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1. Introduction 

Let G be a connected semisimple Lie group with finite center and  let K be a maxi-  

ma] compact  subgroup of G. We assume tha t  rank(G) = rank(K)  and  tha t  r a n k ( G / K )  = 1. 

Let T be a Car tan subgroup of G contained in  K. We write ~ for the Lie algebra of G 

and  (~c for the complexification of ~ .  If  Gc is the s imply connected, complex analyt ic  

group corresponding to (~c, we assume tha t  G is the real analyt ic  subgroup of Gc corre- 

sponding to (~. 

(1) Research of both authors supported by the National Science Foundation. 

1 -732906 Acta mathematica 131. Imprim6 le 18 Oetobre 1973 
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Let  y be a semisimple element in G and let G~ denote the centralizer of y in G. Then 

Gy is unimodular, and we denote by dalay(~ ) a G-invariant measure on G/Gy. I f  we write 

xy=xyx -1, xEG, then the map 

/ F-->~/aj(~Y) dala,(:~), /EC~C(G), 

defines an invariant distribution Ay on G which is actuaUy a tempered distribution. 

In  this paper, we give explicit formulas for the Fourier transform of Ay, tha t  is, we 

determine a linear functional/~y such tha t  

A~(/) = A,(f),  /EC?(G). 

Here, we regard ] as being defined on the space of tempered invariant eigendistributions 

on G. This space contains the characters of the principal series and the discrete series for 

G along with some "singular" invariant eigendistributions whose character theoretic na- 

ture has not yet  been completely determined (see 2. C). 

Apart  from the intrinsic interest of our results relative to  harmonic analysis on G, 

the Fourier transforms of the invariant distributions A~ arise naturally in the context of 

Selberg's trace formula. Thus, let P be a discrete subgroup of G such tha t  G/r is compact. 

Let  A be the (left) regular representation of G on L2(G/F). Then ~ can be decomposed as 

the direct sum of irreducible unitary representations of G, and each irreducible unitary 

representation ~ of G occurs in ~t with finite multiplicity m~. 

We write 

2 =  ~ |  
~EG 

where G denotes the set of equivalence classes of irreducible unitary representations of G. 

The basic problem here is the determination of those ~ E ~ for which mn > 0 and, more- 

over, the determination of an explicit formula for m~. 

Let  d a(x) denote a Haar  measure on G. For / in a suitable class of complex valued 

functions on G, the operator ~(/) = .[a/(x) ]t(x) do(x) is of the trace class and 

t r  Jl(/) = ~ m j ( g )  (f(~) = tr  ~(/)). (1.1) 
~EG 

On the other hand ([2], Ch. 1), we can write 

tr  ~(/)=(~}#(O~/P~)~a,au/(Xy ) dalai(x), (1.2) 

where {y} runs through the conjugacy classes in F and/~(G~/F~) is the volume of GJF~. 



F O U R I E R  TRANSFORM ON S E M I S I M P L E  L I E  GROUPS OF R E A L  R A N K  O~;E 3 

:Now, the idea is to get information about the multiplicities m~ by equating (1.1) and 

(1.2). The first step i n  this program is the computation of the Fourier transform of the 

terms which occur in (1.2), tha t  is, the computation o f / ~  for yEF.  Since G/F is compact, 

every element of F is semisimple so tha t  the formulas in the present paper provide the 

necessary information. Some aspects of the above program have been carried out for 

G = SL(2, R) in [2], Ch. 1, and, in somewhat more detail, by  R. Langlands in a course 

given at  Princeton in 1966. In  particular, Langlands shows tha t  the multiplicity of those 

members of the discrete series of SL(2, R) which do not have L 1 matrix coefficients is not 

given by an analogue of the multiplicity formula for those discrete series which have L 1 

matr ix  coefficients. The multiplicity formula for t h e  non-L 1 discrete series contains an 

additional term of - 1. I t  is our intention to use the formulas in this paper  and methods 

similar to those of Langlands to obtain multiplicity information for real rank one groups. 

We now outline the contents of the paper. In  w 2, we summarize some results of 

Harish-Chandra. The entire paper  relies heavily on the work of Harish-Chandra, an ac- 

count of which may  be found in [11]. In  general, we adopt  the notation of [11]. In  w 3, 

we consider the case when y is a regular element in G. The basic case is when y E T. All 

the remaining results in the paper stem from this case. The Plancherel formula for G, 

first given by Harish-Chandra [4 f)] and Okamoto [6], is derived in w 4 by  a simple appli- 

cation of Harish-Chandra's  limit formula [4 a)], [4 c)]. Our method differs from tha t  of 

the authors cited above. In  w 5, we take y to be a semisimple, non-regular element in G. 

The formula for A~(]) can again be computed from the results of w 3 by applying a 

theorem of t tarish-Chandra ([4 g)], p. 33). We mention, in passing, tha t  the case when y is 

a unipotent element may  also be treated by  our methods, tha t  is, by applying an ap- 

propriate differential operator to a regular orbit and then taking a limit. Unfortunately, 

the explicit form of the differential operator is unknown to us a t  this writing. (i) 

Some of the results of this paper were announced in [8 a)], and some examples are 

discussed in [8 b)]. For SL(2, R), our formulas may  be found in [1], [2], [4 b)]. Similar 

results for SL(2, k), k a non-archimedean local field appear  in [7]. We would like to ex. 

press our appreciation to J. Arthur, C. Rader  and N. Wallach for their helpful comments.  

2. Some results of Harish-Chandra 

2. A. The structure of (~ and G 

We retain the notation of the Introduction. Let  t be the Lie algebra of T and ~c the 

eomplexification of t. Then ~ (resp. tc) is a Cartan subalgebra of {~ (resp. {~c). Proceeding 

(1) Results in this direction have been obtained recently by Ranga RaG. 
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as in [4 f)], w 24, we fix a singular imaginary root at of the pair ({~c, tc) and a point P in t 

such that  +__ at are the only roots of the pair (~c, to) which vanish at F. Denote by ~ r  

the centralizer of F in ~ ,  and let r and Ir be the center of ~ r  and the derived algebra 

of (~r respectively. 

