
V E C T O R  FIELDS WITH FINITE SINGULARITIES 

BY 

M. F. ATIYAH and J. L. DUPONT 

Institute for Advanced Study, Princeton, N.J. and University of Aarhus, Denmark 

I. Introduction 

In  this paper we give some generalizations of the famous theorem of H. Hopf which 

states that  the number of singularities of a tangent vector field on a compact smooth 

manifold is equal to the Euler characteristic. Instead of a single vector field we consider 

r vector fields u 1 . . . . .  uT and we are interested in their "singularit ies",  that  is, the set 

of points on the manifold at  which they become linearly dependent. In  general ~ will 

have dimension r - l ,  it is a cycle(i) and its homology class is the ( n - r + l ) t h  Stiefel- 

Whitney class of the manifold. This is the standard primary obstruction theory and it 

provides one way of generalizing the classical Hopf Theorem. However, this theory says 

nothing about 2 if dim ~ < r - 1 .  In  this paper following E. Thomas [20] we shall ge- 

nerahze the Hopf theorem by considering the other extreme case in which ~ is finite, so 

that  dim Z = 0. General homotopy theory tells us that  we are now involved in higher 

order obstruction theory and that  the situation is much more complicated, as we shall 

now explain. 

:For each point A e Z we have a local obstruction (~) 

04 (u~ . . . . .  u.) e ~,~_~(Vn..) 

where Vn. r = SO(n)/SO(n - r) is the Stiefel manifold of orthogonal r-frames in R n. In local 

coordinates {x i ..... xn) with origin A, Oa is just the homotopy class of the map of a small 

sphere Y~ x~ = ~ into (s) W~. r = GL(n, R)/GL(n - r, It) given by x ~-> ~h(x) . . . . .  ur(x). The 

vanishing of 04 is the necessary and sufficient condition that  we can deform ~tl . . . . .  u, 

(I) W i t h  in teger  or rood 2 eoeffieien~s depend ing  on the  pa r i t y  of r.  
(~) Thomas  calls OA t he  index  at  A.  Since our  m e t h o d s  involve using the  index  t heo ry  of 

elliptic opera tors  we prefer  a d i f f e ren t  terminology.  
(~) As is wel l -known Vn., -"> Wn. r is a h o m o t o p y  equivalence (equivalent ly  every  r - f rame can  

be na tu ra l ly  orthogonalized).  

1 - 722908. Acta mathematiea 128. Imprim$ le 20 D~cembre 1971. 
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near A (remaining fixed outside a ball of radius e) so tha t  this singularity disappears. 

OA is independent of the choice of coordinates but  does depend on the orientation. (i) 

Hence for an oriented manifold we can form the global obstruction E, OA~(ui . . . .  , ur)E 
~n-l(Vn.,) where we sum over all the s:ngular points A,. For r=l ,  Zn_l(Vn.~)= 
~._1(S ~-i) ~ Z, the local obstruction is an integer the multiplicity of the singularity. In  

this case, because the obstruction is pr imary we know tha t  

(a) the global obstruction is independent of the vector field u, 

(b) the vanishing of the global obstruction is the necessary and sufficient condition for 

the existence of a vector field without singularities. 

Moreover, the Hopf  theorem identifies this global obstruction with the Euler characteris- 

tic. In  the general case (for r >  1) the obstruction is not primary,  so tha t  (a) and (b) need 

not  hold. A general theorem of Hopf  type, identifying the global obstruction, is therefore 

not  to be expected. Instead, what  we shall do is to define certain homomorphic images 

O~n-i (Vn. r) of the hom~topy groups zn-1 (Vn. r) and then identify the sum •i 00A~ (ui . . . . .  ur) 

with a global invariant  of the manifold. In  particular this will show tha t  the image under 

0 of the global obstruction is independent of the vector fields u I . . . . .  u~. Of course, such 

a result is only of genuine interest if 0 is sufficiently non-trivial. In  fact, it will turn  out 

tha t  0 is an isomorphism for r ~< 3 ~< n - r and is a projection onto a large direct factor for 

n divisible by  a suitable power of 2 (depending on r). Moreover, there is some indication 

tha t  our results are best possible in the sense tha t  0~n-1 (Vn. T) m a y  be the largest homo- 

morphic image in which the global obstruction becomes independent of the vector fields. 

The global invariants of manifolds which occur in our generalized Hopf  theorems 

are all simple combinations of the Euler characteristic E, the I-Iirzebruch signature S and 

the (real) Kervaire semi-characteristic(~) R. Now E and S are indices of certain elliptic 

differential operators on the manifold and R is a "mod 2 index" of a certain skew-adjoint 

elliptic operator. This analytical interpretation of E, S, R was used in [5] to prove weak 

theorems of Hopf  type, namely tha t  the existence of r vector fields without singularities 
implies the vanishing of certain global invariants of the manifold. In  the present paper  

we essentially refine the methods of [5] to derive the corresponding strong theorems 

(allowing finite singularities). 

The basic idea, explained already in [5; w 5], is to pass from elliptic operators to their 

symbols which are elements of certain K-groups. The index theorem, in its various forms, 

(I) Reversing the orientation replaces OA by - ~  OA where ~: is the involution induced on the 
homotopy groups of l/n, r by the outer automorphism of GO(n). 

(2) Defined as ~ r  dimRH~P(X; R) rood 2, for dim X--- 1 rood 4. 
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asserts tha t  the analytical index (E, S or R) can be computed purely in terms of K- 

theory from these symbols. Roughly speaking, we can say that  these symbols are certain 

K-theory characteristic classes and that  their indices E, S, R are the corresponding K- 

theory characteristic numbers. The existence of r vector fields without singularities im- 

plies divisibility by some 2 ~ for the symbols of our operators and hence for their indices-- 

this gives the weak theorems of [5]. If  the r vector fields have finite singularities (At} 

then our symbols are only divisible by 2" outside the Al and so we may expect to get re- 

lative K-theory characteristic classes modulo 2" for the pair (X, X - LltA~) N Zi (X, X - A~). 

Then for each i we will get a local characteristic number modulo 2". On the one hand 

this is some function of the local obstruction. On the other hand it is clear that  the sum 

of these local numbers modulo 2 ~ will equal the global index modulo 2 ~ of our original 

operator. This will then give the Hopf type theorem we want. 

The preceding heuristic discussion would suggest that  we introduce K-theory with 

coefficients in the integers mod 2" by using a Moore space. In  fact, there is a more nat- 

ural choice of coefficient theory which gives better results and that  is to consider the 

functors KR*(X • P~, X • P,) where Pk is real projective k-space, and k, 1 are appropriate 

integers. More precisely, writing n in the form 4 k -  s we shall define homomorphisms 

0~: Z~n-l( V,, r) --> KRs(Pr+s-1, Ps-1). 

The groups A s =Ktls(Pr+s_l, Ps-1) are all tabulated in w 3 and, as we have already indi- 

cated, 0 s will be an isomorphism for r ~< 3 ~< n -  r. Moreover, we shall define homomor- 

phisms 7~ : B8 -~ A~ where B ~ = Z (9 Z, B 1 = 0, B ~ = Z, B 8 = Z~. With this notation our main 

theorem reads as follows: 

THEOREI~ 1.1. Let X be a compact oriented smooth mani]old o/dimension n =  4 k -  s, 

and let ul . . . . .  ur be r tangent vector fields with finite singularities (At}. Then 

O" O ~,(ul . . . . .  u,) = 9'~ (b'CX) ) 
| 

where bs(X) E B ~ is defined as ]ollows : 

b ~ = E ~) �89 ( E  - ( - 1 ) k S )  

b 1= 0 

b " = � 8 9  

b a= R 

where E, S, R are respectively the Euler characteristic, the Hirzebruch signature and the (real) 

Kervaire semi-characteristic o / X .  
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This theorem includes, as special cases, many  results obtained in this direction by  

E. Thomas and D. Frank.  For a full survey of the subject we refer to the expository ar- 

ticle [20] by  Thomas. The paper  [5] can also be read as an introduction to  our present 

more detailed work. 

An interesting fact about  the homomorphism 0 ~ is tha t  it is essentially the same as 

the  Hurewicz homomorphism ~ . -~  KR, for the homology functor KR.. This will be estab- 

lished in the final section of the paper. Although we shall not  use this fact anywhere, it 

does provide a further justification for our choice of coefficient theory. 

The proof of Theorem (1.1) occupies the next  three sections. In  32 we construct our 

basic relative characteristic classes and end up with the abstract  K- theory  version of 

Theorem (1.1). Tha t  is to say, the equation holds in the (uncomputed) group A~= 
KRs(P,+~-I, P~-I) and the global invariant  b~(X) is also not  explicitly computed. These 

computations are carried out in sections 3 and 4. In  33 we compute all the groups A~ 

using an elegant result of G. Segal. In  34 we relate our characteristic classes with symbols 

of explicit operators and then apply the index theorem to derive the identification of 

b ~ (X) given in Theorem (1.1). 

In  35 we s tudy the local homomorphism 0 ~ for particular values of n, r and prove 

the non-triviality s tatements  referred to earlier. In  particular, for low values of r, this 

makes Theorem (1.1) quite explicit and these cases are then tabulated. 

Sections 6 and 7 are devoted to various extensions and refinements of Theorem (1,1) 

in the two specially interesting dimensions 4k, 4k + 1. In  each ease we derive a formula 

for a field of oriented 2-planes with finite singularities, the method of proof being essen- 

tially as in (1.1). In  dimension 4b, for r vector fields with r divisible by  4 there is an 

extra power of 2 which provides a strengthened variant  of (1.1). In  dimension 4 b +  1 we 

also consider, for the first time, non-orientable manifolds. We show that ,  if w~ = 0, there 

is an analogue of Theorem (1:1) involving a semi-characteristic based on cohomology with 

coefficients iu a local coefficient system. Finally, we show in 36, how Theorem (1.1) can 

be used to define an interesting invariant  for vector fields without singularities on 

(4 ]c - 1)-manifolds. 

2. The basic construction 

All K- theory  of locally compact spaces is K- theory  with compact support  in the sense 

of [9]. We recall tha t  an element in K(X) for X locally compact is given by  a complex 

of vector bundles 

0 * E ~ ~~ E 1 d~ . . . . . . .  E '~ , 0 (2.1) 
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which is exact outside a set U ~ X such that  the closure U is compact. If  A c X such 

that  A ~ X -  U then (2.1) gives an element in K ( X -  A ) =  K ( X ,  A) .  

Now consider a double complex (D~.J}~.<~,.j<==, of vectorhundles with differentials 

d~r D ~.~ -~ D ~+~'j and d~: D ~.~ -~ D ~'j+~. Suppose that  (D *j, d~ j) is exact outside U o ~ X  and 

that  (D ~*, d~*) is exact outside U1 for every i and j. Let  A ~ X - U o and B ~ X - U1, and 

consider the ~otal complex (E ~, d ~) where E ~ = ~ t + ~  D ~ and d ~ is given by  the formula 

d~ x = d~J x + ( - 1)~ d~'J x for x e D fj. 

This complex is exact outside U = U 0 ~ U~, so if U0 ~ U-1 is  compact, we get an element 

i n K ( X  - ( A  U B)) = K ( X ,  A U B) .  

