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I. Introduction

1. Let F be a family of nonconstant holomorphic functions defined in the disc
A={]z] <1}. F is said to be normal if every sequence of functions in JF either contains
a subuniformly convergent subsequence, or confains a subsequence which converges
subuniformly to the constant co. A family F of meromorphic functions is normal when
every sequence of functions of F has a subsequence which is subuniformly convergent
with respect to the chordal metric.

P. Montel [15] first realized the scope and coherence of these families, and used them
to give a particularly unified treatment of Picard’s great theorems, and Schottky’s and
Landau’s theorems. The fact that these results were so intimately related led A. Bloch
to the hypothesis that precisely those properties which reduce a function meromorphic

in € (={|z| <oo}) to a constant, make normal a family of functions meromorphic in A.

2. The Nevanlinna theory of meromorphic functions has proved an effective means
of studying the value-distribution of a single meromorphic function in €. In particular,
a recent paper of W. K. Hayman [8] contains several striking results of this type.

In view of Bloch’s observation, Hayman asks [10] whether his results have normal
family analogues; the present paper establishes an affirmative answer in the important
special case of holomorphic functions. Of greater interest, however, is that by using the
standard arguments of the Nevanlinna theory we are able to present a unified exposition
of the major value-distribution criteria for normal families of holomorphic functions
(compare especially the proofs of Theorem 5 here and Theorem 8 of [8]). An extension of a
theorem of Montel, valid for families of meromorphic functions, is also obtained with little
additional effort.

The major problem faced is the handling of what will be referred to as initial value

terms; that is, terms which depend on the values of the function or its derivatives at the
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origin (cf. the end of § 3 of Part II). While negligible when considering a single function,
they are collectively difficult to manage.when families of functions are involved. The
proof of Theorem 1 (especially § 5, Part 1I) shows that these terms are of intrinsic impor-

tance.

3. We present the exposition at a somewhat leisurely pace. Part II centers about a
new proof of Montel’s “critére fondamental” {15, p. 61]; although the result is standard,
the proof given here shows many of the ideas used subsequently. This seems to be the
only proof which requires F. Marty’s well-known necessary and sufficient conditions for
normality. We remark that the proof given here can be medified to yield an explicit upper
bound for

max | (z)],
where =0, 1, o in A (sharp form of Schottky’s theorem).

Additional machinery is developed in Part III. In the next part we mimic the proce-
dures used by Milloux {13] and Hayman [8] in their study of a fixed function meromorphic
in € to give a new proof of a theorem of C. Chuang [3], [16]; the existing proofs are very
complicated. The proof presented here extends easily (Part V) to establish a new result
which includes a theorem of Chang and Yang [18] that had answered affirmatively a
conjecture of Hayman [10]. Another of Hayman’s conjectures is verified in Part VI.

The final part contains a proof of a growth lemma (Lemma 2) which in the generality
needed in Parts IV and VI is new.

Although knowledge of the notations m(r, f), T(r, f), N(r, f), N(r, f), etc. and elementary
properties of the Nevanlinna theory will be freely used, the present methods are elementary.

It would be of interest to extend Theorems 3, 4 and 5 to families of meromorphic

functions, but we have not been able to do this.

I wish to thank Professor W. K. Hayman for a reading of the manuscript which
detected some errors, and provided many useful suggestions. In addition, I have had
several useful conversations with L. Sons, K. V. R. Rao, and A. Obrock.

4. Notation. Constant independent of the particular function under consideration
will be denoted 4, B, ..., M, N ...; these constants will usually depend on the family ¥,
however. If a constant depends on a parameter p, it will appear as A(p), B(p), .... The
same letter is used for different constants when no confusion is to be feared.

The numbering of equations and formulas begins anew in each part. When it is neces-
sary to refer to a numbered formula from a different part, the number of the part is in-

cluded in the citation. Theorems and lemmas are numbered consecutively, however.
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II. Montel’s theorems
1. The main result of this part is
THEOREM 1 (Montel). If edery f€ F omits the values 0, 1 and oo, then F is normal.

The derivation presented here parallels that used by R. Nevanlinna in his proof of the
second fundamental Theorem (cf. [9]).

Conditions necessary and sufficient for F to be normal have been discovered by
F. Marty [12] (for a proof, cf. also [1, p. 218]):

Lemma A. F is normal if and only if to each r,<1, corresponds a number M(ry) < oo
with
If' )]

1 - If(z)|2< M(”O);

for |z| <r,, independent of f€ F.

Since the family F under consideration consists of holomorphic functions, it is con-

venient to record a more standard condition:
LeMMA B. Let F be a family of holomorphic functions in A. For f€F, set
M(r, f)=max|f(z)]
1f there is an increasing, finite-valued function X(r), 0<r <1, with
M(r, H<Zr), r<r<l (1.1)
tndependent of f€F, then F is normal.

Nevanlinna’s inequality for the Schmiegungsfunktion ([9, p. 18]) m(p, f) of a holo-
morphic function f(z),

Yog* M(r, ]) <§—i——:m(g, H r<e<l (1.2)

allows (1.2) to be replaced by
m(r, f)<SZlr), r<r<l (1.3)

as a sufficient condition for normality of a holomorphic family.

2. For |a| <1, consider the Mébius transformation

2—a
az—1"

P (2)= (2.1)
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Then if f€F, define f, by ful2) = flpa(2)). (2.2)
Note that f2(0)= f(e), 2.3)
12 (0) = f (@) @< (0). (2.4)

That much is to be gained from this composition is evident from (2.3) and (2.4):

greater flexibility in handling the initial-value terms; that nothing is lost follows from

Lrmma 1. Suppose there is an ry<<1 such that corresponding to each f in F is an
a=a(f), |a| <rq, with the property that the family {f.} is normal. Then F is normal.

Proof. The functions {p.} and {p,'} are uniformly bounded sets of holomorphic func-

tions on |z| <1, and thus (by Lemma B) are normal. Since

,f = f a°<]7; 1:
the lemma follows.

Since much of the discussion in this article centers on a local study of F, we need a

variant of Lemma 1; the proof is evident.

LemMmA V. JF is normal in a neighborhood of z,€ A if there exists a sequence o, ~>zy such
that {f.,} is normal in some neighborhood of the origin.

Remark. Tt is clear that Lemmas 1 and 1’ actually give necessary and sufficient con-
ditions for normality (resp. local normality) of F.

3. The main inequalities. Because these derivations will be needed in later sections,
we temporarily ignore the particular assumptions of Theorem 1 and consider an arbitrary
function f meromorphic in A. Choose ro<1 and |«| <r, subject only to the restrictions
fla) 0, oo, f'(x)*0. A fundamental inequality, due to Nevanlinna [9, pp. 31, 32], when
applied to f, yields (upon letting ¢=2, a,=0, a,=1):

m(r, f) +m (r, ;—) +m (r, f_l:i) <2T(r, fo) — Ny (r, fo) + 8(r, fa), (3.1)
where Ni(r,f)=N (r, %) +2N(r, f) — N(r, f.),
and S(rf)=2m(r fi’)%—m(r < )+Iog ,l |+C
sfa ’f¢ ,fu—l f“ (0) ’

with C(=Ilog 144) an absolute constant.
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Nevanlinna’s first fundamental Theorem [9, p. 5] asserts that if f(«)=+0, 1

n( )+ () +rslil=m (- 1) (e )+log|fa 1|+ =T(r, f),

where |&*| <log 2. Thus, if

N )+ (7,7 ) + Tog |£2(0) £7.(0) ~ 1}
fa g

is added to both sides of (3.1), the first fundamental Theorem and the relation

N(r, foc’) —N(r, f.)= N(T, fo)

imply that (3.1) can be written as

SRR ) O N R A R

@) (o)~ 1)
o |t

+ log 3.2)

whenever flay +=0,1, co;  f'(ex) £0. (3.3)

Inequality (3.2) (where « satisfies (3.3)) is valid for any meromorphic function f(2).

