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O. Introduction 

In the theory of transformation groups a most fundamental, but in general quite difficult 

problem, is the classification of the possible orbit structures for actions of a compact 

Lie group G on a given space X. The well known P .A.  Smith theory (as generalized by 

Borel, Conner, and others) gives beautiful results when X is of the simplest topological 

type (e.g. acyclic, cohomology sphere, cohomology projective space) and G is a torus 

or a p-toms. Moreover, when G is a classical group, restriction of the action to the 

maximal toms of G combined with structural splitting theorems on the characteristic 

class level for torus actions, result in nice regularity theorems for classical group 

actions on spaces of such simple topological type ([H1]). 

It is our assertion that the time is ripe for applying more sophisticated methods 

now available in algebraic topology and equivariant cohomology theory in a more 

serious study of transformation groups on certain spaces of more complicated topologi- 

cal types. The most natural spaces to consider are various homogeneous spaces, which 

accomodate a rich variety of natural actions. In this paper we give the full proof for one 

starting theorem in the field of large transformation groups on homogeneous spaces. 

Our main result is: 

THEOREM ,1. Let X=Wn, k be the complex Stiefel manifold of (n-k)-frames in 

complex n-space C n, k>n/2, and let G=SU(n). Then any non-trivial, smooth action of  

G on X is conjugate to the linear action. 

(1) Acknowledgements. The second author expresses his gratitude for a travel grant from the Norwe- 
gian Council for the Science and Humanities (NAVF), which enabled him to visit the University of California 
in the summer 1980. 
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(The "linear action" is the transitive action on Wn, ~ induced from the standard 

linear action o f  G on cn.) 

If k = n - 1 ,  X is the sphere S 2 n - l ,  and the result is well known (it is also an easy 

consequence of the geometric weight system for the restriction of the action to the 

maximal torus of G, ([H1])). For more complicated spaces X, there is in general not 

much hope of obtaining such complete structural information on the cohomology of 

torus actions; hence it is to be expected that one must combine the partial cohomologi- 

cal information available with strong use of subtler topological constructions. The 

rather involved proof of Theorem 1 bears this expectation out for the case under study. 

In Section 1 we use the explicit classification of homogeneous spaces of SU(n) 

whose first Pontrjagin classes vanish and "local characteristic class theory" for the G- 

space X to study the possible orbit types for the action. It turns out that a few 

possibilities for principal orbit types, notably SU(n)/Sp(r) and SU(n)/SO(r) cannot be 

eliminated solely by local c.haracteristic class theory, and we clear up those cases in 

Section 2. It is worth to note that in the dimension range k>n/2+ 1 the desired reduction 

for the above two cases is an application of the result of Allday-Halperin o n the torus 

rank of a space. In the limiting case n/2<k<.n/2+ 1, however, a more delicate method, 

involving the equivariant cohomology of the embedding of a minimal orbit in X with 

respect to the action of different subtori of G is called for. In Section 3 we rely on the 

(global) cohomology theory of torus and p-torus actions to conclude that all isotropy 

groups are connected. A consequence is that the orbit projection is a fibration. In 

Section 4 we proceed to a more detailed study of the orbit projection. An application of 

Steenrod squares is sufficient to reach our final conclusion under certain strong 

restrictions on n and k, ([H1]), this result may be somewhat improved by applying 

reduced p-powers. This is in a sense dual to the use of cohomology operations in the 

section problem for standard fibrations of complex Stiefel manifolds. The elimination 

of the limiting cases SU(n) /SU(n- I )  and SU(n)/SU(k+I) as possible principal orbit 

types, depends, however, on higher order cohomology operations; they are obtained 

by reducing to known results on the fibre homotopy types of complex Stiefel manifolds. 

We note that most of the methods of this paper are also relevant for other 

homogeneous spaces. Clearly they yield much information for Stiefel manifolds also 

outside the dimension restriction k>n/2. This restriction is used, however, in the proof 

of Theorem 1; the striking simplicity of this result and the wide dimension range still 

covered, justifies it at present. 

With some modifications (real Stiefel manifolds are products of spheres in special 
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dimensions), similar results can be proved for real and quaternionic Stiefel manifolds. 

We have chosen to work out the details of the complex case here, in particular the orbit 

exclusion problem of section 2 appears only for that case. 

Notations. We let Z, Q, R, C, denote the integers, rationals, reals, complex num- 

bers, respectively, and k any one of these rings. Let V be a k-module, then Ak(V) 

denotes the graded Grassman k-algebra spanned by V, and A~(V) its subspace of 

(grading) degree p. 

The natural representations of the classical groups SU(r), SO(r), Sp(r) are denoted 

by l~r, er, Vr respectively. Inclusions between these, such as SU(r)cSU(n), SO(r)c 
SU(n), Sp(r)cSU(2r), etc. always refer to standard inclusions. 

If the cohomology algebra H*(X;k) is isomorphic to H*(Y; k), we denote this by 

X - k  Y. 

Let G be a compact transformation group on the space X. Then 

X6=EcxcX--~Bc is the bundle associated to a universal G bundle Ec--->B6 by G's 

action on X. 

By abuse of language we call the identity component G~x of an isotropy group Gx 

the "connected isotropy group o f x " ;  correspondingly G/G~ represents the "connected 

orbit type".  

1. Local characteristic class theory 

Let X be the complex Stiefel manifold of (n-k)-frames in C n, then X=SU(n)/SU(k) as a 

homogeneous space, and X~zS2k+~X...• 2~-~. X is stably parallellizable (parallel- 

lizable for k<n-1), hence all its Pontrjagin- and Stiefel-Whitney classes vanish. Let 

G=S U(n) act smoothly on X. If k=n-1, X=S 2~-~, and it is known that any non-trivial 

G-action must be transitive. Thus, for the remainder of this paper we assume, without 

loss of generality, that n/2<k<n-1 and n~>5. The above observation allows us to apply 

the computations of Pontrjagin classes of homogeneous spaces of ([H2]), combined 

with conditions on characteristic classes determined by the equivariant embedding of 

the orbit into X, to exclude most homogeneous spaces of G as possible orbits. 

