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A basic approach in the study of transformation groups is to compare smooth actions

of compact Lie groups on homotopy spheres with linear actions on standard spheres. This

paper examines actions of the orthogonal group, O(r), on homotopy spheres. We consider

only those actions which resemble certain fixed linear actions insofar as their isotropy

groups and normal representations are concerned. We are then able to classify such actions,

up to concordance, by comparing them directly, via an equivariant map, with their linear
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counterpart. The linear actions that we use as models are ko, +m, where kg, denotes the
standard action of O(n) on k-tuples of vectors in R” and m denotes the trivial m-dimen-
sional representation. A smooth action of O(n) on a manifold M is regular if its orhit types
and normal representations occur among those of kg,. In this situation, we shall also say
that the O(n)-action on M is k-axial. Any isotropy group of a k-axial action is conjugate
to a standardly embedded O(n —t), for some %, 0 <4 <min (n, k). (We shall usually be as-
suming that n>k.) Thus, a k-axial action has at most &+ 1 different orbit types, and they
are linearly ordered. We shall denote by ;M the submanifold which is fixed by the subgroup
O(n —1i)< O(n).

Given an O(n)-action on a homotopy sphere, there are simple conditions which imply
that it is regular. For example, if the principal orbit type is O(n)/O(n —k), with n>k, then
the action is k-axial, [16]. A similar result holds for an O(n)-action on an h-cobordism
between two homotopy spheres.

A E-axial O(n)-action on a homotopy sphere X must resemble a linear model more
closely than is obvious, @ priori. For example, it follows from the theory of P. A. Smith
that ,X is a homology sphere, where the coefficients are taken to be Z if (n —¢) is even or
Z/2 if (n—1) is odd. Also, if dim (,¥)=m —1 (the empty set has dimension —1), then it
follows from a formula of A. Borel, that dim (,3)=(ki+m —1), for all ¢ with 0<<s<n.
Thus, % (=,Z) has dimension (kn +m —1), and the fixed point sets of the various isotropy
groups are homology spheres of the same dimension as the corresponding fixed sub-spheres
in the linear action kg, +-m restricted to S**™1,

Two regular O(n)-manifolds M and M’ are concordant if there is a regular O(n)-action
on a h-cobordism W, such that its restriction to 8W is (oriented) equivalent to M[(—M").
Let Ok, n, m) denote the set of concordance classes of k-axial O(n)-actions on homotopy
spheres(l) of dimension (kn-+m—1). For m >0, it is an abelian group under equivariant
connected sum. Our goal is to compute this group (for n > k). The first two authors carried
out a similar program for regular U(n)- or Sp(n)-actions in [11].

Suppose that O(r) acts k-axially on a homotopy sphere """~ and that n>k. In
Theorem 5.2, we construct a certain parallelizable manifold V*"*", with k-axial O(n)-action
and with 8V =2X. We consider the submanifolds ,V, 0 <¢<n. The boundary of ;¥ is 2,
and as we remarked above, ;X is an R,-homology sphere, where e=(—1)""%, R, =Z, and
R_=1%7s,. Roughly speaking, our main result is that the concordance class of X is com-
pletely determined by the intersection and self-intersection forms of (¥ and ; V. More

precisely, if p=ki+m=dim (,V), then we define an invariant ¢,(=0,(X)) in the surgery

(1) All our results remain valid for homology k-cobordism classes of regular O(n)-actions on integral
homology spheres.
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group L,(R,), as follows. If p is odd, then ¢;=0. If p=2(4), then o, is the Arf-Kervaire
invariant associated to a quadratic form on the middle dimensional homology of ;,V with
Z/2 coefficients. If p =0(4), then o, is the Witt class of the intersection form on the torsion-
free part of the middle dimensional homology of ,V. In this case, if é= +1, then ¢; can be
identified with one-eighth of the index of the bilinear form (this is an integer); while, if
e¢= —1, then o, takes values in W, the Witt group of symmetric, bilinear forms which are

even and non-singular over Zq,. Eventually the following facts will be established:

(1) o, depends only on the concordance class of X and hence, defines a map
o Ok, n, m)~>L,(R,), which is a homomorphism for m>0.

(2) If k£ is odd, then ¢,=0.

(8) If % is even, then ¢,=0,,,.(%)

(4) If k is even, then ¢(0;) =¢(0441), Where ¢: Ly(R,)—~Z/2 is the Arf-Kervaire homo-
morphism.

(6) For m>0, the ¢,’s can assume any possible value subject to the relations (2), (3)
and (4).

{6) If 6o(X)=0=0,(X), then (provided k=52 and neither ;¥ nor ;¥ has dimension 4),

2 is concordant to a sphere with linear action.

Thus, for k odd, m==4 and (k, m)==(3, 1), every """ 1 is concordant to a sphere

with linear action(?); while, for k even, k=2 and m==0, 4, the following sequence is exact:

ct+e

0 oL, m,m) 2N 1 (RN@ L (R 7/2.

The result for k=2 is slightly different. In this case, we cannot use merely ¢, and o;. It is
necessary to take algebraic refinements of them (linking forms on Siefert surfaces). Thus,
in this case the result is that the enhanced ¢, and ¢, determine the concordance class of
Tm-1 and tie the groups ©4(2, #, m) to knot cobordism groups.

When m =0, a result similar to the generic one holds. It is necessary, however, to
reinterpret ¢, as the number of fixed points of the action on V (counted with sign). If &

is odd, every action is concordant to a linear one. If k is even and »=0(2), then

Ok, n,0) 7N, ({1}, I(Ze))

is injective (if k==4). Its image is all pairs (-1, ¢;) such that the Kervaire invariant of

gy, ¢(ay), is zero. If k is even and n is odd, then

(!) For k even, o; and 0, take values in the same surgery group.
(?) The case (k, m) =(1, 3) follows from other considerations.
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@Yk, m,0) -2 N, (0dd integers, L,(Z))

is injective (if k=4). Its image is all pairs (d, o,) such that c{d)=c(oy). (Here ¢(d) means
the Kervaire invariant of the normal map of d points to 1 point, i.e., ¢(d)==0 if and only if
d=+3(8).)

These results lead to a calculation of the groups @(k, #, m) in all but a few exceptional

cages. We tabulate the groups in the next three theorems.

THrOREM. Suppose that n =k and that m=+0, 4.
(@) If k=0(4), then
Z+W;, m=04)
Ok, n, m)=4 Z/2; m=2(4)
0; m=1(2).
(W =kernel (c: W—~1%/2).)
(b) If k is odd and (k, m)==(3, 1), then @1k, n, m)=0.
(¢) If k=2(4) and k32, then
Z; m+2n=0(4)
Ok, n,m)={ W; m+2n=2(4)
0; m+2n=1(2).

TarEOREM. Suppose that m==0, 2, 4 and that n>2.
G m+2rn=0(4)

02, 1, m)=1 G m+2n=2(4)
0, m+2n=1(2).

(The groups G, are the “algebraic knot cobordism groups™.)

TrEOoREM. Suppose that k=4 and that n>k.

{+1} k odd

{£1} n even, k=2(4)
Ok, n, 0) =1 {£1} x W; n even, k=0(4)

Q; n odd, k=2(4)

ker (c+c)=Qx W; n odd, k=0(4).
(Here Q is the odd integers.)
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The case k=42 and m==0 is proved in Section 12. The case k=2 is dealt with in Section 13,
and the case m =0 in Section 14.

Actually, in the case of mono-axial actions (£=1), these results have been known for
at least fifteen years, see [17] and [27]. The case of bi-axial actions (k=2), perhaps the
most interesting, has been studied extensively, see [4], [5], [6], [14], [15], and [18]. In this
case, for n even, the above results are due to Bredon [6].

Let 8: Ok, n, m)—> O, ,_q be the natural map. As we have seen, the image of S is
contained in 6P, ,, the subgroup consisting of A-cobordism classes of homotopy spheres
which bound parallelizable manifolds. From (2), (3), and (4) above we immediately deduce

the following:
{(A) If k is odd or if m is odd, then T*"*™! is h-cobordant to the standard sphere.

(B) If k is even and m is even, then the following diagram commutes whenever ¢ =n(2):

o'k, n, m)

bP}cn+m

b

Lki+m(z) = Lkn+m(z)

Thus, if » is even, the h-cobordism class of Z is determined either by the index or Arf-
Kervaire invariant of V; while if » is odd, it is determined either by the index or Arf-
Kervaire invariant of , V. It follows, from (5), that 8 is onto bP;,.,, provided m >0.(%) (If
m=0 and » is odd, then S is again onto; while if # is even, S is the zero map.)

An interesting corollary of the above calculations is that the homomorphism
Wy Ok, n+-1, m)—OYEk, n, m+k), defined by restricting the O(n + 1)-action to O(n), is an
isomorphism (under mild hypotheses on n, m, and k).

The first nine sections contain preliminary material about regular actions. The main
point of introducing this material is to reduce the concordance question on homotopy
spheres to questions in surgery theory. In the remaining six sections these questions are
answered and consequences are derived.

Any smooth G-manifold is stratified by the submanifolds consisting of those orbits of
a given type (or “normal type”). This stratification projects to one for the orbit space.
If M is a k-axial O(n)-manifold, with » >k, then the strata can beindexed by {t €Z |0 <i<Fk};
M, denotes the stratum of orbits of type O(n)/O(n —1).

The reduction of the concordance question to surgery is accomplished as follows.

(*) This can be seen directly by considering actions on Brieskorn varieties.
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First, it is shown that there is an equivariant “stratified” map F: (V¥*m, TFrim=1)
(DFntm gentm=1y swhere O(n) acts linearly on (DF"+m S**m-1) via ko, +m. If m>0, then
we may also assume that F is a degree one normal map. The proof of this result is ex-
plained in Section 8. Let 4, B, K and L denote the orbit spaces of V, X, D and S, respec-
tively, and let f: (4, B)—(K, L) be the induced map of orbit spaces. Necessary and suf-
ficient conditions are given for F: (¥, X)—(D, 8) to induce an isomorphism on integral
homology. These conditions are stated in terms of the induced maps f|4;: (4;, B;)~(K,, L;)
on each stratum. One condition is that, for each 7, /|4, must induce an isomorphism on
homology with coefficients in Z/2. The other condition involves the homology with coef-
ficients in Z of the “double branched cover of 4,U A, ; along 4, ;”. The precise result is
stated as Theorem 7.1.

Our program, then, is to successively successfully do surgery on the f|4;, relative to
fI B, to achieve these homology conditions. If this is done (and if the top stratum of 4
is made simply connected), then we will have replaced V by a contractible O(n)-manifold.
Hence, X***™~1 will be concordant to S*"*™~! with the linear action. 4 priori, there may
be an obstruction to surgery on each stratum. It will be proved, however, that most of
these obstructions either vanish or are indeterminant (i.e. can be made to vanish by ap-
propriate choice of surgery on the lower strata). This is the case for all the obstructions
when % is odd, and is the case for all but the obstructions at levels 0 and 1 when % is even.
The obstructions at levels 0 and 1 are identified with ¢, and o.

Ag stated above, this program is very close to what was done in [11] for regular U(n)-
and Sp(n)-actions. For such actions, the strata of the orbit space of the linear model are
simply connected; and at each stage we are required to do surgery to an integral homology
isomorphism. The fact that the surgery obstruction on each stratum (except for the bottom
one) either vanishes or is indeterminant essentially follows from well-known produect
formulae in the surgery theory of simply connected manifolds. Thus, for regular U(n)-
and Sp(n)-actions the necessary results in surgery are completely straightforward.

For regular O(n)-actions the situation is more complicated because:

(1) the strata of the linear orbit space usually have fundamental group Z/2(*),

(2) the strata alternate between being orientable and non-orientable,

(3) in the fiber bundle relating one stratum to the boundary of the next the funda-
mental group of the base can act non-trivially on the homology of the fiber, and

{4) we are required to do surgery to achieve a mixture of Z- and Z/2-conditions on

homology.

(1) The case k=2 is distinguished by the fact that the l-stratum has fundamental group Z.
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The process by which almost all of the surgery obstructions “cancel’ must, therefore, be
more sophisticated than in the U(n) and Sp(n) cases. This cancellation process is based
on three different product formulae, which are proved in section 15. The first, 15.1, con-
cerns CP?-bundles where the fundamental group of the base acts non-trivially on H ,(CP%).
The second, 15.3, concerns RP?.bundles. The third, 15.5, concerns RP%L.bundles. In all
cases we have a normal map between the total spaces of such bundles which covers a
normal map between the bases. The product formula relates the surgery obstructions on
base and total space.

Our calculation of the concordance groups is not quite complete. The case m =4 leads
to four dimensional surgery, and the group of concordance classes must be enlarged by a
group associated with ©F or @%. (Here @F means the group of R-homology 3-spheres with
those that bound R-homology disks set equal to zero.) The case (k, m)=(2, 2) is intimately
related to classical knot cobordism. Thus, the classification of concordance classes of reg-
ular actions in these cases depends on the solution of these outstanding low dimensional
surgery problems.

Finally, it should be emphasized that the two “ends” of a concordance need not be
equivariantly diffeomorphic. However, our classification of O(n)-actions up to concordance
does clarify what problems occur in understanding the equivariant diffeomorphism ques-
tion. One might hope, naively, for the orbit space of a concordance to be equivalent (as a
stratified space) to the product of one end with the unit interval. If this happens, then,
of course, the two ends are equivariantly diffeomorphic. However, all one can say in
general, is that each stratum of the orbit space of a concordance is a Z/2-homology A-
cobordism between its two ends. Thus, for example the integral homology of its ends may
be different. Also, the fundamental group of such a cobordism may be different from that
of either end. In general, such discrepancies in fundamental group and integral homology
occur. Thus, the classification of regular O(n)-actions on homotopy spheres up to equi-
variant diffeomorphism would seem to involve difficult questions concerning Z/2- homology

h-cobordisms.

1. Stratification by normal orbit type

In this section, we review some general definitions from [10] and [33].

Let G be a compact Lie group. Consider pairs (H, V), where H is a closed subgroup
and V is an H-module with no invariant non-zero vectors. Two such pairs (H, V) and
(H', V') are equivalent if the corresponding G-vector bundles G x ; V and G x gz V'’ are iso-
morphie. (This just means that H and H’ are conjugate and that there is a compatible

linear isomorphism from V to V'.) A resulting equivalence class is called a normal orbit type.
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Now, suppose that ¢ acts smoothly on a manifold M. Let B be the orbit space and
7: M- B the natural projection. For x € M, G, is the isotropy group and &S, is the slice
representation. The normal representation N, is the G -module S,/ F,, where F,< S, is the
subspace which is fixed by @,. The normal orbit type of x is the equivalence class of (G, N,).
A stratum of M is the set of points of a given normal orbit type and a stratum of B is the
image of a stratum of M. If « is a normal orbit type, then M, and B, denote the corre-
sponding strata. It follows from the Differentiable Slice Theorem that M, and B, are both
smooth manifolds and that | M,: M, B, is the projection map of a smooth fiber bundle
(the fibers are orbits). N, is the fiber at  of the normal bundle of M, in M.

If ® and « are normal orbit types, then &’ <« if « occurs as a normal orbit type in
G x 5V, where (H, V) is a representative for «’. This defines a partial ordering on the set
of normal orbit types. Clearly,

closure (M,)= U M,g.

In [10] and [19] it is shown how to attach, in a canonical fashion, a boundary to each
stratum of M (or of B) obtaining a manifold with corners called a ““closed stratum”. The
method is based on the following construction.

Suppose that M is a differentiable manifold with corners and that A< M is a proper
submanifold with corners. (Here proper means that 4 has a smooth tubular neighborhood
in M which is smoothly isomorphic to the total space of a vector bundle over 4, the normal
bundle of 4 in M, v,c,.) Define M,, M “blown up” along A4, to be (M —A) U Sy sc4;, where
Sv4car is the sphere bundle associated to the normal bundle. M, naturally inherits the
structure of a smooth manifold with corners. If W has a smooth G-action and A4 is in-
variant, then M, has a natural smooth G-action.

If A4 is a minimal stratum of M, then it is a proper invariant submanifold, so M, is a
G-manifold with one less stratum. One can continue by blowing up a minimal stratum of
M, etc. To construct the closed a-stratum of M, one blows up all the strata of index less
than « and then takes the a-stratum of the resulting manifold with corners. The result is
denoted by M,. It is a manifold with corners with interior equal to the original stratum.
A closed stratum of B is the orbit space of a closed stratum of M.

Let N, denote the normal bundle of M, in the appropriate blow-up of M. If f>a,
then let 6, M 4 be the closure (in M) of the f-stratum of the sphere bundle associated to

N,. We define 9, By similarly. If X =9M, then

o Mp)=XgU U 9, Mp
a<fl
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and

6(35) =7Z(Xﬁ) U U 6,,‘B/3.

a<f

Suppose that (H, V) is a representative for o and that ¥ =G x 5 V. The projection
0, M s> B, is a smooth fiber bundle with fiber 8, Y 4, and 9, Bz~ B, is a fiber bundle with
fiber the orbit space of 8, ¥ 4.

A smooth equivariant map h: M—M’' of G-manifolds is siratified at z if G, =G,
and if the differential of % at x induces an isomorphism N,2 N,,, An equivariant map
is stratified if it is stratified at each point. If an equivariant map b is stratified, then
MM, M, and the differential of h induces an equivariant linear bundle map from the
normal bundle of M, in M to the normal bundle of M, in M’. A key observation is that
the restriction of an equivariant stratified map to any given stratum extends to a map befween
the corresponding closed strata. Moreover, this extension is a bundle map on each face. (This
is proved in [10].) There is a similar notion of a “‘stratified map” between two orbit spaces.
In order to define this notion, it is first necessary to discuss the local structure of orbit
spaces.

The orbit space B has an induced “‘smooth structure” obtained by defining a function
g: U—R (U an open subset of B) to be smooth if gos is smooth. A continuous map ¢: B— B’
is smooth if it pulls back smooth functions on open sets in B’ to smooth functions on open
sets in B (see [4], [9], [32]). From the ring of germs of smooth functions which vanish at
b€ B, one can define (d’aprés Zariski) the cotangent space at b and its dual, the tangent
space T, B. Let T B denote the union of all the tangent spaces. By the Slice Theorem,
b =g (x) has a neighborhood in B which is smoothly isomorphic to §,/@,. It follows from a
result of . Schwarz [32], that the linear orbit space S,/G, can be identified with a certain
semialgebraic subset of some Euclidean space R®. This defines an embedding of T'(S,/G.)
into TR’ which is linear on each tangent plane. It induces a topology on 7'(S./G.) and
thus one for T'B. In general, T B— B is not a vector bundle since the dimension of 7, B
need not be locally constant. However, the restriction of 7'B to any stratum is a vector
bundle, and the ordinary tangent bundle of the stratum is a sub-bundle. The quotient, of
TB|B, by TB, is called the normal bundle of B, in B and is denoted by #,(B).

A smooth map f: B~ B’ of orbit spaces is stratified() if it preserves the stratification
and if for each index «, the induced map f,: #,(B)~#,(B’) is a bundle map (that is, a

fiberwise linear isomorphism).

(*) Such maps are called “weakly stratified” in [10] and “normally transverse” in [33].
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2. Regular actions

Suppose that M and X are smooth G-manifolds. We say that M is modeled on X if
the normal orbit types of & on M occur among those of G on X. Equivalently, M is modeled
on X if given non-negative integers m and m’ such that m—m’'=dim X —dim M, then
every orbit of M x R™ has an open invariant neighborhood isomorphic to an open invariant
neighborhood in X x R™. (Here, G acts trivially on the second factors.)

If one is interested in smooth actions on spheres or on disks, then it is natural to

study actions which are modeled on various linear actions. The linear action
ko, O(n) x M(n, k) —~ M(n, k)

is defined as the action of O(n) on the vector space of n by & matrices by matrix multi-
plication on the left. Alternatively, it is the natural action of O(n) on k-tuples of vectors

in R”.

Definition 2.1. A smooth O(n)-manifold M is k-axial if it is modeled on M(n, k). We
shall also say that M is a reqular O(n)-manifold.

Remark. Taking as linear models either the natural action of U(n) or k-tuples of
vectors in C* or of Sp(n) on k-tuples of vectors in quaternionic n-space, one defines k-axial
U(n)-manifolds and k-axial Sp(n)-manifolds in a similar fashion.

