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0. Introduction

In the theory of transformation groups a most fundamental, but in general quite difficult
problem, is the classification of the possible orbit structures for actions of a compact
Lie group G on a given space X. The well known P. A. Smith theory (as generalized by
Borel, Conner, and others) gives beautiful results when X is of the simplest topological
type (e.g. acyclic, cohomology sphere, cohomology projective space) and G is a torus
or a p-torus. Moreover, when G is a classical group, restriction of the action to the
maximal torus of G combined with structural splitting theorems on the characteristic
class level for torus actions, result in nice regularity theorems for classical group
actions on spaces of such simple topological type ([H1}).

It is our assertion that the time is ripe for applying more sophisticated methods
now available in algebraic topology and equivariant cohomology theory in a more
serious study of transformation groups on certain spaces of more complicated topologi-
cal types. The most natural spaces to consider are various homogeneous spaces, which
accomodate a rich variety of natural actions. In this paper we give the full proof for one
starting theorem in the field of large transformation groups on homogeneous spaces.
Our main result is:

THEOREM 1. Let X=W,, x be the complex Stiefel manifold of (n—k)-frames in
complex n-space C*, k>n/2, and let G=SU(n). Then any non-trivial, smooth action of
G on X is conjugate to the linear action.
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(The “‘linear action’’ is the transitive action on W, ; induced from the standard
linear action of G on C".)

If k=n—1, X is the sphere $?"~!, and the result is well known (it is also an easy
consequence of the geometric weight system for the restriction of the action to the
maximal torus of G, ([(H1])). For more complicated spaces X, there is in general not
much hope of obtaining such complete structural information on the cohomology of
torus actions; hence it is to be expected that one must combine the partial cohomologi-
cal information available with strong use of subtler topological constructions. The
rather involved proof of Theorem | bears this expectation out for the case under study.

In Section 1 we use the explicit classification of homogeneous spaces of SU(n)
whose first Pontrjagin classes vanish and ‘‘local characteristic class theory” for the G-
space X to study the possible orbit types for the action. It turns out that a few
possibilities for principal orbit types, notably SU(n)/Sp(r) and SU(n)/SO(r) cannot be
eliminated solely by local characteristic class theory, and we clear up those cases in
Section 2. It is worth to note that in the dimension range k>n/2+1 the desired reduction
for the above two cases is an application of the result of Allday—Halperin on the torus
rank of a space. In the limiting case n/2<k<n/2+1, however, a more delicate method,
involving the equivariant cohomology of the embedding of a minimal orbit in X with
respect to the action of different subtori of G is called for. In Section 3 we rely on the
(global) cohomology theory of torus and p-torus actions to conclude that all isotropy
groups are connected. A consequence is that the orbit projection is a fibration. In
Section 4 we proceed to a more detailed study of the orbit projection. An application of
Steenrod squares is sufficient to reach our final conclusion under certain strong
restrictions on n and &, ((H1]), this result may be somewhat improved by applying
reduced p-powers. This is in a sense dual to the use of cohomology operations in the
section problem for standard fibrations of complex Stiefel manifolds. The elimination
of the limiting cases SU(n)/SU(n—1) and SU(n)/SU(k+1) as possible principal orbit
types, depends, however, on higher order cohomology operations; they are obtained
by reducing to known results on the fibre homotopy types of complex Stiefel manifolds.

We note that most of the methods of this paper are also relevant for other
homogeneous spaces. Clearly they yield much information for Stiefel manifolds also
outside the dimension restriction k>n/2. This restriction is used, however, in the proof
of Theorem 1; the striking simplicity of this result and the wide dimension range still
covered, justifies it at present.

With some modifications (real Stiefel manifolds are products of spheres in special
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dimensions), similar results can be proved for real and quaternionic Stiefel manifolds.
We have chosen to work out the details of the complex case here, in particular the orbit
exclusion problem of section 2 appears only for that case.

Notations. We let Z,Q, R, C, denote the integers, rationals, reals, complex num-
bers, respectively, and k£ any one of these rings. Let V be a k-module, then A(V)
denotes the graded Grassman k-algebra spanned by V, and AJ(V) its subspace of
(grading) degree p.

The natural representations of the classical groups SU(r), SO(r), Sp(r) are denoted
by u,, 0, v, respectively. Inclusions between these, such as SU(H<SU(n), SO
SU(n), Sp(r)cSU2r), etc. always refer to standard inclusions.

If the cohomology algebra H*(X; k) is isomorphic to H*(Y; k), we denote this by
X~ Y.

Let G be a compact transformation group on the space X. Then
Xe=EgXcX—Bg is the bundle associated to a universal G bundie Eg—Bg by G’s
action on X.

By abuse of language we call the identity component G° of an isotropy group G,
the ““‘connected isotropy group of x”’; correspondingly G/G° represents the ‘‘connected

orbit type’’.

1. Local characteristic class theory

Let X be the complex Stiefel manifold of (n—k)-frames in C”, then X=SU(n)/SU(k) as a
homogeneous space, and X~z 5% "'x...x§?"~1, X is stably parallellizable (parallel-
lizable for k<n—1), hence all its Pontrjagin- and Stiefel-Whitney classes vanish. Let
G=8U(n) act smoothly on X. If k=n—1, X=5%""1 and it is known that any non-trivial
G-action must be transitive. Thus, for the remainder of this paper we assume, without
loss of generality, that n/2<k<rn—1 and n=5. The above observation allows us to apply
the computations of Pontrjagin classes of homogeneous spaces of ((H2]), combined
with conditions on characteristic classes determined by the equivariant embedding of
the orbit into X, to exclude most homogeneous spaces of G as possible orbits.