The subalgebra [r is isomorphic over R to ~l (2, R), and we may select a basis H*, 

X*, Y* for lr over R such that  [H*, X*] = 2 X*, [H*, Y*] -- - 2 Y*, [X*, Y*] -- H*. Then 

t = R(X* - Y*) + Cr and a = RH* + Cr form a complete set of non-conjugate Cartan subal- 

gebras of (~. Put/Z = exp [~/~ 1 (n/4) (X* + Y*)] e Gc. Then (to) ~ = (it, the complexification 

of r and, if aa = (~t) ~ is the/z-transform of at, we have aa(H*)= 2 and aa vanishes identi- 

cally on Cr. We order the space of real linear functions 2 on RH* + ~ Cr by stipulating 

that  )t > 0 whenever ~(H*) > 0. We then obtain a set of positive roots for the pair (~c, to) 

by demanding that  the/z-transform of such a root be positive when considered as a root 

of ((~c, ac). 
Let A be the Cartan subgroup of (7 associated with a, and let A ~ be the identity 

component of A. Then, setting A~ = A fl K, A ~ = A ~ N K and A~ = {exp (tH*): $eR}, we 

have 
A = A K A ~  and A ~ 1 7 6  

Put  Z(A~)=KNexp{V----1RH*}.  Then Z(A~)= {1, 7} is a group of order two with 

y = exp [u(X* - Y*)] = exp ( V -  1 ~H*) :~ 1. We have As  = Z(A~) A ~ 

Set tl = or, t2 = R(X* - Y*) and let T 1 and T~ be the analytic subgroups of T corre- 

sponding to t 1 and te respectively. T 1 and T 2 are compact and T 1 N T2cZ(A~).  Since 

A~ = T 1 U ~T 1 {T 1 = A~ it follows that  AK has one or two connected components accord- 

ing to whether 7 lies in T 1 N T~ or not. Now, if M is the centralizer of A~ in K and M ~ 

is the identity component of M, then M = M ~ U 7M ~ 

If no simple factor of G is isomorphic to 8L(2. R), it follows from the classification 

of real rank one groups [9] that  M is connected or, equivalently T 1 fi T~ = {1, 7}. In  this 

case T 1 = A~, a maximal torus in M. 

For the group SL(2, R), our results are well-known and may be found in [8 b)]. 

Throughout the remainder o t this Taper, we assume that M is connected. 

Write G = K A v N  +, the Iwasawa decomposition of G, and set P = M A ~ N  +. Then P 

is a minimal (and maximal) parabolic subgroup of G. 

2. B. The invariant integral on G 

We first establish a normalization of certain invariant measures. Let x ~ 3, x EG, 

denote the canonical projectioa of G on G/T (or G/A). We take a G-invariant measure 
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do/r(~) on G/T which is normalized as in [11], v. I I ,  Ch. 8. I f  we choose a Haar  measure 

dr(t) on T normalized so tha t  the volume of T is one, then a Haar  measure do(x ) on G is 

fixed by  the formula 

for /EVe(g) .  

Let  dA~ (h~) be the t t aa r  measure on A v which is the transport  via the exponential 

map of the canonical Haar  measure on the Lie algebra of Ar associated with the Euclidean 

structure derived from the Killing form of (~. Since A~ = {exp tH*:tER}, we have 

dAr(hr)=c~dt , (2.1) 

where cA is a positive constant and dt is normalized Lebesgue measure on R. We nor- 

malize Haar  measure da~(hK) on AK so tha t  the volume of AK is one. Now a Haar  mea- 

sure dA(h) on A is fixed by the formula dA(h)=dA~(hK)dA~(h~) where h=h~h~. A G-in- 

var iant  measure do1 ~ (~) on G/A is then determined by  the formula 

fa/(x)da(x)=folAf/(xh)dA(h)dolA(x), 

for/ECc(G),  

Let G' be the set of regular elements in G and set T '  = T N G', A'  = A N G'. Put 

G e= UzEoxTtx -1, the elliptic set in G, and G h= Uz~oxA'x -1, the hyperbolic set in G. 

Then G' = G e U G a (disjoint union) and 

fa/(x)do(x)=fo/(x)do(x)+fo~/(x)do(x), (2.2) 

for/ECc(G).  Let  At, An, ea,r 8a,A W(G, T) and W(G, A) be defined as in [4d)] (in particular, 

W(G, T) is the Weyl group of K). For x E G, write ~t = xtx-1, t E T, and ~h = xhx-1, h E A. 

I f  /E C~ (G) and t E T '  the invariant integral o~ / (relative to T) is defined by 

(2.3) 

Similarly, if hEA', the invariant integral o//(relative to A) is 

(I)f (h) = e~ (h) A A (h)fa/~ [(~h) dal a (&). (2.4) 

From Weyl's formula ([4g)], p. 110), and (2.2), it follows tha t  
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f J(x) da(x) = [W(G, T ) ] - l f r  AT(t) *~ (t) dr(t), 
(2.5) 

~hf(X) d. (3#):[Y(e, A)]- I~  i 4 (h)s (]&) (i)/ (h) d A (h), 

I t  is known [4 d)] tha t  (I)~ E C ~ (T') (in general, (I)~ does not extend to a C"  function 

on all of T). Relative to the operation of W(G, T) on T, we have 

d#~ (wt) = det (w) (I)7 (t) (2.6) 

for wE W(G, T), tET'. The function (I)f is in C"  (A ~) and extends to a compactly suppor- 

ted C"  function on all of A since the pair ((~c, ac) has no singular imaginary roots [see 

[4 d)], w 22); The general formula for the transformation of (I)f relative to the action of 

W(G, A) is given in [4 f)], p. 103. We are interested in two special cases. 

If wE W(M, AK), the 

W(G, A), and we have 

r  (wh) = det (w) r  (h), hEA, wE W (M, AK). 

(~ f (hKh~) = ~)~ (hKh~l), h~ E A K, h~ E A~ (2.7) 

Weyl group of M, then w may be considered as an element of 

(2.8) 

2. C. The characters of the discrete series 

The unitary character group f of T may be identified with a lattice LT in the dual 

space of U - ~ t ,  and, for ~ELr, the corresponding character ~ E T  is given by 

~T (exp H )  = e T(~, H E t. (2.9) 

The Weyl group W((~c, tc) acts on Lr  and hence on ~ by the prescription 

wv(H) = T(w-IH), ~w~(exp H) = e w~(H), HEt ,  ~ELr. (1) (2.10) 

We say that  ~ELT is regular if w~:~T for all w~=l in W(~c, ic); otherwise T is said 

to be singular. The set of regular ~ will be denoted by L~ and the set of singular z by  L~,. 

The character ~ is called regular or singular accordingly. 

To each ~ELr, there is associated a central eigendistrihution E)~ on G characterized 

uniquely by certain properties ([4e)], p. 281, [4f)], p. 90). E)~ is locally summable on G 

and analytic on G'. We have 

(1) For convenience, we write wl: for w.'~. 
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O,(t) = A(t) -~ ~ det (w) ~ , ( t ) ,  tE T'. (2.11) 
w ~ W(G, T)  

Note that,  if zEL~, and, moreover, z is fixed by a non-trivial element of W(G, T), then 

OT is identically zero on T'. 

