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In  the classical literature on curves, it is repeatedly asserted tha t  the divisors of 

degree n and (projective) dimension at  least r depend on at  least (T ~b r) parameters,  with 

= (r + 1 ) ( n -  r ) - r g  where g is the genus. However, it was only recently proved that ,  if 

is nonnegative, such divisors exist. Meis [17] gave an analytic proof for the case r =  1, 

which involves deforming the curve over the Teichmiiller space into a special curve tha t  

has an explicit (~ +r)-dimensional family of such divisors. Kempf  [10] and Kleiman-Lak- 

soy [12] independently gave similar algebraic proofs for the case of any r, valid in any 

characteristic, which involve constructing a global, finite cohomology complex for the 

Poincar~ sheaf and performing a local analysis of some resulting determinantal  subvarieties 

of the jaeobian. Gunning [7], working over the complex numbers, gave a proof for the case 

r =  1, which uses Macdonald's description of the homology of the symmetric product and 

Hensel-Landsberg's trick of choosing n minimal ([8], lecture 31, w 3, p. 550); otherwise, the 

proof is akin to the proofs in [10] and [12]. 

We offer below another algebraic proof for the general case, which is conceptually 

simpler and more natural.  Our framework is the theory of singularities of mappings. We 

observe that  the divisors of degree n and dimension a t  least r are parametrized by  the 

scheme Zr of first order singularities of rank at  least r of the canonical map from the vari- 

e ty  of divisors of degree n to the jacobian, a base point on the curve having been picked. 

(By definition, Z r consists of the points where the map of tangent  sheaves is of rank at  

least r.) Consequently, if Z r is empty  or of the right dimension, then in the Chow ring its 

class is given by  a certain Thom polynomial in the Chern classes of the var iety of divisors. 

The Thom polynomial is evaluated (Proposition 16), and the value is then proved non- 

zero if T is nonnegative by  using the projection formula and Poincar~'s formulas. Hence, 

divisors of degree n and dimension at least r must  exist; otherwise, the value of the Thom 

polynomial would be zero. In  fact they abound: carried further, the proof shows that,  
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if v is nonnegative, every closed subvariety of the jacobian of codimension ~ contains 

the image of at  least one such divisor, and moreover the weighted number  of images con- 

tained, if the number  is finite and the divisors are of dimension exactly r, is equal to 

r!...0!/(g - n + 2r)! . . . (g- n + r)! times the intersection number of the subvariety with the 

(g -~ ) - th  power of the theta divisor. 

The map of tangent  sheaves associated to the canonical map from the var iety of di- 

visors of degree n to the jacobian can be represented locally by  a matr ix  tha t  was used by  

Brill and Noether [1] to find the number  (~+r);  their work is discussed in Remark  6. As- 

suming ~ is equal to zero and the divisors of degree n and dimension at  least r form a 

finite number of linear series of dimension r, Castelnuovo [2] found the weighted number  

of series is 

1!2!  ...r! l !2! . . . r ' !  
g! w i t h r ' = ( g - l - n + r ) ;  

1 ! 2 ! . . .  ( r §  1)! 

the same number  comes out above, the subvariety now being the whole jacobian. 

The Thom polynomial giving the class of the scheme Zr of first order singularities of 

rank at  least r of a map of smooth varieties was determined by Porteous [19], under a 

certain transversali ty hypothesis. This hypothesis is automatically satisfied if Zr is empty,  

and so Porteous'  work suffices for establishing the existence of special divisors. However, 

the transversali ty hypothesis was relaxed to a more natural  hypothesis, requiring simply 

tha t  Zr be of the right dimension, by Kempf  and Laksov [12], and their work allows us 

to determine the weighted number  of images above, using the weighting indicated by  the 

scheme structure of Z~. 