We recall: Let G/H be a homogeneous space of G and let T be a maximal torus of
H. Then n*: H*(G/H;Q)—H*(G/T;Q) is injective, and p*: H¥(G/T, Q)= H*(G1;Q)
induced from the projection p: Gr—G/T is an isomorphism. Here Gr=EgX (G, and
J: Gr—By may be considered the fibre bundle associated to the universal 7-bundle
Ec—Es/T=B7; by T's action on G by left translation. There is an obvious map a from
the representation ring of H to the (equivariant) KO-group of G/H. The following
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splitting principle for homogeneous vector bundles over homogeneous spaces is the
basic setting of Borel-Hirzebruch ((BHI):

Let ® be a real representation of H with weight system Q(®) and let a(d) be the
associated G-vector bundle over G/H. Then p*(x*(P(a(®))))=/*(1(1+w)), w € QD),
where P is the total rational Pontrjagin class and each weight w in H'(T; Q) is identified
by transgression with an element of H*(Br;Q). In particular, the tangent bundle
(G/H)=a(Adg/H—-Ady): since a(Ad/H) is trivial, we have t(G/H)=—a(Adg) in
KO(G/H); Hence

p*(n*(P'(r(G/H))))=j*< I1 (1+w)> =j*< I1 (1—w2)>,

w€ A(H) w€ A*(H)

where A(H) and A*(H) is the root system and a positive root system of H respectively,
and P’ is the total dual rational Pontrjagin class. Let PH* be the homogeneous part of
degree 2k in NI(1—w?)=1-PH*+PH*~—..., wEA"(H). Then P(G/H)=0, i=1,2,3 if
and only if PH?, PH* and PH® are zero mod ker j*, where kerj* is the ideal generated
by the elementary symmetric functions in the weights of the complex n-dimensional
representation y defined by the embedding of H in G=SU(n). An explicit computation
is now possible, and gives the following classification: ([H2], Theorem 1):

THEOREM 2. Let y: HcSU(n) be a compact, connected Lie group with a given
almost faithful, complex representation . If P(SU(n)ywH)=0 for k=1,2,3, then the
possibilities for all such pairs (H,v) modulo trivial representations are given by the
Jollowing list:

(i) H is.any subtorus.
(i) H is semisimple and y=Ady.
(iii) H=SU(r)xH, n|30 and y=u ®u,+Ad.
(iv) H=(a) SU(r) with y=u, or 2u,,
(b) SO(r) with y=p,, dim¢co,=r,
(c) Sp(r) with y=v,, dim¢cv,=2r,
(d) G, with y=¢, or 2¢,, dimc p,=7.
(v) H=Sp(1), I=1, y=k- @ +vP+.. +v), k=1,2,4.
(vi) H=(a) SUQR)XSUQB) with p=k(us+us5)+1l(as+45), k+i=1 or 2,
(b) G2XG3 with =@, +@1 or A@1+@1).
(vii) H=(a) SU(r), r=3,4,5 with y=u,+4,,
(b) SUQB) with y=kus+1ias, k+1=3,6,
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() Sp(2) with Yy=v,+Nv,,
(d) Spin (8) with y=A*+A".

Now, let G act smoothly on a manifold M, then any orbit G/G, embeds in M with
homogeneous mnormal bundle associated to the slice representation @, of
G,; i:GIG,—»M, *r(M)=7(G/G )+ P )=—a(Ad; )+a(P,) in KO(G/G)). Evaluation
of this equation at the characteristic class level provides strong restrictions on the
possibilities of orbit types and slice representations. In particular, if G, is a principal
isotropy subgroup H,®, is trivial. Hence, for M stably parallellizable, all Pontrjagin
classes of the pripcipal orbit type G/H must vanish. Since G/H’—G/H is a finite
covering, this implies that all Pontrjagin classes of G/H° must also vanish. Consequent-
ly the connected principal isotropy subgroup type must be given by one of the
subgroups of G=SU(n) listed in Theorem 2.

For actions with a given principal isotropy subgroup type (H), the same equation
applied locally at an arbitrary orbit type G/G, gives strong limitations on the possible
pairs (G, ®,), especially when combining with the fact that the principal orbit type of
the representation ¢, must be G,/H. We quote the following results from [H2]:

Let G=SU(n) act smoothly on a manifold M, and let the principal isotropy
subgroup type be (H).

THEOREM 3. If P,(M)=0 and H°=SU(r)cSU(n), r=3, then all connected isotropy
subgroups Gg are also of the type SUD=SU(n), i=r.

THEOREM 4. If Py(M)=0 and H°=Sp(r)cSU(n), r=2, then all connected isotropy
subgroups G° are also of the type Sp(DcSU(n), I=r.

THEOREM 5. If Pi(M)=0 and H*=SO(r)=SU(n), r=5, then all connected isotropy
subgroups Gg are also of the type SO(D), I=r.

The first main step in the analysis of the action of G on X=SU(n)/SU(k), is given
by the following theorem:

THEOREM 6. Let G=SU(n) act smoothly on X=SUW)/SU(k), with n2<k<n—1.
Then the connected principal isotropy group H® is of the type SU(r)cSU(n), k<r<n.

By Theorem 3 we then have the following:

COROLLARY. All connected isotropy subgroups are of the type SU(DcSU(n),
r<i<n.
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The proof of Theorem 6 is the main subject of sections 1 and 2. We have to eli-
minate all other possibilities for connected principal isotropy group in Theorem 2 than
(iv) with H°=SU(r), yp=u,. Here dimX=n>—k?, hence dim H*>k>—1=n*/4+n/2—3/4
unless H=SU(k). Elimination of cases (i), (i), (iii), (v), (vii) follows by dimension
arguments. Here (i) and (ii) are straightforward, for (iii) we have: dim ¢ =r>+dim H<n,
i.e. dim H'=r*—1+dim H<n—1<n?/4+n/2-3/4 for n=5, contradicting the above esti-
mate. In (v) dimev;=2, hence 2I<n and dim HO=3I<3n/2<n?4+n/2—3/4 for n=5. In
(vii) (@) y=p,+4, implies 2r<n, dim H°=r’—1<n/4+n/2—3/4. Recalling that n=S5,
(vii) (b) is clearly impossible. In (vii) (c) we have dim Sp(2)=10 <n?/4+n/2—3/4 for n=6,
while for n=5 we cannot accomodate the representation y=v,+A,. For (vii)(d)
w=A*+A~ (half spin representations) implies #n=>16, hence dimH’=28<
n*/4+n/2—3/4. In (iv)(d) we have n=7, hence dim H°=14<n?/4+n/2~3/4. In (iv)(a)
the possibility y=2u, is ruled out in the same way as (vii)(a). In (vi) (b) n=14, hence
dim H°=28<n?/4+n/2-3/4.

It remains only to rule out the cases (iv) (b) and (c) together with the special case
{vi) (a). The method of local characteristic classes will not suffice here (although some
cases, as SU(n)/SO(r) with r odd may be ruled out by an analogous argument with
Stiefel-Whitney classes). For example, since Sp(r) is totally non-homologous to zero in
SU(n), n=2r, it follows that all characteristic classes of SU(n)/Sp(r) vanish ({BHIII]).
Hence more specialized methods are required here, these are dealt with in the next
section.

