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1. Introduction

In this paper we give some generalizations of the famous theorem of H. Hopf which
states that the number of singularities of a tangent vector field on a compact smooth
manifold is equal to the Euler characteristic. Instead of a single vector field we consider
# vector fields u,,...,u, and we are interested in their “singularities”, that is, the set 2
of points on the manifold at which they become linearly dependent. In general % will
have dimension #—1, it is a cycle(!) and its homology class is the (n —r -+ 1)th Stiefel-
Whitney class of the manifold. This is the standard primary obstruction theory and it
provides one way of generalizing the classical Hopf Theorem. However, this theory says
nothing about X if dim £ <r—1. In this paper following E. Thomas [20] we shall ge-
neralize the Hopf theorem by considering the other extreme case in which X is finite, so
that dim X=0. General homotopy theory tells us that we are now involved in higher
order obstruction theory and that the situation is much more complicated, as we shall
now explain,

For each point 4 €3 we have a local obstruction (2)
OA (ul: cees ur) € nn—-l( Vn. o]

where V,, ,=80(n)[SO(n—r) is the Stiefel manifold of orthogonal r-frames in R". Inlocal
coordinates (a;, ..., %,) with origin 4, O, is just the homotopy class of the map of a small
sphere Zai=¢ into (%) W, ,=GL(n, R)/GL(n—r,R) given by xr>uy(z),...,%(r). The

vanishing of O, is the necessary and sufficient condition that we can deform u;, ..., u,

(1) With integer or mod 2 coefficients depending on the parity of r.

(%) Thomas calls O4 the index at A. Since our methods involve using the index theory of
elliptic operators we prefer a different terminology.

(®) As is well-known ¥, ,—> W, , is a homotopy equivalence (equivalently every r-frame can
be naturally orthogonalized).

1—1722008. Acta mathematica 128. Imprimé le 20 Décembre 1971,
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near 4 (remaining fixed outside a ball of radius &) so that this singularity disappears.
0, is independent of the choice of coordinates but does depend on the orientation. ()
Hence for an oriented manifold we can form the global obstruction Z; O, (v, ..., %,) €
#tn-1(V,,) where we sum over all the singular points A, For r=1,7,1(V,,)=
7,_1(8™ 1) = Z, the local obstruction is an integer—the multiplicity of the singularity. In

this case, because the obstruction is primary we know that

(a) the global obstruction is independent of the vector field u,
(b) the vanishing of the global obstruction is the necessary and sufficient condition for

the existence of a vector field without singularities.

Moreover, the Hopf theorem identifies this global obstruction with the Euler characteris-
tic. In the general case (for »> 1) the obstruction is not primary, so that (a) and (b) need
not hold. A general theorem of Hopf type, identifying the global obstruction, is therefore
not to be expected. Instead, what we shall do is to define certain homomorphic images
07y _1(V,,) of the homotopy groups 7, _1(V,,,) and then identify the sum X, 60, (v, ..., %)
with a global invariant of the manifold. In particular this will show that the image under
0 of the global obstruction is independent of the vector fields u,,...,u,. Of course, such
a result is only of genuine interest if 0 is sufficiently non-trivial. In fact, it will turn out
that @ is an isomorphism for »< 3 <n—r and is a projection onto a large direct factor for
n divisible by a suitable power of 2 (depending on r). Moreover, there is some indication
that our results are best possible in the sense that 0x,_1(V, ,) may be the largest homo-
morphic image in which the global obstruction becomes independent of the vector fields.

The global invariants of manifolds which occur in our generalized Hopf theorems
are all simple combinations of the Euler characteristic F, the Hirzebruch signature § and
the (real) Kervaire semi-characteristic(?) R. Now E and § are indices of certain elliptic
differential operators on the manifold and R is a “mod 2 index’’ of a certain skew-adjoint
elliptic operator. This analytical interpretation of E, S, R was used in [5] to prove weak
theorems of Hopf type, namely that the existence of 7 vector fields without singularities
implies the vanishing of certain global invariants of the manifold. In the present paper
we essentially refine the methods of [5] to derive the corresponding strong theorems
{(allowing finite singularities).

The basic idea, explained already in [5; § 5], is to pass from elliptic operators to their

symbols which are elements of certain K-groups. The index theorem, in its various forms,

{*) Reversing the orientation replaces 04 by —7 (4 where 7 is the involution induced on the
homotopy groups of V,,, by the outer automorphism of SO(n).
(2) Defined as Zp dimg H??(X; R) mod 2, for dim X=1 mod 4.
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asserts that the analytical index (E, S or R) can be computed purely in terms of K-
theory from these symbols. Roughly speaking, we can say that these symbols are certain
K-theory characteristic classes and that their indices E, S, R are the corresponding K-
theory characteristic numbers. The existence of r vector fields without singularities im-
plies divisibility by some 2" for the symbols of our operators and hence for their indices—
this gives the weak theorems of [5]. If the r vector fields have finite singularities {4,}
then our symbols are only divisible by 2” outside the 4, and so we may expect to get re-
lative K-theory characteristic classes modulo 2’ for the pair (X, X — U, 4;)~ 2, (X, X — 4,).
Then for each ¢+ we will get a local characteristic number modulo 2*. On the one hand
this is some function of the local obstruction. On the other hand it is clear that the sum
of these local numbers modulo 2 will equal the global index modulo 2" of our original
operator. This will then give the Hopf type theorem we want.

The preceding heuristie discussion would suggest that we introduce K-theory with
coefficients in the integers mod 2” by using a Moore space. In fact, there is a more nat-
ural choice of coefficient theory which gives better results and that is to consider the
functors KR*X x P, X x P} where P, is real projective k-space, and &, [ are appropriate
integers. More precisely, writing » in the form 4k —s we shall define homomorphisms

0" 7u-s(Vn 1) > KB (Prysy, Pi_y).

The groups 4;=KR*(P, ;1, P;_;) are all tabulated in § 3 and, as we have already indi-
cated, 6° will be an isomorphism for r <3 <n —r. Moreover, we shall define homomor-
phisms y5: B* > Af where B'=Z®Z, B'=0, B®*=Z, B®= Z,. With this notation our main
theorem reads as follows:

TaroreM 1.1. Let X be a compact oriented smooth manifold of dimension n=4k—s,
and let w,, ..., u, be r tangent vector fields with finite singularities {A;}. Then

?680/1‘(“1’ oo s Uy) =7$ (bs(X))

where b*(X) € B® is defined as follows:

P=E@}(E~(~1)S)

B=0
¥=1E
=R

where E, S, R are respectively the Euler characteristic, the Hirzebruch signature and the (real)
Kervaire semi-characteristic of X.
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This theorem includes, as special cases, many results obtained in this direction by
E. Thomas and D. Frank. For a full survey of the subject we refer to the expository ar-
ticle [20] by Thomas. The paper [5] can also be read as an introduction to our present
more detailed work.

An interesting fact about the homomorphism 6° is that it is essentially the same as
the Hurewicz homomorphism s, — KR, for the homology functor KR,. This will be estab-
lished in the final section of the paper, Although we shall not use this fact anywhere, it
does provide a further justification for our choice of coefficient theory.

The proof of Theorem (1.1) occupies the next three sections. In §2 we construct our
basic relative characteristic classes and end up with the abstract K-theory version of
Theorem (1.1). That is to say, the equation holds in the (uncomputed) group A45=
KR(P; 5 3, Ps_1) and the global invariant 5°(X) is also not explicitly computed. These
computations are carried out in sections 3 and 4. In §3 we compute all the groups 4}
using an elegant result of G. Segal. In §4 we relate our characteristic classes with symbols
of explicit operators and then apply the index theorem to derive the identification of
b*(X) given in Theorem (1.1).

In §5 we study the local homomorphism 6° for particular values of », r and prove
the non-triviality statements referred to earlier. In particular, for low values of 7, this
makes Theorem (1.1) quite explicit and these cases are then tabulated.

Sections 6 and 7 are devoted to various extensions and refinements of Theorem (1.1)
in the two specially interesting dimensions 4%, 4%+ 1. In each case we derive a formula
for a field of oriented 2-planes with finite singularities, the method of proof being essen-
tially as in (1.1). In dimension 4%, for r vector fields with r divisible by 4 there is an
extra power of 2 which provides a strengthened variant of (1.1). In dimension 4k +1 we
also consider, for the first time, non-orientable manifolds. We show that, if w? =0, there
is an analogue of Theorem (1.1) involving a semi-characteristic based on cohomology with
coefficients in a local coefficient system. Finally, we show in §6, how Theorem (1.1) can
be used to define an interesting invariant for vector fields without singularities on
(4% — 1)-manifolds.

2. The basic construction

All K-theory of locally compact spaces is K-theory with compact support in the sense
of [9]. We recall that an element in K(X) for X locally compact is given by a complex
of vector bundles

a0

0 —— E° B, . Em 0. 2.1)
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which is exact outside a set U< X such that the closure U is compact. If 4< X such
that A c X — U then (2.1) gives an element in K(X — 4)= K(X, A).

Now consider a double complex {D"/}; . ;cn,, of vectorbundles with differentials
df: D% - D' and d¥: D"’ - D**1, Suppose that (D*, d3’) is exact outside U,< X and
that (D™, d{*) is exact outside U, for every ¢ and j. Let Ac X —Uy and B X —U,, and
consider the total complex (E°, d°) where E° =3, ;_s D¥ and d° is given by the formula

d*x=dfz+ (—1)'di x for x€ DY.

