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In the classical literature on curves, it is repeatedly asserted that the divisors of
degree » and (projective) dimension at least r depend on at least (v +r) parameters, with
7=(r+1)(n—r)—rg where g is the genus. However, it was only recently proved that, if v
is nonnegative, such divisors exist. Meis [17] gave an analytic proof for the case r=1,
which involves deforming the curve over the Teichmiiller space into a special curve that
has an explicit (v +r)-dimensional family of such divisors. Kempf [10] and Kleiman-Lak-
sov [12] independently gave similar algebraic proofs for the case of any r, valid in any
characteristic, which involve constructing a global, finite cohomology complex for the
Poincaré sheaf and performing a local analysis of some resulting determinantal subvarieties
of the jacobian. Gunning [7], working over the complex numbers, gave a proof for the case
r=1, which uses Macdonald’s description of the homology of the symmetric product and
Hensel-Landsberg’s trick of choosing » minimal ([8], lecture 31, § 3, p. 550); otherwise, the
proof is akin to the proofs in [10] and [12].

We offer below another algebraic proof for the general case, which is conceptually
simpler and more natural. Our framework is the theory of singularities of mappings. We
observe that the divisors of degree » and dimension at least r are parametrized by the
scheme Z, of first order singularities of rank at least r of the canonical map from the vari-
ety of divisors of degree n to the jacobian, a base point on the curve having been picked.
(By definition, Z, consists of the points where the map of tangent sheaves is of rank at
least r.) Consequently, if Z, is empty or of the right dimension, then in the Chow ring its
class is given by a certain Thom polynomial in the Chern classes of the variety of divisors.
The Thom polynomial is evaluated (Proposition 16), and the value is then proved non-
zero if 7 is nonnegative by using the projection formula and Poincaré’s formulas. Hence,
divisors of degree » and dimension at least » must exist; otherwise, the value of the Thom

polynomial would be zero. In fact they abound: carried further, the proof shows that,
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if 7 is nonnegative, every closed subvariety of the jacobian of codimension 7 contains
the image of at least one such divisor, and moreover the weighted number of images con-
tained, if the number is finite and the divisors are of dimension exactly r, is equal to
rl..0l(g—n+2r)l..(¢g—n+r)! times the intersection number of the subvariety with the
(9 —7)-th power of the theta divisor.

The map of tangent sheaves associated to the canonical map from the variety of di-
visors of degree n to the jacobian can be represented locally by a matrix that was used by
Brill and Noether {1] to find the number (7 +7); their work is discussed in Remark 6. As-
suming 7 is equal to zero and the divisors of degree n and dimension at least r form a
finite number of linear series of dimension r, Castelnuovo [2] found the weighted number
of series is

1120 e 1020, ")

12l (r+r+10)1 7 withr'=(g—1—n+r);

the same number comes out above, the subvariety now being the whole jacobian.

The Thom polynomial giving the class of the scheme Z, of first order singularities of
rank at least r of a map of smooth varieties was determined by Porteous [19], under a
certain transversality hypothesis. This hypothesis is antomatically satisfied if Z, is empty,
and so Porteous’ work suffices for establishing the existence of special divisors. However,
the transversality hypothesis was relaxed to a more natural hypothesis, requiring simply
that Z, be of the right dimension, by Kempf and Laksov [12], and their work allows us
to determine the weighted number of images above, using the weighting indicated by the
scheme structure of Z,.

The Chern classes of the symmetric products of a curve were computed through a
series of articles ([14], [13], [20], [16]). The method in Mattuck’s article [16] is adapted in
section 3 to the varieties of divisors. Of course, the variety of divisors of degree » and the
n-fold symmetric product have been proved isomorphic ([3, § 6], [20], [9]), but each re-
presents a basically different point of view.

We would like to point out the influence of A. Mattuck. His article [16] inspired us to
reconsider the problem of the existence of divisors from the point of view of the variety of
divisors. A seminar talk he gave and many private conversations with him were very
helpful.

