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0. Introduction 

A basic  a p p r o a c h  in  t h e  s t u d y  of t r a n s f o r m a t i o n  g roups  is to  c o m p a r e  s m o o t h  ac t ions  

of c o m p a c t  L ie  g roups  on  h o m o t o p y  spheres  w i t h  l inear  ac t ions  on  s t a n d a r d  spheres .  Th i s  

p a p e r  e x a m i n e s  ac t ions  of t h e  o r t h o g o n a l  g roup ,  0 (n) ,  on  h o m o t o p y  spheres .  W e  cons ider  

o n l y  t hose  ac t ions  w h i c h  r e semble  ce r t a i n  f ixed  l inear  ac t ions  insofa r  as  t he i r  i s o t r o p y  

g roups  a n d  n o r m a l  r e p r e s e n t a t i o n s  a r e  conce rned .  W e  a re  t h e n  ab le  to  c lass i fy  such  ac t ions ,  

up  t o  concordance ,  b y  c o m p a r i n g  t h e m  d i rec t ly ,  v i a  an  e q u i v a r i a n t  m a p ,  w i t h  t he i r  l inear  
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counterpart. The linear actions that  we use as models are k~n + m, where k ~  denotes the 

standard action of O(n) on k-tuples of vectors in R ~ and _m denotes the trivial m-dimen- 

sional representation. A smooth action of O(n) on a manifold M is regular if its orbit types 

and normal representations occur among those of k~.  In  this situation, we shall also say 

that  the O(n)-action on M is k-axial. Any isotropy group of a k-axial action is conjugate 

to a standardly embedded O(n- i ) ,  for some i, 0 ,.<i~.<min (n, k). (We shall usually be as- 

suming that  n ~> k.) Thus, a k-axial action has at most k + 1 different orbit types, and they 

are linearly ordered. We shall denote by ~M the submanifold which is fixed by the subgroup 

O(n - i) c O(n). 

Given an O(n)-action on a homotopy sphere, there are simple conditions which imply 

that  it is regular. For example, if the principal orbit type is O(n)/O(n-  k), with n > k, then 

the action is k-axial, [16]. A similar result holds for an O(n)-action on an h-cobordism 

between two homotopy spheres. 

A k-axial O(n)-action on a homotopy sphere ~ must resemble a linear model more 

closely than is obvious, a priori. For example, it follows from the theory of P. A. Smith 

that  ~ is a homology sphere, where the coefficients are taken to be Z if ( n - i )  is even or 

Z/2 if ( n - i )  is odd. Also, if dim ( 0 E ) = m - 1  (the empty set has dimension -1 ) ,  then it 

follows from a formula of A. Borel, that  dim ( , E ) = ( k i + m - 1 ) ,  for all i with O<~i~n. 

Thus, ~ (=nF,) has dimension (kn + m -  1), and the fixed point sets of the various isotropy 

groups are homology spheres of the same dimension as the corresponding fixed sub-spheres 

in the linear action k~n +_m restricted to S k~+m-1. 

Two regular O(n)-manifolds M and M' are concordant if there is a regular O(n)-action 

on a h-cobordism W, such that  its restriction to ~ W is (oriented) equivalent to MI_[ ( - M ' ) .  

Let 01(k, n, m) denote the set of concordance classes of k-axial O(n)-actions on homotopy 

spheres(1) of dimension ( k n + m - 1 ) .  For m > 0 ,  it is an abelian group under equivariant 

connected sum. Our goal is to compute this group (for n ~> k). The first two authors carried 

out a similar program for regular U(n)- or Sp(n)-actions in [11]. 

Suppose that  O(n) acts k-axially on a homotopy sphere Z kn+m-I and that  n~>k. In  

Theorem 5.2, we construct a certain parallelizable manifold V ~n+m, with k-axial O(n)-action 

and with ~ V = E. We consider the submanifolds ~V, 0 ~ i  ~ n. The boundary of ~V is ~E, 

and as we remarked above, ~E is an Rs-homology sphere, where s = ( - 1)~- i, R+ = Z, and 

R_ = Z(2). Roughly speaking, our main result is that  the concordance class of ~ is com- 

pletely determined by the intersection and self-intersection forms of 0V and 1V. More 

precisely, if p = k i + m  =dim (~F), then we define an invariant a~(=ai(E)) in the surgery 

(x) All our results remain valid for homology h-cobordism classes of regular O(n)-actions on integral 
homology spheres. 
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group L,(R~), as follows. I f  p is odd, then a~=0.  I f  p = 2 ( 4 ) ,  then a~ is the Aff-Kervaire  

invariant  associated to  a quadrat ic  form on the  middle dimensional homology of ~V with 

Z/2 coefficients. I f  p --0(4), then ~ is the Wi t t  class of the  intersection form on the torsion- 

free par t  of the middle dimensional homology of ~V. I n  this case, if ~ = + 1, then  r can be 

identified with one-eighth of the  index of the  bilinear form (this is an integer); while, if 

= - l ,  then ~ takes values in W, the  Wi t t  group of symmetric,  bilinear forms which are 

even and non-singular over Z(e). Eventua l ly  the following facts will be established: 

(1) ~ depends only on the  concordance class of ~ and hence, defines a map  

at: 01(It, n, m)~Lp(R~), which is a homomorphism for m > 0 .  

(2) I f  k is odd, then ~ =0 .  

(3) I f  ]c is even, then ~=a~+e.(1) 

(4) I f  ]c is even, then  c(r where c: L,(R~)--->Z/2 is the  Arf-Kcrvaire  homo- 

morphism. 

(5) For  re>O, the a~'s can assume any  possible value subject to the relations (2), (3) 

and (4). 

(6) I f  ao(Z)=0=~dX), then  (provided/c=~2 and neither 0 V n o r  1 V has dimension 4), 

Y. is concordant  to a sphere with linear action. 

Thus, for k odd, m~=4 and (k, m)~=(3, 1), every Ekn+m-1 is concordant  to a sphere 

with linear action(Z); while, for k even, k~=2 and m~=0, 4, the following sequence is exact:  

0 ,01(k ,n ,m)  (~0, al) Lm(R~)| c+c �9 Z/2. 

The result  for/c = 2 is slightly different. I n  this case, we cannot  use merely a0 and a 1. I t  is 

necessary to  take algebraic refinements of t hem (linking forms on Siefert surfaces). Thus, 

in this case the result is t ha t  the enhanced ~0 and al determine the concordance class of 

Z en+m-1 and tie the groups 01(2, n, m) to  kno t  cobordism groups. 

When  m = 0 ,  a result similar to  the generic one holds. I t  is necessary, however, to  

reinterpret  g0 as the  number  of fixed points of the action on V (counted with sign). I f  k 

is odd, every action is concordant  to a linear one. I f /c  is even and n-~0(2), then 

O'(/c, n, 0) (q0, ~1) ~ ({ _ 1}, Lk(Z(e)) ) 

is injective (if /c:4:4). I t s  image is all pairs (_+ 1, ~1) such t h a t  the Kervaire  invar iant  of 

(rl, c(ql), is zero. I f /c  is even and n is odd, then  

(1) For k even, (r i and a~+~ take values in the same surgery group. 
(2) The ease (k, m) = (1, 3) follows from other considerations. 
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@l(k, n, 0) (a~ al) , (odd integers, Lk(Z)) 

is injeetive (if k@4). I ts  image is all pairs (d, ~rl) such that  c(d)=C(al). (Here c(d) means 

the Kervaire invariant of the normal map of d points to 1 point, i.e., c(d)@0 if and only if 

d~- +3(S).) 
These results lead to a calculation of the groups 01(k, n, m) in all but  a few exceptional 

cases. We tabulate the groups in the next three theorems. 

TH]~OR~.  Suppose that n >~ k and that m@0, 4. 

(a) I f  k~O(4) , then 
p 

Z + W ;  re=O(4) 

Ol(k, n, m)=~  Z/2; m~2(4)  
! 
[0; m--l(2).  

(W =kernel (c: W-+Z/2).) 

(b) I / k  is odd and (k, m)=4=(3, 1), then 01(k, n, m) =0. 

(c) I / k ~ 2 ( 4 )  and k ~ 2 ,  then 

Z; m + 2n ~ 0(4) 

01(k ,n ,m)  = W; m + 2 n ~ 2 ( 4 )  

O; m +2n-~1(2). 

T ~ O R ] ~ .  Suppose that m@0, 2, 4 and that n >~2. 

G+; m + 2 n - 0 ( 4 )  

01(2, n ,m)  = G_; m+2n: -2 (4 )  

0; m + 2 n ~ l ( 2 ) .  

(The groups G ~ are the "algebraic knot cobordism groups".) 

T ~ O R ] ~ a .  Suppose that k=#4 and that n >~k. 

I {-t-1}; 

01(k, n , O ) = ~ { + l }  • 

[kerr (e+c)c  • W; 
(Here ~ is the odd integers.) 

/c odd 

n even, k-2 (4 )  

n even, k-:0(4) 

n odd, k -2 (4 )  

n odd, k-=0(4). 
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The case /c4:2 and m4:0 is proved in Section 12. The case/c =2  is dealt with in Section 13, 

and the case m = 0  in Section 14. 

Actually, in the case of mono-axial actions (/c = 1), these results have been known for 

at least fifteen years, see [17] and [27]. The case of bi-axial actions (/c=2), perhaps the 

most interesting, has been studied extensively, see [4], [5], [6], [14], [15], and [18]. In  this 

case, for n even, the above results are due to Bredon [6]. 

Let S: 01(k, n, m)~Okn+m-1 be the natural map. As we have seen, the image of S is 

contained in bPkn+m, the subgroup consisting of h-cobordism classes of homotopy spheres 

which bound parallelizable manifolds. From (2), (3), and (4) above we immediately deduce 

the following: 

(A) If/c is odd or if m is odd, then E ~+m-1 is h-cobordant to the standard sphere. 

(B) If  k is even and m is even, then the following diagram commutes whenever i =-n(2): 

S 
| n, m )  �9 bPkn+,n 

Thus, if n is even, the h-cobordism class of E is determined either by the index or Arf- 

Kervaire invariant of 0V; while if n is odd, it is determined either by the index or Aft- 

Kervaire invariant of 1V. I t  follows, from (5), that  S is onto bPk,,+,, provided m >0.(1) (If 

m =0  and n is odd, then S is again onto; while if n is even, S is the zero map.) 

An interesting corollary of the above calculations is that  the homomorphism 

co.: Ol(k, n + 1, m)~01(k,  n, m +/c), defined by restricting the O(n + 1)-action to O(n), is an 

isomorphism (under mild hypotheses on n, m, and k). 

The first nine sections contain preliminary material about regular actions. The main 

point of introducing this material is to reduce the concordance question on homotopy 

spheres to questions in surgery theory. In  the remaining six sections these questions are 

answered and consequences are derived. 

Any smooth G-manifold is stratified by the submanifolds consisting of those orbits of 

a given type (or "normal type"). This stratification projects to one for the orbit space. 

If  M is a k-axial O(n)-manifold, with n >~ k, then the strata can be indexed by {i E Z I 0 ~< i ~< k}; 

M, denotes the stratum of orbits of type O(n)/O(n-i). 

The reduction of the concordance question to surgery is accomplished as follows. 

(1) This can be seen directly by considering actions on Brieskorn varieties. 
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First, it is shown that  there is an equivariant "stratified" map F: (V kn+m, y kn+m-1)_~ 

(D ~n+~, Skn+m-1), where O(n) acts linearly on (D kn+m, S k~+m-1) via k~+_m. If m > 0 ,  then 

we may also assume that  F is a degree one normal map. The proof of this result is ex- 

plained in Section 8. Let A, B, K and L denote the orbit spaces of V, ~E, D and S, respec- 

tively, and l e t / :  (A, B)-+ (K, L) be the induced map of orbit spaces. Necessary and suf- 

ficient conditions are given for F: (V, W0->(D, S) to induce an isomorphism on integral 

homology. These conditions are stated in terms of the induced maps / IAi :  (A,, B,)->(K,, Li) 
on each stratum. One condition is that, for each i,/[A, must induce an isomorphism on 

homology with coefficients in Z/2. The other condition involves the homology with coef- 

ficients in Z of the "double branched cover of A i U A~_ 1 along A~_I". The precise result is 

stated as Theorem 7.1. 

Our program, then, is to successively successfully do surgery on t h e / I A , ,  relative to 

/[Bi, to achieve these homology conditions. If this is done (and if the top stratum of A 

is made simply connected), then we will have replaced V by a contractible O(n)-manifold. 
Hence, y k~+~-i will be concordant to S ~+m-1 with the linear action. A priori, there may 

be an obstruction to surgery on each stratum. I t  will be proved, however, that  most of 

these obstructions either vanish or are indeterminant (i.e. can be made to vanish by ap- 

propriate choice of surgery on the lower strata). This is the case for all the obstructions 

when k is odd, and is the case for all but the obstructions at levels 0 and 1 when k is even. 

The obstructions at levels 0 and 1 are identified with ~0 and ~1. 

As stated above, this program is very close to what was done in [11] for regular U(n)- 
and Sp(n)-actions. For such actions, the strata of the orbit space of the linear model are 

simply connected; and at each stage we are required to do surgery to an integral homology 

isomorphism. The fact that  the surgery obstruction on each stratum (except for the bottom 

one) either vanishes or is indeterminant essentially follows from well-known product 

formulae in the surgery theory of simply connected manifolds. Thus, for regular U(n)- 
and Sp(n)-actions the necessary results in surgery are completely straightforward. 

For regular O(n)-actions the situation is more complicated because: 

(1) the strata of the linear orbit space usually have fundamental group Z/2(1), 

(2) the strata alternate between being orientable and non-orientable, 

(3) in the fiber bundle relating one stratum to the boundary of the next the funda- 

mental group of the base can act non-trivially on the homology of the fiber, and 

(4) we are required to do surgery to achieve a mixture of Z- and Z/2-conditions on 

homology. 

(1) The case k = 2 is distinguished by the fact that the 1-stratum has fundamental group Z. 
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The process by which almost all of the surgery obstructions "cancel" must,  therefore, be 

more sophisticated than  in the U(n) and Sp(n) cases. This cancellation process is based 

on three different product formulae, which are proved in section 15. The first, 15.1, con- 

cerns CPUZ-bundles where the fundamental  group of the base acts non-trivially on H.(CPeZ). 

The second, 15.3, concerns RP2l-bundle8. The third, 15.5, concerns RP2Z+l-bundles. In  all 

cases we have a normal map between the total  spaces of such bundles which covers a 

normal map  between the bases. The product formula relates the surgery obstructions on 

base and total space. 

Our calculation of the concordance groups is not quite complete. The case m = 4 leads 

to four dimensional surgery, and the group of concordance classes must  be enlarged by  a 

group associated with Oz or ~z/2. (Here @~ means the group of R-homology 3-spheres with 

those tha t  bound R-homology disks set equal to zero.) The case (/~, m) = (2, 2) is intimately 

related to classical knot  cobordism. Thus, the classification of concordance classes of reg- 

ular actions in these cases depends on the solution of these outstanding low dimensional 

surgery problems. 

Finally, it should be emphasized tha t  the two "ends" of a concordance need not  be 

equivariantly diffeomorphic. However, our classification of O(n)-actions up to concordance 

does clarify what  problems occur in understanding the equivariant diffeomorphism ques- 

tion. One might hope, naively, for the orbit space of a concordance to be equivalent (as a 

stratified space) to the product of one end with the unit interval. I f  this happens, then, 

of course, the two ends are equivariantly diffeomorphic. However, all one can say in 

general, is tha t  each s t ra tum of the orbit space of a concordance is a Z/2-homology h- 

cobordism between its two ends. Thus, for example the integral homology of its ends may  

be different. Also, the fundamental  group of such a cobordism may  be different from tha t  

of either end. In  general, such discrepancies in fundamental  group and integral homology 

occur. Thus, the classification of regular O(n)-actions on homotopy spheres up to equi- 

variant  diffeomorphism would seem to involve difficult questions concerning Z/2- homology 

h-cobordisms. 

1. Stratification by normal orbit type 

In  this section, we review some general definitions from [10] and [33]. 

Let  G be a compact Lie group. Consider pairs (H, V), where H is a closed subgroup 

and V is an H-module with no invariant non-zero vectors. Two such pairs (H, V) and 

(H', V') are equivalent if the corresponding G-vector bundles G •  V and G • g" V' are iso- 

morphic. (This just means tha t  H and H' are coniugate and tha t  there is a compatible 

linear isomorphism from V to F'.) A resulting equivalence class is called a normal orbit type. 
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Now, suppose that  G acts smoothly on a manifold M. Let B be the orbit space and 

~: M-->B the natural projection. :For xEM,  G x is the isotropy group and Sx is the slice 

representation. The normal representation Nx is the Gx-module Sx/Fx, where F x c  S: is the 

subspace which is fixed by G x. The normal orbit type of x is the equivalence class of (Gx, N:). 

A stratum of M is the set of points of a given normal orbit type and a stratum o / B  is the 

image of a stratum of M. If  a is a normal orbit type, then _~F a n d / ~  denote the corre- 

sponding strata. I t  follows from the Differentiable Slice Theorem that  ~1~/~ a n d / ~  are both 

smooth manifolds and that  ~ IMp: ~r  -~ /~  is the projection map of a smooth fiber bundle 

(the fibers are orbits). Nx is the fiber at x of the normal bundle of ~ in M. 

If  a '  and a are normal orbit types, then a',.< ~ if a occurs as a normal orbit type in 

G • ~ V, where (H, V) is a representative for ~'. This defines a partial ordering on the set 

of normal orbit types. Clearly, 

closure (M~)= U M~. 

In  [10] and [19] it is shown how to attach, in a c~nonieal fashion, a boundary to each 

stratum of M (or of B) obtaining a manifold with corners called a "closed stratum". The 

method is based on the following construction. 

Suppose that  M is a differentiable manifold with corners and that  A c M is a proper 

submanifold with corners. (Here proper means that  A has a smooth tubular neighborhood 

in M which is smoothly isomorphic to the total space of a vector bundle over A, the normal 

bundle of A in M, VACM.) Define h~/A, M "blown up" along A, to be ( M - A )  0 SVacM, where 

SVACM is the sphere bundle associated to the normal bundle. /~a naturally inherits the 

structure of a smooth manifold with corners. If W has a smooth G-action and A is in- 

variant, then/~A has a natural smooth G-action. 

If  A is a minimal stratum of M, then it is a proper invariant submanifold, so ~ is a 

G-manifold with one less stratum. One can continue by blowing up a minimal stratum of 

~A, etc. To construct the closed a-stratum o] M, one blows up all the strata of index less 

than a and then takes the a-stratum of the resulting manifold with corners. The result is 

denoted by M~. I t  is a manifold with corners with interior equal to the original stratum. 

A closed stratum o[ B is the orbit space of a closed stratum of M. 

Let Na denote the normal bundle of M~ in the appropriate blow-up of M. If  fl > a, 
then let ~ M z  be the closure (in Mp) of the fl-stratum of the sphere bundle associated to 

N a. We define ~ Bp similarly. If  X = aM, then 

~(M~)=X~U U ~:M~ 
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~(B~) =z(X~) U U a~B~. 
a<fl 

Suppose that  (H, V) is a representative for a and that  Y =G • HV. The projection 

~: M Z-~ B~ is a smooth fiber bundle with fiber ~ YB, and a~ BB~ B~ is a fiber bundle with 

fiber the orbit space of ~ YZ. 

A smooth equivariant map h: M ~ M '  of G-manifolds is strati/ied at x if G~=Gh<x) 

and if the differential of h at x induces an isomorphism N~ ~Nh(~> An equivariant map 

is strati/ied if it is stratified at each point. If an equivariant map h is stratified, then 

h(21~/~)c2]~ and the differential of h induces an equivariant linear bundle map from the 

normal bundle of 2];/~ in M to the normal bundle of M :  in M'. A key observation is that  

the restriction of an equivariant stratified map to any given stratum extends to a map between 

the corresponding closed strata. Moreover, this extension is a bundle map on each/ace. (This 

is proved in [10].) There is a similar notion of a "stratified map" between two orbit spaces. 

I n  order to define this notion, it is first necessary to discuss the local structure of orbit 

spaces. 

The orbit space B has an induced "smooth structure" obtained by defining a function 

g: U-+R (U an open subset of B) to be smooth if go~ is smooth. A continuous map ~: B-+B'  

is smooth if it pulls back smooth functions on open sets in B'  to smooth functions on open 

sets in B (see [4], [9], [32]). From the ring of germs of smooth functions which vanish at 

b E B, one can define (d'apr~s Zariski) the cotangent space at b and its dual, the tangent 

space T o B. Let T B  denote the union of all the tangent spaces. By the Slice Theorem, 

b =~(x) has a neighborhood in B which is smoothly isomorphic to S~/G~. I t  follows from a 

result of G. Schwarz [32], that  the linear orbit space S~/G~ can be identified with a certain 

semialgebraic subset of some Euclidean space R ~. This defines an embedding of T(Sx/G~) 

into TR s which is linear on each tangent plane. I t  induces a topology on T(S~/G~) and 

thus one for TB.  In  general, T B ~ B  is not a vector bundle since the dimension of T~ B 

need not be locally constant. However, the restriction of T B  to any stratum is a vector 

bundle, and the ordinary tangent bundle of the stratum is a sub-bundle. The quotient of 

T B I B  ~ by TB:  is called the normal bundle o / B  a in B and is denoted by ~(B).  

A smooth map ]: B-+B '  of orbit spaces is strati/ied(1) if it preserves the stratification 

and if for each index a, the induced map 1.: i~,(B)-+O~(B') is a bundle map (that is, a 

fiberwise linear isomorphism). 

(l) Such maps are called "weakly stratified" in [10] and "normally transverse" in [33]. 
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2. Regular actions 

Suppose  t h a t  M and  X are  smoo th  G-manifolds.  W e  say  t h a t  M is modeled on X if 

t he  no rma l  o rb i t  t y p e s  of G on M occur  among  those  of G on X.  Equ iva len t ly ,  M is mode led  

on X if given non-nega t ive  integers  m and  m' such t h a t  m - r e ' =  dim X - d i m  M,  then  

every  orb i t  of M • R m has  an  open i nva r i an t  ne ighborhood  isomorphic  to  an  open i nva r i an t  

ne ighborhood  in X • R m'. (Here,  G acts  t r iv ia l ly  on the  second factors.)  

I f  one is in te res ted  in smooth  act ions  on spheres or  on disks, t hen  i t  is n a t u r a l  to  

s t u d y  act ions  which are  modeled  on var ious  l inear  act ions.  The  l inear  ac t ion  

kon: O(n) • M(n, ]c) -+ M(n, k) 

is defined as the  ac t ion  of O(n) on the  vec tor  space of n b y  k matr ices  by  m a t r i x  mul t i -  

p l ica t ion  on the  left.  A l t e rna t ive ly ,  i t  is the  n a t u r a l  ac t ion  of O(n) on/c - tup les  of vec tors  

in R ~ 

Definition 2.1. A smooth  0(n) -mani fo ld  M is k-axial if i t  is modeled  on M(n, k). W e  

shall  also say  t h a t  M is a regular O(n)-manifold.  