The Chern classes of the symmetric products of a curve were computed through a 

series of articles ([14], [13], [20], [16]). The method in Mattuck's  article [16] is adapted in 

section 3 to the varieties of divisors. Of course, the var iety of divisors of degree n and the 

n-fold symmetric product have been proved isomorphic ([3, w 6], [20], [9]), but  each re- 

presents a basically different point of view. 

We would like to point out the influence of A. Mattuck. His article [16] inspired us to 

reconsider the problem of the existence of divisors from the point of view of the var iety of 

divisors. A seminar talk he gave and many  private conversations with him were very 

helpful. 

Throughout, we work over a fixed algebraically closed ground field k. The te rm 

"var ie ty"  indicates a reduced and irreducible k-scheme of finite type. The Chow ring of a 

smooth quasi-projective var iety refers to the ring of cycles with integer coefficients modulo 

rational equivalence. 
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1. Porteous'  formula 

Let  X be a smooth quasi-projective variety. For each subscheme Z of X, let cycle (Z) 

denote the element of the Chow ring of X determined by the cycle Zn,Z, ,  where the Z, 

are the irreducible components of Z and n, is the length of the (Artin) local ring of Z at 

the generic point of Z,. For each locally free coherent sheaf E on X, let 

c(E) (t) = 1 + el(E ) t ~- es(E ) t s ~-... 

denote the Chern polynomial of E, whose coefficients c,(E) are the Chern classes of E in 

the Chow ring of X. Finally, for each formal Laurant  series with coefficients in any given 

ground ring, 
c( t )  : ... ~ - c _ s t  -2  + C _ I  t -1  + C  o ~ - c l t  ~ -c2 t  2 + ..., 

and for each pair of nonnegative integers a, b, set 

Ab, a (e(t))  = det 

I C b Cb+l " ' "  Cb+a_l 1 
Cb- 1 C b . . .  Cb+a- 2 

i -" i b 

Cb-a+l C~-a+ 2 . . .  . . J  

The formula below for cycle (Zr(u)) is known as "Porteous'  formula"; it is proved un- 

der the hypotheses below by Kempf and Laksov [11, Cor. 11] and under more restrictive 

(transversality) hypotheses by Porteous [19, Prop. 1.3, p. 298]. 

T~EOREM 1. Let u: E ~  F be a map between locally/ree coherent sheaves on X,  say o/ 

ranks p and q. Let r be a nonnegative integer satis/ying the condition, (p - q )  <~r <~p. Let Zr(u) 

denote the scheme o/zeros o] the exterior power A (~-r+l)u. 

(i) I / Z J u )  is nonempty, then we have an estimate, 

codim (ZJu), X)  <~ r(q - p  + r). 

(ii) I /Zr(u)  is empty or o/pure codimension r(q - p  + r), then we have a/ormula, 

cycle (ZJu)) = A(q_~+r).~(c(F)(t)/c(E) (t)). 

COROLLARY 2. Let / :  X--> Y be a morph ism between smooth quasi-projective varieties, 

say, o/dimensions p and q. Assume that each scheme-theoretic fiber o] /  is smooth. Let r be a 

nonnegative integer satis/ying the condition, (p - q )  <~ r <~p, and consider the closed subset o / X ,  

O ~ -- {x e X [dim, (/-~/(x))/> r}. 
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(Notice that  the condition on r is geometrically reasonable, for by general theory in a mor- 

phism of varieties the dimension of each fiber is bounded above by  the dimension of the 

source and below by  the difference of the dimensions of the source and target.) 

(i) I] G r is nonempty, then we have an estimate, 

codim (G ~, X)  <. r ( q - p  +r). 

(ii) I] G r is empty, then we have an equation 

hr (c(/*T Y) (t)/c( TX)  (t) ) = O, 

where T X  and T Y denote the tangent sheaves. 

Proo/. At each closed point x of X, we have a canonical exact sequence of tangent spaces. 

o ~ T ,  (l-It(x)) ~ T x (X)  u(x__~) TI(~)(Y),  

and u(x) is equal to the fiber at  x of the canonical map of sheaves, 

u: T X  -+/* T Y. 