In particular a commutative square 

~.o 
Do, o ; Dl.o 

d~ ~ I el, o 
o,~. ~,~ ~ D~,~ 

(2.2) 

where d~are  isomorphisms outside Uo and d~ are isomorphisms outside U 1, gives an ele- 

ment  in K ( X -  (A U B)) provided Uo N U1 is compact. In  fact, the square (2.2) is equiva- 

lent to the complex 

0 , 1) 0.0 - ~ * D~ ~ # , D 1.1 , 0 (2,3) 

where ~=  d~176 do ~176 and/~ = do ~  dl '~ This in turn is equivalent to the triple 

( DO.(} (~ D I ' I '  D 0 ' I  G D I ' ~  7 )  ' 

where 7 is given by the matrix 

d~176 (d~'l)* ~ (2.4) 
doo.o _ ( d l . O ) ,  / " 

Our basic construction depends on a certain square like (2.2) which arises in the fol- 

lowing way. Consider the real vectorspace V = R ~", and let 

2n 
A*(V) = Y A~(V)| 

p~0 

be the total complex exterior vectorspace, but  with the Cli/]ord multiplication (see 

[5, w 2]). If v E A*(V), Lv and Rv denote left- and right-multiplication by  v respectively. The 

endomorphism ~ = (s) L~, where o~ = el . . .  e~n is the volume element, satisfies z~ = 1. Let  
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A* and A*  denote the  eigenspaces of T. Over the  tangent  space T R  un = R un (~ R un consider 

the square with trivial vectorbundles:  

~ i  v 
A~Y' ' A ~ 

l 
A~dd iLv , Ae/ 

(2.5) 

Over a point  (u, v), with u in the  base and v in the  fibre of TR u'~, the  vertical maps  

in (2.5) are Ru and the horizontal  maps  are iL,. In  this way  we obtain  an element in 

K ( T R  u~) = K 4~ (point), and we shall now show t h a t  i t  is the  canonical generator.  F r o m  

(2.3) and (2.4) it follows tha t  the element is given by  the triple 

(aev ~ aev a o d d  ~ ~ o d d  I~+ ~)li_,l~+ ~)li_ ,~) 

where ~ is given over a point  (u, v) b y  the  mat r ix  

iLv 
,26, 

Thus the  element is defined by  the Clifford module A* for Cliff (R2n@R2n), where the  

action A ev -~ A ~ is given by  (2.6) and the act ion A ~ -~ A ev is given by  the conjugate  

matrix.  I t  is easily verified t h a t  this is a + 1-module in the sense of [6], and hence our  

element is the canonical  generator  of K(C2n). 

I f  n = 2/0 is even then  A *  are Real  vectorspaces, i.e. invar iant  under  conjugation,  

so if we give T R  4k the  ant ipodal  involution along the fibres, the square (2.5) gives rise 

natura l ly  to an element in KR(TR4k). 
The square (2.5) will be the basis of our general construct ion of characteristic classes 

or symbols.  I t s  par t icular  form is mo t iva t ed  by  consideration of the  elliptic operators 

occurring on R 2~. I n  fact,  the horizontal  rows are the  symbols of two basic elliptic opera- 

tors on R 2n (see w 4) and  the vertical arrows define an  isomorphism between these two 

operators outside the  origin. This background m a y  help to  explain the  lack of s y m m e t r y  

between the  role of u and v components  in (2.5). 

We now proceed to  consider the  global analogue of the  local square (2.5). Le t  E 

denote an arb i t rary  real  oriented vectorbundle  of dimension 4k over a compact  space X,  

and suppose we have r sections {u 1 . . . . .  ur} of E which are l inearly independent  o v e r a  

closed set Y c X. ~ Giving E a Riemannian  metric,  we can assume tha t  the  sections are 
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actual ly  or thonormal  over Y, and this is sometimes convenient,  bu t  for the  momen t  we 

need no t  make  this assumption.  

Le t  iE denote  the  Real  space E (in the  sense of [3]) with ant ipodal  involution on 

the  fibres. Using the metric we can form the Real  bundles A*(E) ,  which we pull back  

over the  Real  space iE • Pr-1, where Pr-1 is (r - 1)-dimensional projective space wi th  

trivial involution. 

Now consider a point  (v ,x )EE •  ~-1, where v is in the  fibre over  y E X ,  and  pu t  

x(y) = ~=,Lxt%(y). Again using Ieft and r ight  CIifford-muItiplieation, we can consider the  

square 

A?V(E ) iL,, ,AOad(E ) 

Rx(v~ ] R~:(y) (2.7) 

A?dd(E) iLv ,A~V(E ) 

This defines a square of Real  vectorbundles and homomorphisms over iE • S r-1. Clearly 

the maps  are Z2-equivariant with respect to  the ant ipodal  involution on S r-1 and the  ac- 

t ion on the bundles, defined by  the  trivial act ion on the  upper  row and  multiplication 

by  ( -  1) o n t h e  lower. Hence over iE • P,.-1 we have the square 

Ae~(E) iL, , AOdd(E ) 

R~(~] 1 R~c~ (2.8) 
A~dd(E) | H i L ,  Ae_~(E ) | H 

where (1) H denotes the Hopf  bundle over Pr-1- The horizontal  maps  are isomorphisms 

over (E - X) • Pr-t  and the  vertical maps  are isomorphisms over (E I Y) • Pr-1. Hence we 

obtain  an element 
~ (ul . . . . .  ur) E KR( ( iE IX  -- Y) • Pr-1)" (2.9) 

I f  fur thermore (u 1 . . . . .  us) are l inearly independent  over the whole of X, then the  

vertical maps  of (2.8) are isomorphisms over E • P~-x U (E I Y) • Pr-1, and thus  the  square 

defines an element in K R ( ( i E ] X -  Y) • (Pr-1-  P~-I)). 

When  the dimension n of E is no t  divisible by  4 we form the  bundle F = E | R s where 

n + s = 4/c. Then F has r + s sections (u_s+ 1 . . . . .  u0, ul . . . . .  ur}, where the first s are line- 

ar ly  independent  over X. Hence if (u  1 . . . . .  ur) are l inearly independent  over Y, then the  

above construct ion yields an element 

(1) When necessary we write H r to distinguish between the Hopf bundles over different pro- 
jective spaces. 
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g~ (U 1 . . . . .  Ur) E K R ( ( i F [ X  - Y)  x (Pr+s-, - Ps-x)) 

II (2.10) 

This element is our basic characteristic class in its mos t  general form. We shall now 

specialize i t  to  define global and  local invar iants  as required for the  general Hopf  theorem. 

I f  X is a 4k - 8 dimensional oriented compact  manifold with boundary  Y and E = T X ,  

the  tangent  bundle of X ,  then  we shah write 

o~Sz(u, . . . . .  u,) = ~ , x  (u 1 . . . .  , ur). (2.11) 

This element lies in K R q ( i T X I X -  Y)  • ( P , + s - , - P s - O ) .  Taking the  index in the  sense 

of [9] we get  an element 

ind ~ (u~ . . . . .  u,) E K R  ~ (P,+~-a, Ps- , ) .  (2.12) 

I n  particular,  if Y = O so t h a t  X is closed, (2.12) defines a global invariant for the manifold:  

ind ~x., E KR~(P,+~_,, P~-I). (2.13) 

Notice t h a t  for Y = O the  elements in (2.11) and  (2.13) are restrictions of elements in(a) 

K R  ~ ( i T X  • (P~ - Ps_,)) and  K R  ~ (P~,  P~_,) respectively. I n  fact,  we can take  r arbi t rar i ly  

large when Y = O. 

Passing now to  the  local s i tuat ion le$ X = B q, the uni t  ball in R q, and Y = S q-1 the  

un i t  sphere. P u t  n = 4 k - s  and let V,.,  denote the  Stiefel manifold of r-frames in R L  

Take E to be the  trivial n-dimensional bundle  over X ,  a n d  let uE ~q-a(V~.~) be given by  

the  f rame u = {ul . . . . .  u,}. Then the  construct ion (2.10) gives an d e m e n t  

O ~ (u) = o~h , , (%. . . ,  u,)  
which lies in 

K R S ( i R  '~ • (B q -  S '~-~) x (Pt+s-, - P~-,)) = KR4Z~'q(Pr+s-,, Ps-O. 

Using the  periodicity map,  this last  group is KR4k-a(P,+s_ 1, P~-,). 

Thus we obtain  a map 

0~:~q_a(V,,,,) -+ KR4k-q(Pr+s_a, P~-a). (2.14) 

We shall show later t ha t  0 s is indeed a homomorphism.  Notice t h a t  for q = n, OS(u) 

can also be defined by(~) (2.12), thus  giving a map  

(1) For our purposes it is not necessary to worry about the different definitions o f / s  for in- 
finlte-dimensionaI spaces. We simply use the notation K(Poo) as shorthand for lim K(Pn). 

(~) We recall that the index for R n coincides with the periodicity map. 
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Os:~.-I(V..,) ~ KR~(Pr+,-1, P~-I). 

This is the local invariant  which enters in Theorem (1.1). 

(2.15) 

Remark. I t  is well-known (see [4]) tha t  a stunted projective space P~+8,, = Pr+~-a/P~-I 

Pr-~ of the bundle sHr over Pr-1. In  is natural ly homeomorphic to the Thorn complex sH 

fact, there is the natural  identification 

SH 
Ps-1  -~ Pr+s-I/Ps-1 

defined as follows. A point in 8/ /  over x = { x  I . . . . .  xr}EP,_ 1 is given by  8 functionals 

~1 . . . . .  ~0 s on the line spanned by  x. Hence the coordinates {x I . . . . .  xr, ~l(X) . . . . .  ~0Jx)} de- 

fine a point in Pr+8-1- The map 

8H r ---> Pr+s_l- Ps_l 

thus defined clearly extends to the required homeomorphism. 

The ' element (2.10) thus lies in the group KRs(( iEIX - Y) x sHr). 

Note the following important  properties of the characteristic class (2.10). 

Naturality. I f  ]: (X', Y') -~ (X, Y) is a continuous function, then 

]* ~ (u~ . . . . .  u,) = ~ . ~ ( l *  u~ . . . . .  l ' u , )  ( 2 . 1 6 )  

where 7 : / * E I X ' -  Y'  ~ E I X -  Y is the obvious map.  In  particular, taking X=BSO(n) ,  

Y = JBSO(n- r) and E = E(n), the universal bundle over X we get a universal element (1) 

a~.r E KR~(MSO(n)/MSO(n - r) A Pr+s-1/-Ps-1) 

where MSO(n) denotes the Thorn complex of E(n). 

Multiplicativity. Let  E and E '  be vector bundles over X and X '  respectively, and 

let {u~ . . . . .  ur} and {u~ . . . . .  u~} be sections of E,  E ' ,  linearly independent over Y and Y' 

respectively. Then {u 1 + u~ . . . . .  ur + u~} are sections of E x E '  over X x X' ,  linearly inde- 

pendent over X x Y' U ]r x X'.  Furthermore,  

s+s. "u - ' u ,  + u ' )  . . .  ( 2 , 1 7 )  ~ . ~  ~ . u i  . . . .  , - -  ( H , ) " '  a ~  ( u ,  , u , ) a ~ , ( u ;  . . . . .  u ' )  

where the multiplication is carried out by  the composite map  

(1) We use /~ for reduced product. 
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KR~((iE]X - Y) • sHr)|  ' -  Y') • s'Hr) 

KR~+S'((iE • i E ' I ( X -  Y) • ( X ' -  Y')) • sHr • s'H~) 

KRS+~'((iE • i E ' [ ( X -  Y) • ( X ' -  Y')) • (s + s') H,). 

Here A* is induced by  the diagonal 

or equivalently by  the map 

sH s'H -+ Pr-1A Pr-1 

Pr+s+s,-1/Ps+s,=l "-> Pr+s_l/Ps-1 A Pr+s,_1/Ps,_1 

induced by  projecting R ~+s+s" = R r | R ~ | R s' onto the two subspaces R r | R ~ and R ~ | R ~'. 

The multiplication by  (H:) s:' is understood analogously. 

The proof of (2.17) follows from the mult ipl icat ivi ty of the exterior algebra. We omit  

the details, but  remark tha t  the factor (H~) ~" occurs as a consequence of the fact tha t  

the bundles 
( E |  s) • ( E ' |  and (E • E ' ) |  s+~' 

differ in orientation by  the sign ( - 1 )  ~s'. 
Consider the special case X = point, Y = •, E =  0 and s ~ 0  mod 4. Then 

2sU = ~)(0, O) E K~sI  P su �9 . .  ~ "* ( r - l /  (2.~8) 

is the Thom class of the Spin-bundle sH, = R~| 

To see this first observe tha t  the tensor product  of a Spin (4/)-bundle and any line 

bundle again has a natural  Spin-structure. In  fact, the isomorphism 

SO(41) • 0(1)  --~ SO(41) 

is covered by the isomorphism 

Spin (4l) • ~ Spin (4 l) 

where 0(1) = { • 1} acts on Spin (4l) by  left multiplication by  the volume element c0. In  

particular, for s = 41 we have an explicit Spin c (s, s) structure for the bundle iR s | R s | H r, 

and analogous to the discussion following (2.5) it  is easily verified tha t  our square defining 

a~(0 . . . . .  0) indeed gives the Them class as defined in [3]. Notice tha t  the natural  identi- 

fication 
s .  ~-P.~-I/Ps-I  P r - 1  
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induces a natural order of the s copies of Hr, and so in turn a natural Spin-structure 

on sH r. 