.Remark. Taking  as l inear  models  e i ther  the  na tu r a l  ac t ion  of U(n) or ]c-tuples of 

vectors  in C n or of Sp(n) on k- tuples  of vectors  in quatern ionic  n-space,  one defines ]c-axial 

U(u)-manifolds  and  ]c-axial Sp(n)-manifolds in a s imilar  fashion.  

Given a m a t r i x  xEM(n, ]c), the  column vectors  span  a subspace  p c  R ~. The i so t ropy  

group G~ is the  o r thogona l  group O(P~). The  row vectors  of x span  a subspace  Q c  R k. 

One can show t h a t  the  normal  r ep resen ta t ion  a t  x is t he  na tu r a l  ac t ion  of O(P ~) on 

Horn (Q~, P~). I t  follows t h a t  the  no rma l  r ep resen ta t ion  a t  x is equ iva len t  to  O(n-i)  

act ing on M ( n - i ,  k - i )  for some i. Le t  i denote  the  equivalence  class of (O(n-i), M ( n - i ,  
]C - i ) ) .  As we have  jus t  seen the  s t r a t a  of a ]c-axial 0 (n) -mani fo ld  are  indexed  b y  integers  i, 

such t h a t  0 ~<i ~ m i n  (n, ]c). T h e / - s t r a t u m  of M(n, ]c) is the  set of mat r ices  of r ank  i. 

N e x t  we consider  the  orb i t  spaces of the  l inear  models.  Le t  S(]c) be the  vec tor  space 

of ]c b y  ]c symmet r i c  mat r ices  and  le t  B(]c)~ S(]c) be the  subset  of posi t ive  semidef ini te  

matr ices .  Consider the  po lynomia l  mapp ing  z~: M(n, ]c)->S(lc) defined b y  ~(x) = tx.x, where 

tx is the  t ranspose  of x. I f  gEO(u), t hen  z~(gx)=tx.g-i.g.x=7~(x). Consequent ly ,  ~ is con- 

s t a n t  on orbi ts  and  therefore,  induces  a m a p  ~: M(n, ]c)/O(n)-+S(]C). I t  is s t r a igh t fo rward  

to  check the  following: 

(a) The  image  of 7~ is conta ined  in B(]C). 

(b) z maps  t h e / - s t r a t u m  of M(n, ]c) onto  the  set of mat r ices  in B(]c) of r ank  i. 

(c) I n  par t i cu la r ,  if n>~]c, t hen  ~ maps  M(n, ]c) onto  B(]c). 
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LE~MA 2.2. The map ~: M(n, k)/O(n)-~ B(k) is a smooth isomorphism onto its image. 

Proo/. The entries of ~(x) are homogeneous quadratic polynomials in the entries of x. 

According to [35] these polynomials generate the ring of 0(n)-invariant polynomials on 

M(n, k). Under this hypothesis, the lemma becomes a special case of the main result in [32]. 

Henceforth, we identify the orbit space of M(n, ]~) with its image in B(Ic) and the 

orbit map with ~. In  particular, if n>~k, then M(n, ]c)/O(n) is identified with B(]c). Let  

/~(]r denote the / -s t ra tum of B(]c). In  view of (b),/~i(/c) is the space of positive semi- 

definite matrices of rank i. 

Facts about B(k) immediately translate into local information about orbit spaces of 

regular actions. We make a few observations. 

(1) B(]c) is a convex cone with non-empty interior in S(]c). 

(2) B(k) is homeomorphic to Euclidean half-space of dimension �89 + 1). 

(3) T(B(Ir is identified with B(/~) • S(/~). 

We leave the verification of this to the reader. As a consequence we have the following. 

LEM~IA 2.3. Suppose that B is the orbit space o / a  It-axial O(n)-action and that n>~lc. 

Then B is homeomorphic to a mani/old with boundary (the boundary being the union o] the 

singular strata). Moreover, T B  ~ (J Tb B is a (locally trivial) vector bundle over B. 

I t  should be emphasized tha t  B is not smoothly isomorphic to a smooth manifold 

with boundary; rather  the singular s trata have neighborhoods which are differentiably 

modeled on neighborhoods of the singular s trata in B(]c). 

Example 2.4. Suppose tha t  

(: ;) 
represents a matr ix  in S ( 2 ) ~ R  3. Then B(2)={(x,  y, z)lx>~O , y~>0, xy-z2>~O} is a solid 

three dimensional cone. Consider the orbit space A of a bi-axial 0(n)-action on a closed 

(2n+m)-manifold,  where n~>2. Then A is locally isomorphic to B(2)•  R ~. As a space, A 

is an (m+3)-manifold with boundary. I t  has three strata. The image of the principal 

orbits, A2, is the interior of A. The fixed point set A0=A0 is a closed m-manifold em- 

bedded in 0A, and A1 =~A - A  o. Away from A0, A is a smooth manifold with boundary; 

however, there is a differentiable singularity along A 0. 
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A o ~ " - ' ~  0o A2 

Picturo of A Picture of A~ 

~LEMMA 2.5. ~,(k) i8 a fiber bundle over the Grassmannia~ o/ i -planes  in k-space with 

the fiber over a plane P being the space o/posit ive def ini te/orms on P.  Thus, 

B~(k) = B, ( i )  • o . , [ o ( ~ ) / o ( k - i ) ]  

where O(i) acts naturally on O(k ) /O(k - i )  on the le/t and on B~(i) by conjugation. A similar 

/ormula holds/or the closed stratum. 

Proo/. The lemma states tha t  a positive semi-definite form z EB,(k) is determined by 

the following data: 

(1) an / -p lane  in R k, and 

(2) a positive definite form on the/-plane.  

Let  R~ denote the radical of z. The / -p lane  is (Rz) z. The form z I (Rz) 1 is positive definite. 

C o R o L L A1r r 2.6. I] i = 0 or i = k, then ~l(B,(k))  = O. I / i  = 1 and k = 2, then ~l(B*(k)) ~ Z. 

I n  all other cases 7~l ( B ~ ( k ) ) = Z/2. 

Con  OLLAR Y 2.7. As  a special case o/2.5  we have B i ( ~  ) = [0, c~) X l~P k-1. Thus ~o Bl(k) = 

RP k-1. This is important because/or any k-axial O(n) mani/old with quotient A,  ~A~+I-+A ~ 

is a fiber bundle with fiber 3 o B l ( k - i )  ~ R P  k-~-l. 

3. Double  branched covers 

As before, suppose tha t  O(n) acts k-axially on a manifold M with orbit space B. In  

this section we describe a way of functorially associating to M, for each integer i with 

0<i~<min  {n, k + l } ,  a smooth involution y on a manifold with corners E , = E , ( M ) .  In  

fact, E,(M)  is the double branched cover of B, O B,_ 1 along Bi_l, and y is natural  involution 

on the cover. More explicitly, we have the following: 

(i) The fixed point set of ? on E, is B~_ 1. 

(ii) I f  B, is Ei  blown up along Bt_l, then ~, /y  =~ B~. 

(iii) E,/7 ~= B,  UvB~_x, where p: a,_ 1B,-+Bt-1 is the canonical projection. 
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These manifolds will play an important  role in our study of regular 0(n)-actions. Here is 

the construction. Let  O(i)• O ( n - i ) c  O(n) be the standard embedding. Denote the fixed 

point set of O(n-i)  by(~) 

~M = M ~ 

Then O(i) acts smoothly and/c-axially on ~M. The strata of ~M have index less than  or 

equal to rain (i, ]c). Blow up the strata of ~M of index less than  i -  1 to obtain a manifold 

with corners ~h:/. I f  i ~</c, then ~h4 has only two non-empty strata (i and i -  1). I f  i = k + 1, 

then only the/c-s t ra tum is non-empty; while if i > k + 1, ~h~ is empty.  Define 

E,(M) = ~I~l/SO(i). 

Notice that  O(i) acts freely on the /-s tratum of ~/~. On the ( i - 1 ) - s t r a t um the isotropy 

group is conjugate to 0(1). Since SO(i)~ 0(1 )=  (1}, the action of SO(i) on ~h4 is free. I t  

follows tha t  the orbit space EL is a smooth manifold with corners. I t  has "faces" 8oE~, 

8IE~, ..., ~_2Ei, where ~E~ denotes the fiber bundle over Bj, which arises from applying 

this construction to the normal sphere bundle of Mj. 

The group O(i)/SO(i)~Z/2 acts smoothly on E~ and the correspondence M-+E~(M) 

is clearly a functor from the category of/c-axial O(n)-manifolds and equivariant, stratifed 

maps to the category of involutions On manifolds with corners, and equivariant stratified 

maps. Moreover, if F: M-->M' is stratified, then the restriction of E~(F) to any face is a 

bundle map. One verifies routinely tha t  Ed? = B~ U ~B~_ 1, and hence, tha t  E~ is the double 

branched cover of B~ U~B~_ 1 along B~. 

Let  E~(/C) denote the result of this construction applied to the linear model, tha t  is, 

E~(k) = E~(M(n, /C)). 

Example 3.1. E0(lc)=B0(/c ) is a point. EI(/C)=R k, and the involution is x~->-x. To 

obtain E~(/C), one first blows up the origin of M(2,/c) obtaining [0, ~ )  • S 2~-1 and then 

divides out by the action of S0(2). Thus, 

and 

E~(/C) ~ [0, ~ )  • s  -1 

~oE2(/C) u Cp k-~. 

The involution on E2(k ) is given by complex conjugation on CPk~ 1. Thus, the fixed point 

set of the involution is [0, c ~ ) •  k-1 ~BI(/C). We do not know of a similar convenient 

description of E~(/c) for i >2.  

(1) ~ .B.  iM should not be confused with Mi which is the closed/-stratum. 
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L:ES~MA 3.2. E~(k) is simply connected. I / i < k  and (i, k)4=(1, 2), then B~(k) is simply 

connected. 

Proo/. This is immediate from 2.5 and the above description of E,(k). 

In  general, the fiber of ~,E~+j~B~ is ~oEj(k-i). Thus, the fiber of ~E,+2-->B ~ is 

(~p~-, 1. We consider the action of the fundamental  group of B, on the fiber of ~, E~+~-+ B,. 

LEMMA 3.3. The double covering B , ~  B, de/ines a homomorphism ~: z , (B , )~Z /2 .  Let 

be the non-trivial action o/Z/2 on H,(CP k-i-*) (as a co-ring). Then ~I(B) acts on H,(CP k-~-1) 

by voqJ. 

Proo/. Let SN~ be the normal sphere bundle to M s in M. Then SN,-+B, is a bundle 

with fiber O(n)• o(n,)S ~'k'-I (where k ' = k - i  and n ' = n - i  and S ='~'-1 is the unit sphere 

in M(n', k')). The structure group reduces to O(i)• O(k') with O(i) acting on O(u) via 

O(i)~O(i) • and with O(k') acting on M(n', k') by right multiplication. By 

definition ~iEI+~=E,+2(SNi). Et+2(SN.,) is the result of applying the construction Ei+ ~ 

fiberwise in the bundle SN,-~Bt, and 

I o(i + Ei+2(O(n  ) X o(n') sn'k'-l)  = [ ~ ) j  N 0(2) ~2k'-1 

= El2  Xo(2) S T M  

C1 )k'-l. 

From this it is clear tha t  O(i) x O(k') acts on CP ~'-~ as follows: 

(1) The subgroup SO(i) acts trivially on CP ~'-1, and the induced action of O(i)/SO(i) 

is by complex conjugation. 

(2) The action of O(k') is induced by  the linear bi-axial action on C ~'. 

Since the O(k') action is the restriction of the natural  U(k')-action and since U(k') is con- 

nected, it follows tha t  O(k') acts trivially on H,(CPk'-*). Thus, SO(i) • O(k') is the subgroup 

which acts trivially on homology. Finally, it is easy to see tha t  the two sheeted cover of 

B, associated with the action of (O(i) • (O(k'))/(SO(i) x O(k'))=Z/2 on H,(CP k'-l) is B,. 

For technical reasons, we shall sometimes make the following assumption about  a 

connected regular O(n)-manffold M. 

Hypothesis 3.4. M ~ is connected and M ~ is non-empty. 

This hypothesis is automatic  if n >~ k + 2. If  n = k + 1, it is equivalent to the condition 

tha t  Bk_ 1 is non-empty; while if n =k,  it is equivalent to having B~_~ connected and Bk_~ 

non-empty.  
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L~MMA 3.5. Suppose that M is a k-axial O(n)-mani/old with orbit space B, with n>~k, 

and that 3.4 holds. Then M is simply connected if and only if Bk is simply connected. 

Proof. In  general, if a G-space X has a connected orbit, then 7~I(X)--->~I(X/G ) is onto. 

(See page 91 in [4].) If  M~ then M has a connected orbit. Hence, if zl(M) =0, then 

~I(B) =0. But, by 2.3, B is homeomorphic to Bk; hence, B k is also simply connected. 

We consider the converse. If n ~> k + 1, then the union of the lower strata is codimension 

( n - k + l ) .  Thus by general position Zl(Mk)-+Tll(M) is onto. Mk is a fiber bundle over B k 

with fiber O(n)/O(n-  k). Since B k is simply connected, ~1 (principal orbit)-+~l(M) is onto. 

If n > k § 1, then the principal orbit is simply connected. If  n = k + 1, then the principal 

orbit can be deformed into an orbit of type O(n)/O(2) (since Bk_I~O ) and hence, its funda- 

mental group is mapped trivially into M. If n = k, consider h~ = Mk 0pMk_l. The union of 

the lower strata M - i n t  (h~), is codimension 4 in M. Hence ~l(h~)=~I(M). On the other 

hand, h4 is a principal SO(k)-bundle over E~, which, being the union of two copies of B~ 

along Bk_l, is simply connected. Hence, 7~I(SO(k))~I(M ) is onto. Since Bk_2=4=O, an 

S0(k)-orbit can be deformed into an SO(k)/SO(2)-orbit; consequently, M is simply con- 

nected. 

4. Orientations 

An orientation for a regular U(n)- or Sp(n)-manifold induces an orientation for the 

fixed point set of each isotropy group and an orientation for each stratum of the orbit 

space. The situation is slightly more complicated for regular 0(n)-actions. In  this case 

there are essentially two independent orientations. One of these can be taken as an orienta- 

tion for M and the other as an orientation for M ~ Since the action is regular, M~ 

M T~ where T r is a maximal torus for O(2r). Thus, an orientation for M determines one for 

each fixed point set of the form M ~ and an orientation for M ~ determines one for 

each fixed point set of the form M~ (M~ ~ Consequently, orientations for M 

and M ~ determine orientations for each ~M and for each E~ (where ~M=M ~ and 

E,  = ,~4/SO(i)).  

In  light of this, we define an orientation for a regular O(n)-manifold M to be an orien- 

tation for M together with an orientation for M ~ An equivariant stratified F: M->M' 

is orientation-preserving if it preserves both orientations. Similarly, an equivariant diffeo- 

morphism is called an oriented equivalence if it is orientation preserving. 

If  both M and M ~ are connected, then the regular O(n)-manifold has four possible 

orientations. Of course, it may happen that  some of these are oriented equivalent. 
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Example 4.1. Suppose that  X = M ( n ,  k) • R ~. If gEGL(k), then define an equivariant 

linear isomorphism Rg: M(n, k )~M(n ,  k) by Rg(x)=x.g. If  g is a reflection, then Rg • id 

has degree ( -  1) n on X and degree ( -  1) n-z on X ~ If  h: R ~ l t  m is an orientation re- 

versing diffeomorphism, then id • h reverses both orientations. Consequently, for m >0, 

all four orientations on X are equivalent. For m = 0  there are two distinct equivalence 

c l a s s e s .  

L ~ A  4.2. Suppose that M is an oriented k-axial O(n)-mani/old and that 3.4 holds. 

Then the involution on EI(M ) is orientation preserving i /and only i/ ( k -  i § 1) is even. 

Proo/. Let m and m' be positive integers such that  r e+d im M(n, k)=m'  +dim M. 

Proving the lemma for M is equivalent to proving it for M • R ~'. Using 3.4, we see that  

any point x E M • R m" is contained in an invariant tubular neighborhood about the orbit 

of some point y E M  ~ • R m'. But G(y) and G(y) ~ are both connected. Any such tubular 

neighborhood is equivalent to an open invariant neighborhood in M(n, k) • R ~. By the 

previous example, we can choose this equivalence to be orientation preserving. Thus, it 

suffices to prove the lemma for M(n, k)• R m or equivalently for M(n, k). There is no 

involution for i =0.  For i > 0, E~(k) is connected and the involution has fixed point set of 

codimension ( k - i  + 1). The lemma follows. 

COROLLARY 4.3. Suppose that M is an oriented k-axial O(n)-mani/old /or which 3.4 

holds. I / i = 0 ,  i = k  or i / ( k - i + l )  is even, then B~ has a canonical orientation. In all other 

cases, B~ is non-orientable (provided that Bt-1 is nonempty). 

5. Pullbacks and the construction of V 

We begin by stating a theorem of the first author concerning the existence of an 

equivariant stratified map from M to M(n, k). We then derive corollaries in this section 

and the next by constructions similar to ones of Bredon, [6], for the special case k =2. 

As usual, suppose that  O(n) acts k-axially on M with orbit space B and n >~k. The 

bundle of principal orbits Mk--->Bk has fiber O(n)/O(n-k) and structure group O(k)= 

No(n_k)/O(n- k). Let Pk~  B k denote the associated principal 0(k)-bundle. The next result 

is central to the theory of regular 0(n)-actions. 

T~z ~ o R ]~ M 5.1. I / P k  -~ B k is a trivial bundle, then there exists an equivariant strati/ied 

map F: M--->M(n, k). Moreover, equivariant strati]ied homotopy Classes o/such maps are in 

one-to-one correspondence with homotopy classes o/trivializations o/Pk. 

An outline of the proof can be found in [9]. 
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Next,  we recall the pullback construction of [6], [10] and [33]. Suppose tha t  X is a smooth 

G-manifold and tha t  C is a "local G-orbit space", ( that is, C is locally isomorphic to the 

orbit space of a smooth G-manifold). Let  h: C-~X/G be a stratified map. Then the formal 

pullback, 

h*(X) = {(c, x) e C x X[h(c) = 7~(x)}, 

is a smooth G manifold over C. If  Y is another smooth G-manifold over C and if H: Y ~ X  

is an equivariant stratified map covering h: C-+X/G, then there is a natural  equivariant 

stratified map Y-~h*(X) covering the identity on C. I t  follows easily tha t  Y-~h*(X) is an 

equivariant diffeomorphism. There/ore, the statement that there exists an equivariant strati/ied 

map H: Y ~ X  is equivalent to the statement that Y is the pullback or X via h. In  particular, 

Theorem 5.1 can be rephrased as stating tha t  if Pk is a trivial bundle, then M is equivalent 

to some pullback of the linear model M(n, k) via a stratified m a p / :  B~B(k) .  

We assume for the remainder of this section tha t  

Consider the chain 

M =/*(M(n, k)). 

o M C l  M C 2 M . . .  c n M = M  

where ~M =M ~ Then ~M =/*(M(i, k)). This last equation suggests how to extend the 

chain to the right. Thus, for s > n, 8M is defined as/*(M(s, k)). An orientation for M induces 

one for ~M. 

Next  we establish tha t  M is an equivariant boundary. 

T~EO~EM 5.2. Let M, B, and/: B-+B(k) be as above. Then M is the boundary o/ a 

k-axial O(n)-mani/old V with orbit space A. 

(1) A is homeomorphic to B • I. 

(2) V =/*(M(n, k)), where [: A-+ B(k) is a stratified map extending/. 

Proo/. Let iF: ~M-+M(i, k) be the natural  O(i)-equivariant stratified map covering/ .  

Then, for j < i ,  ~F is transverse to M(j, k) with inverse image jM and ~F I ( jM)= iF .  Con- 

sider the map F=n+IF: ~+IM-->M(n+I, k). Regarded as an 0(n)-module, M(n+l ,  k)= 

M(1, k) • M(n, k) with trivial action on the first factor. Let  p: (M(1, k ) -  {0)) • M(n, k) 

S ~-1 be projection on the first factor followed by radial projection onto the unit sphere. 

Let  y ES k 1 be a regular value of the following composition: 

n §  F , M ( n + l , k ) - M ( n , k )  P ) S  ~-~, 
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and let R+ycM(1, /c)  be the ray through y. Then F is transverse to R+y • M(n, k). Set 

V = F-I(R+y x M(n, It)). 

Since F is O(n)-equivariant, V is a smooth O(n)-manifold with boundary. We see that  

~V =nM = M. Let P denote the composition of F[ V with projection onto M(n, k). Then/g 

is clearly equivariant and stratified. Let [: A-~B(/c) be the map of orbit spaces induced 

by/~. Since /~[~V=nF, it follows that  ~[ B =[. Since n+lM={(b, z) eB  • M(n+ 1, k)[/(b) = 

tz'z}, we have 

V = {(b, s, x) e B  • R+ • M(n, k)[/(b) = s%+tx.x} 

where e = ty.y. In other words, V is defined by the pullback square 

V F [ V  R + •  

B , B(/c) 

where A(s, x)=s%+tx.x. Thus the orbit space A is defined by the following pullback 

square: 

A �9 R+ • B(k) 

1, l 
B , B(k) 

where 2(s, z)=82e+z. The fiber of 2 at zEB(Ic) is [0, e], where e= inf  {sER+[z-s~e~B(k)}. 
I t  is clear (from the picture) that  e =0, if and only ff zEOB(k). 

the line segment 

z s 2e / Z h e t  

ray  82e 

If bEB, the fiber of A--->B at b is identified with the fiber of ~ at ](b). Therefore, if b be- 

longs to the interior of B, this fiber is an interval; while, if bEaB, the fiber is a point. 

Consequently, A is homeomorphie to B • I .  
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6. Equivariant  framings 

In  this section, we relate the equivariant normal bundle of a regular O(n) manifold to 

the normal bundle of its orbit space. The f o l l o ~ l g  non-standard terminology is adopted. 

_An m-dimensional G-vector bundle over a G-space X is said to be trivial, if it is equivalent 

to X x R m, where R m has trivial G-action. Similarly, two G-vector bundles E and E '  are 

stably equivalent if E + F ~= E" § F', where F and F '  are trivial. 

As in the previous section, we assume that  M=/*(M(n,  k)), where /: B-+B(k) is 

stratified. Since B is locally modeled on B(k) and since B(k) is a subset of Euclidean space, 

it follows that  B can be embedded in some Euclidean space (i.e., i: B ~ R  p and the smooth 

structure on B is induced from the smooth structure on RP). This embedding induces a 

linear map T~(B)~T~(b)(R~). By 2.3, T B  is a locally trivial vector bundle. Hence, the 

embedding B ~ R  p induces an embedding of vector bundles T B ~ T R V ] B .  The normal 

bundle of B in R p is defined to be (TRv ] B)/TB.  

THEORE~r 6.1. Suppose that B embeds in R p with normal bundle ~(B). Then M can be 

equivariantly embedded in the representation R ~ • M(n, k) with normal bundle stably equivalent 

to xt*r(B) (as O(n)-vector bundles). 

Proo/. We have M c  B • M(n, k) c R ~ • M(n, k). Consider the map ~: B • M(n, k)--> B(k) 

defined by ~(b, x) =/(b) -ze(x). One sees that  0 is a regular value of ~, and that  M =~-1(0). 

Hence, the normal bundle of M in B • M(n, Ir being the pullback of the normal bundle 

of 0 in B(k), is trivial. 