Throughout, we work over a fixed algebraically closed ground field k. The term
“variety’’ indicates a reduced and irreducible k-scheme of finite type. The Chow ring of a
smooth quasi-projective variety refers to the ring of cycles with integer coefficients modulo

rational equivalence.
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1. Porteous’ formula

Let X be a smooth quasi-projective variety. For each subscheme Z of X, let cycle (Z)
denote the element of the Chow ring of X determined by the cycle %n,Z;, where the Z,
are the irreducible components of Z and =, is the length of the (Artin) local ring of Z at
the generic point of Z,. For each locally free coherent sheaf F on X, let

(B)(E)=1+c)(E)t+co( BB+ ...

denote the Chern polynomial of B, whose coefficients ¢,(E) are the Chern classes of £ in
the Chow ring of X. Finally, for each formal Laurant series with coefficients in any given

ground ring,
c(t) =...Fc_pt 2+c i1 Fey et ettt

and for each pair of nonnegative integers a, b, set

Gy Cp+1 s Cpta-1

Cv-1 % ces Cpta-g
A, o (c(t)) =det

C-at1 Co-atz - O

The formula below for cycle (Z,(x)) is known as “Porteous’ formula”; it is proved un-
der the hypotheses below by Kempf and Laksov [11, Cor. 11] and under more restrictive
(transversality) hypotheses by Porteous [19, Prop. 1.3, p. 298].

THEOREM 1. Let u: E— F be a map between locally free coherent sheaves on X, say of
ranks p and q. Let r be a nonnegative integer satisfying the condition, (p —q) <r <p. Let Z(u)
denote the scheme of zeros of the exterior power A® " Vu.

(1) If Z,(u) is nonempty, then we have an estimate,
codim (Z,(u), X) <r(g—p+r).
(ii) If Z,(u) is empty or of pure codimension r(g —p +r), then we have a formula,
cyele (Z,(u) = Aq-pin.: (c(F) D)fc(E) (t)).

CoROLLARY 2. Let f: X—>Y be a morphism between smooth quasi-projective varieties,
say, of dimensions p and q. Asswme that each scheme-theoretic fiber of f is smooth. Let r be a

nonnegative integer satisfying the condition, (p —q) <r <p, and consider the closed subset of X,

o ={z€X |dim, (f-(z)) >r}.
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(Notice that the condition on r is geometrically reasonable, for by general theory in a mor-
phism of varieties the dimension of each fiber is bounded above by the dimension of the

source and below by the difference of the dimensions of the source and target.)

(i) If G" is nonempty, then we have an estimate,
codim (G", X) <r(g—p+r).
(i) If G" is empty, then we have an equation
Aq-pin. (e(*TY) ()/c(TX)(8)) =0,
where TX and T'Y denote the tangent sheaves.

Proof. At each closed point z of X, we have a canonical exact sequence of tangent spaces.

u(z)

0T, ( f@)) > T (X) "> Ty (T),
and u(x) is equal to the fiber at x of the canonical map of sheaves,
uTX > fTY.
Therefore, x lies on the scheme Z, (%), clearly, if and only if the estimate,
dim T,(f(x)) = r,

holds. However, since f~f(x) is smooth, the above estimate holds if and only if the est-

imate,
dim, (ff(x)) >

holds. Thus, G" is the set of points of the scheme Z,(u). Consequently, the corollary follows

from the theorem.

2. Existence of divisors
Let X be a projective variety. Consider the canonical morphism,
12 Divgpy = Picxp),

defined by sending a divisor to its associated invertible sheaf.
Let L be a Poincaré sheaf on X x Pic(yy). By [6, Thm. 7.7.6, p. 69], there exists a

unique coherent sheaf @ on Pic y,, satisfying the equation,
Hom (@, G) = p(L®D: ),

for all quasi-coherent sheaves G' on Pic y,,). By [4, § 4, pp. 8-12], there exists a canonical

isomorphism,
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P(Q) = Div xp,),

and the structure map of P(Q) corresponds to f. Therefore, each scheme-theoretic fiber of
f is smooth.
Let r be a nonnegative integer satisfying the condition, (p —¢q) <r<p, and consider

the closed subset of Div gy,
G ={DE€Div | dim (f{D)) =>r}.

