THE FOURIER TRANSFORM ON SEMISIMPLE LIE GROUPS OF REAL RANK ONE

BY
PAUL J. SALLY, JR. and GARTH WARNER
University of Chicago, Chicago, Ill., USA and University of Washington, Seattle, Wash., USA (1)

Table of Contents

1. Introduction . 1
2. Some results of Harish-Chandra . 3
3. A The structure of $(35$ and G. 3
4. B The invariant integral on G. 4
5. C The characters of the discrete series . 6
6. D The characters of the principal series 7
7. The Fourier transform of a regular orbit 8
8. A The Fourier transform of a regular elliptic orbit 8
9. B The Fourier transform of a regular hyperbolic orbit 16
10. The Plancherel formula for G. 16
11. The Fourier transform of a semisimple orbit 19
12. A $J_{y}=A$. 20
13. B $J_{y}=T$. 20

1. Introduction

Let G be a connected semisimple Lie group with finite center and let K be a maximal compact subgroup of G. We assume that $\operatorname{rank}(G)=\operatorname{rank}(K)$ and that $\operatorname{rank}(G / K)=1$. Let T be a Cartan subgroup of G contained in K. We write \mathbb{E} for the Lie algebra of G and \mathscr{G}_{C} for the complexification of \mathfrak{G}. If G_{C} is the simply connected, complex analytic group corresponding to \mathscr{G}_{C}, we assume that G is the real analytic subgroup of G_{C} corresponding to \mathfrak{G}.
${ }^{(1)}$ Research of both authors supported by the National Science Foundation.

Let y be a semisimple element in G and let G_{y} denote the centralizer of y in G. Then G_{y} is unimodular, and we denote by $d_{G / G y}(\dot{x})$ a G-invariant measure on G / G_{y}. If we write $\dot{x} y=x y x^{-1}, x \in G$, then the map

$$
f \mapsto \int_{G / G_{y}} f(\dot{x} y) d_{G / G_{y}}(\dot{x}), \quad f \in C_{\mathrm{c}}^{\infty}(G)
$$

defines an invariant distribution Λ_{y} on G which is actually a tempered distribution.
In this paper, we give explicit formulas for the Fourier transform of Λ_{y}, that is, we determine a linear functional $\hat{\Lambda}_{y}$ such that

$$
\Lambda_{y}(f)=\hat{\Lambda}_{y}(f), \quad f \in C_{c}^{\infty}(G) .
$$

Here, we regard \hat{f} as being defined on the space of tempered invariant eigendistributions on G. This space contains the characters of the principal series and the discrete series for G along with some "singular" invariant eigendistributions whose character theoretic nature has not yet been completely determined (see 2. C).

Apart from the intrinsic interest of our results relative to harmonic analysis on G, the Fourier transforms of the invariant distributions Λ_{y} arise naturally in the context of Selberg's trace formula. Thus, let Γ be a discrete subgroup of G such that G / Γ is compact. Let λ be the (left) regular representation of G on $L^{2}(G / \Gamma)$. Then λ can be decomposed as the direct sum of irreducible unitary representations of G, and each irreducible unitary representation π of G occurs in λ with finite multiplicity m_{π}.

We write

$$
\lambda=\sum_{\pi \in \hat{G}} \oplus m_{\pi} \pi
$$

where \hat{G} denotes the set of equivalence classes of irreducible unitary representations of G. The basic problem here is the determination of those $\pi \in \hat{G}$ for which $m_{\pi}>0$ and, moreover, the determination of an explicit formula for m_{π}.

Let $d_{G}(x)$ denote a Haar measure on G. For f in a suitable class of complex valued functions on G, the operator $\lambda(f)=\int_{G} f(x) \lambda(x) d_{\dot{G}}(x)$ is of the trace class and

$$
\begin{equation*}
\operatorname{tr} \lambda(f)=\sum_{\pi \in \hat{G}} m_{\pi} f(\pi) \quad(\hat{f}(\pi)=\operatorname{tr} \pi(f)) . \tag{1.1}
\end{equation*}
$$

On the other hand ([2], Ch. 1), we can write

$$
\begin{equation*}
\operatorname{tr} \lambda(f)=\sum_{\{y\}} \mu\left(G_{y} / \Gamma_{y}\right) \int_{G / G \eta} f(x y) d_{G / G y}(\dot{x}), \tag{1.2}
\end{equation*}
$$

where $\{y\}$ runs through the conjugacy classes in Γ and $\mu\left(G_{y} / \Gamma_{y}\right)$ is the volume of G_{y} / Γ_{y}.

Now, the idea is to get information about the multiplicities m_{π} by equating (1.1) and (1.2). The first step in this program is the computation of the Fourier transform of the terms which occur in (1.2), that is, the computation of $\hat{\Lambda}_{y}$ for $y \in \Gamma$. Since G / Γ is compact, every element of Γ is semisimple so that the formulas in the present paper provide the necessary information. Some aspects of the above program have been carried out for $G=\mathbf{S L}(2, \mathbf{R})$ in [2], Ch. 1 , and, in somewhat more detail, by R. Langlands in a course given at Princeton in 1966. In particular, Langlands shows that the multiplicity of those members of the discrete series of $\mathrm{SL}(2, \mathbf{R})$ which do not have L^{1} matrix coefficients is not given by an analogue of the multiplicity formula for those discrete series which have L^{1} matrix coefficients. The multiplicity formula for the non- L^{1} discrete series contains an additional term of -1 . It is our intention to use the formulas in this paper and methods similar to those of Langlands to obtain multiplicity information for real rank one groups.

We now outline the contents of the paper. In §2, we summarize some results of Harish-Chandra. The entire paper relies heavily on the work of Harish-Chandra, an account of which may be found in [11]. In general, we adopt the notation of [11]. In §3, we consider the case when y is a regular element in G. The basic case is when $y \in T$. All the remaining results in the paper stem from this case. The Plancherel formula for G, first given by Harish-Chandra [4f)] and Okamoto [6], is derived in $\S 4$ by a simple application of Harish-Chandra's limit formula [4a)], [4c)]. Our method differs from that of the authors cited above. In §5, we take y to be a semisimple, non-regular element in G. The formula for $\hat{\Lambda}_{y}(\hat{f})$ can again be computed from the results of $\S 3$ by applying a theorem of Harish-Chandra ([4g)], p. 33). We mention, in passing, that the case when y is a unipotent element may also be treated by our methods, that is, by applying an appropriate differential operator to a regular orbit and then taking a limit. Unfortunately, the explicit form of the differential operator is unknown to us at this writing. ${ }^{1}$)

Some of the results of this paper were announced in [8 a)], and some examples are discussed in [8 b)]. For $\operatorname{SL}(2, \mathbf{R})$, our formulas may be found in [1], [2], [4 b)]. Similar results for $\mathrm{SL}(2, k), k$ a non-archimedean local field appear in [7]. We would like to express our appreciation to J. Arthur, C. Rader and N. Wallach for their helpful comments.

2. Some results of Harish-Chandra

2. A. The structure of (6) and G

We retain the notation of the Introduction. Let t be the Lie algebra of T and t_{c} the complexification of t. Then t (resp. $t_{\mathbf{c}}$) is a Cartan subalgebra of (\mathcal{S} (resp. $\mathbb{G}_{\mathbf{c}}$). Proceeding
(1) Results in this direction have been obtained recently by Ranga Rao.
as in [4f)], § 24, we fix a singular imaginary root α_{t} of the pair $\left(\mathbb{G}_{\mathbf{C}}, t_{\mathbf{c}}\right)$ and a point Γ in t such that $\pm \alpha_{t}$ are the only roots of the pair $\left(\mathscr{G}_{c}, t_{c}\right)$ which vanish at Γ. Denote by \mathfrak{G}_{Γ} the centralizer of Γ in \mathbb{G}, and let \mathfrak{c}_{Γ} and \mathfrak{I}_{Γ} be the center of $\mathfrak{G S}_{\Gamma}$ and the derived algebra of \mathbb{G}_{Γ} respectively.

The subalgebra \mathfrak{l}_{Γ} is isomorphic over \mathbf{R} to $\mathfrak{l l}(2, \mathbf{R})$, and we may select a basis H^{*}, X^{*}, Y^{*} for \mathfrak{l}_{Γ} over \mathbf{R} such that $\left[H^{*}, X^{*}\right]=2 X^{*},\left[H^{*}, Y^{*}\right]=-2 Y^{*},\left[X^{*}, Y^{*}\right]=H^{*}$. Then $t=\mathbf{R}\left(X^{*}-Y^{*}\right)+\mathfrak{c}_{\Gamma}$ and $\mathfrak{a}=\mathbf{R} H^{*}+\mathfrak{c}_{\Gamma}$ form a complete set of non-conjugate Cartan subalgebras of (©). Put $\mu=\exp \left[\sqrt{-1}(\pi / 4)\left(X^{*}+Y^{*}\right)\right] \in G_{\mathbf{c}}$. Then $\left(\mathrm{t}_{\mathbf{c}}\right)^{\mu}=\mathfrak{a}_{\mathbf{c}}$, the complexification of \mathfrak{a} and, if $\alpha_{\mathfrak{a}}=\left(\alpha_{t}\right)^{\mu}$ is the μ-transform of α_{t}, we have $\alpha_{a}\left(H^{*}\right)=2$ and $\alpha_{\mathfrak{a}}$ vanishes identically on \mathfrak{c}_{Γ}. We order the space of real linear functions λ on $\mathbf{R} H^{*}+\sqrt{-1} \mathfrak{c}_{\Gamma}$ by stipulating that $\lambda>0$ whenever $\lambda\left(H^{*}\right)>0$. We then obtain a set of positive roots for the pair ($\left.\mathscr{G}_{\mathbf{c}}, \mathfrak{t}_{\mathbf{c}}\right)$ by demanding that the μ-transform of such a root be positive when considered as a root of $\left(\mathscr{G}_{\mathbf{c}}, \mathfrak{a}_{\mathbf{c}}\right)$.

Let A be the Cartan subgroup of G associated with \mathfrak{a}, and let A^{0} be the identity component of A. Then, setting $A_{K}=A \cap K, A_{K}^{0}=A^{0} \cap K$ and $A_{\mathfrak{p}}=\left\{\exp \left(t H^{*}\right): t \in \mathbf{R}\right\}$, we have

$$
A=A_{K} A_{\mathfrak{p}} \quad \text { and } \quad A^{0}=A_{K}^{0} A_{\mathfrak{p}}
$$

Put $Z\left(A_{\mathfrak{p}}\right)=K \cap \exp \left\{\sqrt{-1} \mathrm{R} H^{*}\right\}$. Then $Z\left(A_{\mathfrak{p}}\right)=\{1, \gamma\}$ is a group of order two with $\gamma=\exp \left[\pi\left(X^{*}-Y^{*}\right)\right]=\exp \left(\sqrt{-1} \pi H^{*}\right) \neq 1$. We have $A_{K}=Z\left(A_{\mathfrak{p}}\right) A_{K}^{0}$.

Set $\mathrm{t}_{1}=\mathrm{c}_{\Gamma}, \mathrm{t}_{2}=\mathbf{R}\left(X^{*}-Y^{*}\right)$ and let T_{1} and T_{2} be the analytic subgroups of T corresponding to t_{1} and t_{2} respectively. T_{1} and T_{2} are compact and $T_{1} \cap T_{2} \subset Z\left(A_{\mathfrak{p}}\right)$. Since $A_{K}=T_{1} \cup \gamma T_{1}\left(T_{1}=A_{K}^{0}\right)$, it follows that A_{K} has one or two connected components according to whether γ lies in $T_{1} \cap T_{2}$ or not. Now, if M is the centralizer of $A_{\mathfrak{p}}$ in K and M^{0} is the identity component of M, then $M=M^{0} \cup \gamma M^{0}$.

If no simple factor of G is isomorphic to $\operatorname{SL}(2, \mathbf{R})$, it follows from the classification of real rank one groups [9] that M is connected or, equivalently $T_{1} \cap T_{2}=\{1, \gamma\}$. In this case $T_{1}=A_{K}$, a maximal torus in M.

For the group $\operatorname{SL}(2, \mathbf{R})$, our results are well-known and may be found in [8 b)]. Throughout the remainder of this paper, we assume that M is connected.

Write $G=K A_{\mathfrak{p}} N^{+}$, the Iwasawa decomposition of G, and set $P=M A_{\mathfrak{p}} N^{+}$. Then P is a minimal (and maximal) parabolic subgroup of G.