I f  p is sufficiently large compared to the dimension of B and ~(B) is the normal bundle 

of B in R p, then v(B) is called the stable normal bundle o / B  and ~*v(B) is the stable normal 

bundle o/ M. 

COROLLARY 6.2. The stable normal bundle o/ M is (equivariantly) trivial i / and  only 

i / the stable normal bundle o / B  is trivial. Moreover, there is a natural one-to-one correspond- 

ence between equivariant [ramings o/the stable normal bundle o / M  and/raminffs o/ the stable 

normal bundle o /B .  

7. Implications of Smith Theory 

Suppose that  F: M ~ M "  is an equivariant stratified map of regular U(n)- or Sp(n)- 

manifolds. Then F induces an isomorphism on homology if and only if each of the induced 

maps between corresponding strata of the orbit spaces induces an isomorphism on homo- 

logy. The proof is an application of Smith Theory, Mayer-Vietoris sequences, and the 
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Comparison Theorem for spectral sequences. Smith Theory comes into play because the 

fixed point set of each isotropy group is equal to the fixed point set of its maximal torus. 

If M and M' are regular O(n)-manifolds, then, by using Z/2-tori, the same arguments 

show that  F induces an isomorphism on homology with Z/2 coefficients if and only if it 

induces a Z/2-homology equivalence between corresponding strata of the orbit spaces. 

The corresponding result with integer coefficients is the following. 

T~]~OR]~M 7.1. Suppose that F: M ~ M '  is a stratified map of regular O(n)-manifolds. 

Then F induces an isomorphism on integral homology if and only i / /or each integer i, i ~n(2), 

the map E~(F): E~(M)--*E~(M') induces an isomorphism on integral homology. 

We shall also need the following related result. 

T ~ O R ~ I  7.2. Suppose that F: (M, ~M)-~(M', ~M') is a stratified map o/ regular 

O(n)-manifolds and that F] ~M: ~ M ~ M '  induces an isomorphism on integral homology. F ix  

an integer i, i - n ( 2 ) .  Further suppose that ]or each ] such that ]< i  and ]~n(2) ,  the map 

E j ( M ) ~ E j ( M ' )  induces an isomorphism on homology. Then ~E~(M)-~E~(M') induces an 

isomorphism on homology. 

These two results are proved in Appendix 2 of [9].(1) 

Suppose that  g: X-~ Y is an equivariant, stratified map of smooth Z/2-manifolds (i.e. 

manifolds with involutions). Let  F c X  and F ' c  Y be the fixed point sets of the involu- 

tions; also let X = XF/(Z/2) and Y = ]~./(Z/2). If g induces an isomorphism on homology, 

then it follows from Smith Theory, that  F~I-~ ~ F' ,  ~ g_L~ ~ / ,  and X J ~  Y all induce isomor- 

phisms on Z/2-homology. Thus, if Ei(F): E~(M)--->E~(M') is a homology isomorphism, then 

both induced maps f~: B~-+B~ and f~-l: B~-I~B~-I are Z/2-homology isomorphisms. 

There is one case in which we can say more. The involution on X is a reflection, if F 

is of codimension one and disconnects X (i.e., if 2~F-~X is the trivial double cover). If 

Z/2 acts by reflections on X and Y and g: X-+ Y induces an isomorphism on integral 

homology, then it follows easily tha t  the maps g] F: F ~ F '  and ~: X-+Y also both induce 

isomorphisms on integral homology. As a corollary to this observation we have the fol- 

lowing: 

PROPOSI~ZO~ 7.3. Suppose that F: M ~ M'  is an equivariant strat i ]ied map of oriented 

k-axial O(n)-mani]olds with n >~ k and that F induces an isomorphism on integral homology. 

Then the induced map between top strata ]~: B~--* B~ is an isomorphism on integral homology. 

(1) In [9] E~ is called D~. 



CONCORDANCE CLASSES OF I~EGULAR O(n)-ACTIONS ON ~[OMOTOPY SPHERES 173 

If  k-n(2 ) ,  then the map between the next to top strata/k-l: Bz-I ~ B'~-I is also an isomorphism 

on integral homology. 

Proof. If  k=~n(2), this follows from the above observation and the fact that  Ek(F ) is 

an integral homology isomorphism. If  k ~  n(2), it follows directly from 7.1 and the fact 

that  E~+ 1 = B k. 

8. Actions on homology spheres 

As usual, M denotes a k-axial O(n)-manifold and i M a M  ~ i). The first basic ob- 

servation from Smith Theory is the following: 

PI~OPOSITION 8.1. I / M  is a Z/2-homology sphere, then so is ,M. I / M  is an integral 

homology sphere and if ( n - i )  is even, then ,M is also an integral homology sphere. 

LE~IMA 8.2. Suppose that M is a Z/2-homology sphere and that n ~  l. I / the  dimension 

of o M is (m ~ 1), then the dimension of ,M is (in + m - 1 ) ,  and in particular, M has dimension 

(kn + m - 1 ) .  (By convention the dimension of the empty set is - l . )  Conversely, if the dimen- 

sion o / M  is (kn + m - 1 ) ,  then m>~O and oM has dimension ( m - l ) .  

Proof. This follows from the well-known formula of Borel, [3], which relates the 

dimension of the fixed point set of (Z/2) n to the dimensions of the fixed sets of subgroups 

of index two. The details of the argument can be found in [9] or [15]. 

For the remainder of this section we suppose that  O(n) acts k-axially on an integral 

homology sphere Ekn+m-1 with orbit space B and that  n >~k. 

P ~ o r o s i T i o ~  8.3. With the above hypotheses B k is acyclic. I], in addition, 5", i8 simply 

connected, then B~ is contractible. 

Proof. Let us first consider H.(Bk)=H.(Bk) .  We shall use a theorem of R. Oliver [29], 

which ~sserts that  the orbit space of a compact Lie group action on an acyclic manifold 

is acyclic. There are three cases. 

Case 1. m > 0 :  :Let x be a fixed point (by 8.2, the fixed point set of O(n) on E is non- 

empty if m>0) .  ~ - { x }  is acyclic the orbit space ( E -  {x})/O(n) is an acyclic manifold 

with boundary. Hence, its top stratum is also acyclic; but this top stratum i s / ~ .  

Case 2. m=O and n > k :  Consider the restriction of the O(n)-action to O ( n - l )  and let 

C=E/O(n-1) .  Then C is a manifold with boundary. By Case 1, it is acyclic. There is a 

natural projection p: C ~ B  which sends an O(n-1)-orbi t  to its image as an 0(n)-orbit. 
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I f  yE/~,, then p-l(y)~_ V~.,/O(n-1),  where Vn,~ is the Stiefel manifold of /-frames in n- 

space. The orbit space Vn. J O ( n - 1 )  is an / -d i sk  if i < n  and an (n-1) -sphere  when i = n  

(see [9] page 78). We see tha t  p-l(y) is always a disk, and therefore, tha t  p is a homotopy 

equivalence. Thus, B (and hence, Bk) is acyclic. 

Case 3. m = 0  and n =/C: In  this case C is a compact manifold without boundary of 

dimension l ~-�89 + 1)+/C-2 .  Let  x be a fixed point of O(/c- 1) on E. Since C-{7~(x)} is 

acyclie, it follows tha t  C is a homology/-sphere.  I f  yE~B, then p- l (y)  is a disk. Since the 

inclusion i: ~ B ~ B  therefore factors through C, it follows tha t  i .  is the zero map on homo- 

logy. Poincar~ duality implies tha t  ~B must  be a homology sphere. I t s  dimension is 

�89 + 1 ) - 2 .  Therefore, by  Alexander duality, C - p - l ( a B )  has the homology of a sphere 

of dimension l - (�89 + 1) - 2) - 1 = k - 1. I f  y E Bk, then p-l(y)  ~ 0 (/c)/O(k - 1) = S ~ - ~. There- 

fore, C-p-~(~B)-+Be is an S~-l-bundle, and the total  space has non-vanishing homology 

only in dimension 0 and/C - 1. Consequently,/~k is acyclic. 

Finally, note tha t  if ~ l (E)=0 ,  then by  3.5, ~l(Bk)=0.  As a result Bk is contractible. 

COROLLARY 8.4. With E and B as above, the principal orbit bundle Pk-+ Bk is a trivial 

fiber bundle. Up to homotopy there are exactly two trivializations o /P~ (since O(k) has two 

components). 

Consequently, the results of Section 5 apply to E. In  particular, E is equivalent to a 

pullback of the linear model, and ~ is the boundary of the/c-axial O(n)-manifold V of 5.2. 

Let  A be the orbit space of V. Since A is homeomorphic to B • I ,  A is also acyclic. There- 

fore, the tangent  bundle and the stable normal bundle of A are both trivial. The results of 

Section 6 now apply. Thus, the stable normal bundle of V is trivial. This implies tha t  V 

and V ~ are orientable, so we assume, as of now, tha t  we have picked an orientation for 

V and tha t  E is oriented compatibly. We note tha t  it also follows (from obstruction theory) 

tha t  an oriented framing of the stable normal bundle of V is unique up to an equivariant 

homotopy. 

Suppose tha t  g: M-~M'  is an equivariant stratified map of oriented, regular O(n)- 

manifolds. Since g is transverse to ~M', it follows tha t  g and ig: ~M-~ ~M' have the same 

degree up to sign. Clearly, by  the way the orientations were defined, deg (~g)=deg (jg) 

when i--~(2), (see Section 4). Hence, there are two independent degrees associated to 

g: deg (g) and deg (~-lg). 

Le t  /)~+m denote the unit disk in the linear action k~n+_m; and let S ~n+m-1 be the 

unit sphere. 
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THEORE~I 8.7.  Let ~kn+m-1 be oriented in the s e re  of Section 4. 

(I) I] m>O, then there is an equivariant, strati/ied F : Z ~ + m - I - ~ S  k~§ such that 

deg ( F ) = d e g  (~_1 F) ~ 1. Such a map is unique up to equivariant, strati]ied homotopy. 

(2) Choose, once and/or all, an orientation(1)/or the linear model S ~n-1. I / re=O,  then 

there is an equivariant, strati]ied F: Y>~-I~S~ i which has positive degree on ~E /or every 

odd i. Such an F is unique up to equivariant strati/ied homotopy. 

Proo/. The argument  which was used to prove 5.1 shows tha t  for m > 0, F is determined 

up to homotopy by  (1) the homotopy class of oF: 0Z-%S, and (2) by  the choice of trivializa- 

tion for the bundle of principal orbits. (See page 79 in [9].) We choose o F to be of degree 

+ 1. Since o S =S m-t, this determines oF up to homotopy.  :For the resulting map  F: Z-+S,  

deg (~F)= +1 if i - 0 ( 2 )  and deg (~F)= 1 if i~-1(2). I f  we change the trivialization of 

the bundle of principal orbits, this changes the sign of deg (~F) for i ~ 1 (2). Hence, there is 

one choice of trivialization tha t  makes deg (~F) = + 1 for all i. 

I f  m = 0, then the fixed point set is empty  and the only choice required in defining F 

is a choice of trivialization of the bundle of principal orbits. Thus, there are exactly two 

such F: E k~ 1-~Sk~-~ up to equivariant, stratified homotopy. They differ by the auto- 

morphism of/~-tuples of vectors in 1V obtained by  sending (x~, x2, ..., xk) to ( - x 1, xz ... . .  xk). 

This map has degree ( - 1) ~ on ~E. Therefore, the two possible maps have degrees of opposite 

sign on ~E for all i odd. 

We need to know necessary and sufficient conditions for Y~ to be an homotopy sphere 

in terms of the map  E: E-+S. 

TKEOREIg 8.8. Let E: Mk~+'~-I--~S~+'~-I be an equivariant, strati]ied map o] degree 

§ 1 and let/: B-->L be the induced map o/quotient spaces. Then M k~+m-1 is a homotopy sphere 

i /and only i/ 

(1) ~l(Bk)=0, and 

(2) E~(F),: H,(E~(M); Z)-->H,(E~(S); Z) is an isomorphism/or all i, with i-=n(2). 

Proo/. This is immediate from 3.5 and 7.1. 

THEORE~ 8.9. ]Let F: Mkn-l-+S~-~ be an equivariant strati/ied mat  covering/: B---~L. 

Then M is a homotopy sphere i /and  only i/ 

(1) gl(Blr = 0, 

(2) when n is odd, EI(M ) is an integral homology sphere, and 

(3) E~(F),: H,(E~(M); Z)->H,(Ei(S); Z) is an isomorphism/or i>~2 and i=n(2) .  

(~) llecall that if m =0, there are two inequivalent orientat~on~ for ~he linear action on D kn. 
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Proo/. Again, 3.5 implies tha t  ~I(M) = 0  if and only if ~l(Bk)=0.  We show tha t  condi- 

tions (2) and (3) are equivalent to M being an integral homology sphere. 

I f  n is even and M is a homology sphere, then by  (8.1), ~M is a homology sphere and 

2M-~E~(M) is a circle bundle. I t  follows tha t  E2(M ) is a homology CP ~-1 and tha t  the 

characteristic class of the circle bundle is a generator for H2(E~(M)). Since this circle bundle 

is induced by  pulling back via E2(F): Ea(M)->E2(S), if follows tha t  E2(F ) must  be of 

degree • 1. Conversely, if condition (3) holds (and n is still assumed to be even), then 

E2(F ) is of degree • 1. Consequently, when n is even, F itself is degree _ 1. Thus, this 

case follows from the previous theorem. 

I f  n is odd, and M is an integral homology sphere, then so is EI(M ). The double 

cover EI(M)-->B 1 is induced by the map/1:BV-->L1 =RPk-~. Hence, /1 must  be of degree 

__+ 1 modulo 2. Hence, F is of odd degree. We claim tha t  if ]c is odd, then F must  actually 

be of degree • 1. Once we show this, the case k odd follows from the previous theorem. 

Consider 2M. I t  is a Z(2)-homology sphere and a circle bundle over E2(M ). Hence, E~(M) 
is a Z(a)-homology CP k-1. The normal bundle of B 1 in E2(M ) has a twisted Euler class in 

Hk-I(B1; Z-).  (Recall, tha t  since ]c-1  ~0(2), B 1 is non-orientable.) There is an involution 

on E2(M ) with B 1 as fixed point set. The G-signature theorem tells us tha t  this twisted 

Euler class must  be a generator in H k 1(B1; Z-). Since this class is induced via the map 

/1:B1 ~RP~- I ,  it follows tha t /1  is degree -}- 1 (with twisted coefficients). Hence El(F),  and 

consequently F, have degree • 1. 

This leaves the case when/c is even and n is odd. Here, the map does not necessarily 

have to be of degree ~ 1. We have shown, however, tha t  it is of odd degree. Let  h~ be M 

blown up along M1, and let ~ be S blown up along S 1. We claim tha t  condition (3) is equi- 

valent to the condition tha t  Et(_~): El(ItTl)-->E~(~ ) be an isomorphism on integral homology 

for i - n ( 2 ) .  This follows from 7.1, since E~(/~)= E~(M) for i >~ 3, and EI( /~ ) = O. 

We claim tha t  condition 2 is equivalent to the condition that  (F, _P).: H,(M, ~)--> 
H.(S, ~) is an isomorphism in dimensions less than  /on-  1. First, note tha t  we have a 

commutat ive diagram: 

/ / ,  (M1; Z-)  

H,(S1; Z-) 

Thom -~ H,+(k 1)(~-1) (M, M; Z) 
! 

Thorn =~ I (F '  
k), 

" H * + ( k - 1 ) ( n - i ) ( S ,  ~ ;  Z ) .  

Secondly, F: M I ~ S  1 is a bundle map covering/1: BilL1.  The fiber is S ~ 1 and the action 

S n-1 ~ Using these facts, of ~I(L1) on S ~-1 is via the antipodal map. (Actually, 81 = S k- 1 • z/2 ./ 

a simple calculation shows tha t  F.:H.(M1; Z )-->H.(S1; Z-)  is an isomorphism for 
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* < k + n - 2  if and only if /1:Bv-*L1 induces an isomorphism on homology in degrees 

< k - 1. This, in turn, is equivalent to B 1 being an integral homology RP k-1 and/1 being of 

odd degree. This, of course, is equivalent to E~(M) being an integral homology sphere. 

Comparing these results via the long exact sequences for (M,/~)  and (S, ~), we see that  

conditions (2) and (3) are equivalent to the fact that  F.:  H . ( M ) - ~ H . ( S )  is an isomorphism 

for * < k n -  1. This is equivalent to M being an integral homology sphere. 

COROLLARY 8.10. F: Y,z=-I~s~n-1 is always of odd degree on each stratum. I /  k is 

odd or i / n  is even, then the degree is ~ l. 

9. The concordance groups 

De/inition 9.1. The oriented k-axial 0(n)-manifolds M and M'  (of the same dimension) 

are concordant if there is an oriented k-axial O(n)-manifold W simple homotopy equivalent 

to M • 1(1) with the restriction of the action to ~ W being oriented equivalent to M'  H --M. 

(Here - -M means that  both the orientation of M and M ~ have been reversed.) 

If  M and M'  have nonempty fixed point sets and if dim M =dim M', then one defines 

the equivariant connected sum, M @ M ' ,  by taking connected sum at two fixed points. The 

result is well-defined up to oriented equivalence. 

We now come to our main object of study. Let 01(k, n, m) denote the set of concordance 

classes of oriented k-axial O(n)-actions on homotopy spheres of dimension ( k n + m - 1 ) .  

More generally, if Gd(n) stands for O(n), U(n) or Sp(n) as d = 1, 2 or 4, then define Oa(k, n, m) 

to be the set of concordance classes of oriented k-axial Ga(n)-actions on homotopy spheres 

or dimension (dkn + m - 1). 

THEOREM 9.2. For m >~ 1, the set On(k, n, m) is an abelian group under connected sum. 

A n  action on a homotopy sphere E ~k~+m-1 represents the zero element o/this group i /and  only 

i/ it extends to a k-axial action on a contractible mani/old. The inverse o/[E] is [ -  E]. 

The standard arguments can be used to prove this. (See for example, [22] and [4] 

page 339.) 

For n ~> k and d =2  or 4, the groups Oh(k, n, m) were calculated in [11]. The remainder 

of this paper is devoted to calculating 01(k, n, m) for n>~k, by a similar program, which 

we outline below. 

The calculations for m ~ 0 ,  4 and k ~ 2  are made in Sections 11 and 12. The calculations 

for k =2  are in Section 13; while the results for m = 0  and m = 4  appear in Section 14. 

(1) Of course, if dim W ~ 6, then W is diffeomorphic to M • I. 
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We suppose for the remainder of this section that m>0. Let ~kn+m-1 represent an 

element in | n, m) and let F: (F kn+m, Y, kn+m-1)-+(D~n+m, S k~+m-1) be the equivariant 

stratified map with deg (F)=deg (n_l F) = 1 constructed in Theorem 8.7. We seek to alter 

V by an equivariant normal bordism relative to _FI]~ to make it contractible. 

Let  A, B, K, and L denote the orbit spaces of V, ~,  D, and S, respectively, and let 

/: (M, B) -~(K,L)  be the map induced by F. For each i, 0~<i~/c, let ]4: (Ai, B4)-->(K4, L~) 

be the induced map of closed strata. We note t ha t /~  is naturally covered by a map of 

stable normal bundles, since: 

(1) the map of equivariant stable normal bundles ~(V)-+~(D) induces a bundle map 

~(A)-~(K) ,  and 

(2) the normal bundle of A~ in A is mapped by  a bundle map  to the normal bundle 

of K~ in K. 

Hence, since/4 is also of degree one, it is a normal map. Similarly, we see tha t  for each 

i, 0~<i~<]c+l, the induced map of double branched covers E~(/):(Ei(A),E~(B))-+ 

(Ei(K), E~(L)) is a Z/2-equivariant stratified normal map. (Recall tha t  a normal map 

/: M - > N  is a map of pairs (M, ~M)-~(N, ~N) which is covered by a linear bundle map 

T: ~M--~N where ~M is the stable normal bundle o~ M. For us normal maps will always be 

of degree 1 unless otherwise specified.) 

The next result allows us to translate our problem of doing 0(n)-equivariant surgery 

to a sequence of ordinary surgery problems. 

T~EOREM 9.3. Suppose F: (V kn+m, Z ~+'~ 1)--> (nkn+m, S kn+m-1) is chosensothat /: B ~ L  

is o~ degree one on each stratum. (This can always be done i / m  > 0.) Then 

(1) (/Jl Bj),: H,(Bj;  Z/2)-->H,(Lj; Z/2) is an isomorphism/or all ~, 0 <<,~ <~]c, 

(2) (Ej(/) I Ej(B)),:  H,(Ej(B);  Z)-->H,(Ej(L); Z) is an isomorphism/or all ~, 0 ~ ~ Ic + 1, 

such that i - n ( 2 ) ,  and 

(3) z~l(Bk) =0.  

Moreover, analogous conditions hold/or the extension/: A-> K i /and  only i/ the lc-axial O(n)- 

mani/old V ~+ '~ is contractible, 

Proo/. The map F I E: Ek~+~-l-~S k~+m-i is a homotopy equivalence. Thus, (2)follows 

from Theorem 7.1. Also, (1) is implied by  (2). Condition (3) follows from Lemma 3.5. The 

statement  about the extension/:  A - ~ K  follows in a similar manner. 

Our program is to successively t ry  to do surgery on each/4: A 4-~ K~ relative to/4]aA~ 

to achieve the conditions of 9.3. I f  we succeed, then we will have constructed a new orbit 
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space A together with a stratified map [: (2/, B)--->(K, L) so tha t  ]] B=/]  B and so that  

17 =]*(D) is contractible. Initially, i t  will appear tha t  surgery obstructions are encountered 

at  each stratum; however, we will then show tha t  all these obstructions either vanish or 

are indeterminant (tied to choices made in dealing with the lower strata) except for those 

encountered on the bot tom two strata.  

First we analyze the fundamental  groups and orientations involved. 

PROPOSITION 9.4. ~r:(K0) =~:(Kk) =0.  ~:(Ki) = Z/2, provided 0 <i < k and (k, i )#(2,  1); 

~(~K~) =~h(K~) i / i ~ 2  or i/m>~3. 

This results immediately from 2.5 and 2.6. From 4.3 we have the following: 

PROPOSITION 9.5. For 0 < i < k, A ~ and K~ are ( -  1)~-~+ l-orientable. For i = 0  or i =k,  

A~ and K~ are orientable. 

10. The relevant  surgery groups 

In  this section we freely use the notation and results of [34]. Let R be a subring of Q, 

a group, and w: z-+Z/2 a homomorphism. Recall tha t  the surgery group L2s(R[z], w) 

is a Grothendieck group of triples (G, 2,/~), called hermitian forms. Here G is a free R[~]- 

module, 2 is a non-singular ( -  1)S-hermitian-symmetrie pairing and # is a quadratic refine- 

ment  of 4. In  this group hyperbolic forms are set equal to zero, [34] page 45. The surgery 

group L~s+:(R[~], w) is generally defined in terms of automorphisms of forms, but  for 

finite groups z there is a description in terms of triples (T, l, q), called linking forms. T is 

a finite R[uJ-module with short flee resolution, 1 is a non-singular (-1)S-hermitian-sym- 

metric linking form, and q is a quadratic refinement, see [28] pages 32 and 33 and [30]. 