This complex is exact outside U=Uyn Uy, so if 50 A is' compact, we get an element
in"K(X-(4UB)=K(X,4U B).
In particular a commutative square

DO. Y

DI.O

o o (22)

Do,i ot bl. 1

where dy are isomorphisms outside U, and df are isomorphisms outside Uj, gives an ele-
ment in K(X — (4 U B)) provided (_fo 0 ﬁl is compact. In fact, the square (2.2) is equiva-
lent to the complex

0 pvo . pagpLe £, pui_ L0 (2.3)
where ¢=d{"*@dy°® and f=dJ*—~d}°. This in turn is equivalent to the triple
(D0.0 @ Dl, 1, DO,I @ Dl, 0’ ,y) R

where y is given by the matrix

0,0 0,1y %
(d1 (%)). (2.4)

g’ — @
Our basic construction depends on a certain square like (2.2) which arises in the fol-
lowing way. Consider the real vectorspace V=R, and let

AHW=§&HW®O

be the total complex exterior vectorspace, but with the Clifford multiplication (see
[5, §2]). If v€ A*(V), L, and R, denote left- and right-multiplication by v respectively, The
endomorphism 7= (i)"L,, where w=¢,... ¢, is the volume element, satisfies 7°=1. Let
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A% and A* denote the eigenspaces of 7. Over the tangent space TR*" = R** ® R*" consider

the square with trivial vectorbundles:

Ag—Te po
B, R, (2.5)
g e per

Over a point (%, v), with « in the base and v in the fibre of TR®**, the vertical maps
in (2.5) are R, and the horizontal maps are ¢L,. In this way we obtain an element in
K(TR?") = K* (point), and we shall now show that it is the canonical generator. From
(2.3) and (2.4) it follows that the element is given by the triple

ATOAT, AT DA, )

where y is given over a point (%, v) by the matrix

R, L,
( . ) . (2.6)
1L, R,

Thus the element is defined by the Clifford module A* for Cliff (R @ R?"), where the
action A — A°¥is given by (2.6) and the action A°*® — A® is given by the conjugate
matrix. It is easily verified that this is @+ 1-module in the sense of [6], and hence our
element is the canonical generator of K(C?").

If n=2k is even then A% are Real vectorspaces, i.e. invariant under conjugation,
so if we give TR** the antipodal involution along the fibres, the square (2.5) gives rise
naturally to an element in KR(TR*),

The square (2.5) will be the basis of our general construction of characteristic classes
or symbols. Its particular form is motivated by consideration of the elliptic operators
occurring on R?". In fact, the horizontal rows are the symbols of two basic elliptic opera-
tors on R*™ (see §4) and the vertical arrows define an isomorphism between these two
operators outside the origin. This background may help to explain the lack of symmetry
between the role of » and » components in (2.5). '

We now proceed to consider the global analogue of the local square (2.5). Let B
denote an arbitrary real oriented vectorbundle of dimension 4% over a compact space X,
and suppose we have r sections {u;,...,%,} of E which are linearly independent over a

closed set ¥ = X. Giving ¥ a Riemannian metric, we can assume that the sections are
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actually orthonormal over Y, and this is sometimes convenient, but for the moment we
need not make this assumption.

Let ¢E denote the Real space K (in the sense of [3]) with antipodal involution on
the fibres. Using the metric we can form the Real bundles A% (E), which we pull back
over the Real space ¢E x P,_;, where P,_; is (r — 1)-dimensional projective space with
trivial involution.

Now consider a point (v, 2)€ E x 871, where » is in the fibre over y€ X, and put
2(y) = Di_12;u,{y). Again using left and right Clifford-multiplication, we can consider the
square

Av(E) e o)
Rz(y) Rr(y) (2.7)
Acesm) Lo Aoy

This defines a square of Real vectorbundles and homomorphisms over :E x 871, Clearly
the maps are Z,-equivariant with respect to the antipodal involution on 87! and the ac-
tion on the bundles, defined by the trivial action on the upper row and multiplication

by (—1) on the lower. Hence over ¢E x P,_; we have the square

iL,

A%(E) A*(E)

2.8
Rr(y) Rz(y) ( )

L
A QH S AV E) o H

where () H denotes the Hopf bundle over P,_;. The horizontal maps are isomorphisms
over (E— X) x P,_, and the vertical maps are isomorphisms over (E|Y) x P,_,. Hence we

obtain an element
og (U, ..., %) E KR(GE|X - Y) x P,_,). (2.9)

If furthermore {wy,...,u,} are linearly independent over the whole of X, then the
vertical maps of (2.8) are isomorphisms over E X P,_; U (E|Y) x P,_,, and thus the square
defines an element in KR((GE|X — Y) x (P,_; — P, _,)).

When the dimension » of E is not divisible by 4 we form the bundle F = E ® R* where
n+s=4k. Then F has r+s sections {w_,,, ..., %g, %y, ... , %}, Where the first s are line-
arly independent over X. Hence if {u,, ...,u,} are linearly independent over ¥, then the

above construction yields an element

(*) When necessary we write H, to distinguish between the Hopf bundles over different pro-
jective spaces.
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o (U, oov, %) E KR((GF| X — Y) X (Ppygey — Pyy))
I (2.10)
KR (GE|X = Y) % (Prro—g — Py_y)-

This element is our basic characteristic class in its most general form. We shall now
specialize it to define global and local invariants as required for the general Hopf theorem.

If X is a 4k — s dimensional oriented compact manifold with boundary ¥ and E=TX,
the tangent bundle of X, then we shall write

o (U, «oe s Up) = o7 x (Uy, oon, Uy) (2.11)

This element lies in KR*((¢7X|X — Y) X (Pyy4-1— Ps_,)). Taking the index in the sense

of [9] we get an element
ind o (%y, ..., %,)€ KR* (P19, Pos). (2.12)
In particular, if ¥ = so that X is closed, {2.12) defines a global invariant for the manifold:
ind &%, ,€ KR*(Pyyg_y, Ps_y). (2.13)

Notice that for ¥ =0 the elements in (2.11) and (2.13) are restrictions of elements in (%)
KR (iTX X (Py — Py_y)) and KR*(P,,, P,_,) respectively. In fact, we can take r arbitrarily
large when ¥ =@,

Passing now to the local situation let X = B the unit ball in B and ¥ =89! the
unit sphere. Put n=4%k—s and let V,, denote the Stiefel manifold of r-frames in R",
Take E to be the trivial n-dimensional bundle over X, and let %€ 7tg-1{V 2, r) be given by
the frame w={u,,..., %,}. Then the construction (2.10) gives an element

6° (u) = aign{ty, ..., %)
which lies in
KFE (an X (B?— Sq-l) X (Pf+s—1 =Py y))= K-R4k'q(Pr+s—1: Ps—l)'
Using the periodicity map, this last group is KR* P, . ,, P, ;).
Thus we obtain a map

0 7g-a(Va,y) > KB¥ Py, Pyy). (2.14)

We shall show later that 6° is indeed a homomorphism. Notice that for ¢ =n, 6°(u)
can also be defined by (%) (2.12), thus giving a map

(1) For our purposes it is not necessary to worry about the different definitions of K for in-
finite-dimensional spaces. We simply use the notation K(P) as shorthand for im K(P,).

(2) We recall that the index for R coincides with the periodicity map.
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68: nn—l(Vn,r) - KRS(Pr+s—1’ Ps-l)' (215)
This is the local invariant which enters in Theorem (1.1).

Remark. It is well-known (see [4]) that a stunted projective space P,ys ,=Pyis 1/Psy
is naturally homeomorphic to the Thom complex P:¥; of the bundle sH, over P,_,. In

fact, there is the natural identification
P - r+s—1/Ps—1

defined as follows. A point in sH over x={x,...,2,}€P, ; is given by s functionals
@15 ..., @, on the line spanned by z. Hence the coordinates {z,, ..., %, p;(z), ... , ,(z)} de-

fine a point in P,,,.,. The map
sH, > Prya— Py

thus defined clearly extends to the required homeomorphism.
The element (2.10) thus lies in the group KR¥(iE|X — Y) x sH,).
Note the following important properties of the characteristic class (2.10).

Naturality. 1f f: (X', Y') - (X, Y) is a continuous function, then

Prog (s oo ) = ages(fruy, ..., fru,) (2.16)

where f :f*E|X'—Y' - E|X—7Y is the obvious map. In particular, taking X = BSO(n),
Y =B8O(n—7r) and E = E(n), the universal bundle over X we get a universal element ()

oS,,r € KR(MSOMm) MSO(n — 1) A P,y g1/ Py—y)
where M SO(n) denotes the Thom complex of E(n).

Multiplicativity. Let E and E be vector bundles over X and X’ respectively, and
let {uy,...,%,} and {uj,...,u;} be sections of E, E’, linearly independent over ¥ and ¥’
respectively. Then {u, +wi, ... , %, +u, } are sections of E x B’ over X x X', linearly inde-
pendent over X x ¥’ U ¥ x X'. Furthermore,

O (U F ULy eee s Uy F uy) = (H ) o (thy, vn s Uy) o55e (U, - 5 Uy) (2.17)

where the multiplication is carried out by the composite map

(1) We use A for reduced product.
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KR((E|X ~ Y) x sH,)@ KR*(GE'| X' — ¥') x ¢ H,)
¥

KR (B x iE'|(X - ¥) x (X' — Y')) x sH, x s'H,)
+A*

KR (GExiB' |[(X - Y)x (X' — Y) x (s+5') H,).

Here A* is induced by the diagonal

(s+sHH s H 8’ H
Pr—l) - PIE AP

or equivalently by the map
Pr+s+s’—1/Ps+s'—1 - Pr+s—1/Ps—1 A Pr+s'—1/Ps’—1

induced by projecting R"+*** =R"@R* @ R* onto the two subspaces R"®R*and R"®R*".
The multiplication by (H,)** is understood analogously.

The proof of (2.17) follows from the multiplicativity of the exterior algebra. We omit
the details, but remark that the factor (H,)*" occurs as a consequence of the fact that

the bundles
(EOR) x (B'®R*) and (Ex E'YOR*

differ in orientation by the sign (— 1),
Consider the special case X = point, ¥ =O, E=0 and s=0 mod 4. Then

Asa= (0, ... ,0)€ KR*(PH,) (2.18)

is the Thom class of the Spin-bundle sH,=R°® H,.
To see this first observe that the tensor product of a Spin (41)-bundle and any line

bundle again has a natural Spin-structure. In fact, the isomorphism
8O(41) X4, 0(1) ~ 80(41)
is covered by the isomorphism
Spin (41) xoq,0{1) ~Spin (41)

where O(1)={+1} acts on Spin (41) by left multiplication by the volume element o. In
particular, for s=41 we have an explicit Spin° (s, s) structure for the bundle (R°QR°® H,,
and analogous to the discussion following (2.5) it is easily verified that our square defining
05(0, ..., 0) indeed gives the Thom class as defined in [3]. Notice that the natural identi-

fication
sH
r-1 gPH»s—l/I,s—l
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induces a natural order of the s copies of H,, and so in turn a natural Spin-structure

on sH,.
Periodicity. By the Thom isomorphism theorem it follows that for §'=0 mod 4
KR((GE[X - Y)xsH,)~KR*((E|X - Y x (s+¢') H,)

where the isomorphism is induced by multiplication by A.y. Furthermore, according

to (2.17)
WS (g, ey W) = (s e ) A (2.19)

It follows that the element defined in (2.10) is essentially independent of the choice of s

modulo 4. The same assertion is therefore also true for the invariants (2.11) — (2.15).