On A', the behavior of @~ is slightly more comphcated. Set 

A~ = {h~ eA~: ~.(log h~) > 0} = {exp (t~*): t > 0}, 

A~ = {h~ fi A~ : ~. (log hp) < 0} = {exp (tH*) : t < 0}, 
and define 

A+=A~A~ hA',  A-=AKA~ NA'. 
For ~ ELr, put  

1 if T ( V Z I ( X  * - Y * ) ) > 0  

c(v:A+) = +1  if ~ ( ~ I ( X * - Y * ) ) < 0  

0 if ~ ( 1 / ~ ( X  * -  r * ) ) =  0. 

c(v: A - ) =  - c(~: A+). 
Then, we have 

O.(h)=AA(h) -1 ~ det(w)~w.(hK)c(w~:A• (2.13) 
w �9 W(G, T)  

where h=hKh~ and the sign in c(wv:A • is chosen to correspond to hEA + or hEA-. 

Again, it  is easy to see tha t  @~ = 0 on A'  if ~ is fixed by a non-trivial element of W(G, T). 

For vELT, put  s = (�89 dim (G/K) and e(v)= sgn {1-L~er(v, ~)} where PT denotes the 

set of positive roots of ((~c, ic). Then ([4g)], p. 96) 

T~ = ( -  1)~ e(~)| (2.14) 

is the character of a representation in the discrete series for G and all discrete series 

characters are obtained in this way. Moreover, T~, = TT, if and only if % and v~ are con- 

jugate under W(G, T). 

Even though the invariant eigendistributions 0~, TELl,, do not correspond to charac- 

ters of the discrete series fo r  G, these eigendistributions do appear discretely in the Four- 

ier transform of the invariant integral. The need for these @~ arises from the fact tha t  

Fourier analysis on T requires the use of the full character group of T. The character 

theoretic nature of @~, ~EL~,, has been settled in only a few special eases. 

2. D. The characters of the principal series 

For ZE-~ ,  the unitary character group of Ax, denote by log Z the linear function 

on~h defined by 
Z(exp H )  = e <H' io~ x>, H E ix. (2.15) 
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Let P~ be the set of positive imaginary roots of the pair ((~c, ac), and let Wz be the sub- 

group of W(G, A) which is generated by the Weyl reflections associated with the elements 

of P}~. W~ may be identified with the Weyl group W(M, A t )  in a natural way. An ele- 

ment ZE~K is called regular if wZ4=X for all w~: 1 in W x. Otherwise, Z is called singular. 

If Z is a regular character in ~ r ,  we set 

e(Z) = sgn { 1-I (log Z, ~)}. (2.16) 
~le + 

The unitary character group ~ of A~ is isomorphic to R and, for ~ER, we define 

the corresponding unitary character on Av by 

h~ ~ ~ = e v--i'(l~ 5 '), h~ 6 A ~,. 

Let [ 6 C~ (G). The Fourier transform (~f of the invariant integral (I)f is defined on 

~ • . ~  by 

= h o ",,I (h~h~,)dA,r(hK)dA~,(h~,), ZE-~x,~Elt" (2.17) 
x 

If Z is singular, it follows immediately from (2.8) that  ~ f  (g, ~) = 0 for all ~ in R. 

Now suppose that  Z is a regular element in . ~  and v is an arbitrary element of d 0. 

Then, if rl = [P~], the distribution 

T~")([) = (2g)�89 1)': e(Z) ~ f ( Z ,  ~'), / 6 C ~  (G), (2.18) 

is the character of a representation of the principal series for G and, moreover all principal 

series characters have this form for suitable (regular) g G ~ ,  v 6 ~v (see [11], v. II, Epilogue). 

If Z is singular, we set e(Z)= 1 and define T (x'v) by (2.18). Of course, T (z'v) ---0 for singu- 

lar Z, but, as is the case for (9~, ~6L~., we need the formal expression for T tz''~ for all 

(Z, v)6~K • ~ when we work with the Fourier transform on . ~  x .~ .  

Finally, it follows from (2.7) that  

T (z'~) = T ~ ' -~ ,  Z 6 - ~ , ~ 6 R .  (2.19) 

3. The Fourier transform of a regular orbit 

3. A. The Fourier transtorm of a regular elliptic orbit 

Fix / s  (G). Then (I)TELI(T) and, as pointed out above, CPTEC~176 For TEL ~, 

we denote by ( ~  (z) the Fourier coefficient of (I)~ at  z. 
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L E ~ M A  3.1. Let TELr.  Then 

&f (~) = ( -1)" (or(/) - f j(x) or(x) d~(x)) 

where r = 2 -1 (dim (G) - r ank  (G)). 

Proo[. We have  

Or(l)= fo/(x)O (x)do(x)+ fj( )Or(x)do(x) 
From (2.3), (2.5) and  (2.11), we obta in  

fjl lorlxldolxl=l-])'[wlo, lr'  o w,o det  I,I  or/ l = I -  II 

Remark. The  nex t  s tep in our  deve lopment  is the  consideration of the  Fourier  series 

of q~T- For  this, we mus t  give explicit form to the  type  of convergence we use relat ive to  

the  lat t ice LT. Let  {~a . . . . .  ~}  be the  set  of s imple roots  for the  pa i r  ((~c, tc) relat ive to 

the  given ordering. Adopt ing  the  cus tomary  notat ion,  we let 

2 
H~ = act (H~,~) H~,, i = 1 . . . .  , l. 

I f  {A~ . . . . .  Az} is the  dual  basis to  {//1 . . . . .  Hz}, then  L~={5~_]m,A~:m~eZ}. For  a n y  

posit ive integer m, define L~ = {~.~m~A~: - m ~< ~n~ ~< m}. Summabf l i ty  relat ive to  L r  is 

then  defined b y  
5=lira 5 .  

�9 ~Lr m-->~r rEL~ (3.2) 

For  the  remainder  of this section, we fix an e lement  t o E T ' .  

L v. M 1VIA 3.3. 

r = ( -  1), ~: Or(1) ~r(to) + IAto), 
~L~, 

where 1Ato) = ( -  1y § ~r(to)fj(z) Or(x)d~(x). 

Proo/. From the propert ies  of r it follows tha t  the  Fourier  series of ~ "  converges 

to  r  a t  t o (see [5]). Thus,  (I)f (to) = ~ T , L ~ "  (V) ~r(to), and,  f rom [4 e)], p. 316, we con- 

clude t h a t  the  series ~TGL~Or(/)~r(to) converges absolutely.  The  assert ion of the  l emma  

is now clear. ][ 
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Remarks. (i) Since ~#" is, in general, only piecewise smooth, we cannot assert that  

the series for dp~ (~0) converges absolutely. 