A linking form is resolvable, if it is induced by  reducing a hermitian form (F, ~,/~) over 

R[z] which is non-singular over Q[~], see [28] page 42. In  the Grothendieck group 

L~s+:(R[7~], w) resolvable linking forms are set equal to zero. 

I f  we have a normal map ]: (M m, ~M)-+(N m, ~N), then we denote its kernel groups 

by K,(/; R[~rl(N)] ) or by  K,(M;/~[z:(N)]). I f / 1 0 M  is an R[~:(N)]-homology isomorphism, 

then the kernel groups satisfy Poineard duality. 

I f  m = 2s, then after we do surgery below the middle dimension, we can assume tha t  

K,(M; R[z : (N)] )=0  for i<s  and tha t  Ks(M; R[~I(N)]) is free. Geometric intersection 

produces a non-singular pairing 2; the bundle map covering / produces immersed cycles 
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in the  middle dimension with self-intersections which give the quadratic refinement/~,  

see [34] page 45-46. This triple determines the  surgery obstruct ion (~(/)EL~s(R[~I(N)], 

wl(N)). If  m = 2s + 1 and ~ is finite, then  we can assume t h a t  K~(M; R[~I(N)] ) = 0  for i < s  

and  Ks(M; Q[~i(N)])=0.  Thus  Ks(M; R[~I(N)]) is finite and has a short  free resolution. 

There is a geometrically defined linking pairing and self-linking pairing (see [28] pages 

32-40) which determines a(])ELz~+I(R[~I(2V)], wl(N)). 

I f  a ( / ) = 0  and m >~5, then we can perform fur ther  surgery to construct  a normal  

bordism from / to a normal  map  which induces an  isomorphism on R[s~l(N)]-homology.(1) 

More specifically, if m =2s,  and ]: M'~--->N m is highly connected with H a subkernel ([34], 

page 45) for the intersection form of [, then there is a normal  bordism G: W ~ N  • I to  an 

R[~l(N)]-homology equivalence with G highly connected and K~+I(G,/; R[Tq(N)] )=H.  If  

m =2s  + 1 , / :  M m ~ N  m is highly connected, and (F, X,/~) is a resolution of the linking form 

o f / ,  then there is a normal  bordism G: W ~ N  x I from / to  an  R[~l(N)]-homology equiv- 

alence which realizes the  resolution. This means tha t  G is highly connected and tha t  the 

geometric intersection and self-intersection forms on K~+i(G; R[zl(N)])  are identified with 

2 and/~, respectively. 

This completes our general discussion of the Wall  groups. We tu rn  now to the ex- 

plicit computat ions  which we need in order to do stratified surgery on regular O(n)-mani- 

folds. I t  is easily seen t h a t  symmetr ic  forms over R ~  Q have at most  one quadrat ic  re- 

finement.  Such a refinement will exist if and only if ~(x, x) E R is always divisible by  2 in 

R. I n  this case the unique refinement, /~, is given by  /~(x)=�89 x). Thus, Lo(R ) is a 

Grothendieck group of symmetric,  non-singular, even matrices over R. I f  R = Z ,  then  

such matrices, modulo hyperbolic ones, are classified by  one eighth their index. Hence, 

induces an isomorphism L0(Z ) ~ Z. Denote by  W the group of such matrices over Z(2) 

modulo hyperbolic ones. There is a short  exact  sequence 0-~ Z ~ W--> T-+0 where 

T= 5 z/4| ~ (z/2| 
p prime p prime 
p~3(4) p-=-l(4) 

See [26]. 

As we have seen in Corollary 2.6, the fundamenta l  group of a s t ra tum in the s tandard  

linear model is either O or Z/2. We need to  do surgery with either Z(2) or Z coefficients. 

The next  three theorems give the calculations of the Wall  groups in these cases. 

(1) This is also true for m ~< 3 provided that the range is simply connected. 
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0 z i -0 (4)  (a) L~(Z) = Z i=- 1(4) 

/2 i~2(4)  

i~3(4) .  

! i-0(4) 
(b) L~(Z(2)) = i ~ 1(4) 

/2 i---2(4) 
i~3(4).  

The calculations of L~(Z) were made in [22]. The ones for Li(Z(2)) are completely 

analogous. In both cases the isomorphism from Z2 to Z/2 is the Arf invariant of the as- 

sociated quadratic form over Z/2, [1]. This obstruction is called the Arf-Kervaire invariant, 

In the case zr=Z/2 we denote the two possible maps w: Z/2~Z/2 by + and - 

( + denotes the trivial map). The non-trivial element in Z/2 is denoted ~. 

THEOREM 10.2. 
/ Z ( ~ Z  i-~0(4) 

i--1(4) 
(a) L,(Z[Z/2], +)  = | 

Z/2 i 2(4) 
! 
[ Z/2 i -3 (4 ) .  

(b) L,(Z[Z/2],_)={Z/2 i - 0 ( 2 )  
i--1(2). 

These groups are calculated in [34] page 162. Both L2z(Z[Z/2], - )  and L4I+2(Z[Z/2], +) 
are detected by the Arf-Kervaire invariant. The isomorphism L41+a(Z[Z/2], + ) H Z/2 is a 

codimension 1 Kervaire invariant. I f / :  M4I+8~N4Z+a is a normal map with 37 orientable 

and z l (N)=Z/2 ,  then dual to the generator of HI(/V; Z/2) is a submanifold X4Z+2cN. If/ 
is transverse to X and if/-I(~X)--->~X induces an isomorphism on Z/2-homology, then the 

surgery obstruction of / is equal to the Kervaire invariant of ]](/-1X). 
The isomorphism L0(Z[Z/2], + ) - + Z |  sends a form represented by the matrix 

(~j+fi~j~) to 

If ()~j) is an even, non-singular symmetric matrix over Z(~), then its reduction modulo 2 
is the quadratic form over Z/2 whose bilinear form is given by (2~j)mod 2 and whose 

quadratic refinement is defined by 

tt([x]) = {�89 tx" (~ij)" x)} mod 2. 
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(Since (l~j) is even, it follows that  ~x.).~j.x is even.) Let  c: W-*Z/2 be the map which 

assigns to (t~j) the Arf invariant of its reduction modulo 2. An elegantly simple argument 

of Levine, [24], shows that  e(t~j) is 0 if det ()~j)--___ 1 mod 8Z(2) and is 1 if det (lij)--- 

•  rood 8Z(2). 

THeOReM 10.3 

(a) i 
W |  

0 
L~(Z(2)[Z/2], + ) =  Z/2 

0 

i~0(4)  

i - 1 ( 4 )  

/-2(4) 
i--3(4). 

(b) Li(Z(~)[Z/2],_)=[Z/2 i-~0(2) 
i~1(2).  

(Here W| W =kernel  [(e +c): W| W-*Z/2].) 

Proo]. The calculations in [34] for L,(Z[Z/2], - )  are valid as well for L~(Z(2)[Z/2], - ) .  

Possibly the simplest proof of (a) is to take advantage of the fact tha t  the projective class 

group and the Whitehead group of Z(2)[Z/2] are 0. Under these hypotheses the fibered 

square 
r § 

Z(~)[Z/2] , Z(2) 

la+b~l-->a+b I 

r- ,~ l a2b 

Z(2)  , Z/2 

leads to a long exact sequence of Wall groups (see [2], page 27): 

(10.4) 
r++r - 

. . . .  Li+I(Z/2)-~ L~(Z(2)[Z/2]) , L~(Z(~)) (~ L~(Z(2)) ->... 

From (10.4) the computations follow easily. Note that  the map 

O-> Lo(Z<2)[Z/2], +) -+ W | W 

sends (~fj +fl~JT) to ((aqj +fl~j), (aqj-flij)). 

Sometimes the forms that  occur in doing surgery on the next  to the top stratum of a 

regular O(n)-manifold are intermediate between Z[Z/2]-forms and Z(2)[Z/2]-forms. The 

reason is tha t  we have a normal map which, when restricted to the boundary, is an iso- 

morphism on Z and Z(2)[Z/2] homology and we wish to do surgery to make the map on 

the interior an isomorphism on Z and Z(e)[Z/2] homology. The fundamental group is Z/2 
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and the manifolds are oriented. Before calculating the relevant surgery obstruction groups 

we need a lemma. 

LEMMA 10.5. Let T be a Z[Z/2]-module o/odd order. (It has a short/ree resolution.) I /  

( T, l, q) is a non-singular symmetric linking/orm over Z[Z/2], then its class in La(Z[Z/2], +) 

is trivial i] and only i] the order o / T  is o/the/orm 8s• 1.(1) 

Proo/. Take a degree one normal map /: X4k+s~Y *k+3 with K,(/; Z[Z/2])=0 for 

i <2k + 1, and with K~k+l(/; Z[Z/2]) equal to T. I f  the surgery obstruction of / is trivial, 

then there is a normal map F: W 4~+4-~ Y • I from / to a homotopy equivalence. Consider 

~: W-> Y• I .  I t  is a normal map between spaces with free involutions, and is a Z(2)- 

equivalence on the boundary. Consider the non-equivariant surgery obstruction v(/~) in 

L0(Z(~)). This element has zero Arf-Kervaire invariant (since it is twice the Arf-Kervaire 

invariant of the normal map on the quotient spaces). Hence, Levines's result says that,  

after making P highly connected, the determinant  of the matr ix  for the intersection pairing 

on K~+2(_~ ) is +_ 1 modulo 8. This means tha t  the order of Kpk+I(~P ) is • 1 modulo 8, 

i.e., the order of K2k+I(D is •  modulo 8. This proves tha t  if (T, l, q) represents 0 in 

La(Z[Z/2], + ), then the order of T is • 1 modulo 8. From this, the result follows easily. 

Let  us return now to the calculation of the surgery group associated with the next to 

the top stratum. 

T~WOREM 10.6. Let/: (M m, ~ M ) ~ ( N  'n, ~N m) be a normal map with ~ I ( N ) = Z / 2  and 1V 

orientable. Suppose that /I~M is a Z and Z(2)[Z/2] homology isomorphism. Then the obstruc- 

tion to doing surgery to make / a Z and Z(2)[Z/2] homology isomorphism lies in a group 

L*(Z(2)[Z/2], +).  These groups are given by the/ollowing table: 

Z | W=Lo(Z(2)[Z/2], +) i -0 (4 )  

0 i-=1(4) 
L*(Z(2)[Z/2], + ) =  

Z/2 (The Arf-Kervaire invariant) i =- 2(4) 

0 i =-- 3(4). 

Proo/. K~(~M; Z[Z/2]) is, as an abelian group, odd torsion. Consequently, it decom- 

poses as K~-(~M)OK;(OM) where 7EZ/2 acts by  multiplication by _ 1 on K~(~M). Since 

K~(~M; Z) = 0, K[ (~M) = O. 

Consider now the ease m =2l § 1. Surgery below the middle dimension allows us to 

assume tha t  K~{M; Z[Z/2]) vanishes for i<l .  Since L2I+I(Z(2)[Z/2], + ) = 0 ,  we can, in addi- 

tion, assume tha t  Kl(M; Z[Z/2]) is odd torsion, and hence, equal to K~-|  All higher 

(1) This lemma gives a different proof of the fact that there is no eodimension one Kervaire in- 
variant in La(Z(2)[Z]2], + ). 
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kernel modules for / are of the form K~. We wish to do surgery to kill K +. The linking 

form on K~ ~ K [  breaks up into the orthogonal sum of a pairing on K~ and one on K [ .  

Since K+(~M) = 0  for all i ~ l  it follows tha t  the linking form on Kz + is non-singular. Hence, 

(K~ lIK~-,gIK~- ) determines an element in L2~§ §  Assume, for the moment ,  

tha t  this element is trivial. Let  (F, ~, #) be a resolution over Z[Z/2]. We use this resolution 

to construct a normM bordism G: W ~ N  • I with one end being/ :  M ~ N  and with 

0; i=t=l+ l 
(1) K,(W,M;Z[Z/2])= F*; i = l §  

(2) Kz+l(W)/(Im Kz+I(M)) ~ KI+I(W, M) identified with ad (~). 

L e t / ' :  M'--->N be the other end of this normal bordism. From the kernel sequences 

for (W, M) and (W, M')  we see that  

=fK~(/; z[z/2]) i~ l  
K~(/'; Z[Z/2]) [K~(/) i= l .  

Thus, ]' induces an isomorphism on Z and Z(2)[Z/2] homology. 

The above argument was predicated on the fact tha t  (K/, liKe, qIK~) determined 

the trivial element in L2z+I(Z[Z/2], +).  I f  it does not, then 21 + 1 ~ 3(4). Form the normal 

bordism M • I @ K ~ N  • I where K is the plumbing of two copies of the tangent bundle 

of S l+1. Since Hz(~K)~-Z/3, this has the effect of adding a copy of a non-trivial linking 

form on Z/3 to K[ .  By the previous lemma this changes the surgery obstruction of 

(K2, 1] K2, q lK~) to zero. This completes the proof tha t  L~z+~(Z(2)[Z/2], +)  is zero. 

We turn now to L~(Z(e)[Z/2], § ). Our first aim is to show tha t  if ~(/) eL2~(Z(~[Z/2 ], + ) 

is zero, then we can do surgery to kill simultaneously Ks(f; Z(2)[Z/2]) and K~(/; Z). Showing 

this will show tha t  L~(Z(~)[Z/2], + )->L2~(Z(.z)[Z/2], + ) is an injection. 

We can assume tha t  Kl(/; Z[Z/2]) = 0  for i<l. The module Ks(l; Z[Z/2]) may  have an 

odd torsion submodule, T. I f  so, the action of ~ on T is multiplication by - 1. The module 

Ks(f; Z[Z/2])/T is a free Z[Z/2]-module and has a (-1)Z-hermitian-symmetric form (~,/~) 

on it. I t  is embedded as a lattice in Ks(l; Z(2)[Z/2]) with (~, #) being non-singular over 

Z(2)[Z/2]. Suppose tha t  over Z(2)[Z/2] the form is hyperbolic. Let  

~0 
(H| e,/~) ~ (Kz(/; Z(2)[Z/2J), ~,/~) 

be an isomorphism. (Here H and H* are dual under e and #IH=O.) The map ~ induces a 

splitting of K~(f; Z[Z/2])/T-~Kz(/)/T into 

(q~(H) rl (Ks(/)/T)} | (q~(H*) (I (K~(/)/T)}. 



CO:NCOI~DA~C:E CLASSES OF R:EGULAI~ O(n)-ACTIO:NS Ol'I I:IOMOTO:PY S:P:I-IEI~]~S 185 

The matrix for 2 in this splitting is of the form 

. 0 (%))  

( - 1)~ (%~) 0 

where (~lj) is a Z[Z/2].matrix which is non-singular ove r  Z(2)[Z/2]. In addition, since 

K~(/]~M; Z)=0,  the integral matrix (r+(~r is non-singular. As a result, doing surgery 

on a Z[Z/2]-basis for ~(H) fi (K~(/)/T) produces the required normal map. 

This proves that  L~I(Z(s)[Z/2], +)  injects into Lzl(Z(2)[Z/2], +). One sees easily that  

this inclusion is onto for l=1(2), and has image Z |  for/-:0(2).  

Let R-  + be the R[Z/2]-module structure on R where ~ acts by _ 1. For any R[Z/2]- 

module C, define C -+ to be CQREz/21R ~" and define r• C->C ~ to be the obvious reduction. 

If A: M • is a bilinear form, then let AS: M • • 1 7 7  be defined by A~(r• 

ri(m2)) =r*-(A(ml, m2)). Also, let rZ: Lo(R[Z/2])-+Lo(R ) be the induced map. 

If M is a Q[Z/2]-module and A: M • M-+ Q[Z/2] is a bflinear form, then there is natur- 

ally associated a form over {~, 2e: M • M-~ Q defined by taking 2e(X, y) to be the coefficient 

of the identity of ~(x, y). Let E • be the (+  1)-eigenspace for the action of ~ on M. Then 

M = E+QE - is an orthogonal decomposition for Xe. Furthermore, E • is canonically iso- 

morphic to M • and under this identification ~el E• becomes �89 ~. 

PROPOSITIO~T 10.7. Let /: (M 4m, ~M)-+(N 4m, ~N) be a normal map. Suppose that 

zel(N ) =Z/2, that 1V is orientable, and that /I~M is an R[Z/2]-homology isomorphism. Let 

f: (~r, ~21I)-+ (3~, a3~) be the double cover o] ], and let ~:(f) denote its (non-equivariant) surgery 

obstruction. Then z(D =(r+(/) +~_(/) in Lo(R), where (~+(]) =r~((~(/)). 

Proo/. Suppose that  / is highly connected and that  (K, 2) is its middle dimensional 

intersection form over R[Z/2]. The middle dimensional form for f (over/~) is then (K, 2e)- 

Hence, over Q, the form for f is isomorphic to (K+| Q, �89174 Q, �89 Since the 

map Lo(R )-+Lo(Q) defined by sending (G, ~v) to (G | Q, �89 is an injection, it follows that  

in Lo(R ) the form (K, 2.) is equivalent to (K +, ~t +) �9 (K-, ~t-). 

11. Statement of the main  theorem 

The main theorem concerns the calculation of 01(k, n, m). Since the case m =0 is dif- 

ferent in several ways, we postpone discussion of it until Section 14. Here, we make the 

foUowing assumption: 

13- 792902 Acta mathematica 144. Imprim6 1r 8 Septembre 1980 
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Assumpt ion  11.1. m >0.  

For  Sections 11 and 12, F: (V k~+m, ~.kn+m-1)'-~(D~n+m, S kn+m-1) is as in 9.3. The surgery 

obstruction a(~F) lies in Kk~+m(Z) for i--=n(2) and in Lk~+m(Z(2)) for i ~ n(2). Set a~(E) =a(~F). 

P ~ o P O S i T i O ~  11.2. The invariant (~(F,) depends only on the concordance class o] 

E k~+m-x. Moreover, a~(E) is additive with respect to equivariant connected sum. Thus , /o r  each 

integer i such that i-=n(2) there is a homomorphism 

O't: Ol(k, n, m) -~/k~+m(Z). 

For each integer i such that i ~ n(2) there is a homomorphism 

a~: O~(k, n, m)->Lki+m(Z 2)). 

Proo/. Let W be a concordance from Z to Z' ;  let V' be the framed manifold bounded 

by  Z' ;  let E' :  ( - V', - Z ' ) - + ( D ,  S) be the equivariant stratified normal map of Theorem 

8.7. By Theorems 5.1 and 6.2, we can find an equivariant stratified normal map F": 

W ~ S  x I .  Since F[  Z and F ' [ ( - Z ' )  are unique up to an equivariant stratified homotopy, 

we may  assume tha t  F " [ ~ W  = F[ Z ]_IF'[ ( - ~,'). Notice tha t  S kn+m = D kn+ m U (S k~+~-~ • I )  O 

D k~+~. Let  yk~+m = V U W U ( - V') and let G = F U F" U F':  Y~'+m-->Sk~+". By Smith Theory, 

F"[~W is a homology equivalence with coefficients Z (for i~-n(2)) or Z(~) (for i~n(2)) ;  

hence, a(~F")=0. Using Theorem 5.2 we see tha t  T k~+m bounds a framed manifold X k~+~-I 

and tha t  G extends to an equivariant stratified normal map from X k~+m-~ to D ~+~-~. 

Consequently, 
0 = a(tG) 

= a(~F) +a(~F") -a(~F') 

= ~(~F) -a(~F' ) .  

This proves tha t  a~ depends only on the concordance class of Z. I t  is clearly additive with 

respect to connected sum. 

The following questions arises: What  values can be assumed by the {a,}? This is 

answered by the following result. 

PROPOSITION 11.3. I / k  is odd, then ai =0.  I / k  is even, then a, =a,+2 and c(a~+l(Z)) = 

c(adZ)),  where c s tands/or  the Ar/ .Kervaire  invariant. 

(Note tha t  if k = 0(2), then dim (, V) ~ dim (,+z V) (4).) 

To deduce Proposition 11.3 one needs the fact tha t  **2V has a semi-free Sl-action 

with fixed point set ~V, and the fact tha t  ,+iV has a Z/2-action with fixed point set iV. 
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The former is obtained by restricting the action of O(i)• S0(2)c0( i+2)  to the second 

factor, and the latter is obtained by restricting the action of O(i)• 0(1)~ 0 ( i+1)  to the 

second factor. The proposition now follows immediately from 15.4 and 15.5. 

Le~ R + = Z  and R_=Z(2). Consider (6a, qi): Ol( k, n, m)~L,~(Re)| where 

s = ( - 1 )  n. We see, by 11.3, tha t  the image of (%, ai) is contained in the kernel of 

c+c:L,~(R~)~Lk+~(R~)~Z[2. (Recall tha t  c:L2s(R~)~Z[2 is the Arf invariant of the 

rood 2 reduction.) 

The main result of this paper is the following. 

T ~ o n E M  11.4. 

(I) iT/k is odd, mg:4 and (k, m):~(3, 1), then 01(k, n, m) =0. 

(II) I / k  is even, then 

~)~(k, n, m) (%' a~)L,n(R:)@L,~+~(R_r e o + c ~  Z/2 

is exact. (~=(--1)n.) I] k ~ 2  and mg=4, then (qo, (~i) is in]ective. 

The case (II) above leads to a calculation of most of the groups @x(k, n, m) for k even. 

T ~ E O R ~  11.5. Suppose that re:C4, that k-0(2) ,  and that k:#2. 

(1) I [  k -0(4) ,  then 

(2) I / k - 2 ( 4 ) ,  then 

Z + W ;  m---0(4) 

01(/c, n, m )=  Z/2; m~2(4)  

0; m~1(2).  

t 
Z; 

Or(k, n, m )=  W; 

[0;  

m + 2n ~ 0(4) 

m + 2n ~ 2(4) 

m + 2 n ~ l ( 2 ) .  

(Recall that W=L0(Z(2)) and W is the kernel o/ c: W=+Z/2-+0.) 

12. Stratified surgery 

Suppose, as before, tha t  F: (V~n+m, Zk~+m-1)-+(D~+'~,S ~+m-1) is an equivariant 

stratified normal map, and tha t / :  (A, B)-+(K, L) is the map of orbit spaces induced by F.  

For each i, O~i<~k, tet/~: (A~, B~)--+(K~,LI) be the induced map of closed strata, and let 

[~: (E~(A), E~(B))->(E,(K), E~(L)) be the induced map of double branched covers. 

In this section we shall work with the / , :  A~-+K, relative to B-+L. If we construct a 

normal bordism ~p: Z,-+K~ • I f r o m / ,  to g,: C(-+Kt, relative to ~A,, then we can extend 

this to a stratified normal bordism h: (G, B x I ) - ~ ( K • 2 1 5  where G=A• 
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with ~ the cone bundle neighborhood of K s • I in K. I f  we pull back the s tandard  linear 

model over K x I by  h, then  we have an equivar iant  stratified normal  bordism (W, F, • I ) -~ 

(D k~+'* • I ,  S k~+m x I). Hence,  we can use a normal  bordism of It: At-+Kt to  construct  one 

for F :  V-+D. Thus,  as we do surgery on the  Is, we are actually doing equivariant  surgery 

on V. Our goal is to do this in such a way  tha t  V becomes contractible, or more precisely, 

to  unders tand the obstructions to mal(ing V contractible. All these obstructions are, in 

the  end, described in terms of ordinary surgery obstructions for the  f~, as one would be 

led to  expect by  9.3. 

