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1. Imtroduction

If f is a distribution in R" we write supp f (resp. sing supp f) for the smallest
closed set outside which f=0 (resp. f€(C*). Then the convolution theorem of Titch-
march [13], extended from one to » dimensions by Lions [10], states that

ch supp (f,%f;)= ch supp f,+ ch supp f5; f1,f,€E". (1.1)

Here we have used the notation ch A for the convex hull of a set 4 in B" and
written
A+B={z+y; x€A, yEB}
if A and B are subsets of R"; below 4 — B will be defined similarly.
The aim of this paper is to prove results similar to (1.1) where supports are
replaced by singular supports. In Hormander [5] it was proved in perfect analogy

with (1.1) that
ch sing supp (f, % f,) = ch sing supp f, + ch sing supp f, (1.2)

provided that f,, f, € £ and either supp f, or supp f, consists of a finite number of
points, a result due to F. John and B. Malgrange when the number of points is one.
When f, is hypoelliptic in the sense of Ehrenpreis [4] it was also proved in Hor-
mander [6] that

ch sing supp f, < ch sing supp (f, % f,) — ch sing supp f,, (1.3)

which is a weakened form of the non-trivial part of (1.2) that the left-hand side of
(1.2) contains the right-hand side. However, not even this weaker result can be valid
for arbitrary f,, for it may happen that f xf, €C3 although neither f, nor f, is
in OF. In fact, Ehrenpreis [4] has proved that every f, € & with f, % f, € 03 belongs
to >(}3° if and only if the Fourier transform f, of the distribution f, € & is slowly

decreasing in the sense that for some constant 4
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sup {{f,()|; n€R", |n—E&|<Alog @+|E)}>A+|E)* (E€B. (1.4)

(A proof of this result is also given in Hérmander [5].)
We shall prove here that (1.3) is valid for arbitrary f,, f, € £ such that f, satisfies
(1.4). This result contains those of [6]. Moreover, we give necessary and sufficient

conditions on the convex compact sets K, and K, in order that
sing supp (f; % f,) < K, = sing supp f, < K.

For the statement of these results see section 5.

The proof of (1.3) is based on a study of the Laplace transforms of f, and f,,
combined with an analogue of the Paley-Wiener theorem for the singular supports
given in Hoérmander [6], which goes back to an idea of Ehrenpreis [3]. The estimates
of analytic functions which we need are very closely related to those required to prove
(1.1). However, we need an extension of these estimates to plurisubharmonic func-
tions so we shall give complete proofs for them. The proof of (1.1) thus given is
closely related to that of Koosis [8], the crucial point being an application of Har-
nack’s inequality for positive harmonic functions. However, the formal presentation
differs rather much. A similar use of Harnack’s inequality was also made in Hér-
mander [6], following a suggestion by Malgrange, but the estimates given here are
much more pl"ecise.

In section 2 we state the Paley-Wiener theorem and its analogue for singular
supports. The facts concerning (pluri-)subharmonic functions which we shall use are
given in section 3. There is no new result but we have found it difficult to find
convenient references for all the facts we need. We then prove a slight extension of
(1.1) in section 4, and using the estimates obtained there we prove results containing
(1.3) in section 5. The consequences concerning convolution equations are discussed

in section 6.

2. The Paley-~Wiener theorem for supports and singular supports

If K is a convex compact subset of R", the supporting function H of K is

defined by
H(§)=sup <z, &) (C€ R"). (2.1)

It is obvious that H is convex and positively homogeneous,

HE+m)<H(E)+Hn) (§,m€R"); H{EE)=tH(E) (EER", 120) (2.2)
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If K is empty we set H= — co; the last part of (2.2) then assumes that we define
0+ (—o0)= —oco, Conversely, every function H with values in [— oo, o) satisfying
(2.2) is the supporting function of one and only one convex compact set K, and K
is defined by