Therefore, x lies on the scheme Z~(u), clearly, if and only if the estimate, 

dim Tx(/-1/(x)) >~ r, 

holds. However, since/-1/(x) is smooth, the above estimate holds if and only if the est- 

imate, 
dim x (/-i](x)) >~ r 

holds. Thus, G r is the set of points of the scheme Zr(u). Consequently, the corollary follows 

from the theorem. 

2. Existence of divisors 

Let X be a projective variety. Consider the canonical morphism, 

/: Div(x/k~ -+ Pie(x/k), 

defined by sending a divisor to its associated invertible sheaf. 

Let  Z be a Poincar6 sheaf on X • Pic(xm). By [6, Thm. 7.7.6, p. 69], there exists a 

unique coherent sheaf Q on pic(x/k) satisfying the equation, 

Horn (Q, G) = p2.(L | G), 

for all quasi-coherent sheaves G on Pic(x/k~. By [4, w 4, pp. 8-12], there exists a canonical 

isomorphism, 
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P(Q) = Divr 

and the structure map of P(Q) corresponds t o / .  Therefore, each scheme-theoretic fiber of 

/ is smooth. 

Let  r be a nonnegative integer satisfying the condition, ( p - q )  ~<r ~<p, and consider 

the closed subset of Div(xml, 

G ~ = { n  E Div(x/k) ] dim (/-1/(n)) >1 r}. 

Corollary 2 immediately yields the following result because the tangent bundle to a group 

variety is trival. 

PROPOSITION 3. Let S be an irreducible component o/Div(xm).  Assume S and Pic~x/k ~ 

are smooth, say, o/dimensions n and g. 

(i) I] G r (1 S is nonempty, then we have an estimate, 

codim (G ~ N S, S) <~ r ( g - n  +r). 

(ii) I / G  r fl S is empty, then we have an equation, 

A(o_~_~).~(1/c(TS ) (t)) = O. 

:From now on, assume X is a curve. Then, Div(x/k ~ and Pic~zm) are smooth [3, Cor. 

5.4, p. 23 and 5, Prop. 2.10 (ii), p. 16] and decompose into irreducible components Div~x/k) 

and Pic~x/k) according to the degree n of the divisors and invertible sheaves they para- 

metrize. Furthermore, Div~x/k) is of dimension n, and Pic~x/z) is of dimension g, the arith- 

metic genus of X. Set 
G~ = G ~ n D'~x/k). 

Then G~ parametrizes the divisors of degree n tha t  vary  in a linear system of projective 

dimension at  least r. 

Fix a (closed) base point P0 in the smooth locus of X, and normalize the Poincar~ 

sheaf L on X • Pic(x/k~ by requiring its fiber over P0 to be trival. Then P0 is a divisor of 

degree 1, and sending a divisor D to (D+Po)  and an invertible sheaf M to M| 

defines a commutat ive diagram, 

�9 n - 1  Dlv(xm) --> Div~x/k) 
4 r 

" n - - 1  Plc(x/k) -~ PlCTx/~> 

for each n. We obtain a morphism, 

--> PlC(xik)~ ~ :  Div~xm) �9 o 
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which sends a divisor D of degree n to the invertible sheaf Ox(D - nP0). We also obtain 

a canonical isomorphism, 
Div~'xjk) = p(Qn), 

where Qn is the coherent sheaf on Pic~ satisfying the equation, 

Hom (Qn, G) = Jo2, [p~ 0 x (nP o) | L o |  G], 

for all quasi-coherent sheaves G on Pic~ where we have set 

L o = L] X • Pic~ 

We now introduce the last of the general notation. Set 

Z n = C 1 (Ov(Qa) (1)); 

z. is an element of degree 1 in the Chow ring of Div~x/~). Set 

w o _ .  = r  

wo n is an element of degree ( 9 - n )  in the Chow ring of Pic(~ Finally, set 

w{t) = I + w z t  +w~t ~ + . . . .  