Here, we shall prove tha t  almost  all the obstructions to completing surgery on the f~ 

to achieve the conditions of 9.3 either vanish automat ical ly  or arc indeterminant  (i.e., can 

be made to vanish by  an appropriate  choice of surgery on the lower strata). The only ones 

which are meaningful and non-zero occur in the case when k is even and i = 0 or 1. These 

obstructions will be identified with ao and  a r  A similar a rgument  will show t h a t  we can 

construct  a normal  map F :  (V, F~)-~(D, S) realizing any  possible value of (~0, al). This 

will prove Theorems 11.4 and 11.5. 

Throughout  this section we shall assume tha t  k >2 ,  t ha t  m > 0 and tha t  m ~ 4 .  I n  the 

case of mono-axial  actions (b = 1), the manifold V constructed in 5.2 is already contractible; 

hence, 01(1, n, m) =0.  The investigation of the  other  cases is postponed until  the  next  two 

sections. 

Under  the above hypothesis  no s t ra tum At can have dimension 4, and the only pos- 

sible s t ra tum with dimension < 4  is A 0. Hence, if, when we are considering ]~: As->K s, the  

high dimensional obstruct ion vanishes, we will be able to  do surgery on Is to  make  it an  

equivalence. 

Assume by  induct ion tha t  we have completed surgery th rough  level i -  1, i.e., assume 

that :  

(I) (/j),: H , (A j ;  Z(2)[~])-~H,(K~; Z(2)[~]) is an isomorphism for all ] such tha t  0 < ]  < i ,  

where z =~I(Kj) .  

(II) ([j),: H,(Ej(A);  Z ) ~ H , ( E j ( K ) ;  Z) is an isomorphism for all ?', 0 4 ]  < i ,  such t h a t  

j - -n(2) .  

We consider the problem of doing surgery on the  normal  map  /t: (At, ~At)-~(K,,  ~Kt). 

There are two cases depending on whether  ( n - i )  is even or odd. 

Case 1. i ~ n(2). 

L ~ M A  12.1. Suppose that the inductive hypotheses (I) and (II) hold through level i -  1 

and that i ~ n(2). Let ~ =~I(K~). Then 
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(1) /~]~A ~: ~A~->~Kt induces an isomorphism on Z(~)[z]-homology. 

(2) I / i  = k or i = Ic-  1, then/~I~A~ also induces an isomorphism on integral homology. 

Proo/. By Theorem 7.2, the map aE~+I(A)-+~E,+I(K ) induces an isomorphism on 

integral homology. Since the m a p / , I ~ A ,  is the induced map of fixed point sets of the 

involutions on ~E,(A) and aE,(K), it follows that / , ]~A~ induces an isomorphism on Z/2- 

homology or, equivalently, on Z(2)-homology. By considering the Gysin sequence of the 

double cover ~.~-+~A,, we see t h a t / , ] ~ ,  is also a Z/2-homology isomorphism. This means 

tha t  / , I3A, induces an isomorphism on Z(2)[~]-homology. This proves (1). Statement  (2) 

is a direct consequence of the proof of 7.3. 

When i $ n(2), we t ry  to do surgery on / ,  (relative to / , I~A,)  to a homology equivalence 

with coefficients dictated by  the above lemma. I f  i ~<k-2,  the obstruction to completing 

this surgery lies in a Wall group of the form Ls(Z(2)[z], _ ) ,  where 7~ is either Z/2 or 0, 

s = d i m  A,, and the __ refers to the orientabflity of K,. I f  i=k ,  the obstruction lies in the 

ordinary simply connected surgery group, Ls(Z). I f  i = k - 1 ,  then the obstruction to com- 

pleting surgery to a map which is simultaneously a homology equivalence with coefficients 

Z and Z(2)[~], lies in the group L*(Z(2)[~], ___ ) which was calculated in 10.6. 

Case 2. i =n(2). We assume tha t  surgery has been done so tha t  conditions (I) and (II) 

hold. This implies tha t  fI~E~(A): ~E~(A)-->~Ei(K) induces an isomorphism on integral 

homology, and tha t  /~-1: A~-v+K~-I is a Z(e)[~]-equivalence. We want  to arrange, by  

doing surgery on/~: A~-->K, relative to/~I~A~, tha t  it: E~(A)~E~(K) is an integral equiva- 

lence. Pu t  another way, we want to identify the obstruction to doing Z/2-equivariant 

surgery on [~: E~(A)~ E~(K) relative to a E~(A) U A4_1. (If i = 0, then there is no involution 

and Eo(K ) = K  o is simply connected. Thus, in this case, the surgery obstruction lies in 

Lm(Z).) I f  the involutions on E~(A) and E~(K) were fixed point free or i f /~-1:A~-v+Ki-1 

were a homotopy equivalence, then this would be an ordinary surgery problem with ob- 

struction in L,(Z[Z/2],  ___ ). We claim tha t  if/~-1: A~-v+K~-I is highly connected (with 

one extra condition if i = k - 1 ) ,  then the obstruction for doing Z/2-equivariant surgery 

on [, still 5es in L.(Z[Z/2],  --b ). To prove this we need a lemma. 

L~,MMA 12.2. Suppose that F: (V, Z)-~(D, S) satis/ies conditions (I) and ( I I ) / o r  ] < i, 

that i-=n(2), and that i<  k. Let r be the dimension o /A l_  1. 

(a) We can do surgery o n  / i-i  relative to ~A~_ 1 so that /~-1 satislies condition (I) and 

also so that K,(/i-1; Z[Z/2]) is zero/or * <~ [ ( r -3) /2] .  
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(b) I / / = k - l ,  then A~_ 1 is non-orientable. I /  dim Ai_l=2S , then we can assume that 

part (a) is satis/ied, and that Ks_I(A~_I; Z - ) : 0 .  

Proo/. The normal method of doing surgery on ],-1 is to first make K,(/,_I; Z[Z/2]) =0  

for *<~[(r-2)/2]. Then, if the Z(2)[Z/2]-surgery obstruction vanishes, further surgery in 

dimension [r/2] will make it satisfy condition (I). Such surgery leaves K,(/,_I; Z[Z/2]) 

unchanged for * ~ [ r - 3 / 2 ] .  This proves part  (a). Par t  (b) is an immediate consequence of 

Lemma 15.6. 

The relevance of this is the following corollary. 

COROLLARY 12.3. Suppose that F: ( V, Z)-->(D, S) satis]ies the conclusion o] Lemma 

12.2. _Further suppose that i~-n(2). Let s be the dimension o/ E,(K). Then, K , ( (E , (A) -  

Ai-1); Z)-+K,( E~(A ); Z) is an isomorphism/or * < [s/2] and onto/or *= [s/2]. 

Proo/. Note that  if we blow up E~(A) along A~_ 1 the result is exactly the double cover 

of A~, A~. We may identify this blow-up with the complement of a tubular neighborhood 

of A~_ 1 in E~(A). Showing that  K,(fi,; Z)->K,(E~(A); Z) satisfies the above statement is 

equivalent to showing that  K,(E~(A), A~; Z )=0  for * ~<[s/2]. By the Thorn isomorphism, 

K,(E~(A), A~; Z) ~ K,_~+~_I(A 1-1; Z) where 7~1(A ~-1) acts on the coefficients of the second 

kernel group by multiplication by ( -  1) k ( (Recall tha t  the codimension of A~_I in E~(A) 

is ( /~- i+1) . )  Applying 12.2 gives the result. 

Now perform equivariant surgery on A ~ K ~  to make K,(f[~; Z ) ~ 0  for * <Is/2]. By 

12.3 this makes K,(E~(A); Z ) = 0  for *< Is/2]. 

At this point we break the discussion into 2 cases -  s ~0(2) and s ~-1(2). In  the first 

case, s=2r, the only remaining kernel module is K~(E~(A); Z), I t  is a free abelian group 

and has a non-singular (integral) intersection form. In addition, there is an action of Z/2 on 

K~(Ei(A); Z) coming from the involutions, y, on Ei(A ) and E~(K). The intersection form is 

invariant under this action, This allows us to give K~(E~(A); Z) the structure of a Z[Z/2]- 

module and to enhance the intersection form to a Z[Z/2J-valued form. We claim that  

Kr(E~(A); Z) is a free Z[Z/2]-module, and that  the enhanced form is non-singular. If this 

is true, then it defines an element in L~(Z[Z/2], __+). Since Kr(E~(A); Z) is a free abelian 

group, to show that  it is a free Z[Z/2J-module it suffices to show that  K~(E~(A); Z(2)) is a 

free Z(~)[Z/2]-module. But  Kr(E~(A); Z(~))=Kr(-4t; Z(~)). The normal map [,{A~ is (1) a 

Z(2)-homology equivalence on the boundary, (2) highly connected, and (3) an equivariant 

normal map between free Z/2-aetions. Thus, the usual results of surgery theory imply that  

K r ( ~ ;  Z(2)) is a free Z(~)[Z/2]-module (see [34]). The pairing over Z[Z/2] is automatically 

non-singular on Kr(Ei(A); Z) since its integral counterpart is. 
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If the class determined by Kr(E~(A); Z) is trivial, then there is a subkernel H c  

Kr(E~(A); Z). Since K r ( ~ ;  Z)~K~(E~(A); Z) is onto, we represent a Z[Z/2]-basis for H 

by disjointly embedded spheres in -~. Equivariant surgery on these spheres and their 

images under the involution produces a new normal map f~: E,(A')-+Ef(K) which is an 

integral equivalence. Thus, if the obstruction associated to f, in Ls(Z[Z/2], __+) vanishes, 

then we can do equivariant surgery on ],: E,(A)-+E,(K) to make it an integral equiva- 

lence. 

Now, let us consider the case s = 2 r + l .  Do surgery equivariantly on ~ l ~ :  A ~ - ~  

until K.(E~(A); Z) =0  for * <r .  Since L~+I(Z(2)[Z/2], _ ) =0,  we can do further equivariant 

surgery in dimension r to make K~(Jr~; Z(2))=0. This makes Kr(E~(A); Z) an odd torsion 

group. I t  has a Z/2-action and an equivariant, non-singular linking form. Hence, 

Kr(E~(A); Z) is a Z[Z/2J-module with a non-singular linking form. Since any Z[Z/2]-module 

of odd order has a short free resolution, it follows that  K~(E~(A)) and its linking form define 

an element in L2~+I(Z[Z/2], __+ ). If  the class of this form vanishes, then we can do equivariant 

surgery on z~ to realize a resolution of the form. (This uses the fact that  K~(A~)->K~(E~(A)) 
is onto.) The resulr of the surgery is to make Kr(E~(A); Z)=0 .  

If we take the image of the obstruction defined above in Ls(Z(~)[Z/2], ___), we clearly 

get the obstruction to making /~:A~-~K~ a Z(2)[Z/2]-homology equivalence. Since 

Le~(Z[Z/2], • •  is an injection, it follows that  the obstruction associated 

to /~: Ei(A)-->E~(K) by the above procedure is independent of the equivariant surgery 

which we performed on E~(A) when s=2r (provided, of course, tha t  we work relative 

to ~E~(A)UA~_I). The only case in which the surgery group L2,+I(Z[Z/2], •  non- 

zero is when 2 r §  and the involution is orientation preserving (i.e., 1 ~ - i §  

0(2)). The obstruction is also well-defined in this case as we point out in Remark 12.6, 

below. 

We still must consider the case i =k, when k=-n(2). Since Ek(K) is the double of K k 

along Kk_i, doing surgery to make [k an integral homology isomorphism is the same as 

making /~ and /~_~ integral equivalences. Completing surgery at level ( k - l )  makes /~_~ 

and/~I~A~ integral equivalences. Hence, the surgery group for/~ is L~(Z). 

This completes the identification of the surgery groups for the [~ (i=n(2)), and shows 

how to associate to a normal map ~: (V, Z)--+(D,S) ~a well-defined obstruction in 

L~(Z[Z/2], _ )  once surgery has been done so tha t  conditions (I) and (IX) hold through 

level ( i -  1) and so that  12.2 holds for/~-x- 

We now show that  if k is odd, or if i > 1, then any possible surgery obstruction either 

vanishes automatically or is indeterminant. The proof of this will be based on the following 

observations from Sections 1, 2 and 3: 
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(1) ~A~+I~A ~ is a fiber bundle with fiber RP ~-H. 

(2) ~E~+2(A)->A~ is a fiber bundle with fiber CP ~-~-:. 

(3) The stratified m a p / :  A-+K induces bundle maps/~+ll~A~+l: ~ A ~ + I - ~ K ~ +  1 and 

~ E~+2(A)-->~ E~+2(K) which cover/~. 

The relevance of these observations is due to the fact tha t  there are "product  for- 

mulae" which relate the surgery obstruction of a normal map to the obstruction of a 

bundle map which covers it. The precise statements and proofs of these results are post- 

poned until Section 15 where they appear  as Theorems 15.1, 15.2, 15.3, and 15.4. 

The first result along this line shows tha t  with one exception, all possible Aft- 

Kervaire invariants vanish or are indeterminant.  The exception occurs when i = 0  and k 

is even. Since the Arf-Kervaire invariant  tha t  arises as an obstruction to doing Z/2- 

equivariant surgery on [~: E~ (A) -~ E~(K) is equal to tha t  of f~: A ~-~ Ks, it suffices to consider 

the Arf-Kervaire of/~. 

PROPOS:T:ON 12.4. Suppose that surgery has been completed through level ( i - l )  and 

that dim A ~=2r. Consider the Arl-Kervaire invariant o/t~: A ~ K ~ .  It vanishes 

(a) i / ( / c - - i - I )  is even, or 

(b) if i + l - - n ( 2 )  and ( 2 r + k - i - 1 ) : 3 ( 4 ) .  

(c) In  all other cases, provided i >0,  it is indeterminant and can be made to vanish by 

changing the way surgery was done on/~_:. 

Proof. (a) The map f~: A~-+K~ is covered by the map of RP~-~-l-bundles/~+ll~A~+:: 

~ A ~ + i - ~ K ~ +  1. Since the fiber is a projective space of even dimension, it follows from 

Theorem 15.3 tha t  the Arf-Kervaire invariant  of/~ equals tha t  of/~+:]~A~+:. Next  con- 

sider the map/~+:[aA~+:: ~A~+:~K~+:. I t s  Arf-Kervaire invariant vanishes, since it is a 

boundary. On the other hand, it decomposes as :A~+ 1 0 ~A~+I-~:K~+ 1 U~Kt+i ,  where 

~A~+I = ~A~+: - ~A5+1. Since we have completed surgery through level i - 1,/~+l I ~A ~+: is a 

Z/2-homology equivalence. Consequently, 

e(/i) = C(/i+ I [(~Ai+l) = e(fi+l ](~L~ :41) = O, 

This proves (a). 

(b) Since surgery has been completed through level i - 1  and i §  1 -n (2 ) ,  the map 

T~+l: E~+I(A)~E~+I(K) is an integral homology isomorphism on the boundary. There are 

involutions on E~+I(A ) and E~+i(K ) with fixed point sets As and K~. Theorem 15.5 identifies 

the Arf-Kervaire invariant  of/~ with tha t  of T(f~+l). (T(T~+I) is the non-equivariant surgery 

obstruction of [~+l: E~+i(A)-~ E~+I(K), see 10.7.) Since dim Ei+:(A) = (2r + k - i) -- 0(4), and 
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since [,+: ]~E,+~(A) is an integral homology equivalence, it follows tha t  the Arf-Kervaire 

invariant  of z([,+l) vanishes. This proves (b). 

(e) Let  h,_:: X,_I-+K,_: • I be a normal bordism, relative to the boundary, from 

1~-:: A~-I~K,-~ to another map 1~ ,: A~ :-~K,_ 1 which still satisfies conditions (I) and 

(II) at  level i -  1. Extend this to a stratified normal bordism h: (X, B • I ) ~ ( K  x I, L • I) 

and let 1': A ' ~ K  be the "other end." Consider h,: X,-+K, • I.  We have 

~X~ = A~ U (~A~ • I )  U h~_l(~:) (J A~ 

where ~ is the RPk-*-bundle ~_~K, x I .  In  par t  (c), ]c-i  is even; hence, by 15.3, 

e(h, lh*_~(~)) =c(h,_:). Since ~A, • I is mapped by  a Z/2 equivalence we have tha t  

o = c(h, ] eX, )  = c(/,) + c ( f )  + c ( h H ) .  

Therefore, c(/,) is indeterminant provided we can choose h,_:: X,_I->Kt_: • I to have non- 

zero Arf-Kervaire invariant. The dimension of K,_:  • I is ( 2 r - k  + i). Since ( k - i )  is even, 

K,_ 1 • I is orientable and of even dimension. If  ( i -  1 )$  n(2), then since c: L2.(Z(2))--> Z/2 

is onto, we may  choose h~_: to have non-zero Arf-Kervaire invariant. If  ( i -  1 ) -n (2 )  then 

the hypothesis of (e) implies tha t  (2r - k +i)  --2(4). Hence, in this case, we can also arrange 

the Arf-Kervaire invariant  h,_ 1 to be non-zero. 

PROPOSITION 12.5. Suppose that surgery has been done through level ( i - 1 ) ,  that 

dim A , -3 (4 ) ,  and that i~n(2) .  I1 the surgery group associated to ~: E,(A)-+ E,(K) has a 

codimension one Kervaire invariant, then we can make the invariant vanish by changing the 

way we do surgery to make 1~-:: At-I->K,-: a Z(2)[Z/2]-equivalence. 

Proo/. For [~ to have a eodimension one Kervaire invariant we need 0 < i  < k and 

k - i -  1(2). (The second condition makes the involution on E~(K) orientation preserving.) 

We may  first of all arrange tha t  T, is highly connected and tha t  Kr(E,(A)) is odd torsion 

(where 2 r +  1 =d im E,(A)). The dimension of A,_: is odd. Thus, there is a normal bordism 

h,_:: X~+:~Kt_:, relative to 8A,_1, between/,_::  A,_I-+K,_ 1 and another highly connected 

Z(2)[Z/2]-equivalence I'*-:: A~-:~K~-I, so tha t  the Arf-Kervaire invariant of h,_: is non- 

zero. As before, extend this to a stratified normal bordism h: X - ~ K  • I and call the other 

end 1': A'-+K. By a further surgery on T; we may  arrange tha t  T~: E~(A')~E,(K)  is highly 

connected and tha t  Kr(E,(A')) is odd torsion. We have 1~,: E,(X)-->E,(K) • I. Since E,(X) 

and E,(K) • I have involutions with fixed points X,_: and K~_: x I ,  Theorem 15.5 implies 

tha t  the Arf-Kervaire invariant of ~()~,) equals tha t  of hi-i- Since dim E,(X) -0(4) ,  if we 
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do (non-equivariant!) surgery on ]~ relative to ~E~(X) to make it highly connected and 

look at  the intersection pairing 

K~+I(E~(X)) | K~+I(E~(X)) -+ Z. 

I t  is represented by a matrix of determinant congruent to • 3 modulo 8. Hence, the order 

of Kr(~EI(X)) is congruent to ___3 modulo 8. But  Kr(~E~(X))=Kr(E~(A))~)Kr(E~(A')). 

This implies tha t  the orders of Kr(E~(A)) and Kr(E~(A')) are, up to sign and modulo 8, 

different. Hence, by 10.5, the surgery obstructions for ]~ and/~' in La(Z[Z/2], +)  are dif- 

ferent, i.e., the codimension 1 Kervaire invariant of/~ is indeterminant. 

Remark 12.6. This argument actually shows that  the change in the codimension 1 

Kervaire invariant of T~ equals the Arf-Kervaire invariant of the bordism at level ( i - 1 ) .  

Hence, if we are working relative to/ , -1:  A~-I->K~-I, then we cannot change the codimen- 

sion 1 Kervaire invariant of/~, i.e., working relative to /t-1 the codimension 1 Kervaire 

invariant of [~ is well-defined. 

Now, we are left with obstructions only when At is orientable and dim A~=-0(4). 

Suppose, for the moment, tha t  0 < i  < k. In case 1, where n ~ i(2), we want to do surgery 

on /~: A~--->K~ to make it a Z(e)[Z/2]-equivalence. The obstruction lies in L0(Z(2)[Z/2], + ) =  

W(~ W. By 12.4 the Arf-Kervaire invariant vanishes, so the obstruction actually lies in 

the subgroup W |  (If i=]c -1 ,  then the obstruction lies in L~(Z(e)[Z/2], + ) = Z |  

In case 2, where n - i ( 2 ) ,  the obstruction to doing equivariant surgery on E~(A) lies in 

L0(Z[Z/2], + ) = Z |  Since L0(Z[Z/2], +)->L0(Z(e)[Z/2], +)  is an injection, it suffices to 

consider only the obstruction for making/~: A ~ K , ,  a Z(2)[Z/2]-equivalence, taking care 

to remember that  when i--n(2) the obstruction lies in the subgroup Z | Z c WQ W. 

For the top and bottom strata, the obstructions lie in somewhat different groups: 

a(/k) ELo(Z); while a(/o)eLo(Z) if n ~-0(2), and a(/o)eLo(Z(2))= W if n-= 1(2) (actually in the 

second case, provided k ~ 2(4), a(/o) E W by 12.4). 

We now show how almost all of these obstructions annihilate each other. 

PBOPOSITION 12.7. Suppose that surgery has been done on F: ( V, Z)-+(D, S) through 

level ( i - 1 ) ,  and suppose that A s is orientable (i.e., ( k - i - I ) - = 0 ( 2 ) ,  i=0 ,  or i=k )  and that 

dim A t =4r. Consider the obstruction (r(/~) to completing surgery at level i. I / 0  < i <I c, then 

~(/,)  = (~+(/~), ~_(/~)) ~ W| W. 

(a) / ]  1 < i < k and ( k - i - I ) - 0 ( 4 ) ,  then a+(/t)=0 and a_(/~) is indeterminant (tied to 

the stratum 2 levels down). I /  1 <i  < k  and ( k - i = 1 ) = 2 ( 4 ) ,  then a_(/~)=0 and a+(/~) is in- 

determinant. 
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(b) / / i  = 1, then a+(/~) vanishes when k - 2 - 0 ( 4 ) ,  and a_(/~) vanishes when k - 2  ~2(4). 

(c) / / k  is odd, then a(/o) vanishes. 

(d) a(/k) is indeterminant. 

Proo/. Suppose that  0 < i  < k and that  (k - i  - 1) =21. Consider a(]t) = (a+(/~), a-(/t)) E 

W |  (remembering that  when i--n(2) tha t  (u+, u_) actually lies in ZOZ).  We have 

CP2Z-bundlcs, ~E~+2(A)-->A ~ and ~E~+2(K)~K ~. The map [~I~E~+2(A) is a bundle map 

covering/~: A~-+K~. By 3.3, the action of z1(K~) on H.(CP 2z) is non-trivial. Hence, Theorem 

15.1 tells us that  (~(]~)=T(fi+21~E~+2(A)) in L0(Z(2)). (Here, w=( -1 )z . )  Since we have 

done surgery through level ( i -1 ) ,  K,(aE~+2(A); Zr Z(2)). Hence, 

T(L+2 I~ E~+2(A)) =~([~+2 [aE~+2(A)) = O. This proves (b) and the vanishing statements in 

(a). 