(ii) The results of Lemma 3.1 and Lemma 3.3 obviously are valid for groups G having 

split rank greater than one if we interpret G h to be the complement of G ~ in G'. For groups 

of split rank one, there is exactly one non-compact Cartan subgroup (up to conjugacy). 

Thus, to complete the inversion formula, we must express If(t0) in terms of the principal 

series associated to this non-compact Caftan subgroup or, more precisely, the invariant 

distributions T cx'v) introduced in 2. D. 

From [4e)], p. 309, we have ~A=(--1)~+IAA (r as in Lemma 3.1). Since e ~ = l  on 

A + and e~ = - 1 on A-,  it  follows from (2.5) and (2.13) that  

fc/(X) @T(x)do(x)= 1) '+1 A)] -1 ~ det ( -  [W(G, (w) 
w e W ( G , T )  

• {fA+c(un;:A+)~wz(hK)exp(-I(w'~)~(loghv)l)~PP(h)dA(h) 

Now, using (2.7) and (2.12), we obtain 

fGf(X) Or(X) = (-- 1) r+~ A)] -I ~ det da(x) [W(G, (w) 
WeW(G,T)  

(3.4) 
t ~  

Ja+ c(wz: A+) ~w, (hK) exp ( - I  (wz)S (log h~)]) (I)~ (h) da X 2 (h). 

Denote the integral over A + in (3.4) by I~ (7: w). Then 

II(to)=2[W(G,A)] -1 Z ~T(t0) Z det(w)I](z:w). (3.5) 
�9 s L T  w ~ W ( G . T )  

For m a fixed positive integer, we consider the partial sum 

~(to) ~ det(w)I~(~:w)= ~ det (w)~  ~(to)I~(~:w ). 
TeL~ W E W( G. T) W r W( G. T) z eL~ 

The lattice LT is W(G, T) stable, and, if wE W(G, T), we define 

wL'~ = {wT: TELl}. 

Setting I](~:  1)= I~(T), we can then write the last sum as 

det (w) ~ ~ ( t o )  I?(~). (3.6) 
w e  W( G,T) "~w -1  L~ 
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For  fur ther  analysis,  i t  is necessary to decompose the  lat t ice LT as in [4 f)], w 24. 

Le t  L*  = {3ELf :  ~([/----1 (X* - Y*)) = 0}, a sublat t ice of Lr ,  and let L 0 be the  lat t ice gene- 

ra ted  b y L ~  and ~t, t h a t  is L 0 = Z ~ t +  L*. Then  LT/L o is a group of order  two, and there  

exists an  element  v0 in Lr~Lo(~) such t h a t  30(~---1 (X* - Y*)) = 1. Observe t h a t  L~ m a y  

be identified wi th  the  (unitary) character  group of Tx/Z(Ar). In  part icular ,  ~ [ r ,  = 1 for  

~EL*.  We also note  t h a t  ~=~ It, = 1. 

Fix  w~ W(G, T), The inner  sum in (3.6) m a y  be wri t ten  

~ ,  (to) I~- (3) + ~ ~wr (to)I~(3 + Vo)- (3.7) 
veLoflw-!L ~ TELo 

r+'rocw-lL~ 

We shall ~reat each of the  last  two sums separately.  

I f  3EL0, we write 3 =  n ~ t +  3", 3*EL*. Then,  with the  unders tanding  t h a t  the  sums 

are over  L o N w-l  L~, we have  

J Ax JA v 

At this point ,  we write log h v = tH* and use the  measure  given b y  (2.1). Since 

c(n~t: = 0 if n = O  

1 if n < O ,  

and ~nat(hK) = 1, hKEA~= TI,~ we see t h a t  

~wr(to) I~ ('r) = cA e-12ntldt 

• ~ ,(t~(w)) q)]*(h~exp ( tH*))4E(hK)-  ~. ~ , ( t , ( w ) )  e-2~tdt 
n>O 

where we have  wr i t ten  

W- 1 tO = t l  (W) t 2 (W), ~1 (W) e T1, ~2 (W) e T 2 . (3.9) 

This last  decomposi t ion is unique up  to  Z(A~) = T~ N T 2 = {1, r}.  

(x) We denote by A ~ B  the set theoretic difference of sets A and B. 
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Define 

F(hK; h~; -cx) = ~,x (hx) r (hKhr) + ~,  (ThK)(I)~ (Thxh~), hK s AK, h~ 6 Ag, -cl tiLt. (3.10) 

L~M~A 3.11. For h~ and ~x fixed, the/unction hK~--> F(h~; h~; -cl) may be regarded as 
a ]unction on Tx/Z(Ar), and,/or any element h'K in A~, 

~ (h~) f ~ (hK) ~n (hK) (I)f (hKh~) dAx (hK) = �89 F(h'~; hr; "ca). 5 
zEL*~ ,]AK 

Moreover, the 8cries converges ~ o l u t d y  and uni/ormly in h'K. 

Proo/. Since ~fEC~(A),  the ]emma follows from elementary Fourier analysis on 

T1/Z(A ). II 
Note that  the sum ~ �9 in the lamina may be taken as the limit of any sequence 

of partial sums due to the absolute convergence. 

LEMMA 3.12. 

~. fo ~ [e-2t( e-2~-~~162176 ] lim ~ ~( to ) I / ( -c  ) = (cA/2) ~Pf(at~(w) ht) [ 1 _  2e_2t cos 20~+ e-4tJ dr, 
rn--~.oo veLeflw_lL~ a~Z(A~) 

where ht = exp (tH*) and O~ is determined by the equation t2 (w)= exp (Ow(X*- Y*)). 

(As indicated after (3.9), the value of 0w is unique only up to {1, y}. However, the 

expression above is independent of the choice of 0w.) 

