usual, left out, and the summation
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extends only apparently to infinity, since the operations are only applied to
polynomials.

Differentiating (31) with respect to D, and dividing by z, we find

0

e R (5

y!

=0

or the symbolical form of (21).
When D and 6 are replaced by numbers, we shall always write ¢ instead of
D, and { instead of 6. Thus we have, by definition,

(= b
- (33)
= Dkt (k, = o).

Since t can be expanded in powers of [, the same applies to ¢!, and (31)
gives the form of this expansion which is
© x;‘l

e=3 00 (34)

v=0

The circle of convergence of this power series in { extends at least to the
nearest singular point for the inverse funetion to { = ¢ (t), but can go further,
as the example x =1, t=Log (1 +{) shows. For our purpose it suffices to
consider values of [ inside the aforesaid minimum region of convergence, in
which case (34) is convergent for all values of x, because x does not enter into
the determination of that region. We may, then, consider ¢! as the generating
Junction of the poweroids, when ¢! is expanded in powers of .

We obtain, therefore, by Biirmann’s theorem', the following two expres-
sions for the poweroid

) d ¢ r+1
xﬂ — Dtv_—_o em-t d_§ (Z) (35)
and
@l = D) et (é) (v> o), (36)

corresponding to (8) and (10).

! See, for instance, HURWITZ-COURANT: Funktionentheorie, 3. Auflage, p. 135.
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We may, however, also obtain (35) and (36) without resorting to Biirmann's
theorem. Let @ (¢) be any function, analytical at the origin, say,

Q)= et
y=0
The coefficient of ¢* in the expansion of @ (f)e*! is, then,
< X 1 )
Z acy_s——nm(D)x,

8=0

so that we have?

o(fet =3 Lo (37)

We mnote ern passant that this theorem contains as a particular case,
obtained by putting x = o, the so-called secondary form of Maclaurin's
theorem, or

@ tv
o) =3 50D (38)
v=0
which implies that
@ (D)o* = @™ (o). (39)

Considering now the coefficient of #~' in the expansion (37), it is seen that
@ D)x =Dl @(t) e
whence, putting @ (¢) = v (t),
Y (D)2t = Dyg g (t) €.

c 1. . . . t
Multiplying by x and comparing with (13), we have (36), since W(t) = 7
according to (33).

As regards (35), it is seen from (37) that

@ (D)x* = D;_, ®(t) e*.
Putting now
_t
¥ (?)

! Compare L. M. MiLNE-THOMSON: The Caleulus of Finite Differences, Chapter VI, where a
similar generating function is considered.

o) =y +1(t)- D
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so that
, _D v+1
om)=¢(3)",
we obtain

, D »+1 t )
] (_é_) = D;’:O /lp'v+l (t) (D W) elt

which, on comparing with (8), is seen to be identical with (35).

Since (31), when applied to a polynomial, may be considered to contain
only a finite number of terms, also when the left-hand side is developed in
powers of D), it is allowed to differentiate with respect to z on both sides. If
we differentiate » times and put, thereafter, x = 0, we find

0
D =Z D a- T (40)

In particular, we have
Daxl=D(x 21~y =z D=1 + 17,

so that, for » = 1, D,—o2’l = o’F-1. Hence we obtain by (40) for r =1

A
D=Z Ow|-l.n. (41)
y=1
This formula and (40) are the formulas for numerical differentiation of a
polynomial. But since (41) is the inversion of (1), we see at the same time that
the expansion

t=g oﬂ-l-% (42)

is the inversion of {=¢@(f) in this sense that (42) represents that branch of
the inverse function which vanishes for {=o0. For (33) is convergent in a
region including ¢= 0, and the inverse series in a region including {=o0; and
the form of the coefficients does not depend on the fact that the object of the
operations is a polynomial. It therefore only remains to investigate the exact
region of convergence of (42), which may be done in each case by the usual
methods.