2. B. The invariant integral on \boldsymbol{G}

We first establish a normalization of certain invariant measures. Let $x \mapsto \dot{x}, x \in G$, denote the canonical projection of G on G / T (or G / A). We take a G-invariant measure
$d_{G / T}(\dot{x})$ on G / T which is normalized as in [11], v. II, Ch. 8. If we choose a Haar measure $d_{T}(t)$ on T normalized so that the volume of T is one, then a Haar measure $d_{G}(x)$ on G is fixed by the formula

$$
\int_{G} f(x) d_{G}(x)=\int_{G / T} \int_{T} f(x t) d_{T}(t) d_{G / T}(\dot{x})
$$

for $f \in C_{c}(G)$.
Let $d_{A_{\mathfrak{p}}}\left(h_{\mathfrak{p}}\right)$ be the Haar measure on $A_{\mathfrak{p}}$ which is the transport via the exponential map of the canonical Haar measure on the Lie algebra of $A_{\mathfrak{p}}$ associated with the Euclidean structure derived from the Killing form of (SS. Since $A_{\mathfrak{p}}=\left\{\exp t H^{*}: t \in \mathbf{R}\right\}$, we have

$$
\begin{equation*}
d_{A_{\mathfrak{p}}}\left(h_{\mathfrak{p}}\right)=c_{A} d t \tag{2.1}
\end{equation*}
$$

where c_{A} is a positive constant and $d t$ is normalized Lebesgue measure on R. We normalize Haar measure $d_{A_{K}}\left(h_{K}\right)$ on A_{K} so that the volume of A_{K} is one. Now a Haar measure $d_{A}(h)$ on A is fixed by the formula $d_{A}(h)=d_{A_{K}}\left(h_{K}\right) d_{A_{\mathfrak{p}}}\left(h_{\mathfrak{p}}\right)$ where $h=h_{K} h_{\mathfrak{p}}$. A G-in. variant measure $d_{G / A}(\dot{x})$ on G / A is then determined by the formula

$$
\int_{G} f(x) d_{G}(x)=\int_{G / A} \int_{A} f(x h) d_{A}(h) d_{G / A}(\dot{x}),
$$

for $f \in C_{c}(G)$.
Let G^{\prime} be the set of regular elements in G and set $T^{\prime}=T \cap G^{\prime}, A^{\prime}=A \cap G^{\prime}$. Put $G^{e}=\bigcup_{x \in G} x T^{\prime} x^{-1}$, the elliptic set in G, and $G^{h}=\bigcup_{x \in G} x A^{\prime} x^{-1}$, the hyperbolic set in G. Then $G^{\prime}=G^{e} \cup G^{n}$ (disjoint union) and

$$
\begin{equation*}
\int_{G} f(x) d_{G}(x)=\int_{G^{e}} f(x) d_{G}(x)+\int_{G^{h}} f(x) d_{G}(x), \tag{2.2}
\end{equation*}
$$

for $f \in C_{c}(G)$. Let $\Delta_{T}, \Delta_{A}, \varepsilon_{R}^{T}, \varepsilon_{R}^{A}, W(G, T)$ and $W(G, A)$ be defined as in [4d)] (in particular, $W(G, T)$ is the Weyl group of K). For $x \in G$, write $\dot{x} t=x t x^{-1}, t \in T$, and $\dot{x} h=x h x^{-1}, h \in A$. If $f \in C_{c}^{\infty}(G)$ and $t \in T^{\prime}$ the invariant integral of f (relative to T) is defined by

$$
\begin{equation*}
\Phi_{F}^{T}(t)=\Delta_{T}(t) \int_{G / T} f(\dot{x} t) d_{G / T}(\dot{x}) \tag{2.3}
\end{equation*}
$$

Similarly, if $h \in A^{\prime}$, the invariant integral of f (relative to A) is

$$
\begin{equation*}
\Phi_{f}^{A}(h)=\varepsilon_{R}^{A}(h) \Delta_{A}(h) \int_{G / A} f(\dot{x} h) d_{G / A}(\dot{x}) . \tag{2.4}
\end{equation*}
$$

From Weyl's formula ([4g)], p. 110), and (2.2), it follows that

$$
\begin{align*}
& \int_{G^{e}} f(x) d_{G}(x)=[W(G, T)]^{-1} \int_{T} \overline{\Delta_{T}(t)} \Phi_{f}^{T}(t) d_{T}(t), \\
& \int_{G^{h}} f(x) d_{G}(x)=[W(G, A)]^{-1} \int_{A} \overline{\Delta_{A}(h)} \varepsilon_{R}^{A}(h) \Phi_{f}^{A}(h) d_{A}(h) . \tag{2.5}
\end{align*}
$$

It is known [4d)] that $\Phi_{f}^{T} \in C^{\infty}\left(T^{\prime}\right)$ (in general, Φ_{f}^{T} does not extend to a C^{∞} function on all of T). Relative to the operation of $W(G, T)$ on T, we have

$$
\begin{equation*}
\Phi_{f}^{T}(w t)=\operatorname{det}(w) \Phi_{f}^{T}(t) \tag{2.6}
\end{equation*}
$$

for $w \in W(G, T), t \in T^{\prime}$. The function Φ_{f}^{A} is in $C^{\infty}\left(A^{\prime}\right)$ and extends to a compactly supported C^{∞} function on all of A since the pair $\left(\mathfrak{G}_{\mathbf{G}}, \mathfrak{a}_{\mathfrak{c}}\right)$ has no singular imaginary roots [see [4 d)], §22). The general formula for the transformation of Φ_{f}^{A} relative to the action of $W(G, A)$ is given in $[4 \mathrm{f})]$, p. 103. We are interested in two special cases.

$$
\begin{equation*}
\Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}\right)=\Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}^{-1}\right), h_{K} \in A_{K}, h_{\mathfrak{p}} \in A_{\mathfrak{p}} \tag{2.7}
\end{equation*}
$$

If $w \in W\left(M, A_{K}\right)$, the Weyl group of M, then w may be considered as an element of $W(G, A)$, and we have

$$
\begin{equation*}
\Phi_{f}^{A}(w h)=\operatorname{det}(w) \Phi_{f}^{A}(h), h \in A, w \in W\left(M, A_{K}\right) \tag{2.8}
\end{equation*}
$$

2. C. The characters of the discrete series

The unitary character group \hat{T} of T may be identified with a lattice L_{T} in the dual space of $\sqrt{-1} \mathrm{t}$, and, for $\tau \in L_{T}$, the corresponding character $\xi_{\tau} \in \hat{T}$ is given by

$$
\begin{equation*}
\xi_{\tau}(\exp H)=e^{\tau(H)}, \quad H \in \mathrm{t} \tag{2.9}
\end{equation*}
$$

The Weyl group $W\left(\mathscr{G}_{\mathrm{c}}, \mathrm{t}_{\mathrm{c}}\right)$ acts on L_{T} and hence on \hat{T} by the prescription

$$
\begin{equation*}
\left.w \tau(H)=\tau\left(w^{-1} H\right), \xi_{w \tau}(\exp H)=e^{w \tau(H)}, \quad H \in \mathfrak{t}, \tau \in L_{T} \cdot .^{1}\right) \tag{2.10}
\end{equation*}
$$

We say that $\tau \in L_{T}$ is regular if $w \tau \neq \tau$ for all $w \neq 1$ in $W\left(\mathcal{S}_{\mathbf{c}}, \mathrm{t}_{\mathbf{c}}\right)$; otherwise τ is said to be singular. The set of regular τ will be denoted by L_{T}^{\prime} and the set of singular τ by L_{T}^{s}. The character ξ_{τ} is called regular or singular accordingly.

To each $\tau \in L_{T}$, there is associated a central eigendistribution Θ_{τ} on G characterized uniquely by certain properties ([4e)], p. 281, [4f)], p. 90). Θ_{τ} is locally summable on G and analytic on G^{\prime}. We have
${ }^{(1)}$ For convenience, we write $w \tau$ for $w \cdot \tau$.

$$
\begin{equation*}
\Theta_{\tau}(t)=\Delta(t)^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \xi_{w \tau}(t), t \in T^{\prime} \tag{2.11}
\end{equation*}
$$

Note that, if $\tau \in L_{T}^{s}$ and, moreover, τ is fixed by a non-trivial element of $W(G, T)$, then Θ_{τ} is identically zero on T^{\prime}.

On A^{\prime}, the behavior of Θ_{τ} is slightly more complicated. Set

$$
\begin{aligned}
& A_{\mathfrak{p}}^{+}=\left\{h_{\mathfrak{p}} \in A_{\mathfrak{p}}: \alpha_{\mathfrak{a}}\left(\log h_{\mathfrak{p}}\right)>0\right\}=\left\{\exp \left(t H^{*}\right): t>0\right\}, \\
& A_{\mathfrak{p}}^{-}=\left\{h_{\mathfrak{p}} \in A_{\mathfrak{p}}: \alpha_{\mathfrak{a}}\left(\log h_{\mathfrak{p}}\right)<0\right\}=\left\{\exp \left(t H^{*}\right): t<0\right\},
\end{aligned}
$$

and define

$$
A^{+}=A_{K} A_{\mathfrak{p}}^{+} \cap A^{\prime}, \quad A^{-}=A_{K} A_{\mathfrak{p}}^{-} \cap A^{\prime}
$$

For $\tau \in L_{T}$, put

$$
c\left(\tau: A^{+}\right)=\left\{\begin{array}{rll}
-1 & \text { if } & \tau\left(\sqrt{-1}\left(X^{*}-Y^{*}\right)\right)>0 \\
+1 & \text { if } & \tau\left(\sqrt{-1}\left(X^{*}-Y^{*}\right)\right)<0 \\
0 & \text { if } & \tau\left(\sqrt{-1}\left(X^{*}-Y^{*}\right)\right)=0
\end{array}\right.
$$

$$
c\left(\tau: A^{-}\right)=-c\left(\tau: A^{+}\right)
$$

Then, we have

$$
\begin{equation*}
\Theta_{\tau}(h)=\Delta_{A}(h)^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \xi_{w \tau}\left(h_{K}\right) c\left(w \tau: A^{ \pm}\right) \exp \left(-\left|(w \tau)^{\mu}\left(\log h_{\mathfrak{p}}\right)\right|\right), \tag{2.13}
\end{equation*}
$$

where $h=h_{K} h_{\mathfrak{p}}$ and the sign in $c\left(w \tau: A^{ \pm}\right)$is chosen to correspond to $h \in A^{+}$or $h \in A^{-}$. Again, it is easy to see that $\Theta_{\tau} \equiv 0$ on A^{\prime} if τ is fixed by a non-trivial element of $W(G, T)$.

For $\tau \in L_{T}^{\prime}$, put $s=\left(\frac{1}{2}\right) \operatorname{dim}(G / K)$ and $\varepsilon(\tau)=\operatorname{sgn}\left\{\prod_{\alpha \in P_{T}}(\tau, \alpha)\right\}$ where P_{T} denotes the set of positive roots of $\left(\mathscr{G}_{\mathrm{c}}, \mathrm{t}_{\mathrm{c}}\right)$. Then ($\left.[4 \mathrm{~g})\right], \mathrm{p} .96$)

$$
\begin{equation*}
T_{\tau}=(-1)^{s} \varepsilon(\tau) \Theta_{\tau} \tag{2.14}
\end{equation*}
$$

is the character of a representation in the discrete series for G and all discrete series characters are obtained in this way. Moreover, $T_{\tau_{1}}=T_{\tau_{2}}$ if and only if τ_{1} and τ_{2} are conjugate under $W(G, T)$.

Even though the invariant eigendistributions $\Theta_{\tau}, \tau \in L_{T}^{s}$, do not correspond to characters of the discrete series for G, these eigendistributions do appear discretely in the Fourier transform of the invariant integral. The need for these Θ_{τ} arises from the fact that Fourier analysis on T requires the use of the full character group of T. The character theoretic nature of $\Theta_{\tau}, \tau \in L_{T}^{s}$, has been settled in only a few special cases.