Remark. One can get rid of the involution on E in (2.10) by the following trivial
observation. The diagonal homomorphism

A:0(n) = Onr)x0(mn) - 0(2n)
actually maps into SO(2#), and the restriction of A to SO(xn) has a unique lifting
8O(r) — Spin (2nr)

which takes the identity to the identity. Hence, the double of any vectorbundle has
a natural orientation, and the double of any oriented vectorbundle has a natural Spin.
structure. So let V be any oriented vectorbundle of dimension »n over a space X. V is
given the trivial involution and ¢V the antipodal. Then by the Thom isomorphism

KRGEV)~ KR PV @V ®iV)~ KO 2 V).

Now that we have defined our general characteristic class (2.10) it is quite trivial to
establish the following version of (I.1):

TEEOREM 2.20. Let X be a closed oriented manifold of dimension n=4k—s, and let
{uy,...,u,} be a set of vector fields, linearly independent except at the finite set of points
{4,,...,4,}. Then in the group KR*(P,.,_,) we have the formula for the global invariant

1
ind o , =.21930A‘(u1, s Uy)

where O4 (U, ..., u,) € 7,1 (V, 3) t8 the local obstruction to extending the vector fields.
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Proof. Around every point A, consider a disk B;c X and let §; be the bounding
sphere. By assumption the vector fields are linearly independent over ¥ = X — (Uj.1 B),

and we consider
o (U, ..., u,) € KR ((4TX, iTX[ Y) X (Pyys—15 Ps—1))-

Now we have the commutative diagram

KR((TX,iTX|Y) X (Pyyyoy, Poy)  —— KRGTX X (Prsyy, Poy)

_,,l ot

1
‘@1 KRS((ZTBH (@TB,'S,)) X (Pr+s—1a Ps—l)) “Toa KRS(P1+8—1’ Ps—l)

and clearly §* o (#y, ..., %,) = a%,,. Also, as remarked earlier, the index of the restriction

of o (ty, .., %) to B; is exactly 6°(O4,(w,, ... %,))s The formula follows.

3. Calculation of the groups A

In this section we shall tabulate the groups A;= KR*(P,.,_,, P,-;). They can be
calculated by various methods but the most convenient way is probably to use a result
of G. Segal and some associated exact sequences. We shall explain these sequences but
the actual details of the computations will be omitted.

Let O, denote the Clifford algebra of R with the quadratic form — (¢} + ... +27).
Clifford algebras are discussed in detail in [6], where they are listed in Table 2. It is seen
that they are matrix algebras, or the sum of two copies of a matrix algebra, over R, C
or H. For any compact space X let M,(X) denote the Grothendieck group of bundles of
Z,-graded C,-modules over X, and M7 (—) is the corresponding cohomology theory. In
fact M} is either real, complex or quaternionic K-theory (or a direct sum of 2 copies of
those). M,.(X) can be defined for Real spaces if we require the (,-module structure to
commute with the anti-linear involution on the Real bundles.

Now let @ be the multiplicative group consisting of +1. There is a natural map
M, (X) - KR (XxR" (3.2)

where KR;(X x R") is equivariant Real K-theory of X x R’ with @ acting on R" by mul-
tiplication. In fact if F=(F°, F') is a Z,-graded C,-module, then Clifford multiplication
by v€ R’ defines a homomorphism ¢: p*F° > p*F* where p: X x R” - X is the projection.
The triple (p*F°, p*F*, p) defines an element in KR;(X x R").



VECTOR FIELDS WITH FINITE SINGULARITIES 13
TrEoREM 3.3. (G. Segal). The map
MHX) - KR&(X xR,

defined as above, is an isomorphism.

This theorem may be proved by induction on r using the five lemma for two exact
sequences. The first is the exact sequence in KRg-theory for the pair (X x R x I, X x
R’ x I) where again & acts by multiplication on R" x I:

. > KRL(XxR™*Y) - KRL(XxR) - KR™(X) - .... (3.4)

The second sequence is established using the classifying spaces of Fredholm operators in

Hilbert space as discussed in [8]:
veo > ML (X)) - MY{X) - KR™(X) - .... (3.5)

As an application, the exact sequence in KRg-theory for the triple (X x B" x BY,
X x (B"x B%), X x B x §°°1) gives the following exact sequence:

c o ML (X)) > MYX) > ERYX X(Prg—Psy)) > .oon (3.6)
In particular for X = pt we get the exact sequence
. > Mipt) > Mipt) > KR(Priyy,Pyy) > .. (3.7)

from which we can calculate A;=KR*(P,,,—, P;-;). We just have to do this for s=0,
1, 2 and 3. The result is the following.

§=0: A'=KR(P,_))=2Z ®Z,, where a, is a power of 2, namely the least integer n
such that R” is a module for C,_;. According to [6] a, is given by the following table

11213
a1 2]4]4]8]8]8]

and a,,.,=16a,.
s=1: Al= KRYP,, P,) is given by the table

rmod8 |1 [ 2| 3 [4]5]
A | Z |2, 2,04, | Z,| Z |

6 -
0
§=2: A2=KR¥P,,,, P,) is given by the tables

and for r>3

r 1Y) 2 | 3
A3 z | zoz, | Zo4Z,
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rmod8 | 1 | 2 | 3 |
A2 | ZoZ, | Z290Z,0%, | ZoZ, |

Z, r#1 mod 4
A =KR¥P,,,, P,)=1Z®Z, r=1mod4r>1
VA r=1.

Remark 3.8. KR(P,_,) has generators 1 and (H — 1) for Z and Z, respectively. Hence
the map KR(P,) ~ KR(P,_;) takes Z to Z and maps Z,  onto Z, .

For s=2 the map A%,,/Tor -~ AZ/Tor is an isomorphism except for r =2 where it
is multiplication by 2.

Finally for s =3 the map 4% — A} is the projection onto Z,.

Hence we get the following table for A%, = KR*(P, P;_,):

s ] o0 |1]2]3
A | 202, | 0| Z | 2,

Here Z, = lim Zy is the group of 2-adic integers. Note that 42,-- 4% is multiplication by 2.
Note that the groups M;(pt) are given by the table

s I 0([1[2[3
Mt | Z0Z | 0 | Z | Z,

Moreover, the map M;(pt) - A%, arising in the sequence (3.7) is the identity for s+0

and for s=0 it is given by
(a,b) > a—bH = (a—b)—b(H—1) (3.9)

(note that (H — 1) generates the 2-adic factor in 4% = KR(P,,)). The groups M;(pt) will
be essentially the B° groups of Theorem (1.1) and the natural composite homomorphism
M35 (pt) - A% — A7 will be the 97 of (1.1). However, for s=0 we will change the basis
of Z®Z by the map (a,b) — ((@—b), —b) so that y?:Z®Z > Z® Z, = A} will be the
identity on the first factor and the natural projection on the second factor. In other
words B® is essentially the subgroup of A%, = KR(P,,) with given generators 1 and (H —1).

Returning now to the (4% - s)-manifold X of Theorem (2.20) we recall that the global
invariant ind oY%, ,€ 47 is actually the image of an element ind a%, . € 4%. To complete the

proof of Theorem (1.1) we will show:

ind «%, ., is the image of an element b°(X) = ind 8% € M;(pt), where 8% € M:(:TX); (3.10)
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ind 8% is given by the required combinations of E, S, B as in (1.1). (3.11)

(3.10) will be established now and (3.11) will then be dealt with in the next section by
identifying 8% with the symbol of an appropriate differential operator.
Now (3.10) will follow from the commutative diagram

M(TX) KR (TX % (P, — Ps_3))
ind ind (3.12)
Mi(pt) KR(Pos, Py 1)

provided we can construct an element 8% € M;(47X) which maps to a%, ., in the top row
(this homomorphism comes from (3.6) with X replaced by ¢TX and r = o). But the basic
square (2.7) which was used to construct a%, .. can also be used to construct §%. In fact,
if F=TX®R°® then A%(E) and A*(E) are both Z,-graded O;-modules. The grading is
given by even and odd forms and the action of C, is generated by the right Clifford
multiplications (the vertical arrows in (2.7)). The horizontal arrows of (2.7) give an iso-
morphism of A¥(E) with A*(¥) when lifted up to the non-zero vectors of E. This iso-
morphism is an isomorphism of Z,-graded Real (*) C;-modules because of the commuta-
tivity of (2.7). Hence we get an element 8% € M (4E) =~ M3 (¢TX) as required.

The map M;(iTX) - KR(GTX x (P, —P,_,)) of (3.12) may be viewed as the

composition
M (iE) - KR (iExR*) - KR(1E xsH)

where H is the Hopf bundle on P,. Comparing the definitions of 8% and %, it is then

clear that they correspond under this homomorphism.

4. Identification of the global invariants

In this section we shall relate the elements %€ M3(¢7X) defined in §3 with the
symbols of explicit elliptic differential operators. We consider separately the four values
of s. The case s=1 is trivial because 4% =0. The case s=2 is also rather easy because
A% - A% is Z -2 Z. This means that we only have to check Theorem (1.1) in this case
for r=1 and this is the classical Hopf Theorem. It is of course possible to prove this
analytically by relating the element

(1) E is given the antipodal involution as usual and the factor ¢ in (2.7) ensures that we then
have Real isomorphism.
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ﬁ§€ ME(TX)=K*TX) 2 K(TX)

with the symbol of the operator d+4:Q% — Q° on real differential forms (§=d* the
Riemannian adjoint of d). Note that B2 = —1 in this case so that Q has a complex struc-
ture, and 3 ¥ is the index of d + § viewed as complex linear operator.