It may be noted that already (34) itself yields a solution of the equation
{=¢(t) with respect to ¢, and this solution has the advantage of containing
an arbitrary parameter z of which we may dispose in various ways.
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7. We shall now consider some applications of the preceding theory,
beginning by showing how the well-known factorials ™, 2 and z*) may be
obtained when the corresponding f-operators A, V and ¢ are given.

5 _
Putting first 0==E L, we have

D= Log E=1 Log (1 + 86)

8
and hence
dD 1 g
a6 1+50 F

so that, by (1g),
v+l = g (z — gyl

Repeated application of this formula leads to the poweroid
P=zxx—px—28)...(x—v —18),

« having here and everywhere else, by definition, the value 1.

If, in particular, =1, we have § = A corresponding to x*! =z, while
B = —1 produces § = V corresponding to z*=zl—*.

If we introduce the slightly more general operator

E?—1
0=E-~- , 4
3 (43)
we may employ (23), putting
Ef —1 R
0= 7 wl=z(x—pF...x—r—14).
61
In that case 5= E-—=, 50 that we get from (23)
=z E"*x—fx—28)...c—r—18)
or
M=z —va—flx—ra—28)...x—va—r—18) (44)

If a=o0, 8= 1 1 we have the results already found for descending and
ascending differences. If cc=~—;-7 =1 we have 0= corresponding to

x* = 2"l that is, the results for central differences.
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It is easy to prove that

dd
iD = (43)
so that, according to (17),
0 gl 11 = g (46)

to which may be joined, according to (19),
0 2t F U= = 5 o011, (47)
1f, finally, we let 8 - 0 in (43) and (44), we get
6=FED, x=zx(x—rva)L (48)

This poweroid which has been considered first by Abel' and later on by Hal-
phen? and Jensen® may be called »Abel’s poweroid».
Writing ¢ and { for D and 6, (43) becomes

- eft — 1
F=eat- 7 (49)

and a solution of this equation may, by (34) and (44), be obtained in the form

e"‘zi %x(x—va——ﬂ)(w—va—zﬁ) o lz—rva—v —1p). (50)

=0

If 3> o, it is seen that the equation

§=te (51)
has a solution of the form?
it = E—,x(w —va)? (52)
v=0

which is an expansion in Abel's poweroids of x and in powers of (.
Another form of the solution is obtained from (42).

! Démonstration d'une expression de laquelle la formule bindme est un cas particulier.
Oeunvres I, p. 102.

2 Qur une série d’Abel. Bulletin de la société mathématique, X, p. 67.

3 1. e, p- 307.

* HURWITZ-COURANT I. c., p. 147, where also the case g =1 is treated by BURMANN's
theorem.
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In compound interest the following equation occurs?
1=§(1— & (53)

where 2 is positive and integral, and = and & are both comprised between o

and 1. Tt arises from (40) by putting (=1, ¢t=1—§ a=—n, §=—1
and the equation (50) yields
]
(1—§==> ;Tx(x +ny+ v —1)0D (54)
=0

from which the required root % is immediately found. In this expansion, =
may be chosen arbitrarily, e. g. =1, and the circle of convergence in 7 does
not depend on which value of xz is chosen; it is, in fact, easy to prove that

(54) is convergent for || < (“nu-f%)?ﬁ which does not depend on .
Instead of (50) we may use (42), leading to
1 o [ny+v—1)\7
L°g1-§_§( y—1 )7’ (55)

having the same radius of convergence.

8. Several poweroids are related to polynomials already employed in
analysis, such as, for instance, Hermite's, Laguerre's, Bernoulli's and Euler’s

polynomials. We give a few examples, considering first the operator
0= Ecef D (56)
which may also be written
Q= 2 DD ) (57)
The corresponding poweroid is found by (10), thus

x‘;[ =g Erag B0 pr—1

o0

= xE—vaZ (—:"8) D2 xﬂr—l,
§=0

whence

8)

o = Z (”__.I)(‘A’ (— ) 2 (@ — v a)y—i—2, (58)