2. D. The characters of the principal series

For $\chi \in \hat{A}_{K}$, the unitary character group of A_{K}, denote by $\log \chi$ the linear function on t_{1} defined by

$$
\begin{equation*}
\chi(\exp H)=e^{\langle H, \log \chi\rangle}, H \in \mathrm{t}_{1} \tag{2.15}
\end{equation*}
$$

Let P_{I}^{+}be the set of positive imaginary roots of the pair ($⿷_{G}, a_{\mathbf{c}}$), and let W_{I} be the subgroup of $W(G, A)$ which is generated by the Weyl reflections associated with the elements of $P_{I}^{+} . W_{I}$ may be identified with the Weyl group $W\left(M, A_{K}\right)$ in a natural way. An element $\chi \in \hat{A}_{K}$ is called regular if $w \chi \neq \chi$ for all $w \neq 1$ in W_{I}. Otherwise, χ is called singular. If χ is a regular character in \hat{A}_{K}, we set

$$
\begin{equation*}
\varepsilon(\chi)=\operatorname{sgn}\left\{\prod_{\alpha \in P_{I}^{+}}(\log \chi, \alpha)\right\} . \tag{2.16}
\end{equation*}
$$

The unitary character group $\hat{A}_{\mathfrak{p}}$ of $A_{\mathfrak{p}}$ is isomorphic to \mathbf{R} and, for $\nu \in \mathbf{R}$, we define the corresponding unitary character on $A_{\mathfrak{p}}$ by

$$
h_{\mathfrak{p}}^{r-\overline{1} \mathfrak{p}}=e^{\gamma-1 v\left(\log h_{\mathfrak{p}}\right)}, h_{\mathfrak{p}} \in A_{\mathfrak{p}} .
$$

Let $f \in C_{c}^{\infty}(G)$. The Fourier transform $\hat{\Phi}_{f}^{A}$ of the invariant integral Φ_{f}^{A} is defined on $\hat{A}_{K} \times \hat{A}_{\mathfrak{p}}$ by

$$
\begin{equation*}
\hat{\Phi}_{f}^{A}(\chi, v)=(2 \pi)^{-\frac{1}{2}} \int_{A_{\mathbb{K}}} \int_{A_{\mathfrak{p}}} \chi\left(h_{K}\right) h_{\mathfrak{p}}^{v-\overline{1} v} \Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}\right) d_{A_{K}}\left(h_{K}\right) d_{A_{\mathfrak{p}}}\left(h_{\mathfrak{p}}\right), \quad \chi \in \hat{A}_{K}, v \in \mathbf{R} \tag{2.17}
\end{equation*}
$$

If χ is singular, it follows immediately from (2.8) that $\hat{\Phi}_{f}^{A}(\chi, v)=0$ for all ν in \mathbf{R}.
Now suppose that χ is a regular element in \hat{A}_{K} and ν is an arbitrary element of $\hat{A}_{\mathfrak{p}}$. Then, if $r_{I}=\left[P_{I}^{+}\right]$, the distribution

$$
\begin{equation*}
T^{(x, v)}(f)=(2 \pi)^{\frac{1}{2}}(-1)^{r_{I}} \varepsilon(\chi) \hat{\Phi}_{f}^{A}(\chi, v), \quad f \in C_{c}^{\infty}(G), \tag{2.18}
\end{equation*}
$$

is the character of a representation of the principal series for G and, moreover all principal series characters have this form for suitable (regular) $\chi \in \hat{A}_{K}, \nu \in \hat{A}_{\mathfrak{p}}$ (see [11], v. II, Epilogue). If χ is singular, we set $\varepsilon(\chi)=1$ and define $T^{(x . \nu)}$ by (2.18). Of course, $T^{(x, \nu)} \equiv 0$ for singular χ, but, as is the case for $\Theta_{\tau}, \tau \in L_{T}^{s}$, we need the formal expression for $T^{(\chi, \nu)}$ for all $(\chi, v) \in \hat{A}_{K} \times \hat{A}_{\mathfrak{p}}$ when we work with the Fourier transform on $\hat{A}_{K} \times \hat{A}_{\mathfrak{p}}$.

Finally, it follows from (2.7) that

$$
\begin{equation*}
T^{(x, v)}=T^{(x \cdot-p)}, \quad \chi \in \hat{A}_{E}, v \in \mathbf{R} . \tag{2.19}
\end{equation*}
$$

3. The Fourier transform of a regular orbit

3. A. The Fourier transform of a regular elliptic orbit

Fix $f \in C_{c}^{\infty}(G)$. Then $\Phi_{f}^{T} \in L^{1}(T)$ and, as pointed out above, $\Phi_{f}^{T} \in C^{\infty}\left(T^{\prime}\right)$. For $\tau \in L^{T}$, we denote by $\hat{\Phi}_{f}^{T}(\tau)$ the Fourier coefficient of Φ_{f}^{T} at τ.

Lemma 3.1. Let $\tau \in L_{T}$. Then

$$
\hat{\Phi}_{f}^{T}(\tau)=(-1)^{r}\left(\Theta_{\tau}(f)-\int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x)\right)
$$

where $r=2^{-1}(\operatorname{dim}(G)-\operatorname{rank}(G))$.
Proof. We have

$$
\Theta_{\tau}(f)=\int_{G e} f(x) \Theta_{\tau}(x) d_{G}(x)+\int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x) .
$$

From (2.3), (2.5) and (2.11), we obtain

$$
\int_{G_{e}} f(x) \Theta_{\tau}(x) d_{G}(x)=(-1)^{r}[W(G, T)]^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \int_{T} \Phi_{f}^{T}(t) \xi_{w \tau}(t) d t=(-1)^{r} \hat{\Phi}_{f}^{T}(\tau) . \|
$$

Remark. The next step in our development is the consideration of the Fourier series of Φ_{f}^{T}. For this, we must give explicit form to the type of convergence we use relative to the lattice L_{T}. Let $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the set of simple roots for the pair ($\mathcal{G}_{\mathbf{c}}, \mathrm{t}_{\mathbf{c}}$) relative to the given ordering. Adopting the customary notation, we let

$$
H_{i}=\frac{2}{\alpha_{i}\left(H_{\alpha_{i}}\right)} H_{\alpha_{i}}, i=1, \ldots, l .
$$

If $\left\{\Lambda_{1}, \ldots, \Lambda_{l}\right\}$ is the dual basis to $\left\{H_{1}, \ldots, H_{l}\right\}$, then $L_{T}=\left\{\sum_{i=1}^{p} m_{i} \Lambda_{i}: m_{i} \in \mathbf{Z}\right\}$. For any positive integer m, define $L_{T}^{m}=\left\{\sum_{i=1}^{l} m_{i} \Lambda_{i}:-m \leqslant m_{i} \leqslant m\right\}$. Summability relative to L_{T} is then defined by

$$
\begin{equation*}
\sum_{\tau \in L_{T}}=\lim _{m \rightarrow \infty} \sum_{\tau \in L_{T}^{m}} . \tag{3.2}
\end{equation*}
$$

For the remainder of this section, we fix an element $t_{0} \in T^{\prime}$.
Lemma 3.3.

$$
\Phi_{f}^{T}\left(t_{0}\right)=(-1)^{r} \sum_{\tau \in L_{F}} \Theta_{\tau}(f) \overline{\xi_{\tau}\left(t_{0}\right)}+I_{f}\left(t_{0}\right)
$$

where

$$
I_{f}\left(t_{0}\right)=(-1)^{r+1} \sum_{\tau \in L_{T}} \overline{\xi_{\tau}\left(t_{0}\right)} \int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x)
$$

Proof. From the properties of Φ_{f}^{T}, it follows that the Fourier series of Φ_{f}^{T} converges to $\Phi_{f}^{T}\left(t_{0}\right)$ at t_{0} (see [5]). Thus, $\Phi_{f}^{T}\left(t_{0}\right)=\sum_{\tau \in L_{r}} \hat{\Phi}_{f}^{T}(\tau) \overline{\xi_{\tau}\left(t_{0}\right)}$, and, from [4e)], p. 316, we conclude that the series $\sum_{\tau \in L \tau} \Theta_{\tau}(f) \overline{\xi_{\tau}\left(t_{0}\right)}$ converges absolutely. The assertion of the lemma is now clear.\|

Remarks. (i) Since Φ_{f}^{T} is, in general, only piecewise smooth, we cannot assert that the series for $\Phi_{f}^{T}\left(t_{0}\right)$ converges absolutely.
(ii) The results of Lemma 3.1 and Lemma 3.3 obviously are valid for groups G having split rank greater than one if we interpret G^{h} to be the complement of G^{e} in G^{\prime}. For groups of split rank one, there is exactly one non-compact Cartan subgroup (up to conjugacy). Thus, to complete the inversion formula, we must express $I_{f}\left(t_{0}\right)$ in terms of the principal series associated to this non-compact Cartan subgroup or, more precisely, the invariant distributions $T^{(\chi, \nu)}$ introduced in 2. D.

From [4e)], p. 309, we have $\bar{\Delta}_{A}=(-1)^{r+1} \Delta_{A}\left(r\right.$ as in Lemma 3.1). Since $\varepsilon_{R}^{A}=1$ on A^{+}and $\varepsilon_{R}^{A}=-1$ on A^{-}, it follows from (2.5) and (2.13) that

$$
\begin{aligned}
& \int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x)=(-1)^{r+1}[W(G, A)]^{-1} \sum_{w \in W(G . T)} \operatorname{det}(w) \\
& \times\left\{\int_{A^{+}} c\left(w \tau: A^{+}\right) \xi_{w \tau}\left(h_{K}\right) \exp \left(-\left|(w \tau)^{\mu}\left(\log h_{\mathfrak{p}}\right)\right|\right) \Phi_{f}^{A}(h) d_{A}(h)\right. \\
&\left.-\int_{A^{-}} c\left(w \tau: A^{-}\right) \xi_{w \tau}\left(h_{K}\right) \exp \left(-\left|(w \tau)^{\mu}\left(\log h_{\mathfrak{p}}\right)\right|\right) \Phi_{f}^{A}(h) d_{A}(h)\right\} .
\end{aligned}
$$

Now, using (2.7) and (2.12), we obtain

$$
\begin{align*}
& \int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x)=(-1)^{r+1}[W(G, A)]^{-1} \sum_{w \in W(G . T)} \operatorname{det}(w) \\
& \quad \times 2 \int_{A^{+}} c\left(w \tau: A^{+}\right) \xi_{w \tau}\left(h_{K}\right) \exp \left(-\left|(w \tau)^{\mu}\left(\log h_{\mathfrak{p}}\right)\right|\right) \Phi_{f}^{A}(h) d_{A}(h) . \tag{3.4}
\end{align*}
$$

Denote the integral over A^{+}in (3.4) by $I_{f}^{+}(\tau: w)$. Then

$$
\begin{equation*}
I_{f}\left(t_{0}\right)=2[W(G, A)]^{-1} \sum_{\tau \in L_{T}} \overline{\xi_{\tau}\left(t_{0}\right)} \sum_{w \in W(G, T)} \operatorname{det}(w) I_{f}^{+}(\tau: w) . \tag{3.5}
\end{equation*}
$$

For m a fixed positive integer, we consider the partial sum

$$
\sum_{\tau \in L_{T}^{m}}^{\xi_{\tau}\left(t_{0}\right)} \sum_{w \in W \in G, T)} \operatorname{det}(w) I_{f}^{+}(\tau: w)=\sum_{w \in W G, T)} \operatorname{det}(w) \sum_{\tau \in L_{r}^{m}} \overline{\xi_{\tau}\left(t_{0}\right)} I_{f}^{+}(\tau: w) .
$$

The lattice L_{T} is $W(G, T)$ stable, and, if $w \in W(G, T)$, we define

$$
w L_{T}^{m}=\left\{w \tau: \tau \in L_{T}^{m}\right\} .
$$

Setting $I_{f}^{+}(\tau: 1)=I_{f}^{+}(\tau)$, we can then write the last sum as

$$
\begin{equation*}
\sum_{w \in W(G . T)} \operatorname{det}(w) \sum_{\tau \in w-1} \overline{E_{T}^{m}} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau) . \tag{3.6}
\end{equation*}
$$

For further analysis, it is necessary to decompose the lattice L_{T} as in [4f)], §24. Let $L_{T}^{*}=\left\{\tau \in L_{T}: \tau\left(\sqrt{-1}\left(X^{*}-Y^{*}\right)\right)=0\right\}$, a sublattice of L_{T}, and let L_{0} be the lattice generated by L_{T}^{*} and α_{t}, that is $L_{0}=\mathbf{Z} \alpha_{\ddagger}+L_{T}^{*}$. Then L_{T} / L_{0} is a group of order two, and there exists an element τ_{0} in $L_{T} \backslash L_{0}\left({ }^{1}\right)$ such that $\tau_{0}\left(\sqrt{-1}\left(X^{*}-Y^{*}\right)\right)=1$. Observe that L_{T}^{*} may be identified with the (unitary) character group of $T_{1} / Z\left(A_{\mathfrak{p}}\right)$. In particular, $\left.\xi_{\tau}\right|_{T_{3}}=1$ for $\tau \in L_{T}^{*}$. We also note that $\left.\xi_{n \alpha}\right|_{T_{1}} \equiv 1$.