Given a matrix x€M(n, k), the column vectors span a subspace P<R". The isotropy
group ¢, is the orthogonal group O(P*). The row vectors of x span a subspace @< RF.
One can show that the normal representation at z is the natural action of O(P*) on
Hom (@*, P*). It follows that the normal representation at z is equivalent to O(n —17)
acting on M (n —14, £ —1) for some i. Let ¢ denote the equivalence class of (O(n —1), M(n—q,
k—1)). As we have just seen the strata of a k-axial O{n)-manifold are indexed by integers 4,
such that 0 <¢<min (n, k). The i-stratum of M(n, k) is the set of matrices of rank .

Next we consider the orbit spaces of the linear models. Let S(k) be the vector space
of k by k symmetric matrices and let B(k)< S(k) be the subset of positive semidefinite
matrices. Consider the polynomial mapping s: M(n, k)—S(k) defined by n(x) =‘z-z, where
‘z is the transpose of x. If g€0(n), then n(gz) =tz ¢g1-g-x=n(z). Consequently, 7 is con-
stant on orbits and therefore, induces a map 7: M(n, k)/O(n)—8(k). Tt is straightforward
to check the following:

(a) The image of x is contained in B(k).
(b) 7w maps the ¢-stratum of M(n, k) onto the set of matrices in B(k) of rank .
(c) In particular, if n >k, then & maps M(n, k) onto B(k).
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Lemma 2.2. The map 7: M(n, k)/O(n)->B(k) is a smooth isomorphism onto its image.

Proof. The entries of z(x) are homogeneous quadratic polynomials in the entries of .
According to [35] these polynomials generate the ring of O(n)-invariant polynomials on
M(n, k). Under this hypothesis, the lemma becomes a special case of the main result in [32].

Henceforth, we identify the orbit space of M(n, k) with its image in B(k) and the
orbit map with z. In particular, if n>=k, then M(n, k)/O(n) is identified with B(k). Let
B/(k) denote the i-stratum of B(k). In view of (b), Bi(k) is the space of positive semi-
definite matrices of rank 1.

Facts about B(k) immediately translate into local information about orbit spaces of

regular actions. We make a few observations.

(1) Bfk) is a convex cone with non-empty interior in S(k).
(2) B(k) is homeomorphic to Euclidean half-space of dimension 3k(k+1).
(3) T(B(k)) is identified with B(k) x S(k).

We leave the verification of this to the reader. As a consequence we have the following.

LEmma 2.3, Suppose that B is the orbit space of a k-axial O(n)-action and that n=>k.
Then B is homeomorphic to o manifold with boundary (the boundary being the union of the
singular strata). Moreover, TB= T, B is a (locally trivial) vector bundle over B.

It should be emphasized that B is not smoothly isomorphic to a smooth manifold
with boundary; rather the singular strata have neighborhoods which are differentiably
modeled on neighborhoods of the singular strata in B(k).

Example 2.4. Suppose that

x z)

G
represents a matrix in S(2)=R3. Then B(2)={(z, y, 2)|#>0,y >0, zy —22>0} is a solid
three dimensional cone. Consider the orbit space 4 of a bi-axial O(n)-action on a closed
(2n +m)-manifold, where n>2. Then 4 is locally isomorphic to B(2) x R". As a space, 4
is an (m-+3)-manifold with boundary. It has three strata. The image of the principal
orbits, 4,, is the interior of 4. The fixed point set A,=4, is a closed m-manifold em-

bedded in 84, and 4,=84 —A,. Away from A4,, A is a smooth manifold with boundary;

however, there is a differentiable singularity along 4,,.
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Lemma 2.5. B,(k) is a fiber bundle over the Grassmannian of i-planes in k-space with
the fiber over a plane P being the space of positive definite forms on P. Thus,

Bi(k) = B,(3) x 0s,[O(k)[O(k — )]

where O(3) acts naturally on O(k)|O(k—1) on the left and on B,(i) by conjugation. A similar

formula holds for the closed stratum.

Proof. The lemma, states that a positive semi-definite form z€ B;(k) is determined by
the following data:
(1) an i-plane in R¥, and

(2) a positive definite form on the i-plane.
Let R, denote the radical of z. The i-plane is (R,)". The form z|(R,)" is positive definite.

COROLLARY 2.6. I} i =0o0r i =k, then m,(B(k)) =0. If i =1 and k=2, then ry(By(k)) > &.
In all other cases 7,(B,(k))=1Z/2.

COROLLARY 2.7. As a special case of 2.5 we have B,(k)=[0, co) x RP*" 1. Thus 0, By (k) =
RP*1. This is mportant because for any k-axial O(n) manifold with quotient A,0,4,,~ A4,
is a fiber bundle with fiber 0y B,(k—2) ~RP* "1,

3. Double branched covers
As before, suppose that O(n) acts k-axially on a manifold M with orbit space B. In

this section we describe a way of functorially associating to M, for each integer ¢ with
0<¢<min {n, k+1}, a smooth involution y on a manifold with corners E;=E,(M). In
fact, B,(M) is the double branched cover of B, U B,_; along B;_;, and y is natural involntion

on the cover. More explicitly, we have the following:
(i) The fixed point set of y on E,is B;_;.
(i) If B, is E, blown up along B, _,, then B,/y=~B,.

(iii) #;/y=B,U,B,,, where p: 8,_; B;—~ B,_, is the canonical projection.
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These manifolds will play an important role in our study of regular O(n)-actions. Here is
the construction. Let O(¢) x O(rn —i)< O(n) be the standard embedding. Denote the fixed
point set of O(n—1) by(*)

M — MOOD,

Then O(#) acts smoothly and k-axially on ;M. The strata of ;M have index less than or
equal to min (%, k). Blow up the strata of ,M of index less than ¢ —1 to obtain a manifold
with corners ;M. If ¢ <k, then ,M has only two non-empty strata (: and ¢ —1). If 1=k +1,
then only the k-stratum is non-empty; while if i >k+1, ;M is empty. Define

E (M) = ,M/[S0().

Notice that O(i) acts freely on the i-stratum of ,M. On the (i —1)-stratum the isotropy
group is conjugate to O{1). Since SO(#) N O{1)={1}, the action of SO(i) on M is free. It
follows that the orbit space E; is a smooth manifold with corners. It has “faces” 9, E,,
8, E,, ..., 0, B, where 8, E, denotes the fiber bundle over B;, which arises from applying
this construction to the normal sphere bundle of M ;.

The group O(:)[SO(1)=Z/2 acts smoothly on E, and the correspondence M — E (M)
is clearly a functor from the category of k-axial O(n)-manifolds and equivariant, stratifed
maps to the category of involutions on manifolds with corners, and equivariant stratified
maps. Moreover, if F: M — M’ is stratified, then the restriction of E,(F) to any face is a
bundle map. One verifies routinely that E,/y =B, U, B,_;, and hence, that E,is the double
branched cover of B;U,.B, | along B,.

Let E,(k) denote the result of this construction applied to the linear model, that is,
E(k)=E{(M(n, k)).

Example 3.1. Ey(k)=Byk) is a point. E,(k)=R", and the involution is > —z. To
obtain E,(k), one first blows up the origin of M(2, k) obtaining [0, ) x §2~1 and then
divides out by the action of SO(2). Thus,

Ey(k) = [0, o) x CP*!
and
8o Bo(k) = CP* 1.

The involution on E,(k) is given by complex conjugation on €P*7*. Thus, the fixed point
set of the involution is [0, o) x RP*"* =~ B,(k). We do not know of a similar convenient
description of E;(k) for ¢>2.

(*) N.B. ;M should not be confused with M; which is the closed 4-stratum.
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Lemma 3.2. E (k) is simply connected. If 1<k and (3, k)2=(1, 2), then B (k) is simply

connected,.

Proof. This is immediate from 2.5 and the above description of E,(k).
In general, the fiber of ¢, &, ;- B, is 9,E,(k~1). Thus, the fiber of 0, %, ,~ B, is
CP*~"1. We consider the action of the fundamental group of B, on the fiber of 9, E, ,— B,.

Lemwma 3.3. The double covering B,~ B, defines a homomorphism @: 7t,(B;)—~Z4[2. Let T
be the non-trivial action of 42 on H . (CP*—-1) (as a co-ring). Then m,(B) acts on H,(CP*—-1)
by Top.

Proof. Let SN, be the normal sphere bundle to M, in M. Then SN~ B; is a bundle
with fiber O(n) X oy 8™~ (where k'=k—i and n'=n—14 and 8**~! is the unit sphere
in M{n', k')). The structure group reduces to O(i) x O(k') with O(:) acting on O(n) via
O(0)= 0(8) x O(n/)<= O(n) and with O(k') acting on M(n', k') by right muitiplication. By
definition 0, B, ,=E, ,(SN,). E; ,(SN,) is the result of applying the construction &, ,
fiberwise in the bundle SN ,—> B;, and

o O@+2 .
E;.2(0(n) X o, 8% )= {m} Xy 871
— Z/2 XO(Z) SZk’—l
= (P¥L,

From this it is clear that O(¢) x O(K’) acts on CP*~! as follows:
(1) The subgroup SO(:) acts trivially on CP¥ !, and the induced action of O(¢)/SO(z)

is by complex conjugation.
(2) The action of O(k’) is induced by the linear bi-axial action on C¥.

Since the O(£') action is the restriction of the natural U(k')-action and since U(k') is con-
nected, it follows that O(k’) acts trivially on H,(CP* ). Thus, SO(3) x O(k’) is the subgroup
which acts trivially on homology. Finally, it is easy to see that the two sheeted cover of
B, associated with the action of (0(:) x (O(k))/(SO(s) x O(k')) =%/2 on H (CP* ') is B,.

For technical reasons, we shall sometimes make the following assumption about a

connected regular O(n)-manifold M.

Hypothesis 3.4. M°Y is connected and M°® is non-empty.
This hypothesis is automatic if n=k+2. If n =~k 1, it is equivalent to the condition
that B,_, is non-empty; while if n=£, it is equivalent to having B,_, connected and B,_,

non-empty.
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Lremma 3.5. Suppose that M is a k-axial O(n)-manifold with orbit space B, with n>k,
and that 3.4 holds. Then M is simply connected if and only if By, is simply connected.

Proof. In general, if a G-space X has a connected orbit, then m,(X)—,(X/G) is onto.
(See page 91 in [4).) If M°P =D, then M has a connected orbit. Hence, if 7z,(M) =0, then
7,(B)=0. But, by 2.3, B is homeomorphic to B,; hence, B, is also simply connected.

We consider the converse. If n >k 4 1, then the union of the lower strata is codimension
(n—k+1). Thus by general position m,(M;)—m,(M) is onto. M, is a fiber bundle over B
with fiber O(n)/O(n —k). Since B, is simply connected, 7, (principal orbit) —g,{HM) is onto.
If n>k+1, then the principal orbit is simply connected. If n=£k-+1, then the principal
orbit can be deformed into an orbit of type O(n)/0(2) (since B,_, D) and hence, its funda-
mental group is mapped trivially into M. If n =k, consider M =M, U, M,_,. The union of
the lower strata M —int (M), is codimension 4 in M. Hence 7,(M)=mn,(M). On the other
hand, M is a principal SO(k)-bundle over E,, which, being the union of two copies of By
along B,_,, is simply connected. Hence, 7,(SO(k))—n,(M) is onto. Since B;_,=+9, an
SO(k)-orbit can be deformed into an SO(k)/SO(2)-orbit; consequently, M is simply con-

nected.

4. Orientations

An orientation for a regular U(n)- or Sp(n)-manifold induces an orientation for the
fixed point set of each isotropy group and an orientation for each stratum of the orbit
space. The situation is slightly more complicated for regular O(n)-actions. In this case
there are essentially two independent orientations. One of these can be taken as an orienta-
tion for M and the other as an orientation for M°®. Since the action is regular, M°®" =
M™ where T" is a maximal torus for O(2r). Thus, an orientation for M determines one for
each fixed point set of the form M°®” and an orientation for M°? determines one for
each fixed point set of the form MO+ ={ YOI Consequently, orientations for M
and M°P determine orientations for each ;M and for each E; (where ,M =M°" and
E,= M[80(i)).

In light of this, we define an orientation for a regular O(n)-manifold M to be an orien-
tation for M together with an orientation for M°®. An equivariant stratified F: M —~ M’
is orientation-preserving if it preserves both orientations. Similarly, an equivariant diffeo-
morphism is called an oriented equivalence if it is orientation preserving.

If both M and M°® are connected, then the regular O(n)-manifold has four possible

orientations. Of course, it may happen that some of these are oriented equivalent.
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Example 4.1. Suppose that X = M(n, k) x R™. If g€ GL(k), then define an equivariant
linear isomorphism R, M(n, k)—>M(n, k) by R,(x)=x-g. If ¢ is a reflection, then E,xid
has degree (—1)" on X and degree (—1)""" on X°®. If h: R™">R™ is an orientation re-
versing diffeomorphism, then id x A reverses both orientations. Consequently, for m >0,
all four orientations on X are equivalent. For m =0 there are two distinct equivalence

classes.

LemMMA 4.2. Suppose that M is an oriented k-axial O(n)-manifold and that 3.4 holds.

Then the involution on E,(M) is orientation preserving if and only if (k—i+1) is even.

Proof. Let m and m’ be positive integers such that m+dim M(n, k) =m'+dim M.
Proving the lemma for M is equivalent to proving it for M x R™. Using 3.4, we see that
any point x€M x R™ is contained in an invariant tubular neighborhood about the orbit
of some point y€M°® x R™. But ((y) and G(y)°" are both connected. Any such tubular
neighborhood is equivalent to an open invariant neighborhood in M(n, k) x R™. By the
previous example, we can choose this equivalence to be orientation preserving. Thus, it
suffices to prove the lemma for M(n, k) xR™ or equivalently for M(n, k). There is no
involution for ¢=0. For ¢>0, E,(k) is connected and the involution has fixed point set of

codimension (k¢ +1). The lemma follows.

COROLLARY 4.3. Suppose that M is an oriented k-axial O(n)-manifold for which 3.4
holds. If i=0,i=k or if (k—1i+1) is even, then B, has a canonical orientation. In all other

cases, B, is non-orientable (provided that B, _, ts nonempty).

5. Pullbacks and the construction of ¥V

We begin by stating a theorem of the first author concerning the existence of an
equivariant stratified map from M to M(n, k). We then derive corollaries in this section
and the next by constructions similar to ones of Bredon, [6], for the special case k=2.

As usual, suppose that O(n) acts k-axially on M with orbit space B and n>k. The
bundle of principal orbits M,— B, has fiber O(n)/O(n—k) and structure group O(k)=
Nowm-in/O(n—k). Let P,— By denote the associated principal O(k)-bundle. The next result

is central to the theory of regular O(n)-actions.

TrEOREM 5.1. If Py~ B, is a trivial bundle, then there exists an equivariant stratified
map F: M~ M(n, k). Moreover, equivariant stratified homotopy classes of such maps are in

one-to-one correspondence with homotopy classes of trivializations of Py.

An outline of the proof can be found in [9].
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Next, werecall the pullback construction of [6], [10]and [33]. Suppose that X isasmooth
G-manifold and that C is a “local G-orbit space”, (that is, C is locally isomorphic to the
orbit space of a smooth G-manifold). Let &: C'—X/G be a stratified map. Then the formal
pullback,

(X)) = {(c, x) €C x X | I(c) =m(x)},

is a smooth @ manifold over C. If ¥ is another smooth G-manifold over C and if H: ¥ -+X
is an equivariant stratified map covering h: C—X/@, then there is a natural equivariant
stratified map ¥ —2*(X) covering the identity on C. It follows easily that ¥ -—>A*(X) is an
equivariant diffeomorphism. Therefore, the statement that there exists an equivariant stratified
map H: Y~ X is equivalent to the statement that Y is the pullback or X via h. In particular,
Theorem 5.1 can be rephrased as stating that if Py is a trivial bundle, then M is equivalent
to some pullback of the linear model M(n, k) via a stratified map f: B—> B(k).

We assume for the remainder of this section that

M = (M(n, k).
Consider the chain
M Mc,M..c M=M

where M =M°"?, Then ;M =f*(M(s, k)). This last equation suggests how to extend the
chain to the right. Thus, for s >n, (M is defined as f*(M (s, k)). An orientation for M induces
one for (M.

Next we establish that M is an equivariant boundary.

THEOREM 5.2. Let M, B, and f: B— B(k) be as above. Then M is the boundary of a
k-axial O(n)-manifold V with orbit space A.

(1) A4 is homeomorphic to B x I.
(2) V =F(M(n, k)), where f: A->B(k) is a stratified map extending f.

Proof. Let F: ;M —~ M3, k) be the natural O(¢)-equivariant stratified map covering f.
Then, for j<i, ,F is transverse to M(j, k) with inverse image ,M and ,F|(;M)=,F. Con-
sider the map F=, F:, M—>M(n+1,k). Regarded as an O(n)-module, M(n+1, k)=
M(1, k) x M(n, k) with trivial action on the first factor. Let p: (M(1, k) —{0}) x M(n, k)~
S8~ be projection on the first factor followed by radial projection onto the unit sphere.

Let y €57 be a regular value of the following composition:

,MM—,,M—F—» Mn+1,k)—Mn, k) P g1

12 -792902 Acta mathematica 144. Imprimé le 8 Septembre 1980
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and let B, y<M(1, k) be the ray through y. Then F is transverse to R,y x M(n, k). Set
V=FYR,yxM(n,k)).

Since F is O(n)-equivariant, V is a smooth O(n)-manifold with boundary. We see that
8V =,M =M. Let F denote the composition of F |V with projection onto M(n, k). Then F
is clearly equivariant and stratified. Let f: 4A-B(k) be the map of orbit spaces induced
by F. Since F|eV =,F, it follows that f| B=F. Since , ., M ={(b, 2) € B x M(n+1, k)| f(b) =
t2-2}, we have

V={(®,s x)€EBxR, xMn, k)|f(b) =se+x-a}

where e ="y-y. In other words, V is defined by the pullback square

y IV, R, x M(n, k)
L,
B—1L . B

where A(s, €) =s%*¢+%x-z. Thus the orbit space A is defined by the following pullback
square:
A—— R, x B(k)
A
B f B(k)

where A(s, 2) =s?e-+z. The fiber of 4 at z€ B(k) is [0, ¢], where ¢ =inf {s€R, |z —s%e¢ B(k)}.
It is clear (from the picture) that ¢=0, if and only if z€2B(k).

the line segment

z—s%e

/the ray s’e

(4

If b€ B, the fiber of A— B at b is identified with the fiber of 4 at f(b). Therefore, if b be-
longs to the interior of B, this fiber is an interval; while, if b€8B, the fiber is a point.
Consequently, 4 is homeomorphic to B x I.
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6. Equivariant framings

In this section, we relate the equivariant normal bundle of a regular O(r) manifold to
the normal bundle of its orbit space. The following non-standard terminology is adopted.
An m-dimensional G-vector bundle over a (-space X is said to be tréivial, if it is equivalent
to X x B™, where R™ has trivial G-action. Similarly, two G-vector bundles # and E’ are
stably equivalent if E+ F =~ E'+ F’', where F and F' are trivial.

As in the previous section, we assume that M =f*(M(n, k)), where f: B—~B(k) is
stratified. Since B is locally modeled on B(k) and since B(k) is a subset of Euclidean space,
it follows that B can be embedded in some Euclidean space (i.e., i: B<R? and the smooth
structure on B is induced from the smooth structure on R?). This embedding induces a
linear map 7,(B)~>T;;(R"). By 2.3, TB is a locally trivial vector bundle. Hence, the
embedding BoR? induces an embedding of vector bundles 77B—TR?|B. The normal
bundle of B in R? is defined to be (TR?|B)/T B.

TurorEM 6.1. Suppose that B embeds in R? with normal bundle »(B). Then M can be
equivariantly embedded in the representation R? x M (n, k) with normal bundle stably equivalent
to n*v(B) (as O(n)-vector bundles).

Proof. We have M < B x M(n, k)< R x M(n, k). Consider the map ¢: B x M(n, k)— B(k)
defined by (b, x) =f(b) —n(x). One sees that 0 is a regular value of ¢, and that M =¢~1(0).
Hence, the normal bundle of M in B x M(n, k), being the pullback of the normal bundle
of 0 in B(k), is trivial.

If p is sufficiently large compared to the dimension of B and »(B) is the normal bundle
of B in R?, then »(B) is called the stable normal bundle of B and m*y(B) is the stable normal
bundle of M.