! J. F. STEFFENSEN: Rentesregning, p. 155.
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This is an expansion in Abel's poweroids; but we may also express z'l by
an Hermite polynomial. Let Hermite’s polynomials be defined by the expansion

—t— bt m
R AT (59
n=0
then
P
2 . .n(28)
Hn (2’) - (__ I)n—sﬁzn——‘.’.s, (60)
§=0
and comparison with (58) shows that
r—1 va—x
l=z(2v8) % Hy |- 61
(278) I(VM) (61)

From the known properties of Hermite’s polynomials may, therefore, for
instance, be concluded that the roots of 2 are all real if ¢ is real and 8> o.
The expansion of z* in powers of x is less simple than (58) or (61). We
have, by (57) and (10),
xl =g e e D2 D% g1

If now, in (59), we put

t= V'é—i’?g‘ D, ==« "Z—VB)
we have
o (278 l/ 7)
~vaD—y 3D __ MTEl o 7%
€ nZ=,0 o Hy\a 28 Dr,
so that we find
r—1 n —
2] — y—1 2 1_) v—n
x Z( R )(21/5) Hn(a 28" (62)

n=0

In order to expand a polynomial in these poweroids by (7), 6”f(0) is wanted.
We have, by (56),

0 —= Evai‘l’ @;!ﬂlgl)’v—!-?s (63)
and by (57)
o~ (— fl!wﬂ)ﬂHn(__a ;2:;) Drn (64)

n=0
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D2

The case ¢ = o0, ﬂzé is particularly simple. We have, then, 6 == ¢% I and,

denoting the corresponding poweroid by h.(z), according to (61),

hla) =257 Hyoy ( Vv) (65)
or, by (58), B
hy () = > ( “(”“Slx)m, (g)sx”‘“ 66)

where the coefficients are easily seen to be integers. The first few of these
poweroids are
hO (x) =1, hl (x) =, h2(x) = ﬁgy hs (”) =®— 3z,

hy(z)=a*— 122® hy(x) =2° — 302 + 752, he(x) = 2® — 602* + 54022

——

As an application of (7) we will expand 2" in the poweroids h,(x). We

have by (63) for a =0, g=

©
n(v+2 8) y\®
Y o = 2 =) gr—r—2s
st \2

N

&§=0

For =10 all terms vanish except that for which » —» =25 Hence, 6"0"
vanishes except when # —» is an even number, and we find

02v 02 n_— ( ) P

) b
oo+t gant1 (zn + 1)! (21» + 1)"—'”,

/—\

(n —»)! 2
and finally
n 2" zn—w)
;, (7 — )] ‘1’ has (), (67)
gt 2n + 1)2n20 oy + g i ) (68)
2 n—v > 2 v4+1\Z).

The generating function for h,(x) according to (34) is not particularly simple,

k2
because the solution of the equation [=¢?¢ is not an elementary function of ¢.
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9. Certain poweroids are related to the polynomials G(z,y)' which may
be defined by their generating function

evi—eld=) = 3 G, (a, .u)f; (69)
n=0 ’

or by the relation
Guler,y) = eV D} e+, (70)

Their explicit expression is
¥ __ < 1) E;f L)
(T"(x’y)""Z( I)S'A?/ ’ (71)

s=0

which shows that the degree is #, separately in x and v.
They satisfy the relations

Dx Gn (x: y): G” (1‘, ?/) - G"(xy?/ + I)’ (72)
D, Gu(x,y) = n Gur (,9) (73)

and the recurrence formula
Gnir(x,y) =y Gulx,y) — x Golz,y + 1). (74)

Consider now the operator

6= Log(1 + a D); (75)
we find
1 s — 1
§—&Log(l+at), t= .
Inserting this in (34), we have
€ == Z;!*e )
»=0
and comparison with (69) shows that
x
= a Gv(—;,0)~ (76)
The two most important cases are obtained for a = 1 and ¢ = — 1; they are
0="Log(1 + D), ai= G,(~z,0) (77)

! J. F. STEFFENSEN: Some Tecent researches in the theory of statistics and actuarial science,
Cambridge 1930, p. 24, or the same author's Forsikringsmatematik, p. 442.
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and
6=Log; g o1=(=1) Gulx,0) (78)
We have, by (71),
g A
GW(—x;O)ZZ S! x5 (79)
s=0
. JANJ S . . .
the coefficients =T which are all positive are tabulated in »Interpolation», p. 55.