Periodicity. By the Thorn isomorphism theorem it  follows tha t  for s'---0 mod 4 

g R s ( ( i E I X -  Y ) •  sHr)", gRs+"(( iEIX - Y x (s +8')Hr) 

where the isomorphism is induced by  multiplication by  '%s'H. Furthermore,  according 

to (2.17) 
s+$ ' l  u . .  s ~ . . .  aE t I, . ,  Ur) = ~ (  l ,  ,Ur) ts'~z. (2 .19)  

I t  follows tha t  the element defined in {2.10) is essentially independent of the choice of s 

modulo 4. The same assertion is therefore also true for the invariants (2.11) - (2.15). 

Remark. One can get rid of the involution on E in (2.10) by the following trivial 

observation. The diagonal homomorphism 

A:O(n) -* O(n) xO(n)  ~ O(2n) 

actually maps into SO(2n), and the restriction of A to SO(n) has a unique lifting 

SO(n) ~ Spin(2n) 

which takes the identi ty to the identity. Hence, the double of any vectorbundle has 

a natural  orientation, and the double of any oriented veetorbundle has a naturM Spin- 

structure. So let V be any  oriented vectorbundle of dimension n over a space X. V is 

given the trivial involution and i V the antipodal. Then by  the Thorn isomorphism 

KRs( i V) ~_ K R  8+ ~ "( V | V | iV) ~- K O ~+ 2 "( V). 

Now tha t  we have defined our general characteristic class (2.10) it  is quite trivial to 

establish the following version of (I.1): 

T]~v, ORV,~[ 2.20. Let X be a closed oriented mani/old o/ dimension n = 4 k - s ,  and let 

{u 1 . . . .  , u~} be a set o~ vector fields, linearly independent except at the finite set o/points  

{A 1 . . . . .  Al}. Then in the group KR~(Pr+s_~) we have the/ormula/or  the global invariant 

l 

ind s ~x , = ~ 0 80A,(u~ . . . . .  u,) 
i = l  

where O A (Ul . . . . .  U~) E ~ , - l (  Vn. ~r) is the local obstruction to extending the vector/ields. 
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Proo/. Around every point A s consider a disk B ~  X and let Si be the bounding 

sphere. By assumption the vector fields are linearly independent over ]z = X -  ([J ~-1Bi), 

and we consider 

a~(u~ . . . . .  ur) E KR*((iTX, iTXI Y) • (Pr+,-~, P,-1))- 

Now we have the commutat ive diagram 

KRs((iTX, iTX] Y) • (Pt+s-1, P,-1)) J* , KR*(iTX x (Pr+,-l, P,-I)) 

1 

| KR~((iTB~, (iTB~IS~)) x (Pr+~-l, P.-1)) ~----~ KR~(Pr§ Ps-1) 
i - 1  

and clearly ~* a~ (U 1, . . . ,  ur) = a~x.r. Also, as remarked earlier, the index of the restriction 

of a~ (u l , . . . ,  ur) to B~ is exactly 08(OA~(Ul . . . .  U,)). The formula follows. 

3. Calculation of  the groups A~ 

In  this section we shall tabulate  the groups A~ =KRS(P,+s_I, Ps'l). They can be 

calculated by  various methods but  the most  convenient way is probably to use a result 

of G. Segal and some associated exact sequences. We shall explain these sequences but  

the actual details of the computations will be omitted. 

Let  Cr denote the Clifford algebra of R r with the quadratic form - (x~ + . . .  + x~). 

Clifford algebras are discussed in detail in [6J, where they  are listed in Table 2. I t  is seen 

tha t  they  are matr ix  algebras, or the sum of two copies of a matr ix  algebra, over R, C 

or H. For any  compact space X let M,(X) denote the Grothendieck group of bundles of 

Z2-graded Cr-modules over X, and M~*(- ) is the corresponding cohomology theory. In  

fact M* is either real, complex or quaternionic K- theory  (or a direct sum of 2 copies of 

those). Mr(X) can be defined for Real spaces if we require the Cr-module structure to 

commute with the anti-linear involution on the Real bundles. 

Now let G be the multiplicative group consisting of +_ 1. There is a natural  map 

Mr(X) ~ KRa(X x R r) (3.2) 

where KRa (X • R r) is equivariant Real K- theory  of X • R r with G acting on R r by  mul- 

tiplication. In  fact  if ~' = (F ~ F 1) is a Z2-graded Cr-module, then Clifford multiplication 

by  v E R r defines a homomorphism q: p,•0 _~ p*lVx where p : X x R r -~ X is the projection. 

The triple (p*F ~ p*_F 1, q~) defines an element in KRa (X x Rr). 
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T ~ E O R E ~  3.3. (G. Segal). T h e  m a p  

M * ( X )  ~ K R *  ( X  • Rt), 

de / ined  as  above, is  a n  i s o m o r p h i s m .  

This theorem m a y  be proved by  induct ion on r using the five lemma for two exact  

sequences. The first is the exact  sequence in KRa- theory  for the  pair  (X • R t • I ,  X • 

R ~ • I )  where again G acts by  multiplication on R ~ • I :  

. . .  ~ K R ~ ( X •  R ~+1) -~ K R ~ ( X •  t t  ~) -~ K R ~ - ' ( X )  ~ . . . .  (3.4) 

The second sequence is established using the  classifying spaces of Fredholm operators in 

Hi lber t  space as discussed in [8]: 

. . .  ~ M ~ §  ~ M ~ ( X )  ~ K R ~ - r ( X )  -+ . . . .  (3.5) 

As an application, the  exact  sequence in KRa- theory  for the triple (X • B ~ • B s, 

X x (B t x / ~ ) ' ,  X x B r x S ~-i) gives the  following exact  sequence: 

. . .  ---). M~+~(X) ~ M ~ ( X )  -,,. K R ~ ( X  x (P t+~_~-P~_x) )  ~ . . . .  (3.6) 

I n  part icular  for X = p t  we get  the  exact  sequence 

... -+ M~+~(pt) -~ M~(pt) -~ KR'(P ,+~_~,P~_x)  ~ . . .  (3.7) 

8 8 from which we can calculate A r -  K R  (P~+s-1, P8-1). We jus t  have to do this for s = 0, 

1, 2 and 3. The result  is the  following. 

s = 0: Ar ~ = K - R ( P r - 1 ) =  Z @ Za~, where at is a power of 2, namely  the  least integer n 

such t h a t  I t  ~ is a module for Cr-i. According to [6] at is given by  the  following table 

r 1 1 1 2 1 3 1 4 1 5 1 6  
atl 1 1 2 1 4 [  4 [ 8 1 8  

and at+ s = 16a t. 

s = 1 : A~ = K R I ( P t ,  Pc) is given by  the table 

r m o d 8  [ 1 [ 2 [ 3 [ 4 5 

-~ I z Jz~J z~oz~ Iz~ z 

8 = 2 : A~  = KRZ(P t+I ,  P I )  is given by  the  tables 

~ J l l  2 I 3 
A~ 

7 8 
8 8 

7 [ s  
010 

and for r > 3 
I z l  zQz~ I zoz~  
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s = 3 :  

r m o d 8  I 1 I 2 I 3 [ 4 [ 5 ] 6 I 7 [ 8 
Ay I z + z :  I z + z + . + z :  I z+z . I z I z I z I z I z 

[ i  2 r ~ 1 mod 4 
A~=KR3(P~+2, P~) = |  r ~ l  mod 4 r >  1 

r = l .  

Remark 3.8. KR(Pr_  0 has generators 1 and ( H -  1) for Z and Zar respectively. Hence 

the map KR(P~) ~ K R ( P , _  0 takes Z to Z and maps Za,+l onto Za.  

For s = 2  the map A~+l/Tor -+ A~/Tor is an isomorphism except for r = 2  where it 

is multiplication by  2. 

Finally for s = 3 the map Ar s -~ A s is the projection onto Z 2. 
8 _ _  Hence we get the following table for Aoo - KR~(Por P~-I) : 

s [ 0 1 1 1 2 1 3  

Here Z2 = lim Z~  is the group of 2-adic integers. Note ~ 2 that  A~-+ A1 is multiplication by 2. 
n 

Note that  the groups M~ (pt) are given by the table 

s I 0 [ 1 1 2 [ 3  
M (pt) I z + z  I o I z l  

Moreover, the map M~(pt) -~ A s arising in the sequence (3.7) is the identity for s # 0  

and for s = 0 it  is given by  

(a, b) ~ a - bH = ( a -  b) - b ( H -  1) (3.9) 

(note t ha t  ( H - 1 )  generates the 2-adic factor in A ~ =KR(Poo)) .  The groups M~(pt) will 

be essentially the B 8 groups of Theorem (1.1) and the natural composite homomorphism 

A s will be the y~ of (1.1). However, for s = 0 we will change the basis 

of Z @ Z  by the map (a,b) ~ ( ( a - b ) ,  - b )  so that  y ~ 1 7 4  ~ Z | 1 7 6  will be the 

identi ty on the first factor and the natural projection on the second factor. In other 

words B ~ is essentially the subgroup of A ~ = K R ( P ~ )  with given generators 1 and ( H -  1). 

Returning now to the (4 k - s)-manifold X of Theorem (2.20) we recall tha t  the global 

invariant ind aSx. r E A~ is actually the image of an element ind a~. ~ E AS. To complete the 

proof of Theorem (1.1) we will show: 

ind a~. ~ is the image of an element bs(X)= ind fl~E M](pt), where flsxe M s (ITX);  (3.10) 
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ind fl~ is given by the required combinations of E, S, R as in (I.1). (3.11) 

(3.10) will be established now and (3.11) will then be dealt with in the next section by 

identifying fl~ with the symbol of an appropriate differential operator. 

Now (3.10) will follow from the commutative diagram 

M~(iTX) KR~( i T X  • (P:r - Ps-~)) 

ind ind (3.12) 

M~(pt) ..... ' KRs(p~,  Ps-1) 

~ E M ~ (iTX) which maps to ax. provided we can construct an element ~,x s s in the top row 

(this homomorphism comes from (3.6) with X replaced by i T X  and r = ~ ). But the basic 

square (2.7) which was used to construct a~.~ can also be used to construct fl~. In  fact, 

if E = T X |  ~ then A*(E) and A*_(E) are both Z2-graded C,-modules. The grading is 

given by even and odd forms and the action of C~ is generated by the right Clifford 

multiplications (the vertical arrows in (2.7)). The horizontal arrows of (2.7) give an iso- 

morphism of A* (E) with A* (E) when lifted up to the non-zero vectors of E. This iso- 

morphism is an isomorphism of Z2-graded Real (1) Cs-modules because of the commuta- 

t ivity of (2.7). Hence we get an element fl~ E Ms(iE ) ~ M~ ( iTX) as required. 

The map M~(iTX)  ~ KR~( iTX•  ( P ~ - P ~ - I ) )  of (3.12) may be viewed as the 

composition 
M~(iE) ~ KR~(iE x R ~) -~ K R ( i E  • sH) 

where H is the Hopf bundle on P~.  Comparing the definitions of fl~ and a s x.~ it is then 

clear that  they correspond under this homomorphism. 

4. Identification of the global invariants 

In  this section we shall relate the elements fl~ E M~ ( iTX) defined in w 3 with the 

symbols of explicit elliptic differential operators. We consider separately the four values 

of s. The case s = 1 is trivial because A~ = 0. The case s = 2 is also rather easy because 

A~ -~ A~ is Z _~2 Z. This means that  we only have to check Theorem (1,1) in this case 

for r = 1 and this is the classical Hopf Theorem. I t  is of course possible to prove this 

analytically by relating the element 

(1) B is given the antipodal involution as usual and the factor ~ in (2.7) ensures that we then 
have Real isomorphism. 
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fl~z e M~ (iTX) = K2(iTX) • K ( T X )  

with the symbol of the operator  d + 3 : ~ev _~ ~oaa on real differential f o rms  (0 = d* the  

Riemannian  adjoint  of d). Note  tha t  R~ = - 1 in this case so t h a t  ~ has a complex struc- 

ture, and �89 E is the  index of d + 0 viewed as complex linear operator.  