We consider next the case s=0. Then
B% € M}(iTX)= KR(iTX)® KR(TX)
is just the direct sum of the two elements given by the top and bottom rows of our basic
square. Thus g% =p* @B~ where
B* = (AT (TX), A*TX), ¢*)

4.1
B~ = (AYYTX), AT (TX),¢7) .

and @* over a point v€ TX is the map ¢L,. Now zL, is just the symbol of the operator
d + ¢ on differential forms. Hence g%, ~ are just the symbols of the operators

B*: QY - Q%
B : 0% > QF
obtained by restricting d + 6 to these four subspaces of the differential forms (Q. denote
of course the + 1-eigenspaces of L, acting on Q). To compute the indices of B" and B~
it is easiest to compute ind (B* @ B~) and ind (B* @ (B~)*), where
(B7)*: Q% - Q¢
is the adjoint of B~. Clearly we have ind(B* @ (B~)*)=dim¢ 2H* —dim¢ 2H**1=F
where H? is the space of harmonic p-forms (and so by the Hodge theory is isomorphic to
H?(X,C)). On the other hand B*®B :Q, — Q_ is shown in [10] to have index (})
(—~1)*S. Adding and subtracting (and using ind (B™)*= —ind B~) we get
ind Bf=1(E+(—1)8)
ind B" = —} (B~ (- 1)¥8).
Since ind a%,., is the image of ind f% under the map M}(pt) — KR(P,.) given by (3.9)
it follows that
ind o, =E®4(E—(~1)8) (H-1). 4.2)

This completes the proof of Theorem (1.1) for the case s=0.

() In [10] the forms are split by the involution (= 1*L: the point is that on 2k-forms we
have L,=(— l)k*, where * is the duality operator of the metric.
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Finally we come to the case s=3. Then
B%€ Mi(TX)~ KH*iTX)~ KR (1T X)

(where KH stands for symplectic K-theory for Real spaces, as in [7]). On the other hand,
as described in [5], the semi-characteristic R(X) is the mod 2 index of the skew-adjoint
operator T =L, o0 (d+8) acting on the space Q°". Furthermore, it is shown in [5] that T
can be replaced by a 0-order skew-adjoint elliptic operator. As shown in [5] and [8] such
operators have a symbol in KR™'(iTX). In general, a skew-adjoint Fredholm operator 4
of a real Hilbert space V gives rise to the elliptic family over P, given over a point
{,y}€ P, by the operator zI +yA:V — V®H, where H is the Hopf-bundle over P;.
In our case the symbol o(T)€ KR™'(¢TX)=KRGTX®R) is defined by the triple
(AY(TX), A™(TX),p) where y is given over v@t€ TX DR by iL,, +t1.

The proof of Theorem (1.1) for the case s=3 will now follow from the following
lemma:

LeMMma 4.3. p%= —o(T)€ KR'(TX).

Proof. Since dim X =4%— 3 is odd we can find a nowhere zero vector field and hence
write TX = E ®R where E is an oriented (4 k — 4)-dimensional bundle. Then KR™'(:7TX) =
KR(iE) by periodicity. We will now show that 8% and — o(T') both correspond to the
element %+ fz € KR(iE), where f* are the elements given in (4.1) (with T'X now re-
placed by E). Consider first the element 8%. From the naturality properties of our basic
square it is clear that p%€ M3(iTX)=~ Mi(E) is the restriction of f3€ Mi(iE). On the
other hand the restriction Mi(iE) -~ M3(iE) can be identified with the homomorphism

KRGE)® KR(GE) - KR(GE)

given by (a,b) — a+b, and the periodicity (mod 4) of our basic square shows that B%

corresponds to
B%RE€MY(:E) = KR(E) ® KR(iE).

Since f% = % ® Bz the identification of p% with g% + Bz in KR(:E) follows.
We turn now to the element — o(7'). The image of — (8% + fz) under the periodicity
isomorphism KR(:E)=~ KR(iE ®C)= KR '(4TX) is given by the square over 1£ ®C

A B Lo ()

iL,

AT (E) AT(E)

2 —1722908. Acta mathematica 128. Imprimé le 20 Décembre 1971.
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where e€ E,, #€ X and 1€C. According to § 2 this is equivalent to the triple (A*(E) ® A~ (E),
A*(E)® A~(E), $), where ¢ over the point (¢, ) EE®C is given by the matrix

(z iLe)
iL, -1

Letting " denote the volume element of E, we have
be.y=% (0L, +AI) (I + Lo)+% (4L, — AI) (I — L,) =iL,+ (Re A) L, +i(Im ) I.

Now fix € X and let ¢ € (7T.X), be the section at x spanning the line complementary
to E,. Identify iRe, with the imaginary axis of €. Also A* ~ A®(TX) by the inclusion of
A¥(E) and by L, :AYE)-> A*(TX). With these identifications our element in
KR(GTX®R)=KR(iE®C) is given by the triple (A*(7'X), A*(TX), y') where 3’ is de-
fined over (v, Re )ETX DR, v=e+ (Im 1) ¢€(TX),, by

"/’(,v.Rei-) = (iLyy + (Re ) I) 0 L_g,).

But this is clearly isomorphic (under L_,,,) to the symbol for the operator T'= L, o (d + §).
This ends the proof of the lemma.

Lemma (4.3) involves an identity between certain universal symbols. It is quite in-
structive to state it in terms of the universal groups. 8% come from universal elements
p* in the equivariant group KRsou;(iR*), where I=%— 1. Then one can verify the fol-
lowing statements:

(a) KRsowun(iRY) — KRsow, (pt) =RS0O(41) is injective and its image is the ideal
generated by the representations

ot =AY - A%, ¢ =ATI-AY

(b) o* are the images of 8.

{(e) The restriction
KR5bw+n(iRY?) ~ KR58un(iR**?!) = K Rsoun(iRY)
is injective and its image is the RSO(41+ 1)-submodule generated by f* + g

From (c) and Lemma (4.3) it follows that o(7") comes from a universal symbol which
generates the universal group KR55.1, ((R**?) as RSO(41+ 1)-module.



VECTOR FIELDS WITH FINITE SINGULARITIES 19

5. The local invariant

The map
6° :nnﬂl(Vn,r) g KRS(PrJrs—laPs—l)

as defined in §2 is our invariant for the local obstruction for extending a set of » vector
fields with finite singularities. It is therefore important to know how nontrivial 6° is.
We shall show that §° is an isomorphism for r <3 <% —r. Furthermore, if » is divisible
by the 2-power a, and r is not divisible by 4, then 0° is the projection onto a direct
summand of the form Z®Z,, and a, is the highest possible 2-primary order of an ele-
ment in s, 4(V, ). For instance, it is known (see [18]) that for & >1, rg;—1 (Vax—1,5) =
Z®Zg, hence 6° is an isomorphism in this case. If r is divisible by 4 there is a modi-
fication of the above statement.
More generally consider the map defined by (2.14):

08 : nq—l(Vn, 7‘) - Rn+s‘a, (Pr+s—1,Ps—1) (5'1)

where n+ s is divisible by 4. We start with some elementary properties of (5.1). For
two homotopy elements u€m, ,(V,, and «'€my_,(V,, one can form the join

Ut €744 g—1(Viyin, ;) i the sense of James [15].

LemMA 5.2. The map 0° has the following properties.

1) 6° is @ homomorphism with respect to addition.
2) Let uena‘l(vn.r) and uleﬂa'—l(vn‘,r)' Then

0°(w) 6 (w') = (H, )™ 6°** (uxu').

3) Let v,€m,(S"™) be the generator, then 6°(1,) is the canonical generator of KR*(P,, P,_,).
4) Let u€ny(V, ,) and g€m,(S), then

(w0 g)=g*(a,) 0°(u)
where o'QGK’;%“(S") is the canonical generator.
Proof. 1) Simply follows using (2.16) for the pinching map
(B%, 871 - (B'Vv B9, 81y 8oL,
2) Is immediate from (2.17).

Now 3) was verified in §2 for » divisible by 4. For general n we can apply 2) and deduce

that
(0°(2a))* = 0" (40
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showing that 6°(:,) is always a generator of KR*(P,, P,_,)=Z. The identification of sign
can be checked explicitly from the definitions but it also follows from the interpretation
of 6° as a Hurewicz homomorphism which will be given in §8.

Finally 4) is obvious from (2.16).

Now consider the homotopy exact sequence for the fibration V,_y,,_; = ¥V, , > S"%
> TeaVactir-1) = Toea(Vns) > TaalS™Y) > ... (5.3)
If n+s=n—1+s+1 is divisible by 4, 6*** and 6° maps (5.3) into the exact sequence for
the triple (P, ,—,, P;, P;_;), and we clearly have a commutative diagram
nq—l( Vn-—l,r—l)"__—_’ Tg-1 ( Vn,'r) e — 'R (Sn_l)

05..%—1 0.9 0.9 (5_4)

KRM-S_Q(PH—s-—hPs) '_'_’KRM}‘S“Q(PN.—S—I; Ps—l) —_"’KRn‘Fs*q(Ps; Ps—l)
Furthermore, for the boundary operators

a:7"/'11—1(‘37"_1) - ﬂa—z(Vn—l,r—l) and

0: KR"*"YP,, P,_;) - KE"" "N P, ;P
we have

Lremwma 5.5. The following diagram commutes

M1 (Sn_l)—“_‘—‘—’ nq—Z(Vn—rl.r—l)

03 63+1

KR™-3(P, P,_)—0 L KR™s-e (P, | P,

Proof. Let w€my—y(8"™) = mt4-y(V s, rs Vu-1,r-1) be given by r vector fields {u,, u,,...,u,}
of the vector bundle B¢ 'xR", such that over 8¢ 2< Bl 4, is constantly the vector
e,=(0,...,0,1)in R". Let W denote the mapping cone of the inclusion Py/P,_; < Pyys/P;-;.
Write W=P,,,_, UP,xI so W=W/P,uP,,xI, where P,=P,x {1} and P,x {0} is
identified with P,cP,.,_,, Consider the trivial n+ s-dimensional bundle over B*™* x W
and make a construction as in (2.10) using the constant last s+ 1 vector fields of R***

over P, and the constant last s vector fields over P,_; x I. In this way we get an element
2 € KR™3((BTY, 8% x (W, Pyygoy UP, U Pyy x I)).