Proo/. We have ~,~t(t2(w))=e 2v-~n~ and 0 ~ 0  (mod ~) since tos From (3.8), 

we consider the partial sums 

and 

~,(h,~) r  (h,~h~) d ~  (h~:), 6,4 
n > 0  J 0  ~* J~ 

where nu~+ -c*6L o ~ w-~L'~. From lemma 3.11, we see that  the partial sums ~ , .  are uni- 

formly bounded in t and are supported in a fixed compact set relative to A~. Moreover, 

for any positive integer u; 

$-2.t  ~ 1 2 
. .x  - cos 2 0w" 
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Thus, it follows from the bounded convergence theorem ([10], p. 345) that  we may com- 

pute the limit as m-~ ~ for each of the above sums by taking 

Ca lira ~ e~r176 
Lm---~oo n < 0  z ~* ~*(tx(w)) . . .  dr, 

and 

ca lim ~ e 2r ln%e Ientl ~:,(tl(W) ) dL 
J O  Lm--~oo n>O g " "  

With the help of Lemma 3.11, this leads to 

lim ~ ~:w, (to) I~(T) 
m--->~ 7:ELo f'lw- lL~ 

=(ca/2,~i .~z(~)~f(at l(w,  ht,](le-2r '~ =~2t /dt  

The conclusion of the lemma follows by addition. ]l 

VCe next consider the second sum in (3.7). Observe that,  for ~*E/)*, 

- 1  if n~>0 
c(n~ t -t- ~* -t- "~o: A +) = c(na t + ~o : A +) = 

1 if n<O, 
and that  ~.(~) = e -g-in = - -  1. 

LE~MA3.13. 

m--~-~ TEL 0 
T-~..Co~W--ILr~ 

=(ca/2)fo[dp~(tl(w)ht)-dP/~(~,,tl(w)ht)][e-2t(et+e-t)(e-V:-l~176176 i~e--~co--~20----~e_~ ~ j dr. 

Pro@ Proceeding as above, we obtain 

T E L  o 

v-l-Voew- l L~ 

=Ca ~wT.(to) o~n~t(t~(w)) e-12n+llt dt ~T*(tl(w)) ~.+~,(hK)~f(h~rht)da,(hK) 
K 

--n~>~o~.at(~2(W))~;~-[2n+i[td~T,~'~*(tl(W))~a ~*+'~o(hK)(~)/(hKht)daK(hK) } ' 
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where 7 = n~ t + 7" EL 0 and 7 + 7oEw-lL~. Now the result is obtained with the use of 

Lemma 3.11 and the same techniques that  were employed in the proof of Lemma 3.12. II 

The results of Lemma 3.12 and Lemma 3.13 may be combined to yield the following 

proposition. 

PROPOSITIO~r 3.14. 

If(t0)=(-1) ~+~ ~ ~(to)~h/(x):~ O~(x)d~(x) 
"cELT 

{E = [W(G,  A)]-lCA ~ det (w) Of(tl(w ) ht) [~-~_ ~et c~s 0 ~  ~i j  dt 
weW(G.T) 

,f;~ }. + C f  (.'ytl (w) ht) - ~ - - - - - -  [ 1 - - 2 e  cos(0w+~t)+e j d t  
$ 

We emphasize once more that,  for each wE W(G, T), Ow is determined only modulo ~r, 

or, in other terms, we may choose 0w so that  - ~ < 09 < 0 or 0 < 0w < z. The formula for 

If(to) is, of course, independent of the choice of 0w since t 1 (w) must be replaced by 7tl (w) 

if 0w is replaced by 0w + g. 

The Fourier transform of (I)f is given by (2.17). Since (I)f eC~ (A), we have 

f o Of (hKht) = CA 1 (2 :T~)- ~ ~ Z(hK) e -V~l ' l  ~)f (Z, v) dr, (3.15) 
XEAK 

where dv is normalized Lebesgue measure on R. 

PROPOS~TIO~ 3.16. 

It(to)= [W(G,A)] -1 ~. det (w) 
w~W(G,T) 

x (c-r176176 ~ )~(tl(w)) ~[~(Z,v) l_2deosOw+e2tgtdv 
geAs ~ 

+ (e ~'-1(o,,+,)_eV-l(o,~+,)) (2~)-�89 ~ Z ( T t l ( w ) )  - ~ Of(Z, v) 1 + 2 e t cos 09 + e 2t dt d . 

Proo/. Since all the series and integrals involved converge absolutely, the proof follows 

from Proposition 3.14, (3.15) and the fact tha t  reAK. II 
Now, using the fact that  (~f (Z, v)= (~f (Z, - v ) ( s e e  (2.7) and (2.18)), we can write 

f_L f; 'f_~ f; "--' (Pf(g,r)  l ~ 2eteosO,o+e,tdtdv= ~ ~ Of(Z,v) l~_2)teOS0w+)t~d~t, (3.17) 

where d~ is normalized Lebesgue measure on R. 
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The inner integrals in (3.17) can be evaluated using the formulas in [3], p. 297. This 

yields the following proposition. 

PROPOSITIOI~ 3.18. Suppose 0 <  Ow < Z~, wE W(G, T). Then 

II(to)=[W(G,A)] -1 ~ det (w) 
wEW(G, T) 

gEAK 

[.inh (r0o) 1 } 
+ V ~ l ( ~ / 2 )  �89 ~ Z(Ttl(w)) (pf(Z,r) L s - ] ~ n h ~ j  dr . 

gEAK 

I /  - 7e < Ow < O, then sinh (r(Ow - ~) ) must be replaced by sinh (r(Ow + ~) ) in the/irst integral. 

We are now in a position to state the final inversion formula for (I)~'(t0). 

THEOREM 3.19. Suppose that toET'. For wEW(G, T), we write w-lto=tl(w)t2(w) 

where t l (w)ET 1 and t2(W ) = exp (Ow(X* - Y*))ET2. Then, i / / E C ~  (G) and 0 <  Ow < 7~ /or all 

we W(G, T), we have 

of(t0) = ( -  ly  5 o,(/)  ~,(t0) 
wELT 

+ ( I f -  1/2) ( -  1)',[W(G,A)] -1 ~ det (w) ~ ~(Z) 
weW(G, T) gEAK 

( f" [si'h U(0o- =))1 x ~ -~ T(x. v)(/) [ hnh(~-~-~) j dv 

[sinh (,.0~)] dr }. 
+ Z(Ttx (w)) f_~r T (x'v) (/) [ sinh (r~) J 

I[ - ze < O~ < O, then sinh (V(Ow - z~)) must be replaced by sinh (v(Ow + ze)) in the/irst integral. 

Proo/. This follows from (2.18), Lemma 3.3 and Proposition 3.18. II 

The first sum can be formulated in a more representation theoretic way. Denote by 

Gd the set of equivalence classes of representations in the discrete series for G. If co E ~ ,  

we write ](~o) for Tv(/)=T~(/)  where TELT corresponds to o~ and T~= T~ is given by 

(2.14). Then 

0~(1) ~,(to) = 5 0,(1) ~:~(to) + AT(to) Z t(og To,(to). (3.20) 
�9 ELT TELST r 

Remark. Suitably interpreted, Theorem 3.19 can be applied to SL (2, R) (see [8 b)]). 
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3. B .  The  Four ier  t rans form of  a regular  hyperbol ic  orbit 

The analysis involved in this section is completely elementary and has already been 

indicated in 3. A. We isolate the result here for future reference. 