We consider next  the  case s = 0. Then  

fl~ E M ~ ( iTX) = K R ( i T X )  | K R ( i T X )  

is just  the direct  sum of the two elements given by  the  top and bo t tom rows of our basic 

square. Thus /~o _ / /+  |  where 

fl+ = (A?~ v (TX),  A~ (TX), ~0 +) 
(4.1) 

fl- = (A~d(TX), A~_ v (TX),  ~o-) 

and  q~ over a point  v E T X  is the  map iL,,. Now iL,, is just  the symbol  of the operator  

d + ~ on differential forms. Hence fl+, fl- are just  the  symbols of the  operators 

B + : ~2% ~ -~ ~2 odd, 

B -  : f2~_ dd ~ ~/t v 

obta ined by  restricting d + ~ to these four subspaces of the differential forms (f~t denote  

of course the __ 1-eigenspaces of L~ acting on ~) .  To compute  the indices of B + and  B -  

it  is easiest to  compute  ind (B + |  and ind (B+ |  (B-)*), where 

(B-)* : f2~_ ~ -* f2 ~ 

is the  adjoint  of B - .  Clearly we have ind(B + | (B-)*) = dime Y~H ~ - d i m c  Y.H ~§ = E 

where H ~ is the  space of harmonic p-forms (and so by  the Hedge  theory  is isomorphic to  

H~'(X, fJ)). On the  other hand  B + |  -~ f2_ is shown in [10] to have index(1) 

( - 1 ) ~ S .  Adding and subtract ing (and using ind (B-)*= - i n d  B- )  we get  

ind B + = �89 ( E +  ( -  1)kS) 

ind B -  = - �89 ( E -  ( - 1)~S). 

Since ind o ax. ~ is the  image of ind flo under  the  map M~o (pt) - ,  KR(P~)  given by  (3.9) 

i t  follows t h a t  
ind e ~  ~ = E | 1 8 9  (E - ( - 1)kS) ( H -  1). (4.2) 

This completes the proof of Theorem (1.1) for the case s = 0. 

(x) In [10] the forms are split by the involution ( -  1)gLo): the point is that on 2k-forms we 
have Lo~ = ( - 1) k*, where* is the duality operator of the metric. 
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Finally we come to the case s = 3. Then 

flsx E M~ (iTX) "" KHS(iTX) ~" KR- I(iTX) 

(where KH stands for symplectic K- theory  for Real spaces, as in [7]). On the other hand, 

as described in [5], the semi-characteristic R(X) is the rood 2 index of the skew-adjoint 

operator T = L~ o (d § 8) acting on the space ~ev. Furthermore,  it is shown in [5] tha t  T 

can be replaced by  a 0-order skew-adjoint elliptic operator. As shown in [5] and [8] such 

operators have  a symbol in KR-I(iTX). In  general, a skew-adjoint Fredholm operator A 

of a real Hilbert  space V gives rise to the elliptic family over P1, given over a point 

(x, y} E P1 by the operator xI + yA :V ~ V| where H is the Hopf-bundle over P1. 

In  our ease the symbol (r(T)EKR-I(iTX)=KR(iTX| is defined by the triple 

(AeV(TX), Aev(TX), ~o) where ~ is given over v| T X |  by  iL~,v +tI. 

The proof of Theorem (1.1) for the case s =  3 will now follow from the following 

lemma: 

L E M M X  4 . 3 .  flax = - -  a ( T )  e KR-I(iTX). 

Proo]. Since dim X = 4/r - 3 is odd we can find a nowhere zero vector field and hence 

write TX = E | R where E is an oriented (4 ]r - 4)-dimensional bundle. Then KR-I(iTX) 

KR(iE) by periodicity. We will now show tha t  f i r  and - a ( T ) b o t h  correspond to the 

element / ~  +/ /~E KR(iE), where fl~ are the elements given in (4.1) (with TX now re- 

placed by  E). Consider first the element flax. From the natural i ty properties of our basic 

square it  is clear tha t  fire MSa(iTZ)'~M~(iE) is the restriction of fl~e M~(iE). On the 

other hand the restriction M~(iE) --> M~(iE) can be identified with the homomorphism 

KR(iE) | KR(iE) ~ KR(iE) 

given by  (a, b) ~-> a § b, and the periodicity (rood 4) of our basic square shows tha t  fl~ 

corresponds to 
floe M~ ~- gR(iE) | gR(iE). 

Since flo = fl+ | the identification of flax with fl~ + fl~ in gR(iE) follows. 

We turn now to the elemen~ - (r(T). The image of - (fl~ + / ~ )  under the periodicity 

isomorphism KR(iE)'~ KR(iE | C)= KR-I(iTX) is given by  the square over iE | C 

A+(E ) iLe ,A-(E)  

l 
A+(E) ,A-(E) 

2-- 722908. Acta mathematica 128. Imprim6 le 20 D4cembre 1971. 
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where e E E~, x E X and A E @. According to w 2 this is equivalent to the triple (A +(E) O A-(E),  

A+(E) | A-(E),  r where r over the point (e, 2)EE | C is given by the matrix 

Letting co' denote the volume element of E, we have 

r = �89 (iL, + 21) (I  + Lo,,) + �89 (iL, - 2I) ( I  - Lo,,) = iL ,  + (Re A) Lo, + / ( I m  ~) I .  

Now fix x E X  and let e0E (TX)x be the section at x spanning the line complementary 

to E~. Identify i r e  o with the imaginary axis of C. Also A * _  ~ Aov(TX) by  the inclusion of 

AO~(E) and by  L~o:A~ Aev(TX). With these identifications our element in 

K R ( i T X G R )  = K R ( i E ~ C )  is given by  the triple (AeV(TX), Aev(TX), ~v') where ~o' is de- 

fined over (v, Re ~t) E T X  @ R, v = e + (Im ~) eo E (TX)x  , by 

v/~.Roa) = (iL,o~ + (Re ~t)I) o L(-~e,). 

But  this is dearly isomorphic (under L_~e.) to the symbol for the operator T = L~ o (d + 8). 

This ends the proof of the lemma. 

Lemma (4.3) involves an identi ty between certain universal symbols. I t  is quite in- 

structive to state it in terms of the universal groups, fl~ come from universal elements 

fl~ in the equivariant group Ki~so(4z)(iR4'), where 1 = k - 1. Then one can verify the fol- 

lowing statements: 

(a) KRso(4z)(iR 4') -+ KRso(4z) (p t )=RSO(4I)  is injective and its image is the ideal 

generated by the representations 

,~+ _ A e v  ^ o d d  = A~da _ A~V 

(b) a~ are the images of ~ .  

(c) The restriction 

-I �9 41+I -1 �9 41+i ~ -'--4h KRsoc4,+I)(~R ) KRso(4,)(~R ) -+ = KRso(41)(~ j 

is injeetive and its image is the RSO(41 + l)-submodule generated by ~+ +~-. 

From (c) and Lemma (4.3) it  follows tha t  ~(T) comes from a universal symbol which 

generates the universal group -1 �9 4z+1 KRso(4z+l) ( ~ R  ) a.q RSO(41 § 1 ) - m o d u l e .  
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5. The local  invariant  

0 ~ : 7 ~ n _ l ( g n ,  r) --~ KRs(p,+s_l, Ps_l) 

as defined in w 2 is our invariant  for the local obstruction for extending a set of r vector 

fields with finite singularities. I t  is therefore important  to know how nontrivial 0 ~ is. 

We shall show tha t  0 ~ is an isomorphism for r ~< 3 ~< n - r. Furthermore,  if n is divisible 

by  the 2-power ar and r is not divisible by  4, then 0 ~ is the projection onto a direct 

summand of the form Z | Za,, and ar is the highest possible 2-primary order of an ele- 

ment  in ~- l (V~,r) .  For instance, i t  is known (see [18]) that  for k >l,~rsk_l(Vsk_l.5)~ 

Z(~ Z s, hence 0 ~ is an isomorphism in this case. I f  r is divisible by  4 there is a modi- 

fication of the above statement.  

More generally consider the map defined by  (2.14): 

0 ~ : ~q-l(V,. ,) -+ K R  ~+8-q, (P,+~-I, P~-I) (5.1) 

where n + s  is divisible by 4. We s tar t  with some elementary properties of (5.1). For  

two homotopy elements uEr~q_l(Vn, r) and u'Er~q,_l(V~,r ) one can form the join 

u*u'E~q+q,_l(Vn+n..r ) in the sense of James  [15]. 

LwMNA 5.2. The map 0 s has the/oUowing properties. 

1) 0 s is a homomorphism with respect to addition. 

2) Let uE~q_l(V~.r) and u'e~q,_l(Vn, r ). Then 

O~(u) O~" (u ') = (H,)'~" O~+" Cu , u '). 

3) Let e~Ere~(S ~) be the generator, then 08(~) is the canonical generator o/KRs(Ps,  P8-1). 

4) Let ue~q(Vn, r) and gerl~,(S~), then 

O'(u o g) = g*(a,) O~(u) 
N 

where (~qe KRq(S q) is the canonical generator. 

Pro@ 1) Simply follows using (2.16) for the pinching map  

(B q, S q-l) ~ (B q V B q, S q-1 V ~q-1). 

2) Is immediate from (2.17). 

Now 3) was verified in w 2 for n divisible by 4. For general n we can apply 2) and deduce 

tha t  
(0'(~)) ~= 0%4.) 



20 :~L F. ATIYAH AND g. L. DUPONT 

showing t h a t  O~(t=) is always a generator  of KR~(Ps, P~-I) ~= Z. The identification of sign 

can be checked explicitly f rom the definitions but  i t  also follows from the  in terpreta t ion 

of 0 ~ as a Hurewicz homomorphism which will be given in w 8. 

Final ly  4) is obvious f rom (2.16). 

N o w  consider the h o m o t o p y  exact  sequence for the  f ibration V~-I.~-:  -~ V~.r -~ S~-1: 

�9 .. -~ ~q-1(V~-~.~-:) --> zq_:(V~.~) -~ z~-:(S ~-:) -~ . . . .  (5.3) 

I f  n + s = n - 1 + 8 + 1 is divisible by  4, 0 ~+: and 0 ~ maps  (5.3) into the  exact  sequence for 

t h e  triple (P,+~-I, Ps, P~-:), and we clearly have a commuta t ive  diagram 

~ q - l (  Vn-:, r - I )  ) 7(q_ 1 ( V~. t) 

KRn+S-q(P~+s_l, Ps) , KRn+~-q(P~+~_I,P~_I) 

, ~ _ , ( S  =-*) 

O~ 

' KRn+S-q (Ps, Ps-1) 

(5.4) 

Fur thermore ,  for the  boundary  operators  

~ : ~ - 1 ( S  =-1) -~ ~q-~(V=-l.~-:) and 

we have 

Lv, Y ~ A  5.5. The/oIlowing diagram commutes 

~rq_ 1 (~.~n- !) ' 9"~q-2 ( V . ~ l , r - I )  

l O ~ 0~§ 

KRn+8-q (Ps, Ps-1) ,KRn+S-q !-1 (Pr+s-1, Ps) 

Proo/. Let u E ~q_:(S n-l) = ~q-I(V .... Vn-:, r-:) be given by  r vector  fields {ut, u~ ..... ur} 

of the  vector  bundle B q - l x  R e, such t h a t  over  s q - 2 c B  q-l, u r is constant ly  the  vector  

e~ = (0, . . . ,  0, 1) in R n. Le t  W denote the  mapping  cone of the inclusion Ps/Ps_l~ Pr+s_l/Ps-i. 

Write  W=Pr+~_:UPs• so W=W]PIUPs_: •  where P'=P~• and P~•  {0}is  

identified with P~ c Pr+~_:, Consider the  trivial  n + s-dimensional bundle over B q-1 • W 

and make  a const ruct ion as in (2.10) using the constant  last  s +  1 vector  fields of R ~+s 
p 

over Ps, and the constant  last  s vector  fields over P s - :  • I .  I n  this way  we get  an  element 

o~eKR~+~((B q-n, S q-~) • (W,P~+~-: U P~ U P~_: • I)), 

The restr ict ion of ~ to 
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KR~+S((B q-l, S q-~) • (P~ • I ,  P~ U P~ U P s i 1  • I )  ) = KR~+8"q(P~, Ps-1) 

is easily seen to be - 08(u). Hence - (~O~(u) is s imply the  restriction ~' of ~ to  

KR~+~((Bq-I~ S q-~) • (W,  P'~ U P~-I • I)).  