We recall: Let G/H be a homogeneous space of G and let T be a maximal torus of 

H. Then :r*: H*(G/H; Q)--~H*(G/T; Q) is injective, and p*: H*(G/T, Q)--~H*(GT; Q) 

induced from the projection p: GT--->G/T is an isomorphism. Here Gr=EG• and 

j: GT---,Br may be considered the fibre bundle associated to the universal T-bundle 

E6-->Ec,/T=BT by T's action on G by left translation. There is an obvious map a from 

the representation ring of H to the (equivariant) KO-group of G/H. The following 
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splitting principle for homogeneous vector bundles over homogeneous spaces is the 

basic setting of Borel-Hirzebruch ([BHI]): 
Let �9 be a real representation of H with weight system g2(cI,) and let a(~)  be the 

associated G-vector bundle over G/H. Then p*(zt*(P(a(d~))))=j*(H(l+w)), wE f2(d~), 

where P is the total rational Pontrjagin class and each weight w in HI(T; Q) is identified 

by transgression with an element of H2(Br;Q). In particular, the tangent bundle 

r(G/H)=a(Adc,/H--AdH); since a(Adc,/H) is trivial, we have ~(G/H)=-a(AdH) in 

K~O( G/H); Hence 

where A(H) and A+(H) is the root system and a positive root system of H respectively, 

and P '  is the total dual rational Pontrjagin class. Let Ptff  be the homogeneous part of 
degree 2k in II(1-w2)=I-pHE+pH4-. . . ,  wEA+(I-I). Then P,{G/I-I)=O, i=1,2 ,3  if 

and only if PH 2, PH 4 and P/-~ are zero rood kerj*, where kerj* is the ideal generated 

by the elementary symmetric functions in the weights of the complex n-dimensional 

representation ~0 defined by the embedding of H in G=SU(n). An explicit computation 

is now possible, and gives the following classification: ([H2], Theorem I): 

THEOREM 2. Let V/: I-IcSU(n) be a compact, connected Lie group with a given 

almost faithful, complex representation V2. I f  Pk(SU(n)/~OH)=Ofor k= 1,2, 3, then the 

possibilities for all such pairs (H, ~) modulo trivial representations are given by the 

following list: 

(i) H is :any subtorus. 

(ii) H is semisimple and ~p=Ad/_/. 

(iii) H=SU(r)• n130 and ~p=~r| 

(iv) H=(a)  SU(r) with V?=l~r or 2ltr, 

(b) SO(r) with ~=Qr, dimcQ~=r, 

(c),Sp(r) with lp=v, dimc Vr=2r, 

(d) G2 with ~P=~Pl or 2tpl, dimcq01=7. 
(v) H=Sp(1) t, 1~1, ~p=k.r, ,)4-, (z)_~ ..+v~O), k=1,2,4 .  

\ - - 1  - - ' 1  - - "  

(vi) H =  (a) SU(3)• with ~o=k~us+/x~)+l~s+p~), k§ or 2, 

(b) GE• with W=qg~+qol or 2(qo1+~). 

(vii) H~=(a) SU(r), r=3, 4, 5 with ~0=/~+/~, 

(b) SU(3) with W=k/~s+l/~s, k+l=3,  6, 
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(c) Sp(2) with ~=vz+Azv2, 

(d) Spin(8) with ~,=A++A -.  

Now, let G act smoothly on a manifold M, then any orbit G/Gx embeds in M with 

homogeneous normal bundle associated to the slice representation qbx of 

Gx; i: G/Gx---~M, i*(v(M))=r(G/Gx)+a(~x)=-a(Ad6x)+a(~ x) in K-O(G/Gx). Evaluation 

of this equation at the characteristic class level provides strong restrictions on the 

possibilities of orbit types and slice representations. In particular, if Gx is a principal 

isotropy subgroup H, qbx is trivial. Hence, for M stably parallellizable, all Pontrjagin 

classes of the principal orbit type G/H must vanish. Since G/H~ is a finite 

covering, this implies that all Pontrjagin classes of G/H ~ must also vanish. Consequent- 

ly the connected principal isotropy subgroup type must be given by one of the 

subgroups of G=SU(n) listed in Theorem 2. 

For actions with a given principal isotropy subgroup type (H), the same equation 

applied locally at an arbitrary orbit type G/Gx gives strong limitations on the possible 

pairs (G~, ~x), especially when combining with the fact that the principal orbit type of 

the representation ~x must be Gx/H. We quote the following results from [H2]: 

Let G=SU(n) act smoothly on a manifold M, and let the principal isotropy 

subgroup type be (H). 

THEOREM 3. / fP1(M)=0 

subgroups G~ are also of the 

and H~ r~>3, then all connected isotropy 

type SU(I)cSU(n), t~r. 

THEOREM 4. / fP1(M)=0 and H~ r~>2, then all connected isotropy 

subgroups ~xx are also of the type Sp(l)cSU(n), l>-r. 

THEOREM 5 . / fP I (M)=0  and H~ r>~5, then all connected isotropy 

subgroups G~x are also of the type SO(I), l>-r. 

The first main step in the analysis of the action of G on X=SU(n)/SU(k), is given 

by the following theorem: 

THEOREM 6. Let G= S U(n) act smoothly on X= S U(n)/S U(k), with n/2 < k <  n -  1. 

Then the connected principal isotropy group H ~ is of  the type SU(r)cSU(n), k~r<~n. 

By Theorem 3 we then have the following: 

COROLLARY. All connected isotropy subgroups are of the type SU(I)c-SU(n), 

r<~l<~n. 
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The proof of Theorem 6 is the main subject of sections 1 and 2. We have to eli- 

minate all other possibilities for connected principal isotropy group in Theorem 2 than 

(iv) with H~ ~=/zr. Here d i m X = n 2 - k  2, hence dimH~ 

unless H=SU(k). Elimination of cases (i), (ii), (iii), (v), (vii) follows by dimension 

arguments. Here (i) and (ii) are straightforward, for (iii) we have: dim W=r2+dimH~<n, 

i.e. d imH~ 2-1 +dim/~<n - 1 <<.n2/4+n/2-3/4 for n~>5, contradicting the above esti- 

mate. In (v) dimcvl=2,  hence 2l<~n and dimH~ for n~5. In 

(vii)(a) ~=/Ur+/~r implies 2r<.n, dimH~ Recalling that n~>5, 

(vii) (b) is clearly impossible. In (vii) (c) we have dim Sp(2)= 10 <.n2/4+n/2-3/4 for n~>6, 

while for n=5 we cannot accomodate the representation ~=vz+A2v2. For (vii)(d) 

~ = A + + A  - (half spin representations) implies n~>16, hence d imH~ 

n2/4+n/2-3/4. In (iv)(d) we have n~>7, hence dimH~ In (iv)(a) 

the possibility ~p=2/Zr is ruled out in the same way as (vii)(a). In (vi) (b) n~>14, hence 

dim H~ 28<nZ/4 + n/2- 3/4. 
It remains only to rule out the cases (iv) (b) and (c) together with the special case 

(vi) (a). The method of local characteristic classes will not suffice here (although some 

cases, as SU(n)/SO(r) with r odd may be ruled out by an analogous argument with 

Stiefel-Whitney classes). For example, since Sp(r) is totally non-homologous to zero in 

SU(n), n>~2r, it follows that all characteristic classes of SU(n)/Sp(r) vanish ([BHIII]). 

Hence more specialized methods are required here, these are dealt with in the next 

section. 