Let h= h~htGA'. Then, from (2.17), (2.18) and (3.15), we have 

f q~f(h)=c~a(2~)-~(-1)  ' ,  ~ e(X)X(h~:) e-v~'tT(X'~(/)dv, leCr(O). (3.21) 

4. The  P lanchere l  f o r m u l a  for G 

In this section, we derive the Plancherel formula for G from the inversion formula 

for (I)~ (Theorem 3.19). The derivation is quite simple. As in 2. C, let PT denote the set 

of positive roots of the pair ((~c, to) and set HT=yL~prH~. We regard IIr  as a differen- 

tial operator on T. Then, if ]eC~ (G), the function HT(I) [ extends to a continuous func- 

tion on T. With the measures normalized as in 2. B, we have 

[(1) ffi M ~  a ~ ' ( 1  ; Hr),  �9 (4.1) 

where M o = (2 zt)' ( - 1) ~ (see [4 a)], [4 e)]; the constant M o is determined in [11], Ch. VIII). 

Thus, we apply IIr  to ~P~" at a point toET' and compute the limit of IIrqbT(to) as t o 

approaches 1 through the regular dements  in T. 

THEOREM 4.2. (The Plancherel /ormula). Let ]fiC~ (G) and denote by PA the set posi- 
rive roots o/the pair ((~c, ac). Set . ~ : =  {Zefi~K: g(~')= +__ 1}. Then 

/(1) = M51 ~. [ 1-I (3, a)] |  1[2)([W(G, T)]/[W(G, A)]) 
,~L~ L~P~ ' J 

•  ~.+e<Z'~ ~ T(X'~"]'c~ a ( logZ+ 1/~ 1_ v~a,~)]dv 
/xeA x , / -oo  

+ Y e(Z, f iT'X")(/) tanh(2) L,~.~ ( l ogg+  [/-L-- lv  ] ]  dr}. 

Our proof of the Plancherel formula differs from that  of Harish-Chandra [4f)], 

and avoids the use of the principal value integral ([4c)], p. 308). The remainder of this 

section is devoted to proving Theorem 4.2. 

Fix an element t 0 G T' and consider the series M~ 1 ( - 1)r ~ r - T  H r $~ (to) Or (]). From 

[4 e)], it follows that  this series converges absolutely and uniformly in a neighborhood of 

to in T'. We conclude that  
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l im M ~ I (  - 1)rHT( Z ~( to )  0~(I ) )  = M ~ I (  - 1) r Z r 1-] ( -  ~, ~)] Or(I)  
t , - - ->l  v e L r  veL~, [~epr J 

=MS ~ ~ [ H  x)] o,(/). 
tell. LaeP~" J 

(4.3) 

This is the contribution of the discrete series to the Plancherel formula. 

Next, assume that  Z E ~  and extend Z trivially to all of T. We must consider the 
/ 

application of IIT to 

f~ [ ] Z(tl(w)) T(z'~([) sinh(~(0w+=))+sinh(r0w! dv 
sinh (v=) 

r162 (1) [sinh ( (Ow T- ~ ]  I _  
= Z(t,(w)) f' T ix" ~ z / / ldv ,  (4.4) 

j_  

where, as in Theorem 3.19, wE W(G, T), toET', w-lto= tl(w)t2(w), tl(w)ET 1, t2(w)ET2; 

and t3(w ) = exp (Ow(X*- Y*)). In (4.4), we take sinh (v(0~- (=/2))) if 0<  0w< = and 

sinh (v(0~+ (n/2))) if - n <  0w< 0. Since we are interested in t o only in a neighborhood of 

1, we may assume that  - = / 2 <  0w < =/2 for all wE W(G, T). 

Since Z[ T~ = 1 and ~tl tl -= O, we can write 

and 
Z(t 1 (w)) = w~(to) 

In the last expression, we work with principal branch of the argument, and our restric- 

tion on 0w eliminates any ambiguity 

Now set 

F~ (w: v: to) = wZ (to) [ e~'nl~ (w~t (to))7--~'I2 _ e• (w~ext (to))-v--iv/2]. (4.5) 

From the properties of T (z'v) ([11], v. i, Ch. 5), it is clear that  IIT applied to (4.4) is 

equal to 

(�89 T (z'~) ([) [IIr-F~ (w: v: t.)/sinh (v~/2)] dr, (4.6) 

and if we consider the sum of the terms (4.6) over ~ : ,  it is also clear that  the resulting 

series converges absolutely and uniformly in a neighborhood of t o in T'. We conclude, 

from Theorem 3.19 and (4.1), that  
2 - 732906 Acta mathematica 131. Imprim6 le 18 Octobre 1973 
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MS~(]/-1/2)(-1y,[W(G,A)]  -1 ~ det(w) ~ e(X) 
we w(o.  T) z ~A~ 

x (�89 f~oo T~Z'~) (/) [limt._.lNrF~ (w: v:t~ (w/2)] dv (4.7) 

represents the contribution to the Plancherel formula of the principal series indexed by 

ZE-~ .  Note that  t 0 runs through a sequence of elements in T', and, for each t 0 and 

wE W(G, T), we take F~ or ~'~ according to whether 0<  0w< g/2 or - ye/2< 0w< 0 re- 

spectively. 

If we work in a sufficiently small neighborhood of 0 in (~, we can write 

(~at (to exp sH~)) • "/~ = (~t (to)) • ~,2 (~at (exp sH~))*V-l~/2, 

cr E PT, s E R, and then 

F~(w: r: t0: liT) = IITF~ (w: v: $o) 

Note that  the factor det (w) in (4.8) cancels with det (w) in (4.7). 

Evidently 

and we claim that  

1--[ (l~ ~ -  ] / ~ ] v  ) ~pa ~ aa' a �9 (4.9) 

This claim is substantiated by the following observations. 

(i) If a is compact, then (~a, ~) = 0. 

(ii) If ~ = ga, the unique positive real root of the pair ((~c, ac), then (log Z, ~a) = 0. 

(iii) If a is a positive complex root, then 

2 ~ aa' $ ' 



FOURIER TRANSFORM ON SEMISIMPLE LIE  GROUPS OF REAL RANK ONE 19 

the conjugate of ~. This last equality follows from the fact that  (~r ~) = (~a, ~) since 

~a is real, and the fact that  (log ~, ~) + (log ~, ~) = 0. 