Now because ur over S q-2 is constant ly  e~, we see t h a t  a '  is na tura l ly  defined in 

KRn+S((B q-l, S q-~) • (W,  Ps • I))  = K R  n+s' q-l(Pr+s_l, P~) 

where it exact ly  represents the  element OS+lOu. 

PROPOSITIO~  5.6. Let r<.3. The map 

is an i~omorphism for n - 3 <~ q <~ n + 3 - r and n >1 r + 3. I n  particular 

0 ~ :~ - l (V~ . , )  -~ KR~(P~+~-I,P~-I) 

is an isomorphism ~or r <~ 3 and n >i r + 3. 

Proo/. For  r = 1 this follows from 3)-4) of L e m m a  (5.2), using the  well-known fact  

t h a t  K R - t h e o r y  detects  the  Hopf -map  ~ : S a ~ S 3 and its square ~u : S a -~ S 3. The re- 

maining cases now follow by  induct ion on r using Lemma (5.5) and the  five lemma. 

We  shall now compute  08 in some other  special cases. Again let tnETe~(S n) be the  

generator,  and consider the homotopy  exact  sequence for the  f ibrat ion Vn. r ~ Vn+l. r+l -~ S n. 

Denote  ~tn E r~n-l(Vn, r) b y  d~. r. 

PROPOSITION 5.7. 08(dn.r)eKR ~ (P~+~'I, Ps-1) comes /rein KRs(P~o~P~_~) and the 

value is 

n ~ 0  meal 4: 0~ r) = 1 + H e  KR(P,_I) .  

n ~ ! rood 4: Oa(d~. r) is the image in Aar o/ the  generator o / A ~  = Z2. 

n-~2  rood 4:  O~(d~.r) is the image in A~ o / the  generator o / A ~ =  Z. 

n ~ 3  rood 4: 01(d~.r)=0. 

Proo/. d~. r is t he  local obstruct ion a t  ~ for the  r vec to r  fields: on S ~= R n U c~ given 

by  the  s tandard  r-frame of R n. The proposi t ion now follows b y  applying our main  Theo-  

rem (1,1) and using the  values of E, S, R for S ' .  

For  the  remainder  of this section we assume n = 4 ]r unless otherwise specified. Again, 

let Gr-1 d e n o t e  the  Clifford algebra generated by  {el, . . . ,  er-i} subject  to  the  relat ions 
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e~ = - 1 and e~ ej = - ej e~ for i 4 = ], We shall sometimes th ink of C~_ 1 as the  even pa r t  C~ ~ of 

C,, i.e., generated by  {% e~ . . . . .  e 0 e~_~), where {e 0 . . . . .  e~_t) generate C,. Also the  number  

ar is the  dimension of an irreducible Cr_l-module, or equivalently,  t he  dimension of the  

even p a r t  of a graded Cr-module. 

Suppose n is divisible b y  a ,  i.e. R" _~ M, a module for C~-1. M defines a Cli]/ord ele- 

ment c~.~Ez~_t(V~.r) by  the frame 

c~.~(x) = {x, e~ ~, e~ �9 . . . .  , c,_~ x}.  

This, of course, depends on the  choice of coordinates for the  module M,  and, if r is divis- 

ible by  4, there  are different possibilities for the  choice of module.  For  instance, if n = t a  r 

where t is odd and 4 divides r there are exact ly  two modules A + and A- .  We shall a lways 

choose the coordinates such t h a t  the orientat ion is induced f rom the complex s t ructure  

defined b y  restricting to  C 1 ~ C,_~. This determines cn. r uniquely for 4 ~ r. Bu t  if n = ta r  

as above and 41 r, then  we get  two different elements + and cn ~. G/t,r 

Lv.MMA 5.8. Let c, . rf iz~-l(V, .r)  be a Cli]/ord element as de]ined above. Then 

O~ r) = 1 e KR(Pr-1) .  

Proo/. Strict ly speaking 0~ lies in KRn.'~(Pr_I) or K R ( i T ( B  ~ -  S n-l) • Pr-1) and  

is given by  the square 

Aev ~Lv Aodd 

I iLv 1 Rx~ 
A~+aa| - , A,_V |  

(5.9) 

where y E B  n, v E R  n and  x E S  r-1. Here x(y) is given by  the Clifford module s t ructure  of 

Cr-t  on  R n. Ident i fy ing  Cr- l= C~,/~r-1 is the  uni t  sphere in R r with the  basis {1,ecel, . . . ,  

e0 er-1). I n  this wa y  x(y) = Q(x) (y) where Q : Spin (r) -~ SO(n) is the  Spin-representat ion 

defined b y  M,  and x e S ~ - l c  Spin (r). 

N o w  lift ~ to  ~ : Spin (r) -~ Spin (n), i.e., ~ = ~ o ~, where ~ : Spin (n) -~ SO(n) is the  

covering map.  This is clearly possible for r > 2, in  which ease Spin (r) is s imply connected. 

For  r = 2 the  irreducible Cr-1 module occurs with even mult ipl ici ty because n = 4k,  so we 

can lift according to  Remark  following (2.19). For  r = 1 the lemma follows from Lemma 

(5.2), so we assume r >  1. The lifting is uniquely determined if we require ~(1)= 1. Le t  

e e Ker  (Spin (r) -> SO(r)) denote  the  element - 1 e C~ Clearly ~(e) = - 1 e SO(n) and there- 
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fore ~(e) = • co, where eoESpin (n) is the volume element. From our orientation conven- 

tions it  follows easily tha t  ~(s) = co (it is enough to consider r = 2). Hence ~( - x) = ~(e x) = 

~(x). 
We thus have a map ~ : S r-1 -~ Spin (n) such tha t  x(y) = ~(x)-I y ~(x) for x e S r-1 and 

y E RL Furthermore,  ~ is equivariant with respect to the involutions: multiplication by  

- 1 on S ~-1 and multiplication by  oJ on Spin (n). 

I t  is now easy to check tha t  right-multiplication by  ~(x) - I  transforms the square 

(5.9) into the square 

A~V iL~ ,A~ 

A~a a iL~ ,A~_V 

which represent the periodicity class in K R  n. n(Pr_l). 

I t  follows from Proposition (5.7) and Lemma (5.8) tha t  0 ~ :gn-l(Vn.r) -+ KR(P, -1)  is 

onto for n divisible by  at. In  fact  it is (with certain modifications) the projection onto a 

direct summand. Before showing this, let us define a modification of 0 for r divisible by  4. 

Pu t  
71'n_l(Vn.r)= Xm [yrn_l(Vn.r+l) .-+ g._l(Vn.r)]. (5.10) 

We shall define a map  
O'::~-1(Vn.,) -" KR(P~). (5.11) 

Consider the commutat ive diagram with exact columns 

0 0 
:7~n-1 ( S n - r - 1 )  ' KR(Pr,  Pr-1) 

~ - 1  (V,,,r+l) ' KR(P~)" 

l 1 
' ; KR(Pr-1)  

0 

(5.12) 

According to 4) in Lemma (5.2) the map in the top row of (5.12) is just the Hurewicz 

map ~ _ l ( S  ~- ' - l )  -* KR~-r-l(S~-i) .  For  r > 0 the image of this map  consists of torsion 
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(as one sees by  taking Chern characters).  However,  KR(Pr, P , - 0  -~ Z for r divisible by  4, 

so the image is actual ly  zero. I t  follows tha t  the map  

~-x(V . . ,+O -+ KR(P~) 

' V factors th rough  ~ - 1 (  ~ ~), thus  defining the  desired 0'.  

P~OPOSITION 5.13. Let n = 4 k  be divisible at, and assume r < n/2. 

1) S~ppose 4 X r. Then 

O::'rn_,(V~,~) -+ KR(P~_,) ", Z |  

is a projection onto a direct summand, and Za, is the highest 2,primary cyclic summand in 

7/ :n- l (  Vn,  r ) �9 

2) Suppose 41r and let n be divisible by a~+ 1 = 2 a r. Then 

O !  ! �9 T : zn - f l  v~.r) ~ KR(P~) ~ Z@Z~,+ I 

is the projection onto a direct summand, and Za~+~ is the highest 2.primary cyclic summand 

in = ~ _ ~ ( V ~ . ~ ) .  

Proo]. Consider the Adams  spectral sequence for Pn+l.*+l =Pn/Pn-r-1. I t  follows 

f rom [1], Theorem 2, t h a t  the  highest  2-pr imary order of =,_l(Pn+l.r+O, for r < n / 2 ,  is a t  

mos t  2 a  r in case 4Xr  and at  mos t  2at+ 1 for 41r.(1 ) I t  is well known (see [16]) t h a t  

7rn-l(Vn+l.,+l) ~- ~n_l(Pn+l.,+l) for r < n/2. 

The fibration p : Vn. ~ ~ S n-1 is split by  the Clifford element cn.,  Hence we have the  

following diagram with exact  columns and rows 

~,(S ~) 

0 - - 7 r n  l(Vn i ,  ~) S n-~ (5.14) _ _ . _  , ~ _ ~ ( ~ , ~ )  p, ~-~( ) 

Now consider x = d n . , - 2 c n ,  r in ~n_l(Vn.r). B y  (5.7) and  (5.8) O ( x ) = H - 1  so x has or- 

der at  least at. On the other  hand,  if 4 ~ r, ] ,  x = - 2 j ,  cn. r has f -p r imary  order at  mos t  at. 

Hence ],  a r x =  0 modulo odd torsion;  i.e., arx=~(mtn) modulo odd torsion for m E Z .  But  

(~) ~re are indebted to Elmer Rees for showing this fact to u s .  
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in t h a t  case O=p, atx=2mtn_~, so m = 0 .  We conclude t h a t  the  2-pr imary order of x is 

a ,  f rom which 1) follows easily. The proof of 2) is analogous. 

Since 0 ~ is an isomorphism for r ~< 3 and  n>~ r + 3 (Proposition (5.6)), Theorem (1.1) 

gives a complete answer to the  problem of expressing the sum of the local obstruct ions 

in terms of global invariants,  in case r ~< 3 and X is oriented. E m e r y  Thomas  has already 

listed the  result  for r = 2 in [20], Table 1. Le t  us make the  corresponding table for r = 3: 

dim X >/6 

4k 

4 k + l  

4 k + 2  

4 k + 3  

:~.-l(Vn.3) 

z| 
Z~ 

Z| 

Z2| 

ind ax 

E(X) | �89 (E(X) - ( -  1)~ S(X)) 

g(X) 

�89 E(X) | 0 

0 

I n  part icular  we have the  following necessary and sufficient conditions for having 3 line- 

arly independent  vector  fields on a simply connected manifoldQ) 

dim X > / 6  

4k  w4k_2(X)=0 E(X)=O S(X)~O rood 8 

4 k + l  ~*w4k_2(X) = 0 R(X) = 0 

4k+2  w~,:(x)=o E(X) =0 

4 k + 3  (~*w4k = 0( ~ ) 

Here, as usual, w~ is the  i- th Stiefel-Whitney class and  (5*:H~(X, Z2) ~ H~+I(X, Z) is the  

Bockstein homomorphism.  

Let  us mention as a curiosity, t h a t  we also can give necessary and sufficient condi- 

t ions for the  existence of 5 vector  fields on 3-connected manifolds of dimension 8 k, k > 1. 

We have already ment ioned t h a t  0~ -~ Z |  8 is an isomorphism. Hence the  

conditions are 

ws~_4(X)=0,  E ( X ) = 0  and S(X)~O mod 16. 

6. More on dimension 4 k 

I n  this section we shall concentrate  on dimension 4 k and obtain a few refinements 

and  extensions of the  basic theorem. 

First  we consider the  problem of fields of oriented 2-planes on X with finite singu- 

larities. Thus :we suppose given an  oriented 2-dimensional sub-bundle of T X  outside a 

(~) This assumption can be removed for dim X ~ 4 k +  1. 
(2) As shown by Massey this condition is always fulfilled. 
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f in i te  se t  of po in t s  {Ai}. I f  we fix a R i e m a n n i a n  met r ic  on X such a f ield of 2-planes  is 

descr ibed  b y  a sect ion u of A2(TX) outs ide  the  {A~}, normal ized  so t h a t  t he  Clifford 

p roduc t  uu = - 1 .  I f  ul,  u S are  a local  o r ien ted  o r thogona l  basis for t he  2-plane,  t h e n  

u = u 1 u S in the  Clifford a lgebra .  