2. Exclusion of orbit types

In this section G=SU(n) operates smoothly on X=SU(n)/SU(k), nl2<k<n—1, with H°

as principal isotropy group. We start by eliminating the case (vi)(a) of Theorem 2.
Since dim H’=dim (SU3)XSU(3))=16, we have k*<17, i.e. k<4; since dimc Y=6

or 12 it follows that n=6; hence the only possibilities are n=6, k=4 and n=7, k=4.

PROPOSITION 1. The cases X=SU(6)/SU4), H’=SUB)xSUQ3) and X=SU(7)/
SU4), H'=SUQR)XSUQ3) cannot occur.

Proof. The principal orbit would have codimension one, hence the only possibili-
ties for the path-connected, compact orbit space X/G are S' (corresponding to no
singular orbits) or a closed interval (corresponding to two singular orbits). Let T ' be
the maximal torus of G=SU(n) consisting of diagonal matrices (exp2nif,, ...,
exp2mif,), 6,+...+6,=0, n=6 or n=7.
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LEMMA 1. The fixed point set of T""! is empty.

Proof. Since rk H=4<n—1=rkT""!, there are obviously no fixed points on
principal orbits. If G/K is a singular orbit containing fixed points, it follows that K is of
maximal rank in G and hence the Euler characteristic y(G/K)=y(F(T*"'; G/K))>0.
Since there are at most two singular orbits, this contradicts y(F(T""!; X))=3(X)=0;
this proves the lemma.

Now consider the case n=6. Let

T= {(exp 2m'01, very exp2m'06)|01+02+03 = 04+05+06 = 0}

be the standard maximal torus of SU(3)xSU(3); then T has fixed points, and is then by
definition a geometric weight of the T°-action. Denote T by (6,+6-+65)*. By Weyl
group invariance of the geometric weight system for the T>-action on X it follows that
(Bo1) 052y +003)) - is a geometric weight for all 0€S¢ (the Weyl group of SU(6)).
In the Leray-Serre spéctral sequence for the fibration X s=E X X —>B. the gener-

ators xg and x;; of H*(X;Q) are transgressive, by the lemma their transgressions a;q
and a;; cannot both vanish. By restriction all ten different weight vectors 0,)+

0,010, (as elements of Hz(BTS, Q)) must then divide a,y and a,, (Corollary 1, p. 45

in [H1]). This is a contradiction, since both a,o and a,, have dimension less than 20.
In the remaining case n=7 we have H*(X;Q)=Aq(x9,x1;,X13). Obviously
T°={exp2mi6, ..., exp 27ifg, 1); 0, +6,+...+6,=0} has no fixed points on principal
orbits for the SU(7)-action on X. By the lemma a singular isotropy group K cannot have
rank 6, assume it has rank 5 with SUQGB)XSUQB)cKcSU(7). Recalling that the slice
representation of K has SU(3)xSU(3) as principal orbit type, it follows quickly that the
only possibility is K®=S(U3)x U(3)). In this case xo, x,; and x;3 are again transgres-
sive in the spectral sequence of X, s—B 4 for dimension reasons, hence a non-empty
fixed point set of any torus in 7° must be a cohomology product of three odd spheres.
However, F(T°, G/K) has dimenson one; it follows that F(T°;X) is empty. The same

argument as in the case n=6 applied to the T°-action, now gives a contradiction, since
we again have: dimz(x3)=14<20. Q.E.D.

PROPOSITION 2. Let G=SU(n) operate smoothly on X=SUn)/SUKk),
n/2+1<k<n-—1, with connected principal isotropy group of type (H®). Then H°=Sp(l)
and H°=SO(l) are not possible.

Proof. Assume H°=Sp()cSU(n). We may assume /=2, by Theorem 4 all other
connected isotropy groups are of the type Sp(f), I<r<n/2. Let T"! be the standard

8—848288 Acta Mathematica 152. Imprimé fe 17 Avril 1984



114 W. Y. HSIANG AND P. TOMTER

maximal torus of G, and let Sp(r) be the maximal connected isotropy type; then the
maximal connected isotropy type of the 7" '-action on X is of type T, where T is the
standard maximal r-torus of Sp(r). The minimal model of X is Ag(xz2x+15 ..., X20—1)
with degx;=j, the homotopy Euler characteristic is k—n, so the torus rank is n—k;
hence there must be subtori of 7"~! of corank n—k with fixed points ((AH]). Hence
n—1—-r<sn—k<n/2—-1, i.e. 2r>n, which contradicts Sp(r)cSU(n).

Similarly, if H°=S0(l), we have dim H’=I(I—1)/2>dim SU(3)=8, i.e. [=5, and we
may apply Theorem S to conclude that all connected isotropy subgroups are standardly
embedded SO(1), I<t<n. Let SO(s) of rank r be the maximal connected isotropy type,
by the above argument we conclude that 2r>n. Since s is 2r or 2r+1, we have: s=2r>n,
which contradicts SO(s)cSU(n). Q.E.D.

Thus, for most dimensions the desired elimination of (iv) (b) and (c) of Theorem 2
is a simple consequence of the torus rank theorem. The more complicated limit cases
n2<k=<n/2+1 remain; we give the details of the argument for one of those cases and
mention the necessary modifications for the others.

THEOREM 7. Let G=SU(n) act smoothly on X=SU(n)/SU(k), nl2<k=sn/2+1. Then

the connected principal isotropy group H® cannot be of type Sp(D=SU(n) or
SO =SU(n).