CoROLLARY 6.2. The stable normal bundle of M 1s (equivariantly) trivial if and only
if the stable normal bundle of B is trivial. Moreover, there is a natural one-to-one correspond-
ence between equivariant framings of the stable normal bundle of M and framings of the stable
normal bundle of B.

7. Implications of Smith Theory

Suppose that F: M —M’ is an equivariant stratified map of regular U(n)- or Sp(n)-
manifolds. Then F induces an isomorphism on homology if and only if each of the induced
maps between corresponding strata of the orbit spaces induces an isomorphism on homo-

logy. The proof is an application of Smith Theory, Mayer-Vietoris sequences, and the
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Comparison Theorem for spectral sequences. Smith Theory comes into play because the
fixed point set of each isotropy group is equal to the fixed point set of its maximal torus.

If M and M’ are regular O(n)-manifolds, then, by using Z/2-tori, the same arguments
show that F induces an isomorphism on homology with Z/2 coefficients if and only if it
induces a Z/2-homology equivalence between corresponding strata of the orbit spaces.

The corresponding result with integer coefficients is the following.

THEOREM 7.1. Suppose that F: M—M’ s a stratified map of regular O(n)-manifolds.
Then F induces an isomorphism on integral homology if and only if for each integer ¢, 1 =n(2),

the map E(F): E(M)—E (M) induces an 1somorphism on integral homology.

We shall also need the following related result.

THEOREM 7.2. Suppose that F: (M, o0M)—~(M',0M’) is o siratified map of regular
O(n)-manifolds and that F|oM: 0M oM’ induces an isomorphism on integral homology. Fizx
an integer i, 1 =n(2). Further suppose that for each § such that j<i and j=n(2), the map
B (M)~ E;(M') induces an isomorphkism on homology. Then 6B (M)—~0E (M') induces an

isomorphism on homology.

These two results are proved in Appendix 2 of [9].(*)

Suppose that g: X~ Y is an equivariant, stratified map of smooth Z/2-manifolds (i.e.
manifolds with involutions). Let F< X and F'< Y be the fixed point sets of the involu-
tions; also let X = X, /(Z/2) and Y = Y /(Z/2). If g induces an isomorphism on homology,
then it follows from Smith Theory, that F2£ ', X, ¢, ¥/, and X-Z. Y all induce isomor-
phisms on Z/2-homology. Thus, if E,(F): E, (M)~ E,(M’) is a homology isomorphism, then
both induced maps f;: B,~ B; and },_ ;: B, ;— B; 1 are Z/2-homology isomorphisms.

There is one case in which we can say more. The involution on X is a reflection, if F
is of codimension one and disconnects X (i.e., if X,—X is the trivial double cover). If
Z/2 acts by reflections on X and Y and ¢g: XY induces an isomorphism on integral
homology, then it follows easily that the maps g|F: F—F’ and §: X ->Y also both induce
isomorphisms on integral homology. As a corollary to this observation we have the fol-

lowing:

ProPosirIoN 7.3. Suppose that F: M—~ M’ is an equivariont stratified map of oriented
k-azial O(n)-manifolds with n=>k and that F induces an isomorphism on integral homology.

Then the induced map between top strata f,: By~ By, is an tsomorphism on integral homology.

(*) In [9] B, is called D,.
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If k=n(2), then the map between the next to top strata f,_1: B,_1— By_1 18 also an isomorphism
on integral homology.

Proof. If E=n(2), this follows from the above observation and the fact that E,(F) is
an integral homology isomorphism. If k== n(2), it follows directly from 7.1 and the fact
that £,,,=B,.

8. Actions on homology spheres

As usual, M denotes a k-axial O(n)-manifold and , M =M°*?, The first basic ob-

servation from Smith Theory is the following:

Prorosition 8.1. If M is a Z/2-homology sphere, then so is M. If M is an integral

homology sphere and if (n—1) is even, then M 1is also an integral homology sphere.

Lemma 8.2, Suppose that M is a Z[2-homology sphere and that n==1. If the dimension
of oM is (m 1), then the dimension of M is (in+m—1), and in particular, M has dimension
{kn +m —1). (By convention the dimension of the empty set is —1.) Conversely, if the dimen-
sion of M is (kn-+m—1), then m >0 and (M has dimension (m —1).

Proof. This follows from the well-known formula of Borel, [3], which relates the
dimension of the fixed point set of (%4/2)" to the dimensions of the fixed sets of subgroups

of index two. The details of the argument can be found in [9] or [15].

For the remainder of this section we suppose that O(n) acts k-axially on an integral
homology sphere *"*™~! with orbit space B and that n>Fk.

ProrositioN 8.3. With the above hypotheses B, is acyclic. If, in addition, 3 is simply

connected, then B, is contractible.

Proof. Let us first consider H,(B,)=H (B,). We shall use a theorem of R. Oliver [29],
which asserts that the orbit space of a compact Lie group action on an aecyclic manifold

is acyclic. There are three cases.

Case 1. m>0: Let x be a fixed point (by 8.2, the fixed point set of O(x) on X is non-
empty if m>0). X —{x} is acyclic the orbit space (Z — {x})/O(n)} is an acyclic manifold

with boundary. Hence, its top stratum is also acyclic; but this top stratum is B,.

Case 2. m =0 and n>k: Consider the restriction of the O(n)-action to O(n —1) and let
C=2/0(n—1). Then C is a manifold with boundary. By Case 1, it is acyclic. There is a

natural projection p: C—B which sends an O(n—1)-orbit to its image as an O(n)-orbit.
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If y€B,, then p~Y(y) = V,.:/Omn—1), where V, , is the Stiefel manifold of ¢-frames in =-
space. The orbit space V, ;/O(n—1) is an ¢-disk if ¢<% and an (n —1)-sphere when i=n
(see [9] page 78). We see that p~i(y) is always a disk, and therefore, that p is a homotopy

equivalence. Thus, B (and hence, B,) is acyclic.

Case 3. m=0 and n=k: In this case C is a compact manifold without boundary of
dimension ! =}k(k+1) +%—2. Let = be a fixed point of O(k—1) on X. Since C — {z(x)} is
acyclic, it follows that C is a homology l-sphere. If y €0B, then p~(y) is a disk. Since the
inclusion : 8B B therefore factors through C, it follows that ¢, is the zero map on homo-
logy. Poincaré duality implies that ¢B must be a homology sphere. Its dimension is
$k(k+1)—~2. Therefore, by Alexander duality, ' —p~1(9B) has the homology of a sphere
of dimension [ —(3k(k+1)—2) —1 =k —1. If y € B,, then p~1{y) 2 O(k)/O(k — 1) =S*~*. There-
fore, C —p~1(dB)— B, is an S* *-bundle, and the total space has non-vanishing homology
only in dimension 0 and % — 1. Consequently, B, is acyclic.

Finally, note that if z;(2)=0, then by 3.5, n;(B;)=0. As a result B, is contractible.

CorROLLARY 84. With Z and B as above, the principal orbit bundle Py~ B, is a trivial
fiber bundle. Up to homolopy there are exactly two trivializations of P, (since O(k) has two
P Y

components).

Consequently, the results of Section 5 apply to Z. In particular, 2 is equivalent to a
pullback of the linear model, and X is the boundary of the k-axial O(r)-manifold V of 5.2.
Let A be the orbit space of V. Since 4 is homeomorphic to B x I, 4 is also acyclic. There-
fore, the tangent bundle and the stable normal bundle of A4 are both trivial. The results of
Section 6 now apply. Thus, the stable normal bundle of ¥ is trivial. This implies that V'
and V°® are orientable, so we assume, as of now, that we have picked an orientation for
V and that ¥ is oriented compatibly. We note that it also follows (from obstruction theory)
that an oriented framing of the stable normal bundle of ¥V is unique up to an equivariant
homotopy.

Suppose that g: MM’ is an equivariant stratified map of oriented, regular O(n)-
manifolds. Since ¢ is transverse to M’, it follows that g and ;9: ;M — , M’ have the same
degree up to sign. Clearly, by the way the orientations were defined, deg (,g)=deg (;9)
when 7=4(2), (see Section 4). Hence, there are two independent degrees associated to
g: deg (9) and deg (,49)-

Let D*¥**™ denote the unit disk in the linear action kg, +m; and let ™™ be the

unit sphere.
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THEOREM 8.7. Let Z*""™~1 be oriented in the sense of Section 4.

(1) If m>0, then there is an equivariant, stratified F:ZF ™ 1>g+m-1 cych that
deg (F)=deg (,_F) = 1. Such a map is unique up to equivariant, stratified homotopy.

(2) Choose, once and for all, an orientation(t) for the linear model S*"~ 1. If m =0, then
there is an equivariant, stratified F: 5 1->81 ywhich has positive degree on ;5 for every

odd i. Such an F s unique up to equivariant stratified homotopy.

Proof. The argument which was used to prove 5.1 shows that for m >0, F is determined

up to homotopy by (1) the homotopy class of (F: (Z— S, and (2) by the choice of trivializa-
tion for the bundle of principal orbits. (See page 79 in [9].) We choose o F to be of degree
+1. Since (S =8""", this determines oF up to homotopy. For the resulting map F: T8,
deg (;F)=+1 if ¢=0(2) and deg (,F)=+1 if 4=1(2). If we change the trivialization of
the bundle of principal orbits, this changes the sign of deg (. F) for ¢=1(2). Hence, there is
one choice of trivialization that makes deg (;F)= +1 for all <.

If m =0, then the fixed point set is empty and the only choice required in defining ¥
is a choice of trivialization of the bundle of principal orbits. Thus, there are exactly two
such F: X" 1581 yp to equivariant, stratified homotopy. They differ by the auto-
morphism of &-tuples of vectors in R” obtained by sending (x;, ,, ..., %) to (— 2y, %, ..., X))
This map has degree (—1)* on ;X. Therefore, the two possible maps have degrees of opposite
sign on ;% for all ¢ odd.

We need to know necessary and sufficient conditions for X to be an homotopy sphere

in terms of the map F: X—8.

TurEOREM 8.8. Let F: M ™ 81 bo an equivariant, stratified map of degree
+1 and let f: B—L be the induced map of quotient spaces. Then M*"*™! {s a homotopy sphere
if and only if

(1) 7y(By) =0, and

(2) Ey(F)y: H(E(M); Z)—H (E(S); Z) is an isomorphism for all i, with i=n(2).

Proof. This is immediate from 3.5 and 7.1.
THEOREM 8.9. Let F: M~ 1>8~1 be an equivariant stratified map covering f: B—~L.

Then M is a homotopy sphere if and only if

(1) 71(By) =0,
(2) when n is odd, B, (M) is an integral homology sphere, and
(3) B F)y: H(E((M); Z)~>H (B ,(S); L) is an isomorphism for i =2 and 1=n(2).

{1) Recall that if m =0, there are two ineguivalent orientations for the linear action on D,
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Proof. Again, 3.5 implies that 7,(M) =0 if and only if ,(B;) =0. We show that condi-
tions (2) and (3) are equivalent to M being an integral homology sphere.

If »n is even and M is a homology sphere, then by (8.1), ,M is a homology sphere and
oM~ Ey(M) is a circle bundle. It follows that E,(M) is a homology CP*! and that the
characteristic class of the circle bundle ig a generator for H2(E,(M)). Since this circle bundle
is induced by pulling back via E,(F): E,(M)—~E,(S), if follows that E,(F) must be of
degree + 1. Conversely, if condition (3) holds (and » is still assumed to be even), then
E,(F) is of degree +1. Consequently, when = is even, F itself is degree +1. Thus, this
case follows from the previous theorem.

If n is odd, and M is an integral homology sphere, then so is H,(M). The double
cover E (M)~ B, is induced by the map f,: B,~L, =RP*"!. Hence, f; must be of degree
41 modulo 2. Hence, F is of odd degree. We claim that if & is odd, then ¥ must actually
be of degree +1. Once we show this, the case & odd follows from the previous theorem.
Consider ,M. It is a Z)-homology sphere and a circle bundle over E,(M). Hence, E (M)
is a Zg-homology CP*~. The normal bundle of B, in E,(M) has a twisted Euler class in
H*"Y(B;; Z7). (Recall, that since k —1=0(2), B, is non-orientable.) There is an involution
on Ky (M) with B, as fixed point set. The G-signature theorem tells us that this twisted
Euler class must be a generator in H* Y(B;; Z~). Since this class is induced via the map
fi: B~ RP*7, it follows that f, is degree +1 (with twisted coefficients). Hence Z,(F), and
consequently ¥, have degree +1.

This leaves the case when k is even and » is odd. Here, the map does not necessarily
have to be of degree +1. We have shown, however, that it is of odd degree. Let M be M
blown up along M,, and let S be § blown up along S;. We claim that condition (3) is equi-
valent to the condition that E,(F): E,(M)— E,(S) be an isomorphism on integral homology
for 4=n(2). This follows from 7.1, since E,(M)=E (M) for i>3, and E,(M)=2.

We claim that condition 2 is equivalent to the condition that (F, F)y: H (M, M)~
H (8, 8) is an isomorphism in dimensions less than kn—1. First, note that we have a

commutative diagram:

Thom =

H(M; Z7) Hyre-vyn-1, (M, M; Z)
Thom =
H.(S,; 47) 2 Heg1yn-1y (8, §; 7).

Secondly, F: M,->8, is a bundle map covering f,: B,—~L,. The fiber is " !, and the action
of m(L;) on 8" is via the antipodal map. (Actually, S; =8%"" x z,,8"1.) Using these facts,
a simple calculation shows that F.: H,.(M;Z )—>H.(Sy;Z™) is an isomorphism for
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*<k+n-—2 if and only if f;: B;-~L, induces an isomorphism on homology in degrees
<k -1. This, in turn, is equivalent to B, being an integral homology RP*~* and f, being of
odd degree. This, of course, is equivalent to £,(M) being an integral homology sphere.
Comparing these results via the long exact sequences for (M, M) and (S, 8), we see that
conditions (2) and (3) are equivalent to the fact that F: H, (M)— H 4(S) is an isomorphism

for *<kn —1. This is equivalent to M being an integral homology sphere.

COROLLARY 8.10. F: Z¥*~ 1871 s glways of odd degree on each stratum. If k is

odd or if n is even, then the degree is +1.

9. The concordance groups

Definition 9.1. The oriented k-axial O(n)-manifolds M and M’ (of the same dimension)
are concordant if there is an oriented k-axial O(n)-manifold W simple homotopy equivalent
to M x I(t) with the restriction of the action to W being oriented equivalent to M'] [ M.
(Here — M means that both the orientation of M and M°Y have been reversed.)

If M and M’ have nonempty fixed point sets and if dim M =dim M’, then one defines
the equivariant connected sum, MM’ by taking connected sum at two fixed points. The
result is well-defined up to oriented equivalence.

We now come to our main object of study. Let ®(k, n, m) denote the set of concordance
classes of oriented k-axial O(n)-actions on homotopy spheres of dimension (kn+m —1).
More generally, if G%(n) stands for O(n), U(n) or Sp(n) as d =1, 2 or 4, then define O*(k, n, m)
to be the set of concordance classes of oriented k-axial G%(n)-actions on homotopy spheres

or dimension (dkn +m —1).

TarorEM 9.2. For m=>1, the set O4k, n, m) is an abelian group under connected sum.
An action on a homotopy sphere Z¥™ 1 represents the zero element of this group if and only

if it extends to a k-axial action on a contractible manifold. The inverse of [X] ts [—Z].

The standard arguments can be used to prove this. (See for example, [22] and [4]
page 339.)

For n=k and d =2 or 4, the groups O@%k, n, m) were calculated in [11]. The remainder
of this paper is devoted to calculating ®(k, n, m) for n>k, by a similar program, which
we outline below.

The calculations for m==0, 4 and k==2 are made in Sections 11 and 12. The calculations

for k=2 are in Section 13; while the results for m =0 and m =4 appear in Section 14.

(*) Of course, if dim W > 6, then W is diffeomorphic to M x I.
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We suppose for the remainder of this section that m>0. Let Z***™! represent an
element in OY(k, n, m) and let F: (Vkrtm Zkntm-ly, (pintm gkntm-1) he the equivariant
stratified map with deg (F)=deg (,_,F)=1 constructed in Theorem 8.7. We seek to alter
V by an equivariant normal bordism relative to F|X to make it contractible.

Let A, B, K, and L denote the orbit spaces of V, X, D, and 8, respectively, and let
f: (4, B)—(K, L) be the map induced by F. For each ¢, 0<i<k, let f;: (4;, B,)—~(K;, L;)
be the induced map of closed strata. We note that f; is naturally covered by a map of

stable normal bundles, since:

(1) the map of equivariant stable normal bundles »(V)—>#(D) induces a bundle map
y(4)—>»(K), and

(2) the normal bundle of 4; in 4 is mapped by a bundle map to the normal bundle
of K,in K.

Hence, since f; is also of degree one, it is a normal map. Similarly, we see that for each
1, 0<e<k+1, the induced map of double branched covers E(f): (E,(4), B,(B))—~
(E(K), (L)) is a Z/2-equivariant stratified normal map. (Recall that a normal map
f: M—N is a map of pairs (M, 8M)—(N, ON) which is covered by a linear bundle map
f: vy~ &y where w,, is the stable normal bundle of M. For us normal maps will always be
of degree 1 unless otherwise specified.)

The next result allows us to translate our problem of doing O(n)-equivariant surgery

to a sequence of ordinary surgery problems.

THEOREM 9.3. Suppose F: (Virtm Frntm-ly_, (pnim gkntm-1y i chosen so that f: B—~L
is of degree one on each stratum. (This can always be done if m>0.) Then
(1) (f;| By)s: Hy(Bj; Z)2)~H (L;; Z[2) is an isomorphism for all j, 0<j <k,
(2) (B{f)| E{B))x: H{E/B); Z)~>H(E;(L); Z)1is an isomorphism for all j, 0<j<k+1,
such that j=n(2), and
(3) 71(By)=0.
Moreover, analogous conditions hold for the extension f: A— K if and only if the k-axial O(n)-

manifold V"' s contractible.

Proof. The map F|X: Z***m~1— gknim-1 is o homotopy equivalence. Thus, (2) follows
from Theorem 7.1. Also, (1) is implied by (2). Condition (3) follows from Lemma 3.5. The

statement about the extension f: 4K follows in a similar manner.

Our program is to successively try to do surgery on each f;: 4,— K, relative to f,|04,

to achieve the conditions of 9.3. If we succeed, then we will have constructed a new orbit
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space 4 together with a stratified map f: (4, B)—~(K, L) so that f| B=f| B and so that
V =f*(D) is contractible. Initially, it will appear that surgery obstructions are encountered
at each stratum; however, we will then show that all these obstructions either vanish or
are indeterminant (tied to choices made in dealing with the lower strata) except for those
encountered on the bottom two strata.

First we analyze the fundamental groups and orientations involved.
ProrosiTIoN 9.4, 7y (K ) =0, (Ky) =0.07,(K,;) = Z[2, provided 0 <i <k and (k, 1)==(2, 1);
7, (0K,) =m(K;) if 122 or if m=3.
This results immediately from 2.5 and 2.6. From 4.3 we have the following:

ProrositioN 9.5. For 0<i<k, A, and K, are (—1)*"* ' orientable. For =0 ori=F,

A, and K, are orientable.

10. The relevant surgery groups

In this section we freely use the notation and results of [34]. Let R be a subring of @,
7 a group, and w:—~Z/2 a homomorphism. Recall that the surgery group Ly(R[x], w)
is a Grothendieck group of triples (G, A, u), called hermitian forms. Here G is a free R[x]-
module, 1 is a non-singular ( --1)°-hermitian-symmetric pairing and w is a quadratic refine-
ment of A. In this group hyperbolic forms are set equal to zero, [34] page 45. The surgery
group Ly, ,(B[7], w) is generally defined in terms of automorphisms of forms, but for
finite groups 7 there is a description in terms of triples (7', I, ¢), called linking forms. 7' is
a finite E[n]-module with short free resolution, ! is a non-singular (--1)*-hermitian-sym-
metric linking form, and ¢ is a quadratic refinement, see [28] pages 32 and 33 and [30].
A linking form is resolvable, if it is induced by reducing a hermitian form (F, 4, u) over
R[z] which is non-singular over Q[x], see [28] page 42. In the Grothendieck group
L, ., (R{x], w) resolvable linking forms are set equal to zero.