Le t  Gn. ~ = SO (n)/SO (~ - 2) x S0(2)  deno te  the  Gras smann ian  of o r ien ted  2-planes in R n. 

Then  the  p ro jec t ion  p : Vn. 2 ~ G~,. 2 has  f ibre  S 1 = S0(2)  and  so 1o, : ~n-l(V~. 2) -~ 7~n-x(Gn. ~) 

is an  i somorphism for n >/3. N o w  for n = 4 k (k > 1) we have  ~ - x ( V , .  2) ==- Z @  Z 2, the  iso- 

morph i sm being induced  b y  

0 : Yln_l( Vn. 2) "--> KR(P1) = Z | KR(P1) 
(see P ropos i t ion  (5.6)). Hence  ~ n - l ( G . , ~ ) " Z |  and  we m a y  ask  for a fo rmula  g iving 

the  sum of t he  local  obs t ruc t ions  for the  field u. Thomas  [19] has  de t e rmined  which in- 

tegers  can occur as t he  sum of t he  local Z-obs t ruc t ions .  W e  shall  now der ive  a fo rmula  

for  t he  sum of t he  local Z2-obs t ruc t ions  , showing in pa r t i cu l a r  t h a t  th is  p a r t  is indepen-  

den t  of t he  choice of u.  

Going back  fx) our  bas ic  square  (2.8) for r = 2 we wr i te  

X lux(y ) + x 2 u z ( y  ) = u l ( y  ) (x 1 - x~ u(y ) )  

where  u = u 1 u 2. This  exhib i t s  (2.8) as a compos i t ion  of two squares  (1) 

L v 
A_~Y(E) ~A~ 

A~dd(E) 'Aev (E) 

] 
A~ |  iL~,Ae-V(E~ |  

Appl ied  loca l ly  th is  expresses  our  h o m o m o r p h i s m  

O:gn-a(Vn.~) ~ KR(P1) 

as a sum of two homomorph i sms  01 and  03. N o w  the  t o p  square  is i n d e p e n d e n t  of x and,  

b y  (5.8), 01 pro jec t s  on to  t he  Z - s u m m a n d  of KR(Pa).  Hence  03 is t he  p ro jec t ion  on to  

Z2 = KR(P1).  B u t  since 03 on ly  involves  u (and no t  u 1, us) i t  can be used to  define a re-  

(1) I t  is well known that composition is stably homotopic to direct sum. 
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lative characteristic class for a global 2-field u. The corresponding global index is, in the 

notation of w 4, ind B-  (I - H). Using the formula for ind B -  given in w 4 we obtain finally 

the following result: 

T ~ O R ~ , ~  6.1. Let X be a closed oriented mani]old o] dimension 4k, k >  1. Let u be 

a 2.plane field with a finite number o] singularities. Then the sum o] the local Z2-obstruc. 

tions is �89 (E(X) - ( - 1)~ S(X)) mod 2. 

When the number of vector fields is divisible by 4, we get a theorem analogous to 
t C Theorem (2.20) using the local index map (5.11) defined on the subgroup nn-l(V,. ,)  

~_~(V~.~). 

Tltl~ORV,~ 6.2. Let X be a closed oriented manifold o/ dimension n = 4 k ,  and let 

{Ul . . . . .  ur} be a set o/ vector fields ~ in Theorem (2.20). Suppose r is divisible by 4 and 

suppose that at every singular point A~EX the local obstruction OA~(u I . . . . .  ur) lies in 

~zn-l(Vn.r). Then in the group KR(Pr) we have the/ormula 

! 

ind ~~ = ~ O'(O,~,(u 1 . . . . .  ur) ). 
~=1 

For the proof of this theorem first observe the following. Suppose X is the union of 

two manifolds W and W' with common boundary Y = W N W' and let (u 0, u 1 . . . . .  ur} be 

any set of vector fields (r not  necessarily divisible by 4) independent over Y. Then clearly 

by  excision 
ind ~~ = ind ~~  0 . . . . .  u~) + ind ~~ 0 . . . . .  u~) (6.3) 

in KR(P~). 

In  particular for the proof of (6.2) put  W = [.J~=lBt and W'=X- ( ( J~=xB~)  and 

Y =  [.]~=1S~. Choose a vector field u 0 on X, never linearly dependent on {ul . . . . .  u~} over 

Y (this is possible by  assumption). Formula (6.2) then follows from (6.3) and the following 

proposition. 

PROFOSITIO~r 6.4. Let W be a compact oriented mani]old with boundary OW, and let 

{u0, ul . . . . .  ur} be a set o] vector fields, linearly independent along ~W. Suppose r is divisible 

by 4. Then 

1) ind a~ u 1 . . . . .  u~)EKR(Pr) depends only on {u 1 . . . .  ,ur} and not on u o. 

2) I l lurthermore {u I . . . . .  ur} are linearly independent over all o / W ,  then 

ind ~ ~  0 . . . . .  u,) = 0 in KR(Pr). 

Proo/. The first statement follows formally from the second. Thus define a manifold 
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by gluing a collar (aW) • I on W such that aW is identified with 0W • 0. Now suppose 

and % are two vector fields on so that both sets {%, ..... and {%, ..... 

are ~nearly independent on 0W. We then define a set (vo, v I ..... vr) of vector fields on 

such that v o is u~ on aW• 1 but u 0 on W= W, and such that v~ for i>9 is the natural 

extension of u~ to W, constant along the interval I. By excision 

ind  ~ ( v  0 . . . . .  vr) = i n d  ~ow• . . . . .  v~) + i n d  ~w(Uo, u 1 . . . . .  ur). 

Also W is diffeomorphie to  W in such a way  t h a t  ind ~ ( v  0 . . . . .  v~) = ind ~w(U'o, ul . . . . .  u~). 

Hence  s t a t emen t  1) is a consequence of the  fact  t h a t  ind ~ow• v 1 . . . . .  v~) = 0 accord.  

ing to  2). 

I n  the  proof of the  second s t a tmen t  assume for convenience t h a t  (u 1 . . . . .  u~} are 

o r thonormal  over  W and t h a t  (Uo, u 1 . . . . .  ur} are o r thonormal  over  0W. Set t ing T = T W  

for  short,  we find t h a t  ~w(U o . . . . .  u~)EKR((iT,  i T I O W  ) • P~) is the  image of an e lement  

b e K R ( ( i T ,  i T I ~ W  ) • (P,., Pr-1)) under  the  m a p  

]* : KR( ( iT ,  i T  IOW ) • (P,., P,.-1)) -> KR( ( iT ,  i T  IOW ) • P,.) 
(see w 

Now the pa i r  (Pr, Pr- i )  is re la t ively  homeomorphic  to  the  pair  (B r, S r-l)  of the  ball  

and the  sphere in R r. Le t  B W  and S W  denote  the  ball- and  sphere-bundle  of T W ,  and 

let  ~ : B W  --.'- W be the  projection.  The vec tor  fields {u0, u 1 . . . . .  ur} then  define a m a p  

/ : ( W ,  OW) • ( B ' , S  "-~) ~ (BW,  S W )  

such t h a t  the  induced m a p  

/:  (iT, i T I O W  ) • (B  ~, S ~-1) ~ (ze*(iT), z~*(iT)[SW) 

has the  following p roper ty .  The  bundle  r = T |  i T  over  W has  a T h e m  class 

2TE KR(~*(iT) ,  ~*(iT) ] S W )  and [*~r= b. 

The m a p  / is defined b y  the  formul~ 

](w, y) = (Yl - ]y]*) Uo(W ) + yl ul(w) + . . .  + y,. u~.(w) 

for  w E W and y = (Yl . . . .  Yr) E B r. 

At  this po in t  let  us recall the  definit ion of topological  index [9]. E m b e d  W in R n+q 

wi th  no rma l  bund l e /V  of dimension q, The  index m a p  

KR(( iT ,  iT  lOW) • P,) ~ KR'~+q.'*+q(P,.) 

is defined a s  the  composi te  m a p  of the  T h e m  isomorphism 
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d9 : KR(( iT,  iT  I a W) x Pt) --> K R ( ( N  | iN, (N | iN) ] 7~ -xa W) x Pt) 

and the map induced by the Thorn map 

g: (tt ~+~. ~+~)+ -~ (N | iN) +/(~v | iN  I ~-~ ~ w). 

We have analogous maps for Pt  replaced by (Pr, Pt-1). 

By naturali ty ind ~w(u 0 . . . . .  ur) = ]* o g* o r 

where i* : KR( R'+q'~+q x (P~, Pt-~)) '-> KRn+q'=+q(Pt). 

We also have the commutative diagram 

KR((iT,  iT I~ W) x (P~, Pt-x)) 

1~ 
KR( (N  |  N |  OW) x (Pt, Pr-1)) 

KR~+q" "+" (Pr, Pr-I) 

where / is induced from / in the obvious way. 

T* KR(T@iT) 

I~ 
[* K R ( T | 1 7 4 1 7 4  

K R ( R  ~+q.n+q) x W 

29 

(6.5) 

COROLLARY 6.6. Let X be a closed oriented mani/old o/ dimension 4k  and suppose 

X admits r linearly independent vector/ields. Then the signature S(X)  is divisible by 2 at/or 

4 X r and it is divisible by 2 ar+l = 4 at/or 4Ir.  

Explicitly the signature is divisible by bt where b t is given by the table 

where p:  (R~+q.~+qx W) + -~ (R~+q.~+q) + is the projection. But, as we observed for the 

definition of (5.11), the image of (p o [o g)* in KR-theory consists of torsion. On the other 

hand, K R  n+q, n+q(Pr, Pr-1) -~ Z for r divisible by  4. Hence g*o (I)(b) = 0, and consequently 

ind ~w(%, u l , . . . ,  ut) = 0 by (6.5). 

The Theorems (1.1)and (6.2) have the following corollary due to Mayer [17] and, in 

a weaker form, to :Frank [14]. 

Clearly ~P(2T) is the Thorn class of the trivial bundle R =+q.n+q • W, and therefore in- 

duced from the sphere (R~+q,=+q) +. I t  follows that  g*o ~(b) is induced by the equivari- 

ant  map 
p o 7o g: (R n+r =+~)+ A S' ~ (R n+~. =+~)+ 
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r i l l 2 1 3 1  41 51 61 7l 8 
b 121 4 1 8 1 1 6 1 1 6 1 1 6 1 1 6 1 3 2  

and br+ s = 16. b~ 

We conclude this section with a different application of our  characterist ic class (2.9). 

Suppose X is the  boundary  of an oriented manifold W of dimension n = 4k  and let 

{ul . . . . .  u~) be linearly independent  vector  fields on X.  We shall define an  invar iant  

Ox(u 1 . . . . .  u~) in . K R ( P t ) / ( I + H ) = Z ~ a , + x ,  which does no t  depend on the  choice of the  

bounding manifold W. 

First  let v denote the  outward  pointing normal  vector  field on X,  and consider 

ind o:w(v, u 1, u2 . . . . .  u~) E K R ( P r ) .  (6.7) 

Now let W' be another  manifold with ~ W ' = X  and  consider the closed manifold ~TV = 

W U ( - W') such t h a t  X = W f] ( - W' ) .  Here  - W '  denotes as usual W' with the opposite 

orientation.  B y  excision we have 

ind o:w(v, u 1 . . . .  u~) + ind ~-w.(v, Ul . . . . .  u~) = ind a~.~+l" (6.8) 

The outward  pointing normal  on X with respect to  W' is - v ,  so we actual ly wan t  to  

compare (6.7) with the element ind ~w.( - v, u I . . . . .  ur). The change of orientat ion amounts  

in K.R(P~) to  multiplication by  H.  Fur thermore ,  the  shift f rom v to  - v  corresponds to  

the  m a p  induced in KR(P~)  b y  the  map  of P~ which changes the  sign of the first coordi- 

nate.  This, however,  induces the  identi ty,  and so 

ind O~_w,(V, u 1 . . . . .  ur) = H i n d  ~w,( - v, u 1 . . . . .  ur). 