Let us now return to the proof of Theorem 1; the assumptions

N g=d (n ) = 1) =0

permit (3.2) to be sharpened to

s ) )

fle) (f() — 1) |
o | c. (3.4)

To handle the terms involving means of logarithmic derivatives in (3.4), we use Nevan-

linna’s estimate [9, p. 36]:

Lemma C. If g is meromorphic in |z| <1, and § <r <R <1, and g(0) +0, oo, then

l_ s 4log*log®

m (r, Z—) <4log*T(R,g9)+ 6 logR

1
—|+0,
9(0) ‘

C=C0(0); if & >4, we may take C(6') = C(9).
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Using this estimate in (3.4) (with g=/f,), and noting that T'(R,f.)=m(R, f.), we
obtain

1
T(r,f) < 12 log* T(R, f,)+ 18 logRl_ r+ 8log* log* ) I + log | f(a)|
1 1
*log* —1]+1 . +C, l<r<R<l1l. (35
+ 4 log™* log f(a)_l‘+log|f(oc) | +log 1(0)‘ 1<y (3.5)

Now it is easy to see that if 4 >e,

log ||+ A4 log* log*

'<log |u|+ Alog 4,

0 (3.5) becomes

T(r, ) <12 log* T(R, f,) + 18 log Rl_ r+ log™ |f(e) |+ log* | f(e) — 1]

+ log ’+0’, t<r<B<l. (3.6)

1
f (0)
If || <7y, (2.1) implies that

<8, S8=8(ry;

o
(V)

thus it follows at once from (2.4) that

log +log 8,

10| 8 |f @

and (3.6) becomes

T(r, f,) <12 log* T(R, f,) + 18 log

+210g | F(c)| + log

1 1
S i
B Pl )‘+0+ b (3.7)

for f<r<R<1, |a|<ry<l, (8;=25,(Ry))

Remark. Terms like 2log* |f(er)| + log

‘m(37)0r

log

Hex) (f(o) — 1) }
f«(0)

in (3.2) will be referred to as initial-value terms when they appear throughout this article.

4. Tentative proof of Theorem 1. Let F, be an infinite denumerable subeollection of
the family F, and apply (3.7) to each member of F,. Suppose that there are constants
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M < oo and ry<1 and an infinite subset F, of F, with the property that if /€ F,, there is
an a=uolf), |a| <7, with

2log* [f(a)| +log

1

At this stage we need a growth lemma which generalizes those of Bureau [2] and Hiong
[11]; the proof is deferred to Part VII.

LemmaA 2. Let Ur) and y(r) be continuous non-decreasing functions of r, ry<r<I.
1f there is an 1y, vy <9y <1, and b>1 with

1
RB—r

U(r)<M+blog +elogt UR)+y(r), ro<r<R<1, (4.2)
then for r = r,,

U(ry<M,+4y(R)+2blog

1
-y ro<r<R<l, (4.3)

where M, depends only on M, b and c.
We apply Lemma 2 to (3.7) with U(r)=T{(r, f,) and y(R)=0; then for each r<1,
the numbers T'(r, f,) (=m(r, f,)) are bounded independently of f € F,, and the criterion (1.3)

coupled with Lemma 1 establishes the normality of F.

5. Completion of proof. If condition (4.1) fails to hold, then, given M < oo, o<1,

2log* |f(e)| +log

1
;T—a)l>M, IOCI<7'0,

for all but a finite number of f€F, (it is obviously no longer necessary to assume that
f'(e) +0). However,

2log* | f(a)| + log

rial el ot

~[2log* |f()| — log (1 + ] f(2)[)] < log 2,

50 given ry<1, —U—(i)l——<l, |z] <7,

1+[fz)

for all but a finite number of f€ F,. Thus, the condition of Lemma A is satisfied, and F is
normal.
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6. Generalization of a theorem of Montel.

TarorEM 2. Let F be a family of meromorphic functions in A, and suppose that all
poles are of multiplicity > h, all zeros of multiplicity >k and all zeros of f(z) —1 of multeplicity
=1, with

+obo=p<l

N||—l

-
k'lr—-

Then F is normal.

Remark. Montel’s form of Theorem 2 [15, p. 125] required that the poles have multi-
plicity divisible by &, the zeros have multiplicity divisible by %, and the zeros of f(z) —1
have multiplicity divisible by I, with 1/k+1/k+1/l<1. Results analogous to Theorem 2

in the special case of holomorphic families are well-known (cf. [17]).

Proof. We start with the basic inequality (3.2), where a is chosen so that f(«) +0,1,00,
F (&) 0. By hypothesis,

N <3 N, fa>< T(r, f.);
w(np) v (ng)<
( fail) ;N(’

80 (3.2) becomes
s )b

-3

7 (. 3) =3 010 - log @)1

??'li-‘

T (T i 1) <l1 [T(r, f) —log | f(e) — 1|1+ 1og 2,

1 1 1
—E—(1—%)10g|}‘(a)|+(l—l—)loglf(a)—ll-f—log m'+o

Upon applying Lemma C and routine manipulations as in §3, we obtain

(1—p) T(r, ) < 12log* T(R, f,) + 18 log

1 1
+8log™ log* ———,
-r )

R

1
ml*o

1 1 1
+(l_i) log | f(a)| + 4 log™ log* m)—:‘_i'_l— (1— i) log | f(e) — 1]+ log

+0+8, (6.1)

<12log"T(R,f,,,)~}—1810gR1 (2—%—%)log | He)| + og | — 7@ '

8=28(ry) (Jal<ry<]l), ry<r<R<l1.
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To prove normality of F, it suffices to show that each z,€A has a neighborhood in

which F is normal. With no loss of generality, we take z,=0; otherwise consider the family
Foo = {flz—2p); |2—20| <1—|2]|, f€F}.
Thus, let F, be a denumerably infinite subcollection of F. The proof of Theorem 2 will
follow from considering two cases.
Case 1. There exist functions f,€F,, n=1, 2, ..., &, =0a,(f,) +0, a,—>0, fo(ct,) +=0,1,00,
Frl2,) =0, and M < oo with

1

fr: (on)

In this case, Lemma 2 when applied to (6.1) and (6.2) shows that

<M. (6.2)

1 1 + (
(2 P i) log" |f, ()| + log

T(r, fran) <Z(r), 3<r<], (6.3)

where X(r) is an increasing, finite-valued function.
Inequality (6.3) and the auxiliary conditions on the o, imply local normality of F,.
We state this as

Lrmma 4. Let o0, 0, o, =0, with f,(x,) & oo and (6.3) satisfied. Then F, is normal in a
netghborhood of the origin.

Proof. The origin cannot be a limit point of poles. For if z,, is a pole of f, with z, —~0
for some subsequence n, then z, —a, —0. Abbreviate f, , x,,, a, by f, «, . Then if r>}
r

1 r 1
2{r)y>N(r, f)> fz_“ n dt=log (z—v——oc) = log (x_—oc) —log2

which is a contradiction to (6.3) since 2 — 0. Thus there is a neighborhood {|2] <4 <4}

on which the functions f are holomorphie, and (6.3) reduces to the condition
mir, [)<E(}) 0<r<},
sufficient for normality of F, in this neighborhood (cf. Lemma 1’ and (1.3)).
Case 2. There is a >0 with the property that if |a| <4, f(ex) #0, 1, oo, f'(a) 0,

1
7| =M,
f a)l

1 1
(2—%—5) log* |f(a)| + log

for all but finitely many f€ F,.