The restriction of « to
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KR*((BY, 8072) x (Pyx I, PyU Py Py x I)) = KR"**9(P,, P,_))
is easily seen to be —0°(u). Hence — 86°(u) is simply the restriction «' of « to
KRB, 89°%) x (W, Py U P,y x I)).
Now because %, over S?72 is constantly e,, we see that o is naturally defined in
KRr((Be, 842 % (W, P, x I))= ER™* % YP,, .1, Py)
where it exactly represents the element 6°*gu.
Prorosirion 5.6. Let r<3. The map
0 i1 (Vi r) > K8 7UPpyso1, Pscy)
is an tsomorphism for n —3<qg<n+3 —r and n>r+3. In particular
0,y (Voy) > KR(Pyisq, Pscy)
s an isomorphism for r <3 and n=r+3.

Proof. For r=1 this follows from 3)-4) of Lemma (5.2), using the well-known fact
that KR-theory detects the Hopf-map #:8° — 8% and its square 5%:8* > 8% The re-
majining cases now follow by induction on » using Lemma (5.5) and the five lemma.

We shall now compute §° in some other special cases. Again let ¢,€x,(S") be the
generator, and consider the homotopy exact sequence for the fibration V,, , — V41,541 ~ 8™
Denote 01,€m,_,(V, ,) by d, ,.

Prorosirion 5.7. 6°(d, ,)EKR® (P, P,—,) comes from KR*(P., P, ) and the
value is

n=0 mod 4: 6°d, ,) =1+ HEKR(P,_,).

n=1 mod 4: 6*d, ,) is the image in A% of the generator of A% =Z,.

n=2 mod 4: 6%d, ,) is the image in A? of the generator of A%=2Z.

n==3 mod 4: 6%(d, ) =0.

Proof. d, . is the local obstruction at. oo for the r vector fields.on 8"=R" U co given
by the standard r-frame of R". The proposition now follows by applying our main Theo-
rem (1.1) and using the values of E, S, B for S

For the remainder of this section we assume n =4k unless otherwise specified. Again,

let C,_; denote the Clifford algebra generated by {e,,...,e,_;} subject to the relations
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€;= —1 and e¢;¢,~ —¢¢, for i+j, We shall sometimes think of C,_, as the even part O? of
C,, i.e., generated by {ese,, ..., ege,_}, Where {e,, ..., e,_;} generate C,. Also the number
a, is the dimension of an irreducible C,_,-module, or equivalently, the dimension of the
even part of a graded C,-module.

Suppose » is divisible by a,, i.e. R*~ M, a module for C,_;. M defines a Clifford ele-

ment ¢, €7,_1(V, ) by the frame

Cri(@)={z, 617,852, ..., 6, 7}

This, of course, depends on the choice of coordinates for the module M, and, if r is divis-
ible by 4, there are different possibilities for the choice of module. For instance, if n=ta,
where ¢ is odd and 4 divides # there are exactly two modules A* and A~. We shall always
choose the coordinates such that the orientation is induced from the complex structure
defined by restricting to ¢, < C,_;. This determines c, , uniquely for 4 /r. But if n=ta,

as above and 4|, then we get two different elements ¢t . and ¢y ..
Lemma 58. Let ¢, €m,_4(V, ,) be a Clifford element as defined above. Then
0%c,,) = 1E€KR(P, ,).

Proof. Strictly speaking 6%c, ,) lies in KR»™P,_,) or KR(ET(B*— 8" ) x P,_,) and
is given by the square

i L

AT Vs, Aoad
Rz(y) Rz(y) (5'9)
iL,

A oH AQH

where y€B", vER" and z€8"1. Here 2(y) is given by the Clifford module structure of
C,-, on R”. Identifying O, ;=% 8! is the unit sphere in R’ with the basis {1,¢ze,, ...,
ege,_1}. In this way 2(y)=o(z) (y) where g:Spin (r) -~ SO(n) is the Spin-representation
defined by M, and 2€8"* < Spin (r).

Now lift ¢ to p:Spin (r) — Spin (), i.e., p=mo p, where 7:Spin (n) - SO(n) is the
covering map. This is clearly possible for r > 2, in which case Spin (r) is simply connected.
For =2 the irreducible C,._, module oceurs with even multiplicity because n=4%, so we
can lift according to Remark following (2.19). For r=1 the lemma follows from Lemma
(5.2), so we agsume r>1. The lifting is uniquely determined if we require g(1)=1. Let
e€Ker (Spin (r) —~ SO(r)) denote the element —1€C?. Clearly p(¢) = — 1€.80(n) and there-
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fore p(g)= + w, where w€Spin (n) is the volume element. From our orientation conven-
tions it follows easily that g(e) = w (it is enough to consider r = 2). Hence g( —z) = g(c x) =
w p(x).

We thus have a map §:87* — Spin (n) such that #(y) = p(z) 'y g(z) for €S~ and
y€R". Furthermore, § is equivariant with respect to the involutions: multiplication by
—1 on S~! and multiplication by « on Spin (n).

It is now easy to check that right-multiplication by p(x)~! transforms the square
(5.9) into the square

Ap—Le, poue
R, R,
A?x.dd oL v Ae_v

which represent the periodicity class in KR™™(P,_,).

Tt follows from Proposition (5.7) and Lemma (5.8) that §°:7,_4(V, ,) — KR(P,_,)is
onto for n divisible by @,. In fact it is (with certain modifications) the projection onto a
direct summand. Before showing this, let us define a modification of § for r divisible by 4.

Put
75;:,—1( Vn, 0= Im [nn-—l( Vn,r+1) = Tpal Vn,r)]' (5'10)

We shall define a map
0 :mns(V,,) — KR(P,). (5.11)

Consider the commutative diagram with exact columns

0

a1 (877 KR(P,,P,_1)
| g°
7'z'n~1(Vn.1'+l)—_—’ KR(Pr)
(5.12)
; 6°
Tn-1 (V) KR(P,_,)
A
0

According to 4) in Lemma (5.2) the map in the top row of (5.12) is just the Hurewicz

map 7, (8" ~ K}’E""‘I(S"‘l). For >0 the image of this map consists of torsion
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(as one sees by taking Chern characters). However, KR(P,, P,_;) ~Z for r divisible by 4,

8o the image is actually zero. It follows that the map
ﬂn—1(Vn,r+1) - KR(P,)
factors through 7, _4(V,, ), thus defining the desired 6'.

ProPOSITION 5.13. Let n =4k be divisible a,, and assume r <n/2.
1) Suppose 4 [r. Then
e:nn—l(Vn,r) - KR(P, ;) ~ ZQ')Za,

is a projection onto a direct summand, and Z, is the highest 2-primary cyclic summand in
nn—l(Vn, )

2) Suppose 4|r and let n be divisible by a,.,=2a,. Then

0 :wn-1(Vn,) > KR(P,) ~ Z®Z,

r+1

is the projection onto a direct summand, and Z, ,  is the highest 2-primary cyclic summand

00 7,1 (Vy,p)e

Proof. Consider the Adams spectral sequence for P,y ;41 = P,/P,_,—;. It follows
from {1], Theorem 2, that the highest 2-primary order of m,_,(P,41,r+1), for r<nf2, is at
most 2a, in case 4 /r and at most 2a,,, for 4|r.(1) It is well known (see [16]) that
Tn-1(Vis1,r41) 271 (Prig, eiy) for r<nf2.

The fibration p:V, , - 8* ! is split by the Clifford element ¢, ,. Hence we have the

following diagram with exact columns and rows

Tln (S

. 1\
\‘ A (Vo) = 7,73 (877) (5.14)

0—"‘“—’7tn_1(Vnn1,r—1)—_’7ln
. *
1
Tn1(Vartrs1)-

Now consider x=d, ,—2¢c, , in n,_4(V,,). By (5.7) and (5.8) 6(x)=H—1 so z has or-
der at least a,. On the other hand, if 4 /7, j.= — 2. ¢, , has 2-primary order at most a,.

Hence j, @, =0 modulo odd torsion; i.e., @,z =8(m,) modulo odd torsion for m€Z. But

(1) We are indebted to Elmer Rees for showing this fact to us.
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in that case 0=p.a,x=2me, 1, so m=0. We conclude that the 2-primary order of z is
a,, from which 1) follows easily. The proof of 2) is analogous.

Since 6° is an isomorphism for r<3 and n>r+ 3 (Proposition (5.6)), Theorem (1.1)
gives a complete answer to the problem of expressing the sum of the local obstructions
in terms of global invariants, in case r <3 and X is oriented. Emery Thomas has already
listed the result for # =2 in [20], Table 1. Let us make the corresponding table for r=3:

dim X>6 | w,_41(V, 35 ind xx
4k Z0Z, | BX)®}EX)~—(—1)*8(X))
4k+1 Z, RB(X)
4k+2 ZoZ, 1EX)®0
4k+3 Z,®Z, 0

In particular we have the following necessary and sufficient conditions for having 3 line-

arly independent vector fields on a simply connected manifold(?)

dim X6 ,
4k Wype—o(X) =0 E(X)=0 8(X)=0 mod 8
4k+1 0*wy,—o(X)=0 R(X)=0
4k+2 Wy(X)=0 E(X)=0

45+3 | 6wy, =00

Here, as usual, w, is the i-th Stiefel-Whitney class and 6*: HY(X, Z,) — H**Y(X, Z) is the
Bockstein homomorphism.

Let us mention as a curiosity, that we also can give necessary and sufficient condi-
tions for the existence of 5 vector fields on 3-connected manifolds of dimension 8%, k> 1.
We have already mentioned that 6°:sg;_y(Vyy 5) = Z® Zg is an isomorphism. Hence the

conditions are
Wer-4(X) =0, BE(X)=0 and S(X)=0 mod 16.

6. More on dimension 4 k

In this section we shall concentrate on dimension 4% and obtain a few refinements
and extensions of the basic theorem.
First we consider the problem of fields of oriented 2-planes on X with finite singu-

larities. Thus we suppose given an oriented 2-dimensional sub-bundle of 7'X outside a

(*) This assumption can be removed for dim X==4%+ 1.
(?) As shown by Massey this condition is always fulfilled.
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finite set of points {4,}. If we fix a Riemannian metric on X such a field of 2-planes is
described by a section u of A*TX) outside the {4,}, normalized so that the Clifford
product wu= —1. If u;, u, are a local oriented orthogonal basis for the 2-plane, then
% =1, U, in the Clifford algebra.