Similarly, if i~>2, then ~_2E~(A)-->A~_2 and ~i_2E~(K)~K~_2 are CP ~ ~+~-bundles 

(where k - i + l  = 2 l §  and [~I~_2E~(A) is a bundle map covering ]~-2: A~-2-+K~-2. Let 

h~_2: X~_~-->K~_ 2 • I be a normal bordism of/~-2. Note that  K~_ 2 • I is orientable and of 

dimension congruent to 0 modulo 4. If i ~ n(2), we can choose h~_ 2 to represent an arbitrary 

element in W| while, if i--n(2), it can represent an arbitrary element 

in Z + Z .  Choose h~_2 so that  a ~(h~_2)=~(/~) (if i - 2 = 0  then choose a(h0)=~(f2) ). By 

Theorem 15.1 (or 15.2 if i - 2  =0), this will change f~: E~(A)~E~(K) so that  ~(f~)=0. How- 

ever, in changing the map at level ( i - 2 )  we have destroyed the fact tha t  it is correct at  

level ( i - 1 ) .  The dimension of A~_~ is even and A~_l is non-orientable. Thus, the surgery 

obstruction for/~_~ is an Arf-Kervaire invariant. By Theorem 15.3, the Arf-Kervaire in- 

variant that  we introduce at level ( i -  1) is equal to that  of the normal bordism at level 

( i - 2 ) .  Since this bordism has obstruction in WQ W, its Arf-Kervaire invariant vanishes. 

Hence, we can complete surgery at  level ( i -  1). Since surgery at level ( i -  1) only changes 

]~: E~(A)-->E~(K) by a normal bordism relative to ~E~(A), it leaves ~([~) unchanged. Hence, 

we can assume that  conditions (I) and (II) hold through level ( i -1 ) ,  that  /~_x satisfies 

12.2, and tha t  v([,) =0.  If we consider the image of r(f,) in L0(Z(e)) = W, then it is equal to 

~(f, ld,) .  By 10.7, ~([,[A~)=a+(/~)+a_([,). Since, as we have already seen, a~([,) vanishes 

automatically, it follows that  in changing ~([~) to be zero, we have made a_~(/,) zero. This 

completes the proof of (a). 

We turn  now to the proof of (e). The map/0: Ao->Ko is covered by a map of trivial 

CP~-l-bundles, ~oE2(A)-+~oE~(K). If k is odd, then Theorem 15.2 shows tha t  a(/0)= 

�9 ([21~0 E~(A)) in Lo(Z(e)). But  v(/2 [ ~ 0 E2(A)) = ~([210E2(A)) = O. 
Part  (d) is obvious since ~_~A~ ~ A~_~. 
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Now we can prove the main result, 11.4. 

Proof o/ Theorem 11.4. (I) Suppose tha t  k is odd and greater than 2. Then by 12.4, 

12.5, and 12.7 all surgery obstructions either vanish or are indeterminant. We can therefore 

complete surgery provided no s t ratum has dimension 4. Thus, ~l(k, n, m)=0 ,  provided 

m ~ 4  and (]c, m)~(3 ,  1). 

(II) Suppose tha t  k is even and k > 2. We want to show tha t  

0 ,(~l(/~,n,m) (0o, Ol),Lm(R~)OLm+k(R_~ ) c + c - Z / 2  

is exact (provided m~=4). Here e = ( - 1 )  n, R+ = Z, and R_ = Z(2). First we show tha t  (00, ol) 

is injective. Let  E: (V, Z)->(D, S) be the equivariant stratified normal map covering 

]: (A, B)-+(K, L). Suppose o0(Z ) = 0 = o 1 ( Z  ). We must  show tha t  we can complete surgery 

o n / .  Note tha t  oF=/o: Ao-~B o. Hence, since 0=o0(Z ) =a(/0), we can complete surgery a t  

level 0. Thus, we may  assume tha t /0  is an R~-homology equivalence. I f  dim (A1) = m + ]c 

0(4), then by 12.4, 12.5 and 12.7, there are no further surgery obstructions. I f  m + k - 0 ( 4 )  

the only remaining obstruction is a~(/1), where to = ( - 1 )  k/~. Since I F  = El(/), we have tha t  

0 =o1(Z)=a(El(/))=~(/1)=o~(/1).  Hence, the map (00, oI): ~l(k, n, m)->Lm(R~)OLm+k(R_~) 
is injective. 

Next  we must  show tha t  (a0, al) is onto ker [c+c: L,n(Rm(R~))OL,n+k(R_~)-+Z/2]. Let 

(a0, ~1) be an arbi trary element of the kernel. We will construct/c-axial actions on homotopy 

spheres Z '  and Z" so that:  

(1) ~0(Z')=~0, and 

(2) ~0(~")=0 and ~1(~") is an arbi trary element of ker [c1: L,n+k(R~)-+Z/2]. 

From these two special cases and additivity of the invariants, the general result follows. 

The idea in constructing both E '  and ~"  is to build a suitable stratified normal bordism 

from the identity map on L t o / :  B-~L so tha t  f*(S k~+m-1) is a homotopy sphere. 

The construction of ~'. Recall tha t  L 0 = S  ~-~. We can find a normal bordism h0: G0-~ 

L0 • I from id: Lo-+L o to a Re-homology equivalence/0:B0->Z0 so tha t  ~(h0)=~0. Extend 

this to a stratified bordism h: G~L • I and call the other e n d / ' :  B'-+L. We claim tha t  

without changing the bordism at level O, we can do stratified surgery o n / '  to a m a p / :  B ~ L  

satisfying the conditions of 9.3 (so tha t  Z '  =/*(S k~+~-l) is a homotopy sphere). Suppose m 

is even (otherwise the problem is trivial). By 12.4, 12.5, and 12.7 all surgery obstructions 

for f' either vanish or are indeterminant. I f  an obstruction is indeterminant, then it can be 

made zero by  changing the stratified map at  most two levels down. Hence, it suffices to 

check our claim on the 1-stratum and 2-stratum. Since dim B 1 = m -  1 +/r  the only 
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possible obstruction is the codimension one Kervaire invariant and this occurs only when n 

is odd and m + ]c-~ 0(4). By  Remark  12.6, this codimension one Kervaire invariant  is equal 

to c(ho)=c(o~o) = c(zr But ~leL0(Z) and therefore, c(~1) = 0. Thus, the obstruction at  level 1 

vanishes. The 2-stratum is non-orientable and hence, causes no problems since any non- 

vanishing Arf-Kervaire invariant  can be made to vanish by  changing the map one level 

down.  This proves the claim and therefore, shows tha t  we can construct Y/. 

Construction o] ~". The argument  is similar. Let  fle ker [c: Lm+k(Re)-+ Z/2]. I f  m +/c 

0(4), then f l=0  and there is nothing to prove. So, suppose re+k==-0(4) and /c=2/ .  Define 

fleLo(R_~[Z/2], +)  by 

~+ = 0; 1 odd 1 odd. 

We can construct a bordism (relative to the boundary) 

hi: G 1 -->L 1 • I 

from id: (L1, ~oL1)-->(L1, ~oL1) to ]1: (B1, ~oB1)->(L1, ~oL1) with ~(hx)=ft. As before, we as- 

sert tha t  we can complete surgery without disturbing this bordism, and, as before, it suf- 

fices to check the 2-stratum and 3-stratum. By 15.3, the Arf-Kervaire invariant of the 

2-stratum is equM to c(h~)=c(fl)=0. By Theorem 15.1 the par t  of the obstruction on the 

3-stratum which does not automatically vanish is equal to fl~ if l is even and to fi+ if I is odd. 

In  either case, it is zero. Hence, we can construct Y/' with ~o(Y,")=0 and al(Y/' ) =ft. 

13. Bi-axial actions 

In  this section we calculate the groups 01(2, n, m). 

Suppose tha t  _F k is a Z/2 homology sphere, tha t  E k+~ is the boundary of some con- 

tractible manifold (hence, E is an integral homology sphere), and tha t  F k c  E ~+2. The pair 

(E k+~, F k) is called an s-knot if it satisfies condition (e)= ( •  below: 

( + ) F k is an integral homology sphere. 

( - )  The double branched cover of E along F,  ~,  is an integrM homology sphere. 

Two s-knots (E~ n+e, F~) and (ET +~, F~) are s-knot cobordant if there is a pair (W m+~, L re+l) 

such tha t  W 'n+~ is an integral homology h-cobordism from E~ +2 to E~ +2, L ~+1 is a Z/2- 

homology h-eobordism from F~ n to F•, and such tha t  (W m+8, L re+l) satisfies the condition 

analogous to (s). Let  HC~n denote the abelian group (under connected sum) of such e-knot 

cobordism classes. 

If  O(n) acts bi-axially on a homotopy sphere Z ~n+m-1 with orbit space B, then the 
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dfffeomorphism class of B (as a stratified space) determines the equivariant diffeomorphism 

class of E 2n+m-1, see [15] and  [18]. (From the  point  of view of this paper, the  reason for 

this is t h a t  B admits  ~ unique degree 1 m a p  up to  homotopy ,  into the  orbi t  space of the  

linear model.) B is a manifold  with boundary  which has 3 - s t r a t a - - in t  B, ~ B -  B 0, and Be, 
(see 2.4). The pair  (~B, B0) , called the orbit knot, is an e-knot, where e = ( - 1 )  n. The orbi t  

space of a concordance yields an  e-knot cobordism of the orbit  knots.  Conversely, any  

v-knot gives a bi-axial O(n)-manifold, well-defined up to concordance. Thus  

0~(2, n, m) = ItC~_l. 

The group C m of kno t  cobordism classes of h o m o t o p y  m-spheres embedded in S ~+~ 

has been defined and calculated by  Kervaire  [21] and Levine [25]. Their methods  work 

equally well for HC~ (and in fact, + HCm = C,,, for m > 3). Our goal in this section is to provide 

a similar calculation of HC~. 
First, we recall the method of [21] and [25]. Any  Z/2-homology m-sphere, Fm~  E m+2 

is the boundary  of a f ramed submanifold V ~ + i c E  ~+2, called a "Siefert surface" for F m. 
Let  F.(V)=H.(V)/TorH,(V).  I n  the case m = 2 / - 1 ,  there is a bilinear form (a Sic[err 
lotto) O: Fz(V21)| defined as: 0(~,/~) is the linking number  of ~ with i,(/~), 

where i: V-+F~ - V is a small displacement of V in the positive normal  direction. 

If A(x, y) is a bflinear form on a free abelian group, then  for (~ = +_ 1 define a new form 

A +(~(tA) by  (A +(~(tA))(x, y)=A(x, y)+(~A(y, x). This new form is /~-symmetrie. I f  we 

begin with 0: FI(VZZ)| then O+(-1)'(tO) is the usual intersection form on 

Fl(V2t). Thus,  O+(-1)t(tO) is non-singular over Z(2): I f  F ~z-1 is an  integral homology 

sphere, then 0 + ( - 1) ~ (tO) is non-singular over Z. 

A bilinear form on a free abelian group is null-cobordant, if it vanishes on a direct 

summand  of one half the rank.  Two bflinear forms 0 and 0' are cobordant ,  if the or thogonal  

direct sum of 0 with - 0' is null cobordant .  A form 0 is said to be a ~-/orm, where ~ = _+ 1, 

if 0 + (~(tO) is non-singular over Z. 

Let  G~ be the group (under direct sum) of cobordism classes of 6-forms. 

Kervaire  proved t h a t  HC~=O, and Levine showed tha t  the  map  q+: HC~t_I-+G~, 
= ( -  1)', defined by  sending the cobordism class of a kno t  to the cobordism class of its 

Siefert form, is a well-defined homomorphism which is an isomorphism for / > 2 .  I f  

(~2i+1, F2Z-1) is a minus-knot ,  then  0 +,~(tO) m a y  no t  be unimodular .  However ,  we shall 

show below, in Corollary 13.5, t h a t  0 -5 ( t0 )  is unimodular,  and tha t  the  map  

~v_: HC~_, -+ G_~ 

which associated to a minus-knot  the cobordism class of its Seifert form is well defined. 

The main result of this section is the following: 
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T H E O R E M  13.1. 

(1) HC~,=O. 
(2) .For/>2, ~,: HC~z_I-~G~, is an isomorphism, where ~ = ( - 1 )  ~. 

(3) 
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The maps ~+: HC~ -~G+, ~o_: HC~ -+G_ N G+ and q~: HC~-+Ge are all epimorphisms. 

As we have remarked, the case e = + follows from the arguments of [21] and [25] 

almost without change. (There is an obvious modification for HC +.) Hence, we shall not 

discuss this case further. 

Of course, our interest in this result is the following corollary. 

COROLLARY 13.2. I] n > 2  and mq=2 or 4 then 

G+; 

01(2, n, m ) =  G_; 

0; 

i / m  + 2n--0(4) 

i / m  + 2 n - 2 ( 4 )  

i/m+2n-=l(2). 

First  we consider the even dimensional case. 

])ROPOSITION 13.3. HC~=O. 

Proo/. Let (y2l+2, FeZ) be a minus-knot, and let W 2l+~ be a parallelizable manifold 

tha t  Z bounds. Take a Seifert surface for F in Z, L 2Z+1, and deform it relative to F so 

tha t  it becomes properly embedded in W. There is a normal m a p / :  (W, Z)-+(D 2z+s, S 2z+2) 

which is transverse to DeZ+l • {0} with preimage L. Since/ ISL is a Z(e)-homology equiva- 

lence, we can do surgery to make K,(L; Z ) = 0  for *<~l and KI+I(L; Z(2)) =0. We wish to 

do equivariant surgery on the double branced cover of W, W until it becomes contractible. 

As in 12.3, we see tha t  K, (W-L) -~K, (W)  is an isomorphism for *<~l and onto for 

* = / + 1 .  Hence, if we do surgery on W - L  to make K . ( W - L ;  Z[Z])=0  for *~<l and 

K~+I(W-L; Z[Z/2]) odd torsion, then K, (W;  Z) = 0  for *~<l and Kz+a(W; Z) is odd torsion. 

Since ~ is an integral homology sphere, the linking form on K~+x(W; Z) is non-singular. 

As in Section 12, it defines an element in L2I+s(Z[Z[2], +) .  I f  the element it defines is 

trivial, then we can complete the surgery to make K. (W;  Z )=0 .  The only t ime tha t  this 

element is not automatically zero is when 2l + 3 = 3(4). In  this case, as in 12.5, the obstruc- 

tion (a codimension one Kervaire invariant) is indeterminant. Thus by changing the way 

in which we did surgery on/~, we can make the obstruction vanish and hence, complete 

the surgery on W. Once we have made ]~ contractible, the pair (W, L) becomes a minus- 

knot  cobordism from (Z, F) to zero. 
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Next  we recall Bredon's description of a geometric construction which realizes the 

algebraic periodicity of knot  cobordism, [5]. Let  B(2) denote the 3-dimensional cone of 2 

by 2 symmetric matrices. Suppose tha t  (~m+2, Fro) is an e-knot and tha t  B m+~ is a con- 

traetible manifold with ~B'n+S= y m+2 Construct a local orbit space, Mso denoted by B m+3, 

by  replacing a tubular neighborhood of F m with F "  • B(2). We can find a stratified map 

/: B-~B(2), which is unique up to a stratified homotopy.(1) For each integer n, form the 

bi-axial 0(n)-manifold 
,~M =/*(M(n, 2)). 

I t s  associated orbit knot is (E m+2' Fro). Consider the restriction of the O(n + 1)-action on 

~+IM to O(n), and let (Fro+4, ~ + ~ )  be the associated orbit knot, i.e., let Y~m+4=~M/O(1) 

and ~m+2~lM. (~§  ~ + e )  is called the "suspended knot" ,  and is also denoted by  

0~(2] " ~ ,  F~). Thus, w~(E ~+~, F m) is the knot  ((~+IM)/O(1), ~M). I f  n~>2 and ( - 1 ) ~ + l = e ,  

then n+l(M) is a homotopy sphere; hence, its orbit knot  under 0(n), (E m+~, ~+~) ,  is a 

( - s ) -kno t .  Thus, co takes s-knots to ( -e ) -knots .  Although the construction depends on 

the choices of B and of ], it is clearly well-defined up to concordance and therefore, defines 

a homomorphism ~: HCT,~--->HCg$2. 

Recall tha t  in Theorem 5.2 we constructed a regular 0(n)-manifold ~ V ~ + I M  with 

~(~V) =~M. The image of 0V in 1M/O(1)~-E m+2 is a Seifert surface for F m and the image 

of 1V in 2M/O(1) = E  m+4 is a Seifert surface for ~m+2 in E m+4. The manifold 1V is the "sus- 

pended Seifert surface". Let  A=(nV)/O(n). Then 1V (which is El(V)) is just the double 

branched cover of A1 (J ~A0 along 0V (which is A0). In  5.2 we showed tha t  A is homeo- 

morphic to B • I with ~B • I collapsed to ~B • {0} and tha t  the union of the singular 

s trata of A is the image of B • {1}. Hence, in this case A 1 UpA 0 is homeomorphic to B. 

Thus, 1V is the double branched cover of B along the Seifert surface 0V (which has been 

pushed into the interior of B). 

There is an alternative description of such double branched covers. We shall now use 

the notation V ~§ =0 V and V m+3 =iV.  Let  U ~+~ denote V ~+1 • I with ~V ~+1 • 1pinched 

to ~vm+~• {0}. Embed V 'n+2 in B ~+s so tha t  it meets ~B m+a transversely in V'~+~• (0}. 

Cut B m+~ open along U ~+~ to obtain a new contractible manifold B' .  Let  U' denote the 

inverse image of U in ~B'. Then V ~+'~ can be thought  of as the union of two copies of B" 

glued along U' by  switching the copies of U. The involution ou V "~+a is given by switching 

the two copies of B. Since B' is contractible, i t  is clear from this description tha t  V ~+'~ is 

Z/2-equivariantly homotopy equivalent to the suspension of V ~+~. In  particular, H , (  V m+~) 

H,_~(V"+~). 

(1) If m = 1, then there are two ways to replace a tubular neighborhood of F by F x B(2). Only 
one of ~he resulting stratified spaces admits a stratified m~p to B{2). 
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Remark 13.4. I f  m + 1 is even, say m + 1 =2t, then there is a relationship between the 

Seifert form on Ht(V) and an intersection form on Ht+~(B', V x (1))~H~(V). Namely, let 
~t+l and ~t+l ~j be relative cycles in (B', V • {1}) where the boundaries represent ~ and ~s 

in Ht(V). Keep ~ in V • {1) and deform ~r (keeping ~ j  in U) until ~ j  is contained in 

V • {�89 embedded into the side of the cut corresponding to the positive normal direction 

on V in Z. Then, relative to these constraints on the boundaries, push the cycles transverse 

and take their intersection number. I t  is 0(~,  ccj). Using this fact one can prove the follow- 

ing theorem: 

THE OR EM 13.5 ( Bredon [6]). There is an identi/ication o/ H .( V2Z; Z) with H .+l( V2~ + 2; Z) 

under which O: F l( V 2z) | F z( V 2z)-+ Z becomes identified with w(0): Fl+l( V 2z+ e) | F / + I  (V2/+2) ___> Z. 

COROLLARY 13.6. Suppose that (Z2z+!, F ez-1) is an e-knot. Then the associated Sei/ert 

]orm is an e" ( - 1)Z-]orm. 

The proof of the next  lemma is the same as the proof of Lemma 2 in [25]. 

LEMMA 13.7. I / a n  s-knot is e-knot cobordant to a trivial knot, then any Sei/ert /orm /or 

it is null-cobordant. 

I t  follows tha t  the map 
q~_:HC~_I-->G_~, ( ~ = ( - 1 )  z, 

is a well-defined homomorphism. As further corollaries to Theorem 13.5, we have the fol- 

lowing results. 

COROLLARY 13.8. The/ollowing diagram commutes, where e= +_ and (~ = ( - 1 )  z 

s HC~z-1 - -  HV~Sx 

COROLLARY 13.9. Nor l > l  the map q)_: HC~_I~G_e is an epimorphism. FOr l = l  

the image o] ~o_ is G+ fl a_. 

Proo/. For l > 1, this follows from the fact tha t  f+  is an epimorphism and the fact tha t  

the following diagram commutes 
+ O) 

0_o 

14- 792902 Acta rnathematica 144. Imprirn6 le 8 Septembre 1980 



202 M. DA~-IS, W. C. HSIA~G AND J.  W. MORGAN 

For l = 1, it follows from the well-known fact (see [13]) tha t  the double branched cover of 

a knot ted circle with Seifert form 0 is an integral homology sphere ff and only if 0 § tO is 

non-singular. 

The remainder of this section is devoted to the proof t ha t  ~_ is a monomorphism when 

/>2 .  

Definition 13.10. An s-knot (E 2t+1, F 2l-1) is simple ff E 2z+1 "~S 2/+1 and if F 21-1 has an 

(1 - 1)-connected Seifert surface. 

Suppose tha t  V ul is an ( l - l )  connected Seifert surface for a simple minus-knot 

(Z 2z~-1, _F~I-1). Then the suspended Seifert surface V 2z+~ is/-connected. Since ~V 2z+2 is an 

integral homology sphere, dual i ty implies tha t  the homology of V ~1+2 also vanishes above 

the middle dimension, and tha t  Hl+l(V~Z+2; Z) is free abelian. Hence, H,(V21; Z) vanishes 

except in the middle dimension and H~(V2Z; Z) is free abelian.(1) The exact sequence of 

the pair (V 2z,/v ~1-1) then shows tha t  H~(F2~-I; Z) vanishes for i :~ l -1  and is a finite odd 

torsion group when i = l - 1 .  This shows tha t  if the minus-knot (y2z+l, F2z-1) is simple, 

then F 2~-1 is homology ( /-2)-connected.  I t  follows from this fact and Theorem 2 in [23], 

t ha t  (Z ez+~, F 2z-1) is simple if and only if Z -  F has the (1-1) - type  of a circle. 

LEPTA 13.11. Any minus-knot is cobordant to a simple minus-knot. 

Proof. Let (Z ~l+1, F ~z-1 ) be a minus-knot. Do surgery on z~ to construct a parallelizable 

manifold L 2~ such that:  

(1) ~L=FU(~F•  U F', 

(2) H, (L ,  F)-+H,_I(F ) is an isomorphism for * < l  and, 

(3) H , (L ,  F)=O for *>~l. 

I t  follows tha t  F' is ( l -2)-connected.  Form a bordism W by gluing L • D 2 to Z • I .  Let  

Y be the "other end". 

Let  1~ r be the double branched cover of W along L, let Y be the double branched cover of 

Y along F ' ,  and let X = Y -  (F '  • D2). We claim: 

(1) We can not argue this fact directly using P since F is only a Z(2)-homology sphere. 
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I odd torsion; for * ~<l- 1 (a) H,(W; 
Z ) = [ 0 ;  for *~>l, 

(b) H, (W,  Y)=0  for *~</+1, and 

(c) H,()~; Z)->H,(Y; Z) is an isomorphism for * < 1 - 1 and onto for * = 1. 

Par t  (a) follows from the fact that  H, (W)  = H , ( L ,  F). Par t  (b) results from the duality 

between H,(W,  Y) and H,(W,  Y,), and the fact tha t  ~ is a homology sphere. Par t  (c) 

follows, as in Lemma 12.3, from the fact that  H , ( F ' ) = 0  for " 4  l - 2 .  