K={x; {x, & < H(&) for all £€R"}. (2.3)

Therefore (2.1) and (2.3) give a one-to-one correspondence between the set X of convex
compact subsets of R® and the set H of functions satistying (2.2). (Such functions
#+ — oo are automatically continuous.) If K, K, are convex compact sets with sup-
porting functions H,, H,, then the supporting function of the convex compact set
K, + K, is H (§) +H,(1+¢&). If H, is the supporting function of K, and H= sup, H,
is finite everywhere then H is the supporting function of the closed convex hull of
U. K,. For a proof of these elemeﬁtary and classical facts we refer to Bonnesen and
Fenchel [1].

The Paley-Wiener theorem can now be stated as follows:

TaEoREM 2.1. Let K be a convex compact subset of R™ with supporting function H.
If f is a distribution with support contained in K, then the Fourier-Laplace transform
f of f satisfies the estimate

[fQ)<oa+[g]yvem =0 (ceom, (24)

where N is the order of f. Conversely, every entire analytic function in C* satisfying
an estimate of the form (2.4) is the Fourier-Laplace transform of a distribution with

support contained in K.

Proof. The theorem is proved in Schwartz [12] when K is a cube and in Hor-
mander [7] when K is a sphere. The modifications required in either of these proofs
in the case of a general K are quite obvious and are left to the reader. Let us only

note that (2.4) is trivial if f is a measure du, for by definition we have
foy= f ™50 du(x),
which implies that If({)lsemm‘oﬁd,u(x)l.
This is the only case in which we use the necessity of (2.4). On the other hand,

the quoted results imply that every entire function satisfying an estimate of the form

(2.4) is the Fourier-Laplace transform of a distribution with support contained in an
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arbitrary sphere (parallelepiped) containing K. Since the intersection of all such spheres

(parallelepipeds) is equal to K, the theorem follows.

TEEOREM 2.2. Let fEE (R) and let K be a convex mon-empty compact subset
of B*. In order that sing supp f< K it is necessary and sufficient that there be a con-
stant N and a sequence of constants C,, m=1, 2, ..., such that

FOI<Cn@+]|2))V e ™0 if |Im £|<mlog (J¢|+1) (m=1,2,...). (2.5)

In order that sing supp f=0 it is necessary and sufficient that to any positive integers
N and m one can find Cy,, so that

A< Cnm L+[ED7Y, i [ImE|<m log (|} +1). @2.5)’

Proof. The last statement follows at once from the form of the Paley-Wiener
theorem which states that f€CF if and only if one can find constants 4 and Cy,
N=1,2,... such that

O <On(1 +|2])y Vet (N=1,2,...).
Apart from a translation of the coordinate system the first part of the theorem is
identical with Theorem 1.7.8 in Hérmander [7] when K is a sphere. The necessity
of (2.5) follows from Theorem 2.1 by following the proof of Theorem 1.7.8 in [7].
On the other hand, if f satisfies (2.5) we know from that result that sing supp f is

contained in every sphere containing K, and the intersection of all such spheres is

equal to K.

3. Preliminaries concerning subharmonic and plurisubharmonic functions

Let Q be an open connected set in R?, and set for r>0
Q. ={z; | —y|<r=yeQ},

where the norm denotes the Euclidian norm. If » is a measurable function in Q which

is bounded from above on compact subsets of Q we set

v (x) = j'v(x-l-ry)dy/mj;ldy (x€Q,).

lyi<1

A function v defined in Q with values in [— oo, + o) is called subharmonic if
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(a) v is semi-continuous from above,
(b) w(@)<ov"(x) if z€Q,.

(It is convenient here not to require as usual that v — co. Except when v= — oo,

however, v is finite almost everywhere and is in fact in L° (Q).)

Lemma 3.1. Let v, be a sequence of subkarmonic functions in € which are uni-

formly bounded from above om every compact subset of Q. Then the smallest upper semi-

continuous majorant V of v=1lim v, is subharmonic, and we have V = v almost everywhere.