Proof. If n is even, X is of the type SUQr/SU(r+1), if n is odd, X=SUQr+1)/
SU(r+1). We now consider X=SUQRH/SU@r+D~S?3x§7+5x .. . x8""1. Let
H=Sp()cSU(2r). By the proof of Proposition 2 we have G°=Sp(r)cSU(2r) for some
point x, so there is an SU(2r)-equivariant map p: Y=SUQr)/Sp(r)—>G/G,->X, where
i is inclusion of the orbit through x. Let T !'={(exp2nib,...,exp2nib,,);
01+...4+6,,=0} be the standard maximal torus of SU(2r). We have Y~y $5x
§%%...x8%73, i.e. Y is a cohomology product of r—1 odd spheres. The action
of 77! on Y is by left translations; its invariants are easily computable: The
fibration Ygy,,—Bgy, is €quivalent to Bg,,—Bg,,; hence the transgressions of the
generators of H*(Y;Q) may be identified with the odd universal Chern classes
€3,Cs, ..., C2r—1, 1.€. With odd elementary symmetric polynomials in {6y,...,8,,}. Let
7 be the corresponding fibration Y, ,—B.. ., then kerm*={c;,...,c,_,), the ideal

spanned by the odd universal Chern classes; its variety in the Lie algebra of 7°!
consists of all (r—1)-codimensional linear subspaces defined by equations of the form:

Osy 0oy = - = Oprpyt 000, =0,
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where ¢ is in the symmetric group S,, (the Weyl group W of SU(2r)). By Theorem
IV.6 in [H1] the corresponding corank r—1 subtori of 72"~ are precisely the maximal
subtori with fixed points in Y. Here the identity permutation corresponds to the
standard maximal torus T* of Sp(r)cSUQ2r), and the others are its
Q2 Yr!12'=3x5...x(2r—1) Wg-conjugates in T*~!. Let 7; be the restriction of 6,
to T7, i=1,...,r. The complimentary root system of Sp(r) in SUQ2r) is {(n:—n));
i#j} U{x(n;+n;); i<j}, it is then easy to see that the isotropy representation of Sp(r) on
Y is a real form of A*,—6, and the fixed point set of T", F(T"; Y)=Fy=T>"Y/T" is an
(r—1)-torus. (Here 0 is the one-dimensional trivial representation.)

PROPOSITION 3. Let G=SUQ2r) act smoothly on X=SUQr)YSU(r+1) with
H°=Sp(k), k=2. Then r=2'—1 for a positive integer I.

Proof. Consider now the T* ‘'-action on X~S**3x8§7*x...x$*"!, The gener-

ators of H*(X;Q) are transgressive in the fibration X TZ,_,—)B

sion. Since all connected isotropy groups of the SU(2r)-action are of the type Sp(f) with
t<r, no subtorus of 72! of corank less than r—1 has fixed points. This is precisely the
situation dealt with by Theorem VI1.7 of [H1]. The point is now that the corank (r—1)
subtori with fixed points are the same 3X5...(2r—1) subtori which we have already
computed for Y; since if x € F(T) for a corank (r—1) subtorus T, then Gg is conjugate

Pt this time by dimen-

to Sp(r)caSUQ2r). Since those subtori are all Wg-conjugate, their fixed point sets
are all diffeomorphic to F,=F(T";X), which is a cohomology product of r—1 odd
spheres. Theorem VII.7 gives: e(X)=(2r+4)(2r+6)...4r=2""'r+2)(r+3)...2r=3x5...
Qr—1)e(F,). Hence e,=3%5...(2r—1) divides f,=2""'(r+2)(r+3)... 2r. Proposition 3,
which is already a strong indication for Theorem 7, now follows from the next lemma.

LEMMA 2. e,=3X5...(2r—1) divides f,=2""'(r+2) (r+3)...2r if and only if r is of
the form 2'—1. The quotient is then 22713,

Proof. Here

f;-+k _ 22k r+1 fr

€rik r+k+1 Z

s

hence, when the lemma is true for r=2'—1, it cannot hold again until r+k+1=2"*!, etc.

PROPOSITION 4. The equivariant map p: Y—X induces a non-trivial homomor-
phism p*: H¥(X; Q)—H*(Y; Q).



116 W. Y. HSIANG AND P. TOMTER

Proof. We prove that p* is non-trivial in degree 4r—3. The observation that X and
Y have the same set of distinguished corank (r—1) subtori of 7! with fixed points

implies that the radical of the ideal in H*(B.,,_, Q) spanned by the transgressions of the

(o
generators X,,,3, X,,,s, ---» X4_, in H*(X; Q) must again be (c,,cs,...,c,_;), (by Theo-
rem IV.6 in [H1], this radical is again the ideal of the variety spanned by the Lie
algebras of those subtori). This 1is possible only if the transgression
(x4,_3)=Cy,_=17(y,,_;) (modulo lower universal Chern classes). Here p induces a
(o X Tz,,1—>B

bundle homomorphism from Y, —B , and a corresponding homo-

TZr—
morphism of spectral sequences. On the E,-level this is defined by p*; since
t(x,,_3)=c,,_,, i.e. is not generated by lower Chern classes; it is clear that p*(x,,_;)

cannot be zero in H*3(Y; Q).

TZV—

COROLLARY. The restriction q of p to Fy q: Fy—Fx induces a non-trivial
homomorphism q*: H*(Fx; Q—=H*(Fy; Q).

Proof. We consider the restriction to the T"-action; then X and Y are both totally
non-homologous to zero in the fibrations X T,—»BT, and YT,—>BT, respectively. Hence

H*(X ,,Q) and H*(Y_,; Q) are both free H*(B

T T Q)-modules, with

T’;
H Q= H(X,;Q ®peg 10 Q and HY(Y;Q) = H(Y,5Q) s ;0 Q

(the H*(B,; Q)-module structure on Q is defined by augmentation). Let p be the

induced bundle homomorphism from YT,—>BT, to XT,—>BT, then ﬁ*:H*(XT,;Q)—>

H*( ) g Q) is compatible with p*: H*(X; Q)— H*(Y; Q). Hence it follows from Proposi-

tion 4 that p* remains non-trivial after localizing at the zero ideal of H*(BT,; Q). By the

basic localization theorem of equivariant cohomology (see [H1], p. 45), we obtain then
q*: H*(FX; Q) ®H*(BT’; Q RO b d H*(FY; Q) ®H*(BT’; Q) RO’

where R, is the quotient field of H*(BT,; Q). It follows that g*: H*(Fy; Q)—H*(Fy; Q)

is non-trivial. Q.E.D.

The Weyl group W of Sp(r) operates on Fy and Fy; and g* is an W-homomor-
phism. Here W is the subgroup of W which keeps T” invariant; i.e. the set of 2r!
permutations of {6,,...,0,,} keeping the set of pairs {6;,6,},...,{02_,0,} invar-
iant; or, equivalently, all permutations and sign changes of {7, ...,7,}. Let W, be the
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normal subgroup of W consisting of all sign changes of {7, ...,7,}, then W/W,=S,, the
symmetric group on {n,...,%,}. Let E be the standard (r—1)-dimensional irreducible
representation of S, with Young diagram corresponding to the partition (r—1,1). The
corresponding representation of W with kernel W, is also denoted by E.