2. Exclusion of orbit types 

In this section G=SU(n) operates smoothly on X=SU(n)/SU(k), n/2<k<n- 1, with H ~ 

as principal isotropy group. We start by eliminating the case (vi) (a) of Theorem 2. 

Since dimH~ we have k2<17, i.e. k~<4; since d i mc~ =6  

or 12 it follows that n~>6; hence the only possibilities are n=6, k=4 and n=7, k=4. 

PROPOSITION 1. The cases X=SU(6)/SU(4), H~215 and X=SU(7)/ 
SU(4), H~ cannot occur. 

Proof. The principal orbit would have codimension one, hence the only possibili- 

ties for the path-connected, compact orbit space X/G are S 1 (corresponding to no 

singular orbits) or a closed interval (corresponding to two singular orbits). L e t / ~ -1  be 

the maximal torus of G=SU(n) consisting of diagonal matrices (exp2:ri01 .. . . .  

exp2eriOn), 01+...+0n=0, n=6 or n=7. 
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LEMMA 1. The fixed point set of l "-1 is empty. 

Proof. Since r k H = 4 < n - l = r k / ~ - l ,  there are obviously no fixed points on 

principal orbits. If G/K is a singular orbit containing fixed points, it follows that K is of 

maximal rank in G and hence the Euler characteristic x(G/K)=z(F(I'-~;G/K))>O. 
Since there are at most two singular orbits, this contradicts z(F(I"-~;X))=z(X)=O; 
this proves the lemma. 

Now consider the case n=6. Let 

T = {(exp 2:riO1 . . . . .  exp 2:ri06) [ 01 + 02 + 03 = 04 + 05 + 06 = 0} 

be the standard maximal torus of S U(3)• S U(3); then T has fixed points, and is then by 

definition a geometric weight of the TS-action. Denote T by (01+02+03) • By Weyl 

group invariance of the geometric weight system for the TS-action on X it follows that 

(0ot~)+0~2)+0o~3)) • is a geometric weight for all aES6 (the Weyl group of SU(6)). 

In the Leray-Serre spectral sequence for the fibration Xrs=Er5 xrsX---~Br5 the gener- 

ators x9 and x~ of H*(X;Q) are transgressive, by the lemma their transgressions a~o 

and a12 cannot both vanish. By restriction all ten different weight vectors 0o~1)+ 

0o~)+0o~3) (as elements of HZ(Brs, Q)) must then divide a~0 and alz (Corollary 1, p. 45 

in [H1]). This is a contradiction, since both alo and al2 have dimension less than 20. 

In the remaining case n=7 we have H*(X;Q)=AQ(X9,XlI,XI3). Obviously 

TS=(exp2ari0~ . . . . .  exp2~ri06,1);Ol+02+...+06=O} has no fixed points on principal 

orbits for the SU(7)-action on X. By the lemma a singular isotropy group K cannot have 

rank 6, assume it has rank 5 with SU(3)xSU(3)~_KcSU(7). Recalling that the slice 

representation of K has SU(3)• SU(3) as principal orbit type, it follows quickly that the 

only possibility is K~ U(3)). In this case X9, Xll and xt3 are again transgres- 

sive in the spectral sequence of X~-~B 7, for dimension reasons, hence a non-empty 

fixed point set of any torus i n / 6  must be a cohomology product of three odd spheres. 

However, F(T 5, G/K) has dimenson one; it follows that F(TS; X) is empty. The same 

argument as in the case n=6 applied to the TS-action, now gives a contradiction, since 

we again have: dimr(xl3)=14<20. Q.E.D. 

PROPOSITION 2. Let G=SU(n) operate smoothly on X=SU(n)/SU(k), 
n/2+ l < k < n -  1, with connected principal isotropy group of type (H~ Then H~ 
and H~ are not possible. 

Proof. Assume H~ We may assume 1~2, by Theorem 4 all other 

connected isotropy groups are of the type Sp(t), l<.t<.n/2. Let ~ - 1  be the standard 

8-848288 Acta Mathematica 152. Imprim6 le 17 Avril 1984 
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maximal torus of G, and let Sp(r) be the maximal connected isotropy type; then the 

maximal connected isotropy type of the ira- Laction on X is of type T, where T is the 

standard maximal r-torus of Sp(r). The minimal model of X is ^o(x2k+l . . . . .  x2n-0 

with degxj=j, the homotopy Euler characteristic is k-n ,  so the torus rank is n-k;  
hence there must be subtori of l m-I of corank n - k  with fixed points ([AH]). Hence 

n -  l-r<~n-k<n/2 - 1, i.e. 2r>n, which contradicts Sp(r)~SU(n). 

Similarly, if H~ we have dimH~ - l)/2>dimSU(3)=8, i.e. 1~>5, and we 

may apply Theorem 5 to conclude that all connected isotropy subgroups are standardly 

embedded SO(t!, l<~t<<.n. Let SO(s) of rank r be the maximal connected isotropy type, 

by the above argument we conclude that 2r>n. Since s is 2r or 2r+ 1, we have: s~2r>n, 

which contradicts SO(s)cSU(n). Q.E.D. 

Thus, for most dimensions the desired elimination of (iv) (b) and (c) of Theorem 2 

is a simple consequence of the torus rank theorem. The more complicated limit cases 

n/2<k<.n/2+l remain; we give the details of the argument for one of those cases and 

mention the necessary modifications for the others. 

THEOREM 7. Let G=SU(n) act smoothly on X=S U(n)/SU(k), n/2<k<~n/2 + 1. Then 

the connected principal isotropy group H ~ cannot be of type Sp(l)cSU(n) or 

SO(1) cSU(n). 

Proof. If n is even, X is of the type SU(2r)/SU(r+I), if n is odd, X=SU(2r+I)/ 
SU(r+I). We now consider X=SU(2r)/SU(r+I)~S2r•215215215 4r-l. Let 

H~ By the proof of Proposition 2 we have G~x=Sp(r)cSU(2r) for some 

point x, so there is an SU(2r)-equivariant map p: Y=SU(2r)/Sp(r)--~G/Gx~--~X, where 

i is inclusion of the orbit through x. Let TZr-~={(exp2ni01 ..... exp2zriOzr); 

01+...+02r=0} be the standard maximal torus of SU(2r). We have Y-zSS• 
$9•215 4r-3, i.e. Y is a cohomology product of r -1  odd spheres. The action 

of T 2~-~ on Y is by left translations; its invariants are easily computable: The 

fibration Ysv(20-->Bsv(20 is equivalent to Bsptr)--->Bsv(20; hence the transgressions of the 

generators of H*(Y;Q) may be identified with the odd universal Chern classes 

Ca, c5 . . . . .  c2~-~, i,e. with odd elementary symmetric polynomials in {01 . . . . .  02,}. Let 