From (a), (b), and (c) above we see that  it is possible to add handles of dimension 

~<(l+ 1) to X so as to construct a bordism W' with: 

(1) eW' = X  O X',  

(2) X'  the (1-1)- type of the circle, 

(3) H.(W' ,  X; Z[Z/2]) ~ H,_t(X;  Z[Z/2]) for * ~< l, and 

(4) //,(W', X; Z[Z/2])=0 for *>l. 

This means that  H , ( W  (J W', E; Z) =0  and hence, (W 0 W', L) is a minus-knot cobord- 

ism from (51,, F) to (X' t3 (F '  • D2), F') .  From (2) above, we see that  this latter pair is a 

simple minus-knot. 

The next  result completes the proof of Theorem I3.1. 

LEMMA I3.12. Suppose that (y21+l, F2Z-1) is a simple minus-knot, that V 21 is an ( / -1 ) -  

connected Sei/ert sur/ace, and that the Sei/ert /orm O: H ~( V 2z) | Hi( V ~)--> Z is null-eobordant. 

I[ 1 > 2, then (~2i+1, F21-1) is cobordant to the unknot. 

Pro@ The idea is to do Z/2-equivariant surgery on the suspended Seifert surface 

V 2l+2 to a contractible manifold W 2z+~. This will have the effect of changing the fixed 

point set V 2z into a Z/2-homology disk. The complement of an invariant open disk about a 

fixed point in the interior of W will then be the double branched cover of the desired 

minus-knot cobordism. 

Since 0 is null-cobordant, there is a basis {e~ ..... ~r,//1 ..... /5~} for Hz(V2~; Z) so that  

0(~,, x j )=0.  Since V et is ( l - l )  connected, we can represent the at by /,: (D~ +1, S~)-> 

(B', V • {1}). Since 0(e,, ~j)=0,  we can take the [~ to be disjoint embeddings (see the 

discussion in 13.4). Form spheres S~ +1 in V 2z+~ by taking/~(D~) U )J/,(Di), where y denotes 

the involution. This collection of disjoint, invariant spheres forms a basis for a subkernel 

of H,+I(VI+2; Z). Let  T~ be an invariant tubular neighborhood of S~ +1 in V 2l+e. From the 

fact tha t  O(:q, oh) =0, it follows that  T,=S~ x D z+l and that  71 T, has the form 7(x, y) = 

(rx, ay), where r and s are linear reflections through hyperplanes in R ~+~. Let  77 be the 
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involution on D 1+1 • S z defined by  2(x, y) = (rx, sy). Do surgery on the S / s  by replacing 

each T~ by  D z+l • S t with involution ~. The resulting manifold with involution, W 2z+2. is 

clearly a contractible. This completes the proof. 

14. Further remarks 

First we deal with the special cases which were previously omitted. 

The case m=4.  In  this case, the proof of 11.4 still shows tha t  (%, ~1): | k, n, 4)-* 

La(R~) +L4(Re)  is onto the kernel of c +c; however, in trying to prove that  (a0, al) is in- 

jective, one encounters a 4-dimensional surgery problem. Recall tha t  in the case under 

consideration, B 0 is an Re-homology 3-sphere, e = ( - 1 )  n, and ao is the surgery obstruction 

for /0: (A0, Bo)-*(Da, $3) in Lo(R~). Even if this obstruction vanishes, it does not follow 

tha t  [0 is normally bordant  (relative to /o tBo)  to an R~-homology equivalence. However,  

if we know, in addition, tha t  B 0 is the boundary of some Re-homology disk C, then/0[B0 

extends to a normal map h: (C, Bo)-*(D4, S s) and there is a normal bordism (relative to 

the boundary) f rom/0 to h. I f  we also have tha t  al =0,  then there is no further problem to 

completing surgery. Thus, we are led to consider @z and ,~3~z/2, where 0g  denotes the group 

of R-homology h-cobordism classes of R-homology spheres. We shall also use the notation 

| = @z and @-3 =~taz/2. Let  P cL4(Z) ~L4(Z(2)) be the subgroup of obstructions which can be 

represented by framed 4-manifolds with standard 3-sphere as boundary, i.e., P consists of 

classes of unimodular forms of index divisible by 16. Any/~e-homology 3-sphere bounds a 

framed 4-manifold with surgery obstruction well-defined modulo P. Hence, there is a map 

/~: @~-*L4(Re)/P, where e = q-. I t  is easily seen to be onto. Let  O~ be the kernel of~u ~. (We 

know absolutely nothing about  this group.) Then with the above notation we have the 

following result. (Compare 11.4.) 

T H ] ~ O ~  14.1. Suppose n > k > 2  and let e = ( - 1 )  n. 

(I) I /  k is odd, then 

01(k,  n,  4) = ~. 

(II) I/]c is even then the/oUowing sequence is exact 

0 , ~)~ , Ol(k, n, 4) �9 L4(R~) | L4+k(R_e) 

( I I I )  Similarly, we have a short exact sequence 

c + c Z/2. 

~ 

0 -* 0~-* 01(2, n, 4) -* Gs-~ 0. 
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The case m = 0. By 8.10, there is an equivariant, stratified map F: ]~k~ 1 _..~skn-1 which 

is of positive degree on the odd strata. Such a map is unique up to equivariant, stratified 

homotopy. Let  deg F denote the degree of F on any even stratum. By 5.2, E is the bound- 

ary of V kn. Let al(E ) be the Witt  class of the intersection form on i V if ]c=0(4), or the 

Ad-Kervaire invariant of 1V if ]c-2(4). Note that  01(k, n, 0) does not have a natural group 

structure. 

THEOREM 14.2. (a) For n even and k even, /c~4, the map 

01(/c, n, 0) (deg, a~) ({_+ 1}, L~(Z(2)) 

is one-to-one. Its image is all pairs (+_1, (~1) such that the Kervaire invariant o/a l ,  C(ax), is 

zero. 

(b) For k odd the map 

is a bisection. 

(c) 

01(1:, n, O) 

For n odd and Ic even, Ic:4:4, the map 

01(]r n, O) 

d e g  {+1} 

(deg, a l )  ((odd integers}, Lk(Z)) 

is one-to-one. Its image is all pairs (d, (~1) such that c(d) =c(cq). (Here, c(d) denotes the Ar/- 

Kervaire invariant o] the normal map o]d  point to 1 point. That is, c(d)~O i] and only i] 

d -  • 

Thus, for ]~ odd or for k~-2(4) and n even, all actions are concordant to the linear 

action with one of its two orientations. When k-~2(4), and n is odd, all actions are concordant 

to some Brieskorn example: 

(z0~ + z,~ + . . .  + ~ j ~  = 0) n ~ [z~l~ = 1. 
i 

When k-=0(4) there are actions for which we know of no naturally arising model. 

Proo/. Let us begin by showing that  (deg, (~1) is injective. If F: Ekn-l-+S k~-I has degree 

d, then there is an extension as in 5.2, F: (V, E)--->(D, S), so that  the action of O(n) on V 

has exactly Id] fixed points. Hence, if deg (F,) =deg (Z'), we can take (V,)2) and (V', F/) 

as above, cut out neighborhoods of the fixed points, obtaining 17 and 17', and then form 

W =~'  U (-17), a bordism from ~ to E' .  Let  C be the qoutient of the action on W. There 

is a degree d map G: (W, Z',  - Z ) - ~ ( S  • I,  S•  - S x { 0 } )  covering g: (C, B', - B ) - ~  
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(L • I ,  L • {1}, - L  • {0}). We claim tha t  if a(1 W) =o'(1V' ) -o'(1V ) is zero, then we can do 

surgery on g: C-+Z • I ,  relative to B '  U B, to make W a concordance from E to Z ' .  This 

will prove the one-to-one statement.  

The idea is to work one s t ra tum at  a t ime identifying obstructions to making: 

(1) K,(C~; Z(~)[Z/2])=0 for i~n (2 ) ,  

(2) K,(E,(W); Z ) = 0  for i - n ( 2 )  and i>1(1) and, 

(3) H,(EI(W); Z)-+H,(EI(S ) x I;  Z) an isomorphism for *~<k-2,  whenever l - -n(2) .  

I f  we mange to achieve (1), (2), and (3), then, by 8.9, F,-+W and ~ ' - + W  will induce 

integral homology equivalence on the E / s  for i ~-n(2). Hence, by  7.1, W will be homologi- 

eally a product. If, in addition, we make Z~l(Ck)=0 (this presents no problem), then W will 

be a concordance from ~ to Z ' ,  (see 3.5). 

Of course, the fact tha t  C~--->L~ • I is not degree 1, but  only of odd degree, has no 

effect on the problem of making K,(C~; Zr for i ~ n(2). 

We claim tha t  in the case i~n(2) ,  the surgery obstruction group for making 

K,(E~(W); Z ) = 0  is exactly the same as in Section 12. The only point tha t  is new here is 

tha t  even though E~(W)~E,(S • I) is not necessarily of degree 1 and is not necessarily an 

integral equivalence on the boundary, it is still the case that ,  once we have done the surgery 

on the lower strata, the K,(E~(W); Z) have non-singular intersection and linking pairings. 

If  i = 1 and 1 -=n(2), then EI(E ) and EI(E '  ) have the integral homology of S ~-1 whereas 

EI(S • I) = S  ~+1 • I .  Thus, H,(EI(W); Z)-+H, (S  x 1; Z) is onto for * < / c - 2  and the kernels 

of these maps are dually paired for 0 <* ~< k--2.  

I f  i > 1 ,  i=n(2) ,  and surgery has been done through level ( i - 1 ) ,  then let ~E~(W)= 

U j<,~ ~jE~(W). We have ~E~(W) = Ei(X) U ~3E~(W) U E~(E'). From the inductive hypothesis 

and 7.2, it follows tha t  ~E~(Z)--->~3E~(W) and ~E~(E')--->eSEt(W) induce isomorphisms in 

integral homology. Thus, H,(E~(W), E~(E)) is dually paired with H,(E~(W), E~(E')). By  

8.9, H,(E~(Z))--->H,(E~(S)) and H,(E~(Z'))~H,(E~(S)) are isomorphisms. Hence, 

K,(E~(W)) =K,(E~(W), E~(Z))=H,(E~(W), E~(Z)). Likewise, K,(E~(W))=H,(E~(W), 

E,(Z')).  This proves tha t  K,(E,(W)) is dually paired with itself for i ~n(2)  and i > 1. 

INow that  we have established this duality, the argument  proceeds exactly as in Sec- 

tion 12. This means tha t  the same surgery obstruction groups arise for the various strata,  

and all the obstructions, except for a(fl), cancel out. This obstruction is identified with 

a(1W), which vanishes by  assumption. 

(I) If F: W~S • I does not have degree + 1, then K,(E~(W); Z) is to be interpreted as the relative 
homology group H,+I(E~(S • I), Ei(W); Z). 
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We turn now to the image of (deg, ~l). By 8.9, the degree must be _+ 1 if/c is odd or 

if n is even. By 15.5, c(deg)=e(~l). These relations show that  the image of (deg, al) is no 

larger than that  claimed in 14.2. 

To prove tha t  the image is a t  least as large as claimed we shall show: 

(1) There are homotopy spheres of all degrees allowed by the above relations. 

(2) Given a homotopy sphere of degree d, it is possible to vary  it to another homotopy 

sphere of degree d, changing ~1 by any element (in the appropriate surgery group) 

with trivial Arf-Kervaire invariant. 

:For n even, the only possible degrees are • 1 and these occur for the linear model 

with its two different orientations. If n is odd and/c is odd, then again the only possible 

degrees are • 1 and these are achieved by the linear model. If n is odd and/c is even, let 

d > 0  be a possible degree. Take M k~-I to be d copies of S ~ - I  and F: M-+S to be d copies 

of the identity map. We want to do 0(n)-equivariant surgery on F: M-+S until M satisfies 

the conditions of 8.9 and hence, becomes a homotopy sphere. To prove that  this is possible, 

we need to know that: 

PROPOSITION 14.3. (a) H,(EI(M); Z)-+H,(EI(S); Z) is onto /or *<~k-2 and the 

kernels ol these maps satisly duality for 0 <* ~ k - 2. 

(b) / / the  conditions of (8.9) hold through level (i - 1), i --n(2), and i > 1, then K,(E~(M); Z) 

satis/ies duality. 

Once we have these duality statements, the obstruction groups are the same as those 

in Section 12, and the arguments in 12 can be carried over to show that  it is possible to 

complete surgery to make M a homotopy sphere. 

Statement 14.3 (a) is obvious from the fact tha t  Ex(S ~n-1) = S  k-1. Statement 14.3 (b) 

is much more subtle. I t  requires the following lemma. 

LE~MA 14.4. Let S = S  kn-~ and let Y be the fiber of a l S ~ R P  k-l, i.e., let Y =  

O(n) • (k-1)(~-1)-1. The natural inclusion Y~-~S induces a Z/2-equivariant map 

E~(Y) ~E~(S). 11 i -  1(2), then 

(a) the involution on Et(S) acts trivially on H,(E~(S); Z[1/2]), and 

(b) the induced map 

H,(Et(Y);  Z[112]) zjz ~ H,(E~(S); Z[1/2]) 
is an isomorphism. 

Proo I. Let G(p, q) be the Grassmann of p-planes in q-space. Recall that  B~(S) ,,~ G(i, k) 

(see 2.5). Also, E~(S)-  Bi_l(S)= 13~(S) is homotopy equivalent to ~(i, k), the Grassman of 
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oriented/-planes. For this proof all homology is taken with Z[1/2] coefficients. The proof 

consists of establishing the following: 

(1) The inclusion of the fixed point set of the involution B,_I(S)--->E~(S ) induces an 

isomorphism on homology. (This implies (a).) 

(2) The Z/2-action on G ( i - l , k )  induced by the involution (xl, x ~ . . . . .  xk}~ 

( - x l ,  x2, ..., x~) acts trivially on H , ( G ( i -  1, k)) and hence, 

p . :  H , ( G ( i -  1, k) z/2 -~ H,(G( i  - 1, k)/(Z/2)) 

is an isomoi]ahism. 

(3) There is a homotopy equivalence 

h: E,(  Y) / (Z /2)  ~ a ( i -  1, k)/(Z/2) 

so that  the following diagram commutes: 

H,(E,(S))  , H,(B,_x(S))  ~ H , ( G ( i -  1, k)) 

H,(B~(Y))Z~2 (p,)-~ 

H.(E,(Y)/ (Z/2))  ~ , H. (G( i  - 1, k)/(Z/2). 

We have that  E+(S) is homotopy equivalent to the double mapping cylinder M+ O Me, 

where: 

o(k) ~ .  ~ ( i -  1, k) 
s (o( i -  1) • o(1)) • o ( ~ -  i) 

1 ~ 
0(i, k) 

Since the fiber of 0 is RP ~-1 and ( i - 1 )  is even, 0 is a Z[1/2]-homology equivalence. 

This proves (1). 

Consider the natural action of O ( k - 1 ) c O ( k )  on G ( i - 1 ,  k). The orbit space is clearly 

an interval. Therefore, G ( i -  1, k) is homeomorphic to the double mapping cylinder M~ U M•, 

O(k - 1 ) ~z 
, G ( i - ~ ,  k - l )  

O(i- 2) • O(k -  i) 

G(i- l, ~ -  1), 
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where g is the canonical S~-kbundle and fl is the canonical S ~ S-bundle. The involution on 

G(i-1, k) has fixed point set G(i-2, k)I_[G(i-1, ] c - l )  and it acts by the fiberwise anti- 

podal map on each sphere bundle. Since i - 2  is odd, the involution is trivial on the homol- 

ogy of the total space of fl and hence, on H,(G(i-  1, k)). This proves (2). Clearly, G(i - 1, It)~ 

(Z/2) is homeomorphic to the double mapping cylinder given by 

0(~ -  1) 
0(i-2)• • O(Ir �9 G(i-2,  k -  1) 

1 
G(i-  1, k -  1) 

and this double mapping cylinder is also clearly homotopy equivalent to E~_l(k- 1)/(Z/2) 

E~(Y)/(Z/2), proving (3). 

In order to prove that  K,(E~(M); Z) is dually paired with itself, it clearly suffices to 

prove that  the pairings on K,(E~(M); Z(u)), K,(E~(M); Z[1/2]) + and K,(E~(M); Z/1/2])- 

are non-singular. Here K,(E~(M); Z[1/2]) • denotes the ( •  1)-eigenspace of the involution. 

(Since ( ] c - i - 1 )  is even, the involution on Et(M ) is orientation preserving.) The case of 

Z(2) coefficients presents no problem, since E~(M)~Ei(S ) is of odd degree and a Z(~)- 

equivalence on the boundary, According the above lemma, H,(E~(S); Z[1/2])-=0; hence, 

H,(~E~(S); Z[1/2])-=0. Consider the bundle alE~(M)-->B 1 with fiber EI(Y ). Since the 

natural involution and the involution induced by ~I(B1) are the same on H,(EI(Y)) and 

since H,(B1; Z[1/2] - )=H, (RP k 1; Z[1/2]-)=0, it follows from the Serre spectral sequence 

that  H,(~ E~(M); Z[1/2])-~=H,(~E~(S); Z[1/2])-=0. From 7.2, we know tha~ 

H,(~E~(M) - ~1E~(M)) --+ H,(~E,(S) - ~1Et(~)) 

is an isomorphism, Thus, K,(E~(M); Z[1/2])-=H,(E~(M); Z[1/2])- is dually paired with 

itself. 

Finally, we consider K,(E~(M); Z[1/2])+. We know tha t /1 :B1  -~R1)~-I is an isomor- 

phism on integral homology in dimensions ~ / c - 2  and is of degree d, Arrange that  f~l(y0) = 

x 0. (Of course, the local degree of/1 and x 0 must be d.) Let  Fxo~ E~(M) be the fiber over 

x 0 in ~IE~(M) and Fy,~ E~(S) be the fiber over Y0 in ~IE~(S). Clearly, Fzo~Fyo is a dfffeo- 

morphism and Fyo~E~(Y). Since H,(E~(S), Fyo; Z[1/2])+=0, it  follows that  K,(E~(M); 
Z[1/2])+=H,(E~(M), F::o; Z[1/2])+. By duality, H,(E,(S), ~E~(S)-Fy.; Z[1/2])+=0. We 

claim that  K,(~Ei(M)-Fx,; Z)=0.  The reason is that  aE~(M)-F~:o is made up of two 

pieces, to wit: ~E~(M)-~IE~(M) and ~IE,(M)](B~ • (Xo}). Both pieces, as well of their 

intersection, are mapped by homology isomorphisms to the corresponding pieces in 



210 M. DAVIS,  W.  C. H S I A N G  AND J .  W.  MORGAN 

~E~(S) -F~.. Consequently, K,(E~(M); Z[1/2])+ =H,(E~(M), ~E~(M) -Fx,; Z[1/2])+. Hence, 

we have identified K,(Et(M): Z[1/2])+ with two different relative homology groups which 

are dually paired by Poincar~ duality. 

This completes the proof that  the groups K,(Ei(M); Z) have dual pairings and hence, 

that  the surgery groups are the same as those in Section 12. Hence, all degrees specified 

by 14.2 occur, and we can vary ~1 by any element of trivial Arf-Kervaire invariant (in 

the appropriate surgery group). 

Restricting actions. Suppose Q is a linear action of G on a sphere S q and that H c  G is 

a closed subgroup. Also, suppose that  there is a smooth H-action on a homotopy sphere 

Y~q, which is modeled on ~ I H. I t  makes sense to ask if the H-action on ~q is the restriction 

of some smooth G-action on Zq which is modeled on Q. If  such a G-action exists, then we 

can ask if it is unique. Here, we shall be concerned with the ease where G and H are chosen 

so that  we remain within the category of regular actions of the orthogonal, unitary or 

symplectic groups. In  general, such questions appear to be very difficult; however, up to 

concordance they are all easily answered (except for the usual difficulty with low dimen- 

sions). 

Let Gd(n) stand for O(n), U(n), or Sp(n) as d = 1, 2, or 4 and consider the embedding 

= rg~ + l: G~(n) ~ O(drn + 1), 

where ~ denotes the standard representation and l the trivial/-dimensional representation. 

Then the process of restricting on O(drn +/)-action to ac(Gd(n)) defines a homomorphism 

~,: 01(k ', n', m')-+0~(k, n, m), where k =]c'r, m =tl +m' ,  n' =drn +l. By using the results of 

Sections 11, 12 and 13 and those in [11], we can always compute the map ~, (provided 

n >~ ]c and we stay away from the exceptional cases). Rather than trying to write down the 

answer in all cases, we shall be content with considering the most interesting ones. 

TH]~OR~M 14.5. Suppose that n > ~ k , m ~ 0 , 4  and that m+dk~4. Then the map 
co,: O~(/c, n + l ,  m)-+O~(k, n, m+dIc), induced by c o = ~ - b l :  Gd(n)--->Ga(n+l), is an isomor- 
phism. 

Proo/. For d = 2  or 4, this follows from [11]. Suppose d=l. If /c  is odd or if m is odd, 

then both groups are trivial. If  k is even and ]c~2, then we have the following diagram, 

01(k ,n+l ,m ) w, >01(k,n,m+lc ) 

(ao, ~ l ) ~  ~ l ,  ao) 

Lm(R~) + L,~+~(R_~) 
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where e - - ( - 1 )  ~+1. By definition, %((9,(Z))=~I(Z) and ~l(~o,(Z))=~2(Z). By 11.3, a2(Z) 

g0(Z). Hence, the diagram commutes. The result now follows since (ao, al) and (al, a0) are 

monomorphisms with the same image. Similarly, if k = 2 and m--2/,  we have the following 

commutative diagram, 

01(2, n +  1, 2l) co. >01/2, n, 2 / + 2  ) 

II~ 12 
e H ~e HC2z-1 C~I+1 

where e = ( - 1) ~+t and ~ = ( - 1) ~. 

Remar]c. I t  is interesting to speculate about the map w.: 01(2, n + 1, 2)-~O1(2, n, 4). 

T ~ O R ] ~  14.6. Consider the map 

~,: O1(2, n', m') -~O~(]c, n, m) 

where a = r ~ + l :  Ge(n)-->O(n'), n' =drn + l, ]c= 2r and m =  21+ m'. Suppose n >~ ]c. 

(I) ~.  is onto except in the ease d = l ,  ]c~0(4) and m~0(4).  

([I) Suppose that d = l , r = 2 q  (so that k=4q),  and m=4s  and that s = ( - 1 )  n. Then 

( - -1 )n ' ( -  1) m'/2= + 1 and the [ollowing diagram commutes: 

01(2, n' ,  m ' ) -  a* 

G§ 

. (~)I(]c ,  n, m) 

(% el) 

Lo(Re) + Lo(R-~) 

Lo(Z) �9 

The map fl associates to a Sei/ert /orm O, the integer ~ (the index o/(0 + ~0)). The map A is the 

composition Z ~ Z  + Z ~ Z  + W. It/ollows that in this case the co]cernel o] o~, maps onto W 

and that it is equal to W provided m ~ 4 .  

This theorem says that  for k~0(4) and m--0(4), there are ]c-axial 0(n)-actions on 

homotopy spheres which are not the restriction of any bi-axial action even up to concord- 
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ance; but that  in all other cases every k-axial Gd(n)-action is concordant to the restriction 

of some bi-axial action of the orthogonal group. 