PROPOSITION 5. As a graded W-algebra H*(Fy, Q) is isomorphic to No(E). (The
elements of E have degree 1.)

Proof. W operates by automorphisms on H*(Fy; Q)=AQ(H1(FY; Q)), so we
only have to show that the W-module H'(Fy;Q) is isomorphic to E. Let
t=(exp (27if,), ..., exp (2ni6>,)), (6,+...+6,,=0) be in T>~!, then

t=(exp(2mi(0,+6,)),1, exp 2mi(65+804)), 1, ..., exp 2mi(62,-+03,)), 1) modulo T7,

i.e. z1,...,z, with z;=6,_,+6,; are homogeneous coordinates for T*~YT'=Fy.
Here elements of W,, corresponding to permutations of the type (0,,_;,62) act
trivially, and W/W, acts by permutations of {z,...,z,}. We have: H\Fy; Q)=

{¥i.1a;z; a,€ Q, L, a,=0}. The representation of S, induced on this vector space by
the action through permutations of {z,,...,z,} is precisely the standard irreducible
representation of S,. Q.E.D.

COROLLARY. H*(Fy; Q) is an irreducible W-module in each dimension.

Proof. By Proposition 5 this is true in dimension 1. The corollary follows once we
confirm that APE is the irreducible S,-module with Young diagram corresponding to the
partition (r—p, 1, ..., 1). For lack of a reference and for later use, we note how this can
be seen by computing characters. Let E,=E®6, where 8 is the trivial one-dimensional
representation. Then ANPE;=A’E@®N°'E. The character of A’E; evaluated at a
permutation a with s; cycles of length p;, i=1,...,q, sip1+...+5,p,=r, is easily seen
to be the pth elementary symmetric function in the roots of the polynomial
A'=1D"...(AP—1)'. Collecting the A" -terms from this product is easily seen to
correspond to some of the permissible decompositions of the Young diagram of
(r-p, 1,...,1) in the Murnaghan-Nakayama rule for computing the value of the charac-
ter of the corresponding representation on a. To show that the difference is accounted
for by the term A?~'E is an easy combinatorial exercise.

Proof of Theorem 7. Let X=SUQ2r)/SU(r+1) and assume H°=Sp()cSU2r). Then
H*(Fx; Q)=Nq(uy, ..., u,—y), with degu;=d;>0. Let u; be the smallest possible dimen-
sion such that g*(x;) is non-zero in H*(Fy;Q). By the corollary to Proposition § it
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follows that H” Y(Fy;Q) is in the image of g*. Since dim H’ Fy; Q)>r—1 unless dp=1,
r—2, r—1, no other values are possible. If d,=1, it follows that H'(Fy;Q)cimg*, i.e.
di=...=d,_1=1 and H*(Fx;Q)=H*(Fy;Q), which contradicts the fact that
e(X)%e(Y), (by the proof of Proposition 3). We may assume r=2'—1 by Proposi-
tion 3. Since d, is odd, d,=r—1 is impossible. If d,=r—2, we have dim Hd"(FY; Q)=
r—1, and d;=...=d,_=r-2, i.e. Fx~S5"2X..x§ 72 Hence e(Fy)=(r—1)"'=
27121 — 1y tand  e(X)=3XS5...Qr—De(F)=2""'r+2)...2r). If [>2, e(Fy) is
then not a power of 2, contradicting Lemma 2, if [=2, (r=3), e(Fx)=4 which also
contradicts Lemma 2.

This finishes the proof of Theorem 7 for the case X=SUQr)/SU(r+1), H*=Sp(¢).

There are some modifications of the above argument in the case X=SUQ2r+1)/
SU(r+1), H°=Sp(t). We have p:Y=SUQRr+1)/Sp(r)—X, and there are now
3X5...(2r+1) distinguished corank r subtori of the standard maximal torus 72" of
SU(2r+1). Lemma 2 and Proposition 3 applies as before (the extra factor 2r+1 cancels
against the extra sphere dimension). In Proposition 4 however, we now observe that
P*(x4r—3), p*(x4r—1) and p*(x4,_3Ux4_;) are all non-zero in H*(Y;Q). Now
Fy=T¥/T" is an r-torus; the representation of W on H'(Fy; Q) is isomorphic to the full
permutation representation E;, and H*(Fy;Q) is isomorphic to Ag(E;) as an W-
algebra, i.e. HP(Fy;Q)=N’E@N’"'E. By the above version of Proposition 4 there
must now be a generator u, eH’ '(Fy; Q) such that g*(u,) is not in any l-dimensional
submodule of H*(Fy;Q); it follows as before that dimu,=...=dimu,_,=1 or r—2 for
generators u,, ..., 4,_,. Then e(Fy)=2"""(d,+1)=2"""""? by Lemma 2, where r=2'—1,
ie. d=2"""-1>2"2_3=4r+1 for [>2, which is impossible, 4r+1 being the largest
dimension of the generators for H*(X;Q). For /=2 we have X=SU(7)/SU4)~
$°xS"xS" and Fy~S'xS'x$%. Let G®=Sp(3), then the slice at x has dimension 6 and
it follows that the slice representation of Sp(3) is trivial. Hence Sp(3) is the connected
principal isotropy subgroup type, and the orbit space has dimension 6. Since the fixed
point set of T°c Sp(3) has dimension 3 on each fibre SU(2r)/Sp(3), the dimension of Fx
would be 9. This contradicts Fy~S'xS!x$3.

In the second case dimu;=r—2=2'-3. Lemma 2 gives e(Fx)=(r—1)"'(d,+1)=
2'-2y~'(d,+1)=2""""""2, which is impossible for I=2. For [=2 we have r—2=1, which
is the case ruled out above.

Finally, for H°=S50(z) there are the following cases:

(a) X=SUQr+1)/SU(r+1) with H'=SO(t) and GS=SO(2r+ 1) for some x. Then
Y=SUQr+1)/SOQr+ 1)~QS5XS9X...xS“’“~QSU(2r+1)/Sp(r). The maximal torus
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T’ of Sp(r) is also a maximal torus of SOQ2r) and SOQr+1), Fy=T/T", and the Weyl
groups Wy, ,=Wjsoi,, - In rational cohomology there is no difference from the pre-
vious Sp-case, so the above proof applies.