The following proposition is the object of the remaining two sections. 

PROI'OSlTIO~ 4. Under the above conditions, we have the/ollowing congruence modulo 

numerical equivalence: 

~., [z~ A(g-,+,).T (1/c(T Div~x/~)) (t))] 

= I t ! . . .  0 !/(9 - n + 2r) t . . .  (g - n + r) !] w (r+l) (g-n+r) 

The next  result, our goal, is an immediate consequence of Propositions 3 and 4 and 

of Poincar6's formula (15, w 2, Formula 4] deg (w[) =g!. 

THEOREM 5. Assume X is a smooth pro~ective curve. Set 

T = ( r + l ) ( n - r ) - r g .  

Then G~n is nonempty and o /d imens ion  at least (3 + r) i /  T >~ 0 holds. 

Remark  6. About a hundred years ago, Brill and Noether [1, w 9, pp. 290-293] studied 

the sets ~n using a matrix, which locally represents the map of tangent sheaves, 

u: T Div~x/k) -+/*TPic~xlk). 
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Let D be a divisor of degree n on X, and also use D to denote the corresponding point of 

Div~x,k). By an argument like [18, Lecture 24, 3 ~ pp. 164-166], the fiber of u at D is easily 

seen to be equal to the map of cohomology groups, 

UD: H~ --> S l (Ox) ,  

arising from the short exact sequence, 

0 -+ Ox---> Ox(D) ~ OD(n) ~0.  

By general duality theory, the transpose of UD is equal to the natural map, 

v: H~ -~ H~174  

Assume D is a sum of n distinct points P~, fix a holomorphic differential eo that is nonzero 

at each Pt, and fix functions ~t ..... ~a such that the differentials ~I(D . . . . .  ~0g(D form a basis 

of H~ Then, locally at D, the map v is represented by the n x g matrix, 

[ ~1 (Pl)  "'" (J~ (Pl )  ] 

i ~ , 

L ~01(Pn) ~.(Pn)J 

which is the matrix used by Brill and Noether. 

We reasoned from the structure of / that  G~ is the underlying set of Zr(u ) or, in other 

words, that  D lies in G~ if and only if all the (n - r + 1) minors of the above matrix vanish. 

Brill and Noether reasoned directly from the Riemann-Roch theorem: the vanishing of 

the ( n - r +  1)-minors means that  the number of independent holomorphic differentials 

vanishing on D is at least (g -n+r) ;  whence, D varies in a linear system of projective 

dimension at least r. 

Brill and Noether assume X has general moduli. They suggest that, since the points 

P~ are constrained to move on a curve, setting the ( n - r  + 1)-minors equal to zero yields 

r ( g - n  +r) independent equations; consequently, the dimension of ~ at D is precisely 

(T + r). I t  is true that, in the affine space of all n x g matrices, the matrices whose (n - r + 1)- 

minors vanish form a subvariety of codimension r (g-n+r);  consequently, if G~ contains 

D, then its codimension at D is at most r ( g - n  + r), whether or not X has general moduli. 

Thus, Brill and Noether's reasoning does yield the appropriate estimate of the dimension 

of G~ for any X; however the exact dimension of G~ when X has general moduli remains 

conjectural. On the other hand, Brill and Noether do not consider the problem of prov- 

ing that G~ is nonempty if T is nonnegative, and their reasoning does not yield a proof. 

12-742909 Acta mathematica 132. Imprim6 le 18 Juin 1974 
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3. Chern Classes of Div~x/k) 

Keep  all the  no ta t ion  and assumpt ions  of section 2 (X is a project ive curve, etc.). 

LEMMA 7. For each integer, n there is a natural embedding, 

Jn : D i v ~  1) -~ Div~x/k) ; 

Jn is de]ined by a surjective map Qn~Q~_I, and its image is the scheme o/zeros o /a  section o] 

the tautological shea/ Op(Q~) (1). 