It can be proved that the roots of the poweroids (76) are all real if « is
real. It suffices evidently to prove that the roots of G.(x,0) are real. If now,
in (70}, we put ¥y =0, ¢ =z and observe that D.=z D,, we get

Gn(x,0) = et (x D" 2. (80)

In handling the operator (xD) it must of course be remembered that the
differentiation should be performed before the mul‘iiplication by x. Since ¢*
vanishes for x -+ o, it is clear that the expression (x.D)"e* always vanishes
for x=0 and xz ~ -+, if only » >o0. But since (x D}e¢* vanishes at o0 and
+ 9, (£ D)®¢* must vanish at a point between o and + o, that is, the operation
(D) has introduced one more root; and so we may continue, reaching the
conclusion that G.{x,0) has exactly » real roots, one being zero, the others

positive, and all of them different from one another.
In order to expand 6" =« Log*(1 + a D) in powers of D, we observe that

@

& T log(ite D) — (I + D);
or

a—* Log* (

/8
l%
+
R
S}
Il
IMs
iH
—
B3]
S
Q,,v
3

which, when both sides are applied to f(0), is an algebraical identity with only
a finite number of terms, and may, therefore, be differentiated » times with
respect to x. If we do this and put afterwards x =o, we find

. PR (81)

or

o= Z yl s D, (82)
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Dr ot

| which

the latter form being sometimes preferable, because the numbers

are all integral and positive are tabulated in »Interpolation», p. 57.
In the case » =1 we have directly by expanding (75)

2
§=D—-D+>D*— -
2 3

The expansion of 2" in the poweroids (76) has simple coefficients. We
have, according to (82),

n

[ - Z (/’;) (_ a)s—v D O(——s) B

s=¥
whence
@ o = (— ) D” ol
so that, by (7),
i v {7
at=a" M (— 1}’*—"2—3(—*) Gy(—- :g, o) . (83)
=0
The same result may be obtained a little more quickly by the secondary
form of Maclaurin's theorem, putting @ (D)= 6" after having written n for » in
(39). As 6" has already been expanded in powers of D, we obtain immediately,
by (81) or (82), the above expression for 6" o"
Another poweroid connected with the polynomials G,(x,y) is obtained by
putting (D) =¢"%2 in (13). The result is

@l = gegrat g1

RN T N
= 2 A
=0

so that we have, by (12) and (71),

0=e2D, xl=12G,—(ve, ). (84)
In order to expand

g = e’ ¥ = ot e (eD—l) D

in powers of D, we need only compare with (69), which shows at once that

<« I
6 = 2;? Gn(—va,0) D*tn, (85)

0
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The expansion of 2" in these poweroids is found in the same way as (83);
the result is

n

n
" = 20( v) Gro(—ve,0) zGy(ve, x). (86)
We finally note that a solution of the equation
[=estd-D¢ (87)
may be found by (34) in the form

@

ot = Zﬂ z Gy(vea, x) (88)
v==0
or by (42) in the form
Z%— +—1 (v @, 0) (89)

10. We now consider an operator of the form
6=E*D(1 + g Dy. (90)

The corresponding poweroid may be found by (23), employing (48) for 6; and

x7. We find
l=z(1 + D)1 (x —ve)!

——xE( )p"‘D"x——va)”—l

or
r—1

o= (= 1) (” T ‘)(v — 1) (e — o) (o1)

s

being an expansion in Abel's poweroids which seem most suited to this case.