But then the criterion of Lemma A is satisfied in || <8 (by a continuity argument at
those points where f(o) =0, 1, or oo, or f'(«) =0); for example, consider separately the case
|f(@)] <1 and [f(a)| >=1. Thus F, is normal in a neighborhood of the origin.
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III. A new composition

1. Let f€F; then if || <r=|z|, the function f, is defined as in [(2.1), Part II]. This
composition has been useful in the discussions of Theorems 1 and 2, but a somewhat more
complicated composition will also be needed.

We apply this composition to prove Lemmas 5-8; these Lemmas are used throughout
the rest of this work. The corollary to Lemma 5 is of crucial importance in Part V. The
inequalities derived in Lemmas 6-8 are analogous to Milloux’ basic estimates (cf. [9, p. 55],
[12, p. 11 et seq.]) which are important in the study of value-distribution properties of
entire (meromorphic) functions. The Lemmas here require that the family F is not normal;
thus, they give some insight on Bloch’s conjecture.

Fix ry<1, and let ry<r<1. Then if || <7, define

—

pel)=r s (L1)

to avoid confusion, the composition of f with y, will always be written in full, but we con-
tinue to use the convenient notation f, for fog,.

While y,(z) depends also on r, it will only be used in terms like m(r, foy,), where the
explicit choice of r is obvious (cf. Lemma 5).

Note that v, is a conformal map of |z| <r onto itself. While foy,, f€F, will not be
defined in all of |z| <1, it is defined if |z| <r3(L+ry)/(ro+7?).

LeMMA 5. Let v and 8 be related by
re'” =yp,(re'), 0<6<2m,
where |ot| <ry<r. Then there exists a constant K =K(r, r,) with the property that

1 dr
=< <0<2nm. .
K<d0<K’ 0<0<2n (1.2)

Proof. This can be established by a more or less direct computation, but the following
proof seems more in the spirit of things. As « varies in |z| <r,, the {y,} are a collection of
uniformly bounded holomorphic functions on each compact subset of |z| <r?/ry; in particu-
lar, the y, are uniformly bounded in a neighborhood of |z| <r, so that

max |y, (z)| < Ky < co.

x| Ko<t
z|l<r

dr

If z=re', 0<6<2x, 0 =y,

and the right inequality in (1.2) follows at once. The proof is completed by noting that
-1
Yo =Y-_qa.
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Remark. If ry and r are fixed, ry<r<1, then for s >r we may take K(s, ry) =K(r, 7,).

CorovLLARY. Let || <r,. Then if g is meromorphic in |z| <r (r>ry),

2 m(r,0) <mir,gop) < Km(r, ). (13)

Proof.

1 (= i 1 o dT
m(7,9°1,0a)=§7—t , log™ |g o we(re )|dr=% . log* |g(re )I@dﬂ;

2n
thus |m(r, g o ) — m(r, g)| < 1 f log™ [g(re')]
27‘6 [}

dr
—_— < ,
% 1 l df < Km(r, g)

and the other inequality follows similarly.

Remark. Tt is clear that the constant K of (1.2) and (1.3) may be taken as close to 1
as we please, provided that »>» and |a| <d(7).

2. We return to the study of normal families and apply the composition of foy, to
prove three new lemmas. Unfortunately, our proofs of these lemmas fail for meromorphie
families, and this inadequacy restricts our remaining theorems to families of holomorphie
functions.

The first lemma is a qualitative improvement of Lemma C:

Lemua 6. If F is a family of functions holomorphic in A, and F is not normal, then
there is an ry<1 with

1
R—7’

m('r,f*)<A+Blog+T(R,f)+C’log L1+r)<r<RBR<1 (2.1)

f
for f in an infinite subfamily F, of F.

Proof. The assumptions imply that there is an r,<1 such that for all bat a finite num-
ber of f€F there exist o= a(f), || <7y, with |f(c)| >1.

Let F, denote this subfamily of F, and apply Lemma C and (1.3) with g =foy_,, f€F,.
Then

m (r, ;—) < Km (r, ];—o 'l/J—z) < K{4 log* T(+', fow_,)+6log O r+ D},
(A4 <r<r' <r*(L+1)/(ro+ 1. 2.2)
Since f is holomorphic and the circle |y_,(z)| =7’ is contained in
lzl =12r" — 7o)/ (P2 —ror’) =1y, (2.3)

we obtain (using (1.2), Part I)
16 — 692906 Acia mathematica. 122. Imprimé lo 16 Juin 1969.
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T, foy_)<log" M(r', fo y-z)<log® M(r,,f) < g + :1 TR,f), mnm<R<1;
-n
thus log* T'(r', foy_,) < log Ri . +log" T(R, Y+ A4, (2.4)
1

with 4 independent of f and « if, say, r>}. Now given R>7, choose » (which determines
r, from (2.3}) so that 1/(r' —r)=1/(R —r;). It is then easy to see that there is a constant
A =A4(r,) with the property that 1/(r' —r)=1/(R—r;) <A(R —7), and (2.1) is a consequence
of (2.2) and (2.4).

Remark. The estimate (2.1) should be compared to that of Lemma C; while it is less
precise, it allows the elimination of the term involving log+ log* |1/g(0)|. The assumption

that F was not normal was essential, as can be seen by considering the functions {¢"“~?;

n=1,2 .1}

In applications, we often use a local version of Lemma 6; we state (and omit the routine
proof):

LEMMA 6'. Let F be a family of functions holomorphic in |z| < (6> 0) which is not nor-
mal in any neighborhood of zy=0. Then there are constants A =A(5), B=B(6), C=C(9)
with the property that

m(r, f'[f)<A+ Blog* T(R, f)+Clog 1/(R—1)
when 36 <r <R <84, for | in an infinite subfamily of F.

3. The techniques used in the proof of Lemmas 6 and 6’ allow further applications.

LeMMaA 7. Let F be a family of functions holomorphic in A (resp. |z| <n) which is not
normal (resp. not normal in any neighborhood of the origin). Then there is an r,<1 and a
constant K with the property that if r>r, (resp. r>n/2)

m (r, fl) < Kmfr, f)
for an infinite number of f€F.

Proof. Find r,<1 such that to each f of an infinite subfamily F, of F corresponds an
a=ulf), |a| <ry with
)| >1,
and f(a)+0, oo (resp., find a sequence a,~—0 with |a,| <#/3, n=1,2, ..., |fu(e)]| =1,
ful,) #0, 00). Let 7, =4(1 +7,). Then if r>r, {resp. r>7/2), we see from Lemma 5 that if
fed

1 1 1
m (r, f—) < Km (r, 7 oqpﬁ) <KT (r, i ° ‘/’—a) =K{T(r, foy_.) —log|f(a)[}

<KT(r,foy_o) = Km(r,foy_o) < K*m(r, ).
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4. Lemma 7 permits a generalization of Lemma 6; our result is similar to Theorem 1
of [7], except that we have been able to eliminate the dependence of our estimate on the

initial value terms.