Let G, o =80(n)[S0(n—2) x 8O(2) denote the Grassmannian of oriented 2-planesin R”.
Then the projection p:V, , - G, ,has fibre 8*=S0(2) and 80 Py 175, 1(V,.5) = 7—1(Gy. )
is an isomorphism for %> 3. Now for n=4Fk (k> 1) we have =,_(V, ;) 2 Z @ Z,, the iso-

morphism being induced by
0:7,-1(Vs,2) > KR(P\)=Z®KR(P,)

(see Proposition (5.6)). Hence s, (G, ) =Z®Z, and we may ask for a formula giving
the sum of the local obstructions for the field . Thomas [19] has determined which in-
tegers can occur as the sum of the local Z-obstructions. We shall now derive a formula
for the sum of the local Z,-obstructions, showing in particular that this part is indepen-
dent of the choice of u.

Going back to our basic square (2.8) for r =2 we write

Zy Uy (Y) + 22 Ua(y) = uy(y) (2, — 25 %(Y))

where % =u, u,. This exhibits (2.8) as a composition of two squares (1)

iL,

AS(B) ASY(E)

-R U 'Rux
. L,, ]

A (B)—2— A%V(E)

odd ’I:L,, ev J
AYYE)@H—AY(B)@H
Applied locally this expresses our homomorphism
O:nn—l(vn, 2) - KR(PI)

as a sum of two homomorphisms 6; and 6,. Now the top square is independent of z and,
by (5.8), 6, projects onto the Z.summand of KR(P;). Hence §, is the projection onto

Z,= K}(Pl). But since 0, only involves w (and not u,, %,) it can be used to define a re-

(*) It is well known that composition is stably homotopic to direct sum.
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lative characteristic class for a global 2-field w. The corresponding global index is, in the
notation of §4, ind B~ (1 — H). Using the formula for ind B~ given in §4 we obtain finally

the following result:

THEOREM 6.1. Let X be a closed oriented manifold of dimension 4k, k> 1. Let u be
a 2-plane field with a finite number of singularities. Then the sum of the local Z,-obstruc-
tions is 3 (B(X)— (—1)* 8(X)) mod 2.

When the number of vector fields is divisible by 4, we get a theorem analogous to
Theorem (2.20) using the local index map (5.11) defined on the subgroup my_1(V, ,) <

Tn-1(Va,r)-

TaeEoREM 6.2. Let X be a closed oriented manifold of dimension n=4k, and let
{4y, ..., u,} be a set of vector fields as in Theorem (2.20). Suppose r is divisible by 4 and
suppose that at every singular point A,€X the local obstruction Oy (%, ...,%,) lies in
7n-1{Vn,,). Then in the group KR(P,) we have the formula

i
ind OC(}r_r+1 = 13210'(0441(“1’ very ur))'

For the proof of this theorem first observe the following. Suppose X is the union of
two manifolds W and W’ with common boundary ¥ =W n W’ and let {u,,u,,... .U} be
any set of vector fields (» not necessarily divisible by 4) independent over ¥. Then clearly
by excision

ind a%,rs1=1nd o (%, ... , %,) +ind oSyp{uq, ... , %) (6.3)
in KR(P,).

In particular for the proof of (6.2) put W= U}, B, and W' =X —(Ul1B,) and
Y = U}{_18,. Choose a vector field u, on X, never linearly dependent on {ugy ..., u,} over
Y (this is possible by assumption). Formula (6.2) then follows from (6.3) and the following
proposition.

PrOPOSITION 6.4. Let W be a compact oriented manifold with boundary OW, and let
{%gy %ys ..., %, } be a set of vector fields, linearly independent along 8W. Suppose r is divisible
by 4. Then

1) ind oSy (g, %y, ... , ;) EKR(P,) depends only on {uy, ..., u,} and not on u,.
2) If furthermore {u,, ..., u,} are linearly independent over all of W, then

ind % (tg, ..., %,) =0 in KR(P,).

Proof. The first statement follows formally from the second. Thus detine a manifold
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W by gluing a collar (W) x I on W such that W is identified with 8W x 0. Now suppose
u, and wg are two vector fields on W so that both sets {u,, uy, ..., %,} and {uo, uy, ..., %}
are linearly independent on 8W. We then define a set {zy, vy, ..., v,} of vector fields on W
such that v, is wy on W x 1 but , on W< W, and such that v; for > 0 is the natural

extension of u, to I’f’, constant along the interval J. By excision
ind ocﬁ,(vo, co vy =ind oty (g, ..., v,) +I0d oty (ug, %y, .., U,).

Also W is diffeomorphic to W in such a way that ind a (v, ..., v,) =ind (U0, Yys + e 5 Uy).
Hence statement 1) is a consequence of the fact that ind ogwx;(vg, vy, .-, ¥;) = 0 accord-
ing to 2).

In the proof of the second statment assume for convenience that {w,...,u,} are
orthonormal over W and that {uy, u,,...,u,} are orthonormal over dW. Setting T=TW
for short, we find that «y(%,,...,w%,)EKR((GT,tT|dW) x P,) is the image of an element
bEKR((:T,iT|oW) x (P,, P,_,)) under the map

7*: KR((T,iT |oW) x (P,, P,_;)) — KR((T,iT|oW)x P,)
(see §2).

Now the pair (P,, P,_,) is relatively homeomorphic to the pair (B, S1) of the ball
and the sphere in R’. Let BW and SW denote the ball- and sphere-bundle of TW, and
let w: BW - W be the projection. The vector fields {u,, %,, ..., %,} then define a map

f:(W,oW)x (B',8 ) — (BW,SW)
such that the induced map
f:(T,iT|oW) x (B, 8Y) - (x*(T), x*GT) [SW)
has the following property. The bundle #*(#7) = T @7 over W has a Thom class
Ar€ KR(z*(T), n*GT) | SW) and f*ip=b.
The map f is defined by the formula
flw, y)=( Vr—]—ylﬁ Up(w) + 4y uyw) + ...+ y, u, (W)

for w€W and y=(y,, ...y, )EB".
At this point let us recall the definition of topological index [9]. Embed W in R"*¢

with normal bundle N of dimension ¢. The index map
KR((iT,iT|dW)x P,) -~ KR"e"*q(P,)

is defined as the composite map of the Thom isomorphism



VECTOR FIELDS WITH FINITE SINGULARITIES 29
®:KR((iT,iT|oW)x P,) ~ KR((N@iN, N ®iN)|n 1oW)x P,)
and the map induced by the Thom map
g:(R™CM) . (N@iN)* /(N ®iN |z~ o).
‘We have analogous maps for P, replaced by (P,, P,_,).
By naturality ind oy (g, ... , %,) =7* 0 g* o O(b) (6.5)
where j*: KRR an+ex (P, P, ,)) - KR"e""YP,).

We also have the commutative diagram

KR(GT,iT|oW) x (P,, Py_y)) DI A KR(T ®iT)

I .l

KR(N®iN, N®iN|a1oW) x (P,, P,_})) «— KR(T®iT® N @iN)

lg*

KRr+a,nta (Pr’ Pr—l) KR(Rn+a,n+q) x W

where fis induced from f in the obvious way.
Clearly ® () is the Thom class of the trivial bundle R"*%"*¢ x W, and therefore in-
duced from the sphere (R*™*%"*9)* Tt follows that g* o ®(b) is induced by the equivari-

ant map
p 0]?0 g: (Rn+q,n+Q)+ /\ Sr — (Rn+q'n+Q)+

where p:(R*™%"4x W)* - (R™*%"9)* j5 the projection. But, as we observed for the
definition of (5.11), the image of (po f og)* in KR-theory consists of torsion. On the other
hand, KR"¢."*¢(P,, P,_,)=Z for r divisible by 4. Hence g*o @(b) =0, and consequently
ind aw(u,, %y, ..., 4,) =0 by (6.5).

The Theorems (1.1) and (6.2) have the following corollary due to Mayer [17] and, in
a weaker form, to Frank [14].

COROLLARY 6.6. Let X be a closed oriented manifold of dimension 4k and suppose
X admits r linearly independent vector fields. Then the signature S(X) is divisible by 2 a, for
4 [ r and it is divisible by 2a,,,=4a, for 4|r.

Explicitly the signature is divisible by b, where b, is given by the table
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4| 5] 6] 7] 8

r|1]2]3]|
| 2] 4] 8] 16|16 ] 16 | 16 | 32

b

o

and b,,3=16-b,

We conclude this section with a different application of our characteristic class (2.9).
Suppose X is the boundary of an oriented manifold W of dimension n=4%k and let
{uy,..., %} be linearly independent vector fields on X. We shall define an invariant
Ox(uy, ..., w,) in KR(P)/(1+H)=2,,  , which does not depend on the choice of the
bounding manifold W.

First let v denote the outward pointing normal vector field on X, and consider
ind aw(v, Uy, U, ... , %,) E KR(P,). (6.7)

Now let W’ be another manifold with 8W'=X and consider the closed manifold W =
WU (— W’) such that X=W n (— W’). Here — W’ denotes as usual W’ with the opposite

orientation. By excision we have

ind aw(v, 4y ..., %) +ind g (v, 9y, ..., ) =ind o . (6.8)

The outward pointing normal on X with respect to W’ is —v, so we actually want to
compare (6.7) with the element ind oty ( — v, uy, ... , %,). The change of orientation amounts
in KR(P,) to multiplication by H. Furthermore, the shift from » to —v corresponds to
the map induced in KR(P,) by the map of P, which changes the sign of the first coordi-

nate. This, however, induces the identity, and so
ind o_w (v, Uy, ..., %) =Hind ay-(— v, %y, ..., %,).
Hence using (4.2), we deduce from (6.8):
ind ot (v, Ug, .. » Uy) —ind oy (— 0, Uy, ..., u)=(—1F*IS(W)-1 mod (1+H) (6.9)

where S( I/f/) is the signature of the closed 4 k-dimensional manifold W. As noted by No-
vikov the signature can be defined for manifolds with boundary, so that §( W') =8(W)—
S(W’) (see [10]). It follows from (6.9), that the invariant

Ox(uy, ..., u,)=ind aw(v, uy, ..., u,) + (— 1)5S(W)E KR(P,)/(1 + H) (6.10)

is independent of the choice of W.
If X=8""1 n=4F, then 0y is induced by the restriction of

Bo:nn—l(Vn,r+1) - KR(‘PT)
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to the set pr'(t,-,) where Py 17,1 (Vy ri1) = 7,-1(8*Y). In particular, if a,., divides =,

then the Clifford element ¢, ,., defines r vector fields on S~ *. According to Lemma (5.8)
esn—l(cn.r-H) =1 (6.11)

Consider the map X — XV 8"* defined by pinching the boundary of a disk em-
bedded in X. This map defines an action of 7,-,(V,., ,) on the set of r-frames on X.
Thus if {u,,...,u,} is a set of vector fields on X and Y€m,_(V,-1.r), we get a new set of
vector fields {uy,..., V. Mapping 7, 4(V,_1,) into 7, (V, ,+1) we have defined 6°
on this group, and it is immediate that

Ox({uy, ..., 4 )V)=0x(uy, ..., %)+ 0%y). (6.12)
‘We now have

ProProsiTION 6.13. Let X be a closed n-1-dimensional oriented manifold, and suppose
n=4Fk is divisible by a,.,. If X has one r-frame field then it has at least a, ., non-homotopic
r-frames. If furthermore X ts an oriented boundary, then these r-frames are distinguished by
the invariant 0.