Fix $w \in W(G, T)$. The inner sum in (3.6) may be written

$$
\begin{equation*}
\sum_{\tau \in L_{0} \cap w^{-1} L_{r}^{m}} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau)+\sum_{\substack{\tau \in L_{0} \\ \tau+\tau_{0} \in w^{-1} L_{r}^{m}}} \overline{\xi_{w\left(\tau+\tau_{0}\right)}\left(t_{0}\right)} I_{f}^{+}\left(\tau+\tau_{0}\right) \tag{3.7}
\end{equation*}
$$

We shall treat each of the last two sums separately.
If $\tau \in L_{0}$, we write $\tau=n \alpha_{t}+\tau^{*}, \tau^{*} \in L_{T}^{*}$. Then, with the understanding that the sums are over $L_{0} \cap w^{-1} L_{r}^{m}$, we have

$$
\begin{aligned}
& \sum_{\tau} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau)=\sum_{\tau=n \alpha_{\mathfrak{q}}+\tau^{*}} \overline{\xi_{w n \alpha_{\mathfrak{t}}}\left(t_{0}\right)} \overline{\xi_{w \tau^{*}}\left(t_{0}\right)} \\
& \quad \times \int_{A_{K}} \int_{A_{\mathfrak{p}}} c\left(n \alpha: A^{+}\right) \overline{\xi_{n \alpha_{\mathfrak{t}}+\tau^{*}}\left(h_{K}\right)} \exp \left(-\left|\left(n \alpha_{\mathfrak{t}}\right)^{\mu}\left(\log h_{\mathfrak{p}}\right)\right|\right) \Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}\right) d_{A_{K}}\left(h_{K}\right) d_{A_{\mathfrak{p}}}\left(h_{\mathfrak{p}}\right) .
\end{aligned}
$$

At this point, we write $\log h_{\mathfrak{p}}=t H^{*}$ and use the measure given by (2.1). Since

$$
c\left(n \alpha_{t}: A^{+}\right)=\left\{\begin{array}{rll}
-1 & \text { if } & n>0 \\
0 & \text { if } & n=0 \\
1 & \text { if } & n<0
\end{array}\right.
$$

and $\xi_{n \alpha_{\mathfrak{f}}}\left(h_{K}\right)=1, h_{K} \in A_{K}=T_{1}$, we see that

$$
\begin{align*}
& \sum_{\tau} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau)=c_{A}\left\{\sum_{n<0} \overline{\xi_{n \alpha_{t}}\left(t_{2}(w)\right)} \int_{0}^{\infty} e^{-|2 n t|} d t\right. \\
& \quad \times \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{K}} \xi_{\tau^{*}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} \exp \left(t H^{*}\right)\right) d_{A_{K}}\left(h_{K}\right)-\sum_{n>0} \overline{\xi_{n \alpha_{\mathfrak{t}}}\left(t_{2}(w)\right)} \int_{0}^{\infty} e^{-2 n t} d t \\
& \left.\quad \times \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{K}} \xi_{\tau^{*}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} \exp \left(t H^{*}\right)\right) d_{A_{K}}\left(h_{K}\right)\right\} \tag{3.8}
\end{align*}
$$

where we have written

$$
\begin{equation*}
w^{-1} t_{0}=t_{1}(w) t_{2}(w), t_{1}(w) \in T_{1}, t_{2}(w) \in T_{2} \tag{3.9}
\end{equation*}
$$

This last decomposition is unique up to $Z\left(A_{\mathfrak{p}}\right)=T_{1} \cap T_{2}=\{1, \gamma\}$.
$\left.{ }^{(}{ }^{1}\right)$ We denote by $A \backslash B$ the set theoretic difference of sets A and B.

Define

$$
\begin{equation*}
F\left(h_{K} ; h_{\mathfrak{p}} ; \tau_{1}\right)=\xi_{\tau_{1}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}\right)+\xi_{\tau_{1}}\left(\gamma h_{K}\right) \Phi_{f}^{A}\left(\gamma h_{K} h_{\mathfrak{p}}\right), \quad h_{K} \in A_{K}, h_{\mathfrak{p}} \in A_{\mathfrak{p}}^{+}, \tau_{1} \in L_{T} \tag{3.10}
\end{equation*}
$$

Lemma 3.11. For $h_{\mathfrak{p}}$ and τ_{1} fixed, the function $h_{R} \mapsto F\left(h_{R} ; h_{\mathfrak{p}} ; \tau_{1}\right)$ may be regarded as a function on $T_{1} / Z\left(A_{\mathfrak{p}}\right)$, and, for any element h_{K}^{\prime} in A_{K},

$$
\sum_{\tau \in L_{T}^{*}} \overline{\xi_{\tau}\left(h_{K}^{\prime}\right)} \int_{A_{K}} \xi_{\tau}\left(h_{K}\right) \xi_{\tau_{\mathfrak{z}}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} h_{\mathfrak{p}}\right) d_{A_{K}}\left(h_{K}\right)=\frac{1}{2} F\left(h_{K}^{\prime} ; h_{\mathfrak{p}} ; \tau_{1}\right)
$$

Moreover, the series converges absolutely and uniformly in h_{K}^{\prime}.
Proof. Since $\Phi_{f}^{A} \in C_{c}^{\infty}(A)$, the lemma follows from elementary Fourier analysis on $T_{1} / Z\left(A_{\mathfrak{p}}\right) \cdot \|$

Note that the sum $\sum_{\tau \in L_{r}^{*}}$ in the lemma may be taken as the limit of any sequence of partial sums due to the absolute convergence.

Lemma 3.12.

$$
\lim _{m \rightarrow \infty} \sum_{\tau \in L_{4} \cap_{w}-1} L_{r}^{m} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau)=\left(c_{A} / 2\right) \sum_{a \in Z\left(A_{\mathfrak{p}}\right)} \int_{0}^{\infty} \Phi_{f}^{A}\left(a t_{1}(w) h_{t}\right)\left[\frac{e^{-2 t}\left(e^{-2 v \overline{-1} \theta_{w}-e^{2 v-1} \theta_{w}}\right.}{1-2 e^{-2 t} \cos 2 \theta_{w}+e^{-4 t}}\right] d t
$$

where $h_{t}=\exp \left(t H^{*}\right)$ and θ_{w} is determined by the equation $t_{2}(w)=\exp \left(\theta_{w}\left(X^{*}-Y^{*}\right)\right)$.
(As indicated after (3.9), the value of θ_{w} is unique only up to $\{1, \gamma\}$. However, the expression above is independent of the choice of θ_{w}.)

Proof. We have $\overline{\xi_{n \alpha_{\mathrm{t}}}\left(t_{2}(w)\right)}=e^{2 \gamma-1} n \theta_{w}$, and $\theta_{w} \equiv 0(\bmod \pi)$ since $t_{0} \in T^{\prime}$. From (3.8), we consider the partial sums

$$
c_{A} \sum_{n<0} e^{2 V-1} n \theta_{w} \int_{0}^{\infty} e^{-|2 n t|} d t \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{\bar{E}}} \xi_{\tau^{*}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} h_{i}\right) d_{A_{E}}\left(h_{K}\right)
$$

and

$$
c_{A} \sum_{n>0} e^{2 \gamma-1} n \theta_{w} \int_{0}^{\infty} e^{-2 n t} d t \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A} \xi_{\tau^{*}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} h_{t}\right) d_{A_{K}}\left(h_{E}\right),
$$

where $n \alpha_{t}+\tau^{*} \in L_{0} \cap w^{-1} L_{T}^{m}$. From lemma 3.11, we see that the partial sums $\sum_{\tau^{*}}$ are uniformly bounded in t and are supported in a fixed compact set relative to $A_{\mathfrak{p}}$. Moreover, for any positive integer \varkappa,

$$
\left|\sum_{n=1}^{x} e^{ \pm 2 V-1} n \theta_{w} e^{-2 n t}\right| \leqslant \frac{2}{1-\cos 2 \theta_{w}}
$$

Thus, it follows from the bounded convergence theorem ([10], p. 345) that we may compute the limit as $m \rightarrow \infty$ for each of the above sums by taking
and

$$
c_{A} \int_{0}^{\infty}\left[\lim _{m \rightarrow \infty} \sum_{n<0} e^{2 V-\overline{1} n \theta_{w}} e^{-|2 n t|} \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{E}} \ldots\right] d t,
$$

$$
c_{A} \int_{0}^{\infty}\left[\lim _{m \rightarrow \infty} \sum_{n>0} e^{2 V-1} n \theta_{w} e^{-|2 n t|} \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{K}} \ldots\right] d t
$$

With the help of Lemma 3.11, this leads to

$$
\begin{aligned}
& \lim _{m \rightarrow \infty} \sum_{\tau \in L_{0} \cap_{w^{-1} L_{T}^{m}}^{m}} \overline{\xi_{w \tau}\left(t_{0}\right)} I_{f}^{+}(\tau) \\
&=\left(c_{A} / 2\right) \int_{0}^{\infty}\left[\sum_{a \in Z\left(A_{\mathfrak{p}}\right)} \Phi_{f}^{A}\left(a t_{1}(w) h_{t}\right)\right]\left(\frac{e^{-2 V-1 \theta_{w}} e^{-2 t}}{1-e^{-2 V \overline{-1} \theta_{w}} e^{-2 t}}\right) d t \\
& \quad\left(c_{A} / 2\right) \int_{0}^{\infty}\left[\sum_{a \in Z\left(A_{\mathfrak{p}}\right)} \Phi_{f}^{A}\left(a t_{1}(w) h_{t}\right)\right]\left(\frac{e^{2 V-1 \theta_{w}} e^{-2 t}}{1-e^{2 V-1 \theta_{w}} e^{-2 t}}\right) d t .
\end{aligned}
$$

The conclusion of the lemma follows by addition. ||
$\dot{W} \mathrm{e}$ next consider the second sum in (3.7). Observe that, for $\tau^{*} \in L_{T}^{*}$,

$$
c\left(n \alpha_{t}+\tau^{*}+\tau_{0}: A^{+}\right)=c\left(n \alpha_{t}+\tau_{0}: A^{+}\right)=\left\{\begin{array}{rll}
-1 & \text { if } & n \geqslant 0 \\
1 & \text { if } & n<0
\end{array}\right.
$$

and that $\xi_{\tau_{0}}(\gamma)=e^{-\gamma-1} \pi=-1$.
Lemma 3.13.

$$
\begin{aligned}
\lim _{m \rightarrow \infty} & \sum_{\substack{\tau \in L_{0} \\
\tau+\tau_{0} \in w^{-1} L_{r}^{m}}} \overline{\xi_{w\left(\tau+\tau_{0}\right)}\left(t_{0}\right)} I_{f}^{+}\left(\tau+\tau_{0}\right) \\
& =\left(c_{A} / 2\right) \int_{0}^{\infty}\left[\Phi_{f}^{A}\left(t_{1}(w) h_{t}\right)-\Phi_{f}^{A}\left(\gamma t_{1}(w) h_{t}\right)\right]\left[\frac{e^{-2 t}\left(e^{t}+e^{-t}\right)\left(e^{-\gamma-1} \theta_{w}-e^{\gamma-1} \theta_{w}\right)}{1-2 e^{-2 t} \cos 2 \theta_{w}+e^{-4 t}}\right] d t .
\end{aligned}
$$

Proof. Proceeding as above, we obtain

$$
\begin{aligned}
& \sum_{\substack{\tau \in L_{0} \\
\boldsymbol{\tau}+\tau_{0} \in w^{-1} \\
L_{\boldsymbol{F}}^{m}}} \overline{\xi_{w\left(\tau+\tau_{0}\right)}\left(t_{0}\right)} I_{f}^{+}\left(\tau+\tau_{0}\right) \\
& = \\
& c_{A} \overline{\xi_{w \tau_{0}}\left(t_{0}\right)}\left\{\sum_{n<0} \overline{\xi_{n \alpha_{t}}\left(t_{2}(w)\right)} \int_{0}^{\infty} e^{-|2 n+1| t} d t \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{K}} \xi_{\tau^{*}+\tau_{0}}\left(h_{K}\right) \Phi_{f}^{A}\left(h_{K} h_{t}\right) d_{A_{K}}\left(h_{K}\right)\right. \\
& \left.\quad-\sum_{n \geqslant 0} \xi_{n \alpha_{\mathfrak{t}}} \overline{\left(t_{2}(w)\right)} \int_{0}^{\infty} e^{-|2 n+1| t} d t \sum_{\tau^{*}} \overline{\xi_{\tau^{*}}\left(t_{1}(w)\right)} \int_{A_{K}} \xi_{\tau^{*}+\tau_{0}}\left(h_{R}\right) \Phi_{f}^{A}\left(h_{K} h_{t}\right) d_{A_{K}}\left(h_{K}\right)\right\},
\end{aligned}
$$

where $\tau=n \alpha_{t}+\tau^{*} \in L_{0}$ and $\tau+\tau_{0} \in w^{-1} L_{T}^{m}$. Now the result is obtained with the use of Lemma 3.11 and the same techniques that were employed in the proof of Lemma 3.12.\|

The results of Lemma 3.12 and Lemma 3.13 may be combined to yield the following proposition.