(b) X=SUQr)/SU(r+1) with G2=S0(2r) for some point x. Then Y=SUQr)/
SOQ2r~q $7x8°%... xS 3x8%; i.e. Y is the cohomology product of one even and
r—1 odd spheres, the homotopy Euler characteristic of ¥ is —r+1. Here the Weyl
group Wspq, is generated by all permutations and an even number of sign changes
of {ny,..,7.}, W,/ Wsopn=Z,. Let w in W, , represent the non-trivial element of
W,/ Wsoen» then Fy=F(T,; Y)=F\UwF;, where F\=T*"!/T". The Wsoe,-mod-
ule H*(F,,Q) is isomorphic to Ag(E) as before, and translation by w induces an
Wsoen-algebra equivalence from H*(wF;;Q) to H*(F,;Q). Proposition 3, Lemma 2,
and Proposition 4 are as before. Proposition 5 is modified to H*(Fy; Q)=
AQE)DAG(E) as an S,-module. The rest of the proof goes as the case X=SU(2r)/
SU(r+1), G*=Sp(r).

() X=SUQr+1)/SU(r+1) with G?r=SO(2r) as the connected isotropy group type
of maximal dimension. Then Y=SUQr+1)/SOQ2r)~o8 x8°%...x$¥*!xS¥. This
goes as the previous case with Fi=T"/T", H*(Fy; Q)=Ng(E)DPANG(E), and we
compare with the case GP=Sp(r). In odd degrees there are now two one-dimensional
Wsoen-modules in H'(Fy; Q) and in H'(Fy; Q). Since p*(x4+1)Up*(xs—1) is non-
zero in H*(Y; Q); it follows as before that the image of g* must contain an (r—1)-
dimensional Wgg,-submodule of H*(Fy;Q). The rest of the proof follows the
G2=Sp(r) case, with the following modification for I=2, r=3:dimSU(7)/SU4)=
dim SU(7)/S0(6)=33, hence G*=SO(6) is impossible.

Theorem 2, the estimates at the end of Section 1, Proposition 1, Proposition 2, and
Theorem 7 now prove Theorem 6.

3. Reduction of the orbit projection to a fibration

In this section X is any simply connected, closed, differentiable manifold with
X~z S*IxS%3x . xS™!, nf2<k<n.

THEOREM 8. Let X be as above and let G=SU(n) act smoothly on X. If all
connected isotropy groups are of type SU()=SU(n), then all isotropy groups are in fact

connected. Moreover, only one orbit type occurs, and the orbit projection is a fibration
of X with SUn)/SU(r) as fibre, k<r<n.
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The following lemma is essential for the proof of Theorem 8.

LEMMA 3. If SU(m) acts smoothly on X~z S**'xS§**3x ... .x8*"! with non-
empty fixed point set and all connected isotropy subgroups of type SU(D)c=SU(m), 1=2,
then all isotropy subgroups are connected.

Proof. Let x€ X be a fixed point. Then the isotropy representation of SU(m) at x
has connected principal isotropy subgroup of type SU(r)cSU(m), r=2. The classifica-
tion of linear SU(m)-actions with non-trivial principal isotropy group is well known; we
refer to [H1, p. 83] to conclude that for r>2, the isotropy representation at x must be
the underlying real representation of (#m—r) u,, modulo trivial representations. For r=2
the only other possibilities are: (a) m=3 with isotropy representation [A*us;lg=[xslr
(the contragradient representation of us is A%u3), (b) m=4 with isotropy representation
[uslr+@, where ¢ is a real form of A%u4. (All equations modulo trivial representa-
tions.) The principal isotropy subgroup in (b) is of type SU(2), however, the principal
isotropy subgroup Sp(2) of @ occurs as a non-principal isotropy subgroup in [u4lr+¢,
hence (b) cannot occur under the conditions of Lemma 3. By local linearity it now
follows that all isotropy groups in a neighbourhood of x are of type SU(J), [=2. Suppose
that G, is a disconnected isotropy subgroup; by conjugation we may assume G'=
SU()<=G,. Here G,/G? is finite, and we may choose an element z in G, \ G? such that
22 €G) for a prime p (it is actually easy to choose z such that z°=e). Let K be the
subgroup generated by Gyo and z, then K/GP’=Z,. Let V be a subspace of C™ such that
KcSU(V), but K is not contained in SU(W) for any subspace W of C” with dim W<
dimV=m'. Let T and T’ be maximal tori of G;’ and SU(V) respectively, with T<T'.
By considering the representation of T defined by the inclusion of T in GP=SU()), it is
easy to see that T cannot be maximal torus in SU(W)cSU(V) for any other subspace W
of V than C’. By the conditions of the lemma it is now clear that F(G% X)=F(T;X)=Z,,
similarly F(SU(V), X)=F(T'; X)=Z,. By the dimension restriction k=n/2 the generators
of H*(X,Z) are transgressive in the Serre spectral sequence of the fibre bundle
Xr—By. From the existence of fixed points it follows that the transgressions of those
generators are all zero, and Z, is again of the integral cohomology of a product of n—k
odd spheres. In particular it is connected, similarly for Z,. Now K is in the normalizer
of G), hence K/GP=Z, acts on Z;=F(G?,X). Obviously T’ also acts on Z;=F(T;X)
with fixed point set Z,. By the known orbit structure around x and the choice of V it
follows that F(SU(V); X) has full dimension in F(Z,) locally around x € Z,cZ,. Hence
Z, must be a connected component of F(Z,;Z,). Since y€EF(Z,;Z,)\Z,, it follows
that F(Z,;Z,) has more than one connected component, hence dim H*(F(Z,; Z,); Z,)>
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dimH*(Zz,Z,,)=2”"‘=dimH*(Zl;Z,,), in contradiction to a well known theorem of
Borel.

Remark. The proof of Lemma 3 is essentially given in Theorem VII.2' of [H1]. The
argument may be applied to k-multiaxial actions in more general situations than the one
considered here.