LevMA 8. Let F be a family of functions holomorphic in A whick ts not normal and let
k=1 be a fized integer. Then there extists ro<1, r=ry(k), such that to each fixed g, ry<p <1,
correspond constants A = A(p), B=B(g), C =C(g) and an infinite subfamily F, of F with

1
R—r’

)
m(r,]—‘—)<A—I—B]og+ T(R, f)+ Clog f€F,

f

for ro<r<R<p.
Remark. Note that the subfamily depends on g; however the number r, depends only

on the full family F, as is clear from the proof.

Proof. We use mathematical induction. When k=1, the lemma is a consequence of

Lemma 6 [in fact Lemma 6 is slightly stronger, since g may be taken to equal 1]. Now
let k>1 be fixed.

Case 1. There exists 7, <1 and an infinite subcollection F, of F with the property that
to each f € F, corresponds an a=af(f), || <ry, with
| 1% X e)| =1.
Then the proof of Lemma 6 yields that if f€F,,

(k)

m (1‘, ]7{76_—1)) <A+ Blog* T(R, {* )+ Clog

Br’ re=3(1+r)<r<R<l. 1)
To estimate the right side of (4.1), note that standard manipulations and the induction
hypothesis yield that

ﬁk}i)) +T(r,f) < A+ Blog* T(r, f) + Clog

T(r, f*"DY<m (r, +T(r, f)

1
B—r
1
R—r

<A+Clog +CT'(r, f). (4.2)

We use (4.2) in (4.1) together with the obvious estimate

) cnle )l )

and the induction hypothesis once more to complete the proof of the lemma under the

assumptions of Case 1.
Case 2. For each p <1, the inequality

@] <L, 2] <31 +e)=es
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holds for a subcollection F, of F (which depends on g) such that F —F, is finite. We choose
such a ¢ (which in turn determines g,). The choice of g is arbitrary, but it is convenient
to require that g >g, > %; here g, (<1) is determined by the condition that F is not normal
in |z| <g,. Having chosen g, it remains fixed for the remainder of the proof.

An application of Cauchy’s formula

/(k)(z)::—l—— f f(kAl)(C) dc
Kl=e1

2 (£ —2)?
yields that if |z| <, [ (z)| <4(1 —0) 72, (4.3)
so that in |z| < f;"()z()z) <A(o): el
and thus if r<p and f€F,
® () ( _1~)
m(’r, 12 )<A+m T’f(z) . {4.4)

A natural (though incorrect) line of proof would be to use Lemma 7 to improve (4.4) to

m (r, f(;z:)z)) <A+ BT(r, f(z)),

but this estimate is not as good as that demanded in the statement of Lemma 8.

However, we shall show that the assumptions
F, not normal in |z| <g (4.5)
for some g <1 (we assume that ¢ >p,> %)

max M(g, f¥)<4 (4.6)
fen
(here, 4 is given by (4.3)) imply the stronger estimate
1
m (r, f_) < B, 4.7

if $ <r<p, for an infinite subfamily of J,. Since F is not normal in A, it fails to be normal
in |2| <g, 0>g,, for some }<p,<1; thus (4.7) when combined with (4.4) completes the
proof of Lemma 8.

Turning to the proof of (4.7), note that from (4.6) follows at once that there is an M,
independent of f € F,, for which

f(z)=A<z)+BfI=l<z—b,->, ted.,

where r<k—1 and |4(2)] <M, |z| <eo.
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Let the b; (b;=b,(f)) be so numbered that
|b1] <4, ..., |b:| <4, t=t(f),

whereas |b;,,| >4, ..., |b,| >4. With this convention, we write

¢
f(Z)=A(z)+B(z)£Il(z*bj),

|A(z)| <M.

If there were a constant N so that for an infinite subcollection F,=F, the corre-
sponding functions B(z) satisfied

Mg, B(z)) <N, (4.8)

then the functions in F, would be uniformly bounded in |z| <g, and normal. Since F
(and thus F,) is assumed not normal, it follows that for any N, (4.8) fails for infinitely many
1€F,.

In fact, a stronger conclusion holds: given any N, 1 <N < oo, the inequality

min |B(z)| > N (4.9)

lzl<e

must hold for an infinite subfamily F, of F,.

To see this, note that B(z)=B [] (z—b,),
15iH
so that if z and ¢ are in A, | B()| =37% 7| B(z)].

Choose z for which | B(z)| = M(p, B(z)); this and the fact that the numbers M(p, B(z)) are
unbounded yield (4.9).

From the representation

1) = Bz) {A(2) By + 1] (z—by)}=B() f,(2) (4.10)

i=t+1

and the fact that m(r, 1/B(z)) =0, r <g, for f€ F,, follows that

m(r,}l-)Sm(r, /1—1), i€F,, (4.11)

and it suffices to prove (4.7) for f, instead of f.
We note first that there is an absolute constant C with the property that if f€J,

T(r, f)=m(r, f;) <C. (4.12)

It is easy to see from an elementary compactness argument, or the Boutroux—Cartan lemma,
that there is an absolute constant K, with the property that for each f is a §=p(f,;), with
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t
18] <3, 111(‘3 —by)> e
Then, using Lemma 6, if $<r<p,

m (,-’ ;_) <Km (r, /loqp_ﬂ) <KT (r, -fl— ozp-,a) SKA{T(r,frop-p)+ K;}
1 1 1

<K*T(r,f,)+ KK,<C,
with C an absolute constant.

This estimate, with (4.4), (4.11), and {4.12), completes the proof of Lemma 8.
Lemma 8 leads to the standard comparison between T'(r, f*!) and T'(r, f), valid for a

family which is not normal.

COROLLARY. Let J be a family of functions holomorphic in A which is not normal,
and let k be a fized integer >1. Then there exists ry<1 such that to each fixed g, r,<p<1
corresponds A =A(g), B=Bg), C=Clp) and an infinite subfamily F, of F with

T(r, ) <A+ BT(R, f) + C log 1€31

R—»
if ro<r<R<g.

Proof. The standard estimate
()

T(r, [9) <m (r, ’—,—) T Tr,

and the lemma yield that

1
R—r

T(r, f*)< A+ Blog + T(r,f)+ Clog* T(R, f).

However, we have log+ T(R, ) <T(R, {), and the lemma is proved.

Remark. Let M < oo and % be fixed positive numbers and F be a family of functions

each of which can be written as
9(z) +(z),

g(z) a polynomial of degree <k and ]h(z)] < M. While F need not be normal, it is clear that
it is quasi-normal [15, p. 66]; consider the family {nz}, for example. The discussion used in
Case 2 of Lemma 8 shows that this example is somewhat typical: if F is not normal, then
there is an 7y <1 and M such that if ry<r <g(<1), the inequality

m(r,;)<M,
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holds for an infinite subcollection of F. In fact, it is not hard to see that, given £¢>0,

ol

0 <r<p holds for an infinite subfamily of J. To see this, one uses (4.11), the fact that 1/f
will be large only near the b;, a “small arcs’ lemma [6, p. 322] applied to f;, and the mani-
pulations used at the close of the proof of Lemma 8. We omit the details.

6>0 and p <1, the stronger estimate

IV. A theorem on nonvanishing families of holomorphic functions
1. We prove

THEOREM 3. Let F be a family of nonvanishing holomorphic functions in A, and ay(z),

wes U_+(2) fixed holomorphic functions. Let § consist of the functions

9(z) =1"(2) + @1 (2) [* TP R) +... +ag(2) (), [€F, (1.1)
and assume that the equation g(z) =1 has no solutions for zEA. Then F is normal.