Jr be the corresponding fibration Yr2,_~--~Br2,_~, then ker~r*=(c 3 . . . . .  c2r_1), the ideal 

spanned by the odd universal Chern classes; its variety in the Lie algebra of T 2~-1 

consists of all ( r -  1)-codimensional linear subspaces defined by equations of the form: 

0 o ~ 1 ) + 0 a ~ 2 )  - -  . . .  = Oo~2r_l)+Oo~2r) = O ,  
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where o is in the symmetric group S2r (the Weyl group W6 of SU(2r)). By Theorem 

IV.6 in [HI] the corresponding corank r -1  subtori of T 2r-I are precisely the maximal 

subtori with fixed points in Y. Here the identity permutation corresponds to the 

standard maximal torus T r of Sp(r) cSU(2r), and the others are its 

(2r)! /r!2r=3x5. . .x(2r-1) WG-conjugates in T 2~-~. Let r/i be the restriction of 02i-1 

tO Z r, i=1 . . . . .  r. The complimentary root system of Sp(r) in SU(2r) is {(r/i-r/j); 

i+j} U {+(r/;+r/j); i<j}, it is then easy to see that the isotropy representation of Sp(r) on 

Y is a real form of A2Vr-O, and the fixed point set of T r, F(T r, Y)=Fr=TZr-1/T r is an 

(r-1)-torus. (Here 0 is the one-dimensional trivial representation.) 

PROPOSITION 3. Let G=SU(2r) act smoothly on X=SU(2r)/SU(r+I) with 

H~ k>-2. Then r=2 t -  1 for a positive integer I. 

Proof. Consider now the T2r-l-action on X~SZr+3•215215 4r-1. The gener- 

ators of H*(X;Q) are transgressive in the fibration Xr2r_,---~BT2r_,, this time by dimen- 

sion. Since all connected isotropy groups of the S U(2r)-action are of the type Sp(t) with 

t<~r, no subtorus of T 2r-1 of corank less than r -1  has fixed points. This is precisely the 

situation dealt with by Theorem VII.7 of [HI]. The point is now that the corank ( r -  1) 

subtori with fixed points are the same 3• ... (2 r - l )  subtori which we have already 

computed for Y; since if x E F(T) for a corank (r-1) subtorus T, then ~xx is conjugate 

to Sp(r)cSU(2r). Since those subtori are all WG--conjugate, their fixed point sets 

are all diffeomorphic to Fx=F(Tr;X), which is a cohomology product of r -1  odd 

spheres. Theorem VII.7 gives: e(X)=(2r§ (2r+6) ... 4r=U-l(r+2) (r+3)... 2r=3 x 5... 

(2r-  I) e(Fx). Hence er=3 • 5... (2r-  1) divides fr=2 r- 1(r+2) (r+3)... 2r. Proposition 3, 

which is already a strong indication for Theorem 7, now follows from the next lemma. 

LEMMA 2. er=3X5 ... (2r-- 1) divides f~=2r-l(r+2)(r+3)...2r i f  and only if  r is o f  

the form 2 t -  1. The quotient is then 22~§ 

Proof. Here 

fr+k = 22k r+ l  fr.  
er+ k r + k + l  e r 

hence, when the lemma is true for r=2 I -  1, it cannot hold again until r+k+ 1 =2 t+l, etc. 

PROPOSITION 4. The equioariant map p: Y---~X induces a non-trivial homomor- 

phism p*: H*(X; Q)--oH*(Y; Q). 
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Proof. We prove that p* is non-trivial in degree 4r -3 .  The observation that X and 

Y have the same set of distinguished corank ( r - l )  subtori of T 2r-~ with fixed points 

implies that the radical of the ideal in H*(Br2,, Q) spanned by the transgressions of the 

generators X2r+3,X2r+5 ... . .  X4r_ 1 in H*(X; Q) must again be (c 3, c 5 ..... C2r_l), (by Theo- 

rem IV.6 in [H1], this radical is again the ideal of the variety spanned by the Lie 

algebras of those subtori). This is possible only if the transgression 

r(X4r_a)=C2r_l=r(Y4r_3) (modulo lower universal Chern classes). Here p induces a 

bundle homomorphism from Yr~,_~---~Br2,_~ to Xrz, ~Br2,_. and a corresponding homo- 

morphism of spectral sequences. On the E2-1evel this is defined by p*; since 

r(X4r_3)=C2r_l, i.e. is not generated by lower Chern classes; it is clear that p*(X4r_3) 
cannot be zero in n4r-3(Y; O). 

COROLLARY. The restriction q of p to Fr: q: Fr---~Fx induces a non-trivial 
homomorphism q*: H*(Fx; Q)--oH*(Fr; Q). 

Proof. We consider the restriction to the Traction; then X and Y are both totally 

non-homologous to zero in the fibrations Xr,---~B r, and Yr,~Br, respectively. Hence 

H*(Xr, Q) and H*(Yrr; Q) are both free H*(Br,; Q)-modules, with 

H*(X; Q) = H*(XrA Q )  @H,(BT,; Q) Q and H*(Y; Q) = H*(Yr,; Q) (~H*(BT,; Q) Q 

(the H*(BrA Q)-module structure on Q is defined by augmentation). Let /) be the 

induced bundle homomorphism from Yrr--)Br, toXr,--)Brr then p*:H*(Xrr;Q)--~ 

H*(YT,; Q) is compatible with p*: H*(X; Q)--)H*(Y; Q). Hence it follows from Proposi- 

tion 4 that p* remains non-trivial after localizing at the zero ideal of H*(Brr; Q). By the 

basic localization theorem of equivariant cohomology (see [H1], p. 45), we obtain then 

q*: H*(Fx; Q) | Q)R0 ---> H*(Fr; Q) {~H*(BTr; Q) R0, 

where R 0 is the quotient field of H*(Br,; Q). It follows that q*: H*(Fx; Q)-*H*(Fr; Q) 

is non-trivial. Q.E.D. 

The Weyl group W of Sp(r) operates on Fx and Fy; and q* is an W-homomor- 

phism. Here W is the subgroup of Wc which keeps T r invariant; i.e. the set of 2rr! 
permutations of {01 .. . . .  02r} keeping the set of pairs {01,02} ..... {02r-l,02r} invar- 

iant; or, equivalently, all permutations and sign changes of {r/1 .. . . .  r/r}. Let Ws be the 
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normal subgroup of W consisting of all sign changes of {~/1 .. . . .  r/r), then W/Ws=Sr, the 

symmetric group on {rh .. . . .  r/r}. Let E be the standard (r-1)-dimensional irreducible 

representation of Sr with Young diagram corresponding to the partition ( r -1 ,  1). The 

corresponding representation of W with kernel Ws is also denoted by E. 