The expansion of
0 =E°*D"(1 + 8Dy
is best left as

=B S (”87) gt D+, (92)

&=0
From (9o) may be concluded that the equation
=t(1 + gt)ret (93)

is solved by (34) or (42) with the expression (91) for the poweroid.
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Two particular cases call for special notice. One of them is obtained by
putting ¢ =0, g=—1, y = 1. Denoting this poweroid by p,(z) we have

r—1
T e _ vy +s—1
6—D—D" p(a) Z( ‘

8=0

) o — o (94)

The first few p,(x) are

polx)=1, pi(x) =2, py (@) =a® + 22, p(x) =2 + 62° + 122,
Palx)=x* + 122> + 602® + 1202,
ps(x) =2 + 202* + 1802 + 8402® + 16802,

pelx) =2 + 302° + 4202* + 33602 + 151202° + 302402.
The generating function is, by (34),

x T
eg (1—V1—49

= i & Fx) & (95)

it is found by putting =1t — 13 t= é (1 — V1 — 40), the sign of the root being

negative, since { = 0 ‘corresponds to {=o.
The. expansion of 6 is

G" = —T)8 4 vet& 6
and for 2" we find the expansion in p,(x)
= (= 1= (") ¥, @), (97)
(4
1»22
2
The second particular case of special interest corresponds to « = o0, g=—1,

y=—1. Here we have, denoting this poweroid by g¢,(x),

0= pr’ gv (@) = E‘,(— 1) (:) (v — 1), (98)

8§=0

The first few ¢, (x) are

~—

%@ =1, ¢(x)==z, ¢s(@) =2 — 22, gy{@) =2°~— 62" + 6z,
() =a*— 122° + 36 2 — 242, ¢;(x) =2® — 202* + 1202® — 2402® + 1202,

g () = 2% — 302° + 300 2* — 1200 2* + 1800 2° — 720 1.
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We may also write
¢ (@) = (=1 e D e, (99)
showing that ¢.(z) can be expressed by a Laguerre polynomial®
¢ (@) =(— 1o — 1)1z LI (@) (100)

The roots of ¢.(x) are, therefore, real, none of them negative, and all differing
from one another.

‘We have, in this case, C:'{i_t’ t= IEC’ so that the generating function

for ¢.(x) is
1Li @), (101)
eti= % i . 101

The expansion of 6 is

o = > (v+z_l)1)‘“+* (102)
s=0

and the expansion of z" in the poweroids g, ()
S 7
o — Yn—9)
= =§:1 (v)(oz 1) g {x). (103)

11. Bernoulli's polynomials may be defined by

B =2, (104)

this definition being in agreement with the Noérlund definition now -usually®

adopted. For, from (104) we immediately obtain
D
AB,(x)= Dz, DB,(x)=v —A—x" 1=y B, (),

and these two relations determine the polynomial completely in Noérlund’s sense®.
No supplementary condition is necessary in using (104) as the definition, since

the expansion of % in powers of D does not contain negative powers.

! POLYA und SzEGO: Aufgaben und Lehrsitze aus der Analysis, II, p. 293.

? CHARLES JORDAN: Calculus of Finite Differences, p. 231, employs a slightly different de-
finition.

* »Interpolation», p. 119.
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The definition (104) suggests the generalization

. D\?
Bl (z) = (—) i 10
Ve =|% (103)
where the parameter 2 may be any, real or complex, number. These polynomials
may be shown to be identical with Noérlund's generalized Bernoulli polynomials,
in the case where the intervals of the successive differencing operations become

identicall. For if, in (37), we put

we have

or

( t )ze“‘:-it—vaL”(x), (106)

which is the generating function for Noérlund’'s polynomials.

We may, therefore, either take the properties of the polynomials B (x) as
known, or derive them direetly from (105) as the definition, which is very easy.
For instance, it follows immediately from (1035) that

DBE(x)=»BE, (2),  ABY(x) =Bl (); (107)

and if, in (10), we put 6 = A, so that 1=z it is seen by comparison with
(103) that
B (x) = (x — 1)V, (108)

2
If now, in (13), we put yw(D)= (!Az) , we find the poweroid

ol = x B4 (), (100)

corresponding, according to (12), to the operator

0 = (%)ZD. (r10)

! N. E. NORLUND: Differenzenrechnung, p. 145. We prefer distinguishing the case of equal
intervals by writing BE,'{] (@) instead of BL]‘) (x).