Theorem 3 is due to Chuang [3], [16, p. 41]; the special case g(z) =f*)(z) was considered
in [14]. The requirement that F be nonvanishing is almost best possible: consider the
functions g(z) obtained from the family F={f,}, n=2,3, ..., with k=1, f,(z)=nz and
ay(2) =0. Then each f€F has a single simple zero, the equation g(z)=1 has no solution
for g€ G, but F is not normal. In Part V, it will be seen that the condition that F be non-
vanishing can be weakened if one has the opposite situation in which all zeros of functions
in F occur with high multiplicity.

An important fact needed is contained in

Lemma 9. If G is normal, then F is normal.
The proof is deferred to § 3.

2. Proof of Theorem 3. Let F, be an arbitrary denumerable subcollection from F;
we will show that F, contains an infinite subfamily which converges normally in |z| <g,

where g is any fixed number <1. For convenience, we assume that
eztmax (1+ry, 147, 147, 1473), (2.1)

where the constants 7y, 7,, 7, and 75 will be determined below; they depend only on JF,.
G, will denote the subfamily of ¢ which corresponds to F,; g, will be related to f, by (1.1),
etc. Since some of these arguments will be used in Part V, we proceed in somewhat greater

generality than needed for present purposes.
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Unless G, has a normally convergent subfamily (in which case so would F,), there
must exist an r,<1 and an infinite subfamily @, of G, such that to each g€ (G, corresponds

an of=alg)), || <re, with

gl 1 ‘ <1 2.2)
g (a)
Note also that from the definition of g,, there exists an absolute constant 4 with
K K
log" T(R', 9.) < D log* T(R',a;4) + > log" T(R', )+ A
=1 =1
k
=L (RY+ Jlog"* T(R', f*)+ 4 (2.3)
=1

where we have let L,(R’)=2XZlogt T(R', a; ,).

Since §, may be assumed to contain no convergent subfamily, there must exist r; <1
such that both Lemma 8 and its corollary may be applied to an infinite subfamily (G, of
G,. The corollary is used in (2.3) to yield that if r, <R' <R <jp

log™ T(R', g,)<L(R)+AlogR1R+Blog TR, f,)+C.

We use this last estimate and Lemma 8 itself in the fundamental inequality (3.2) of
Part II, with f, replaced by ¢g,, and R'=}(r + R). Then if g is a fixed number less than 1

(chosen to satisfy (2.1)), it follows that there is an r; <g (we assume 7, >r,) such that

1
goz—l

T(r,g.)<N (r, gl) +N (r, ) - N (r, %) + L.(R)+ Alog™ T(R, f,)

+BlogRl_r+log

g(e) {g(oc) 1}I+C (2.4)

when r;, <r<R<p, if g belongs to an infinite subfamily G of G,. In (2.4) we must assume
that g(x)#0, 1, and ¢'(x) £0, but if g(z)=0 or 1, or ¢'(z) =0 for infinitely many g€ §G,,
then (,—and thus J,—would be normal. We also note that if « is variable, but || <7, <1,
and R <g, then L,(R)<A, A=A(r,,0).

The next goal is to revise (2.4) to get a relation involving only f,, f€ F;. Since

m (r,gl) +N (r, gl) =T(r, gz) — log|g(x)],
(2.4) becomes

1 1 1 1
mir,— <N(r, )—N(r,——,)+Alo +*T(R,f.)+ Blo
( 9) gu—1 9 g TR o ER-

-1

gle) —
g (@)

+ log

‘+C n<r<R<y.
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ool s et

It is clear from Lemma 8 that (since p<1 continues to be fixed) there are infinite sub-
families F, and G, of F; and @, for which

m(r,gf)< gm(r a; o)+ Zm( f;j))+0<H (r)+ Alog* T(R, {,) + Blog -I-O (2.5)

j=1 1

R—

if r,<r<B<p (we assume with no loss of generality that r;<r,<p). Here H,(r)=
2im(r,a;,). If « is variable, but |a|<ry<1, then it is easy to find a fixed function H,

with H,(r) < Hy(r). Upon combining these manipulations, we obtain

( f«)<H°(T)+N( fu)”v( gl—l)_N(“%)

+Alog* T(R, f,)+ Blog

1_T+ O+ log (2.6)

R g'(«)

r,<r<R<1. Bince |a| <r, and p is fixed, the constants 4, B and C depend only on the
family F,.

g(a)—ll

The particular assumptions of Theorem 3 allow (2.6} to be simplified to

( ¥ ) <Hy(r)+ A log* T(R, f“)+BlogRl_r+ ¢+l

el e
g ()
ry<r<<R<p.
Finally, it follows from Lemma 7, since F is a family of nonvanishing holomorphic
functions, that unless F, is normal there is an r;<g (we suppose that r,<r;<g) and K

such that
T(r,f)<KT (7‘, ;—) rg<r<p, (2.8)

for f€ F;, an infinite subset of F,.

Put (2.8) in (2.7), and choose « (and 7,) in accord with (2.2). If we apply Lemma 2 to
the functions
U(/’-) = T(QT, fcz)’ 7(7') =H0(QT)

(where g is determined by (2.1)), it follows that the functions 7'(r, f,), f€ Fs, are uniformly
bounded in r <g. Thus F is normal in |z| <g, and since g can be chosen arbitrarily near 1,

a standard diagonalization argument completes the proof of Theorem 3.

3. Proof of Lemma 9. Let {g,}€§, g,—g, normally. We show that each point z €A
has a neighborhood on which the corresponding family {f,} is normal.
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Case 1. gy(z,) +=0. It is no loss of generality to suppose that z,=0. Then z, has a neigh-
borhood |z| <24 <1/2 on which |g(z)] > ¢ for an infinite subfamily G, < {g,}. Butif é <r <24,

a local version of (2.5) shows that unless F, were normal in a neighborhood of the origin,

1 1 1
m(r,f—)<m(r,%)+m(r,§)<Ho(r)+Alog*T(R,f)+BlogR_r+C

< Alog* T(R,f)+ Blog

1
R—r+ C+ Hy(}),

since by assumption we have m(r,1/g)=0(1). Apply Lemmas 2 and 8 to U(r) =m(r/26,1),

»(r) =0 to deduce (as in the last section) that F, is normal.

Case 2. go(z,) =0. We first recall some elementary facts from the theory of linear dif-
ferential equations. If k,(2), ..., h,(z) are a linearly independent set of solutions of the homo-

geneous equation
L(k) = ap(z) b(z) + ... + h¥}(z) = 0,

then the solutions of L(h) =g(z) are given [5, p. 87] (variation of parameters) by
k
b = 3 (o + Bn2)} P (2)- (3.1)

In (3.1) the a,, are arbitrary constants, and

N LA Y0 as
Pn(@) fo{W(hl,...,h,,)<t)}"“’dt’ ©-2)

where W(hy, ..., k) is the Wronskian determinant of hy, ..., b, and W, (h,, ..., k) is the
Wronskian of hy, ..., By, By, oo, By From the derivation of (3.1) it follows that the f,,(2)
satisfy the constraints

Bi@) hy(z)  +Be(@) ha(2)+ ... 4 Br(2) B(z)=0

’ 3.3
Bi(2) BE2 (2) + B2 (2) BE 2 (2) + ... + Bi(z) BE P (2) =0 5:3)

B1(2) BV (2) + Ba(2) B0 (2) + ... + Br(2) BT (2) = 9(2).
Returning to the discussion of Lemma 9, we see from (3.1) that since L(f,) =g, there

are constants o, , (m=1, ..., k) and functions §, ,(z) (m=1, ..., k) determined by (3.2)

with g =g, for which
fn(z) =z{an.m+ﬁn.m(z)}hm(z)'