PROPOSITION 5. As a graded W-algebra H*(Fr, Q) is isomorphic to Ao(E). (The 

elements o f  E have degree 1.) 

Proof. W operates by automorphisms on H*(Fr;Q)=AQ(HI(Fr;Q)), so we 

only have to show that the W-module HI(Fr ;Q)  is isomorphic to E. Let 

t=(exp (2xi00, ..,, exp (2gtiOzr)), (01 + . . .  + 02r = 0)  be in T 2r- 1, then 

t - (exp (2:r/(01 + 02)), 1, exp (2~i(03 + 04)), 1 .. . . .  exp (2:ri(02r - t + 02r)), 1) modulo T r, 

i,e. zl . . . . .  Zr with Zi=02i-l+02i are homogeneous coordinates for T2r-I/Tr=Fy. 

Here elements of Ws, corresponding to permutations of the type (02r-1,02~) act 

trivially, and W/W s acts by permutations of {zl,...,Zr}. We have: HI(Fr ;Q)= 
r n _ {E/=l ai zi; ai ~ Q, E,.=~ ai-O }. The representation of Sr induced on this vector space by 

the action through permutations of {z~ .. . . .  Zr} is precisely the standard irreducible 

representation of St. Q.E.D. 

COROLLARY. H*(Fr; Q) is an irreducible W-module in each dimension. 

Proof. By Proposition 5 this is true in dimension 1. The corollary follows once we 

confirm that APE is the irreducible S~-module with Young diagram corresponding to the 

partition (r -p ,  1 .. . . .  1). For lack of a reference and for later use, we note how this can 

be seen by computing characters. Let E~=E~)O, where 0 is the trivial one-dimensional 

representation. Then APEI=^PEO)AP-~E. The character of ^PE~ evaluated at a 

permutation a with si cycles of length pi, i=1 . . . . .  q, S l P l + . . . + S q p q = r ,  i s  easily seen 

to be the pth elementary symmetric function in the roots of the polynomial 

(2P~-l)S'...(2Pq-1) *q. Collecting the 2n-P-terms from this product is easily seen to 

correspond to some of the permissible decompositions of the Young diagram of 

(r-p,  1 ... . .  1) in the Murnaghan-Nakayama rule for computing the value of the charac- 

ter of the corresponding representation on a. To show that the difference is accounted 

for by the term A p- ~E is an easy combinatorial exercise. 

Proof o f  Theorem 7. Let X=S U(2r)/SU(r+ 1) and assume t~=Sp(I)cSU(2r). Then 

H*(Fx;Q)-~Ao(u~ ... . .  Ur-O, with degui=di>O. Let uj-be the smallest possible dimen- 

sion such that q*(uj) is non-zero in H*(Fr; Q). By the corollary to Proposition 5 it 
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follows that Hak(Fr;Q) is in the image of q*. Since dimHak(Fr;Q)>r-1 unless dk=l, 

r -2 ,  r--l ,  no other values are possible. If dk=l,  it follows that H~(Fr;Q)cimq *, i.e. 

dl=... =dr-1 = l and H*(Fx; Q)-H*(Fr ;  Q), which contradicts the fact that 

e(X)#=e(Y), (by the proof of Proposition 3). We may assume r=2t -1  by Proposi- 

tion 3. Since d k is odd, dk=r-1 is impossible. If dk=r--2, we have dim Hdk(Fr;Q)= 

r - l ,  and dl=...=dr_l=r-2, i.e. Fx-Sr-E•  r-2. Hence e(Fx)=(r-1) r-l= 

2~-l(2/-1-1)r-~and e(X)=3• If l>2, e(Fx) is 

then not a power of 2, contradicting Lemma 2, if 1=2, (r=3), e(Fx)=4 which also 

contradicts Lemma 2. 

This finishes the proof of Theorem 7 for the case X=SU(2r)/SU(r+I), tt~ 

There are some modifications of the above argument in the case X=SU(2r+I)/ 

SU(r+I), H~ We have p: Y=SU(2r+I)/Sp(r)--~X, and there are now 

3•  distinguished corank r subtori of the standard maximal torus T 2r of 

SU(2r+ 1). Lemma 2 and Proposition 3 applies as before (the extra factor 2r+ 1 cancels 

against the extra sphere dimension). In Proposition 4 however, we now observe that 

P*(X4r-3), P*(X4r-I) and P*(X4r-3I.JX4r-1) a r e  all non-zero in H*(Y;Q). Now 

Fr = T2r/T ~ is an r-torus; the representation of W on HI(Fr; Q) is isomorphic to the full 

permutation representation E l ,  and H*(Fr;Q) is isomorphic to Ao(ED as an W- 

algebra, i.e. ItP(Fr;Q)=APE@Ap-IE. By the above version of Proposition 4 there 

must now be a generator u~ E/-/a'(Fx;Q) such that q*(ul) is not in any 1-dimensional 

submodule of H*(Fr;Q);  it follows as before that d imul= . . .=d imu~_l=l  or r - 2  for 

generators uj ..... ur_ 1. Then e(Fx)=2r-l(dr+l)=22t§ by Lemma 2, where r=2t -1 ,  

i.e. dr=22t-t-l>2t+2-3=4r+l for 1>2, which is impossible, 4r+l  being the largest 
dimension of the generators for H*(X;Q). For I=2 we have X=SU(7)/SU(4)-- 

$9• ~ • ~3 and F x - S  ~ • ~ • 3. Let ~xx=Sp(3), then the slice at x has dimension 6 and 

it follows that the slice representation of Sp(3) is trivial. Hence Sp(3) is the connected 

principal isotropy subgroup type, and the orbit space has dimension 6. Since the fixed 

point set of T3~_Sp(3) has dimension 3 on each fibre SU(2r)/Sp(3), the dimension of Fx 
would be 9. This contradicts Fx~S l • 1 •  3. 

In the second case d i m u l = r - 2 = 2 t - 3 .  Lemma 2 gives e(Fx)=(r-ly-l(dr+l)= 

(2t--2) r-1 (dr+ 1)=2 2t+~-l-2, which is impossible for 14=2. For 1=2 we have r - 2 =  I, which 

is the case ruled out above. 

Finally, for H~ there are the following cases: 

(a) X=SU(2r+I)/SU(r+I) with H~ and G~ for some x. Then 

Y=S U(2r+ 1)/SO(2r+ 1)-Q S 5 • S 9 •  )< S 4r+ 1 ~ O  S U(2r+ l)/Sp(r). The maximal torus 
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T r of Sp(r) is also a maximal torus of SO(2r) and SO(2r+l), Fv=T2r[Tr, and the Weyl 

groups Wsp~r)=Wso~2r+w In rational cohomology there is no difference from the pre- 

vious Sp-case, so the above proof applies. 