If we have a normal map f: (M™, 6M)—~(N™, oN), then we denote its kernel groups
by K(f; R[z,(N)]) or by K,(M; Rlm;(N)]). If {|oM is an R[sm,(N)]-homology isomorphism,
then the kernel groups satisfy Poincaré duality.

If m =2s, then after we do surgery below the middle dimension, we can assume that
K(M; Rlm,(N)]) =0 for i<s and that K (M; R[n,(N)]) is free. Geometric intersection

produces a non-singular pairing 4; the bundle map covering f produces immersed cycles
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in the middle dimension with self-intersections which give the quadratic refinement u,
see [34] page 45-46. This triple determines the surgery obstruction o(f)€ Ly(R[z,(N)],
wy(N)). If m=2s+1 and = is finite, then we can assume that K, (3; Rn,(N)}) =0 fori <s
and K (M; Q[m,(N)))=0. Thus K (M; R[m,(N))) is finite and has a short free resolution.
There is a geometrically defined linking pairing and self-linking pairing (see [28] pages
32-40) which determines o(f) € Ly ( R{71,{N)], w, (V).

If 6(f)=0 and m =5, then we can perform further surgery to construct a normal
bordism from § to a normal map which induces an isomorphism on R[sw,{N)]-homology.()
More specifically, if m =2s, and f: M ™ N i highly connected with H a subkernel ([34],
page 45) for the intersection form of f, then there is a normal bordism G: W—N x I to an
R[m,(N)]-homology equivalence with @ highly connected and K, (G, f; Rz (N)))=H. If
m=2s+1, f: M™—N™ is highly connected, and (F, A, u) is a resolution of the linking form
of f, then there is a normal bordism G: W—N x I from { to an R[r,(N)]-homology equiv-
alence which realizes the resolution. This means that G is highly connected and that the
geometric intersection and self-intersection forms on K (G; R, (NV)]) are identified with
A and y, respectively.

This completes our general discussion of the Wall groups. We turn now to the ex-
plicit computations which we need in order to do stratified surgery on regular O(r)-mani-
folds. Tt is easily seen that symmetric forms over R< ) have at most one quadratic re-
finement. Such a refinement will exist if and only if A(x, x) € R is always divisible by 2 in
R. In this case the unique refinement, y, is given by u(x)=4A(x, ). Thus, Ly(R) is a
Grothendieck group of symmetric, non-singular, even matrices over R. If R=Z, then

such matrices, modulo hyperbolic ones, are classified by one eighth their index. Hence,
(orij) > &L (oyy)

induces an isomorphism Ly(Z)=~Z. Denote by W the group of such matrices over Zg,

modulo hyperbolic ones. There is a short exact sequence 0% - W —T -0 where

T= 2 Z/4® 3 (Z)20Z[2)
D prime p prime
p=3(4) p=14)
See [26].
As we have seen in Corollary 2.6, the fundamental group of a stratum in the standard
linear model is either 0 or Z/2. We need to do surgery with either Z, or Z coefficients.

The next three theorems give the caleulations of the Wall groups in these cases.

(*) This is also true for m <3 provided that the range is simply connected.
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TrrorEM 10.).

7 i=0(4)
0 i=1(4)
(®) L= g5 =2
0  i=3(4).
(W i=0(4)
(b) L) -1 oMW
72 i=2(4)
0 i=344).

The calculations of L;(Z) were made in [22]. The ones for L;(Zs,) are completely
analogous. In both cases the isomorphism from L, to Z/2 is the Arf invariant of the as-
sociated guadratic form over Z/2, [1]. This obstruction is called the Arf-Kervaire invariant.

In the case n=Z/2 we denote the two possible maps w: Z/2—Z/2 by + and —

(+denotes the trivial map). The non-trivial element in Z/2 is denoted 9.

TrEOREM 10.2.

LT i=0(4)

() Lz, =0 T
' ’ Zi2  i=2(4)
L2 i=3(4).

(b) Li(Z[Z/21,—>={Z/2 =0
0 =12

These groups are calculated in [34] page 162. Both L,,(Z{Z/2], —) and L, (Z[Z/2], +)
are detected by the Arf-Kervaire invariant. The isomorphism L,; o(Z[Z/2], +)=%/2 is a
codimension 1 Kervaire invariant. If f: M**3—N**3 i3 4 normal map with N orientable
and 7,(N) =172, then dual to the generator of H(N; Z/2) is a submanifold X***c N If f
is transverse to X and if {~1(¢X)—~8X induces an isomorphism on Z/2-homology, then the
surgery obstruction of f is equal to the Kervaire invariant of | (f-1X).

The isomorphism Ly(Z[Z/2], +)~Z®Z sends a form represented by the matrix

(as;+Bisy) to
(o +B45), 3 (i —Biy))-

If (3,;) is an even, non-singular symmetric matrix over Z,, then its reduction modulo 2
is the quadratic form over Z/2 whose bilinear form is given by (A;;) mod 2 and whose

quadratic refinement is defined by

w[z]) = {%(tx'(lu) x)} mod 2.
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(Since (A;;) is even, it follows that 'z-A; - is even.) Let ¢: W—Z/2 be the map which
assigns to (1;;) the Arf invariant of its reduction modulo 2. An elegantly simple argument
of Levine, [24], shows that c¢(l,;) is 0 if det (;;)=+1 mod 8Z,, and is 1 if det (1;;)=
+3 mod 8Z,.

TaroreM 10.3

WoeW i=04)
L(Zs[Z/2 _J0 i=1(4)
() (ZolZ[2], +) = Z)2 i=2(4)
0 i=3(4).
(22 i=0@)
(v LZalZ/2), ) —{ 0 iz10

(Here W@ W =kernel [(c+c): WO W—~>Z[2].)

Proof. The calculations in [34] for L,(Z[Z/2], —) are valid as well for L;(Zy)[Z/2], —).
Possibly the simplest proof of (a) is to take advantage of the fact that the projective class
group and the Whitehead group of Z3,[Z/2] are 0. Under these hypotheses the fibered

square
T+
Z»Z/2] L,
a+byra+b
| T
a—
Zs, Z/2

leads to a long exact sequence of Wall groups (see [2], page 27):

T4y

(10.4) cee > Ly (B2) > Li(Z o) Z]2]) L(Zs) ® Ly(Zg)— ...

From (10.4) the computations follow easily. Note that the map

0->Ly(Zw)[2/2], +)>-Wo W

sends (ot;;+85y) to (ot +B4y)s (i —B:s)-

Sometimes the forms that occur in doing surgery on the next to the top stratum of a
regular O(n)-manifold are intermediate between Z[Z/2]-forms and Zz)[Z/2]-forms. The
reason is that we have a normal map which, when restricted to the boundary, is an iso-
morphism on Z and Z[Z/2] homology and we wish to do surgery to make the map on
the interior an isomorphism on Z and Z)[Z/2] homology. The fundamental group is Z/2



CONCORDANCE CLASSES OF REGULAR O(n)-ACTIONS ON HOMOTOPY SPHERES 183

and the manifolds are oriented. Before calculating the relevant surgery obstruction groups

we need a lemma.

Lrmma 10.5. Let T be a Z[Z[2]-module of odd order. (It has a short free resolution.) If
(T,1, q) is @ non-singular symmetric linking form over L{ZL[2], then its class in Ly(Z[Z/2], +)
is trivial if and only if the order of T is of the form 8s+1.(1)

Proof. Take a degree one normal map f: X443 P it K,(f; Z[Z)2])=0 for
<2k +1, and with Ky (f; Z[Z/2]) equal to T'. If the surgery obstruction of f is trivial,
then there is a normal map F: W***— ¥ x I from { to a homotopy equivalence. Consider
F:W—Y¥YxI. It is a normal map between spaces with free involutions, and is a Zg)-
equivalence on the boundary. Consider the non-equivariant surgery obstruction 7(F) in
Ly(Z ). This element has zero Arf-Kervaire invariant (since it is twice the Arf-Kervaire
invariant of the normal map on the quotient spaces). Hence, Levines’s result says that,
after making F highly connected, the determinant of the matrix for the intersection paiting
on Ky, o(F) is +1 modulo 8. This means that the order of K,,,,(8F) is +1 modulo 8,
i.e., the order of K, (f) is 41 modulo 8. This proves that if (7,1, ¢) represents 0 in
Ly(Z[Z/2], +), then the order of T is +1 modulo 8. From this, the result follows easily.

Let us return now to the calculation of the surgery group associated with the next to

the top stratum.

THEOREM 10.6. Let f: (M™, 0 M)~ (N™, 8N™) be a normal map with 75,(N) =22 and N
orientable. Suppose that f|oM is a Z and ZLg,[Z[2] homology isomorphism. Then the obstruc-
tion to doing surgery to moke f o Z and Ze[7/2] homology isomorphism lies in o group

Ly(Zo[Z[2], +). These groups are given by the following table:

ZoW < LyZs)Z/2], +) i=0(4)
0 i=1(4)
Lf(Ze)Z/2], +)=
(ZolZ[2], +) Z/2 (The Arf-Kervaire invariant) 7=2(4)
0 i=3(4).

Proof. K (6M; Z[Z/2)) is, as an abelian group, odd torsion. Consequently, it decom-
poses as K (0M)®K; (0M) where y €Z/2 acts by multiplication by +1 on K;*(0M). Since
K(@oM;Z)=0, K/ (6M)=0.

Consider now the case m=2[/+1. Surgery below the middle dimension allows us to
assume that K, (M; Z[Z/2]) vanishes for ¢ <l. Since L,,,,(Zs[Z/2], +)=0, we can, in addi-
tion, assume that K ,(M; Z[Z/2]) is odd torsion, and hence, equal to K;"® K, . All higher

(1) This lemma gives a different proof of the fact that there is no codimension one Kervaire in-
variant in Lg(Z,,[Z/2], +).
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kernel modules for f are of the form K;. We wish to do surgery to kill K;". The linking
form on K;' @ K; breaks up into the orthogonal sum of a pairing on K;" and one on K; .
Since K; (6 M) =0 for all 721 it follows that the linking form on K is non-singular. Hence,
(K UK, g| Ki') determines an element in L, ,(Z[Z/2], +). Assume, for the moment,
that this element is trivial. Let (#, 4, u) be a resolution over Z{Z/2]. We use this resolution

to construct a normal bordism G: W—N x I with one end being f: M N and with

0, 1=Fl+1
(1) KW, M; Z[Z/2])—{F*; i 141
) Ko(W)[(Im K, y(M)) > K, (W, M) identitied with ad (2).

Let f: M'—>N be the other end of this normal bordism. From the kernel sequences
for (W, M) and (W, M’) we see that
, K(f; 2(2)2]) =1
K[ Z[Z/2])={ - .
K (f) 1=1.

Thus, /' induces an isomorphism on Z and Z,[Z/2] homology.

The above argument was predicated on the fact that (K;', 1| K;, ¢| K;) determined
the trivial element in L,, ,(Z[Z/2], +). If it does not, then 2{+1=3(4). Form the normal
bordism M x I3 K-—+N x I where K is the plumbing of two copies of the tangent bundle
of §'*'. Since H,(6K)=Z/3, this has the effect of adding a copy of a non-trivial linking
form on Z/3 to K;. By the previous lemma this changes the surgery obstruction of
(K", U| K, q| KT') to zero. This completes the proof that L. 1(Zw)[Z/2], +) is zero.

We turn now to Li{Ze)[4/2], +). Our first aim is to show that if o(f) € Lyy(Z, [ Z/2], +)
is zero, then we can do surgery to kill simultaneously K (f; Z)[Z/2]) and K (f; Z). Showing
this will show that L3(Z)[Z/2], +)— Ly Zey[Z(2], +) is an injection.

We can assume that K,(f; Z[Z/2])=0 for i <I. The module K (f; Z[Z/2]) may have an
odd torsion submodule, 7'. If so, the action of y on 7' is multiplication by —1. The module
K \(f; Z[1/2))[T is a free Z[Z/2]-module and has a (~1)-hermitian-symmetric form (4, u)
on it. It is embedded as a lattice in K,(f; L)[Z4/2]) with (4, 4#) being non-singular over
Z[Z/2]. Suppose that over Zs,[%/2) the form is hyperbolic. Let

@
(H@)H*r € /"") = (Kz(f§ Z(2)[Z/2])7 Z" lu)

be an isomorphism. (Here H and H* are dual under ¢ and u|H =0.) The map ¢ induces a
splitting of K (f; Z{Z/2))/T =K (f)/T into

{pWH) N (KN} @ {p(H") 0 (K ()] T)}-
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The matrix for 4 in this splitting is of the form

0 (@)
(= Do) | 0

where («;;) is a Z[Z/2]-matrix which is non-singular over Zy[Z/2]. In addition, since

K, (f|oM; Z)=0, the integral matrix (rt(a;;)) is non-singular. As a result, doing surgery
on a Z{Z|2]-basis for ¢(H) N (K ,(f)/T) produces the required normal map.

This proves that L3(Zw)[Z/2], +) injects into L, (Z)[Z/2], +). One sees easily that
this inclusion is onto for I=1(2), and has image Z®W for 1=0(2).

Let R+ be the E[Z/2]-module structure on B where p acts by +1. For any R[Z/2]-
module C, define Ct to be € ® gz/0; B* and define 7*: C—C* to be the obvious reduction.
If A: M xM—C is a bilinear form, then let A*: M* x M*—(C+ be defined by A*(r(m,),
7% (my)) =7 (A(my, my)). Also, let r*: Ly(R[Z/2])~Ly(R) be the induced map.

If M is a Q[Z/2]-module and A: M x M —Q[Z/2] is a bilinear form, then there is natur-
ally associated a form over Q, A,;: M x M — Q defined by taking 2,(z, ¥) to be the coeificient
of the identity of A(z, y). Let E* be the (+1)-eigenspace for the action of y on M. Then
M=E+®E" is an orthogonal decomposition for A,. Furthermore, E* is canonically iso-

morphic to M*, and under this identification 4,| #* becomes }A*.

Prorositron 10.7. Let f: (M*™, 0M)—~(N*", 6N) be a normal map. Suppose that
7 (N)Y=Z/2, that N is orientable, and that f|oM is an R[Z/2]-homology tsomorphism. Let
f: (JT, 801)—~ (N, oN) be the double cover of f, and let ©(f) denote its (non-equivariant) surgery
obstruction. Then 1(f) =0 (f) +0o_(f) in Ly(R), where o, (f) =r*(a(f)).

Proof. Suppose that f is highly connected and that (K, A) is its middle dimensional
intersection form over R[Z/2]. The middle dimensional form for f (over R) is then (K, 4,).
Hence, over (), the form for f is isomorphic to (K*+*® Q, }A+)® (K- ® Q, 34~). Since the
map Ly(R)—~Ly(Q) defined by sending (G, p) to (G Rz Q, 1%) is an injection, it follows that
in Ly(R) the form (K, A) is equivalent to (K+, AY)@ (K-, A-).

11. Statement of the main theorem

The main theorem concerns the calculation of ®(k, n, m). Since the case m =0 is dif-
ferent in several ways, we postpone discussion of it until Section 14. Here, we make the

following assumption:

13 — 792902 Acta mathematica 144. Imprimé le 8 Septembre 1980
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Assumption 11.1. m>0.
For Sections 11 and 12, F: (Véntm Thotm-ly,(pjntm ghnim-1) is as in 9.3. The surgery
obstruction ¢(,F) lies in Ky, .(Z) for t=nr(2) and in Ly .(Z) for i = n(2). Set 0(X) = (. F).

ProprosiTioN 11.2. The invariant o,(Z) depends only on the concordance class of
Tintm-1 Moreover, 0,() is additive with respect to equivariant connected sum. Thus, for each

integer i such that 1 =n{2) there 1s a homomorphism
o OUk, n, m) > Lyys (Z).
For each integer 1 such that i £ n(2) there is a homomorphism
g OUk, n, m) > Ly (Z o).

Proof. Let W be a concordance from X to X'; let ¥’ be the framed manifold bounded
by 2’ let F': (— V', —=X')=(D, S} be the equivariant stratified normal map of Theorem
8.7. By Theorems 5.1 and 6.2, we can find an equivariant stratified normal map F”:
W8 x I. Since F|X and F’[(—2X') are unique up to an equivariant stratified homotopy,
we may assume that F”|0W = F|Z][F’'|(—X'). Notice that 8™ = DFntmy (§¥+m=1 5 T) Y
Dintm Let Yerrm— VU WU (—V')andlet G=F U F” U F': Y*ntm_ Qentm By Smith Theory,
F"|,W is a homology equivalence with coefficients Z (for i=n(2)) or Zy, (for i==n(2));
hence, ¢(;F”)=0. Using Theorem 5.2 we see that 7™ bounds a framed manifold X*"*™~1
and that G extends to an equivariant stratified normal map from X*'™°T to D¥+m-1,
Consequently,

0 =o(,
=0(;F) +o(;F") —o(,F")
=o(F)—a(;F").

This proves that ¢; depends only on the concordance class of Z. It is clearly additive with

respect to connected sum.

The following questions arises: What values can be assumed by the {g;}? This is

answered by the following result.

Prorosition 11.3. If k is odd, then ¢;,=0. If k is even, then o,=0,,, and c(¢;,,(2)) =
c(0(2)), where ¢ stands for the Arf-Kervaire invariant.

(Note that if £=0(2), then dim (,V)=dim (, ,V) (4).)

To deduce Proposition 11.3 one needs the fact that , ,V has a semi-free Sl-action
with fixed point set ;V, and the fact that ,,,V has a Z/2-action with fixed point set ,V.
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The former is obtained by restricting the action of 0(%) x SO2)=0(i+2) to the second
factor, and the latter is obtained by restricting the action of O(i) x O(1)< O(i +1) to the
second factor. The proposition now follows immediately from 15.4 and 15.5.

Let R, =Z and B_=Zg,. Consider (g, a,): Ok, n, m)—~>L (R, DLy (R_.), where
e=(—1)". We see, by 11.3, that the image of (g, 0y) is contained in the kernel of
e+ L (RYD Ly, (R_)>Z[2. (Recall that ¢: Ly(R,)>Z/2 is the Arf invariant of the
mod 2 reduction.)

The main result of this paper is the following.
TaeorEM 11.4.

(I) If k is odd, m==4 and (k, m)==(3, 1), then Ok, n, m)=0.
(IT) If k is even, then

{09; 01) Co €

'k, n, m) L(R)® L. i(R_) Z/2

18 exact. (e=(—1)") If k =2 and m=£4, then (o,, ;) is injective.
The case (IT) above leads to a calculation of most of the groups @(k, n, m) for k even.

TrEOREM 11.5. Suppose that m=:4, that k=0(2), and that k2.
(1) If k=0(4), then .
Z+W; m=0(4)
Ok, n, m)=17Z[2;  m=2(4)

0; m=1(2).
(2) If k=2(4), then
Z; m+2n=0(4)

Ok, n,m)=3 W; m+2n=2(4)
0, m+2n=1(2).

(Recall that W =Ly(Zs,) and W is the kernel of c: W—~%/2—0.)

12. Stratified surgery

Suppose, as before, that F:(Vknim Fkrim-1y_,(pkntm gkntm-1y jg an equivariant
stratified normal map, and that f: (4, B)— (X, L) is the map of orbit spaces induced by F.
For each ¢, 0<i <k, let f: (4;, B;)~(&;, L;) be the induced map of closed strata, and let
i (B(4), E(B))~>(E(K), E,(L)) be the induced map of double branched covers.

In this section we shall work with the f;: A;,—~ K, relative to B—L. If we construct a
normal bordism y: Z,~K,x I from f, to g;: C;—~K,, relative to 04;, then we can extend
this to a stratified normal bordism h: (G, BxI)~>(K x I, Lx I), where @=4 x I Uy*&
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with £ the cone bundle neighborhood of K, x I in K. If we pull back the standard linear
model over K x I by h, then we have an equivariant stratified normal bordism (W, X x I}~
(DFrtm o I, Sfvtm o I, Hence, we can use a normal bordism of f;: 4,~ K, to construct one
for F: V—D. Thus, as we do surgery on the f;, we are actually doing equivariant surgery
on V. Our goal is to do this in such a way that ¥ becomes contractible, or more precisely,
to understand the obstructions to making ¥ contractible. All these obstructions are, in
the end, described in terms of ordinary surgery obstructions for the f;, as one would be
led to expect by 9.3.