The proof is completely straightforward and is left for the reader. 

RemarIr No t  every element of coker (~,: 01(2, n', m')--->(~l(~, n, m)) actually represents 

a new example of an action. For, suppose that  Z represents an element of ~1(2, n', m'). 

An orientation for Z (as a manifold) determines one for {~.(Z)} ~ E ~ where 2q =r. 

Let ~ '  denote ~.(Z) with the orientation of {~,(Z)} ~ reversed. If  ~.(Z) represents 

(x, x) e Z + Z ~ Z § W ~ Ol(k, n, m), then Z '  represents (x, -x ) .  I t  follows that  every element 

in the subgroup {(x, y) fi Z + Z{x + y  ~0(2)} can be represented as the connected sum of 

the restriction of two bi-axial actions (possibly after changing an orientation). 

15. Surgery lemmas 

In  Sections 12 and 14, we used several surgery lemmas. In this section we shall prove 

them. There are three types of results. Those of the first type, 15.1, 15.2, and 15.3, are 

product formulae for CP ~l- and RP2Z-bundles. Next, 15.4 and 15.5 relate surgery obstruc- 

tions of fixed points of semi-free S 1- or Z/2-actions with the surgery obstruction for the 

whole manifold. Lastly, there is a technical lemma about surgery on even dimensional, 

non-orientable manifolds which was used in 12.2. 

Usually a product formula means a determination of the surgery obstruction of a 

normal map crossed with a closed manifold in terms of the surgery obstruction of the 

original normal map and invariants (often homological) of the closed manifold. Here, we 

have a slightly broader notion in mind. We shall begin with a normal map and a fiber 

bundle over the range with fiber a closed manifold. We pull back the bundle over the do- 

main and take the induced normal map between the total spaces. We want a formula for 

the obstruction of this normal map in terms of the surgery obstruction of the map between 

the bases, the fibers, and the action of the fundamental group of the base on the fiber. 

I t  is a general principle that  the only information about the bundle which is needed is the 

action of the fundamental group of the base. Thus, for example, if the group acts trivially 

on the fiber, then the formula for the bundle is the same us for the trivial bundle. 

Recall that  ~ A ~  1 is an RP ~-~-1 bundle over A s. Also, ~E~+ 2 is a CP k ~ 1 bundle over 

A s with the action of ~I(A~) on (~pk-i-1 given by complex conjugation (see 3.3). We begin 

our study of the product formulae with bundles of the second type. 

T H ]~ 0 R ]~ M 15.1. Let / :  (M 4m, ~M) -> (N 4m, aN) be a normal map between orientable mani- 

]olds with ~I(N) = Z/2. Suppose / {~M induces an isomorphism on R[Z[2]-homology, where R 
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is a subring o/Q. Let E--> N be a fiber bundle with fiber CP ~ and with z l  ( N) acting on H.(CP 2z) 

via complex conjugation. Let g : / * E ~ E  be the induced normal map between total spaces. I /  

(a , j+f l ,~)  represents a(/) in Lo( R[Z/2], +), then (a , j+( -1)zf l , f f )  represents a(g). 

Proo/. We can always vary  / by  a normal bordism relative to ~M without changing 

a(g) or a(/). Surgery below the middle dimension on ] allows us to make K~(/; Z[Z/2])=0 

for i <2m. Additional surgery in dimensions 2 m - 1  and 2m allows us to make the inter- 

section form on K~m(/; R[Z/2]) equal to :r +flijy. 

The kernel modules for g are 

K~m+~(g; R[Z/2]) = K2m(/; R[Z/2J)| Z). 
Z 

We can do surgery below the middle dimension to kill all the kernel modules for g except 

K2~+2z(g; R[Z/2]). Since all the modules are free, this process will leave K2~+2l(g; R[Z/2]) = 

K2~(]; R[Z/2])| Z), and will not change the intersection form on this module. 

I f  xEK2m(/) is represented by an immersion i: S~m-->M, then i*/*E is the trivial bundle 
2m over Sz . Hence, the class x| EK2m+~z(g ) (with co 6H2l(CP2~; Z) a generator) is represented 

by the immersion 
S~ m • CP z ~ S ~  m • Cp2z-+/*E 

Given two such classes x I | co and x~ | co, we can arrange tha t  the immersions S~-+ M have 

only transverse points of intersection. Above a point with intersection number  ~e we find 

two copies of CP ~, one from each cycle. Their intersection number is § 1. Hence, such a 

point contributes ~ e to the intersection number  of (x 1 | co). (x 2 | w). Above a point of inter- 

section of S 1 and S 2 with ~? as intersection number, we can find two copies of CPZ; but, 

this time, one of them represents w while the other represents the result of complex con- 

jugation on w, i.e. (-1)zeo. Hence, such points contribute (-1)I(~7 to (xl|174 

Summing over the points of intersection gives (x 1| (x 2 | =a § ( - 1)Zb~ if x l .x  2 = 

a + by. The result follows easily. 

THEOREM 15.2. Let /: (M 4m, ~M)-+(N 4m, ~N) and E-+N be as in 15.1 except that 

7el(N ) acts trivially on H,(CP2~). Then (~(/) =(~(g) in Lo(R[Z/2], + ). 

Proo/. The proof is exactly the same. 

There is an analogous theorem for RP u~. 

T ~ O R E ~  15.3. Let / :  (M ~m, ~M)-~(N ~m, ~N) be a normal map with ]1 (~M) inducing 

an isomorphism in Z/2-homology. Let E ~ N  be a fiber bundle with fiber RP ~:. The Ar/- 

Kervaire invariant o/ g: /*E--> E equals that o/ /. 
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Proo]. Once again it suffices to consider only normal maps / such tha t  Ks(l; Z[~I[N]) = 0 

for i <m.  The kernel groups Km+,(g; Z/2) are then equal to Kin(/; Z/2) |  ez, Z/2). To 

calculate the Arf-Kervaire invariant  of g we must  consider the intersection and self-inter- 

section form on Km+z(g; Z/2). We claim tha t  under the identification 

Km+z(g; Z/2) = Kin(l; Z/2)| Z/2) = Kin(l; Z/2) 

the self-intersection forms for / and g agree. The argument  is similar to the CP21-case. 

Namely, xQ~oEKm+z(g; Z/2) is represented by  

S~ • RP z ~ S x  • RP 2I-+ E 

where S~-+ M represents x and S~ • RP2Z-> E is just a trivialization of E IS x. (This t ime oJ 

represents the non-trivial class in Hl(RPeZ; Z/2).) Above each double point of Sz--->M we 

have a doubled copy of RP ~ in RP 2~. Shifting one copy transverse to the other leaves a 

single point of self-intersection of S~ • RP z. Thus, the number of double points of Sx • 

RPl-~ E equal tha t  of S x ~ M .  I f  we begin with an immersion of S~ into M whose normal 

bundle, thought  of as a reduction of the stable normal bundle of Sx in M, extends to a 

reduction over D re+l, then the number  of double points of S~-->M is the value of the self- 

intersection for / on x, see [31] and page 46 in [34]. The resulting immersion of S~ x RP z 

into E has a normal bundle which extends to a reduction over Din+ix RP z. Hence, the 

number  of double points (rood 2) is the value of the self-intersection form for g on x| 

This shows tha t  the forms for g and / agree, and hence, tha t  their Arf-Kervaire invariants 

agree. 

We turn now to the two theorems required in the proof of 11.3. 

TX],~OREM 15.4. Let M 2l and ~y2z be oriented mani/olds with semi-]ree Sl-actions. Let 

F 2~ ~ M and F ' ~  :V be the fixed point sets. Suppose g: (M, ~M)---> (N, ~N) is an equivariant, 

strati/ied normal map with glUM inducing an isomorphism on R-homology. (R~  Q.) Then 

(r(g] F)EL2,(R) and (r(g)EL2z(R) are equal. This is interpreted to mean that both are 0 i/ 

21 ~ 2p(4). 

Proo/. We shall use the notation of Section 1. Thus h4F means M blown up along F.  

Let  v ~ M and v ' ~  N be equivariant normal bundles with ~v and ~ '  the associated sphere 

bundles and with g: (v, ~ ) - ~  (r', Or'). Things are simplified somewhat by  assuming tha t  F '  

is connected, though the proof given can be modified slightly to work in the general case. 

Also, since we are calculating simply connected obstructions, we can assume tha t  F '  and 

hr are simply connected. Since g[~M is an R-homology equivalence, so is g l~F (by Smith 

Theory). Note that:  
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(a) the map induced by g, g: ~M~F/SI-+~N~F'/$1 is an isomorphism on R-homology, 

(b) h: ~ / S I - + ~ ' / S  1 is a bundle map covering gl F, and 

(c) the fibers of a~'/S 1 are CP~-~-Vs. 

Let  us dispose of the case 2 1 - 2 p - 2 ( 4 ) .  In  this case the fiber is CP 2Z. Hence, 15.2 says 

tha t  a(glF)=a(h ). By (a), we see tha t  a(h)=cr(h U g) in L21_2(R). This last obstruction is 

zero since h U ~ is the boundary of the normal map induced by g from ff'Is,/S 1 to ~(HS 1. 

This proves tha t  a(g] F) = 0 in Lep(R ). Thus, we can do surgery to make g] F an R-homology 

equivalence. Then I~IF/S1--->Ns~,/S 1 is an R-homology equivalence on the boundary and of 

odd dimension. Hence, we can do surgery on this map, relative to its boundary, to make 

it an R-homology isomorphism. After we do this, the resulting map on total  spaces is an 

R-homology isomorphism. Hence, a(g)6L2z(R) is zero. 

We turn now to the more interesting case - -2 / -2p(4 ) .  This t ime we can do surgery 

below the middle dimension on (g[ F): F--->F' until Ki(F; R) =0 for i < p  and Kv(F; R) is a 

free R-module with intersection form Jt and self-intersection form ~u. Now we do surgery 

on )~: IVI'HSI-~NF./S 1 until K~(ff4F/S1; R ) = 0  for i < l - 1 .  Since gz_~(~(ffiF/S1); R)=0 ,  the 

intersection pairing 

g,_~(ffls:lS1; R) | gl(]~lIFIS1; R) --> R 

is non-singular over Q. Hence, surgery on a basis for the free par t  of Kl_l(ffiI~./S1; R) pro- 

duces a new equivariant stratified map g': M'--->N such tha t  

^ t  1 (a) K~(Ms~IS ; R)=0,  i < l - 1  and 

(b) Kl_l(ffil'F/S1; R) is torsion. 

^ t  1 I t  follows by duality tha t  Ki(MFIS , ~/$1; R)=0  for i >~l. Also, since 1 > p ,  Kl(M'; R)= 

K l ( / ~ ;  R). Consider the Gysin sequence for the circle bundle Ms,--->Ms,/SI:̂ ' ^ '  

^ p  # # 

0 ---.'- Kz_~(MFIS~; R) ~ Kz(h:/F; R) ---> Kz(h.~IpIS~; R) ->- O. 

The first te rm is torsion and the last is equal to (via the inclusion map) Kz(~,/S1; R). Thus 

Kz(M'; R)/torsion = Kl(Ms,; '̂ R)/torsion = Kl(Mp/Ŝ ' 1; R) 

= Kz(av/S1; R ) =  Kv(F; R)| z v-l; Z). 
Z 

We claim tha t  under these identifications the intersection and self-intersection forms 

on Kz(M'; R)/torsion and Kp(F; R) agree. To prove this non-obvious fact, we need a geo- 

metric description of the identification of K~(M'; R)/torsion and Kp(F; R). Given 
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xEK~(F; R) represent it by  an immersed sphere S~-~F. The CP z-~-I bundle over F is 

actually the projective bundle associated to the complex structure on ~ induced by  the 

St-action. I f  we restrict this bundle to S~, then it is trivial. Set q=�89 and consider 

S~ • CP q 1_~ (O~)/S1. Over each double point of S~ we have two copies of CPq-I~CP ~-p-1. 

General position allows us to assume tha t  they are disjoint standard linear sub-projective 

spaces. The cycle S~ • CP q-l-~ (O~)/S 1 bounds a relative cycle Zzx -1 -~ 1V~I'~/S 1, which represents 

a class in K~_~(~'F/S 1, Ov/S1; R). The class in /~z(3I; R) which corresponds under our 

identification to x EK~,(F; R) is represented by 

l -1  l -1  l -~  r (z~)uEz 

where g: I"V~I'F~(ff4'F)/S 1 is the projection map and E t-v is the 2( / -p)-dimensional  disk 

bundle associated to Sv~ • CP q-l--> (0~ [ Sx)/S 1. Clearly, if we are given 2 such classes x, y E 

Kp(F; R) we can take the resulting Z~ 1 and Z~ -a to be disjoint. Hence, the geometric 

intersection of the cycles ~z and ~u will occur exactly and the points of intersection of S z 

and S u in F. 

Near a point of intersection ~, and ~y will be Ez .E  ~ where Ez and Ev are complex 

sub-bundles of v ]S~ and v ]Sv. I f  S~ and Sv are transverse, then we choose these bundles 

to have transverse fibers over each point of intersection. These two linear subspaces have 

intersection + 1. Hence, ~ .  ~ = S~. S~. 

F 

This proves tha t  the intersection forms on K~(F; R) and K~(M'; R) agree. I f  we begin 

with 5~-~F  consistent bundle data, then S~xCPa-I~Ov/S ~ is also consistent with the 

bundle data. We take Z~ -1 (or some odd multiple) to be an embedded manifold whose 

normal bundle is consistent with the bundle data. Then $~-~ M is consistent with the 

bundle data. Hence, the self-intersection forms take the same values of [~x] and x. 

This proves tha t  a(g] F)=a(g) in L2z(R ). 

THEOREM 15.5. Let M z and N z have smooth Z/2-actions with F~c  M and F ' ~  N a~s 

]ixed point sets. Suppose g: (M, OM)-+ (N, ON) is an equivariant strati]ied normal map with 
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g lOM inducing an isomorphism on Z/2-homology. Then the Ar]-Kervaire invarian$ o] g] F 

and the Arf-Kervaire invariant of g are equal. This is interpreted to mean that both are 0 i] 

either 1o or l is odd. 

Proof. First note tha t  if g ] OM is a Z/2-homology equivalence, then (by Smith Theory) 

so is gl~F.  Hence, the Arf-Kervaire invariant  of gl F is defined. In  this proof we use the 

notation established in 15.4. All coefficients are Z/2. 

The case l ~p(2)  is proved using Theorem 15.3. 

Let  us consider l~=p ~0(2). By surgery, below the middle dimension, we can assume 

tha t  K~(F)=0 for i<p/2,  tha t  K~()~F)=0 for i<(1/2)-- l ,  and tha t  K~z/2~_~(~,/(Z/2))-+ 

K~z/2~_I(I~IF/(Z/2)) is trivial. We have a diagram of long exact sequences: 

1 
K,~(e~/(z/2))  

, K ~ ( ~ F / ( Z / 2 / /  t r  , K ~ ( ~ , /  ~* , N ~ ( ~ , / ( Z / 2 / /  . . . .  

1 
The transfer map, tr, assigns to a cycle in h=/F/(Z/2) its total  inverse image in /~F" I f  

the original cycle is immersed consistent with the bundle data of the normal map, then so 

is its double cover. On the other hand, the number  of points of self-intersection of the 

double cover is even. Thus, the self-intersection form vanishes identically on the image of 

tr. The transfer is dual to the map i . o ~ . .  Hence, performing surgery on a basis for the 

image of tr, leaves a subquotient of Kz/2(h~F) which is (Im (tr))• (tr). (If l=0(4),  then 

it may  not be possible to do this surgery geometrically but  algebraically the form on 

Ku2(N~) and the one on (Im (tr))• differ by  a hyperbolic form.) 

Since K(zl2) l(~/(Z/2))-+Kczi2)-l(ff/IF/(Z[2)) is trivial, duality tells us tha t  

j , :  KI/2(~/(Z/2))-+Kz/2(fflF/(Z/2)) is an injection. Thus the subquotient of Kl/2(hi~; Z/2), 

(Ira (tr))• (tr) is identified via j , l o z ,  with KzI~(~/(Z/2))=Kp(F). W e  claim tha t  under 

this identification the intersection and self-intersection forms agree. I f  we can show this, 

then we will have proved tha t  the Arf-Kervaire invariants of g and g l F agree. 

The argument is similar to the one in the Sl-case. If  we begin with an immersed cycle 

15- 792902 Acta mathematica 144. Imprim6 le 8 Septembre 1980 
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S~/e-+ F representing x in K~2(F), then we construct an immersion representing the corre- 

associate to S~ F the ~mmersmn sponding class in Kt/2(M), as follows. Set q = �89 - p )  and ~/2_~ �9 �9 

S~/2 X R P  a-1 r X R P  ~ ~-~--> (e~)/(Z/2) 

(where the second term represents a trivialization of ~v/(Z/2)-~ F pulled back to S~/2). We 

choose the two copies of RP q-1 in RP I-~-1 over each double point of S~-> F to be disjoint 

linear subspaces. We extend the resulting embedding of S ~/2 • RI  )q-1 to a immersed mani- 

fold Zz/2--->ff4F/(Z]2) which represents a relative class in Kl12(ff4p/(Z]2), ~v/(Z/2)). A cycle 

representative for the class in KI/2(M) corresponding to xEK~I2(F ) is ~=7c-1(Z~/~) U Ez q 

where E~ q is the disk bundle associated to the S~/~ • RPq-L Clearly, the number  of double 

points of this immersion is twice the number  of double points of Z z/~ plus the number  of 

double points of S~/2. 

I f  both the original immersion of S~/~-> F and the embedding Z ~ I ~ / ( Z / 2 ) h a v e  

normal bundles which are consistent with the bundle data covering the normal map, then 

the same will be true for the resulting immersion of ~ - > M .  Hence, the self-intersection 

form for g evaluated on [$~] equals tha t  for g ] F evaluated on x. This proves that,  modulo 

hyperbolic forms, the form on K~/~(F; Z/2) and the one on K~/2(M; Z/2) are equivalent. 

Thus, the Arf-Kervaire invariants of g and g [ F are equal. 

LEMMA 15.6. Let ~: (W era, ~W)-+(Z 2,n, ~Z) be a normal map with zl(Z) =Z/2,  Z non- 

orientable, and 2m>4 .  Suppose K~(~f I~W; Z(2)[Z/2])=0/or all i and that the Ar/-Kervaire 

invariant o/~f is O. Then ~9 is normally bordant, relative to y)]~W to ~' such that: 

(a) Kdy)'; Z(2)[Z/2])=0 /or all i, 

(b) KdyY; Z[Z/2])=0 /or i < m - 1 ,  and 

(c) gm_l(W'; z-)=o. 

Proo]. Surgery below the middle dimension can be performed so as to make 

K,(y); Z[Z/2]) = 0  for i <m.  Consider Kin(y); Z[Z/2])/T where T is the sub-module of elements 

of finite order. I t  is a free Z[Z/2]-module. I ts  intersection form is non-singular when ten- 

sored with Z(2). The Aff-Kervaire invariant of this form is 0 by  hypothesis. Since the 

Arf-Kervaire invariant induces an isomorphism L2~(Zc2)[Z/2], - )~-Z/2,  it follows tha t  

the form on Km(~p; Z[Z/2])/T becomes hyperbolic when tensored over Z with Z(~ ). Let  

/~ |  ~ , (Km(~; Z[Z/2]/T)| 
Z 
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be an isomorphism between a hyperbolic form and the geometrically defined forms on 

K~(~). This map ~ defines a splitting H| of K~(yJ; Z[Z/2])/T; namely 

H =~(/ / )  n (K~(~; Z[Z/2])/T) and H' =~(//*) n (Km(~; Z[Z/2])/T). 

In  this splitting the matr ix  for the intersection form is 

( _  0 1)~(t.~) 0 A) 

and ~tlH is 0. The matr ix  A is a Z[Z/2]-matrix, which is non-singular over Z(2)[Z/2]. We 

will show tha t  there is a splitting ~: n O / / *  ~ Km(~; Z(2)[Z/2]) of this type so tha t  the 

matr ix  A becomes non-singular when reduced to Z-  (i.e., if in each entry of A we set 

= - 1, then A becomes a non-singular integral matrix). I f  we have such a decomposition, 

then surgery on a basis for H produces a normal bordism from V to a normal map  V' such 

tha t  K~_I(~'; Z-)  =0.  To see this let U~--~-*Z x I be the normal bordism created by adding 

(m+ 1)-handles along embedded spheres representing a basis for H. Let  ~v': W'-->Z be the 

"other end". Then Ki(U , W; Z[Z/2]) =0  for i ~ m +  1 and K,n+,(U, W; Z[Z/2]) = H .  Further- 

more, K~(U, W'; Z[Z/2])=K~+I(U , W; Z[Z/2])*. The map 

KIn(U; Z[Z/2]) j* > Km(U, W'; Z[Z/2]) 

H '  + H* 

sends h' E H '  to the homomorphism whose value on h E H is ( -  1) m" 2(h', h). I t  follows that  

the map ?'. is identified with ( -  1)m.A. 

I f  A -  is non-singular over Z- ,  then looking at  the long exact sequence of the pair 

(U, W'), we see tha t  K~_I(~'; Z - ) = 0 .  

Thus, to complete the proof of 15.6, it remains only to find the required splitting of 

Km(~v; Z[Z/2])/T. Given one splitting H| ~K~(~;  Z[Z/2])/T in which A is not neces- 

sarily non-singular, then changing bases for H and H '  corresponds to performing row and 

column operations on A. Since the Whitehead group of Z(2~[Z/2] is 0, this allows us to 

assume tha t  A is a diagonal matrix.  Now, we can inductively t reat  the problem of finding 

a new splitting in which A -  is non-singular. Hence, it suffices to consider a 2 • 2 subspace 

of H Q H '  with bases h and h', with/x(h) =#(h ')  = 0  and with intersection pairing given by  

( 0 Oob ) ( _  1)re(a_ by ) , a +  b -  1(2). 
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I t  is necessary  to  enlarge this  space b y  forming the  or thogonal  sum wi th  a hyperbol ic  form 

with  basis (e, ]}. Geomet r ica l ly  th is  can be accompl ished  b y  doing a t r iv ia l  surgery  in 

d imension  ( m -  1). Le t  2s + 1 = a  +b .  I f  s---0(2) define a new basis to  be 

I f  s ~ l ( 2 ) ,  t hen  we t ake  the  new basis to  be 

{ h ( 1 - y ) - e ( s ( 1 - y )  + l ),h' + /(l + y),h ( S ~ )  (l + y) + f(s(l + y) + l ) , h - e  ( ~ )  (1 -y ) } .  

I n  e i ther  case, /~ vanishes  on all  the  given basis  e lements ,  and  the  m a t r i x  for t he  in ter -  

sect ion pai r ing is 

0 0 s(1 + y) + 1 0 

0 0 0 ( -  1 )m[(a-  b r -  (s + e) (1 - 7)] 

( -  1)'~(8(1 -~)  + 1) o o o 

0 (a + by) - (s + ~) (1 + ~) 0 0 

where  e = 0  in  t he  f irst  case and  s = 1 in  the  second. One sees i m m e d i a t e l y  t h a t  in e i ther  

case, t he  m a t r i x  A is non-s ingular  when reduced  in to  Z- .  
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