(b) X=SU(2r)/SU(r+I) with G~=SO(2r) for some point x. Then Y=SU(2r)/ 

SO(2r)--Q S5xS9x.. .Xs4r-3xS2r; i.e. Y is the cohomology product of one even and 

r -1  odd spheres, the homotopy Euler characteristic of Y is - r +  1. Here the Weyl 

group Wso~2r) is generated by all permutations and an even number of sign changes 

of {r/l . . . . .  rL}, WS~r~/Wso~2r)=Z2 . Let w in Wsp~r ~ represent the non-trivial element of 

Wsp(r)/Wso(2r) , then Fr---F(Tr; Y)=FI UwF1, where FI=T2r-I/T r. The Wso(2r)-mod- 

ule H*(Ft, Q) is isomorphic to AQ(E) as before, and translation by w induces an 

Wsor equivalence from H*(wF1;Q) to H*(F1; Q). Proposition 3, Lemma 2, 

and Proposition 4 are as before. Proposition 5 is modified to H*(Fr;Q)-~ 
AQ(E)~)AQ(E) as an Sfmodule. The rest of the proof goes as the case X=SU(2r)/ 

SU(r+ I), ~xx=Sp(r). 

(c) X=SU(2r+ 1)/SU(r+I) with G~=SO(2r) as the connected isotropy group type 

of maximal dimension. Then Y=SU(2r+I)/SO(2r)~oSSxsg•215 This 

goes as the previous case with FI=TZqT ~, H*(Fr;Q)=--AQ(EOO)AQ(EO, and we 

compare with the case G~ In odd degrees there are now two one-dimensional 

Wso~2~)-modules in Hl(Fr;Q) and in /-F(Fr;Q). Since p*(X4r+l) Up*(X4r-l) is non- 

zero in H*(Y;Q)I it follows as before that the image of q* must contain an (r-1)- 

dimensional Wso(2rrsubmodule of H*(Fr;Q). The rest of the proof follows the 

~xx=Sp(r) case, with the following modification for l=2, r=3:dimSU(7)/SU(4)= 
dim SU(7)/SO(6)=33, hence G~=SO(6) is impossible. 

Theorem 2, the estimates at the end of Section 1, Proposition I, Proposition 2, and 

Theorem 7 now prove Theorem 6. 

3. Reduction of  the orbit projection to a fibration 

In this section X is any simply connected, closed, differentiable manifold with 
X ~  z S 2k+l x S 2k+3 x . . .  x S  2n-I , n/2<~k<n. 

THEOREM 8. Let X be as above and let G=SU(n) act smoothly on X. I f  all 
connected isotropy groups are of type SU(I)=SU(n), then all isotropy groups are in fact 
connected. Moreover, only one orbit type occurs, and the orbit projection is a fibration 

of X with SU(n)/SU(r) as fibre, k<~r~n. 
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The following lemma is essential for the proof of Theorem 8. 

LEMMA 3. If  SU(m) acts smoothly on X--z S2k+IxS2k+3X...xS 2n-1 with non- 

empty fixed point set and all connected isotropy subgroups of type SU(I)cSU(m), l~2, 
then all isotropy subgroups are connected. 

Proof. Let x EX be a fixed point. Then the isotropy representation of SU(m) at x 

has connected principal isotropy subgroup of type SU(r)cSU(m), r>~2. The classifica- 

tion of linear SU(m)-actions with non-trivial principal isotropy group is well known; we 

refer to [H1, p. 83] to conclude that for r>2, the isotropy representation at x must be 

the underlying real representation of (m-r)l~m modulo trivial representations. For r=2 

the only other possibilities are: (a) m=3 with isotropy representation [A2,t.I3]R=[fl3]R 

(the contragradient representation of/.t 3 is A2/.t3), (b) m=4 with isotropy representation 

~4]R+q0, where ~ is a real form of A2/~4. (All equations modulo trivial representa- 

tions.) The principal isotropy subgroup in (b) is of type SU(2), however, the principal 

isotropy subgroup Sp(2) of q0 occurs as a non-principal isotropy subgroup in ~4]R+q0, 

hence (b) cannot occur under the conditions of Lemma 3. By local linearity it now 

follows that all isotropy groups in a neighbourhood ofx  are of type SU(I), 1>~2. Suppose 

that Gy is a disconnected isotropy subgroup; by conjugation we may assume ~ =  

SU(I)~Gy. Here Gy/~ is finite, and we may choose an element z in G y \ ~  such that 

z p E ~ for a prime p (it is actually easy to choose z such that zP=e). Let K be the 

subgroup generated by ~0 and z, then K/~-~Zp. Let V be a subspace of C m such that 

K~SU(V), but K is not contained in SU(W) for any subspace W of C n with dim W< 

dimV=m' .  Let T and T' be maximal tori of ~ and SU(V) respectively, with T~T'. 
By considering the representation of T defined by the inclusion of T in ~=SU(I), it is 

easy to see that T cannot be maximal torus in SU(W)~_SU(V) for any other subspace W 

of V than C l. By the conditions of the lemma it is now clear that F(~;X)=F(T;X)=Z~, 
similarly F(SU(V), X)=F(T';X)=Z2. By the dimension restriction k>-n/2 the generators 

of H*(X, Z) are transgressive in the Serre spectral sequence of the fibre bundle 

Xr---~Br. From the existence of fixed points it follows that the transgressions of those 

generators are all zero, and Z~ is again of the integral cohomology of a product of n-k  

odd spheres. In particular it is connected, similarly for Z2. Now K is in the normalizer 

of ~ ,  hence K/~=Zp acts on Z~=F(~,X). Obviously T' also acts on ZI=F(T;X) 
with fixed point set Z2. By the known orbit structure around x and the choice of V it 

follows that F(SU(V);X) has full dimension in F(Zp) locally around x E Z2cZI. Hence 

Z2 must be a connected component of F(Zp;ZO. Since yEF(Zp;ZO\Z2, it follows 

that F(Zp; ZO has more than one connected component, hence dim H*(F(Zp; Z0;  Zp)> 
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dimH*(Zz, Zp)=2n-k=dimH*(Z1;Zp), in contradiction to a well known theorem of 

Borel. 

Remark. The proof of Lemma 3 is essentially given in Theorem VII.2' of [H 1]. The 

argument may be applied to k-multiaxial actions in more general situations than the one 

considered here. 