Proo]. The shor t  exac t  sequence on X, 

0 -~ Ox((n - 1 )P0) ~ Ox(nPo) -+ Op, ~ O, 

and the  Poinear~ sheaf L 0 on X x Pic~ together  clearly yield a shor t  exact  sequence on 

X x Pic~ 
0-+ p~ O x ( (n - 1) Po) | Lo | G ~ p~ O x (nPo) @ Lo | G 

-~p~O~.QLo| 

for each quasi-coherent  sheaf G on Pic~ So, apply ing  p~. and  rewri t ing the  terms,  we 
�9 0 obta in  an exact  sequence on Pm(xjk), 

0 -+ H o m  (Q~-I, G) -~ Horn (Q~, G)-+ Horn (Q', G), 

for an  appropr ia te  coherent  sheaf Q' on Pic~x/k). Since this sequence behaves  functorial ly 

in G, it  arises f rom an exact  sequence, 

Q'-~Q~-~Qn_I-~O. 

This last  sequence defines an  embedding  of P(Qn-1) in to  P(Q~) as the  scheme of zeros of 

the  composi te  map ,  
Q~(~)-~ Q,.p(~,)-~ Op(o, ~ (1). 

However ,  since L 0 was normalized b y  requiring its fiber p~ Op. |  0 to be trival,  Q' is clearly 

equal  to the  s t ructure  sheaf on Pie~ Therefore,  P(Qn-1) is embedded  as the  zeros of a 

section of Op(Q,)(1), and  the proof  is complete.  

L E M ~ A  8. For each n, we have the/ormulas: 

~,?' ,  = r (8.1) 

i*~ ( z ~ )  = z~  _ 1 ( 8 , 2 )  

i . , (1)=zn (8.3) 

~n. (zt,) = wg_n_ , for each i ~ 0. (8.4) 
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Proo/. Formulas (8.1) and (8.2) hold because Jn is defined by  a surjective map Qn-~Qn_l 

Formula (8.3) holds because the image of }n is the scheme of zeros of a section of 0F(Qn)(1). 
Combining (8.2) and (8.3) and the projection formula, we find for each i ~>0: 

i ~ , ( Z ~ n _ l l  �9 . * ~  ~ . , §  

Using this result, we easily establish the following formula: 

J~*J~-l~ . . . .  Jr (1) -- zn~ for each i >~ 1. 

Applying (8.1) to this formula i times, we obtain (8.4). 

LEM•A 9. For n>(2g- -2) ,  the shca/ Qn is ~ocally free o / rank  ( n + l  - g ) .  

Proo/. The fiber of ~ Ox(nPo)| o over a k-point of Pic~ is an invertible sheaf R 

on X degree n. So, we have: 
H*(X, R) = 0 

dim [H~ R)] - (n + 1 g). 

By  the general theory of eohomology and base change [6, w 7.8, pp. 72-76], the first equa- 

tion implies Q~ is locally free and the second gives its rank. 

LEMMA 10. Let J be a smooth variety, E a locally ]tee shca] on J o] rank e, say. Let 

h: P (E ) -~ J  denote the structure morphism, and set 

Z - -  c I ( O P ( E ) ( 1 ) )  

v~ = h,(z ~-l+t~) for i = 1, 2 . . . .  

v(t) = 1 +v~ t  +v2  t2 + . . .  

E* = H o m  (E, 01). 

Then, we have the/ormulas: 

(i) c(E*)(t) -v( t ) - l ;  

(ii) c(TP(E)/J)(t)  = (1 +zt)~[(h*v)(t/(1 +zt))] -1. 

Proo[. Recall from the general theory of Chern classes tha t  we have an equation, 

z~ + Cl( E*)ze-l + ... + cA E*) = 0, 

and the formulas, h, z e-1 = 1 

h,z  i = 0 for i = 0  ..... ( e -2 ) .  