Proof. The manifold Y =X U (—X) is clearly a boundary (of X x I), and we let
Hty—1(Vy-1.r) act on the end X x 1. Using (6.12), and the fact (Proposition (5.13)) that
there is an element z€m, ((V,_,.,) with 0%x)=2 mod H+1, we easily verify the first
statement. The second statement is equally obvious.

7. More on dimension 4 k+1

We now proceed to further refinements in dimension 4k + 1. First let us remark that
the skew-adjoint operator 7', with index the semi-characteristic, can be used to obtain
information about 2-plane fields.

Again let X be a closed oriented manifold of dimension n=4%k~+1 and let 7'=L,o
(d + 6) be the skew-adjoint operator on the space Q°%(X) of real exterior forms. Suppose
that TX admits a 2-plane field » over ¥ < X. Clearly Clifford multiplication by u defines
an automorphism of the symbol for 7', so a construction analogous to (2.10) yields a

characteristic class
Ex(w)EKR™YGTX|X — Y) x (P, — Py)). (7.1)

Obviously &x€ KR ((¢TX) x (P, — P,)) is simply o(T") (H — 1), and the index in fR*l(Pl) =
KR(pt) is B(X) r?, where n€ KR~ (pt) is the generator. Also & defines a local invariant
6: 712G, 9) = Z,, which is in fact an isomorphism. We therefore obtain
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TEEOREM 7.2. Let X be a closed oriented manifold of dimension n=4k+1 and let u
be an oriented 2-plane field with singularities at a finite number of points. Then the sum of
the local obstructions is the semi-characteristic R(X).

Until now we have supposed that X at least was orientable. We shall now extend
the definition of the semi-characteristic to a wider class of manifolds and thereby solve
the problem raised by Thomas [20] concerning the index of a 2-frame field on a 4&+1-
dimensional manifold satisfying w?=0. Thomas has shown that if w}<0 then both 0 and
1 in Z, occur as the index for a 2-frame field. On the other hand he has also shown, that
the sum of the local obstructions is independent of the choice of 2-frame, provided w? = 0.
Manifolds satisfying this condition are studied in [13], and we recall some of the basic facts.

Let o :X —» X denote the orientation covering and let ® denote the associate real

bundle. Consider the Bockstein exact sequence for the coefficient sequence
Zy— Zy— Zy.

The condition w?=0 implies that there is a Z,-covering I': ¥ — X, such that if g is the
corresponding automorphism of ¥ of order 4, then Y/g? is the orientation covering X of X.

Now Z, acts on C by multiplication with ¢. Hence I" gives rise to a coefficient sys-
tem L of complex numbers, and L%}L =0 (;%G. The cohomology H*(X, L) with coefficients

in L has a cup-product
H*X, Ly HY(X,L) - H%X,0 %0).
This defines a Poincaré pairing
H 77X, L) H*(X,L) - HYX,0 CEC) =C.

It therefore makes sense to define the semi-characteristic

R, (X)=1} (ﬁ:odimg H{(X, L)) mod 2
for n odd. From now on, we shall assume n=4k+1. R, (X) is again the index for an
elliptic operator. L is a flat complex line bundle so H*(X, L) is the homology of the de
Rham complex Q*(X, L) of sections of A*(TX)®L. Q*X, L) is just the forms « on the
4-fold covering Y satisfying ¢* o =ta.

‘Again d+ 6 defines an operator D,:Q% (X, L) - Q% (X, L) and clearly B, (X) =
dimgKer D;. Let L™* denote the conjugate line bundle of L. Clifford multiplication then
induces
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OXX,0)R0Q%X,L™) - Q%X, L)
or equivalently an anti-linear map
QYX,0)Q0%X, L) -~ Q%X,L).

In particular left multiplication by the volume form @€Q"(X, ) induces an anti-linear
map L, : Q*X, L) - Q¥ (X, L) and the composite operator T, =L, 0D, is a skew-ad-
joint anti-linear operator of Q¥ (X, L).

As explained in [8] and [12] such operators have an index in KR™? (pt) = Z, equal to
the complex dimension of the kernel. In fact, if A:¥ — ¥ is an elliptic skew-adjoint anti-
linear operator of a complex Hilbert space V; then we get a family of elliptic operators
over OP,. Over a point {z, y}€CP, this family is defined by 2l +yA4:V - VRH.

Hence T';, has a symbol ¢(7;) in KR%(:7'X) and ind ¢(7T;) = B (X) 5% in KR™* (pt) = Z,.

Notice that if X is oriented and Z is the trivial line bundle then 7, is just the com-
plexification of the operator 7’ and o(T') = o(T) 9.

At this point we can clearly construct a relative characteristic symbol for an orien-
ted 2-plane in analogy with (7.1). But unfortunately the index map of this element will
end up in KR %P;)=0. Suppose even we had a 2-plane field « without singularities.
Right multiplication with « would then just give a linear endomorphism R, of Q*(X, L)
with square — 1, and this would imply nothing about the dimension of the kernel of T';.

On the other hand, if we have a twisted 2-plane field, i.e., a plane field with oriented
complement, then this gives an element 4€Q?* X, ®) and R, is an anti-linear endomor-
phism of square —1. Hence Ker T is quaternionic and therefore of even complex di-
mension.

Notice that in the oriented case, there is no difference between twisted and untwisted
fields; but in the non-orientable case the analysis forces us to restrict to twisted fields.

In order to construct the corresponding characteristic class we need an involution also
on the projective space. Thus conjugation in R*=<¢R” @ R? induces an involution on P,_,,
and we shall denote this Real space by P?.%, The Hopf bundle H is clearly equivariant,
so H®C has a natural Real structure over PP-¢, Stunted projective spaces with involu-
tion occur naturally as Thom complexes with involution. For example, P»**/P-%= P

Now return to a manifold X of dimension 4k + 1 satisfying w} =0 and choose a coef-
ficient system L as above. Suppose that « is a twisted 2-plane field over Y< X, ie. u
is a section over 'Y of A}(TX)®®, satisfying u*= —1. For z,€R and z,€C such that
25+ |2 P =1, we form as usual z(y)==,+z u(y). Also let z'(y)=wx,—z,u(y). Because
R, is anti-linear and R%,,= — 1, we have RB,.,0 R,,= 1. Hence R, is an automorphism
of the symbol for 7';, and we therefore get a characteristic class
3—722008. Acta mathematica 128. Tmprimé le 20 Décembre 1971
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ak(u)EKR¥(TX|X — ¥) x (PR®C) — PR))) = KR~¥(TX|X — ¥) x (P12~ P*1). (71.3)

The class a%€ KR *((TX) x (P%%*— P%Y)) is just o(T,) (H — 1), hence the index of % in
KR™*(P-?%) is R(X) (H—1)n* The element (H —1)5*€ KR~ *(P.?) ~ KR"(P,) ~ Z, gener-
ates the subgroup of order 2. Also we have a local invariant 0:7,_,(G,, ,) ~ Z, which is

an isomorphism. We thus get the following extension of Theorem (7.2):

TaEOREM 7.4. Let X be a closed manifold of dimension n=4k+ 1 satisfying w? =0,
and let L be as above. Suppose w is a twisted 2-plane field with finite singularities. Then

the sum of the local obstructions is Ri(X).

Remark. The above discussion for 2-plane fields can obviously be extended to p-plane
fields with p=2 mod 4. We remark that twisted p-plane fields with p=2 mod 4 are in
one-to-one correspondence with oriented n — p-plane fields, n —p=3 mod 4.

A particular case of a twisted 2-plane is given by a pair consisting of a vector field
and an embedded line bundle isomorphic to ®. The obstruction for having such a

“twisted 2-frame field” with finite singularities is
Wy (TX — O) =w, 4(X) = w,-5(X) U wy(X).

But if follows from the Wu-formulas that w,_, U w, = 0. Hence the obstruction for having
a twisted 2-frame field with a finite number of singularities is the same as for an ordinary
2-frame field.

Nevertheless we can also calculate the sum of the local obstructions for an ordinary
2-frame field in the following way. In general let {uy,...,%,} be a set of vector fields,
linearly indepéndent over Y < X. Right multiplication by w-w; (which are sections of
A¥(X)®0) give antilinear maps with square + 1. In the usual way this gives rise to a

characteristic class
&% (g, ..., u,)EKR'z((iTX| X-Y)xP,_y) (7.5)

such that &% ,€KR*iTX x P,_,) is just o(T.) (H—1). Hence the index of &%, in
KR™*P,_,) is R, (X) (H—1) 7% In particular for r = 3 the index ends up in KR~*(P,) ~ Z,,
and we also have a local index map 6:7,_,(V, 5) > Z,. Now the natural map 7,_y(V,, s)—>
Aa1{V,,5) 18 an isomorphism and both groups are isomorphic to Z, (see, for example,

Proposition (5.6)). Hence we have §:7, (V. ») ~ Z,.