Proof of Theorem 8. We reduce the first part of the theorem to Lemma 3 as 

follows: Let H~ be a connected isotropy subgroup of G=SU(n) of maximal 

rank. Then (H~176 for xEX. Let ~xx=SU(V) with dimV=l. If l=k, the orbit 

G/Gx is of full dimension in X, i.e. it is all of X, and Gx must be connected. Thus we 

may assume k<l<.m. Then H~177177 hence 

(H~~ ~ with dim W>--n-(n-m+n-l)=m+l-n>-2k+2-n>~2. It follows 

that the action of H ~ on X satisfies the conditions of Lemma 3. It is then sufficient to 

prove that if Gy is disconnected for some y EX, then some isotropy subgroup of the 

H~ is also disconnected. Let now Gy be disconnected and let el . . . . .  en be the 

standard basis of Cn=L(el . . . . .  en), i.e. H~ . . . . .  en)). By conjugation we may 

assume t h a t  ~ = S U ( L ( e n - I + I  . . . . .  en)), with l>k. Since Gy normalizes G~, we have 

G y c S ( U ( L ( e l  . . . . .  en- l ) )•  . . . . .  en))). Let g=(gl ,g2)  be i n  G y - ~  with 

gl E U(L(el . . . . .  en-I)), g2E U(L(en-I+l . . . . .  en)), and let g3 be defined by 

g3(en-l+l)=(detgz)en-t+l, g3(ei)=ei for n-l+l<i<~n. Then (1,g3g21)EG~y, hence 

(g l , g3 )EGy-~ .  Since  n-l+l<.n-k<.n/2<m, we also have (gl ,g3)  E H  ~  

SU(L(el, ..., era)). So (gl, g3) E/-~y, but (gl, g3) ~ (/_/~0~_~, hence H~y is disconnected 

in contradiction to Lemma 3. This finishes the proof of the first part of Theorem 8. 

Our next observation is that X is a multiaxial (regular) SU(n)-manifold. The only 

additional requirement to check is that the slice representation of an isotropy subgroup 

SU(I) is always a multiple of the standard representation modulo trivial representa- 

tions. This is obvious for k~2, since, for the non-transitive case, the principal isotropy 

subgroup of the slice representation would then again be of the type SU(r) with r~>3. 

The case (n, k)=(2, 1) has either trivial or transitive G-action. For a multiaxial G- 

manifold it is known that the orbit space X/G is a topological manifold with boundary 

(modelled on the space of positive semi-definite Hermitian matrices, and not in general 

a differentiable manifold with boundary [D]). Let SU(r) be a principal isotropy sub- 

group. If r=k, the action is transitive, and Theorem 8 is trivial. If r>k, we have: 

dimX/G=dimX-dim SU(n)/SU(r)=r2-k 2. Let er: X-,X/G be the orbit projection, then 

the singular orbits project down to the boundary points of X/G. The fibers of n are 

of the type SU(n)/SU(I) with l>-r; hence Hi(er-l(y);Z)=0 for i=1 . . . . .  2r for all 

8t-848288 Acta Mathematica 152. Imprim(~ le 17 Avril 1984 
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29 EX/G. From the Vietoris-Begle mapping theorem it now follows that 

:r*: HJ(X/G;Z)---~HJ(X;Z) is an isomorphism for O<~j<.2r. Choose cohomology classes 

.~2j+I~H2j+I(X/G,Z) such that X2j+l=n*(.~2j+l) form part of the generators of 

H*(X;Z), k<~j<~r-1. Then .7"l*(.~2k+ll3...13.~2r_l)=X2k+lU...13X2r_l is non-zero in 

/-/;-k2(x; Z); hence 0:#$2k+1 U... t.l X2r-1 in Hr2-k2(X/G; Z). Then the cohomology group of 

X/G is non-zero in the top dimension; hence the boundary of X/G must be empty, and 

there are no singular orbits. 

Remark. Let X=S2k+l>(... x S 2r-I xSU(n)/SU(r) and let G=SU(n) act by left trans- 

lations on the last factor and trivially on the others. This example shows that any orbit 

type SU(n)/SU(r) with k~r<~n can occur in Theorem 8. 

4. Cohomology operations and the reduction to linear action 

In this section we let G=SU(n) act smoothly on X=Wn.k=SU(n)/SU(k) with 

n/2<k<n- 1. Applying Theorem 6, its corollary, and Theorem 8 it follows that there is 

only one orbit type SU(n)/SU(r); with k<~r<~n. It is then clear that the only unsettled 

part of Theorem I is to prove that for X=Wn.k this is only possible with r=k or r=n, 
i.e. the transitive or the trivial actions, respectively. In view of the last remark of 

Section 3, it is obvious that this can be proved only by applying more subtle topological 

methods which detect the difference between X and S2k+~• • S 2n-I. The most obvi- 

ous example of such cohomology operators are Steenrod squares, which distinguish 

those spaces for k<n-1.  It is therefore interesting to observe how much information 

Steenrod squares yield for the G-space X; we prove that they can always be applied to 

eliminate the orbit type SU(n)/SU(r) with k+ l < r < n - 1 .  The method has been used in 

[HS] for the study of a related problem. Although this result can be somewhat 

strengthened by applying reduced p-powers, the elimination of the remaining limit 

cases SU(n)/SU(r) with r=k+ 1 or n - 1  in general requires the deeper knowledge on the 

fibre homotopy type of Stiefel manifolds obtained by secondary cohomology oper- 

ations. 

Let Z~=O(1)x...• be the standard maximal 2-torus of O(n); the in- 

clusions Z~cO(n )c  U(n) induce standard fibrations of classifying spaces: 

Bzr and Bo(~)---~Bu(~, and induced homomorphsims: H*(Bu(~); Z2)---~H*(Bo~); Z2) 

---~H*(BzT;Z2)=Z2[t 1 . . . . .  tn], where tie H~(Bz~;Z2) may be identified with the Z2- 

linear functional on Z~ defined by the ith coordinate. Then H*(BO(n);Z2)= 
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Z 2 [ w  ! . . . . .  wn] , where the ith universal Stiefel-Whitney class w i is identified with the 

ith symmetric polynomial oi( q ..... tn), and H*(Bvt,); ZE)=Z2[c I .....  c,] where 

ci=w~=oi( ~ . . . . .  t2n) (moO 2). It follows that H*(Bsv<n); Z2)=ZE[Cz, c a .....  c,]. 

PROPOSITION 6. (a) The Steenrod square operations in H*(Bsv~n); Z z) are given by 

Sq2i+lcj=O for i, j and 

1) 
Sq2icj = ci_ a cj+. for i <-j. 

a=0 

(b) H*(X; Z2)--~Az2(X2k+l .. . . .  x2n_ 0 with degxi=i, and 

Sq (x2i+0= x2j+2i+ J for i<~j , j+i<~n-1 ,  

zero otherwise. Here (~) is the rood2 binomial coefficient, and Xzk+, ..... X2,_ , is a and 

simple, universally transgressive system of  generators for H*(X; Z2). 