Multiply the above equation by  z*t a+l) for i = 0, 1 . . . .  and add the products. Apply h,, 
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use the projection formula and the above formulas to simplify the equation, and add 1 

to both sides. The result can be put  in the following form: 

(1 +Cl (E*) t  + ... + c e ( E * ) t  e) (1 +h , ( ze ) t  +h , ( z e+ l ) t~+  ...) = 1. 

Formula (i) follows immediately. 

We have an exact sequence on P(E), 

0 -* OF(E) ~ Op(s)(1)| -~ T P ( E ) / J  --,0. 

I t  yields the formula, 

c(TP(E) /J )  (t) = c(Op(E)(1)| 

So, applying a general formula about  the Chern polynomial of a tensor product with an 

invertible sheaf, we obtain the formula, 

c(TP(E)/J)  (t) = (1 +zt)ec(h*E *) (t/(1 +zt)). 

Formula (ii) follows immediately from this formula and Formula (i). 

PROPOSITION 11 (Mattuck). For each n >~O, we have a /ormula ,  

c(T Div~x/k))(t)= (1 + znt) n-g-1 [(~*w)(t/(1 + znt))] -1. 

Proo]. For n >  (2g-2) ,  the formula results immediately from Lemma 9, Lemma 10, 

and Formula (8.4), and from the fact  tha t  T Pic~ is trivial and fits into an exact sequence�9 

�9 n �9 0 �9 n �9 0 0 ~ T Dlv(x/~)/Plc(xm) ~ T Dlv(x/~) ~ T Pm(xlk) ~ O. 

On the other hand, for any n/> 0, there is an exact sequence, 

___> �9 n - 1  "*  �9 n "*  0 TDlv(x/k)~?nTDlv(xlk)~?nOp(Q~) (1)~0,  

because the image of ~n is the scheme of zeros of a section of Op(Q~)(1). Consequently, using 

Formulas (8�9 and (8�9 we easily see tha t  if the formula holds for n, then it holds for 

n - 1 .  

4. Proof of Proposition 4 

We begin with some general lemmas about the determinant  Ab,a(C(t)) defined in sec- 

tion 1. 

LEMMA 12. For each integer m, we have a/ormula,  

Ab.~(tmc(t)) = A(b-~). a (c(t)). 

Proo/. The formula is obvious from the definition of Ab.a(c(t)). 
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LEMMA 13. Set m=(b-a) .  Then, ]or each z, we have a/ormula, 

tb,a((1 +zt)mc(t/(1 +zt))) = A b , a ( C ( t ) ) .  

Proo/. W e  clearly have identities, 

(1 + zt)mc(t/(1 + zt)) = tm~c,,+,(t/(1 + zt)) ~, c(t) = tm~Cm+tt ~. 

So, by Lemma 12, it is enough to establish the formula, 

A~.~(c'(tl(1 +zt))) = A~.a(c'(t)) with c'(t) = Z Cm+~t( 

Thus, it is enough to treat  the vase with b = a  and m =0. 

By definition A~.~(c(t)) is the determinant of the a • a-matrix C=[ca+~_~]~.j; so it is 

equal to the determinant of the product ACB where A and B are the following two upper 

triangular matrices with l 's  on the diagonals (a binomial coefficient (q)  with q <0  is zero 

by definition). 

a - 1) zj_i] 

and B = [ ( j ~ i )  zJ-'],./ 

A straightforward computation (involving setting j = a - r  in A and i = s + 1 in B) shows 

that  the (i])-th entry p~j in BCA is given by 

P~j= Z Z er+8§ 
r = o  s = o  - 1  a - i  

On the other hand, A~.~(e(t/(1 +zt)) is, by definition, the determinant of the a • 

matrix [d~+j_~]i. ~ where dn is the coefficient of t ~ in the expansion of c(t/(1 + zt)). A straight- 

forward computation (involving the binomial theorem for negative exponents) yields the 

formula, 
. ,  (o:n) m 
m~O 

Thus, it is enough to prove p~ is equal to d~+j_~. So, clearly, it is enough to establish 

the identity, 
1 ~ " 

: ( ] - - l - - : )  (a- - : - - : )=(m--am--?--~) '  

where the summation is taken over r, s subject to the conditions, 

O<~r~a- i ,  0 < s < ] - l ,  a + ] - i - r - s - l = m .  