Here, we shall prove that almost all the obstructions to completing surgery on the f,
to achieve the conditions of 9.3 either vanish automatically or are indeterminant (i.e., can
be made to vanish by an appropriate choice of surgery on the lower strata). The only ones
which are meaningful and non-zero occur in the case when k is even and =0 or 1. These
obstruetions will be identified with ¢, and o,. A similar argument will show that we can
construct a normal map F: (V, X)—(D, 8) realizing any possible value of (g, 6;). This
will prove Theorems 11.4 and 11.5.

Throughout this section we shall assume that £>2, that m >0 and that m==4. In the
case of mono-axial actions (£ = 1), the manifold ¥ constructed in 5.2 is already contractible;
hence, ®(1, n, m)=0. The investigation of the other cases is postponed until the next two
sections.

Under the above hypothesis no stratum A, can have dimension 4, and the only pos-
sible stratum with dimension <4 is 4,. Hence, if, when we are considering f;: 4;~K;, the
high dimensional obstruction vanishes, we will be able to do surgery on f; to make it an
equivalence.

Assume by induction that we have completed surgery through level 1 —1, i.e., assume
that:

() (fj)s: Huldj; LZoy[])— H (K ;; Loy[7z]) is an isomorphism for all § such that 0<j <,
where 7t =7,(K,).
(A1) (f;)u: Hi(E,(A); Z)—~H (E;(K); Z) is an isomorphism for all j, 0<j <4, such that
ji=n{2).

We consider the problem of doing surgery on the normal map f;: (4;,24,)~(K,, 9K,).

There are two cases depending on whether (»—%) is even or odd.
Case 1. iEn(2).

LeMmwma 12.1. Suppose that the inductive hypotheses (I) and (11) hold through level i —1
and that ¢ £ n(2). Let m=mn,(K,). Then
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(1) fi]e4;: 84, 0K, induces an isomorphism on ZLg[7]-homology.

(2) If i=kori=k—1, then f,|0A4, also induces an isomorphism on integral homology.

Proof. By Theorem 7.2, the map 0E, ,(4)—~0E, (K) induces an isomorphism on
integral homology. Since the map f,[84,; is the induced map of fixed point sets of the
involutions on 9E,;(4) and 8E,(K), it follows that f,|04, induces an isomorphism on Z/2-
homology or, equivalently, on Z,-homology. By considering the Gysin sequence of the
double cover 84,04, we see that fi|04, is also a Z/2-homology isomorphism. This means
that f;]04; induces an isomorphism on Zg)[7]-homology. This proves (1). Statement (2)

is a direct consequence of the proof of 7.3.

When ¢ % n(2), we try to do surgery on f, (relative to f,|04,) to a homology equivalence
with coefficients dictated by the above lemma. If ¢+ <k —2, the obstruction to completing
this surgery lies in a Wall group of the form L(Zq,n], 1), where = is either Z/2 or 0,
s=dim A,, and the + refers to the orientability of K,. If =k, the obstruction lies in the
ordinary simply connected surgery group, L(Z). If ¢=k—1, then the obstruction to com-
pleting surgery to a map which is simultaneously a homology equivalence with coefficients
Z and Z)[7), lies in the group L; (Z)[7], +) which was calculated in 10.6.

Case 2. i=n(2). We assume that surgery has been done so that conditions (I) and (IT)
hold. This implies that f|2E,(A): 0E,(A)~8E,(K) induces an isomorphism on integral
homology, and that f,_,: 4, ,—~K, , is a Zg[n]-equivalence. We want to arrange, by
doing surgery on f;: 4, K, relative to f;|04,, that fi: E;(A)— E,(K) is an integral equiva-
lence. Put another way, we want to identify the obstruction to doing Z/2-equivariant
surgery on f;: B,(4)— B, (K) relative to 0E,(4) U A,_,. (If i =0, then there is no involution
and E (K)=K, is simply connected. Thus, in this case, the surgery obstruction lies in
L,(Z).) If the involutions on K;(4) and E;(K) were fixed point free or if f; ;: 4, ;—~K; 4
were a homotopy equivalence, then this would be an ordinary surgery problem with ob-
struction in L.(Z[Z/2], +). We claim that if f,_;: 4, ,—~ K, , is highly connected (with
one extra condition if 4=%--1), then the obstruction for doing Z/2-equivariant surgery
on f, still lies in L.(Z[Z/2], +). To prove this we need a lemma.

Lemma 12.2. Suppose that F: (V, L)~ (D, S) satisfies conditions (1) and (II) for §<i,
that i=n(2), and that i <k. Let r be the dimension of A,_;.

(a) We can do surgery on f,_; relative to 84, ; so that f,_, satisfies condition () and
also so that K .(f;_y; Z[Z/2]) is zero for * <[(r—3)/2].
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(b) If i=k—1, then A, , is non-orientable. If dim A4,_=2s, then we can assume that
part (a) 15 satisfied, and that K,_,(4, ;; Z7)=0.

Proof. The normal method of doing surgery on f,_, is to first make K, (f,_;; Z[4/2])=0
for *<[(r—2)/2]. Then, if the Zy)[Z/2]-surgery obstruction vanishes, further surgery in
dimension [r/2] will make it satisfy condition (I). Such surgery leaves K.(f. ; Z[Z[2])
unchanged for * <[r —3/2]. This proves part (a). Part (b) is an immediate consequence of

Lemma 15.6.

The relevance of this is the following corollary.

CoroLLARY 12.3. Suppose that F: (V, Z)—(D, 8) satisfies the conclusion of Lemma
12.2. Further suppose that 1=n(2). Let s be the dimension of E(K). Then, K, ((E;,(4)—
A; 1) L)—> K (E | (A); L) is an isomorphism for * <[s/2] and onto for *=[s/2].

Proof. Note that if we blow up E;(4) along A4,;_, the result is exactly the double cover
of 4,;, A, We may identify this blow-up with the complement of a tubular neighborhood
of 4, ; in E,(A). Showing that K.(d; Z)~> K .(E,(A); Z) satisfies the above statement is
equivalent to showing that K.(E;(4), 4;; Z)=0 for *<[s/2]. By the Thom isomorphism,
K (By(A), A 2) ~ Ky, s 1(A;_1; L) where m,(4,_,) acts on the coefficients of the second
kernel group by multiplication by ( —1)* % (Recall that the codimension of 4, ; in E;(4)
18 (k—4+1).) Applying 12.2 gives the result.

Now perform equivariant surgery on 4, K, to make K. (4; Z)=0 for *<[s/2]. By
12.3 this makes K, (¥ ,(4); Z)=0 for * <[s/2].

At this point we break the discussion into 2 cases —s=0(2) and s=1(2). In the first
case, s =2r, the only remaining kernel module is K. (E;(4); Z), It is a free abelian group
and has a non-singular (integral) intersection form. In addition, there is an action of Z/2 on
K, (E(A); Z) coming from the involutions, y, on E;(4) and E(K). The intersection form is
invariant under this action. This allows us to give K, (¥ ,(A4); Z) the structure of a Z{Z/2]-
module and to enhance the intersection form to a Z[Z/2]-valued form. We claim that
KB [(A); T} is a free Z[Z/2]-module, and that the enhanced form is non-singular. If this
is true, then it defines an element in L(Z[Z/2], +). Since K (F(4); Z) is a free abelian
group, to show that it is a free Z[Z/2]-module it suffices to show that K,(F,(4); L) is a
free Z.g)Z/2]-module. But K,(E,(A4); Ze) =K, (A,;; Zg). The normal map filffi is (1) a
Z9y-homology equivalence on the boundary, (2) highly connected, and (3) an equivariant
normal map between free Z/2-actions. Thus, the usual results of surgery theory imply that
K,(4,; L) is a free Zg[Z/2)-module (see [34]). The pairing over Z[Z/2] is automatically

non-singular on K,(E(4); Z) since its integral counterpart is.
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If the class determined by K.(E,(A4); Z) is trivial, then there is a subkernel H<
K, (E,(A); Z). Since K,(A; Z)~K,(E,(A); Z) is onto, we represent a Z[Z/2]-basis for H
by disjointly embedded spheres in A,. Equivariant surgery on these spheres and their
images under the involution produces a new normal map f;: E,(4’)~> E,(K) which is an
integral equivalence. Thus, if the obstruction associated to f; in L,(Z[Z/2], +) vanishes,
then we can do equivariant surgery on f;: E,(4)—~ E;(K) to make it an integral equiva-
lence.

Now, let us consider the case s=2r+1. Do surgery equivariantly on f,|d;: 4,~ K,
until K (E,(4); Z)=0 for *<r. Since Ly, +1(Z(2)[Z/2], +)=0, we can do further equivariant
surgery in dimension r to make K (4,;; Zs)=0. This makes K,(Z,(4); Z) an odd torsion
group. It has a Z/2-action and an equivariant, non-singular linking form. Hence,
K,(E,(A); Z)is a Z[Z/2]-module with a non-singular linking form. Since any Z[Z/2]-module
of odd order has a short free resolution, it follows that K,(Z,(4)) and its linking form define
an element in L,, ,(Z{Z/2], ). If the class of this form vanishes, then we can do equivariant
surgery on A, to realize a resolution of the form. (This uses the fact that K,(4,)~K(E,(4))
is onto.} The result of the surgery is to make K, (E(4); Z)=0.

If we take the image of the obstruction defined above in L(Z,[Z/2], +), we clearly
get the obstruction to making f;: 4,~K, a ZgfZ/2]-homology equivalence. Since
L, (Z{Z]2], +)~Ly(Ze[Z/2], +) is an injection, it follows that the obstruction associated
to f;: E,(4)—~E,(K) by the above procedure is independent of the equivariant surgery
which we performed on E;(4) when s=2r (provided, of course, that we work relative
to 8E,(A)U A; ). The only case in which the surgery group L,(Z[Z/2], %) is non-
zero is when 2r+1=3(4) and the involution is orientation preserving (ie., k—i+1=
0(2)). The obstruction is also well-defined in this case as we point out in Remark 12.6,
below.

We still must consider the case ¢ =k, when k=n=(2). Since E(K) is the double of K,
along K,_,, doing surgery to make f, an integral homology isomorphism is the same as
making f; and f,_, integral equivalences. Completing surgery at level (k—1) makes f,_,
and f,]84, integral equivalences. Hence, the surgery group for f, is L{Z).

This completes the identification of the surgery groups for the f; (i=(2)), and shows
how to associate to a normal map F:(V,X)—>(D,S) a well-defined obstructionin
L(Z[Z/2], +) once surgery has been done so that conditions (I) and (II) hold through
level (1 —1) and so that 12.2 holds for f,_,.

We now show that if % is odd, or if ¢>1, then any possible surgery obstruction either
vanishes automatically or is indeterminant. The proof of this will be based on the following

observations from Sections 1, 2 and 3:
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(1) 8,4, A, is a fiber bundle with fiber RP*~-1,

(2) 0;E,,4(A)~ 4, is a fiber bundle with fiber CP*~*1,

(3) The stratified map f: 4->K induces bundle maps f;,,|8;4;,,: 8;4,,;—0;K,,, and
0, B, ,(4)~0,E, o(K) which cover f,.

The relevance of these observations is due to the fact that there are “product for-
mulae” which relate the surgery obstruction of a normal map to the obstruction of a
bundle map which covers it. The precise statements and proofs of these results are post-
poned until Section 15 where they appear as Theorems 15.1, 15.2, 15.3, and 15.4.

The first result along this line shows that with one exception, all possible Arf-
Kervaire invariants vanish or are indeterminant. The exception occurs when ¢=0 and %
is even. Since the Arf-Kervaire invariant that arises as an obstruction to doing Z/2-
equivariant surgery on f;: B,(4)~ E,(K) is equal to that of f;: A,~K;, it suffices to consider
the Arf-Kervaire of f;.

ProrosiTION 12.4. Suppose that surgery has been completed through level (¢ —1) and
that dim A,=2r. Consider the Arf-Kervaire invariant of f;: A,—K,. It vanishes

(a) of (k—1i—1) s even, or
(b) of i+1=n(2) and 2r+k—i—-1)=3(4).
(c) In all other cases, provided ¢>0, it 1s indeterminant and can be made to vanish by

changing the way surgery was done on f,_;.

Proof. (a) The map f;: A;—~ K, is covered by the map of RP*~*"L.bundles f,,,]0,4,.;:
0,4,,,~0,K,,. Since the fiber is a projective space of even dimension, it follows from
Theorem 15.3 that the Arf-Kervaire invariant of f, equals that of f;,,]9;4,,;. Next con-
sider the map f,,,|04;,;:04,,,~0K . Its Arf-Kervaire invariant vanishes, since it is a
boundary. On the other hand, it decomposes as 94,,,Ud;4,,,>0K,,,U¢, K, ;, where
0A ;1 =04,,,—0;4,,;. Since we have completed surgery through level s—1, f, ;|34 is a

Z/2-homology equivalence. Consequently,

cfy) = 0(fi+1|31Ai+1) = C(fi+1laA 1) = 0.
This proves (a).

(b) Since surgery has been completed through level ¢ —1 and i+1=n(2), the map
fisr: Bia(4)—~E,,(K) is an integral homology isomorphism on the boundary. There are
involutions on ¥, ,(4) and E,,,(K) with fixed point sets 4; and K. Theorem 15.5 identifies
the Arf-Kervaire invariant of f, with that of 7(f,,,). (v(f.,) is the non-equivariant surgery
obstruction of f,,,: B,,,(4)~E,,,(K), see 10.7.) Since dim E,,,(4) = (2r +k —i)=0(4), and
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since f;,;|0F,;,,(4) is an integral homology equivalence, it follows that the Arf-Kervaire
invariant of 7(f,,,) vanishes. This proves (b).

(¢) Let h; ;: X; —~K, ;xI be a normal bordism, relative to the boundary, from
fig: Aiy—~K,_; to another map f; ;: 4{ ;—~K, ; which still satisfies conditions (I) and
(II) at level ¢ —1. Extend this to a stratified normal bordism k: (X, Bx I}~ (K x I, L x I)
and let f: A'— K be the “other end.” Consider h;: X;—~K; x I. We have

0X,=A,U @A, x )UK (&)U 4]

where & is the RP* “bundle 8, ,K;xI. In part (c), k—¢ is even; hence, by 15.3,
c(h; | hiZ1(&)) =c(h;_y). Since 84, x I is mapped by a Z/2 equivalence we have that

0 = c(h;|0X,) = clf) +c(fi) +c(hi_y).

Therefore, c(f;) is indeterminant provided we can choose #; ;: X, ;—~ K, ; X I to have non-
zero Arf-Kervaire invariant. The dimension of K, ; x I is (2r —k +4). Since (k—1) is even,
K, ;x I is orientable and of even dimension. If (s —1) = n(2), then since ¢: L,y (L)~ Z/2
is onto, we may choose k;_; to have non-zero Arf-Kervaire invariant. If (¢ --1)=n(2) then
the hypothesis of (¢) implies that (2r —& +1) =2(4). Hence, in this case, we can also arrange

the Arf-Kervaire invariant k,_; to be non-zero.

ProrositioN 12.5. Suppose that surgery has been done through level (i—1), that
dim 4,=3(4), and that i=n(2). If the surgery group associated to f: E(A)—~E(K) has a
codimension one Kervaire invariant, then we can make the invariant vanish by changing the

way we do surgery to make f;_y: A, ;> K, | a Lo[L[2]-equivalence.

Proof. For f; to have a codimension one Kervaire invariant we need 0<i<Fk and
k—i=1(2). (The second condition makes the involution on £, (K) orientation preserving.)
We may first of all arrange that f, is highly connected and that K,(E,(4)) is odd torsion
(where 2r +1=dim £;(4)). The dimension of 4, ; is odd. Thus, there is a normal bordism
hi_yt X1~ K, 4, relative to 04,_,, between f;_;: A; ;—~ K, ; and another highly connected
Z[Z[2)-equivalence fi_: A; 1=K, ,, so that the Arf-Kervaire invariant of k, ; is non-
zero. As before, extend this to a stratified normal bordism h: X— K x I and call the other
end f: A’ K. By a further surgery on f; we may arrange that f;: E;(4')~ E,(K) is highly
connected and that K (E,(A")) is odd torsion. We have h;: E(X)—~ E,(K) x I. Since E,(X)
and F(K) x I have involutions with fixed points X, ; and K, , x I, Théorem 15.5 implies
that the Arf-Kervaire invariant of 7(k;) equals that of %, ,. Since dim E,(X)=0(4), if we
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do (non-equivariant!) surgery on k; relative to 9E,(X) to make it highly connected and

look at the intersection pairing

K, 1 (E(X))® K, ((E(X))~Z.

Tt is represented by a matrix of determinant congruent to +3 modulo 8. Hence, the order
of K,(0E (X)) is congruent to +3 modulo 8. But K.(0F,(X))=K,(E,(A4))DK.(E,(A4")).
This implies that the orders of K,(#,(4)) and K,(E;,(A")) are, up to sign and modulo 8,
different. Hence, by 10.5, the surgery obstructions for f, and f; in Ly(Z[Z/2], -+) are dif-

ferent, i.e., the codimension 1 Kervaire invariant of f; is indeterminant.

Remark 12.6. This argument actually shows that the change in the codimension 1
Kervaire invariant of f, equals the Arf-Kervaire invariant of the bordism at level (z —1).
Hence, if we are working relative to f,_;: 4;_;— K, ;, then we cannot change the codimen-
sion 1 Kervaire invariant of f;, i.e., working relative to f,_, the codimension 1 Kervaire
invariant of f, is well-defined.

Now, we are left with obstructions only when A4; is orientable and dim 4;=0(4).
Suppose, for the moment, that 0 <¢<k%. In case 1, where n % ¢(2), we want to do surgery
on f;: 4;—~K; to make it a Z)[Z/2]-equivalence. The obstruction lies in Ly(Z)[Z/2], +)=
Waow. By 12.4 the Arf-Kervaire invariant vanishes, so the obstruction actually lies in
the subgroup W@W. (If i=k—1, then the obstruction lies in L§(Zw[Z/2], +)=Z@OW.)
In case 2, where n=1(2), the obstruction to doing equivariant surgery on E,(4) lies in
Ly(Z[Z]2], +)=1Z@Z. Since Ly(Z[Z/2], +)—>LyZ«[Z/2], +) is an injection, it suffices to
consider only the obstruction for making f;: 4;,~K,, a Z)[Z/2]-equivalence, taking care
to remember that when ¢ ==(2) the obstruction lies in the subgroup ZOZ<WaoW.

For the top and bottom strata, the obstructions lie in somewhat different groups:
o(f) €ELy(Z); while a(fy) ELy(Z) if 2=0(2), and o(fy) ELy(Z2)) = W if n=1(2) (actually in the
second case, provided k = 2(4), o(f,) EW by 12.4).

We now show how almost all of these obstructions annihilate each other.

ProrosIiTION 12.7. Suppose that surgery has been done on F: (V, Z)—(D, S) through
level (i —1), and suppose that A, is orientable (ie., (k—i—1)=0(2),1=0, or ¢ =k) and that
dim A4, =4r. Consider the obstruction a(f;) to completing surgery at level i. If 0<i<k, then
o(f) =(o4(f), o_(f:) EW DW.

(a) If 1<i<Fk and (k—¢—1)=0(4), then o .(f;})=0 and o_(f;) is indeterminant (tied to
the stratum 2 levels down). If 1<t <k and (k—¢=1)=2(4), then o_(f;)=0 and o_(f;) is in-

determinant.
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(b) If i=1, then o (f;) vanishes when k—2=0(4), and o_(f;) vanishes when k—2=2(4).
(c) If k is odd, then o(f,) vanishes.

(d) o(f.) is indeterminant.

Proof. Suppose that 0<¢ <k and that (k—¢—1)=2l. Consider o(f,) =(0.(f,), o_(f;)) €
W®W (remembering that when i=n(2) that (o,,c_) actually lies in Z®Z). We have
CP*.bundles, 0, E,,,(4)~>A; and 9, E,,,(K)-K,. The map f,|0,E,,4(A4) is a bundle map
covering f;: A,~ K. By 3.3, the action of m;(K,) on H,(CP%) is non-trivial. Hence, Theorem
15.1 tells us that ou(f;) =(fi,2|0: Biie(4)) in Ly(Ze,). (Here, @ =(—1).) Since we have
done surgery through Ilevel (i—1), K (0F, o(A); L)) XK (0, E, o(A); Zsy)). Hence,
T(fira|2 Bi1a(4)) =7(f112|0E;,5(4)) =0. This proves (b) and the vanishing statements in
(a).