Corollary 2 immediately yields the following result because the tangent bundle to a group

variety is trival.

ProrosiTiOoN 3. Let S be an irreducible component of Div zy,. Assume S and Pic xy,

are smooth, say, of dimensions n and g.

(i) If G" N 8 is nonempty, then we have an estimate,
codim (G"'N 8, 8) <r(g—n—+r).
(ii) If G" N 8 is empty, then we have an equation,
Atgonn,r(1/e(TS)(£)) = 0.

From now on, assume X is a curve. Then, Div ;, and Pic g, are smooth [3, Cor.
5.4, p. 23 and 5, Prop. 2.10 (ii), p. 16] and decompose into irreducible components Div{x
and Piek;, according to the degree n of the divisors and invertible sheaves they para-
metrize. Furthermore, Div{y,, is of dimension n, and Piclx, is of dimensjon g, the arith-
metic genus of X. Set

G =GN Dz
Then G}, parametrizes the divisors of degree n that vary in a linear system of projective
dimension at least 7.

Fix a (closed) base point P, in the smooth locus of X, and normalize the Poincaré
sheaf L on X x Pic xy, by requiring its fiber over P, to be trival. Then P, is a divisor of
degree 1, and sending a divisor D to (D+P,) and an invertible sheaf M to M ®Ox(P,)
defines a commutative diagram,

Divizi ~ Divig
¥ i
Pickih, S Pickn
for each n. We obtain a morphism,

. L) : 0
b Divizm — Picc,
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which sends a divisor D of degree » to the invertible sheaf O(D —n P;). We also obtain

a canonical isomorphism,
s n
Divix = P(Qn),

where @, is the coherent sheaf on Picly, satisfying the equation,
Hom (Q,, &) =pa+[p1 Ox(nPy) ® L, ®p3 6],
for all quasi-coherent sheaves G on Picly,, where we have set
Ly= L|X x Picdy -
We now introduce the last of the general notation. Set
2 =0, (Opq, (1));

2, is an element of degree 1 in the Chow ring of Div(y,. Set

Won = Pae(1);
w, , is an element of degree (g —n) in the Chow ring of Picly,,. Finally, set
w(t) =1 +w,t+tw,t2+....
The following proposition is the object of the remaining two sections.

ProrosiTioN 4. Under the above conditions, we have the following congruence modulo

numerical equivalence:
¢ne (20 A(g—n+r), (1/e(T Divigp) (8))]
=[r!...0(g—n+2r)!... (g—n+r) w0,

The next result, our goal, is an immediate consequence of Propositions 3 and 4 and

of Poincaré’s formula (15, § 2, Formula 4] deg (wf)=g!.
THEOREM 5. Assume X is a smooth projective curve. Set
T=(r+1)(n—7r)—rg.
Then G, is nonempty and of dimension at least (v+r) if =0 holds.

Remark 6. About a hundred years ago, Brill and Noether [1, § 9, pp. 290-293] studied
the sets (}, using a matrix, which locally represents the map of tangent sheaves,

u: T Divigp > f*T Pictxum.
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Let D be a divisor of degree » on X, and also use D to denote the corresponding point of
Divixyy. By an argument like [18, Lecture 24, 3°, pp. 164-166], the fiber of « at D is easily

seen to be equal to the map of cohomology groups,
up: HY(Op(D)) - H'(Ox),
arising from the short exact sequence,
0— 04— Ox(D) - Oy(D) 0.
By general duality theory, the transpose of u, is equal to the natural map,
v H Q) > H® Qi ® Op).

Assume D is a sum of » distinct points P;, fix a holomorphic differential @ that is nonzero
at each P,, and fix functions ¢, ..., ¢, such that the differentials ¢, w, ..., ¢, form a basis

of H%(Q%). Then, locally at D, the map v is represented by the n x g matrix,

P1(Py) ... @, (Py)

P1(P) ... @, (Py)

which is the matrix used by Brill and Noether.