If K is a compact subset of Q and f is a continuous function on K, then

lim sup (v, —f) < sup (V-5 (3.1)

k>0 K

Proof. Since we may replace Q by arbitrary relatively compact subdomains con-
taining K it is no restriction to assume that the sequence is uniformly bounded in

Q or even that v,<0 in Q for every k. By Fatou’s lemma we have
v(z)<lim v} (@) <v"(x) (TE€Q,). (3.2)
Next note that if 2€Q, and O0<e<1 we can find § so small that for every k
()< (1—g)vk(x) if [E—=z|<d. (3.3)
In fact, since v, <0 we have if |£ —z|<d and z€Q, .20
(r+ )P oy (8) < (r + 87 0l (£) < rP0k (),

and if 77/(r+0)’>1—¢ we obtain (3.3). Combination of (3.2) and (3.3) now gives
that if a>v"(z) and O<e<1 then v,(f)<a(l—¢) if |§—x|<d and k>k, Hence
V(z) <a(l —¢) which proves that

Vi)<o ()< V' (x) (3.4)

so that V is subharmonic. If V= — co then v= — oo but otherwise V is finite in a
dense set and (3.4) shows that v is locally integrable. At every Lebesgue point for

v we have
v(z) < V(z) <lim v" (x) =v(x)
r—=>0

which proves that v=7¥ almost everywhere.
To prove (3.1) finally, we take a and b so that supg (V—f)<b<a. If xz€K we
have V(zx)<f(x)+b so that »(£) < f(x)+b in a neighborhood of #, and so v"(x) < f(x)+ b
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if r is sufficiently small. Hence we can by (3.2), (3.3) find k, and § <0 so that
(&)< f@)+b if |x—&|<6 and k>k, Since f is continuous this implies that for

some other 6 >0 we have
(&) <f(&)+a if |E—=z|<d, E€EK and k>k,

By the Borel-Lebesgue lemma this shows that #,(§)— f(£)<e in K for large k, which

proves the lemma.

DEFINITION 3.1. Let v and v, (k=1,2,...) be subharmonic functions in Q. Then
we say that v, —v if

fv,,:p dx —>f'v<pdx (k—o0), (3.5)

for every @€Cy (Q), the space of continuous non-negative functions with compact sup-
port in Q.

Note that both sides of (3.5) are defined when ¢ € (g (Q) even if v, or v should
be = — oo,

LeEvmaA 3.2. Let v, be a sequence of subharmonic functions in Q which are uni-
formly bounded from above on every compact subset of Q. Then there exists a subse-

quence vy; such that vi,—V where V is the smallest upper semi-continuous majorant of

limj_)w ’Uki .

Proof. It follows from Lemma 3.1 or Fatou’s lemma that if v;(x) converges to
—oo for every z€{) then v,— — oo in the sense of Definition 3.1. Passing if ne-
cessary to a subsequence we may therefore assume that v, (z) is bounded from below
for some value of x. For arbitrary fixed r>0 and x€(, it then follows that v} ()
is bounded from below. In fact, we could otherwise apply (3.3) to the functions v,
minus a common upper bound when |é—z|<r+¢ and conclude that there is a
subsequence v such that v.(§) > — oo in a neighborhood of . But then Lemma 3.1
shows that v (¥) > — oo for every z, which is a contradiction. The sequence v, is
therefore bounded in L{°° so a subsequence can be found which converges weakly to
a measure dy. To simplify notations we may assume that the sequence vy itself con-
verges to du, that is,

f fouda - f fau (fECHQ)).