Similarly, if ¢>2, then 9, ,E(A)~A4, , and &;_,E,(K)—~K, , are CP* ""'.bundles
(where k—i+1=2142) and |09, ,E(4) is a bundle map covering f; ,: 4; ,—~K, ,. Let
hi_s: X; o= K, ,xI be a normal bordism of f,_,. Note that K, ,x I is orientable and of
dimension congruent to 0 modulo 4. If 73 2(2), we can choose h;_, to represent an arbitrary
element in W@ W <Ly(Ze[Z/2]); while, if i=n(2), it can represent an arbitrary element
in Z+%Z. Choose h;_, so that o_,(ki_,)=7(f;) (if s—2=0 then choose a(ky)=1(f;)). By
Theorem 15.1 (or 15.2 if 4 —2=0), this will change f;: E;(4)— E,(K) so that 7(f;)=0. How-
ever, in changing the map at level (i —2) we have destroyed the fact that it is correct at
level (¢ —1). The dimension of 4,_; is even and 4,_; is non-orientable. Thus, the surgery
obstruction for f; ; is an Arf-Kervaire invariant. By Theorem 15.3, the Arf-Kervaire in-
variant that we introduce at level (¢ —1) is equal to that of the normal bordism at level
(i —2). Since this bordism has obstruction in W@ W, its Arf-Kervaire invariant vanishes.
Hence, we can complete surgery at level (i —1). Since surgery at level (i —1) only changes
fi: B,(4)—~ E(K) by a normal bordism relative to 8E,(4), it leaves 7(f;) unchanged. Hence,
we can assume that conditions (I) and (II) hold through level (¢ —1), that f,_; satisfies
12.2, and that 7(f;) =0. If we consider the image of 7(f;) in Ly(Ze,) = W, then it is equal to
(f:]4)). By 10.7, o(f,| 4,) =0, (f;) +6_(f,). Since, as we have already seen, o,(f;) vanishes
automatically, it follows that in changing t(f,) to be zero, we have made o_,(f;) zero. This
completes the proof of (a).

We turn now to the proof of (¢). The map f;: 4, K, is covered by a map of trivial
CP*~!bundles, 8,E,(A)—~>0,Ey(K). If k is odd, then Theorem 15.2 shows that o(f,) =
T(leaoEz(A)) in Ly(Z,). But 7(f,| 9y Ey(A4)) =1:(f213E2(A)) =0.

Part (d) is obvious since 9,_, 4, = 4, ;.
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Now we can prove the main result, 11.4.

Proof of Theorem 11.4. (I) Suppose that k is odd and greater than 2. Then by 124,
12.5, and 12.7 all surgery obstructions either vanish or are indeterminant. We can therefore
complete surgery provided no stratum has dimension 4. Thus, @(k, n, m) =0, provided
m==4 and (k, m)==(3, 1).

(IT) Suppose that k is even and k>2. We want to show that

c+e

0 Ok, n, m) {909 | 1 RY® Lnin(B) Z/2

is exact (provided m==4). Here e=(—1)", R, =Z, and B_=1Zs,. First we show that (c,, 6,)
is injective. Let F: (V,Z)—~(D, S) be the equivariant stratified normal map covering
f: (4, BYy—(K, L). Suppose 6,(Z) =0=0,(2Z). We must show that we can complete surgery
on f. Note that (F=f,: A,—~ B,. Hence, since 0=0,(X)=0(f,), we can complete surgery at
level 0. Thus, we may assume that f, is an R,-homology equivalence. If dim (4;)=m +k =
0(4), then by 12.4, 12.5 and 12.7, there are no further surgery obstructions. If m +k=0(4)
the only remaining obstruction is 6,(f,), where w =(—1)*. Since ; F = E,(f), we have that
0=0y(Z) =0(E1(f)) =0(fy) =0u(f,). Hence, the map (0, 31): Ok, n, m)~>Lip( Be) ® Ly i B )
is injective.

Next we must show that (o, 0;) is onto ker [c+¢: L, (R, (R,)) ® Ly 1 B_)~7[2]. Let
(29> 1) be an arbitrary element of the kernel. We will construct k-axial actions on homotopy
spheres 2’ and 2" so that:

(1} 0o(Z') =1, and
(2) 0o(X")=0 and 0(X") is an arbitrary element of ker [¢;: L, (B_.)—>7%/2].

From these two special cases and additivity of the invariants, the general result follows.
The idea in constructing both X’ and X" is to build a suitable stratified normal bordism

from the identity map on L to f: B—L so that f*(S***™ ) is a homotopy sphere.

The construction of X'. Recall that Ly=S8"""'. We can find a normal bordism %y Gy~
Ly x I from id: Ly—~L, to a R,-homology equivalence f,: By~>L, so that o(hy) =aq. Extend
this to a stratified bordism 4: G—~L x I and call the other end f': B'-~L. We claim that
without changing the bordism ot level 0, we can do stratified surgery on f' to a map f: B—~L
satisfying the conditions of 9.3 (so that X' =f*(S*"*""1) is a homotopy sphere). Suppose m
is even (otherwise the problem is trivial). By 124, 12.5, and 12.7 all surgery obstructions
for f* either vanish or are indeterminant. If an obstruction is indeterminant, then it can be
made zero by changing the stratified map at most two levels down. Hence, it suffices to

check our claim on the 1-stratum and 2-stratum. Since dim B, =m —1+k=1(2), the only
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possible obstruction is the codimension one Kervaire invariant and this occurs only when »
is odd and m +k=0(4). By Remark 12.6, this codimension one Kervaire invariant is equal
t0 e(hg) =c(0tg) = ¢(cry). But oy €Lo(Z) and therefore, ¢(x,) =0. Thus, the obstruction at level 1
vanishes. The 2-stratum is non-orientable and hence, causes no problems since any non-
vanishing Arf-Kervaire invariant can be made to vanish by changing the map one level

down. This proves the claim and therefore, shows that we can construct %'.

Construction of %". The argument is similar. Let S €ker [¢: L, (B_)~Z/2]. Em+k*
0(4), then =0 and there is nothing to prove. So, suppose m-+k=0(4) and k=2I. Define
BEL(R_[Z[2], +) by

5 B;leven . 0; ! even
13+ 1A, 13 =1 5.
0; I odd B; 1 odd.

We can construct a bordism (relative to the boundary)
hy: Gy —~Lyx1

from id: (Ly, 8,Ly) > (Ly, 8o Ly) t0 fy: (By, 8o By)— (Ly, 8,Ly) With a(h,) =p. As before, we as-
sert that we can complete surgery without disturbing this bordism, and, as before, it suf-
fices to check the 2-stratum and 3-stratum. By 15.3, the Arf-Kervaire invariant of the
2-stratum is equal to ¢(h,) =c(f) =0. By Theorem 15.1 the part of the obstruction on the
3-stratum which does not automatically vanish is equal to B’, if 1 is even and to /§ if 1is odd.

In either case, it is zero. Hence, we can construct £” with ¢,(Z") =0 and ¢,(X") =p.

13. Bi-axial actions

In this section we calculate the groups ®Y2, n, m).

Suppose that F” is a Z/2 homology sphere, that T2 is the boundary of some con-
tractible manifold (hence, X is an integral homology sphere), and that F*< **2. The pair
(ZF*2, F*) is called an e-knot if it satisfies condition (¢)=(-) below:

(+) F*is an integral homology sphere.
(—) The double branched cover of % along F, 3, is an integral homology sphere.

Two e-knots (Z7+%, FF) and (Z7°%, FT) are e-knot cobordant if there is a pair (W™*3, L")
such that W™*? is an integral homology h-cobordism from XF*% to X7*% L™ is a Z[2-
homology h-cobordism from Fg to F7', and such that (W™*3, I"*1) satisfies the condition
analogous to (¢). Let H(;, denote the abelian group (under connected sum) of such ¢-knot
cobordism classes.

If O(n) acts bi-axially on a homotopy sphere "™~ with orbit space B, then the
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diffeomorphism class of B (as a stratified space) determines the equivariant diffeomorphism
class of T**™1 gee [15] and [18]. (From the point of view of this paper, the reason for
this is that B admits a unique degree 1 map up to homotopy, into the orbit space of the
linear model.) B is a manifold with boundary which has 3-strata—int B, 9B — B, and B,,
(see 2.4). The pair (8B, B,), called the orbit knot, is an e-knot, where ¢ =(~1)". The orbit
space of a concordance yields an g-knot cobordism of the orbit knots. Conversely, any

g-knot gives a bi-axial O(n)-manifold, well-defined up to concordance. Thus

02, n, m) = HC:,_,.

The group C,, of knot cobordism classes of homotopy m-spheres embedded in §™*

has been defined and calculated by Kervaire [21] and Levine [25]. Their methods work
equally well for HC, (and in fact, HC;, 2 C,, for m>3). Our goal in this section is to provide
a similar caleulation of HC,,.

First, we recall the method of [21] and [25). Any Z/2-homology m-sphere, Fm< ™2
is the boundary of a framed submanifold V™"'cX™*2 called a ‘““Siefert surface” for F™.
Let F. (V)=H.(V)/Tor Hi (V). In the case m=2l—1, there is a bilinear form (a Siefert
form) 0: F(V*)® F(V¥)>Z defined as: 0(x, §) is the linking number of a with ¢,(f),
where 4: V->2Z —V is a small displacement of V in the positive normal direction.

If A(z, y) is a bilinear form on a free abelian group, then for § = + 1 define a new form
A+8(¢4) by (448D (x, y)=A(x, y) +3A(y, z). This new form is §-symmetric. If we
begin with 6: F(V®)® F(V¥)—>1Z, then 6+ (—1)'("8) is the usual intersection form on
F,(V®). Thus, §+(—1)}('0) is non-singular over Zgs,. If F2-1 is an integral homology
sphere, then 8§ +{ —1)*(*0) is non-singular over Z.

A bilinear form on a free abelian group is null-cobordant, if it vanishes on a direct
summand of one half the rank. Two bilinear forms 8 and 6’ are cobordant, if the orthogonal
direct sum of § with —@’ is null cobordant. A form 6 is said to be a 8-form, where 6 = +1,
if 8 4+ (%) is non-singular over Z.

Let G5 be the group (under direct sum) of cobordism classes of d-forms.

Kervaire proved that H(3; =0, and Levine showed that the map ¢ : HCH_ G5,
d=(-1)}, defined by sending the cobordism class of a knot to the cobordism class of its
Siefert form, is a well-defined homomorphism which is an isomorphism for [>2, If
(T2 FPY s a minus-knot, then 6 4-6(%0) may not be unimodular. However, we shall

show below, in Corollary 13.5, that § —4(0) is unimodular, and that the map
(p_f HOzvl_l - Gh(s

which associated to a minus-knot the cobordism class of its Seifert form is well defined.

The main result of this section is the following:
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TaEOREM 13.1.

(1) HC$,=0.
{2) For 1>2, p;: HCY 1—G, 15 an isomorphism, where 6 =( — 1)L
(3) The maps ¢: HOY ~G, ¢_: HC; ~G_N G, and ¢;: HC;—~G, are all epimorphisms.

As we have remarked, the case ¢= + follows from the arguments of [21] and [25]
almost without change. (There is an obvious modification for HC3.) Hence, we shall not
discuss this case further.

Of course, our interest in this result is the following corollary.

COROLLARY 13.2. If n>2 and m==2 or 4 then

G if m+2n=0(4)
O2, 7, m)=1 G_; if m+2n=2(4)

0; ifm+2n=1(2).
First we consider the even dimensional case.
Prorositiow 13.3. H(3 =0.

Proof. Let (Z**%, F*) be a minus-knot, and let W*'3 be a parallelizable manifold
that T bounds. Take a Seifert surface for F in X, L¥*!, and deform it relative to F so
that it becomes properly embedded in W. There is a normal map f: (W, Z)—(D**3, §%+%)
which is transverse to D**' x {0} with preimage L. Since f|oL is a Ze,-homology equiva-
lence, we can do surgery to make K .(L; Z)=0 for *<[ and K {(L; Ze,) =0. We wish to
do equivariant surgery on the double branced cover of W, W until it becomes contractible.
As in 123, we see that K (W —L)~>K(W) is an isomorphism for *<![ and onto for
*=1+1. Hence, if we do surgery on W-—L to make K (W —L; Z[Z])=0 for *<{ and
K, (W —L; Z[Z/2]) odd torsion, then K, (W; Z)=0 for *<I and K,,,(W; Z) is odd torsion.
Since ¥ is an integral homology sphere, the linking form on K, (W; Z) is non-singular.
As in Section 12, it defines an element in L,, 4(Z[Z/2], ). If the element it defines is
trivial, then we can complete the surgery to make K (W; Z)=0. The only time that this
element is not automatically zero is when 2/ +3 =3(4). In this case, as in 12.5, the obstruc-
tion (a codimension one Kervaire invariant) is indeterminant. Thus by changing the way
in which we did surgery on L, we can make the obstruction vanish and hence, complete
the surgery on W. Once we have made W contractible, the pair (W, L) becomes a minus-

knot cobordism from (X, F) to zero.
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Next we recall Bredon’s description of a geometric construction which realizes the
algebraic periodicity of knot cobordism, [5]. Let B(2) denote the 3-dimensional cone of 2
by 2 symmetric matrices. Suppose that (X™*%, F™) is an ¢-knot and that B™*® is a con-
tractible manifold with 8B™*% —=3"*%_ Construct a local orbit space, also denoted by B™*3,
by replacing a tubular neighborhood of F™ with- F™ x B(2). We can find a stratified map
f: B—>B(2), which is unique up to a stratified homotopy.(*) For each integer »n, form the
bi-axial O(n)-manifold

M =[*(M(n, 2)).

Tts associated orbit knot is (X™*%, F™). Consider the restriction of the O{n +1)-action on
wsr M to O(n), and let (™%, X™+2) be the associated orbit knot, i.e., let ™=, M/0O(1)
and 2= M. (™% £m*?) js called the “suspended knot”, and is also denoted by
o(Z™2, F™). Thus, @Y™, F™) is the knot ((,,,M)/O(1), ;M). If n>2 and (—1)"""=¢,
then ,.,(M) is a homotopy sphere; hence, its orbit knot under O(n), (S™**, ="2), is a
(—e&)-knot. Thus, o takes e-knots to (—¢)-knots. Although the construction depends on
the choices of B and of f, it is clearly well-defined up to concordance and therefore, defines
a homomorphism @: HC,—HC,5%,.

Recall that in Theorem 5.2 we constructed a regular O(n)-manifold V<, .M with
8(,Vy=,M. The image of ,V in ;M/O(1)=X""? is a Seifert surface for ™ and the image
of ,V in ,M/O(1)=Z"** is a Seifert surface for $m+2 i 44, The manifold , ¥ is the “sus-
pended Seifert surface”. Let 4 =(,V)/O(n). Then ,V (which is E,(V)) is just the double
branched cover of 4;U, A, along oV (which is 4;). In 5.2 we showed that A is homeo-
morphic to Bx I with 8B x I collapsed to 8B x {0} and that the union of the singular
strata of 4 is the image of B x {1}. Hence, in this case 4, U, 4, is homeomorphic to B.
Thus, ;V is the double branched cover of B along the Seifert surface oV (which has been
pushed into the interior of B).

There is an alternative description of such double branched covers. We shall now use
the notation V™' =,V and V"=V, Let U™? denote V™' x I with V™" x I pinched
to 0V x {0}. Embed U™*? in B"*® 5o that it meets @B™*> transversely in V"' x {0}.
Cut B™*3 open along U™? to obtain a new contractible manifold B’. Let U’ denote the
inverse image of U in 6B’. Then V"*® can be thdught of as the union of two copies of B’
glued along U’ by switching the copies of U. The involution on V"*? is given by switching
the two copies of B. Since B’ is contractible, it is clear from this description that V™*® is
Z/2-equivariantly homotopy equivalent to the suspension of V"1, In particular, H (V"*?) =
Hy o (V™).

(}) If m =1, then there are two ways to replace a tubular neighborhood of F by F x B(2). Only
one of the resulting stratified spaces admits a stratified map to B{(2).
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Remark 13.4. If m +1 is even, say m+1 =2¢, then there is a relationship between the
Seifert form on Hy(V) and an intersection form on H,,(B’, V x {1}) = H(V). Namely, let
g and (4 be relative cycles in (B’, ¥ x {1}) where the boundaries represent «; and a;
in Hy(V). Keep 8f; in V x {1} and deform {; (keeping &, in U) until &, is contained in
V x {}} embedded into the side of the cut corresponding to the positive normal direction
on V in 2. Then, relative to these constraints on the boundaries, push the cycles transverse
and take their intersection number. It is 6(e;, a;). Using this fact one can prove the follow-

ing theorem:

THEOREM 13.5 (Bredon [6)). There is an identification of H,(V*®; L) with H, ,,(V**? Z)
under which 0: F (V*) ® F (V*)—Z becomes identified with w(0): F, ,(V**?)® F,(V**?)~1Z.

COROLLARY 13.6. Suppose that (Z***, F¥~1) is an e-knot. Then the associated Seifert
form is an &-{ —=1)-form.
The proof of the next lemma is the same as the proof of Lemma 2 in [25].

LemMaA 13.7. If an e-knot is e-knot cobordant to a trivial knot, then any Seifert form for

it 18 null-cobordant.

It follows that the map
g HOz 1~ G5, d=(-1),

is a well-defined homomorphism. As further corollaries to Theorem 13.5, we have the fol-
lowing results.

"CoroLLARY 13.8. The following diagram commutes, where e =+ and 6=(—1)}

HCYy_ —— HC3fy
Pe [/

G.s
CoROLLARY 13.9. For 1>1 the map @_: HC5_1~>G_s is an epimorphism. For 1=1
the image of p_ is G, N G_.
Proof. For 1>1, this follows from the fact that @, is an epimorphism and the fact that
the following diagram commutes
Hoi‘i—s HCs 4

YL

G

w

14 — 792902 Acta mathematica 144. Imprimé le 8 Septembre 1980
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For I=1, it follows from the well-known fact (see [13]) that the double branched cover of
a knotted circle with Seifert form § is an integral homology sphere if and only if §+% is

non-singular.

The remainder of this section is devoted to the proof that ¢_ is a monomorphism when
1>2.

Definition 13.10. An e-knot (%71, F#-1) is simple if T2+ =S¥ and if F¥! has an
(I —1)-connected Seifert surface.

Suppose that V* is an (I—1) connected Seifert surface for a simple minus-knot
(21, F*-Y). Then the suspended Seifert surface V%2 is I-connected. Since 8V*'2 is an

V22 also vanishes above

integral homology sphere, duality implies that the homology of
the middle dimension, and that H,,,(V#*% Z) is free abelian. Hence, H,(V?; Z) vanishes
except in the middle dimension and H,(V?%; Z) is free abelian.(!) The exact sequence of
the pair (V*, F¥~1) then shows that H,(F*~!; Z) vanishes for i==l —1 and is a finite odd
torsion group when ¢{={—1. This shows that if the minus-knot (Z**", F*-1) is simple,
then F*~' is homology (I —2)-connected. It follows from this fact and Theorem 2 in [23],

that (Z**!, F¥-1) is simple if and only if = - F has the (I-1)-type of a circle.
LemMa 13.11. Any minus-knot is cobordant to a simple minus-knot.
Proof. Let (¥, F¥-1) be a minus-knot. Do surgery on F to construct a parallelizable

manifold L? such that:

(1) oL=F U (@F xI) U F",
(2) Hy(L, F)~H,_;(F) is an isomorphism for * </ and,
(3) Hy(L, F)=0 for *>1.

It follows that F’ is (I —2)-connected. Form a bordism W by gluing L x D? to X x I. Let
Y be the “other end”.

Let W be the double branched cover of W along L, let ¥ be the double branched cover of
Y along F’, and let X =Y —(F' x D?). We claim:

(1) We can not argue this fact directly using F since F is only a Z,,-homology sphere.
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odd torsion; for *<I—1

0; for *=1,

(by H (W, ¥)=0 for *<I+1, and

(¢) Hu(X; Z)~H (Y, Z) is an isomorphism for *<I—1 and onto for *=1.

(@) H(W; Z)={

Part (a) follows from the fact that H,(W)=H(L, F). Part (b) results from the duality
between H, (W, ¥) and H,(W,3X), and the fact that X is a homology sphere. Part (c)
follows, as in Lemma 12.3, from the fact that H,(F')=0 for *<1—2.