Proposition 3.14.

$$
\begin{aligned}
I_{f}\left(t_{0}\right)= & (-1)^{r+1} \sum_{\tau \in L_{r}} \overline{\xi_{\tau}\left(t_{0}\right)} \int_{G^{h}} f(x) \Theta_{\tau}(x) d_{G}(x) \\
= & {[W(G, A)]^{-1} c_{A} \sum_{w \in W(G, T)} \operatorname{det}(w)\left\{\int_{0}^{\infty} \Phi_{f}^{A}\left(t_{1}(w) h_{t}\right)\left[\frac{e^{t}\left(e^{-V-1} \theta_{w}-e^{V-1} \theta_{w}\right.}{1-2 e^{t} \cos \theta_{w}+e^{2 t}}\right] d t\right.} \\
& \left.+\int_{0}^{\infty} \Phi_{f}^{A}\left(\gamma t_{1}(w) h_{t}\right)\left[\frac{e^{t}\left(e^{-\overline{V-1}\left(\theta_{w}+\pi\right)}-e^{V-\overline{1}\left(\theta_{w}+\pi\right)}\right)}{1-2 e^{t} \cos \left(\theta_{w}+\pi\right)+e^{2 t}}\right] d t\right\} .
\end{aligned}
$$

We emphasize once more that, for each $w \in W(G, T), \theta_{w}$ is determined only modulo π, or, in other terms, we may choose θ_{w} so that $-\pi<\theta_{w}<0$ or $0<\theta_{w}<\tau$. The formula for $I_{f}\left(t_{0}\right)$ is, of course, independent of the choice of θ_{w} since $t_{1}(w)$ must be replaced by $\gamma t_{1}(w)$ if θ_{w} is replaced by $\theta_{w} \pm \pi$.

The Fourier transform of Φ_{f}^{A} is given by (2.17). Since $\Phi_{f}^{A} \in C_{c}^{\infty}(A)$, we have

$$
\begin{equation*}
\Phi_{f}^{A}\left(h_{K} h_{t}\right)=c_{A}^{-1}(2 \pi)^{-\frac{1}{2}} \sum_{\chi \in \hat{A}_{K}} \overline{\chi\left(h_{K}\right)} \int_{-\infty}^{\infty} e^{-v-\overline{-1} v t} \hat{\Phi}_{f}^{A}(\chi, \nu) d \nu \tag{3.15}
\end{equation*}
$$

where $d \nu$ is normalized Lebesgue measure on \mathbf{R}.
Proposition 3.16.

$$
\left.\left.\begin{array}{l}
I_{f}\left(t_{0}\right)=[W(G, A)]^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \\
\quad \times\left\{\left(e^{-\sqrt{-1} \theta_{w}}-e^{\sqrt{-1} \theta_{w}}\right)(2 \pi)^{-\frac{1}{2}} \sum_{\chi \in \hat{A}_{K}} \overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} \widehat{\Phi}_{f}^{A}(\chi, \nu) \int_{0}^{\infty} \frac{e^{\sqrt{-1} v t} e^{t}}{1-2 e^{t} \cos \theta_{w}+e^{2 t}} d t d v\right. \\
\quad+\left(e^{-\gamma-1}\left(\theta_{w}+\pi\right)-e^{V-1}\left(\theta_{w}+\pi\right)\right.
\end{array}\right)(2 \pi)^{-\frac{1}{2}} \sum_{\chi \in \hat{A}_{E}} \overline{\chi\left(\gamma t_{1}(w)\right)} \int_{-\infty}^{\infty} \hat{\Phi}_{f}^{A}(\chi, \nu) \int_{0}^{\infty} \frac{e^{-\sqrt{-1} v t} e^{t}}{1+2 e^{t} \cos \theta_{w}+e^{2 t}} d t d \nu\right\} . \quad .
$$

Proof. Since all the series and integrals involved converge absolutely, the proof follows from Proposition 3.14, (3.15) and the fact that $\gamma \in A_{K} \cdot \|$

Now, using the fact that $\hat{\Phi}_{f}^{A}(\chi, \nu)=\hat{\Phi}_{f}^{A}(\chi,-\nu)$ (see (2.7) and (2.18)), we can write

$$
\begin{equation*}
\int_{-\infty}^{\infty} \hat{\Phi}_{f}^{A}(\chi, v) \int_{0}^{\infty} \frac{e^{-v-1} v t}{} e^{t} d t d v=\frac{1}{2} \int_{-\infty}^{\infty} \hat{\Phi}_{f}^{A}(\chi, v) \int_{0}^{\infty} \frac{\lambda^{V-1 v}}{1 \mp 2 \lambda \cos \theta_{w}+e^{2 t}+\lambda^{2}} d \lambda \tag{3.17}
\end{equation*}
$$

where $d \lambda$ is normalized Lebesgue measure on \mathbf{R}.

The inner integrals in (3.17) can be evaluated using the formulas in [3], p. 297. This yields the following proposition.

Proposition 3.18. Suppose $0<\theta_{w}<\pi, w \in W(G, T)$. Then

$$
\begin{aligned}
I_{f}\left(t_{0}\right)= & {[W(G, A)]^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) } \\
& \times\left\{\sqrt{-1}(\pi / 2)^{\frac{1}{2}} \sum_{\chi \in \hat{A}_{K}} \overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} \hat{\Phi}_{f}^{A}(\chi, v)\left[\frac{\sinh \left(v\left(\theta_{w}-\pi\right)\right)}{\sinh (v \pi)}\right] d v\right. \\
+ & \left.\sqrt{-1}(\pi / 2)^{\frac{1}{2}} \sum_{\chi \in \hat{A}_{K}} \overline{\chi\left(\gamma t_{1}(w)\right)} \int_{-\infty}^{\infty} \hat{\Phi}_{f}^{A}(\chi, v)\left[\frac{\sinh \left(v \theta_{w}\right)}{\sinh (v \pi)}\right] d v\right\}
\end{aligned}
$$

If $-\pi<\theta_{w}<0$, then $\sinh \left(\nu\left(\theta_{w}-\pi\right)\right)$ must be replaced by $\sinh \left(\nu\left(\theta_{w}+\pi\right)\right)$ in the first integral.
We are now in a position to state the final inversion formula for $\Phi_{f}^{T}\left(t_{0}\right)$.
Theorem 3.19. Suppose that $t_{0} \in T^{\prime}$. For $w \in W(G, T)$, we write $w^{-1} t_{0}=t_{1}(w) t_{2}(w)$ where $t_{1}(w) \in T_{1}$ and $t_{2}(w)=\exp \left(\theta_{w}\left(X^{*}-Y^{*}\right)\right) \in T_{2}$. Then, if $f \in C_{c}^{\infty}(G)$ and $0<\theta_{w}<\pi$ for all $w \in W(G, T)$, we have

$$
\begin{aligned}
\Phi_{f}^{T}\left(t_{0}\right)= & (-1)^{r} \sum_{\tau \in L_{T}} \Theta_{\tau}(f) \overline{\xi_{\tau}\left(t_{0}\right)} \\
+ & (\sqrt{-1} / 2)(-1)^{r_{1}}[W(G, A)]^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \sum_{\chi \in \hat{A}_{K}} \varepsilon(\chi) \\
& \times\left\{\overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[\frac{\sinh \left(\nu\left(\theta_{w}-\pi\right)\right)}{\sinh (\nu \pi)}\right] d \nu\right. \\
+ & \left.\overline{\chi\left(\gamma t_{1}(w)\right)} \int_{-\infty}^{\infty} T^{(\chi, \nu)(f)}\left[\frac{\sinh \left(\nu \theta_{w}\right)}{\sinh (\nu \pi)}\right] d \nu\right\} .
\end{aligned}
$$

If $-\pi<\theta_{w}<0$, then $\sinh \left(v\left(\theta_{w}-\pi\right)\right)$ must be replaced by $\sinh \left(\nu\left(\theta_{w}+\pi\right)\right)$ in the first integral.
Proof. This follows from (2.18), Lemma 3.3 and Proposition 3.18. \|
The first sum can be formulated in a more representation theoretic way. Denote by \hat{G}_{d} the set of equivalence classes of representations in the discrete series for G. If $\omega \in \hat{G}_{d}$, we write $f(\omega)$ for $T_{\tau}(f)=T_{\omega}(f)$ where $\tau \in L_{T}^{\prime}$ corresponds to ω and $T_{\tau}=T_{\omega}$ is given by (2.14). Then

$$
\begin{equation*}
\sum_{\tau \in L_{T}} \Theta_{\tau}(f) \overline{\xi_{\tau}\left(t_{0}\right)}=\sum_{\tau \in L_{T}^{s}} \Theta_{\tau}(f) \overline{\xi_{\tau}\left(t_{0}\right)}+\overline{\Delta_{T}\left(t_{0}\right)} \sum_{\omega \in G_{d}} f(\omega) \overline{T_{\omega}\left(t_{0}\right)} \tag{3.20}
\end{equation*}
$$

Remark. Suitably interpreted, Theorem 3.19 can be applied to $\mathbf{S L}(2, \mathbf{R})$ (see $[8 \mathrm{~b})]$).

3. B. The Fourier transform of a regular hyperbolic orbit

The analysis involved in this section is completely elementary and has already been indicated in 3. A. We isolate the result here for future reference.

Let $h=h_{K} h_{t} \in A^{\prime}$. Then, from (2.17), (2.18) and (3.15), we have

$$
\begin{equation*}
\Phi_{f}^{A}(h)=c_{A}^{-1}(2 \pi)^{-1}(-1)^{\tau_{I}} \sum_{\chi \in \hat{A}_{K}} \varepsilon(\chi) \overline{\chi\left(h_{K}\right)} \int_{-\infty}^{\infty} e^{-r \overline{-1} v t} T^{(x, \nu)}(f) d v, \quad f \in C_{c}^{\infty}(G) \tag{3.21}
\end{equation*}
$$

4. The Plancherel formula for \boldsymbol{G}

In this section, we derive the Plancherel formula for G from the inversion formula for Φ_{f}^{T} (Theorem 3.19). The derivation is quite simple. As in 2. C, let P_{T} denote the set of positive roots of the pair $\left(\oiint_{\mathbf{c}}, \mathrm{t}_{\mathbf{c}}\right)$ and set $\Pi^{T}=\prod_{\alpha \in P_{r}} H_{\alpha}$. We regard Π^{T} as a differential operator on T. Then, if $f \in C_{c}^{\infty}(G)$, the function $\Pi^{T} \Phi_{f}^{T}$ extends to a continuous function on T. With the measures normalized as in 2 . B, we have

$$
\begin{equation*}
f(\mathrm{l})=M_{G}^{-1} \Phi_{f}^{T}\left(1 ; \Pi^{T}\right), \tag{4.1}
\end{equation*}
$$

where $M_{G}=(2 \pi)^{r}(-1)^{s}$ (see [4 a)], [4c)]; the constant M_{G} is determined in [11], Ch. VIII).
Thus, we apply Π^{T} to Φ_{f}^{T} at a point $t_{0} \in T^{\prime}$ and compute the limit of $\Pi^{T} \Phi_{f}^{T}\left(t_{0}\right)$ as t_{0} approaches 1 through the regular elements in T.

Theorem 4.2. (The Plancherel formula). Let $f \in C_{c}^{\infty}(G)$ and denote by P_{A} the set positive roots of the pair $\left(\mathscr{G}_{\mathbf{c}}, \mathfrak{a}_{\mathbf{c}}\right)$. Set $\hat{A}_{R}^{ \pm}=\left\{\chi \in \hat{A}_{\boldsymbol{R}}: \chi(\gamma)= \pm 1\right\}$. Then

$$
\begin{aligned}
& f(1)=M_{G}^{-1} \sum_{\tau \in L_{F}^{\prime}}\left[\prod_{\alpha \in P T}(\tau, \alpha)\right] \Theta_{\tau}(f)+M_{G}^{-1}(\sqrt{-1} / 2)([W(G, T)] /[W(G, A)]) \\
& \times\left\{\sum_{\chi \in \hat{A}_{\boldsymbol{E}}^{+}} \varepsilon(\chi) \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f) \operatorname{coth}\left(\frac{\pi \nu}{2}\right)\left[\prod_{\alpha \in P_{A}}\left(\log \chi+\frac{\sqrt{-1} v}{2} \alpha_{\mathfrak{a}}, \alpha\right)\right] d \nu\right. \\
& \left.+\sum_{\chi \in \hat{A}_{\bar{A}}^{-}} \varepsilon(\chi) \int_{-\infty}^{\infty} T^{(x, \nu)}(f) \tanh \left(\frac{\pi v}{2}\right)\left[\prod_{\alpha \in P_{A}}\left(\log \chi+\frac{\sqrt{-1} \nu}{2} \alpha_{\mathfrak{a}}, \alpha\right)\right] d \nu\right\} .
\end{aligned}
$$

Our proof of the Plancherel formula differs from that of Harish-Chandra [4f)], and avoids the use of the principal value integral ([4e)], p. 308). The remainder of this section is devoted to proving Theorem 4.2.