23
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The expansion of

D__ v
01':(6 D I) Dv

is found by (106), putting = = o, B#(0o) = B and replacing 1 by —»4, ¢ by D.

The result is
= RBl—vi)
fr= S e, (111)

s!

8=0

A table of B is given by Nérlund L e¢., p. 459.
The expansion of z" in these poweroids is

n n X
xt = Z (1/) Bl—*% . x B* (x). (112)
y=0

A solution of the equation { = ¢ (t), or

o= (S (113)

is obtained, by (34), from

R N
et 3 2By (o) (114
=0
or, by (42), in the form
-3 5B (115)
p=]1

12. Corresponding remarks apply to Euler's polynomials

Elr)=——2x (116)

é"w(x):Z(—_—I)—Asﬂcv. (117)
They may be generalized by
. A4
(‘?[f](x)Z(I-F—Z*) x (118)

or, developing in powers of A,

)Asx”. (119)
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These polynomials, too, may be shown to be identical with Norlund's

generalization. Putting, in fact, in (37),

(1) = (e‘ —Zk 1)1’

we find
2 g b < v 2 g Y
(e‘-\‘- I) _g'ovl(el’+ I)
or, since
2 1
eP+1 ’
2
2 ie-““:it—vé"["](oc) (120)
¢+ 1 pl v P
=0

being the generating function for Nérlund’'s generalization'.
From (118) the known properties of & (x) may easily be derived, such as,

for instance,

D&V () =rEW, (), (121)
(I + %) EW () = &V (). (122)

Putting now, in (13),

w(D)= (e”j— 1)1’

we obtain the poweroid

@l =z A (2) (123)
with the operator
D i
o— (") (124)

which may sometimes with advantage be written
2
0=(1+%) D. (1235)

The expansion of 6” in powers of D is found by (124) and (120) for = o,
in a similar way as (111); the result is

= &= (o)
o= — - D7+, (126)

=0

! Differenzenrechnung, p. 143.
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The expansion of 2" is

o= (:2) E=r1 (o) - 2 84 (a). (r27)

»=0

A solution of the equation

L= (?t i ‘)lt (128)

2
follows from (34) in the form

ot . < Cv wil (.,
e t_gonx&,_l () (129)
or from (42) as
t= 3 = 844, (o) (130)
y=1

Another poweroid related to the generalized Euler polynomials is obtained
by putting, in (13), w(D)= [J—* that is
LS

1
1?
£ ) o (131)

=z *x 1=z
I+ =
2

or

2=z 84 (ac+ ?';i) 6= 0*'D. (132)

Considering that the expansion of [J~"* contains only even powers of D),
it is seen that x%7 is an even, 27+ an odd function of .

D _D\vi
e +e ?
0”=( _) D (133)

2

In order to expand

we put oc=/;— in (120), the result being
2 2 d t2v .
ﬁ‘iﬂ=25mm@ﬁ (134
e+ e 2
where, following Nérlund', we have put
. . A
8, =0 &p=an(l). (135)

so that &% is not the same thing as &Y (o).

1 A table of é"ﬁ is given in NORLUND: Mémoire sur les polynomes de Bernoulli, Acta
mathematica, 1920, p. 195.
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We then find, comparing (133) with (134),

@ 8[2-—;1'].]
— - v+ 2
0= 2 2?7 (25)! ‘. (136)
=0
The expansion of " is
n % (7)1 Bl p B v
x —Z » F n—y FO .’L‘+? ’ (137)
=0

A solution of the equation

is obtained by

<] Cp -/v’ /)}A
et = _230; z &Y (x + 7) (139)
or by
< 2rtl af2y +1
. (2r+1) 4 il
t VZ:;)(ZV-FI)!g“ ( 2 l) ' (140)

13. In addition to the expansions of 2" in various poweroids already dealt
with, we shall now give some examples of the application of (7). All these
expansions are algebraical identities, some of them generalizations of well-known
theorems.