By Lemma 3.1 the smallest upper semi-continuous majorant V of »=1lim v, is

subharmonic, and if f€C; we have by Fatou’s lemma
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ﬁ@:giﬁ%m<fnh=ﬂvm. (3.6)

Now let g¢(x) be a continuous decreasing function of |x| which is equal to 0 when
|z|>1, assume that | gp(x)dz=1 and set @.(x)=e"? p(x/¢). Then we have w<w* ¢, in

Q, for every subharmonic function w in £}, which gives
(@) =1im v, (7) <Hm (o, % @) (@) = (du % @e) (z) (€Q.).
Since @.*dy is continuous in €2, this proves that
Vi(z) < (dp* @) (@) < (V*ge) (x) (x€LQ),

where the last inequality follows from (3.6). Now V% ¢,—V in L, on every compact
subset of £ when ¢-—>0, which proves that du % ¢.—>V in L; on compact subsets
of Q, hence that V is the density of the measure du. The proof is complete.

Now let Q be a connected open set in C". If {€C™ we write D;={w(; w€C,
|w|<1}, and if v is a Borel measurable function in Q which is bounded from above
on compact subsets of Q we define v(z,{) when {z}+D,<Q as the average of v over
{z} + D;, that is,

1 2z 1 .
v(z, C)=7—zf0 fo v(z+re®tyrdrdb.

A function » defined in Q with values in [ — oo, + o) is called plurisubharmonic if

(a) v is semi-continuous from above,

(b) v(z)<v(z, §) if {z}+ D= Q.

This class of functions is invariant for analytic coordinate transformations of the
variables z, (see Lelong [9]). It follows easily that a plurisubharmonic function is
subharmonic if O" is identified with R*", and when n=1 the notions of subharmonic
and plurisubharmonic functions coincide. When » is plurisubharmonic the function
v(z+wl) of one complex variable w is of course subharmonic for arbitrary z, {€C"

in the open set where it is defined.

Lemma 3.3. Let v, be a sequence of plurisubharmonic functions in S which are
uniformly bounded from above on every compact subset of Q. Then the smallest upper

semi-continuous majorant V of v=1m v, is plurisubharmonic and we have V=v almost

everywhere.



286 L. HORMANDER
Proof. By Fatou’s lemma we have
lim v, (2, &) <v(z &) if {z}+D,cQ.
Hence v(@)<V(z,8) if {}+D;<Q.

Now Fatou’s lemma also shows that V(z,{) is an upper semi-continuous function of
z in the open set of all z such that {z} + D, < Q. Hence V(z) < V(z, {), which proves that
V is plurisubharmonic. The remaining part of the lemma follows from Lemma 3.1 since

pluorisubharmonic functions are also subharmonic.

Remark. Much more precise results than the previous lemmas are known; see
Cartan [2].

If v is subharmonic in Q< R?, if K is a compact subset of Q and % a continuous
function on K which is harmonic in the interior of K, then the maximum of v—#h
in K is attained on the boundary of K. For a proof we refer to Radé [11], section

2.3, but we prove here the ‘“‘three line theorem”.

LeMMmaA 3.4. Let v be subharmonic and bounded from above in a meighborhood of
the strip 0< Imz2<1 in C' and assume that for some constants C and A we have
v(2)<SC+AIm 2z on the boundary of the strip. Then this inequality holds also in the

interior of the strip.

Proof. The function v(z)-C— A Im z— ¢ Re (1+2%), where £>0, is < 0 on the
boundary of the strip and tends to — oo at infinity. Hence it is < 0 in the whole
strip, and when ¢-—0 this proves the assertion.

Before extending Lemma 3.4 to plurisubharmonic functions we note that Lemma

3.4 implies Liouville’s theorem for plurisubharmonic functions.