This identity, however, results immediately from the following well-known two: 
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,1( ) ,  
~ ( P )  ( : ) : I P + r ~  

\q  + sl  

llb! 

1/(b - a +  

... 1 / ( b + a - 1 ) ! ]  

i 

. . .  1/b! 

Multiply the second column by (b + 1) and subtract the product from the first column, 

then multiply the third column by (b +2) and subtract the product from the seond co- 

lumn, etc. The first ( a -  1) entries of the first row are obviously now zero. The cofactor of 

the a-th entry is now equal to (a-1)!Ab.~_l(exp (t)): this can be easily seen by using the 

obvious identity, 
(1/n! )--(m/(n + l )! ) = ( n + l  , m ) / ( n  + l )!, 

where the summation is taken over q, s subject to the conditions, 

0 <-q <~p, 0 <~s <~r, q+s  =constant .  

LEMMA 14. For each z, we have a/ormula, 

Cb_ 1 . . .  Cb+a-2  Z a - 1  

A b . a ( ( 1  - -  Z~) C(L)) = det : : . 

-a ... c~-i 1 

Proo/. Clearly Ab,a((1--zt)c(t)) is the determinant of the a •  D=[db+~_~]i.j 

with d n = (cn-zcn_l). On the other hand, multiplying the second row of the matrix on the 

right-hand side of the formula by z and subtracting the product from the first row, then 

multiplying the third row by z and subtracting the product from the second row, etc., 

clearly turns this matrix into one of t h e fo rm  [D 0 ] .Th u s ,  the formula holds" 

L E MM A 15. For each w, we have a/ormula, 

Ab.~(ex p (wt)) = [(a -- 1)! ...O!/(a+b - 1)! ... b!] w ab. 

Proo/. (Another proof is given on p. 15 of [10].) Clearly A~.a(ex p (wt)) is equal to w ~ 

times the determinant of the matrix,  
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to simplify the corresponding ( a - l ) •  (a-1)-submatrix.  The formula now follows by 

induction on a. 

PROPOSITION 16. Under the conditions o/ section 2 (X a projective curve, etc.), 

Ag_n+r Ir (1/c(T Div~x/k)(t)) is equal to the determinant o/the (r + 1) • (r + 1) matrix. 

- .  . ] r247 ... r247 z~ 

: : i 

�9 �9 �9 ~ n W g - n + r  

�9 * 
_ ~ n W g - n  . . .  ~ n W r  

Proo/. The formula of Proposition 11 may obviously be rewriten as follows: 

t . t 

8o, Lemma 13 yields the formula, 

Ao_~+r,~ (1/c ( T D i v ~ ) l  (tl) = Ao_~§ ((1 - z~t) r w(0). 

Lemma 14 now yields the desired conclusion. 

Proo/ o/ Proposition 4. By Proposition 16 and the projection formula, 

Cn* [z~ Ag-~+r.r (1/c(T Div(~ik)) (s))], 

is equal to the determinant of the ( r+ 1) • ( r+ 1)-matrix, 

I wg_~+~ ... wg_~+~r_~ r zlr 1 
: 

1 - W g - n  . . .  Wg-n+r-1  •n* z r  J 

Using (8.4) Cn*Z~=Wg-n+~, we  see that  this determinant is equal to Ag_n+r.r+l(W(t)). Now, 

Poineare's formulas [15, w 2, Formula 4] may be conveniently expressed in the form 

w(t) = exp (wit) (modulo numerical equivalence). 

Consequently, Lemma 15 yields the congruence asserted in Proposition 4. 
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