From (a), (b), and (c) above we see that it is possible to add handles of dimension

<(I+1) to X so as to construct a bordism W’ with:

(1) eW'=XUu X',

(2) X’ the (I--1)-type of the circle,

3y H (W', X; Z1[2Yy ~ H,_(X; Z[Z/2]) for *<I, and
(4) H (W', X; Z[Z/2]) =0 for *> 1.

This means that H, (WU W', > Z)=0 and hence, (WU W', L) is a minus-knot cobord-
ism from (2, F) to (X' U (F’ x D?), F'). From (2) above, we see that this latter pair is a

simple minus-knot.
The next result completes the proof of Theorem 13.1.

LrMma 13.12. Suppose that (X2, F?° ) is a simple minus-knot, that V¥ is an (1—1)-
connected Seifert surface, and that the Seifert form 6: H (V)@ H (V¥)~Z is null-cobordant.
If 1>2, then (£, F®-1) is cobordant to the unknot.

Proof. The idea is to do Z[2-equivariant surgery on the suspended Seifert surface
V?*2 to a contractible manifold W**%, This will have the effect of changing the fixed
point set ¥* into a Z/2-homology disk. The complement of an invariant open disk about a
fixed point in the interior of W will then be the double branched cover of the desired
minus-knot cobordism.

Since § is null-cobordant, there is a basis {«, ..., &, By, ..., B} for H(V?; Z) so that
O(ex;, ;) =0. Since V¥ is (I—1) connected, we can represent the a«; by f.: (D%, 8i)—
(B, Vx{1}). Since 0(x;, ®;)=90, we can take the f, to be disjoint embeddings (see the
discussion in 13.4). Form spheres S;* in V*** by taking f;(D;) Uyf,(D;), where y denotes
the involution. This collection of disjoint, invariant spheres forms a basis for a subkernel
of H,,,(V**? Z). Let T, be an invariant tubular neighborhood of §:*! in ¥#*2, From the
fact that 6(a;, ;) =0, it follows that T';=8,;x D'** and that y| T, has the form y(z, y)=
(rz, sy), where r and s are linear reflections through hyperplanes in R'*'. Let ¥ be the
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involution on D'*' x §! defined by 7(, y)=(rx, sy). Do surgery on the S,’s by replacing
each T, by D'*' x §' with involution §. The resulting manifold with involution, W**2. is

clearly a contractible. This completes the proof.

14. Further remarks

First we deal with the special cases which were previously omitted.

The case m=4. In this case, the proof of 114 still shows that (o, 07): Ok, n, 4)—~
Ly(R.)+L,(E_,) is onto the kernel of ¢+¢; however, in trying to prove that (g, 6;) is in-
jective, one encounters a 4-dimensional surgery problem. Recall that in the case under
consideration, By is an R,-homology 3-sphere, 6 =(—1)", and o, is the surgery obstruction
for f,: (Ay, By)—>(D?, 8% in Ly(R,). Even if this obstruction vanishes, it does not follow
that f, is normally bordant (relative to fo|B,) to an R,-homology equivalence. However,
if we know, in addition, that B, is the boundary of some R,-homology disk C, then f,| B,
extends to a normal map h: (C, B,)—~(D*, 83) and there is a normal bordism (relative to
the boundary) from f, to k. If we also have that ¢; =0, then there is no further problem to
completing surgery. Thus, we are led to consider ®% and ©%'2, where ©F denotes the group
of R-homology k-cobordism classes of R-homology spheres. We shall also use the notation
07 =0% and O3 = 0% Let P< L,(Z)< L,(Zz,) be the subgroup of obstructions which can be
represented by framed 4-manifolds with standard 3-sphere as boundary, i.e., P consists of
classes of unimodular forms of index divisible by 16. Any R,-homology 3-sphere bounds a
framed 4-manifold with surgery obstruction well-defined modulo P. Hence, there is a map
1o ©5->Ly(R,)/P, where ¢ = +. Tt is easily seen to be onto. Let @5, be the kernel of u°. (We
know absolutely nothing about this group.) Then with the above notation we have the
following result. (Compare 11.4.)

TurorEM 14.1. Suppose n=k>2 and let e=(—1)".
(I) If & is odd, then

Ok, n, 4) =05
(IX) If k is even then the following sequence is exact

0—— O —— @k, 1, 4) —— Ly(R) ® Las (B _0) <% 72.

(I1Yy Semilarly, we have a short exact sequence

005 —>0Y2, n,4) > G, —0.
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The case m=0. By 8.10, there is an equivariant, stratified map #: ="~ —8*~1 which
is of positive degree on the odd strata. Such a map is unique up to equivariant, stratified
homotopy. Let deg ¥ denote the degree of F on any even stratum. By 5.2, % is the bound-
ary of V¥". Let o,(X) be the Witt class of the intersection form on ,V if £=0(4), or the
Arf-Kervaire invariant of |V if k=2(4). Note that ®Y(k, n, 0) does not have a natural group

structure.

TuEOREM 14.2. (a) For n even and k even, k==4, the map

(deg, o,

Ok, n, 0) L (£1}, L(Zo)

18 one-fo-one. Its image is all pairs (1, o) such that the Kervaire invariant of gy, c(o,), s
zero.
(b) For k odd the map

Ok, m, 0) -2, (11

18 a bijection.
(¢) For n odd and k even, k=4, the map

(deg, 04)

Ok, n, 0) ({odd integers}, Ly(Z))

18 one-to-one. Its image is all pairs (d, oy) such that c(d) =c(oy). (Here, c(d) denotes the Arf-
Kervaire invariant of the normal map of d point to 1 point. Thai is, c{d)==0 if and only if
d=13(8).)

Thus, for £ odd or for k=2(4) and » even, all actions are concordant to the linear
action with one of its two orientations. When £ =2(4), and » is odd, all actions are concordant

to some Brieskorn example:

@+ + .. k=003 |zf=1
1

When £=0(4) there are actions for which we know of no naturally arising model.

Proof. Let us begin by showing that (deg, ;) is injective. If F: Z*~1— 8! hag degree
d, then there is an extension as in 5.2, F: (V, £)-(D, 8), so that the action of O(n) on V
has exactly |[d| fixed points. Hence, if deg (Z)=deg (X’), we can take (¥, X) and (V', ')
as above, cut out neighborhoods of the fixed points, obtaining ¥ and ¥’, and then form
W =V'VU(—7V), a bordism from X to X’. Let C be the qoutient of the action on W. There
is a degree d map G: (W,X’, —X)~>(Sx I, 8x{1}, —8x {0}) covering g: (C, B, —B)~
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(LxI,Lx{1}, —Lx{0}). We claim that if ¢(;W)=0(, V') —0(,V) is zero, then we can do
surgery on g: C—L x I, relative to B’ U B, to make W a concordance from X to X', This
will prove the one-to-one statement.

The idea is to work one stratum at a time identifying obstructions to making:

(1) Ko (Cy; Z2)[Z/2])=0 for 7 £ n(2),
(2) K (BA(W); Z)=0 for :==n(2) and +>1(!) and,
(3) H (E(W); Z)~>H(E,(S)x I; Z) an isomorphism for *<k—2, whenever 1=n(2).

If we mange to achieve (1), (2), and (3), then, by 8.9, Z—W and X'~ W will induce
integral homology equivalence on the E,’s for i=x(2). Hence, by 7.1, W will be homologi-
cally a produet. If, in addition, we make 7,(C}) =0 (this presents no problem), then W will
be a concordance from X to X/, (see 3.5).

Of course, the fact that C,—L,x I is not degree 1, but only of odd degree, has no
effect on the problem of making K. (C}; Z[Z/2]) =0 for i % n(2).

We claim that in the case ¢=n(2), the surgery obstruction group for making
K (E,(W); Z)=0 is exactly the same as in Section 12. The only point that is new here is
that even though E;(W)—E (S x I) is not necessarily of degree 1 and is not necessarily an
integral equivalence on the boundary, it is still the case that, once we have done the surgery
on the lower strata, the K ,(E,(W); Z) have non-singular intersection and linking pairings.

If i=1and 1 =n(2), then E,{Z) and E,(X’) have the integral homology of §*~! whereas
B8 x1)=8""x 1. Thus, H (E,(W); Z)—~H (S x I, Z) is onto for *<k—2 and the kernels
of these maps are dually paired for 0 <*<k-—2.

If i>1, i=n(2), and surgery has been done through level (¢—1), then let 0E (W)=
Ujci 28, E;(W). We have 0E,(W)=E (Z)USE (W)U E,(X'). From the inductive hypothesis
and 7.2, it follows that 0E,(3X)—>0E,(W) and 0K ,(X')—>0E,(W) induce isomorphisms in
integral homology. Thus, H . (E (W), E,(X)) is dually paired with H, (E (W), E;(X')). By
8.9, H(E(X)—~H(E(S)) and H(E/(Z))~>H.(E,(S)) are isomorphisms. Hence,
K BAW) =Ko (B(W), B(S)) = H(E(W), B(S)). Likewise, K (EB(W))=H,(E(W),
E(Z)). This proves that K. (E,(W)) is dually paired with itself for i=#»(2) and 7> 1.

Now that we have established this duality, the argument proceeds exactly as in Sec-
tion 12. This means that the same surgery obstruction groups arise for the various strata,
and all the obstructions, except for o(f,), cancel out. This obstruction is identified with

a(; W), which vanishes by assumption.

(*) If F: W8 x I does not have degree +1, then K, (E(W); Z) is to be interpreted as the relative
homology group H, . ,(E;(S x I), E(W); Z).
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We turn now to the image of (deg, ;). By 8.9, the degree must be +1 if k is odd or
if » is even. By 15.5, ¢c(deg) =c(0;). These relations show that the image of (deg, ¢;) is no
larger than that claimed in 14.2.

To prove that the image is at least as large as claimed we shall show:

(1) There are homotopy spheres of all degrees allowed by the above relations.
(2) Given a homotopy sphere of degree d, it is possible to vary it to another homotopy
sphere of degree d, changing ¢, by any element (in the appropriate surgery group)

with trivial Arf-Kervaire invariant.

For » even, the only possible degrees are +1 and these occur for the linear model
with its two different orientations. If » is odd and % is odd, then again the only possible
degrees are +1 and these are achieved by the linear model. If » is odd and k is even, let
d>0 be a possible degree. Take M**~* to be d copies of 8! and F: M~ to be d copies
of the identity map. We want to do O(n)-equivariant surgery on F: M -8 until M satisfies
the conditions of 8.9 and hence, becomes a homotopy sphere. To prove that this is possible,

we need to know that:

ProrosiTioN 14.3. (a) H (E(M); Z)>H (E(S); Z) is onto for *<k—2 and the
kernels of these maps satisfy duality for 0 <* <k —2.

(b) If the conditions of (8.9) hold through level (i —1), i =n(2), and i > 1, then K ,(E,(M); Z)
satisfies duality.

Once we have these duality statements, the obstruction groups are the same as those
in Section 12, and the arguments in 12 can be carried over to show that it is possible to
complete surgery to make M a homotopy sphere.

Statement 14.3 (a) is obvious from the fact that E,(8**~')=8*"'. Statement 14.3 (b)

is much more subtle. 1t requires the following lemma.

LemmA 14.4. Let S=8""1 and let Y be the fiber of &,8—~RP*, ie., let Y=
O(n) X ou_1ySED@=D=1 " The natural inclusion Y8 induces a 7[2-equivariant map
EY)SB(S). If i=1(2), then

(a) the involution on E(S) acts trivially on H (E/(S); Z[1/2]), and

(b) the induced map

Hy(B(Y); Z11)2)** ~ H4(E,(8); Z[1/2))
18 an tsomorphism.

Proof. Let G(p, q) be the Grassmann of p-planes in ¢g-space. Recall that B,(S)~ G(2, k)
(see 2.5). Also, E,(S)— B,_,(S) = By(S) is homotopy equivalent to G(i, k), the Gragsman of
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oriented i-planes. For this proof all homology is taken with Z{1/2] coefficients. The proof
consists of establishing the following:

(1) The inclusion of the fixed point set of the involution B, ,(8)->E;(8) induces an
isomorphism on homology. (This implies (a).)
(2) The Z/2-action on G(i—1, %) induced by the involution (x,w,, ..., %)~

(—y, Xy, ..., 7;) acts trivially on H,(G(i 1, k)) and hence,
Py Ho(G(E—1, kY*? > H (G(: 1, k)/(Z]2))

is an isomorphism.

{3) There is a homotopy equivalence
k: B(Y)/(Z)2) > G(i -1, k)/(Z/2)

so that the following diagram commutes:

H(B(S)) ——— H,(B,(S)) —— H(Gi—1, k)

H(E(Y))** (Pa) "

R

H (BAY)/(Z]2)) H,(G(i—1, b)/(Z[2).

We have that £,(S) is homotopy equivalent to the double mapping cylinder M, U My,

where:
o(k)
S(0(i—1) x O(1)) x O(k— 4)

le
G, k)

? L GG—1,k)

Since the fiber of 0 is RP'"! and (¢ —1) is even, 6 is a Z[1/2]-homology equivalence.
This proves (1).

Consider the natural action of O(k —1)<O(k) on G(¢—1, k). The orbit space is clearly

an interval. Therefore, G(¢ —1, k) is homeomorphic to the double mapping cylinder M, U M,

Ook—-1) o

O(i —2) x O(k—1)
i
Gii—1,k~1),

GGE—2,k—1)
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where « is the canonical S*~‘-bundle and g is the canonical S 2-bundle. The involution on
G(i—1, k) has fixed point set G(¢+—2, k)] [G(¢ —1, k—1) and it acts by the fiberwise anti-
podal map on each sphere bundle. Since ¢ —2 is odd, the involution is trivial on the homol-
ogy of the total space of § and hence, on H (G(i —1, %)). This proves (2). Clearly, G{z—1, k)/
(Z/2) is homeomorphic to the double mapping cylinder given by

O(k—1)
0(i —2) x O(1) X O(k —3)

Gi—2,k—1)

Gi—1,k—1)

and this double mapping cylinder is also clearly homotopy equivalent to ¥,_,(k—1)/(Z/2) ~
E(Y)/(Z/2), proving (3).

In order to prove that K, (#,;(M); Z) is dually paired with itself, it clearly suffices to
prove that the pairings on K,(B,(M); L), Ko(E(M); Z[1/2)* and K.(B(M); Z1/2))-
are non-singular. Here K, (E,(M); Z[1/2])* denotes the (4 1)-eigenspace of the involution.
(Since (k—¢—1) is even, the involution on H,(M) is orientation preserving.) The case of
Zs, coefficients presents no problem, since E,(M)— E,(S) is of odd degree and a Zg,-
equivalence on the boundary. According the above lemma, H . (E,(S); Z[1/2])~=0; hence,
H (0E,(8); Z[1/2])~=0. Consider the bundle &, E,(M)— B, with fiber H,(Y). Since the
natural involution and the involution induced by 7,(B,) are the same on H,(E,(Y)) and
since H,(B,; Z[1/21)=H,(RP*"1; Z[1/2]7) =0, it follows from the Serre spectral sequence
that I (0, E,(M); Z[1/2])~ ~ H (0 E (S}; Z[1/2])~ =0. From 7.2, we know that

H. (0B (M) — o, Ey(M))~ H (3E,(8) — 8, B(S))

is an isomorphism. Thus, K (E,(M); Z[1/2])~ =H (E,(M); Z[1/2])~ is dually paired with
itself.

Finally, we consider K.(E,(M); Z[1/2])*. We know that f,;: B,~RP*"! is an isomor-
phism on integral homology in dimensions <k —2 and is of degree d. Arrange that f1’(y,) =
%,. (Of course, the local degree of f; and x, must be d.) Let F, < E,(M) be the fiber over
%y in o, B;(M) and F,, < E(S) be the fiber over y, in &, E,(S). Clearly, F, —~ F,, is a diffeo-
morphism and F, > F (Y). Since H (E/(S}, F,,; Z[1/2])* =0, it follows that K (E(M);
L1L[2))+ = H (B M), Foy Z(1j2)*. By duality, HL(E(S), 0E,(S)—Fy,; Z[1/2])*=0. We
claim that K (0E(M)—F,;Z)=0. The reason is that 8E,(M)—F,, is made up of two
pieces, to wit: 0E,(M)—0, B,(M) and 0, E,(M)|(B; x {z,}). Both pieces, as well of their

intersection, are mapped by homology isomorphisms to the corresponding pieces in



210 M. DAVIS, W, C. HSIANG AND J. W. MORGAN

0B (8)— F,,. Consequently, K (E,(M); Z[1/2))y*=H  (E (M), 0E (M) — F,,; Z[1/2])*. Hence,
we have identified K (E,(M): Z[1/2])* with two different relative homology groups which
are dually paired by Poincaré duality.

This completes the proof that the groups K,(E;(M); Z) have dual pairings and hence,
that the surgery groups are the same as those in Section 12. Hence, all degrees specified
by 14.2 occur, and we can vary o, by any element of trivial Arf-Kervaire invariant (in

the appropriate surgery group).

Restricting actions. Suppose g is a linear action of ¢ on a sphere 87 and that H= @ is
a closed subgroup. Also, suppose that there is a smooth H-action on a homotopy sphere
24, which is modeled on p|H. It makes sense to ask if the H-action on X is the restriction
of some smooth G-action on %¢ which is modeled on g. If such a G-action exists, then we
can ask if it is unique. Here, we shall be concerned with the case where G and H are chosen
so that we remain within the category of regular actions of the orthogonal, unitary or
symplectic groups. In general, such questions appear to be very difficult; however, up to
concordance they are all easily answered (except for the usual difficulty with low dimen-
gions).

Let G%n) stand for O(n), U(n), or Sp(n) as d=1, 2, or 4 and consider the embedding

o = ros +1: G%n) > O(drn +1),

where o7 denotes the standard representation and I the trivial I-dimensional representation.
Then the process of restricting on O(drn +1)-action to «(G%n)) defines a homomorphism
oyt QUK 0/, m')>0OUk, n, m), where k=k'r, m=tl+m’, n’ =drn +1. By using the results of
Sections 11, 12 and 13 and those in [11], we can always compute the map e, (provided
n =k and we stay away from the exceptional cases). Rather than trying to write down the

answer in all cases, we shall be content with considering the most interesting ones,

Tarorem 14.5. Suppose that n=k, m=+0,4 and that m-+dk=-4. Then the map
wy: Ok, n+1, m)—> 0k, n, m+dk), induced by w=g%+1: Gn)—>G%n+1), is an isomor-
phism.

Proof. For d=2 or 4, this follows from [11]. Suppose d=1. If k is odd or if m is odd,
then both groups are trivial. If k is even and k==2, then we have the following diagram,

w

Ok, n+1,m) * SOk, n, m+Ek)
(0¢,.09) (01, G¢)

Lm(Re) + Lm+k(R-e)
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where ¢=(—1)"". By definition, a,(w(Z)) =0,(Z) and 6,(0 (X)) =04(Z). By 11.3, 0,(X) =
ao(Z). Hence, the diagram commutes. The result now follows since (g, 6;) and (04, o,) are
monomorphisms with the same image. Similarly, if k=2 and m =2I, we have the following

commutative diagram,

02, n+1,2)—* >0\ (2, n, 2+2)
le iR
HCS,, HO3%

N 7 —
Gsd

where e=(—1)*"* and §=(—1)%
Remark. Tt is interesting to speculate about the map wy: ©42, n +1, 2)~>0Y2, n, 4).
THEOREM 14.6. Consider the map
o OX2, ', m') > Ok, n, m)

where a=rgs+1: Gn)—~0n'), n’ =drn+1, k=2r and m =21+ m’'. Suppose n>F.

(I) oy 5 onto except in the case d=1, k=0(4) and m=0(4).
(IT) Suppose that d=1,r=2q (so that k=4q), and m=4s and that e=(—1)". Then
(—)"(=1)""2 = + 1 and the following diagram commutes:

02, ', m') ——% @k, n, m)
P (0, 01)
¢, Lo(B.) + Ly(R-)
N A

Ly(2) .

The map B associates to a Seifert form 0, the integer } (the index of (6 +°0)). The map A is the
composition 2L L SL W, It follows that in this case the cokernel of o, maps onto W
and that it is equal to W provided m=4.

This theorem says that for k=0(4) and m=0(4), there are k-axial O(n)-actions on

homotopy spheres which are not the restriction of any bi-axial action even up to concord-
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ance; but that in all other cases every k-axial G%n)-action is concordant to the restriction
of some bi-axial action of the orthogonal group.
The proof is completely straightforward and is left for the reader.