We note first that, for flx) = (x + )i, we get

(@ + i =» (:}2) =l ol (141)
=0

being a generalization of the binomial theorem which is obtained for 6 = D,
xl=2". But (141) contains also the corresponding formula for descending
factorials*

n
(@ + 0" = 3 (") t= g, (142)

for ascending factorials

o g = 3 () e, (143)

! Differenzenrechnung, p. 151.
&P
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for central factorials

o — 5 (7 e g
(@ + 1) Z,O(v)f b, (144)
for Abel's poweroids
@+ O+ t—na—i =3 (;’) =7 e (e —va) =, (145)
»=0

and so on.

Together with (7) we may consider (21), putting flx) = (x + ¢)ji7i—1, In
that case we have, according to (17), 8 f(x) = (x + ), and therefore 6 8 f(o)=
=nl) fn— g0 that the identity

(x + t)m~l p— Z (2) t;l——-ﬂxv+l —1 (146)

=0

results, corresponding to (141). The formulas corresponding to (142)—(145) may
therefore be written down at sight, and we only note that, if 6 =4, then §'=[1,

so that (21) becomes
ol +1)—1

f@)=>

=0

06 flo). (147)

v!

If a polynomial g,(z) of degree » satisfies the condition
g (%) = v gr—1 (2) (148)
for all », the expansion of g,(x + t) in Abel's poweroids is simple. We have,

in fact, 8 = E= D, so that

0" f(0) = E**D* g (t) = ") guer (¢ + v @),
and therefore

v

e+ =3 (") gums b+ 5 o — vy (149)

y==0

Thus, for instance, for g.(x + ) = (x+ t)*, we obtain Abel's identity?!

(x + &) :,Zn:’ (2) (t+ve) " x(x—ra) . (150)

Putting, next, ga(xz + t) = B (x + 1), we find

Bil(a + )= Z(") BU (¢ + va) 2(z — va)= (r51)

¥ n—w
=0

1 Qeuvres, vol. I, p. 102.
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and similarly

n—v

EN(x + t) = i(:) EH (t+va) z(x—ray, (152)

»==0

generalizing the formulas, due to Norlund?,

B+ 0= 3(1) B, (0 (159

and "
&+ 0=3 () 2.0 (154

=0

which are obtained from (151) and (152) by putting ¢ =o0.
In the same way we may employ (73) for expanding Gn.(x, y + ¢) in Abel's
poweroids of y, the result being

n

Gunlx,y + 1) = 2(7;) Goes(z, t +va) yly —va)y . (1535)

y=0

Also the expansions of G.(z, ») in the poweroids p,(z) and ¢, (x) have simple
coefficients. Writing (72) in the form

Gn(x;y”” I):(I —"'Dl) Gn(xa y)) (156)
we have
(1 — D.)" Gule, y) = Gulex, y + )

so that, when 6 = D (1 — D), corresponding to the poweroid p,(x),

0" Gn (2, y) = D}, Gu(w, y + v)
or, according to (71),

‘ n—7v o xg "
0" G (x, y)= Z (== 1)+ WZ{.TA'S Py + )",
$=0 :

s0 that
0;:0 G" (wv ?/) = (_ I)v Av (?/ + 1’)n'

Hence we have, by (7),

Gale ) = D=1 2T (. (157)

y=0

! Differenzenrechnung, p. 133; Acta mathematica, 1920, p. 146.
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The expansion in ¢, (x) is obtained by multiplying on both sides of (156) by
(1 — D)™ and writing y —1 for y, that is,
(1 = D)™t G, y) = Gulx, y — 1),

whence

(1— D™ G, y) = Gz, y — ).