Further, given £>0, one can find 6 >0 and M < oo with the property that
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W..(t
’W"E—i)—)'<M, lg.(t)|<e (m>mp, m=1,2,...,k)

if |¢]| <4, since g, is a cluster function of {g,} and go(0) =0. Thus
|Bu.ml2)| <Me=¢*, |2]| <d, n>mn,

Let F* be the class of corresponding comisinations {Z o, ,k,}, as determined by (3.1).
Thus, corresponding to F € F* there is an f,€ F with

| F(z) = fa ()| < ke* max |hm(2)| <&, (2] <81(en))- (3.4)

It is clear that F,={f,} is normal if the corresponding functions F(z)€ F* are normal, so

Lemma 9 is a consequence of the local version of

LemMA 10. Let ky(2), ..., by(2) be fized linearly independent functions holomorphic in A.
Let F* be a family of functions holomorphic in A such that if € F*,

k
fe) =3 auhi(2)

for suitable constants o, = ot,(f). Suppose that there exists an M with the property that for each
F € F* corresponds a g, g =g(F), holomorphic in A, |g(z)| <M, such that the equation
F(z)+9(2) =0

has no solutions in A. Then F* is normal.

Proof. For F€JF*, let j=j(F) be determined as follows: § is the least integer such that
|oj| =|es|, ij. Write

Fe)=o; 3 hle) =i,

F* will consist of uniformly bounded holomorphic functions and would thus be normal
unless a;—> oo for an infinite subfamily J§ of F* and some fixed j€ {1, ..., k}. Assume, with
no loss of generality, that j=1. For F€ 3},

k . K
F=“1h1+§%hi=a1{h‘1+§ﬁihi}- (3.5)
1

Note that |g;| <1, ¢=2, ..., k. Let K be a compact subset of A. Since the f, range over a
compact subset of C*~1, one can choose a convergent subsequence for 1=2, ..., k. Let

k
h’l"'zﬂfhi:F*
2
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be the limit of the corresponding subfamily of J{, the convergence being normal in A.
F* cannot be identically zero, as {h, ..., h,} is linearly independent. But then F* never

vanishes on the interior of K. For (3.5) may be rewritten as
k
F/oy=h+ 2. Bihi.
2

Recall that F'=F+g—g, with F+g never vanishing on A. Since |g(z)| <M and o> oo,
g/oy tends uniformly to zero. Thus (F +g)/a; tends normally to F*; since (F +g) is never
0 and F* £ 0, Hurwitz’ theorem ensures that F* is never 0 on the interior of K.

Thus if K, is a compact subset of the interior of K, there exists >0 such that
k
|h1+>§:ﬂikil >0, 2€K,

for an infinite subfamily of JFf. Since o; — co, we see at once from (3.5) that oo is a cluster

function of F*, and Lemma 10 is established.

V. An extension of Theorem 3

1. The assumption throughout Part IV that F be a nonvanishing family can be

weakened only in special cases, as might be expected from the discussion in § 1, Part IV.
We prove

THEOREM 4. Let F be a family of functions holomorphic in A. Suppose the zeros of each
f in F are of multiplicity >m, and the zeros of g(z) —1 are of multiplicity > p, where

E+1 k+1
oy IS,
m
and 9(2) = [P(2) + 1y ()[* () + ... + o) [(2), (1.1)

with ay(z), ..., a,_1(2) holomorphic in A. Then F is normal.

Remark. 1f j of the functions a(2), ..., @,_,(2) are identically zero, the proof shows that
it is sufficient to assume that
k+1 k—j+1
AL
m p

1.

CoroLLARY. (Normal family analogue of a theorem of W. K. Hayman [8].) Let G
be a famaily of holomorphic functions in A such that the equation
9'(z)g(z)" =1
{(where n 15 a fized integer, n>2) has no solutions. Then G 13 normal.
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Proof. Let f(z):(n—i—l) g(z)"*!, k=1 and a,(z) =0 in the statement of Theorem 4.

Then JF, the family of such f, is normal, and hence so is G.

Remark. This corollary seems to have been discovered first by L. Yang and K.
Chang [18].

The proof parallels that used in obtaining Theorem 3. As usual, G will denote the
family of functions obtained by (1.1) from f in F.

2. We need a preliminary result:
Lemma 11. If G is normal then F is normal.

Proof. It again suffices to work locally and we modify the argument of § 3, Part IV.
Let g,~>g, normally, and let z,€A (which we take to be z=0).

Case 1. g4(z,)==0. Then the discussion in Case 1 of the proof of Lemma 9 may be
applied immediately, since z, cannot be a limit point of the zeros of the corresponding f,

(due to the assumption of multiplicity, zeros of f yield zeros of g).

Case 2. g,(z,) =0 but for some §>0,

1
nlr,—)=0, r<§
(f)

for infinitely many f,. Then the discussion of Case 2 of the proof of Lemma 9 may be
applied once more.

Case 3. gy(2) =0, and there exist z, with z,—~0, f,(z,) =0, and thus a sequence z,—~0
with g,(2,)=0. Let
hl(z): kz(z), “eey hk(z)

be linearly independent solutions of the differential equation g(z)=0. Then from (3.1),
Part IV, we deduce

k z
fn(z)=fn.h(z)+m§=:l{ , %i;) gn(t)dt} hm(z)> (2.1)

here, f, n(z)=20t,, ,h,(z) is a solution to the homogeneous equation g(z)=0. We claim
that in fact

frn=0, n>n, (2.2)
so that (2.1) becomes simply

he=3{[ g0 b, 23

Let us complete the proof of Lemma 11, deferring temporarily the justification of (2.2).
Choose § >0, and then determine M with
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Wat)
W(t)

9. (2)] < M, <M, |h.(x)|<M, |2]|<26, (2.4)

m=1, 2, ..., k, n>n, Then there is an absolute constant M* with
|fa(2)| <2L%,

[z] <6, and {f,} is normal in a neighborhood of the origin.
It remains to show (2.2). Write (2.1) as (for f,=f, f,.n=Fr 9.=9):

=@+ 3 Bnle) hale) (25

Note that Bulza) =0 m=1,2, .., k. (2.6)
Further it follows from (3.3) of Part IV that
f'(2) = f(20) + 2 Bl2n) B (20)-

The assumption that the zeros of f have multiplicity >m implies that f(z,)=0, and this
together with (2.6) allows us to deduce that

f i,l(zn) = O;
continuing, it follows that f,(z,)=... = f¥ P(z,) =0. Thus, from the uniqueness of solution
of the homogeneous form of (1.1) in a neighborhood of z,, we get (2.2).

8. Proof of Theorem 4. Let F, be a denumerably infinite subcollection from F; we
show J, is normal in a neighborhood of z,=0. Theorem 4 is a consequence of Theorem 3

unless z; is a limit point of the zeros of F;.