Remark. Not every element of coker (ot,: @12, n’, m')—~ Ok, n, m)) actually represents
a new example of an action. For, suppose that 3 represents an element of ©1(2, n’, m’).
An orientation for £ (as a manifold) determines one for {a,(%)}°V =X°®®, where 2¢=r.
Let £’ denote o,(X) with the orientation of {o, (Z)}°P reversed. If «.(X) represents
(x, x) €L +Z<Z+W =0k, n, m), then X' represents (z, —z). It follows that every element
in the subgroup {(x,y)€Z+Z|x+y=0(2)} can be represented as the connected sum of

the restriction of two bi-axial actions (possibly after changing an orientation).

15. Surgery lemmas

In Sections 12 and 14, we used several surgery lemmas. In this section we shall prove
them. There are three types of results. Those of the first type, 15.1, 15.2, and 15.3, are
product formulae for CP?. and RP*-bundles. Next, 15.4 and 15.5 relate surgery obstruc-
tions of fixed points of semi-free Si- or Z/2-actions with the surgery obstruction for the
whole manifold. Lastly, there is a technical lemma about surgery on even dimensional,
non-orientable manifolds which was used in 12.2.

Usually a product formula means a determination of the surgery obstruction of a
normal map crossed with a closed manifold in terms of the surgery obstruction of the
original normal map and invariants (often homological) of the closed manifold. Here, we
have a slightly broader notion in mind. We shall begin with a normal map and a fiber
bundle over the range with fiber a closed manifold. We pull back the bundle over the do-
main and take the induced normal map between the total spaces. We want a formula for
the obstruction of this normal map in terms of the surgery obstruction of the map between
the bases, the fibers, and the action of the fundamental group of the base on the fiber.
It is a general principle that the only information about the bundle which is needed is the
action of the fundamental group of the base. Thus, for example, if the group acts trivially
on the fiber, then the formula for the bundle is the same as for the trivial bundle.

Recall that 9,4,,, is an RP*"'~! bundle over 4,. Also, 8, F,,, is a €P*"*"! bundle over
A, with the action of m,(4;) on €P*~*~! given by complex conjugation (see 3.3). We begin
our study of the product formulae with bundles of the second type.

THEOREM 15.1. Let f: (M*", 8 M)~ (N*™, dN) be a normal map between orientable mani-
folds with st,(N)=7/2. Suppose f|oM induces an isomorphism on R[ZL[2}-homology, where R
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is a subring of Q. Let E— N be a fiber bundle with fiber CP* and with 7t;(N) acting on H ,(CP*)
via complex conjugation. Let g: f*E->E be the induced normal map between total spaces. If
(oc;;+Bi5y) represents o(f) in Ly(R[ZL[2], +), then (a;;+(—1)'8,;7) represents o(g).

Proof. We can always vary f by a normal bordism relative to 84 without changing
o{g) or o(f). Surgery below the middle dimension on f allows us to make K (f; Z{Z/2])=0
for 1<2m. Additional surgery in dimensions 2m —1 and 2m allows us to make the inter-
section form on K,,(f; R[Z/2]) equal to o;;-+f;;y.

The kernel modules for ¢ are

Ko ilgs BI2[2]) = Ky(f; R[Z/2])(Z)9Hi(CP21; Z).

We can do surgery below the middle dimension to kill all the kernel modules for g except
Ko i2i(9; R[Z/2]). Since all the modules are free, this process will leave K,,, .,,(9; R[Z/2]) =
K,.(f; R[Z/2]) ®z H,,(CP*; Z), and will not change the intersection form on this module.
If x€K,,(f) is represented by an immersion i: 85"— M, then ¢*/*F is the trivial bundle
over S2". Hence, the class  ® € K pp,0,(g) (With € H,,(CP%; 7)) a generator) is represented
by the immersion
8™ « (P! 82" « CP% — f*E

Given two such classes x; @ w and x, ® w, we can arrange that the immersions 8;—~ M have
only transverse points of intersection. Above a point with intersection number de we find
two copies of CP', one from each cycle. Their intersection number is + 1. Hence, such a
point contributes de to the intersection number of (x; ® w)- (2, ® w). Above a point of inter-
section of S; and S, with dy as intersection number, we can find two copies of CP; but,
this time, one of them represents w while the other represents the result of complex con-
jugation on w, ie. (—1)w. Hence, such points contribute (—1)'dy to (,Qw): (%, Qw).
Summing over the points of intersection gives (z, @) (¥,@w)=a-+(—1)'by if 2, -z,=

a+by. The result follows easily.

THEOREM 15.2. Let f: (M*", 0M)—~(N*", 8N) and E—N be as in 15.1 except that
77,(N) acts trivially on H (CP?). Then o(f) =a(g) in Ly(R[Z/2], +).

Proof. The proof is exactly the same.

There is an analogous theorem for RP%,

TurorEM 156.3. Let f: (M*", 0M)—~(N*", 0N) be a normal map with f|(@M) inducing

an isomorphism in Z[2-homology. Let E—~N be a fiber bundle with fiber RP¥. The Arf-
Kervaire invariant of g: f*E— E equals that of f.
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Proof. Once again it suffices to consider only normal maps f such that K,(f; Z[n,[N])=0
for ¢<m. The kernel groups K, (g; Z/2) are then equal to K,(f; Z/2) ® H,(RP%, Z/2). To
calculate the Arf-Kervaire invariant of g we must consider the intersection and self-inter-

section form on K,,, ,(g; Z/2). We claim that under the identification
K ppilg; B[2) = Kp(f; /2) ® H(RP*; Z/2) = K,(f; Z/2)

the self-intersection forms for f and g agree. The argument is similar to the CP*-case.

Namely, x®@w €K, (g; Z/2) is represented by
8, xRP' &S, x RP¥ > E

where S,—~ M represents x and S, x RP*— E is just a trivialization of E|S,. (This time
represents the non-trivial class in H,(RP%; Z/2).) Above each double point of S,—~M we
have a doubled copy of RP' in RP¥. Shifting one copy transverse to the other leaves a
single point of self-intersection of S, x RP!, Thus, the number of double points of 8, x
RP'— E equal that of S;~ M. If we begin with an immersion of S7 into M whose normal
bundle, thought of as a reduction of the stable normal bundle of S, in M, extends to a
reduction over D™ then the number of double points of 8,~> M is the value of the self-
intersection for f on z, see [31] and page 46 in [34]. The resulting immersion of S, x RP!
into K has a normal bundle which extends to a reduction over D™ x RP’. Hence, the
number of double points (mod 2) is the value of the self-intersection form for g on x®w.
This shows that the forms for g and f agree, and hence, that their Arf-Kervaire invariants
agree.

We turn now to the two theorems required in the proof of 11.3.

THEOREM 15.4. Let M* and N be oriented manifolds with semi-free S'-actions. Let
FPc M and F'<N be the fixed point sets. Suppose g: (M, 0M)— (N, 6N) is an equivariant,
stratified normal map with g|oM inducing an isomorphism on R-homology. (R<Q.) Then
o(9| F)€ELyy(R) and o(g) €Ly (R) are equal. This is interpreted to mean that both are O if
921 == 2p(4).

Proof. We shall use the notation of Section 1. Thus M means M blown up along 7.
Let y< M and v < N be equivariant normal bundles with &» and 9’ the associated sphere
bundles and with g: (v, dv) > (v", 0»'). Things are simplified somewhat by assuming that F’
is connected, though the proof given can be modified slightly to work in the general case.
Also, since we are calculating simply connected obstructions, we can assume that F* and
N are simply connected. Since g|0M is an R-homology equivalence, so is g|0F (by Smith
Theory). Note that:
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A A
(a) the map induced by g, §: 0M 55/S1~>0N 5/ S is an isomorphism on R-homology,
(b) k: 6v[S*—2y'[S' is a bundle map covering g| F, and

(¢) the fibers of 0»’/ST are CP!-P—Vg,

Let us dispose of the case 2] —2p=2(4). In this case the fiber is CP*. Hence, 15.2 says
that o(g| F)=o(h). By (a), we see that o(h)=0(h U§) in Ly, o(R). This last obstruction is
zero since hU§ is the boundary of the normal map induced by g from M/S! to N/St.
This proves that o(g| F) =0 in Ly,(R). Thus, we can do surgery to make g| ¥ an R-homology
equivalence. Then M/8!—N,./St is an R-homology equivalence on the boundary and of
odd dimension. Hence, we can do surgery on this map, relative to its boundary, to make
it an R-homology isomorphism. After we do this, the resulting map on total spaces is an
E-homology isomorphism. Hence, a(g) € Ly, (R) is zero.

We turn now to the more interesting case—2l=2p(4). This time we can do surgery
below the middle dimension on (g| F'): F—F’ until K (F; R)=0 for i <p and K,(F; R)is a
free R-module with intersection form A and self-intersection form u. Now we do surgery
on h: My/81~>Ny /St until K;(Mg/S% R)=0 for i<l—1. Since K, ,(@(M5/SY); R)=0, the
intersection pairing

K, (My/8% R)® K (M/S%; R)—> R

is non-singular over Q. Hence, surgery on a basis for the free part of K 1-1(Mz[8%; R) pro-
duces a new equivariant stratified map ¢g’: M’— N such that

(a) K,(Mz/S%; R)=0,3<l—1 and

(b) K, ,(M5/S%; R) is torsion.

It follows by duality that K,(M7/St, d/S%; R)=0 for i >1. Also, since I>p, K (M'; R)=
K (M7; R). Consider the Gysin sequence for the circle bundle My My/St:

0— K, ,(Mz/8%; R)~ K (Mpz; R)—~ K (My/S% R)—>0.
The first term is torsion and the last is equal to (via the inclusion map) K (8»/S'; R). Thus
K(M’; R)[torsion = K (Mp; R)[torsion = K ,(M5/S%; R)

=K (ov/SY; R) =K, (F; RY® H,_,(CP" *~1; Z).
z

We claim that under these identifications the intersection and self-intersection forms
on K,(M'; R)/torsion and K,(F; R) agree. To prove this non-obvious fact, we need a geo-
metric description of the identification of K,(M'; R)/torsion and K, (F; R). Given
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z €K (F; R) represent it by an immersed sphere S2— F. The CP'~*~! bundle over F is
actually the projective bundle associated to the complex structure on » induced by the
St-action. If we restrict this bundle to 8%, then it is trivial. Set ¢=}(! —p) and consider
8% x CP? ! (8v)/8". Over each double point of S? we have two copies of CP*-1—CP!~?"1,
General position allows us to assume that they are disjoint standard linear sub-projective
spaces. The cycle S2 x (P91 (9»)/S! bounds a relative cycle Z, ™ —~ M7/S%, which represents
a class in K, (My/S%, 8v/S% R). The class in K,(M; R) which corresponds under our
identification to x € K (F; R) is represented by

L=n"NZ7 )V B

where 7: My—(M7)/S! is the projection map and EL P is the 2(l—p)-dimensional disk
bundle associated to 7 x CP%1— (9»]8,)/St. Clearly, if we are given 2 such classes z, y€
K,(F; R) we can take the resulting Z. ' and Z, ' to be disjoint. Hence, the geometric
intersection of the cycles £, and ¢, will occur exactly and the points of intersection of .S,
and S, in F.

Near a point of intersection {, and {, will be E,- E, where E, and E, are complex
sub-bundles of »|S, and »|S,. If S, and S, are transverse, then we choose these bundles
to have transverse fibers over each point of intersection. These two linear subspaces have

intersection -+ 1. Hence, {,-{,=S,-S,.

N IP’

B

Y

\

This proves that the intersection forms on K,(F; R) and K, (M’; R) agree. If we begin
with 87— F consistent bundle data, then S x CP?-1-2y/8! is also consistent with the
bundle data. We take Z. ' (or some odd multiple) to be an embedded manifold whose
normal bundle is consistent with the bundle data. Then (L-- M is consistent with the
bundle data. Hence, the self-intersection forms take the same values of [{,] and x.

This proves that a(g| F) =a(g) in Ly,(R).

THEOREM 15.5. Let M' and N' have smooth Z[2-actions with FP< M and F'<N as
fixed point sets. Suppose g: (M, 0M)—~(N, 0N) is an equivariant stratified normal map with
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g|0M inducing an isomorphism on Z[2-homology. Then the Arf-Kervaire invariant of g| F
and the Arf-Kervaire invariant of g are equal. This is interpreted to mean that both are 0 if
either p or 1 is odd.

Proof. First note that if g|oM is a Z/2-homology equivalence, then (by Smith Theory)
so is g|0F. Hence, the Arf-Kervaire invariant of g| F is defined. In this proof we use the
notation established in 15.4. All coefficients are Z/2.

The case % p(2) is proved using Theorem 15.3. ;

Let us consider [=p=0(2). By surgery, below the middle dimension, we can assume
that K,(F)=0 for i<p/2, that K,(M;)=0 for i<(l/2)—1, and that Kgg, 1(0v/(Z/2))~>

Koy 1(M5/(Z[2)) is trivial. We have a diagram of long exact sequences:

Ky2(0v/(Z/2))

Ts

T Kz/z(Mp/(Z/2)) _tr_) Kl/2(MF) ‘ﬂ" KZ/Z(MF (Z/2)) T T e
Ty

Kyo(Mp[(Z/2), v/(Z/]2))

The transfer map, tr, assigns to a cycle in M/(Z/2) its total inverse image in M. If
the original cycle is immersed consistent with the bundle data of the normal map, then so
is its double cover. On the other hand, the number of points of self-intersection of the
double cover is even. Thus, the self-intersection form vanishes identically on the image of
tr. The transfer is dual to the map 4,0m:,. Hence, performing surgery on a basis for the
image of tr, leaves a subquotient of K (M) which is (Im (tr))*/Im (tr). (If I=0(4), then
it may not be possible to do this surgery geometrically but algebraically the form on
K ,,(M7) and the one on (Im (tr))*/Im(tr) differ by a hyperbolic form.)

Since Kz 1(0v/(£[2))~> Koy 1(Mz[(£[2)) is trivial, duality tells us that
ju: K yo(@9](Z/2)) > K ;;o(M/(Z/2)) is an injection. Thus the subquotient of K,,(My; Z/2),
(Im (tr))*/Im (tr) is identified via jx'om, with K ,(0v/(Z/2)) =K,(F). We claim that under
this identification the intersection and self-intersection forms agree. If we can show this,
then we will have proved that the Arf-Kervaire invariants of g and g| F agree.

The argument is similar to the one in the S'-case. If we begin with an immersed cycle

15 —792902 Acta mathematica 144, Imprimé le 8 Septembre 1980
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§%% - F representing x in K,,(F), then we construct an immersion representing the corre-

sponding class in K ,,(M), as follows. Set ¢=1(l —p) and associate to 82>~ F theimmersion
S22 x RP4-1 & 822  RPF 71— (9p)/(Z/2)

(where the second term represents a trivialization of d»/(Z/2)— F pulled back to S2'%). We
choose the two copies of RP%! in RP'~?-1 over each double point of S,— F to be disjoint
linear subspaces. We extend the resulting embedding of S”'* x RP¢-! to a immersed mani-
fold Z"2— My/(Z/2) which represents a relative class in K y,(My/(Z/2), dv/(Z/2)). A cycle
representative for the class in K ,(M) corresponding to x€ K, ,(F) is {,=nYZ1?) U EZ
where E? is the disk bundle associated to the S2'% x RP%-1, Clearly, the number of double
points of this immersion is twice the number of double points of Z? plus the number of
double points of S22,

If both the original immersion of S?2— F and the embedding Z}*—M/(Z/2) have
normal bundles which are consistent with the bundle data covering the normal map, then
the same will be true for the resulting immersion of {,—~ M. Hence, the self-intersection
form for g evaluated on [{,] equals that for g| F evaluated on z. This proves that, modulo
hyperbolic forms, the form on K,,(F; Z/2) and the one on K, ,(M; Z/2) are equivalent.
Thus, the Arf-Kervaire invariants of g and g| F are equal.

LemMA 15.6. Let w: (W?™ 0W)—~(Z*™, 8Z) be a normal map with m(Z)=1%2, Z non-
orientable, and 2m>4. Suppose K,(p|0W; Lo)[2/2])=0 for all i and that the Arf-Kervaire
invariant of ¥ is 0. Then y is normally bordant, relative to w|0W to v’ such that:

(a) Ky(y'; Zp[Z[2])=0 for all i,
(by Ki(y's Z[Z4[2])=0 for i<m —1, and
(©) Kpald's ) =0.

Proof. Surgery below the middle dimension can be performed so as to make
K (y; Z[Z/2]) =0 for ¢ <m. Consider K, (y; Z[Z/2])/T where T is the sub-module of elements
of finite order. It is a free Z[Z/2]-module. Its intersection form is non-singular when ten-
sored with Zg,. The Arf-Kervaire invariant of this form is 0 by hypothesis. Since the
Arf.Kervaire invariant induces an isomorphism L, (Zq)[%/2], —)=Z/2, it follows that

the form on K, (y; Z[Z/2])/T becomes hyperbolic when tensored over Z with Zs,. Let

AR —L— (K (y; BI2/2)/ 1)@ e
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be an isomorphism between a hyperbolic form and the geometrically defined forms on
K, (). This map ¢ defines a splitting H® H’ of K, (y; Z[Z/2])/T; namely

H=¢(H) N (Ku(y; ZIZ[2)|T) and H' =@(H*)n (Ka(y; ZZ/2))/T).

In this splitting the matrix for the intersection form is

(i-pen o)
(=¥ o

and u|H is 0. The matrix 4 is a Z[Z/2]-matrix, which is non-singular over Zg)[Z/2]. We
will show that there is a splitting g: @ H* ~ K, (y; Z[Z/2]) of this type so that the
matrix 4 becomes non-singular when reduced to Z~ (ie., if in each entry of 4 we set
y=—1, then 4 becomes a non-singular integral matrix). If we have such a decomposition,
then surgery on a basis for H produces a normal bordism from 9 to a normal map " such
that K, _,(p’; Z7)=0. To see this let U7 % I be the normal bordism created by adding
(m+1)-handles along embedded spheres representing a basis for H. Let v": W —Z be the
“other end”. Then K (U, W; Z[Z[2]) =0 for ¢==m+1 and K, (U, W; Z[Z/2]) = H. Further-
more, K (U, W'; Z[Z/2]) =K, (U, W; Z[Z/2])*. The map

Ko(U; BIZ[2Y) 1 K (U, W', 212/2))
| i3
H’ H*

sends b’ € H' to the homomorphism whose value on A€ H is (—1)"-A(R", k). It follows that
the map j, is identified with (—1)™- 4.

If 4~ is non-singular over Z~, then looking at the long exact sequence of the pair
(U, W’), we see that K,,_,(y'; Z7)=0.

Thus, to complete the proof of 15.6, it remains only to find the required splitting of
K, (p; Z[Z/2])/T. Given one splitting H®H' =K, (y; Z[Z/2])/T in which 4~ is not neces-
sarily non-singular, then changing bases for H and H’ corresponds to performing row and
column operations on 4. Since the Whitehead group of Z,[Z/2] is 0, this allows us to
assume that 4 is a diagonal matrix. Now, we can inductively treat the problem of finding
a new splitting in which 4~ is non-singular. Hence, it suffices to consider a 2 x 2 subspace

of H®H’ with bases h and %', with u(h) =u(h') =0 and with intersection pairing given by

0 a+ by .
((—1>'"<a—by) 0 ) a+b=1(2).
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It is necessary to enlarge this space by forming the orthogonal sum with a hyperbolic form
with basis {e, f}. Geometrically this can be accomplished by doing a trivial surgery in
dimension (m —1). Let 2s +1=a +5b. H s=0(2) define a new basis to be

{h(l——y)—e(s(l—y)-i—l), K fL+7), B (1;) L+9) = fs(1+7)+ 1), h~e (g) a —y)}-

If s=1(2), then we take the new basis to be

fa-n-wa-nrnwmaeni () asnarnni-e( 5 a-n)

In either case, y vanishes on all the given basis elements, and the matrix for the inter-

section pairing is

i 0 0 s(l+p)+1 0 ]
Y (=1)"[(@a—by—(s+&) (1 —y)]
(—D™sl=p)+1) 0 0 0
0 (@+by)—(s+¢)(1+7) 0 0

where ¢=0 in the first case and ¢=1 in the second. One sees immediately that in either

case, the matrix 4 is non-singular when reduced into Z-.
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