Hence using (4.2), we deduce f rom (6.8): 

ind  ~w(V, "oi . . . . .  u~) - i n d  aw.( - v ,  ul . . . . .  u~)--( - 1)k+lS(l~). 1 mod  (1 + H )  (6.9) 

where S(l~) is the  signature of the  closed 4 k-dimensional manifold l~ r. As noted  by  No- 

v ikov  the  signature can be defined for manifolds with boundary ,  so t h a t  S(I~ 7) = S ( W ) -  

S ( W ' )  (see [10]). I t  follows f rom (6.9), t ha t  the invar iant  

Ox(ut . . . . .  u,) = ind O~w(V, ul  . . . . .  u ,)  + ( - 1)kS(W)E KR(P~) / (1  + H )  (6.10) 

is independent  of the  choice of W. 

If X =  S n-l, n = 4 k ,  then  Ox is induced by  the  restriction of 

O~ ~ KR(Pr) 
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to the set p;l(en_l) where p ,  :~n-l(Vn.r+l) -+ gn-l(S~-l). In  particular, if ar+l divides n, 

then the Clifford element c~.r+ 1 defines r vector fields on S n-1. According to Lemma (5.8) 

Os,_~(cn.~+~ ) = 1. (6.11) 

Consider the map X -~ X V S n-1 defined by  pinching the boundary of a disk em- 

bedded in X. This map  defines an action of ~n-l(Vn-l.r) on the set of r-frames on X. 

Thus if {u I . . . . .  u~} is a set of vector fields on X and y E ~ n _ l ( V n _ ~ . r )  , w e  get a new set of 

vector fields (Ul . . . . .  ur} ~. Mapping ~,~-l(gn-l.~) into g,~-l(Vn.r+l) we have defined 0 ~ 

on this group, and it  is immediate tha t  

Ox((U 1 . . . . .  ur} ~) = Ox(U 1 . . . . .  u~) + O~ (6.12) 
W e  n o w  h a v e  

P R o P o s I T I 0 ~ 6.13. Let X be a closed n- l .dimensional  oriented manifold, and suppose 

n = 4 k  is divisible by ar+l. I f  X has one r-frame field then it has at least at+ 1 non-homotopic 

r-frames. I f  furthermore X is an oriented boundary, then these r. frames are distinguished by 

the invariant Oz. 

Proof. The manifold Y = X U ( - X )  is clearly a boundary (of X x I) ,  and we let 

~n-l(Vn-l.r) act on the end X • 1. Using (6.12), and the fact  (Proposition (5.13)) tha t  

there is an element xETrn_l(V~_l.r) with 0~ rood H + I ,  we easily verify the first 

statement.  The second s ta tement  is equally obvious. 

7. More on dimension 4 k + l  

We now proceed to further refinements in dimension 4 k + 1. First  let us remark tha t  

the skew-adjoint operator T, with index the semi-characteristic, can be used to obtain 

information about  2-plane fields. 

Again let X be a closed oriented manifold of dimension n = 4 k + 1 and let T = L~ o 

(d + 8) be the skew-adjoint operator on the space ~ev(X) of real exterior forms. Suppose 

tha t  T X  admits a 2-plane field u over Y c X .  Clearly Clifford multiplication by  u defines 

an automorphism of the symbol for T, so a construction analogous to (2.10) yields a 

characteristic class 

5 r  r )  • ( P ~ -  Pc)). (7.1) 

Obviously ~xe  K R - I ( ( I T X )  x (P1-1:'o)) is simply a ( T ) ( H -  1), and the index in I~R-I(P1) = 

KR-*(pt )  is R(X)N*,  where ~/E/~R-l(pt) is the generator. Also ~ defines a local invariant  

{~:~n-l(G,. ,) -~ Z,,  which is in fact an isomorphism. We therefore obtain 
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T E~ o R~ ~ 7.2. Let X be a closed oriented mani/old o/dimension n = 4 Ir + 1 and let u 

be an oriented 2-plane ]ield with singularities at a/inite number o/points. Then the sum of 

the local obstructions is the semi-characteristic R(X). 

Until now we have supposed that  X at least was orientable. We shall now extend 

the definition of the semi-characteristic to a wider class of manifolds and thereby solve 

the problem raised by Thomas [20] concerning the index of a 2-frame field on a 4 k + 1- 

dimensional manifold satisfying w~ = 0. Thomas has shown that  if w~ =~ 0 then both 0 and 

1 in Z 2 occur as the index for a 2-frame field. On the other hand he has also shown, that  

the sum of the local obstructions is independent of the choice of 2-flame, provided w~ = 0. 

Manifolds satisfying this condition are studied in [13], and we recall some of the basic facts. 

Let @ :,~ -> X denote the orientation covering and let 0 denote the associate real 

bundle. Consider the Bockstein exact sequence for the coefficient sequence 

Z2 ~ Z4 ~ Z2. 

The condition w~ = 0 implies that  there is a Z4-covering F : Y -> X, such that  if g is the 

corresponding automorphism of Y of order 4, then y/g2 is the orientation covering X of X. 

Now Z 4 acts on C by multiplication with i. Hence F gives rise to a coefficient sys- 

tem L of complex numbers, and L Q L  = 0 @C. The eohomology H*(X, L) with coefficients 
r R 

in L has a cup-product 

H*(X ,L ) |  ---> H*(X, @| 
It  

This defines a Poincar4 pairing 

Hn-p(X, L) | L) -+ H~(X, @ | = C. 
R 

I t  therefore makes sense to define the semi-characteristic 

RL(X)=�89 m o d 2  

for n odd. From now on, we shall assume n = 4 k + l .  RL(X) is again the index for an 

elliptic operator. L is a flat complex line bundle so H*(X, L) is the homology of the de 

Rham complex ~*(X, L) of sections of A*(TX) |  ~*(X, L) is just the forms ~ on the 

4-fold covering Y satisfying g* ~ = i~. 

Again d + (~ defines an operator DL:~-Iev(x, L) -->- ~oda (X, L) and clearly RL(X) = 

dime Ker Dz. Let L - :  denote the conjugate line bundle of L. Clifford multiplication then 

induces 
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~*<X,O)| -1) -~ ~*(X,L) 

or equivalently an anti.linear map 

~*(X,  O ) |  ~ ~*(X ,L) .  

In  particular left multiplication by  the volume form ~oE ~ ( X ,  0)  induces an anti-linear 

map  L~ : ~~ L) -~ ~ov (X, L) and the composite operator TL = L~ o DL is a 8kew-ad- 

joint anti-linear operator of ~ev(X, L). 

As explained in [8] and [12] such operators have an index in K R  -~ (pt) = Z~ equal to 

the complex dimension of the kernel. In  fact, if A :V -~ V is anel l ipt ic  skew-adjoint anti- 

linear operator of a complex Hilbert  space V; then we get a family of elliptic operators 

over CP 1. Over a point {x, y}ECP 1 this family is defined by  x I +  yA :V ~ V Q H .  

Hence TL has a symbol a(TL) in KR-~( iTX)  and ind a(TL) = RL(X) 72 in K R  -~ (pt) = Z~. 

Notice tha t  if X is oriented and L is the tr ivial  line bundle then TL is just the com- 

plexification of the operator T and r = r ~. 

At this point we can clearly construct a relative characteristic symbol for an orien- 

ted 2-plane in analogy with (7.1). But  unfortunately the index map of this element will 

end up in -KR-2(P~)= 0. Suppose even we had a 2-plane field u without singularities. 

Right  multiplication with u would then just give a linear endomorphism R~ of f l '*(X, L) 

with square - 1, and this would imply nothing about  the dimension of the kernel of T L. 

On the other hand, if we have a twisted 2-plane field, i.e., a plane field with oriented 

complement, then this gives an element uEfl~(X,O) and R~ is an anti.linear endomor- 

phism of square - 1 .  Hence Ker  Tr. is quaternionio and therefore of even complex di- 

mension. 

Notice tha t  in the oriented case, there is no difference between twisted and untwisted 

fields; but  in the non-orientabIe case the analysis forces us to restrict to twisted fields. 

In  order to construct the corresponding characteristic class we need an involution also 

on the projective space. Thus conjugation in R ~= iR~O R q induces an involution on P~-I ,  

and we shall denote this Real space by  P~.q. The Hopf  bundle H is clearly equivariant,  

so H |  has a natural  Real structure over PP.q. Stunted projective spaces with involu- 

tion occur natural ly as Them complexes with involution. For  example, pl.n/pl.o = P~-I.~R 

Now return to a manifold X of dimension 4 k + 1 satisfying w~ -- 0 and choose a coef- 

ficient system L as above. Suppose tha t  u is a twisted 2-plane field over Y c X ,  i.e. u 

is a section over Y of A~(TX) |  satisfying u ~= - 1 .  For x0ER and xlEC such tha t  

x0~+lx~12=l, we form as usual x ( y )= xo + x lu (y  ). Also let x ' ( y ) = x o - x l u ( y ) .  Because 

Ru(~) is anti-linear and R~(~) = - 1, we have R~.(~) o R~(y) = 1. Hence R~ (~) is an automorphism 

of the symbol for T L, and we therefore get a characteristic class 

3-- 722908, Acta mathematica 128. Imprim6 le 20 D~cembre 197I. 
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aZx(u)CKR-3((iTXIX_ y)  • ( p ( R |  P(R)))= K R - ~ ( ( i T X I X _  y)  • (p13 po.1)). (7.3) 

The class ~ E K R - 3 ( ( i T X )  • (p1.3po.1))  is just a(TL) ( H - 1 ) ,  hence the index of ~2x in 

t~R-2(P 1.3) is RL(X ) ( H -  1) ~3. The element ( H -  1) ~ e  KR-3(P 1,3) ~.. I~R~ ..~ Z 4 gener- 

ates the subgroup of order 2. Also we have a local invariant 0 : Z~-l(G~, 2) -~ Z2 which is 

an isomorphism. We thus get the following extension of Theorem (7.2): 

T~EORW~ 7.4. Let X be a closed mani/old o/dimension n= 4 k +  1 satis/ying w~= O, 

and let L be as above. Suppose u is a twisted 2.plane field with finite singularities. Then 

the sum o~ the local obstructions is RL(X). 

Remark. The above discussion for 2-plane fields can obviously be extended to T-plane 

fields with p ~ 2  mod 4. We remark that  twisted p-plane fields with p-----2 mod 4 are in 

one-to-one correspondence with oriented n -  p-plane fields, n -  p--=3 mod 4. 

A particular case of a twisted 2-plane is given by  a pair consisting of a vector field 

and an embedded line bundle isomorphic to (9. The obstruction for having such a 

"twisted 2-frame field" with finite singularities is 

W n _ l ( T X  - O)  = w n _ I ( X  ) = w n _ i ( X  ) U Wl(X) .  

But if follows from the Wu-formulas that  wn-2 U wl = O. Hence the obstruction for having 

a twisted 2-frame field with a finite number of singularities is the same as for an ordinary 

2-frame field. 

Nevertheless we can also calculate the sum of the local obstructions for an ordinary 

2-frame field in the following way. In  general let {u I . . . . .  ur) be a set of vector fields, 

linearly independent over Y =  X. Right multiplication by co.u~ (which are sections of 

Aev(x) |174 give antilinear maps with square + 1. In the usual way this gives rise to a 

characteristic class 
~ ( U l  . . . . .  ur)qKR-2((iTX] X - Y) x Pr-1) (7.5) 

such that  ~r PT-1) is just a ( T L ) ( H - l ) .  Hence the index of ~ . r  in 

-KR-3(Pr_i) is RL(X ) ( H -  1) 7 3. In  particular for r =  3 the index ends up in KR-2(P2) ~_Z3, 

and we also have a local index map 0 : zn-l( Vn. a) -~ Z~. Now the natural map g~-l(V~, a)-~ 

gn-l(Vn. 3) is an isomorphism and both groups are isomorphic to Z2 (see, for example, 

Proposition (5.6)). Hence we have (] :~n-l(V=.3)-+ Z2. 

T~V.OR~M 7.6. Let X and L be as in Theorem (7.4) and let (ul, u2} be 2 vector fields 

on X with singularities at a finite set o/points (A 1 . . . . .  Al}. Then 
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1 

~(OA,(Ul, US)) = R L ( X  ) 
i l l  

where OA~(ui, us) ETcn_i(Vn. 2) is the local obstruction. 