We reasoned from the structure of f that G}, is the underlying set of Z,(u) or, in other
words, that D lies in &, if and only if all the (n —r -+ 1) minors of the above matrix vanish.
Brill and Noether reasoned directly from the Riemann-Roch theorem: the vanishing of
the (n—r+1)-minors means that the number of independent holomorphic differentials
vanishing on D is at least (g —n»+r); whence, D varies in a linear system of projective
dimension at least r.

Brill and Noether assume X has general moduli. They suggest that, since the points
P, are constrained to move on a curve, setting the (»—r+1)-minors equal to zero yields
r{(g —n+r) independent equations; consequently, the dimension of G}, at D is precisely
(T +r). It is true that, in the affine space of all » x g matrices, the matrices whose (n—r +1)-
minors vanish form a subvariety of codimension 7(g —n +r); consequently, if &, contains
D, theén its codimension at D is at most r(g —n +r), whether or not X has general moduli.
Thus, Brill and Noether’s reasoning does yield the appropriate estimate of the dimension
of G}, for any X; however the exact dimension of G, when X has general moduli remains
conjectural. On the other hand, Brill and Noether do not consider the problem of prov-

ing that G, is nonempty if 7 is nonnegative, and their reasoning does not yield a proof.
12 —742909 Acta mathematica 132, Imprimé le 18 Juin 1974
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3. Chern Classes of Diviy ),
Keep all the notation and assumptions of section 2 (X is a projective curve, ete.).
LemMMa 7. For each integer, n there is a natural embedding,
fn: Divigi ~ Divixu;
Jn 18 defined by a surjective map Q,—Q,_;, and its image is the scheme of zeros of a section of
the tautological sheaf Opq, (1).

Proof. The short exact sequence on X,
0> Ox((n—1)Py) = Ox(nPy) > Op,~0,

and the Poincaré sheaf L, on X x Pick, together clearly yield a short exact sequence on

X x Pic(OX/k)’ . . .
0->pT 0x((n—1) Py) ® Ly®@ps @~ pi Ox (nPy) @ Ly®p3 G

~ p1 0p,® Ly® p; G~ 0,

for each quasi-coherent sheaf G on Picly,,. So, applying p,. and rewriting the terms, we

obtain an exact sequence on Picly,,
0—Hom (Q,_,, G) > Hom (Q,, )~ Hom (¢’, Q),

for an appropriate coherent sheaf ¢’ on Picl,,. Since this sequence behaves functorially

in @, it arises from an exact sequence,
Q' —’Qn - Qn—l 0.

This last sequence defines an embedding of P(Q,_,) into P(Q,) as the scheme of zeros of
the composite map,

QP(Q,,) - Q"-P(o,,) - OPm,,) (1).
However, since L, was normalized by requiring its fiber p} Op,® L, to be trival, @’ is clearly
equal to the structure sheaf on Pick,. Therefore, P(Q,_,) is embedded as the zeros of a

section of Opg (1), and the proof is complete.

Lemma 8. For each n, we have the formulas:

¢njn= ¢n—1 (81)
Ja(Zn) = 2n—1 (8.2)
Je (1) =2, (8.3)

Gas(Zh)=w, o, for each i >0. (8.4)
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Proof. Formulas (8.1) and (8.2) hold because j, is defined by a surjective map @,~@,_,
Formula (8.3) holds because the image of §, is the scheme of zeros of a section of Op,(1).

Combining (8.2) and (8.3) and the projection formula, we find for each i >0:

i+l

Jo (Zn-1) = i (L (22) = e (1) 2 = 257
Using this result, we easily establish the following formula:
TarFin—ty* o+ Jin—ieps (1) =25 for each i >1.
Applying (8.1) to this formula ¢ times, we obtain (8.4).

LeMmaA 9. For n> (29 —2), the sheaf Q, is locally free of rank (n+1—g).