Fix an element $t_{0} \in T^{\prime}$ and consider the series $M_{G}^{-1}(-1)^{r} \sum_{\tau \in L_{T}} \Pi^{T} \overline{\xi_{\tau}\left(t_{0}\right)} \Theta_{\tau}(f)$. From [4e)], it follows that this series converges absolutely and uniformly in a neighborhood of t_{0} in T^{\prime}. We conclude that

$$
\begin{align*}
\lim _{t_{\bullet} \rightarrow 1} M_{G}^{-1}(-1)^{r} \Pi^{T}\left(\sum_{\tau \in L_{T}} \overline{\xi_{\tau}\left(t_{0}\right)} \Theta_{\tau}(f)\right) & =M_{G}^{-1}(-1)^{r} \sum_{\tau \in L_{\boldsymbol{T}}^{\prime}}\left[\prod_{\alpha \in P_{F}}(-\tau, \alpha)\right] \Theta_{\tau}(f) \\
& =M_{G}^{-1} \sum_{\tau \in L_{\boldsymbol{T}}^{\prime}}\left[\prod_{\alpha \in P_{\boldsymbol{F}}}(\tau, \alpha)\right] \Theta_{\tau}(f) \tag{4.3}
\end{align*}
$$

This is the contribution of the discrete series to the Plancherel formula.
Next, assume that $\chi \in \hat{A}_{K}^{+}$and extend χ trivially to all of T. We must consider the application of Π^{T} to

$$
\begin{align*}
\overline{\chi\left(t_{1}(w)\right)} & \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[\frac{\sinh \left(v\left(\theta_{w} \mp \pi\right)\right)+\sinh \left(v \theta_{w}\right)}{\sinh (v \pi)}\right] d v \\
& =\overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[\frac{\sinh \left(v\left(\theta_{w} \mp \frac{\pi}{2}\right)\right)}{\sinh \left(\frac{\nu \pi}{2}\right)}\right] d v, \tag{4.4}
\end{align*}
$$

where, as in Theorem 3.19, $w \in W(G, T), t_{0} \in T^{\prime}, w^{-1} t_{0}=t_{1}(w) t_{2}(w), t_{1}(w) \in T_{1}, t_{2}(w) \in T_{2}$; and $t_{2}(w)=\exp \left(\theta_{w}\left(X^{*}-Y^{*}\right)\right)$. In (4.4), we take $\sinh \left(\nu\left(\theta_{w}-(\pi / 2)\right)\right)$ if $0<\theta_{w}<\pi$ and $\sinh \left(\nu\left(\theta_{w}+(\pi / 2)\right)\right)$ if $-\pi<\theta_{w}<0$. Since we are interested in t_{0} only in a neighborhood of 1, we may assume that $-\pi / 2<\theta_{w}<\pi / 2$ for all $w \in W(G, T)$.

Since $\chi \mid T_{2} \equiv 1$ and $\alpha_{t} \mid \mathrm{t}_{1} \equiv 0$, we can write
and

$$
\overline{\chi\left(t_{1}(w)\right)}=\overline{w \chi\left(t_{0}\right)}
$$

$$
\sinh \left(v\left(\theta_{w} \mp \frac{\pi}{2}\right)\right)=\left(\frac{1}{2}\right)\left[e^{\mp v \pi / 2}\left(w \xi_{\alpha_{\mathfrak{t}}}\left(t_{0}\right)\right)^{r-\overline{1} v / 2}-e^{ \pm v \pi / 2}\left(w \xi_{\alpha_{\mathfrak{t}}}\left(t_{0}\right)\right)^{-\sqrt{-1} v / 2}\right]
$$

In the last expression, we work with principal branch of the argument, and our restriction on θ_{w} eliminates any ambiguity

Now set

$$
\begin{equation*}
F_{\chi}^{ \pm}\left(w: v: t_{0}\right)=\overline{w \chi}\left(t_{0}\right)\left[e^{\mp v \pi / 2}\left(w \xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)\right)^{r-1} v / 2-e^{ \pm v \pi / 2}\left(w \xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)\right)^{-r-1} v / 2\right] . \tag{4.5}
\end{equation*}
$$

From the properties of $T^{(\chi, \nu)}\left([11], v .1\right.$, Ch. 5), it is clear that Π^{T} applied to (4.4) is equal to

$$
\begin{equation*}
\left(\frac{1}{2}\right) \int_{-\infty}^{\infty} T^{(x, \nu)}(f)\left[\Pi^{T} F_{\chi}^{ \pm}\left(w: v: t_{0}\right) / \sinh (\nu \pi / 2)\right] d v \tag{4.6}
\end{equation*}
$$

and if we consider the sum of the terms (4.6) over \hat{A}_{K}^{+}, it is also clear that the resulting series converges absolutely and uniformly in a neighborhood of t_{0} in T^{\prime}. We conclude, from Theorem 3.19 and (4.1), that
2-732906 Acta mathematica 131. Imprimé le 18 Octobre 1973

$$
\begin{align*}
M_{G}^{-1}(\sqrt{-1} / 2)(& -1)^{r_{I}}[W(G, A)]^{-1} \sum_{w \in W(G, T)} \operatorname{det}(w) \sum_{\chi \in \hat{A}_{Z}^{ \pm}} \varepsilon(\chi) \\
& \times\left(\frac{1}{2}\right) \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[\lim _{t_{0} \rightarrow 1} \Pi^{T} F_{\chi}^{ \pm}\left(w: v: t_{0}\right) / \sinh (v \pi / 2)\right] d v \tag{4.7}
\end{align*}
$$

represents the contribution to the Plancherel formula of the principal series indexed by $\chi \in \hat{A}_{K}^{+}$. Note that t_{0} runs through a sequence of elements in T^{\prime}, and, for each t_{0} and $w \in W(G, T)$, we take F_{χ}^{+}or F_{χ}^{-}according to whether $0<\theta_{w}<\pi / 2$ or $-\pi / 2<\theta_{w}<0$ respectively.

If we work in a sufficiently small neighborhood of 0 in (G), we can write

$$
\left(\xi_{\alpha_{\mathrm{t}}}\left(t_{0} \exp s H_{\alpha}\right)\right)^{ \pm \sqrt{-1} v / 2}=\left(\xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)\right)^{ \pm \sqrt{-1} v / 2}\left(\xi_{\alpha_{\mathrm{t}}}\left(\exp s H_{\alpha}\right)\right)^{ \pm \sqrt{1} v / 2}
$$

$\alpha \in P_{T}, s \in \mathbf{R}$, and then

$$
\left.\begin{array}{rl}
F_{\chi}^{ \pm}\left(w: v: t_{0}: \Pi^{T}\right)= & \Pi^{T} F_{\chi}^{ \pm}\left(w: v: t_{0}\right) \\
= & \operatorname{det}(w) \overline{w \chi\left(t_{0}\right)}\left\{e^{\mp \pi v / 2}\left(w \xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)\right)^{r-1} v / 2\right.
\end{array} \prod_{\alpha \in P r}\left(\log \bar{\chi}+\frac{\sqrt{-1} \nu}{2} \alpha_{\mathrm{f}}, \alpha\right)\right] .
$$

Note that the factor $\operatorname{det}(w)$ in (4.8) cancels with $\operatorname{det}(w)$ in (4.7).
Evidently

$$
\prod_{\alpha \in P_{r}}\left(\log \bar{\chi} \pm \frac{\sqrt{-1} \nu}{2} \alpha_{\mathrm{t}}, \alpha\right)=\prod_{\alpha \in P_{d}}\left(\log \bar{\chi} \pm \frac{\sqrt{-1} \nu}{2} \alpha_{\mathrm{a}}, \alpha\right)
$$

and we claim that

$$
\begin{equation*}
\prod_{\alpha \in P_{A}}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right)=-\prod_{\alpha \in P_{A}}\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right) . \tag{4.9}
\end{equation*}
$$

This claim is substantiated by the following observations.
(i) If α is compact, then $\left(\alpha_{\mathfrak{a}}, \alpha\right)=0$.
(ii) If $\alpha=\alpha_{a}$, the unique positive real root of the pair $\left(\mathscr{G}_{\mathbf{c}}, a_{\mathbf{c}}\right)$, then $\left(\log \bar{\chi}, \alpha_{a}\right)=0$.
(iii) If α is a positive complex root, then

$$
\begin{aligned}
(\log \bar{\chi} & \left.+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right)\left(\log \bar{\chi}+\frac{\sqrt{-1} \nu}{2} \alpha_{a}, \bar{\alpha}\right) \\
& =\left(\log \bar{\chi}-\frac{\sqrt{-1} \nu}{2} \alpha_{a}, \alpha\right)\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha_{a}, \bar{\alpha}\right),
\end{aligned}
$$

$\bar{\alpha}$ the conjugate of α. This last equality follows from the fact that $\left(\alpha_{\mathfrak{a}}, \alpha\right)=\left(\alpha_{\mathfrak{a}}, \bar{\alpha}\right)$ since $\alpha_{\mathbf{a}}$ is real, and the fact that $(\log \bar{\chi}, \alpha)+(\log \bar{\chi}, \bar{\alpha})=0$.

From (4.8) and (4.9), we have

$$
\begin{equation*}
F_{x}^{ \pm}\left(w: v: 1 ; \Pi^{x}\right)=2 \operatorname{det}(w) \cosh (v \pi / 2)\left[\prod_{\alpha \in P_{4}}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right)\right] \tag{4.10}
\end{equation*}
$$

Since $\log \bar{\chi}=-\log \chi$, we have

$$
\begin{aligned}
& \prod_{\alpha \in P_{A}}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right)=\prod_{\alpha \in P_{A}}\left(-\log \chi+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right) \\
&=(-1)^{r} \prod_{\alpha \in P_{A}}\left(\log \chi-\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right)=(-1)^{r+1} \prod_{\alpha \in P_{A}}\left(\log \chi+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right) \\
&=(-1)^{r_{I}} \prod_{\alpha \in P_{A}}\left(\log \chi+\frac{\sqrt{-1} v}{2} \alpha_{a}, \alpha\right) .
\end{aligned}
$$

the last equality following from the fact that the number of positive complex roots of the pair ($\mathbb{S}_{c}, \mathfrak{a}_{\mathbf{c}}$) is even. Thus

$$
\begin{equation*}
F_{x}^{ \pm}\left(w: v: 1 ; \Pi^{T}\right)=2 \operatorname{det}(w) \cos (v \pi / 2)(-1)^{r_{I}}\left[\prod_{\alpha \in P_{A}}\left(\log \chi+\frac{\sqrt{-1} v}{2} \alpha_{\mathfrak{a}}, \alpha\right)\right] . \tag{4.11}
\end{equation*}
$$

An entirely analogous procedure can be followed for $\chi \in \hat{A}_{K}^{-}$(see (5.15) ff.) to complete the derivation of the Plancherel formula.

5. The Fourier transform of a semisimple orbit

Let y be a semisimple element in G, and let G_{y} be the centralizer of y in G. Then G_{y} is unimodular, and we denote by $d_{G / G_{y}}(\dot{x})$ a G-invariant measure on G / G_{y}. In this section, we compute the Fourier transform of the invariant distribution

$$
\begin{equation*}
f \mapsto \int_{G / G y} f(\dot{x} y) d_{G / G y}(\dot{x}), \quad f \in C_{c}^{\infty}(G) \tag{5.1}
\end{equation*}
$$

Since the distribution (5.1) is invariant, we may assume that $y \in A \cup T$. The cases when y is a regular element were treated in section 3, so we also assume that $y \notin A^{\prime} \cup T^{\prime}$.

Let $\mathscr{G H}_{y}$ be the centralizer of y in $\mathbb{G S}$, and let \dot{j}_{y} be a Cartan subalgebra of $\mathscr{S H}_{y}$ which is fundamental in $\mathbb{G H}_{y}$. Then, \mathfrak{j}_{y} is a Cartan subalgebra of \mathfrak{G} since $\operatorname{rank}(\mathbb{G})=\operatorname{rank}\left(\mathscr{G}_{y}\right)$. (Of course, i_{y} need not be fundamental in (G.) If J_{y} is the Cartan subgroup of G corresponding to $\dot{\mathfrak{j}}_{y}$, then, by conjugating (if necessary), we may assume that $J_{y}=A$ or $J_{y}=T$.

Now denote by P_{y}^{+}the set of positive roots of the pair $\left(\oiint_{y}, \mathrm{j}_{y}\right)$ and set $\Pi_{y}=\prod_{\alpha \in P_{y}^{+}} H_{\alpha}$. If $\Phi_{f}^{y}, f \in C_{c}^{\infty}(G)$, is the invariant integral of f relative to J_{y}, then, according to a result of Harish-Chandra ([4g)], p. 33), there exists a constant $M_{y} \neq 0$ such that

$$
\begin{equation*}
\int_{G / G_{y}} f(\dot{x} y) d_{G / G y}(\dot{x})=M_{y} \Phi_{f}^{y}\left(y ; \Pi_{y}\right) \tag{5.2}
\end{equation*}
$$

It is possible to combute M_{y} for a certain normalization of the relevant invariant measures.