TurorEM 7.6. Let X and L be as in Theorem (7.4) and let {uy, u,} be 2 vector fields
on X with singularities at a finite set of points {4,, ..., A;}. Then
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!

> 5(0.44(“1, uy)) = Ry (X)

=1
where O 4 (thy, ws) €7, —1(Va,2) t8 the local obstruction.

For the proof we shall use the same method as for the proof of Theorem (6.2). Thus

it suffices to prove the following analogue of Proposition (6.4).

LemmA 7.7. Let W be a compact manifold with boundary dW, and suppose wi(W)=0.
Let L be a complex coefficient system as before, and let {u,, u,, u,} be a set of vector fields,
linearly independent over dW. If the set {uy, us} is linearly independent over all of W, then

in KR(P,) =2,
ind &% (%g, %y, up) = 0.

Proof: As in the proof of Proposition (6.4) &l (uy, %, %;) = j*b,, where j is the map

P, - P,/P, and
b EKR¥(TW| W —aW) x (Py— Py))

is defined by a certain square over ¢T'W x CP, x P,. Conjugation defines a map u:CP,—~
CP, which induces —1 in KR *((iTW|W —8W) x (Py— P;)). On the other hand y*b,=
b-1=0®b,. Hence b, is annihilated by the element 1+ ®€KR(W). Since 1+ 0 has
augmentation 2, b, has finite order. On the other hand, ind 5,€ KR 2(P,, P}~ Z so
ind b; = 0. It follows that ind &% (u,, %;, uy) =0.

Remark. It follows from Theorem 7.6 that if X has two vector fields with a finite
number of singularities, then R (X) does not depend on the choice of coefficient system L.
This agrees with the following formula proved in [13]: If L and L’ are two coefficient
systems such that L' = L®§ for a real line bundle & with characteristic class y€ H'(X, Z,),

then
B(X)+ Bi(X) = {y Uwy(X), [XDD.

8. The Hurewicz map in KR-theory for P,,.

In view of Lemmas (5.2) and (5.5) it is not surprising that the map 6 is closely relat-
ed to the Hurewicz map in KR-theory for the stunted projective spaces P, ,= P, /P, ,_,.
In this section we shall establish this connection and comment on the relation with
Adams’ work on vector fields on spheres [2].

First recall that P, , is embedded naturally on O(n) by identifying x € P,_, with
the reflection in the hyperplane orthogonal to z€R". In this way there is a map 4:
P, , -V, defined by applying the reflection on the standard r-frame {e,), ..., ¢,_,}, where
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¢,=(0,..., 1,0,...,0) has 1 in the ¢4 1’st coordinate. In particular the base point of
P, ,=P, /P, ., maps to the standard r-frame in ¥, ,. By convention P, ,=(P, ;).
and the extra point corresponds in O(n) to the identity.

Now again let s be chosen so that n+s=4%, and assume that a, divides (n + s).
Hence R*** is a module for C,_,. This means that (n+ s) H, is trivial, where H, is the
Hopf bundle over P,_,. It follows from [4] that the Thom complexes Pi¥; and P "% =
P, , are 8-dual, or precisely s+ (n—7)+(r—1)=n+s— 1-dual. Hence there is a duality

isomorphism
D:KR, (P, ,) — KR"" 7Py 5y, Pyy).

TurorEkm 8.1. Let %:myy(P,,,) -~ KR, (P, ,) be the Hurewicz map. Then the fol-
lowing diagram is commutative :

68
Tg-1 (Vn.r)'_'—)KRn+s_a (Pr+s—-1’ Ps—l)
D

iy

g-1(Ph,r)

%

KRy _1(Py.)

More precisely : we shall define an explicit S-duality (S-)map
V:Pn,r/\Pr+s,r g ’Sm+s—1' (8'2)

Let 2 denote the suspension, and for a map #:8* -~ P, let Du=2(Vo(uAl)), ie.
Du:29P,,, , - S™**is the dual S-map of u. We shall prove

TaeorEM 8.1 Let u:87! — P, and sow:81 -V, .. Then
63(’1:%) = (Du)*(lrﬁs, nts)
wn KB 5P, .y, Ps_;). Here Ayis s 15 the generator of KR™5."%S (pt).

Before defining V let us consider what is the universal situation in this context. In
the construction (2.10) use X = (P, , the cone on P, , and Y =P, , the base of this cone.
The trivial bundle of dimension n has r vector fields along P, , determined by the map
t:P,, >V, , Hence we get an element

//lfsn.r € K-Rn+s((opn, r/Pn, DA (Pr+s-'1/Ps-1)) = KRn+s(an,r A Pr+s, - (83)

In order to prove Theorem (8.1°) it suffices to show



VECTOR FIELDS WITH FINITE SINGULARITIES 37

GV Ants,nte) = i, re (8.4)
In fact 65(iw) = (2w A 1)*(us, ,), so (8.4) gives
6°(iu) = (ZV ° (Zu A 1))*(An+s,n+s) = (Du)*(}-n+s,n+s)'

Observe that if we increase » by a multiple of max (4, a,), then P, , is suspended the
same number of times, and using (2.17) and Lemma (5.8), it follows that the elements
Wa,r correspond under the periodicity isomorphism. We can therefore assume n so large
that n + s is divisible by a,.,, i.e. R***is a module for C,,,_;. (Ifn+s=pa,and ¢, ,=ta,
then increase n by (mt — p) a, for some m.) Under this assumption we shall construct an
explicit map

ViVar X Ppygy —> Stt571 (8.5)
which induces an S-duality map

2t P g APpyg, — S¥H71 (8.6)

such that (8.4) is satistied for V=V, ,.

First assume §=0. So there is a C,_;-module M of dimension n. R" < C,_, is spanned
by {e,=1,¢,,...,6,_,}, and the Clifford-module structure induces an orthogonal pairing
{»):R"xM - M. Choose ¢,€M of unit length and embed R’ in M by sending a€R’
into (a,e,). We can thus choose coordinates for M ~R" so that {e, ..., e,_,} is the stand-
ard r-frame. Hence R*=R"@R"" and the pairing (-, ) : B x R* —» R" satisfies

1) (e )= —(e;,¢,) i+jand 0<s,j<r—1
2) (e, 8)= —eq i=1,...,r—1
3) (a,€ey)=a for a€R™ and

{eg, b)=b for BER™.

Also define a conjugation in R’ by putting é,=e, and &= —e, for ¢>0. It follows that
(@, a) =|al? ¢, for a€ER.

We are now in the position to define the map
V:V,.xPR) - 8L (8.7)

An element in P(R")=P,_; is given by homogeneous coordinates = (%, ...,%,_1)ER,
and we assume |#|=1. An element y in V.., is given by an orthogonal r-frame {eo®), ...,
e(y)} in R". Put 2(y) = >l e(y). Now for {x}€P(R") and y€V, , define

V(. {2}) = (&, 2(y)). (8.8)
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Clearly this is an element in §*-'< R”, and V is obviously well defined. Notice that the
base point (*) of ¥V, , is the standard r-frame, so clearly (*) x P(R") goes to the base point
e, of §*71,

Now again let s be arbitrary, so R"** is a C,,,_;-module. (8.7) gives the map
€:V7H-s, r+8 X P(Rf+$) e Sn+s_1'

Write R =R"®R?, so R*""*=R"@R*GR""* and R" is the sum of the first and the last
factor. Then V, , is included in V,,, ,+, by adjoining the s vectors {€s ..., €r15-1} Which

span R*<R"*¢, The map (8.5) is now simply defined as the composite
ViV x PR > Voo s x PRI > grtsl (8.9)
Clearly == 2(y) for z€ER*=span{e,, ..., e,;, ;} 50 (8.9) induces a map
Ve N(PrigafPey) — 8¥7L
Finally we compose with i=P, , - ¥, ,, thus completing the construction of
Vor i Po o ANPpyg, — S*71, (8.10)
LemMma 8.11. The map V5., is an S-duality map.

Proof. We shall use induction.on 7. Consider the diagram

nf/\PT+SY

/ \Y'
SrH—s—l

n 1.r- 1/\Pr+sr

ll\x A1r1

n 1,7r— 1APr+sr 1

where j:P,_, ,_; - P, , is the inclusion and §': P,,, ,— Py, -, is the natural map squeez-
ing the bottom cell to a point. This diagram is clearly commutative from the very defini-
‘tion of the V’s; hence by the induction hypothesis we just have to show that the product
of the bottom cell of P,,,, and the top cell of P, , maps to S"**~! by a map of degree
one. But this clearly reduces to the case r=1. However, it is easy to see that the map

Vi1 8" Ix 8=V, x P[P, , —~ S+l
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has degree one. In fact, the element —e,€S8"**"! is a regular value with only one
pre-image.

We can now complete the proof of Theorem (8.1) by showing formula (8.4). Notice
that V induces a map

2V: (OPn,r: Pn,r) X (Pr+s—1: Ps—l) - (Bn+s, S’H's“l)

and we shall compute the induced map in KR"**-%, Now assume s =0 for simplicity (the

general case proceeds analogously), i.e.
2V: (CPn, ” Pn, N xP,_y — (B, Sn*l)*
The generator of KR™%B", §*%) is given by the square

L

Aiv Visy A&ldd
R, R, (8.12)
iL,

dd. ev
A A%

where v€ER™® and u€8""2. Hence (2V)*(A, ,) is given over CP, ,x P,_; x R™° by the
square (8.12) with u=(Z, z(y)) for y€P, , and z€P,_,. An argument similar to that of
Lemma (5.8) transforms this square into the square

A 1L, Acad
T A

Rz(y) Rz(y)
\ L'u
ABQH Ao |

which defines the element u, ,. This proves formula (8.4) and ends the proof of Theo-
rem (8.1).

Remark. Using Theorem (8.1') we can reformulate Adams’ proof [2] on the vector
fields on spheres as follows:

Let : 8" ~V, (n=0 mod 8) be a section of ¥, , ~ S*! and choose s such that
a, divides n+s. Consider the element 6°(u)€KR*(P,,,_,,P;_,). The restriction to
KR(P,, P, ,) is the generator. On the other hand, Theorem (8.1') shows that 6%(u) is
induced from a sphere, so the Adams operations ¢* act on it as multiplication by £°. A
calculation shows that these two facts are incompatible if » is greater than or equal to

the Radon-Hurwitz number.
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