Proof of Theorem 8. We reduce the first part of the theorem to Lemma 3 as
follows: Let H*=SU(m) be a connected isotropy subgroup of G=SU(n) of maximal
rank. Then (H°,=H°nG, for x€X. Let G*=SU(V) with dim V=I. If I=k, the orbit
G/G, is of full dimension in X, i.e. it is all of X, and G, must be connected. Thus we
may assume k<I<m. Then H°nG=SUm)NSUV)=SU((C™*+V+)*); hence
(HY’=H°nG=SU(W) with dim W=n—(n—m+n—D=m+I—n=2k+2—n=2. It follows
that the action of H® on X satisfies the conditions of Lemma 3. It is then sufficient to
prove that if G, is disconnected for some y€X, then some isotropy subgroup of the
HP-action is also disconnected. Let now G, be disconnected and let ey, ..., e, be the
standard basis of C"=L(ey, ..., e,); i.e. H*=SU(L(ey, ..., ¢,)). By conjugation we may
assume that G§’=SU(L(e,,_,+1,...,e,,)), with I>k. Since G, normalizes G}, we have
G,cS(U(L(ey, ..., e, )X UL ep—141,...,€,)). Let g=(g1,g2) be in Gy—G;,’ with
g1€UL(ey,...,e,—), £2€UWL(ep—it1,...,€,), and let g3 be defined by
gile,—ir)=(detgr) e,_111, g3(e)=e; for n—Il+1<i<n. Then (1,g3g§‘)EG§’, hence
(21,83)€G,~G’. Since n—Il+1<n—k<n2<m, we also have (g,,g;)€H"=
SU(L(ey, ..., em)). So (g1,83) EH;, but (g1,g3) & (HY°cGP, hence HP is disconnected
in contradiction to Lemma 3. This finishes the proof of the first part of Theorem 8.

Our next observation is that X is a multiaxial (regular) SU(n)-manifold. The only
additional requirement to check is that the slice representation of an isotropy subgroup
SU()) is always a multiple of the standard representation modulo trivial representa-
tions. This is obvious for k=2, since, for the non-transitive case, the principal isotropy
subgroup of the slice representation would then again be of the type SU(r) with r=3.
The case (n,k)=(2,1) has either trivial or transitive G-action. For a multiaxial G-
manifold it is known that the orbit space X/G is a topological manifold with boundary
(modelled on the space of positive semi-definite Hermitian matrices, and not in general
a differentiable manifold with boundary [D]). Let SU(r) be a principal isotropy sub-
group. If r=k, the action is transitive, and Theorem 8 is trivial. If r>k, we have:
dim X/G=dim X—dim SU(n)/SU(r)=r*—k*. Let 7: X—X/G be the orbit projection, then
the singular orbits project down to the boundary points of X/G. The fibers of n are
of the type SUn)/SU()) with I=r; hence H'(z '(¥);Z)=0 for i=1,...,2r for all
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YEX/G. From the Vietoris—Begle mapping theorem it now follows that
a*: H/(X/G; Z)—H/(X;Z) is an isomorphism for 0<j<2r. Choose cohomology classes
%241 EHY*YXIG;Z) such that x,,,=n*(%y.,) form part of the generators of
H*X;Z), ksj<r—1. Then a*(X3;+1VU...UX3_1)=X2¢41U...UXs,_; iS non-zero in
H'F (X;Z); hence 0+%,,,,U...U%,,_, in H ¥ (X/G;Z). Then the cohomology group of
X/G is non-zero in the top dimension; hence the boundary of X/G must be empty, and
there are no singular orbits.

Remark. Let X=8*""x...xS§* 'xSU(n)/SU(r) and let G=SU(n) act by left trans-
lations on the last factor and trivially on the others. This example shows that any orbit
type SUn)/SU(r) with k<<r<n can occur in Theorem 8.

4. Cohomology operations and the reduction to linear action

In this section we let G=SU(n) act smoothly on X=W, =SU(n)/SU(k) with
ni2<k<n—1. Applying Theorem 6, its corollary, and Theorem 8 it follows that there is
only one orbit type SU(n)/SU(r); with k<r<n. It is then clear that the only unsettled
part of Theorem 1 is to prove that for X=W, , this is only possible with r=k or r=n,
i.e. the transitive or the trivial actions, respectively. In view of the last remark of
Section 3, it is obvious that this can be proved only by applying more subtle topological
methods which detect the difference between X and $%**'x...x 5!, The most obvi-
ous example of such cohomology operators are Steenrod squares, which distinguish
those spaces for k<n—1. It is therefore interesting to observe how much information
Steenrod squares yield for the G-space X; we prove that they can always be applied to
eliminate the orbit type SU(n)/SU(r) with k+1<r<n—1. The method has been used in
[HS] for the study of a related problem. Although this result can be somewhat
strengthened by applying reduced p-powers, the elimination of the remaining limit
cases SU(n)/SU(r) with r=k+1 or n—1 in general requires the deeper knowledge on the
fibre homotopy type of Stiefel manifolds obtained by secondary cohomology oper-
ations.

Let Z7=0(1)X...xO(1)cO(n) be the standard maximal 2-torus of O(n); the in-
clusions Z7cO(n)cU(n) induce standard fibrations of classifying spaces:
BZ;-—>BO(,,) and B, —By,, and induced homomorphsims: H*(By; Z,)—H*(B,; Z,)

—H*B,,;Z,)=1,[t,,...,1,], where r,€ H'(B,;Z,) may be identified with the Z,-
2

ny
ZZ

linear functional on Z] defined by the ith coordinate. Then H*(BO(n);Z,)=
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Z)(w,, ...,w,], where the ith universal Stiefel-Whitney class w; is identified with the
ith symmetric polynomial o(f,...,t,), and H*B,,; Z,)=Z,[c,,...,c,] Where
c;=w;=0{1, ..., 1) (mod 2). It follows that H*(Bgy; Z)=Z,[Cy, C3, ..., C,].

PROPOSITION 6. (a) The Steenrod square operations in H*(Bgy,; Z,) are given by
Sq2i+‘cj=0 fori,jand

. S (j—ita—1 L
qu’cj= 2 (J B ) Cimg Cjsa JOrisj.
a=0

(b) H*(X; ZZ)E/\ZZ(kaH,...,xz,,_,) with degx;=i, and
qui(x2j+1) = (i) Xpjprain Jori<j, jHisn-1,

and zero otherwise. Here (J> is the mod 2 binomial coefficient, and Xy, y, ..., X5, IS G
i

simple, universally transgressive systein of generators for H*(X;Z,).