Proof. The fiber of p}Ox(nPy)®L, over a k-point of Picly,, is an invertible sheaf R

on X degree n. So, we have:
HY(X,R)=0

dim [HYX, B)] = (n+1—g).

By the general theory of cohomology and base change [6, § 7.8, pp. 72-76], the first equa-

tion implies @, is locally free and the second gives its rank.

LeMma 10. Let J be a smooth variety, E a locally free sheaf on J of rank e, say. Let
h: P(E)—J denote the structure morphism, and set

2 =¢;(Opa(1))

v; = hy(26-13D) fori=1,2, ...
v(t) =1+t +o,t2+...
E*=Hom (E, 0)).

Then, we have the formulas:

(i) e(£*) () =o(t) ™
(i) c(TR(E)/J) ()= (1 +2t)T(h*0) (¢/(1 +2))] .

Proof. Recall from the general theory of Chern classes that we have an equation,
2t e (E¥)2f 1+ e, (BE¥) =0,

and the formulas, heztl1=1

hezt =0 for +=0, ..., (e—2).

Multiply the above equation by zt¢+? for ¢ =0, 1,...and add the products. Apply A,
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use the projection formula and the above formulas to simplify the equation, and add 1

to both sides. The result can be put in the following form:
(1 +cy(E*)t+ ... e (E*)10) (1 + ha(2°)t + hy(2°+1) 2+ ..) = L.

Formula (i) follows immediately.

We have an exact sequence on P(E),

0> Opw) ~> Oy (1) @ W™ E* — TP(E)[J 0.
It yields the formula,
c(TP(E)[J)(t) = c(Oper (1) QR* E*) (t).

So, applying a general formula about the Chern polynomial of a tensor product with an

invertible sheaf, we obtain the formula,
(TP(E)J)(t) = (1 +2t)°c(h* E*) /(1 +2t)).
Formula (ii) follows immediately from this formula and Formula (i).
ProrosiTion 11 (Mattuck). For each n=0, we have a formula,
(T Divixp) (1) = (1 +2,8)** " [($rw) (¢/(1 +2,8)] .

Proof. For n> (29 —2), the formula results immediately from Lemma 9, Lemma 10,
and Formula (8.4), and from the fact that T PicY,, is trivial and fits into an exact sequence.

0> T Divix/ Pic?xm) — T Divigipy—~ TPic?Xlk) —0.
On the other hand, for any n >0, there is an exact sequence,
0> T Divixiy—§7 T Divixuy—jn Op(q, (1)—~0,

because the image of 4, is the scheme of zeros of a section of Opq,(1). Consequently, using
Formulas (8.1) and (8.2), we easily see that if the formula holds for %, then it holds for

n—1.
4. Proof of Proposition 4

We begin with some general lemmas about the determinant A, o(c(t)) defined in sec-

tion 1.

LemMma 12. For each integer m, we have a formula,
Ab.a(tmc(t)) = A(b—m).a(c(t))-

Proof. The formula is obvious from the definition of A, ,(c(2)).
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Lrmma 13. Set m=(b—a). Then, for each z, we have a formula,
Ay, o((1+2t)"e(t/(1+2t))) = A, o(c(t))-
Proof. We clearly have identities,
A +z2t)™et/(1+2))=t"2 ¢, 4, /(1 +20)),, c(t)=E"2, 004t
So, by Lemma 12, it is enough to establish the formula,
AL (1 +2E))) = A, J(c'®) with ¢'(f) = Z ¢, it

Thus, it is enough to treat the vase with b= and m =0.
By definition A, ,(c(f)) is the determinant of the a x a-matrix C=[c,,, ], ; so it is
equal to the determinant of the product AC'B where 4 and B are the following two upper

triangular matrices with 1’s on the diagonals (a binomial coefficient (Z) with ¢ <0 is zero

by definition).