For  the proof we shah use the same method as for the proof of Theorem (6.2). Thus  

it  suffices to prove the following analogue of Proposition (6.4). 

L v , ~ i  7.7. Let W be a compact mani/old with boundary ~W, and suppose w~(W) = O. 

Let L be a complex coe//icient system as be/ore, and let (no, ui, us} be a set o/ vector fields, 

linearly independent over ~W. I / the  set {ui, u~} is linearly independent over all o/ W, ther~ 

in KR-S(P2) = Z 2 
ind ~ ( u 0 ,  U I ,  US) = 0 ,  

Proof: As in the proof of Proposition (6.4) ~ (no, ul, us)= ~* b~, where ~" is the real> 

Ps -~ P~/P1 and 
bz E KR-~( ( iT  W I W - ~ W) • (P2 - P~) ) 

is defined by  a certain square over i T W  x CP 1 x Ps. Conjugation defines a map # : C P i ~  

CP1 which induces - 1  in KR-S((iTWI W - ~ W )  x ( P s - P i ) ) .  On the other hand #*br.= 

bL-i=|174 . Hence bL is annihilated by  the element I + @ E K R ( W ) .  Since 1 §  has 

augmentation 2, bL has finite order. On the other hand, ind bLEKR-2(Ps, Pi)~_Z so 

ind bz = 0. I t  follows tha t  ind ~ ( u 0 ,  ui, u2) = 0. 

Remark. I t  follows from Theorem 7.6 tha t  if X has two vector fields with a finite 

number  of singularities, then/~L(X) does not  depend on the choice of coefficient system L. 

This agrees with the following formula proved in [13]: I f / 5  and L '  are two coefficient 

systems such tha t  L' = L | ~ for a real line bundle ~ with characteristic class y E H~(X, Zs), 

then 
RL.(X) + RL(X) = (y  U w4k(X ), IX/>. 

8. The Hurewicz map in KR-theory for P,,~ 

In  view of Lemmas (5.2) and (5.5) it  is not surprising tha t  the map 0 ~ is closely relat- 

ed to the Hurewicz map in KR-theory for the stunted projective spaces P~. r = Pn-i/P~-r-1 " 

In  this section we shall establish this connection and comment  on the relation with 

Adams'  work on vector fields on spheres [2]. 

First recall tha t  P~-i  is embedded natural ly on O(n) by identifying x E P~_ i with 

the reflection in the hyperplane orthogonal to x GR n. In  this way there is a map i :  

P,. r ~ Vn. r defined by  applying the reflection on the standard r-frame (e0, . . . ,  er_x~ , where 
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%= (0 . . . . .  1,0 . . . . .  0) has 1 in the i +  l ' s t  coordinate. In  particular the base point  of 

P..r=Pn_l/Pn_r_l  maps to the standard r-frame in Vn.r, By convention Pn.n = (Pn-1)+ 
and the extra  point corresponds in O(n) to the identity. 

Now again let s be chosen so tha t  n + s = 4 k, and assume tha t  ar divides (n + s). 

Hence R n+s is a module for Cr-1. This means tha t  (n + s )Hr  is trivial, where Hr is the 

Hopf  bundle over Pr-1. I t  follows from [4] tha t  the Them c o m p l e x e s / o ~  and p(ni~)H= 

Pn.r are S-dual, or precisely s+ ( n - r ) +  ( r -  1) = n + s -  1-dual. Hence there is a duality 

' isomorphism 
D:KRq_I(Pmr ) , KR'~+s-q(Pr+s_t, Ps_i). 

TH~O~V.M 8.1, Let u :zcq-l(P~.,) -~ KRq_I(P~.r) be the Hurewicz map. Then the fol- 

lowing diagram is commutative: 

3 

~rq-1 (Vn.r) ' KRn+S-q(Pr+s-l, Ps-x) 

-~(Pn.~) x , KRq_l(p,,.~) 

More precisely: we shah define an explicit S-duality (S-)map 

V :P,.,AP,+~.~ -* S "+'-i. (8.2) 

Let ~ denote the suspension, and for a map u : S  q-1 ~ Pn.r let Du = 7(V o (u A 1)), i.e. 

Du:TqPr+s. , ~ S n+s is the dual S-map of u. We shall prove 

TH~O~V.M 8.1'. Let u : S  q-1 ~ P , . ,  and so i u : S  q-1 ~ Vn.,. Then 

03(iu) = (Du)*(A+~..+8) 

in KR"+~-q(P,+,_I, P~-I). Here 2.+~..+~ is the generator of K R  "+~."+~ (pt). 

Before defining V let us consider what  is the universal situation in this context. In  

the construction (2.10) use X =  CP~.r the cone on P~.r and Y=Pn . ,  the base of this cone. 

The trivial bundle of dimension n has r vector fields along Pn., determined by  the map  

i : Pn, r -~ Vn. r. Hence we get an element 

#sn.r r KRn+s( (CPn. r/Pn. r) A (Pr+8-1/Ps-1) ) = KRn+s(~Pn.r A Pr+3. r). (8.3) 

In  order to prove Theorem (8.1') it suffices to show 
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( 2 7 ) ( . + , . , + , )  - ~ , . , .  (8.4) 

I * ~ (8.4) gives I n  fac t  O~(iu) = (2u A ) (~ .~) ,  so 

Os(iu) = (EV o (2u A 1))*(X,+,,,+,) = (Du)*(X,+,.n+,). 

Observe t h a t  if we increase n b y  a multiple of max(4 ,  a~), then  P~.~ is suspended the 

same number  of times, and using (2.17) and L e m m a  (5.8), i t  follows t h a t  the  elements 

#~. r correspond under  the periodicity isomorphism. We can therefore assume n so large 

t h a t  n + s is divisible b y  a~+~, i.e. R ~+~ is a module for C,+~_t. (If  n + s = p a r and  ar+, = t a, 

then  increase n b y  (mr - p) a~ for some m.) Under  this assumption we shall construct  an  

explicit map  
V:  Vn., x P ,+ ,_ ,  -+ S "+'-* (8.5) 

which induces an S-dual i ty  map  

-~  ( 8 . 6 )  V,. r  : P , . ,  A P,+, .r  S'+~-1 

such t h a t  (8.4) is satisfied for V -  * 

First  assume 8 = 0. So there  is a C,_l-module M of dimension n. R '  c Cr-1 is spanned 

by  {% = 1, e a . . . . .  er-1}, and  the  Clifford-module s t ructure  induces an  or thogonal  pairing 

( . , . ) : R T x M  -* M.  Choose eoEM of uni t  length and embed R ~ in M by  sending a E R '  

into (a, %). We can thus  choose coordinates for  M ~_ R n so t h a t  {e 0 . . . . .  er-1} is the  stand- 

ard  r-frame. Hence R ~ = R r G R n - '  and the  pairing (., .) :1%' x R ~ -~ R n satisfies 

1) (%,e~)= -(e~,ej) i4=j and O < i , j < ~ r - 1  

2 )  (%, et) = - e o  i = 1 . . . . .  r - 1 

3) (a, eo)=a for  a q R  ~ and  

(eo, b)=b for  h e r  ". 

Also define a conjugat ion in R '  by  pu t t ing  go = % and gi = - % for i > 0. I t  follows t h a t  

(5, a) = la] a e o for a e R  r. 

We are now in the  position to  define the  map  

~ : V ~ . , x P ( R  r) --* S,~-1. (8.7) 

An  element in p(Rr)=Pr_I is given b y  homogeneous coordinates x = ( %  . . . . .  Xr_l)ER r, 

and we assume [x[ = 1. An  element y in V~.r is given b y  an or thogonal  r-frame {e0(y),. . . ,  

- ~=1 x~ e~(y). Now for (x) EP(R r) and y6  V~., define e,(y)} in R ~. P u t  x ( y ) -  r-I  

V(y, {x}) = ('2., x(y)). (8.8) 
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Clearly this is an element in Sn51c  R n, and V is obviously well defined. Notice t h a t  the 

base point  (*) of V~.r is the s tandard  r-flame, so clearly (*) • P ( R  r) goes to  the  base point  

e 0 of S ~-i. 

Now again let s be arbi trary,  so R ~+~ is a Cr+~_,-module. (8.7) gives the map  

V:Vn+s.r+ s x P ( R  r+~) -~ S~+~-*. 

Wri te  R r+8= R ' |  R ~, so R ~+8= R ~ | R ~ | R ~-~ and R ~ is the  sum of the first and  the  last  

factor.  Then Vn.~ is included in V~+~.r+~ b y  adjoining the s vectors  {e~ . . . . .  e~+s_t} which 

span R ~ c  R n+~. The map  (8.5) is now simply defined as the composite 

:V~., • P ( R  ~+~) -~ Vn+~.~+~ • P ( R  ~+s) -~ S n+s-1. (8.9) 

Clearly x = x(y) for x E R  ~ = span {e, . . . . .  e,+~ 1} so (8.9) induces a map  

Vn.rA (Pr+s-x]Ps-l) -+ sn+s-l. 

Finally we compose with i =Pn., -~ Vn., thus completing the construction of 

V~.r :P, . r /~Pr+s. ,  + Sn+s-*" (8.10) 

LEMMA 8.11. The map  Vn.rs is an S.dual i ty  map. 

Proo[. We shall use induct ion o n  r. Consider the diagram 

P~.~ A Pr+~., 

P n - l . r - l A  r+s,r 
~r~n+s-1 

1.r-1 

P n - l , r - 1 / ~  P r+s . r -1  

where ~ :Pn- , .  r-x -+ Pn. r is the  inclusion and  ~' : Pr+8, r -+ Pr+s. r-1 is the na tura l  map  squeez- 

ing the  bo t t om cell to  a point.  This diagram is clearly commuta t ive  f rom the  very  defini- 

t i o n  of the  V ' s ;  hence by  the  induct ion hypothesis  we just  have to  show t h a t  the  produc t  

o f  the  bo t t om cell of Pr+s.r and  the top cell of Pn.r maps  to  S n+s-1 by  a map  of degree 

one. Bu t  this clearly reduces to  the  case r = 1. However,  it is easy to  see t h a t  the m a p  

V~, l  : ~n -1  • ~s = Vn, l X P J P s - I  ~ Sn+a-1 
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has degree one. In  fact, the element - e o E S  '~+s-1 is a regular value with only one 

pre-image. 

We can now complete the proof of Theorem (8.1) by  showing formula (8.4). Notice 

tha t  V induces a map  

2 V  :(CP,.,, P~.,) x (Pr+s-1, P~-I) -* ( B~+8, S~+"-1) 

and we shall compute the induced map in K R  '~+s,~ Now assume s = 0  for simplicity (the 

general case proceeds analogously), i.e. 

2 V  : (CP,.,, P~.,) x P~-i ~ (B~, S~-I). 

The generator of KRn'~ '~, S n-l) is given by  the square 

AS ~ iL,  ,AOda 

1 
AOda iL~ , AeV 

(8.12) 

where vER n.~ and u E S  ~-1. Hence (7-V)*(2~.n) is given over CPn.r • Pr-1 •176 by  the 

square (8.12) with u=(~,x(y) )  for yEPn.r and xEPr_ 1. An argument  similar to tha t  of 

Lemma (5.8) transforms this square into the square 

A V  iL,  , Aodd 

R~(~ I iL~ I R~(~ 
A~174 ,A~_V | H 

which defines the element ~n,r. This proves formula (8.4) and ends the proof of Theo- 

rem (8.1). 

Remark. Using Theorem (8.1') we can reformulate Adams'  proof [2] on the vector 

fields on spheres as follows: 

Let  u : S  ~-1 -+ gn.~(n-~O rood 8) be a section of V,.~ -~ S ~-1 and choose s such tha t  

ar divides n + s. Consider the element 0 s (u) E K R  s (Pr+~-I, Pa-1). The restriction to 

KRs(Ps, Ps_~) is the generator. On the other hand, Theorem (8.1') shows tha t  Os(u) is 

induced from a sphere, so the Adams operations ~0 k act  on it as multiplication by  k s. A 

calculation shows tha t  these two facts are incompatible if r is greater than  or equal to 

the Radon-Hurwitz number.  
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