The formula in (a) follows from the Cartan formula for Steenrod squares and a
computation of certain symmetric functions, this is done in [B3] for the real case
Bsowy; the same type of computation works here. The transgression maps a universal-
ly transgressive generator of dimension 2/+1 into H2**(By,,, Z,)/D***=0"*?, where
D**? is the subspace generated by decomposable elements in H2**(Bgy,; Z,). Steen-
rod squares take decomposable elements into decomposable elements, so there are
well defined ‘‘Steenrod squres’ Sq': 0**2—>Q**?*i and in this sense transgression
commutes with Steenrod squares. With this observation it is then easy to see that only
one entry from the sum in (a) survives modulo decomposable elements to give (b).

Let m: X—X/G be the orbit projection. It follows from the proof of Theorem 8 that
a*: H(X/G; Z,)—»H/(X;Z,) is an isomorphism for 0<j<r. Let Xy41,...,%2—; be in
H*(X/G; Z,) with 7*(x)=x; for j=2k+1, 2k+3,...,2r—1.

THEOREM 9. When G=SU(n) acts smoothly on X=SU(n)/SU(k) with k>n/2, the
orbit type SUn)/SU(r) with k+1<r<n-—1 cannot occur.

Proof. Assume that the orbit type is SUMn)YSU(r) with k+1<r<n—1. By
Proposition 6 we have Sg’x,_,=(r—1)x,,.,, S¢*%,,_,=1(r—1)(r—2)x,,,3, Sq'x,,_,=
Wr=2)(r—3)x,,,,. If r is even, r—1=%0 (mod2), if r=4j+1, }(r—2)(r—3)#+0 mod 2, and’
if r=4j+3, 1(r—1)(r—2)#0 mod2. Hence Sq*(X,_,)=%y.;» Sq*(%,,_))=%,,,,, or
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Sq*(%,,_)=%,,,, for those cases respectively, where 7*(%,,,,)=x,,., OF T*(X,, ))=x, 5.

Since ¥ (X, UXy 3 U... URy, UKy, ) =X UXy 3 U UX,y,_ UX,y,,; Which is non-zero

in H~¥sricy, Z,) with i=1 or 3, respectively, we have H" ~**7*i(X/G;Z,)%0 for i=1
or 3, contradicting dim X/G=r*—k>. Q.E.D.

Remark. 1t is furthermore clear that for k odd, we have Sq¢*(Xzxi1)=X2x+3
(mod 2), hence r=k+1 is not possible in this case by the same argument; similarly, for n
odd, S¢*(x2,—3)=Xs,_; so r=n—1 is impossible. By applying reduced p-powers,
better results are available. For example, from the computations in [BS] one can
deduce for the reduced 3-power that Pi(x,,,)=tk+3)x,, ;. Combining this with the

above results for Sq*(x2x41) and Sq*(xxx+1), it follows easily that for k<n—2, r=k+1
is impossible unless k is divisible by 12, similarly, r=n—1 is impossible unless n is
divisible by 12. This is analogous to the situation for the section problem for complex
Stiefel manifolds before higher cohomology operations were introduced into this prob-
lem (see [BS], where the same divisibility condition by 12 appears). Although such
operations have not had significant applications to transformation group theory so far,
it is reasonable to expect them to play a decisive role for settling certain types of
problems. Here we apply the stronger results on fibre homotopy types of Stiefel
manifolds which can thus be obtained to finally settle the remaining part of Theorem 1
for the general case.

PROPOSITION 7. Let 7 be the orbit fibration from X to X/G with fibre F=SU(n)/
SU(r), ksr<n. Then X/G is homotopy equivalent to SU(r)/SU(k).

Proof. In the spectral sequence of 7 we have again that all generators of H*(F;Z)
are transgressive for dimension reasons. It follows easily that all transgressions are
zero, and consequently that E,=E., and H*(X; Z)=H*(X/G; Z)® H*(F; Z) as a module;
hence H*(X/G;Z)=Az(X2¢+1, ..., %2,—1). From the homotopy sequence of x it follows
that X/G is simply connected. Consider the inclusion i: K=SU(r)/SU(k)—SU(n)/
SUK)=X. Then y,; . =i*(Xy44j-), j=1,...,r—k form a system of generators for
H*(K;Z), with (o i))* (X4, - )=Yyu+y-; forj=1,...,r—k. Hence the map noi induces
an isomorphism in cohomology and is a homotopy equivalence by the Whitehead
theorem. Q.E.D.

THEOREM 10. When G=SU(n) acts smoothly on X=SU(n)/SU(k) with k>n/2, the
orbit type SU(n)/SU(r) with r=k+1 or r=n—1 cannot occur.
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Proof. Let i be the inclusion of the fibre F=SU(n)/SU(r) in the orbit fibra-
tion m:X—X/G. We now compare this with the standard fibration p: X=SU(n)/
SUk)—SUn)/SU(r)=Y with fibre P=SU(r)/SU(k). We have the commutative square:

x 2P yxx/c

oo e
X/IG > XIG

where id is the identity map and p, is projection on the second factor. Now (p, ) is a
fibre map from the orbit fibration to the trivial fibration p,. Let zz,+1,...,22,—1 be a
simple system of universally transgressive generators for H*(Y;Z) with
P*@y44j-1)=Xs4j-1> J=1, ..., (n—r). Then it follows from the proof of Proposition 7 that
({9P)*(Zy,1j-1)=Y24+j-1» (iop) is an isomorphism in cohomology and a homotopy
equivalence by the Whitehead theorem. Hence the restriction of (p, ) to a fibre is a
homotopy equivalence, and by a theorem of Dold ([Dol), (p,n) is a fibre homotopy
equivalence from 7 to p,. In particular X=SU(n)/SU(k) is homotopy equivalent to
SU)/SU@F)xSU®)/SU(k), i.e. the standard fibration p is decomposable. For r=n—1
we have Y=52""1 and for r=k+1 we have P=S5%*1; j.e. the base space or the fibre is
a sphere. By Corollaries 4.5 and 4.8 in {J], it would then follow that the standard
fibration p of X would be fibre homotopically trivial, which is known to be false (e.g.
[71, p. 154). Q.E.D.

By Theorem 9 and 10 together with the results of the earlier sections, it follows
that if G=SU(n) acts smoothly on X=8SU(n)/SU(k) with k>n/2, there is one orbit type
SUn)/SU(r) with r=Fk or n, corresponding to the linear or the trivial action respective-
ly. This completes the proof of our main Theorem 1.
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