If, now, Hzl—gﬁ, 2= q,(x), we find by (71)

0:_, Gulz, y) = (— 1) A (y — v = (—1)* V",

so that, by (7),

Gale, p) = Sy LL

v=0

g (). (138)

y!

14, So far we have assumed that f(x) is a polynomial. If that is not the
case, the first question to conmsider is: What is to be understood by 6 f(x)?
This is as a rule clear from the initial definition of 6 in each particular case.
For instance, if we choose 6= E=D, then 6f(x) means f' (x + «) on the sole
condition that f{(x) possesses a derivate at the point x + «. But it does not
follow that all such transformations of 6 are permitted as are legitimate when
f(x) is a polynomial, such as expansion of 6 in powers of D, etc. It must first
be proved that the series thus obtained converges when applied to f(x), and re-
presents /' (x + @), which evidently implies supplementary conditions. Thus, for

instance, we are only allowed to put

X v
X — paD =Va7 v+ 1
ErD=ePD A.I,,[D
v==0
if
Fle+ =

o
.
vy=0

¢ pesna),
that is, if f'(x + «) can be expanded in powers of «a.

In what follows we therefore assume that the definition of 6 with which
we start is adhered to in that sense that we only allow such transformations of
0 as lead to the same results when applied to the function on which we operate,
In other terms, the nature of the function f(z) puts certain restrictions on the

permissible transformations of 6.
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When we introduce repetitions of the & operation, it will be on the as-
sumption that the existence of 6”f(x) has been ascertained. Further, if 6 has
been defined by the expansion of ¢(D), it cannot without proof be assumed
that 0¥ is the expansion of ¢”(D) as in the case of a polynomial.

Keeping in mind these reservations, we proceed to show how the method
by which Aitken has obtained his formula leads to a remainder term for (7)
or (28), when f(x) is not a polynomial. We have, by (26) and (12),

D

Iaf(w)=Dw(D)'mf(x)
. = DD flx)=f(x) — f(o)
whence
fla)=flo) + 16 f(x). (159)

Replacing f(x) by 0" f(x), we get
0" f (@)= 0"f(o) + 16" f(z),

and applying on both sides the operation I which is evidently commutative with
a constant, we find, since 6” f(0) is a constant,

IO fl@)=0f(0)- I 1 + [0+ f(a),

From this we obtain finally, by summation from » =0 to v = n, the required
result

F@)= S0 f(0) I 1 + Im+100+1 f(z). (160)

=0

We shall write this in the form

s =3 ¢ g, (161)
R = I+16"*+! f(x). (162)

As an example, let us consider the expansion in Abel's poweroids. In that
case we have § = E*D, and I= D E—* so that

If(@)= ff(t —Q)dt= T}(t)dt.

»I» therefore means integration from — e« to 2 — ¢, and we may at once write down
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T— x—a

R:f...ff(n+l)(x+ n+1e)dz . (163)

—a -—a

For « = o this reduces to the remainder term of Maclaurin's formula

R:f...ff(n+1) (x)dxn+l
0 0

€

- n—l' f ( — fr fdD) () d ¢t

0

1
xn+1

-7 f(1~—t)"f("+1](tx)dt.

0

If f"+Y(x) is continuous in a closed interval to which o, x, ne and = + ne
belong, we may apply the theorem of mean value to (163) and find

R =i (g Iy

or

_zlr— 7;<tl?'i‘a}? 1) (€
R T L g, (164)

& being a point of the aforesaid interval.
The result is, then, the expansion in Abel's poweroids

EE i L S (165)

where the remainder term is given by (163) or (164), the latter expression being
available for real variables only.

In the paper quoted above, Halphen has dealt with the conditions on which
an analytical function may be expanded in an infinite series of Abel's poweroids.
The corresponding question for factorials has been treated by Norlund.!
These investigations show that the question of expanding a function in an in-
finite series of poweroids is a delicate one which it seems necessary to attack
separately for each poweroid. There is therefore a considerable field for further

investigations on these lines.

1 N. E. NORLUND: Legons sur les séries d'interpolation, Paris 1926.