and B= [(—z) zj‘i] .
] i

A straightforward computation (involving setting j=a—r in 4 and i=$+1 in B) shows
that the (4)-th entry p,, in BCA is given by

a-ij-1 —1-—s —1-r\ , ir—s_
p”_=z zc'“”(j—l— ) (a )zH s=1

r=035=0 8 —i—r

On the other hand, A, ,(c(t/(1 +2)) is, by definition, the determinant of the a x a-
matrix {d,,,_ ;]; ; where d, is the coefficient of " in the expansion of ¢(¢/(1 +2t)). A straight-

forward computation (involving the binomial theorem for negative exponents) yields the

n—1 _
dy= > ¢ (m n) 2",

Thus, it is enough to prove p,, is equal to d,,,_;. So, clearly, it is enough to establish

the identity,
—1-s —-1-rn\ (m—a—j—1
) EE)-07)

where the summation is taken over r, s subject to the conditions,

formula,

0<r<o—4, 0<s<j—-1,at+j—it—r—s—1=m.

This identity, however, results immediately from the following well-known two:
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(D)=
() 0)-62)

where the summation is taken over g, s subject to the conditions,

0<g<p, 0<s<r, g+s=constant.

LeEMMmaA 14. For each z, we have a formula,

G R

Cooy oo Cptaz 2%V
Ay o (1 —2t) c(t)) = det

Co—a e Cp-1 1

Proof. Clearly A, ,((1—2t)c(t)) is the determinant of the a xa-matrix D=[d,,, ; ;
with d, = (¢, —2¢,_,)- On the other hand, multiplying the second row of the matrix on the
right-hand side of the formula by z and subtracting the product from the first row, then
multiplying the third row by z and subtracting the product from the second row, etc.,

0
clearly turns this matrix into one of the form [f:_ 1] . Thus, the formula holds.

LeEMMA 15. For each w, we have a formula,
Ay o(exp (wt)) =[(a—1)!...0Y(a+b—1)! .. bl Jw™.

Proof. (Another proof is given on p. 15 of [10].) Clearly A, ,(exp (wt)) is equal to w®

times the determinant of the matrix,

1/b! oo 1Jb+a—-1)

1/o—a+1)! ... 1/b!

Multiply the second column by (b+1) and subtract the product from the first column,
then multiply the third column by (b-+2) and subtract the product from the seond co-
lumn, ete. The first (@ —1) entries of the first row are obviously now zero. The cofactor of
the a-th entry is now equal to (@ —1)!A, ,_,(exp (t)): this can be easily seen by using the

obvious identity,
(1/n!)y—(m/(n+1)!) = (n+1—=m)/(n+1)}
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to simplify the corresponding (a@—1) x (¢ —1)-submatrix. The formula now follows by

induction on a.

ProprosITION 16. Under the conditions of section 2 (X a projective curve, efc.),
Ay ninly (U e(T Divizy, (b)) is equal to the determinant of the (r +1) x (r +1) matrix.

?Stlwg—nﬂ ¢:wg—n+2r-1 zrn
¢zw0—n+1 s ¢:wg—n+r Zn
¢2wa~n ‘}S:wo—nﬂ—l 1

Proof. The formula of Proposition 11 may obviously be rewriten as follows:

1/e(T Diviip) (£) = (L +2,8)° ™" [1 ~2, (1 +th t)] drw (1 +th t) .
So, Lemma 13 yields the formula,
Ay nirr (Ue(TDivizm) (1) = Bgpir, (1 —2,8) $rw(t)).
Lemma 14 now yields the desired conclusion.
Proof of Proposition 4. By Proposition 16 and the projection formula,
brux (20 Bgpr,r (1e(T Divizi) ()],

is equal to the determinant of the (r + 1) X (r + 1)-matrix,

. 2r
Wo_ntr o Wynigr—1  Pur

r
Wy-n coe Woopir-1 ¢n* Zn

Using (8.4) ¢+2,, =w,_,,;, We see that this determinant is equal to A,_,,.,.; (w(t)). Now,

Poincare’s formulas [15, § 2, Formula 4] may be conveniently expressed in the form
w(t) = exp (w;f) (modulo numerical equivalence).

Consequently, Lemma 15 yields the congruence asserted in Proposition 4.
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