From (4.8) and (4.9), we have 

F ;  (w:v: 1; I I ' ) =  2 det (w) cosh (r~/2) [ ]-I (log~ + g , , a  . (4.10) 
L,~eP.a \ 

Since log  ~ = - ]og Z, we  have  

= ( - l ) r  1-~ (logZ 1/-1~ ) 1)r+l ( ~ - ~  0c) ~ p ~  2 a a, a = ( - 1"~ l o g  g + a a, 
~EPA 

the last equality following from the fact that  the number of positive complex roots of the 

pair (~c, ac) is even. Thus 

F ~ ( w : ~ : l ; I I r ) = 2 d e t ( w ) c o s O , ~ / 2 ) ( - 1 )  rl log Z + - - 2 - -  ~,, ~ . (4.11) 

An entirely analogous procedure can be followed for Z E ~  (see (5.15) ft.) to complete 

the derivation of the Planchcrel formula. 

5. The Fourier transform of a semisimple o r b i t  

Let y be a semisimple element in G, and let Gy be the centralizer of y in G. Then 

Gy is unimodular, and we denote by da/% (5) a G-invariant measure on G/G r. In this sec- 

tion, we compute the Fourier transform of the invariant distribution 

(5.1) 

Since the distribution (5.1) is invariant, we may assume that yEA U T. The cases when 

y is a regular element were treated in section 3, so we also assume that y~.A' [ T'. 

Let {~r be the centralizer of y in {~, and let j# be a Cartan subalgcbra of {~r which 

is fundamental in (~r. Then, Jr is a Cartan subalgebra of {~ since rank ((~) = rank (@~). 

(Of course, i~ need not be fundamental in (~.) If Jr  is the Cartan subgroup of G corre- 

sponding to it, then, by conjugating (if necessary), we may assume that  Jr  = A or Jr  = T. 
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Now denote by  P+ the set of positive roots of the pair ({~y, jy) and set IIy = rLee+H~. 

If (I)~, [ 6 C~ (G), is the invariant integral of [ relative to J~, then, according to a result of 

Harish-Chandra ([4 g)], p. 33), there exists a constant My + 0 such that  

fa /(~:Y) da/ay(~) = M~r (y; IIy). (5.2) 
/Gy 

I t  is possible to eombute Mu for a certain normalization of the relevant invariant meas- 

ures. 

In the remainder of this section, we compute (I)~ (y; I-[~) for the cases J~ = A and 

Jy = T. In either case, we set 
r~ = [P~]. (5.3) 

The idea is the same as tha t  used in the derivation of the Plancherel formula, tha t  is, we 

compute 4)~(x; H~) at a regular element x by using the formulas of section 3 and then 

let x approach y through a sequence of regular elements. 

5. A. Sy fA  

We consider the differential operator IIy applied to Of ,  where (I)f is given by (3.21). 

If we write 
y=ysy~,, yK6AK, y~, 6 A~,, 

then we have 

(I)~ (y; II~)= el(y;  II~) 

( )] =c~l(2~r)-~(-1Y * Y. e(Z)Z(y~) e-r I-I - l o g Z  - V - - ~ v  

where y~ = exp (t~H*). 

dicated in section 4. 

Thus, 

The necessary facts relating to convergence have already been in- 

Of (y ;  [I~) = c] 1 (2~r)-1 ( - 1) r'+', ~ e(g) g(yg) 
zeAK 

(5.4) 

5. B. J y f T  

Here, we have 4p~(y; IIy)= (I)T(y; l-IT). If y is central, then (I)T(y; [I T) can be com- 

puted by a simple variant of the derivation of the Plancherel formula as presented in see- 
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tion 4. So, we assume tha t  y is not central and proceed in a fashion similar to tha t  of 

section 4. All the convergence arguments necessary in this section were used in the proof 

of the Plancherel formula so we shall not mention them explicitly here. 

We first observe that  the contribution of the invariant distributions O,  (/);T e l f ,  to 

the formula for (I)f(y; I]~) is given by 

( -  1) "+',, Z [ lq (~', ~)] O,(l) ~,(.v). 
_1 

(5.5) 

Now consider the contribution of the principal series. Let  W~ (G, T) be the subgroup 

of W(G, T) generated by the compact roots in Py+. I f  G~y is the identi ty component of G~, 

then W~ (G, T) is the quotient of the normalizer of T in G~y by T. Choose elements w 1 = 1, 

w2 . . . . .  wN in W(G, T) such tha t  

N 
W(G, T) = [.J Wy(G, T) w~ (disjoint union). (5.6) 

5=1 

I f  wE W(G, T), we can write w = w~w~, w~E W~(G, T), for some i, 1 ~< i <  N. Moreover, 

W e  h a v e  

wE 1 y = Yl (wi) Y2 (wi), Yl (w~) e T~, y2 (w~) e T~. (5.7) 

Since the decomposition (5.7) is unique only up to {1, ~}, we may  assume tha t  

y~. (w~) = exp (0~ (X* - Y*)), - ~]2 ~< 0~ < ~]2. (5.8) 

Let  t o be a regular element in T satisfying the conditions of section 4, tha t  is, for 

we W(G, T), 
w -1 t 0 = t 1 (w) t 2 (w); t~ (w) = exp (0w (X* - Y*)) 

with 0 <  [0wi < z/2. I f  we take Z E - ~ ,  apply the differential operator H r to F~(w: v: t o) 

(see (4.5)), and then take the limit as t o approaches y through a sequence of regular 

elements which satisfy the conditions above, we obtain 

L• \ \ 

1 . 
(5.9) 

(Here, as before, we have extended Z trivially to all of T.) 

I f  w = wy wf, wy E W~ (G, T), then w~,(y) = w~i~(y), w ~  (y) = wt ~ t  (Y) and 
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Thus, for any fixed i, 1 ~< i ~< N, 

(�89 ~ det (w) F~(w:v:y;  II r) 
w~Wu(G,T) w~ 

2 ~ / '  ~ ' (5.10) 

where 0w~ is defined by (5.8). 

In  the formula for (I)~(y;l-[~), we use F~ in the ease 0~<0w~<~[2 and P~ if 

- ~/2 ~< 0w~ ~< 0. Although this appears to present a difficulty when Ow, = 0, we shall see 
below that  this difficulty is easily resolved. Of course, we have a similar formula if X ~ .  

At this point, we analyze the product 

in some special cases. 