The formula in (a) follows from the Caftan formula for Steenrod squares and a 

computation of certain symmetric functions, this is done in [B3] for the real case 

Bso(n); the same type of computation works here. The transgression maps a universal- 

ly transgressive generator of dimension 2l+ 1 into H2t§ Z2)/D2t+2=Q 21§ where 

D 2t§ is the subspace generated by decomposable elements in HEl+E(Bsv(,); Z2). Steen- 

rod squares take decomposable elements into decomposable elements, so there are 

well defined "Steenrod squres" Sqi: QEl+E__~QEJ+Z+i, and in this sense transgression 

commutes with Steenrod squares. With this observation it is then easy to see that only 

one entry from the sum in (a) survives modulo decomposable elements to give (b). 

Let s~: X--~X/G be the orbit projection. It follows from the proof of Theorem 8 that 

:r is an isomorphism for O<~j~r. Let ~2k+1 ... . .  )?2r-1 be in 

H*(X/G; Z~) with ~*0?j)=xg f o r j = 2 k +  1, 2k+3 ... . .  2 r -  1. 

THEOREM 9. When G=SU(n) acts smoothly on X=SU(n)/SU(k) with k>n/2, the 
orbit type SU(n)/SU(r) with k+ l<r<n-1  cannot occur. 

Proof. Assume that the orbit type is SU(n)/SU(r) with k+l<r<n-1 .  By 

Proposition 6 we have SqzxE~_l=(r--1)XE~+l, Sq4XEr_l=�89 Sq4X2r_3 =-- 

�89 If r is even, r - l * 0  (rood2), if r=4 j + l ,  �89  rood2, and 

if r=4j+3,  �89  rood2. Hence Sq2(j?2~_l)=J?2~+l, Sq4(~_3)=~2~+1, or 
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Sq4(.~2r_l)~-X2r+3 for those cases respectively, where Ylf*(.f2r+l):XZr+l o r  ~7"t*(.~Zr+3)=X2r+3 : 

Since 3"g*(.~2k+1 ['J'~2k+3 ['j " '"  I ' JX2r-I  ['J'~2r+i)~-'X2k+l ['JX2k+3 ['j " '"  ['JXZr-1 UX2r+i which is non-zero 

in I-Ir~-k2+2r+i(x; Z2) with i= I or 3, respectively, we have Hrz-k2+2r+i(X/G; 22)=1=0 for i= 1 

or 3, contradicting dimX/G=rZ-k 2. Q.E.D. 

Remark. It is furthermore clear that for k odd, we have Sq2(X2k+l)=X2k+3 
(rood 2), hence r=k+ 1 is not possible in this case by the same argument; similarly, for n 

odd, SqZ(x2n-3)=x2n_l s o  r = n - I  is impossible. By applying reduced p-powers, 

better results are available. For example, from the computations in [BS] one can 

deduce for the reduced 3-power that 1 _ P3(xzk+O-(k+3)x2j+5. Combining this with the 

above results for Sq2(x2k+l) and Sq4(X2k+l), it follows easily that for k<n-2 ,  r = k + l  

is impossible unless k is divisible by 12, similarly, r = n - I  is impossible unless n is 

divisible by 12. This is analogous to the situation for the section problem for complex 

Stiefel manifolds before higher cohomology operations were introduced into this prob- 

lem (see [BS], where the same divisibility condition by 12 appears). Although such 

operations have not had significant applications to transformation group theory so far, 

i t  is reasonable to expect them to play a decisive role for settling certain types of 

problems. Here we apply the stronger results on fibre homotopy types of Stiefel 

manifolds which can thus be obtained to finally settle the remaining part of Theorem 1 

for the general case. 

PROPOSITION 7. Let ~r be the orbit fibration from X to X/G with fibre F=SU(n)/ 
SU(r), k<~r<~n. Then X/G is homotopy equivalent to SU(r)/SU(k). 

Proof. In the spectral sequence of x we have again that all generators of H*(F; Z) 

are transgressive for dimension reasons. It follows easily that all transgressions are 

zero, and consequently that Ez=E~o and H*(X; Z)=H*(X/G; Z)| Z) as a module; 

hence H*(X/G;Z)=Az(~zk+~ .. . . .  SZr-l). From the homotopy sequence of at it follows 

that X/G is simply connected. Consider the inclusion i:K=SU(r)/SU(k)---~SU(n)/ 

SU(k)=X. Then y2~k§247 j = l  . . . . .  r - k  form a system of generators for 

H*(K; Z), with (~r o i)* (x2(,+j~-l) =Y2tk+j)-1 for j= I .. . . .  r - k .  Hence the map ~r o i induces 

an isomorphism in cohomology and is a homotopy equivalence by the Whitehead 

theorem. Q.E.D. 

THEOREM 10. When G=SU(n) acts smoothly on X=SU(n)/SU(k) with k>n/2, the 

orbit type SU(n)/SU(r) with r = k + l  or r=n-1  cannot occur. 
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Proof. Let  i be the inclusion of  the fibre F=SU(n)/SU(r) in the orbit fibra- 

tion ~:X---~X/G, We now compare  this with the standard fibration p:X=SU(n) /  

SU(k)---~SU(n)/SU(r)= Y with fibre P=SU(r)/SU(k). We have the commutat ive square: 

X ~-~) YxX/G 

X/G ~ X/G 

where id is the identity map and P2 is projection on the second factor. Now (p, ~) is a 

fibre map from the orbit fibration to the trivial fibration P2- Le t  Z2r+~ ... . .  ZEn--I be a 

simple system of  universally transgressive generators for H*(Y; Z) with 

* --X P (z2(r+j3-1)- 2(r+j3-1, J=  1 . . . . .  (n-r) .  Then it follows from the proof  of  Proposit ion 7 that 

(iop)*(ZE(r+13_l)=Y2(r+j3_l, (iop) is an isomorphism in cohomology and a homotopy  

equivalence by the Whitehead theorem. Hence  the restriction of  (p, ~r) to a fibre is a 

homotopy  equivalence,  and by a theorem of  Dold ([Do]), (p, ~) is a fibre homotopy  

equivalence from ~r to P2. In particular X=SU(n)/SU(k) is homotopy equivalent to 

SU(n)/SU(r)• i.e. the standard fibration p is decomposable.  For  r = n - 1  

we have Y=S 2n-1 and for r = k + l  we have p=s2k+l; i.e. the base space or the fibre is 

a sphere. By Corollaries 4.5 and 4.8 in [J], it would then follow that the standard 

fibration p of  X would be fibre homotopical ly trivial, which is known to be false (e.g. 

[J], p. 154). Q.E.D.  

By Theorem 9 and 10 together  with the results of  the earlier sections, it follows 

that if G--SU(n) acts smoothly on X=SU(n)/SU(k) with k>n/2, there is one orbit type 

SU(n)/SU(r) with r=k or n, corresponding to the linear or  the trivial action respective- 

ly. This completes  the proof  of  our  main Theorem 1. 
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