Note that if f(o) +0,
1 1 "(t}l;) k+1.( 1\ _k+1,_( 1
V(nH)-w(n D)< wrn [ R a<t v () <t ()
= e f-toglf@ls B

here, N*(r,1/g,’) counts the zeros of g, which are also zeros of the corresponding f.. Also
1 1 1 1 1
N(r,—) —N* (r, ~,) <—N(r,—————) <={T(r,g.)~log|g(@) —1|+ 4}, (3.2)
| o) <o \r o) <, 1T g0 ~loglgla) 1]+ 43

where N**(r, 1/g,’) counts the zeros of g, which arise from zeros of g, —1. We use (3.1)
and (3.2) in (2.6), Part IV. Since only the behavior of F, in a neighborhood of the origin
is relevant, we take p=3} in (2.1) of Part IV, and insist that |«| <}. From Lemma 8
and the obvious inequality T(r, {,%) <m(r, f.*/fa) + T(r, f.) it follows that

T(r,g)<(k+1)T(r, f) + 4 logt T(R, f,), r<R<p.
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Thus, if { is in an infinite subfamily F, of F,,

{1—-2}T(r, f)<Alog™ T(R, {.) + Blog +C
g

1
R—r
+log [{f(e)} - ™ {gle) - 1}* PP {g' ()}, s<r<B<$, (3.3)
(with these restrictions on « and 7, the functions H,(r) are uniformly bounded, and are
absorbed in the constant C). The numbers 4, B and ¢/ now depend only on the family F,.
It is clear from (3.3) that Lemma 2 will yield that F is normal in a neighborhood of the

origin if there exists a sequence «,, such that «,—0 with
| )™= {g(a) — 1} 27 g" ()Y < M, (3:4)

x=0a,, f=f,€F, corresponding to g=g,€ Gs.

Suppose that f, has a zero z, where z,—0. Then z, is a zero of g and ¢'. Given z,, deter-
mine y, by: |z,—y,| is minimized subject to |g.(y,)| =1; if such a y, fails to exist for
infinitely many =, the corresponding functions g, would be uniformly bounded in A, and
consequently these g, would have a convergent subfamily.

Let |2, — y,| = 8,; then if |z —2,| <4,,
lon@1= [ lgico =] <3, ©5)

Suppose that there were an % >0 with the property that 8, ># for a subsequence J,,. It
then follows at once from the definition of d,,, the faet that z,,~0, and (3.5) that

|9, <1, |z| <n/2,

and so ¢/ —and thus F--is normal in a neighborhood of z,.

Hence, we assume that §,~0. In this case, (2.3) shows that f,(y,)—0. Also,
Yn
lgn (yn)/grlz(yn)I < J; lgn(t) ' dt < lzn ‘ynl =0,.

Thus, the expression (3.4) in fact tends to zero as n—co with x=y,, and the theorem is

proved.

4. An open question. J. Clunie [4] has proved that an entire function f such that f'f=1
has no solutions is constant. Bloch’s hypothesis thus makes it likely that the corollary to
Theorem 4 is valid when n=1, and a similar generalization of Theorem 4 itself may be
true. Note that Lemma 11 is valid under these hypotheses. Clunie’s proofs were different
from those of [8], and it seems that the methods used here are not deep enough to resolve
this conjecture.
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VI. A new criterion for normality
1. Confirming a conjecture of Hayman [10] we prove

TueoREM 5. Let F be a family of functions holomorphic in A, and for a fixed n>3 and

a 0 suppose that
f—af*=b, f€F

has no solutions in A. Then F is normal.

If e F, we follow Hayman [8] and determine % by

_ r_.
b=t e

H denotes the family of these functions. The hypothesis of Theorem 5 implies that
is a family of kolomorphic functions.

2. A preliminary lemma.
Lemyma 12. If H is normal then so is F.

Proof. Standard manipulations yield that if h(a) + —1 then

,a —b h’a
R R O e .

<T(r,f‘,)+m( ff)+T(r k) —log |h(x) + 1]+ K(a,b);  (2.1)

thus T(r,fy) <;—1—[m( '} )+Tr he) — log | k() + 1| + K(a, b)] (2.2)

Let JF, be a denumerably infinite subcollection of F, and consider the associated

family 3#,<=H. Let I, have cluster function A*. We consider three cases.

Case 1. b*% — 1, co. Let {h,} =H,< H, tend to h*. There exist M < oo, ry<1, a=a(h),
|| <7q, with
—log |Ma)+1| <M (2.3)

for an infinite subfamily ;< H,. For all but a finite number of functions in H,, the mani-

pulations of (2.1) are permitted. Also, for any r <1,
T(r, bn,o) > Tr, bz), n—>oo, (2.4)

and since we assume J, is not normal, the estimate derived in Lemma 6 may be applied
to m{r, f'4/f), for f in an infinite subfamily F, of Fs.
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The estimate (2.2) with the above modifications calls for application of Lemma 2
in full force; take U(r)=T(r, fs,q), p(r)=(1/(n~—1)) T(r, by, ) (if necessary, increase the
coefficient of log (1/(R —r)) to satisfy the hypothesis of Lemma 2). Then if > r,>|«|,

1

T(r, fua) <A+ BT(R, bo,o) + Clog 53—,

re<r<R<l, (2.5)
for an infinite subset of the %,. This, when coupled with (2.4) and the criterion (1.3) of
Part II, yields the lemma in this case.

Case 2. h*= —1. Then for each ry<1, and £>0

fe)—b
af(2)"

<e, |zl<r,

for infinitely many f€ F.

It is easy to see that F is normal whenever the following is true: if
[fz0)| <1, |2y <ty fEF, (2.6)
then there is an 5 =#(r;) >0 with the property that if
|fz2)| =2,  |2a] <7, 2.7
then |za—2| =7. (2.8)

Thus, suppose z, and 2, are chosen in accord with (2.6) and (2.7); we may as well
assume that |2, —2z,| is minimized subject to these conditions. Let y denote the line segment
from 2, to 2,; then y lies in |2] <r,, so that if 2 is on y,

/)| <elaf@)"| +B < Ke+B, K—Kla,mn),$=|b],
since |f(z)| <2. But then

1<l ~fel < [ |70 461 < 6+ Kol
which proves (2.8).

Case 3. b* = co. In this case, the estimate (2.5) is meaningless. But if 2*= oo, then for
each r,<1, £>0,
f)—b
af(z)"

for infinitely many f € F, and the argument used in Case 2 may be reapplied to verify directly
that F is normal.

<l+e, |z|<r,

3. Proof of Theorem 5. Let F, be a denumerably infinite subcollection of F, and ¥,

the corresponding subcollection of . We show that }; is locally normal, say, in a neigh-
17 - 692906 Acta mathematica. 122. Imprimé le 18 Juin 1969.
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borhood of the origin; to obtain greatest flexibility with the initial-value terms, both com-
positions g, and y will be used, with |«| + |#]| small. In particular, we suppose initially
that || <1. The precise choices of  and 8 will be made later.

We apply the fundamental inequality [(3.1), Part II] to the functions #,, using Lemma
6’ to estimate the terms involving means of logarithmic derivatives. Thus, if }, were not
normal in any neighborhood of the origin, there would exist §; and an infinite subfamily

H, of N, whose elements satisfy

1 1 1
il — i< _ - +
m(r, k) +m (r, hz) +m (r, it 1) 2T(r,h,)— N (r, h,') +Alog™ T(R, he)

-+ Blog

+C+log hEN,, (3.1)

1
R—r Wx)|

where A4, B, C are independent of r if
& <r<R<l. (3.2)

The remark at the end of §1 of Part III implies that given £>0, 8, <4§,/2 may be
chosen with the property that

1 1
- - < ,— 3
(1 S)m(f>ha+1°‘l)ﬁ) m(r h,,,—l—l) (3.3)
whenever || <4, and r satisfies (3.2). Similarly, since & is holomorphic,
T(r, hyos)> (1 —&) T(r, hy), <0y 7>, (3.4)

The particular choice of ¢ will be determined later. Add
1 1
N (r, —) +log |h(oc)| +(L—e){N{r, ————01/),3) + log |(ha+ 1) 01p,g(0)|}
e he+1
to each side of (3.1), noting (3.3) and (3.4):