1-'[ (wt ( l o g ~ + ~ - ~ t ) ,  a ) 

LEMMX 5.11. Suppose that Z E .~ ~c and w / l y G T I = A ~ /or some j, I < j <~ N. Then 

~P~-I~+ (w, ( log~+ ~/---~" g 2  t ] '  ~ ~ ) =  -~Ie~ + (w, (log Z : L/-lv2 at) ' ~) " 

Proo]. Suppose first that ?" = 1, that is, % = w 1 = 1. Then yEA~ and G~ contains both 
T and A. I t  follows that  G~ is a split rank one group and the conclusion of the lemma 
may be obtained in the same fashion as (4.9). If wt=~ 1, then Gw~- % = w71Guwj and aEP~ 

if and only if w71aEP:~_l. Thus 

H 

, )I  - -  wj  l o g ~  [ / - I v  
~wT1 ~ 2 a '  = -  2 a ' a ' l l  

C O R O L L A R Y  5.12. Suppose that ZE.~+K and wTlyEA~: lot some ~, I < ~ N .  Then 

Owj = 0 and 
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(~) ~ det (w)F;(w:v:y;  H [) 
w~ w~(  a . T )  w t 

= [W, (G, T)] det (wj) wig(y) eosh (v•/2) Z ~wj. ~logZ + ~ a t / ,  a] �9 
~EP;  \ \ -- / 

Remark. The ambiguity in (5.10) is resolved by Corollary 5.12. If Owt = O, then the 

choice of either F~ or F~ leads to the same result just as in the proof of the Plancherel 

formula. 

L•MMA 5.13. Suppose that w ; l y E T 2 ~  T1 and that wily=y~(w~) (see (5.7) and (5.8)) 

/or some j, 1 <. ] <~ N. Then, 

/ / - l / ~ l v  ' a) (w,( log~ ] / - l v  
rLEPy 

Proo/. Assume first that  ] = 1, t h a t  is, wj = w 1 = 1. Write y = exp (0x (X* - Y*)), where 

- ~/2 ~< 01 < 0 or 0 < 01 < x/2. Now, G o is compact and P~ is made up of compact roots. 

If a6P~ +, we claim that  a1s In fact, ~a(y)=e a'=cx*-z*)= 1 so that  01a(X*- Y*)= 

2 ~ ]/--1 n for some integer n. 

From [4f)], p. 121, we have V - i  ( x * -  Y*)= 2H~J(at, at) which implies 

01 2(a, at) 2~]/_---~n" 
01a(X* - Y*)-  ] /~ I (at, at) 

From the theory of root systems, we know that  

2 (a, a~) {0,1, 2, 3}. 

The restrictions on 01 imply that  n = 0 and a ( X * -  Y*)= 0. 

Now, for any a E P~-, we have 

so that  

The remainder of the proof for % #  1 is similar to the proof of Lemma 5.11. II 

COROLLARY 5.14. Suppose that Z e A } , w ; ~ y e T , \ T ~  and that wTly=y~(wt) ]or 

some ~, 1 <~ j <. N. Then 
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(�89 ~ det (w) F~(w: v : y ; I I [ )  
weW(G,T)w] 

=[W~(a, Tildet(%)sinh v 0w,+~ (wdlog~),=), 

where we take F~- and sinh (V(0wt-(~/2))) if 0<0,o~<~/2, and we take F~- and 

sinh (V(0w~+ (~]2))) if - ~/2 ~ 0w~< 0. 

In the case when Z E . ~ ,  we must consider the application of II~ to 

Z(tl (w))f~_:r Tcx.~,(/) [,inh (V(0WsinhT~t))(v~t)-sinh (v0~)j] dv 

_ cosh (vzt/2) dr. 

We extend Z to a function on T as follows. For tET, we write 

t=tlt~, t l e T  1, feeT2, 

t 2 = exp (02(X*- Y*)), - zt/2 ~< 08< ~t/2. (5.15) 

This decomposition is unique, and we set 

g ( t )  = g ( / z ) .  ( 5 . 1 6 )  

We now define, for t o e T, 

G~(w:v: 1o)= +wZ(to) [e~'~/2(w~(to))r177 -r (5.17) 

where w-~to, as usual, decomposes according to (5.15) and (5.16). Take a regular element 

t o for which 0 <  10wl < we w(o, T), apply the differential operator IIr  to G~ (w: v: t0), 

and take the limit as t o approaches y. This yields 

; "4- WT, e ~:v~12 W . V-~vl2 G~(w:v:y II:,=_ (y,{ (~:,,(y))[1-~ (w(log~+~-~a,) ,a)]  
L=ep; \ \ 

~EP# 2 

and, as in the case of Fx ~ {5.10), we obtain 
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(�89 det(w)G~(w:v:y; liT) 
w e  Wv(G. T )  w i  

= (w, 
l L ~ p +  

where 0w, is define by (5.8). 

In the formula for (I)T(y;II~), we use G~ when 0-<<0w<g/2 and G~ when 

-~ /2<0w~<0 .  The ambiguity when 0 ~ = 0  is again handled by Lemma 5.11. We have 

the following analogue of Corollary 5.12. 

COROLI, ARY 5.20. Suppose that gE~Tc and wTlyEAK /or some ~, I <~<N. Then 

Ows = 0 and 

(�89 ~ det(w)G~(w:v:y; H r) 
w e  Wa(G, T)  w I 

~ E p  + 

There is also an obvious analogue for Corollary 5.14. We now give the general for- 

mula for OT(y: liT). 

TIt~OR~M 5.21. Suppose that y is a non-regular, non-central element in T and that 

w-ly, 1 <~ i <<. N, is decomposed according to (5.7) and (5.8). Then 

Of(y ;  r _ r+r~ ] II~)-(-1) ~ [ FI (~,~) o~(/)~(y) 
] 

+ (1/~- 1/4) ( -  1)',(IW,,(G, T)]IiW(G, A)]) ~ ,(Z) 

det (wt) T~Z"l (/) [ F§ (wt : v : y; II~)/sinh (v~/2)] dv 

o < 0  /2 

+ ~ det (w,) I ~~ T (z' ~) (/) [F-  (wt: v: y; II ~)/sinh (urn'2)] dr" 
Wf d - ~  

+ (V-~il,)(- 1)rl ([Wv(O, T)]I[W(G, A)]) ~ e(X) 
%EA 

i 

I <'~ <w,,.F__,<,,..,, • 
/ 
I o ~< 0wt<~/2 
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-i- ~, det (wt) f ~  Tcz'~)(/)[G~ (w:u:y;  Hr)/cosh (~/2)]dv  t. 

The  proof  of Theorem 5.21 follows f rom the  preceding discussion. F o r  pa r t i cu l a r  y, 

the  fo rmula  for (1)T(y, 1-I T) can be s implif ied b y  Corollaries 5.12, 5.14 and  5.20. 
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