In the remainder of this section, we compute $\Phi_{f}^{y}\left(y ; \Pi_{y}\right)$ for the cases $J_{y}=A$ and $J_{y}=T$. In either case, we set

$$
\begin{equation*}
r_{y}=\left[P_{y}^{+}\right] . \tag{5.3}
\end{equation*}
$$

The idea is the same as that used in the derivation of the Plancherel formula, that is, we compute $\Phi_{f}^{y}\left(x ; \Pi_{y}\right)$ at a regular element x by using the formulas of section 3 and then let x approach y through a sequence of regular elements.

5. A. $J_{y}=\boldsymbol{A}$

We consider the differential operator Π_{y} applied to Φ_{f}^{A}, where Φ_{f}^{A} is given by (3.21). If we write

$$
y=y_{K} y_{\mathfrak{p}}, y_{K} \in A_{K}, y_{\mathfrak{p}} \in A_{\mathfrak{p}},
$$

then we have
$\Phi_{f}^{y}\left(y ; \Pi_{y}\right)=\Phi_{f}^{A}\left(y ; \Pi_{y}^{A}\right)$

$$
=c_{A}^{-1}(2 \pi)^{-1}(-1)^{r_{I}} \sum_{\chi \in \hat{A}_{K}} \varepsilon(\chi) \overline{\chi\left(y_{K}\right)} \int_{-\infty}^{\infty} e^{-\sqrt{-1} v t_{y}}\left[\prod_{\alpha \in P_{y}^{+}}\left(-\log \chi-\frac{\sqrt{-1} v}{2} \alpha_{\mathfrak{a}}, \alpha\right)\right] T^{(\chi, v)}(f) d v
$$

where $y_{\mathfrak{p}}=\exp \left(t_{y} H^{*}\right)$. The necessary facts relating to convergence have already been indicated in section 4.

Thus,

$$
\begin{align*}
& \Phi_{f}^{A}\left(y ; \Pi_{y}^{A}\right)=c_{A}^{-1}(2 \pi)^{-1}(-1)^{r_{I}+r_{y}} \sum_{\chi \in \hat{A}_{K}} \varepsilon(\chi) \overline{\chi\left(y_{K}\right)} \\
& \times \int_{-\infty}^{\infty} e^{-v \overline{-1} v t_{y}}\left[\prod_{\alpha \in P_{y}^{+}}\left(\log \chi+\frac{\sqrt{-1} \nu}{2} \alpha_{\mathfrak{a}}, \alpha\right)\right] T^{(\chi, \nu)}(f) d \nu . \tag{5.4}
\end{align*}
$$

5. B. $J_{y}=T$

Here, we have $\Phi_{f}^{y}\left(y ; \Pi_{y}\right)=\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)$. If y is central, then $\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)$ can be computed by a simple variant of the derivation of the Plancherel formula as presented in sec-
tion 4. So, we assume that y is not central and proceed in a fashion similar to that of section 4. All the convergence arguments necessary in this section were used in the proof of the Plancherel formula so we shall not mention them explicitly here.

We first observe that the contribution of the invariant distributions $\Theta_{\tau}(f) ; \tau \in L_{T}$, to the formula for $\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)$ is given by

$$
\begin{equation*}
(-1)^{r+r_{y}} \sum_{\tau \in L_{F}}\left[\prod_{\alpha \in P_{y}^{+}}(\tau, \alpha)\right] \Theta_{\tau}(f) \overline{\xi_{\tau}(y)} \tag{5.5}
\end{equation*}
$$

Now consider the contribution of the principal series. Let $W_{y}(G, T)$ be the subgroup of $W(G, T)$ generated by the compact roots in P_{y}^{+}. If G_{y}^{0} is the identity component of G_{y}, then $W_{y}(G, T)$ is the quotient of the normalizer of T in G_{y}^{0} by T. Choose elements $w_{1}=1$, w_{2}, \ldots, w_{N} in $W(G, T)$ such that

$$
\begin{equation*}
W(G, T)=\bigcup_{i=1}^{N} W_{y}(G, T) w_{i} \text { (disjoint union). } \tag{5.6}
\end{equation*}
$$

If $w \in W(G, T)$, we can write $w=w_{y} w_{i}, w_{y} \in W_{y}(G, T)$, for some $i, 1 \leqslant i \leqslant N$. Moreover, we have

$$
\begin{equation*}
w_{i}^{-1} y=y_{1}\left(w_{i}\right) y_{2}\left(w_{i}\right), y_{1}\left(w_{i}\right) \in T_{1}, y_{2}\left(w_{i}\right) \in T_{2} . \tag{5.7}
\end{equation*}
$$

Since the decomposition (5.7) is unique only up to $\{1, \gamma\}$, we may assume that

$$
\begin{equation*}
y_{2}\left(w_{i}\right)=\exp \left(\theta_{w_{i}}\left(X^{*}-Y^{*}\right)\right), \quad-\pi / 2 \leqslant \theta_{w_{i}}<\pi / 2 \tag{5.8}
\end{equation*}
$$

Let t_{0} be a regular element in T satisfying the conditions of section 4 , that is, for $w \in W(G, T)$,

$$
w^{-1} t_{0}=t_{1}(w) t_{2}(w) ; t_{2}(w)=\exp \left(\theta_{w}\left(X^{*}-Y^{*}\right)\right)
$$

with $0<\left|\theta_{w}\right|<\pi / 2$. If we take $\chi \in \hat{A}_{K}^{+}$, apply the differential operator Π_{y}^{T} to $F_{\chi}^{ \pm}\left(w: v: t_{0}\right)$ (see (4.5)), and then take the limit as t_{0} approaches y through a sequence of regular elements which satisfy the conditions above, we obtain

$$
\left.\left.\begin{array}{rl}
F_{\bar{\chi}}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right)= & \overline{w \chi(y)}\left\{e^{\mp v \pi / 2}\left(w \xi_{\alpha_{\mathfrak{l}}}(y)\right)^{r-1} v / 2\right.
\end{array} \prod_{\alpha \in P_{y}^{+}}\left(w\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{\mathfrak{t}}\right), \alpha\right)\right] \overline{2}\left[\begin{array}{l}
\\
 \tag{5.9}\\
-e^{ \pm v \pi / 2}\left(w \xi_{\alpha_{\mathfrak{t}}}(y)\right)^{-r-1} v / 2
\end{array} \prod_{\alpha \in P_{y}^{+}}\left(w\left(\log \bar{\chi}-\frac{\sqrt{-1} \nu}{2} \alpha_{\mathrm{t}}\right), \alpha\right)\right]\right\} .
$$

(Here, as before, we have extended χ trivially to all of T.)
If $w=w_{y} w_{i}, w_{y} \in W_{y}(G, T)$, then $\overline{w \chi(y)}=\overline{w_{i} \chi(y)}, w \xi_{\alpha_{1}}(y)=w_{i} \xi_{\alpha_{t}}(y)$ and

$$
\prod_{\alpha \in P_{y}^{+}}\left(w\left(\log \bar{\chi} \pm \frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right)=\operatorname{det}\left(w_{y}\right) \prod_{\alpha \in P_{y}^{+}}\left(w_{i}\left(\log \bar{\chi} \pm \frac{\sqrt{-1} v}{2}\right), \alpha\right) .
$$

Thus, for any fixed $i, \mathrm{l} \leqslant i \leqslant N$,

$$
\begin{align*}
& \left(\frac{1}{2}\right) \sum_{w \in W_{y}(G, T) w_{i}} \operatorname{det}(w) F_{\chi}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right) \\
& \quad=\left(\frac{1}{2}\right)\left[W_{y}(G, T)\right] \operatorname{det}\left(w_{i}\right) \overline{w_{i} \chi(y)}\left\{e^{\mp v \pi / 2} e^{\nu \theta_{w_{i}}}\left[\prod_{\alpha \in P_{y}^{+}}\left(w_{i}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right)\right]\right. \\
& \quad-e^{ \pm \nu \pi / 2} e^{-\nu \theta_{w_{i}}}\left[\prod_{\alpha \in P_{y}^{+}}\left(w_{i}\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha\right), \alpha\right)\right\}, \tag{5.10}
\end{align*}
$$

where $\theta_{w_{i}}$ is defined by (5.8).
In the formula for $\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)$, we use F_{χ}^{+}in the case $0 \leqslant \theta_{w_{i}}<\pi / 2$ and $F_{\bar{z}}$ if $-\pi / 2 \leqslant \theta_{w_{i}} \leqslant 0$. Although this appears to present a difficulty when $\theta_{w_{i}}=0$, we shall see below that this difficulty is easily resolved. Of course, we have a similar formula if $\chi \in \hat{A}_{\bar{K}}^{-}$.

At this point, we analyze the product

$$
\prod_{\alpha \in P_{\nu}^{+}}\left(w_{i}\left(\log \bar{\chi}+\frac{\sqrt{-1} \nu}{2} \alpha_{t}\right), \alpha\right)
$$

in some special cases.
Lemma 5.11. Suppose that $\chi \in \hat{A}_{K}$ and $w_{j}^{-1} y \in T_{1}=A_{K}$ for some $j, \mathrm{l} \leqslant j \leqslant N$. Then

$$
\prod_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right)=-\prod_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right) .
$$

Proof. Suppose first that $j=1$, that is, $w_{j}=w_{1}=1$. Then $y \in A_{K}$ and G_{y} contains both T and A. It follows that G_{y} is a split rank one group and the conclusion of the lemma may be obtained in the same fashion as (4.9). If $w_{j} \neq 1$, then $G_{w_{j}^{-1} y}=w_{j}^{-1} G_{y} w_{j}$ and $\alpha \in P_{y}^{+}$ if and only if $w_{j}^{-1} \alpha \in P_{w_{j}^{-1} z}^{+}$. Thus

$$
\begin{aligned}
& \prod_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right)=\prod_{\alpha \in P_{w_{j}^{-1} y}}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}, \alpha\right) \\
& \quad=-\prod_{\alpha \in P_{w_{j}^{-1} y}}\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha, \alpha\right)=-\prod_{\alpha \in P_{v}^{+}}\left(w_{j}\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right) \cdot \|
\end{aligned}
$$

Corollary 5.12. Suppose that $\chi \in \hat{A}_{K}^{+}$and $w_{j}^{-1} y \in A_{K}$ for some $j, 1 \leqslant j \leqslant N$. Then $\theta_{w_{j}}=0$ and

$$
\begin{aligned}
& \left(\frac{1}{2}\right) \sum_{w \in W_{y}(G, T) w_{j}} \operatorname{det}(w) F_{\chi}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right) \\
& \quad=\left[W_{y}(G, T)\right] \operatorname{det}\left(w_{j}\right) \overline{w_{j} \chi(y)} \cosh (v \pi / 2) \sum_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right) .
\end{aligned}
$$

Remark. The ambiguity in (5.10) is resolved by Corollary 5.12. If $\theta_{w_{i}}=0$, then the choice of either F_{x}^{+}or F_{x}^{-}leads to the same result just as in the proof of the Plancherel formula.

Lemma 5.13. Suppose that $w_{j}^{-1} y \in T_{2} \backslash T_{1}$ and that $w_{j}^{-1} y=y_{2}\left(w_{j}\right)$ (see (5.7) and (5.8)) for some $j, 1 \leqslant j \leqslant N$. Then,

$$
\prod_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}+\frac{\sqrt{-1} \nu}{2} \alpha_{t}\right), \alpha\right)=\prod_{\alpha \in P_{y}^{+}}\left(w_{j}\left(\log \bar{\chi}-\frac{\sqrt{-1} \nu}{2} \alpha_{t}\right), \alpha\right) .
$$

Proof. Assume first that $j=1$, that is, $w_{j}=w_{1} \equiv 1$. Write $y=\exp \left(\theta_{1}\left(X^{*}-Y^{*}\right)\right.$), where $-\pi / 2 \leqslant \theta_{1}<0$ or $0<\theta_{1}<\pi / 2$. Now, G_{y}^{0} is compact and P_{y}^{+}is made up of compact roots. If $\alpha \in P_{y}^{+}$, we claim that $\alpha \mid \mathrm{t}_{2} \equiv 0$. In fact, $\xi_{\alpha}(y)=e^{\theta_{1} \alpha\left(X^{*}-Y^{*}\right)}=1$ so that $\theta_{1} \alpha\left(X^{*}-Y^{*}\right)=$ $2 \pi \sqrt{-1} n$ for some integer n.