+C

R vf, L _ o + 1
(1—¢) T(r,ha)<N(r,h“ +(1—¢)N T,ha‘Floy)ﬂ + A log T(R:ha)+BlogR__,'.

k—l’ |8l < 8s, 6, <r<R<1. (3.5)

+ (1 —g)log | (he+ 1) (— B)| +log hf(“a)

The hypothesis of the theorem ensures that all zeros of h, are of multiplicity at

least n; i.e.,

. 1 1 1 1 1 1
¥ (r, 17;) Ly (r, h_,,) <lp (r, hT,) ~ {7 h) ~log | o)} (3.6)
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Similarly, we see that
N(’I’ —1——01/; <N|r —1~01/) <7, (f —b)oy )—log|(f' —b)(—ﬂ)l
’hm‘l‘l B :f/“_b B > 4 B a

<T(r, fropp) +m (r, ff-‘owﬂ) —log |(f'«—B) (—B)|+ 4. (8.7)

Note also that under the assumptions on 8,

T(r, fuopp) < (L + &) T(r, fa), (3.8)
m(r,ff—,“oy)ﬂ)<(l+a)m(r, ];—’a) (3.9)

Since we are presuming that F, has no normally convergent subfamily in any neigh-
borhood of the origin, the estimate obtained in Lemma 6’ may be applied to the logarithmic
derivative term in (3.7). Upon incorporating this with (3.6)—(3.9) in (3.5) it follows that for

an infinite subfamily J, of F, (and a corresponding subfamily H;),

[(1 —g)?— %] T(r b)) <(lL+eg) {T(r, fz) + A log* T(p, f.) + Blog 5—:1_—;}

. 1 _ (b +1) (=)
o Alog" T(r, hu) + Blog 3+ 0+ (1~ e) log | " =7,
1-/n)
+log %_ , 0<r<g, R<1,|p|<8d,. ©.10)

It is now possible to make the choice of « and § more precise. Determine an infinite
subfamily H,=H, as follows. There exists an infinite subcollection {k,}<¥; and o, =
o, (hy,) with «,—0, such that (with h=h,, a=0«,, n=1,2,...)

1-Q/n)
‘h(—“)—* <1; (3.11)

P ()

if this were not so, then it is easy to see that in some neighborhood of the origin, the ecri-
terion of Lemma A is fulfilled, and so }¥;—and thus F;—would be normal. For these func-
tions f and A —and the corresponding choice of « —we note that

ho+1 _ _ __1_ _
el gl

so that one can find (for perhaps another infinite subsequence of {f,}, f€F,) B, corre-

sponding to f,,, with §,—~0 and
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'%’%(—ﬂn) <M (n—>o0) (3.12)
unless the family {f -b—f"}, f€F,

tends to 0 normally in some neighborhood of the origin. But it is easy to see that the argu-
ment of § 2 [that (2.8) is a consequence of (2.6) and (2.7)] may be applied to show that F,
would also be normal in some neighborhood of the origin in that case.

Thus, assume that (3.11) and (3.12) are satisfied for an infinite subfamily F; of F,.
Then if € F; and & is the corresponding function in ¥, (3.10) becomes

[(1 ~g)?— %] T(r, he) <(1+¢) {T(r, fo)+ Alog* T(g, f.) + Blog Ei—r}

+ Alog* T(R, h,) + Blog

Rl——r+ C,, 6,<r<p, R<l. (3.13)

It remains to majorize 7'(r, {,) in terms of T'(r, k,). In (2.1), consider f,oyg in place
of f,. Then unless the functions in 3, tend uniformly to —1 or oo in a neighborhood of the
origin (in which case J; is normal), it is possible to associate with an infinite subcollection
frna€Fs a B, with ,—~0 and —log|h.(f)+1| <M. Then (2.2) becomes, after noting (3.8)
and (3.9),

T(r, f,) < (::81)2 [m (r, ff—) +T(r, he) + M] , (3.14)

for §,<r<1, f€F, Still assuming F; has no convergent subfamily, we note from
Lemma 6’ that

m(r f—"‘) <Alog* T(R,{,)+ Blog +0, §<r<R<]1, (3.15)

" fa R—r

if f€F,, an infinite subfamily of F,. Thus, Lemma 2 and (3.15) simplify (3.14) (with R
in place of r) to

T(R, ) < AT(p, k) + Blog +0, 8, <R<p<l. (3.16)

1
e—R
Use (3.16) in (3.15). Upon choosing R so that 1/(g — R)=1/(R —r), (3.14) becomes
improved from (3.16) to

2
oL 81) T(r, hy) + Alog* T(R, h,) + Blog

<
T(T’ fa) n— R“"T

+0C,

for §;<r<R<]1, f€F,. Use this estimate in (3.13) with o = R:
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2
[(1 - 3)2—%— (1+e) ] T(r, b)) < Alog* T(R, h,)+ Blog

n—1

7 +0; (3.17)

choose ¢< %, and apply Lemmas 2 and 12 to deduce the normality of 3, and the theo-
rem follows.

VII. Proof of Lemma 2
We prove

Levma 2. Let U(r) and y(r) be continuous non-decreasing functions of r, ry<r<l1.
If there is an ry, 1, <rq <1, and b>1 with

Ulry<M+blog +clog® U(R)+y(r), ry<r<R<1, (1.1)

1
R—»r

then U(¢)<M1+4y(R)+Zb]ogRl_r, ro<r<R<l, (1.2)
where M, depends only on M, b and c.

Proof. If k1, an argument due to E. Borel (cf. [9, p. 38]) yields that for each fixed

T>7g .
Uy <Ulp)+klog2, o' =p+exp{—Ulg)/k}, (1.3)

for p>r, save for perhaps a set of values of p which can be enclosed in a finite or infinite

number of intervals of length at most

2
] . 14
exp (U(r)/k) (4
: 2
Now let 7‘0<T<R. I W<R—T, (15)

there is a p, with r <o < R, for which (1.3) holds. The definition of ¢’ in (1.3) yields that
1 1
log —— =~ U(p). (1.6)
®d o &

Now let k=2b, and in (1.1) replace r by g and R by ¢’. From (1.3) we have that
clog* Ulp’') <clogt U(g)+c logt (klog 2)+¢ log 2<c log* U(g)+c¢ (log b +3 log 2),
and this and (1.6) allow (1.1) to be rewritten as
Ulp) <2M +2c logt Ul(g) +2¢(log b +3 log 2) +2y(p)- (1.7)

It is easy to see that unless U(g) <16¢2 for ry<p <1, we have for some r; <1

log* U(p) < l/U(g)<41—c Ug), n<eo<l.



262 DAVID DRASIN

We handle both cases simultaneously by rewriting (1.7) as
U(o) <16¢2+4M +4c(log b+3 log 2) +4y(0),
and since r <g <R and U and y increase, we find an absolute constant 4 with
U(r)<A +4y(R). (1.8)

All of this depended on the assumption (1.5). But if (1.5) fails, then

U(r) < 2blog

2
—; (1.9)

the possibilities that led to (1.8) and (1.9) may be considered together, leading to

' 1
U(r)<{16c? +4M +4c(log b+3 log 2)} +4y(R) +2b logR — ro<r<R<1.
Remark 1. Tt is possible to make the conclusion of Lemma 2 independent of R by
(r+1)

setting R = 5

Remark 2. 1t is easy to see that 4y(R) in (1.2) may be replaced by Ky(R), K>1, by

suitably changing the constant M, and the coefficient of log in (1.2).

1
R—r
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