From [4f)], p. 121, we have $\sqrt{-1}\left(X^{*}-Y^{*}\right)=2 H_{\alpha_{t}} /\left(\alpha_{t}, \alpha_{t}\right)$ which implies

$$
\theta_{1} \alpha\left(X^{*}-Y^{*}\right)=\frac{\theta_{1}}{\sqrt{-1}} \frac{2\left(\alpha, \alpha_{t}\right)}{\left(\alpha_{t}, \alpha_{t}\right)}=2 \pi \sqrt{-1} n
$$

From the theory of root systems, we know that

$$
\left|\frac{2\left(\alpha, \alpha_{t}\right)}{\left(\alpha_{t}, \alpha_{t}\right)}\right| \in\{0,1,2,3\}
$$

The restrictions on θ_{1} imply that $n=0$ and $\alpha\left(X^{*}-Y^{*}\right)=0$.
Now, for any $\alpha \in P_{y}^{+}$, we have

$$
\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}, \alpha\right)=(\log \bar{\chi}, \alpha)=\left(\log \bar{\chi}-\frac{\sqrt{-1} v}{2} \alpha_{t}, \alpha\right)
$$

so that

$$
\prod_{\alpha \in P_{y}^{+}}\left(\log \bar{\chi}+\frac{\sqrt{-1} \nu}{2} \alpha_{t}, \alpha\right)=\prod_{\alpha \in P_{y}^{+}}\left(\log \bar{\chi}-\frac{\sqrt{-1} \nu}{2} \alpha_{t}, \alpha\right)
$$

The remainder of the proof for $w_{j} \neq 1$ is similar to the proof of Lemma 5.11.\|
Corollary 5.14. Suppose that $\chi \in \hat{A}_{K}^{+}, w_{j}^{-1} y \in T_{2} \backslash T_{1}$ and that $w_{j}^{-1} y=y_{2}\left(w_{j}\right)$ for some $j, \mathrm{l} \leqslant j \leqslant N$. Then

$$
\begin{aligned}
& \left(\frac{1}{2}\right) \sum_{w \in W(G, T) w_{j}} \operatorname{det}(w) F_{\chi}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right) \\
& \quad=\left[W_{y}(G, T)\right] \operatorname{det}\left(w_{j}\right) \sinh \left(v\left(\theta_{w_{i}} \mp \frac{\pi}{2}\right)\right) \prod_{\alpha \in P_{y}^{+}}\left(w_{j}(\log \bar{\chi}), \alpha\right),
\end{aligned}
$$

where we take F_{χ}^{+}and $\sinh \left(\nu\left(\theta_{w_{i}}-(\pi / 2)\right)\right)$ if $0<\theta_{w_{i}}<\pi / 2$, and we take F_{x}^{-}and $\sinh \left(v\left(\theta_{w_{i}}+(\pi / 2)\right)\right)$ if $-\pi / 2 \leqslant \theta_{w_{i}}<0$.

In the case when $\chi \in \hat{A}_{\bar{K}}$, we must consider the application of Π_{y}^{T} to

$$
\begin{aligned}
\overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} T^{(x, v)}(f) & {\left[\frac{\sinh \left(v\left(\theta_{w} \mp \pi\right)\right)-\sinh \left(v \theta_{w}\right)}{\sinh (v \pi)}\right] d v } \\
& =\overline{\chi\left(t_{1}(w)\right)} \int_{-\infty}^{\infty} T^{(x \cdot v)}(f)\left[\frac{+\cosh \left(v\left(\theta_{w} \mp \frac{\pi}{2}\right)\right)}{\cosh (v \pi / 2)}\right] d v
\end{aligned}
$$

We extend χ to a function on T as follows. For $t \in T$, we write

$$
\begin{align*}
t & =t_{1} t_{2}, \quad t_{1} \in T_{1}, \quad t_{2} \in T_{2} \\
t_{2} & =\exp \left(\theta_{2}\left(X^{*}-Y^{*}\right)\right), \quad-\pi / 2 \leqslant \theta_{2}<\pi / 2 \tag{5.15}
\end{align*}
$$

This decomposition is unique, and we set

$$
\begin{equation*}
\chi(t)=\chi\left(t_{1}\right) . \tag{5.16}
\end{equation*}
$$

We now define, for $t_{0} \in T$,

$$
\begin{equation*}
G_{\bar{x}}^{ \pm}\left(w: v: t_{0}\right)=\mp \overline{w \chi\left(t_{0}\right)}\left[e ^ { \mp v \pi / 2 } \left(w \xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)^{r-1} v / 2+e^{ \pm v \pi / 2}\left(w \xi_{\alpha_{\mathrm{t}}}\left(t_{0}\right)^{-v-1 v / 2}\right]\right.\right. \tag{5.17}
\end{equation*}
$$

where $w^{-1} t_{0}$, as usual, decomposes according to (5.15) and (5.16). Take a regular element t_{0} for which $0<\left|\theta_{w}\right|<\pi / 2, w \in W(G, T)$, apply the differential operator Π_{y}^{T} to $G_{\chi}^{ \pm}\left(w: \nu: t_{0}\right)$, and take the limit as t_{0} approaches y. This yields

$$
\left.\left.\begin{array}{rl}
G_{\chi}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right)= & \pm \overline{w \chi(y)}\left\{e^{\mp v \pi / 2}\left(w \xi_{\alpha_{\mathrm{f}}}(y)\right)^{\gamma-1} v / 2\right.
\end{array} \prod_{\alpha \in P_{y}^{+}}\left(w\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{\mathrm{f}}\right), \alpha\right)\right]\right\} \text {. }
$$

and, as in the case of $F_{\chi}^{ \pm}(5.10)$, we obtain

$$
\begin{align*}
\left(\frac{1}{2}\right) \sum_{w \in W_{y}(G . T)} \operatorname{wet}_{i} & \operatorname{det}(w) G_{\bar{\chi}}^{ \pm}\left(w: v: y ; \Pi_{y}^{T}\right) \\
= & \pm\left(\frac{1}{2}\right)\left[W_{y}(G, T)\right] \operatorname{det}\left(w_{i}\right) \overline{w_{i} \chi(y)}\left\{\left[e^{\mp v \pi / 2} e^{\nu \theta_{w_{i}}} \prod_{\alpha \in P_{y}^{+}}\left(w_{i}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha_{t}\right), \alpha\right)\right]\right. \\
& \left.+e^{ \pm \nu \pi / 2} e^{-\nu \theta_{w_{i}}}\left[\prod_{\alpha \in P_{y}^{+}}\left(w_{i}\left(\log \bar{\chi}-\frac{\sqrt{-1} \nu}{2} \alpha_{t}\right), \alpha\right)\right]\right\}, \tag{5.19}
\end{align*}
$$

where $\theta_{w_{i}}$ is define by (5.8).
In the formula for $\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)$, we use G_{x}^{+}when $0 \leqslant \theta_{w_{i}}<\pi / 2$ and G_{z}^{-}when $-\pi / 2 \leqslant \theta_{w_{i}} \leqslant 0$. The ambiguity when $\theta_{w_{i}}=0$ is again handled by Lemma 5.11. We have the following analogue of Corollary 5.12.

Corollary 5.20. Suppose that $\chi \in \hat{A}_{\bar{K}}^{-}$and $w_{j}^{-1} y \in A_{K}$ for some $j, 1 \leqslant j \leqslant N$. Then $\theta_{w_{i}}=0$ and

$$
\begin{aligned}
\left(\frac{1}{2}\right) & \sum_{w \in W_{y}(G, T)} w_{j} \\
& \operatorname{det}(w) G_{\chi}^{ \pm}\left(w: v: y ; \Pi^{T}\right) \\
& =\left[W_{y}(G, T)\right] \operatorname{det}\left(w_{j}\right) \overline{w_{j} \chi(y)} \sinh (\nu \pi / 2) \prod_{\alpha \in P_{\nu}^{+}}\left(w_{j}\left(\log \bar{\chi}+\frac{\sqrt{-1} v}{2} \alpha\right), \alpha\right) .
\end{aligned}
$$

There is also an obvious analogue for Corollary 5.14. We now give the general formula for $\Phi_{f}^{T}\left(y: \Pi_{y}^{T}\right)$.

Theorem 5.21. Suppose that y is a non-regular, non-central element in T and that $w^{-1} y, 1 \leqslant i \leqslant N$, is decomposed according to (5.7) and (5.8). Then

$$
\begin{aligned}
\Phi_{f}^{T}\left(y ; \Pi_{y}^{T}\right)= & (-1)^{r+r_{y}} \sum_{\tau \in L_{T}}\left[\prod_{\alpha \in P_{y}^{+}}(\tau, \alpha)\right] \Theta_{\tau}(f) \overline{\xi_{\tau}(y)} \\
+ & (\sqrt{-1} / 4)(-1)^{r_{I}}\left(\left[W_{y}(G, T)\right] /[W(G, A)]\right) \sum_{\chi \in \hat{A}_{K}^{+}} \varepsilon(\chi) \\
& \times\left\{\sum_{\substack{w_{i} \\
0 \leqslant \theta_{w_{i}}<\pi / 2}} \operatorname{det}\left(w_{i}\right) \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[F^{+}\left(w_{i}: \nu: y ; \Pi_{y}^{T}\right) / \sinh (\nu \pi / 2)\right] d \nu\right. \\
+ & \left.\sum_{w_{i}} \operatorname{det}\left(w_{i}\right) \int_{-\infty}^{\infty} T^{(\chi, \nu)}(f)\left[F^{-}\left(w_{i}: \nu: y ; \Pi_{y}^{T}\right) / \sinh (\nu \pi / 2)\right] d v\right\} \\
& +\left(\sqrt{-1 / 2 \leqslant w_{i}<0} / 4\right)(-1)^{r_{I}}\left(\left[W_{y}(G, T)\right] /[W(G, A)]\right) \sum_{\chi \in \hat{A}_{\bar{K}}^{-}} \varepsilon(\chi)
\end{aligned}
$$

$$
\left.+\sum_{\substack{w i \\-\pi / 2 \leqslant \theta w_{i}<0}} \operatorname{det}\left(w_{i}\right) \int_{-\infty}^{\infty} T^{(x, \nu)}(f)\left[G_{x}^{-}\left(w: v: y ; \Pi_{y}^{T}\right) / \cosh (v \pi / 2)\right] d v\right\}
$$

The proof of Theorem 5.21 follows from the preceding discussion. For particular y, the formula for $\Phi_{f}^{T}\left(y, \Pi_{y}^{T}\right)$ can be simplified by Corollaries 5.12, 5.14 and 5.20.

References

[1]. Gelbart, S., Fourier analysis on matrix space. Mem. Amer. Math. Soc., No. 108 (1971).
[2]. Gel'fand, I. M., Graev, M. I. \& Pjateceit-Sapiro, I. I., Generalized functions. Vol. 6: Theory of representations and automorphic functions, "Nauka", Moscow, 1966; English transl., Saunders, Philadelphia, 1969.
[3] Gradshteyn \& Ryzhik, Tables of integrals, series and products. Academic Press, New York, 1965.
[4]. Harish-Chandra, a) A formula for semisimple Lie groups. Amer. J. Math., 79 (1957), 733-760.

- b) Harmonic analysis on semisimple Lie groups. Some recent advances in the basic sciences, Belfer Graduate School of Science, Yeshiva University, New York, 1966, pp. 35-40.
- c) Some results on an invariant integral on a semisimple Lie algebra. Annals of Math., (2) 80 (1964), 551-593.
- d) Invariant eigendistributions on a semisimple Lie group. Trans. Amer. Math. Soc., 119 (1965), 457-508.
- e) Discrete series for semisimple Lie groups. I. Acta Math., 113 (1965), 241-318.
- f) Two theorems on semisimple Lie groups. Annals of Math., (2) 83 (1966), 74-128.
-_ g) Discrete series for semisimple Lie groups. II. Acta Math., 116 (1966), 1-111.
[5]. Hobson, E. W., The theory of functions of a real variable. Vol. 2. Dover New York, 1926.
[6]. Окамото, K., On the Plancherel formula for some types of simple Lie groups. Osaka J. Math., 2 (1965), 247-282.
[7]. Sally, P. J., Jr. \& Shalika, J. A., The Fourier transform on $S L_{2}$ over a non-archimedean local field. To appear.
[8]. Sally, P. J., Jr. \& Warner, G., a) Fourier inversion for semisimple Lie groups of real rank one. Bull. Amer. Math. Soc., 78 (1972), 251-254.
- b) The Fourier transform of invariant distributions, Maryland Conference on Harmonic Analysis. Springer Lecture Notes in Mathematics 266, Springer, Berlin, 1972, 297-320.
[9]. Sugiura, M., Conjugate classes of Cartan subalgebras in real semisimple Lie algebras. J. Math. Soc. Japan, 11 (1958), $374-434$.
[10]. Titchmarsh, E. C., The theory of functions, Oxford, London, 1939.
[11]. Warner, G., Harmonic analysis on semisimple Lie groups. 2 Vols., Springer, Berlin, 1972.