LemMmA 3.5. Let v be plurisubharmonic and bounded from above in C". Then v

%8 a constant.
Proof. First let n=1. Take a fixed { and set
M(y)= sup v(C+e ).
Imz=y

Then Lemma 3.4 and the maximum principle show that M(y) is a convex increasing
function of y, and since ()< M(y) and v is semi-continuous from above we have
M(y) —wv() when y - —co. But an increasing bounded convex function must be a
constant, so that M(y)=uv({) for every y, that is, v(z) <v({) for every 2. Since the
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roles of z and { may be interchanged, this proves that v(z)=v({). If n>1 we can
for arbitrary (, z€C" apply the result just proved to the subharmonic function
v(C+w(z—C)) of weC". Since this function must be constant we have v(l)=v(z),
which proves the lemma.

Combination of Lemma 3.3 and Lemma 3.5 gives

Lemma 3.6. Let v, be a sequence of plurisubharmonic functions in C" which are

untformly bounded from above on every compact set. If v = lim vy is bounded from above
in the whole of C", then v({)= sup v almost everywhere.

An extension of Lemma 3.4 to plurisubharmonic functions is given in the following
theorem.

TaeorREM 3.1. Let o be an open convexr subset of R™ and let Q be the tube de-
fined by Q={z2;2€0", Im z€w}. Let v be plurisubharmonic in Q and assume that
for every compact subset K of w there is an upper bound for v(z) when Im z€ K. Then

the function
My)= sup vz +3y) (y€w),

where x varies in R", is a convex function of y.
Proof. Let y,,y,€w, and let x€R". Then the function of w
V(w)=v(@+ iy, +w(y;— 1))

is subharmonic and bounded from above in a neighborhood of the strip 0 <Imw<1.
When Im w=0 it is bounded by M(y,) and when Im w=1 by M(y,). Hence Lemma
3.4 gives that

V() =v(z+ iy, +wly, —,)) < (1 —Im w) M (y,) + Im w M(y,).
If 0<4; (j=1,2), and A4, +4,=1, we obtain by setting w=+4, that
o(@+ (A yy + A 90)) <A M(y,) + 4, M(y,),

which proves that M(A,y, +2,¥,) <A, M(y,) + A, M(y,).
Now let v be plurisubharmonic in the whole of C" and assume that

v(z) <O+ A4 |Im 2| (8.7
for some constants ¢ and A. Then Theorem 3.1 shows that

My)= Sup v(z) (3.8)
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is a convex function in RB*. Hence the limit

H(y)= lim —Mi—ty)= tim 2(ty) — M(0)

t>too t—>+to0 t

(3.9)

exists for every y and H(y)<A|y|. That the difference quotient (M (ty) — M(0))/t is
increasing also shows that
My)< M(0)+ H(y) (yE€R"). (3.10)

Since H is the limit of convex functions it is clear that H is convex, and a substi-
tution gives that H{ay)=aH(y) if a>0. Hence H belongs to the class # of supporting
functions introduced in section 2, and we shall call H the supporting function of v.
It is obvious from (3.10) that H= — oo unless v= — oo,

THEOREM 3.2. Let f be a measure with compact support in R" and let H be the
supporting function of ch supp f. Then the supporting function of the plurisubharmonic
function log |f] is also equal to H.

Proof. By Theorem 2.1 we have for some constant C
log |f(0)|<C+H(Im ).

Hence the supporting function H' of log |f] is defined and H’'<H since log |f({)|<
C+tH(n) if Im {=ty. On the other hand, we have by (3.10) that

log [f(0)|<C+H' (Im {)

so it follows from Theorem 2.1 that ch supp f is contained in the set whose supporting
function is H’, that is, H< H'.

When n»>1 the following theorem gives an important alternative characterization
of H(y) (compare Lions [10]).

THEOREM 3.3. Let v be a plurisubharmonic function satisfying (3.7) and let M,
H be defined by (3.8) and (3.9). Then we have for y€R" and [€EC™

— v +wy)
1 — "< H(y),
Im1;1—1>1+oo Imw ()

(3.11)

with equality for almost every [ when y is kept fized.

Proof. By (3.10) we have when Im w>0
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v(C+wy)<M(Im {+Im wy)<M(Im Z) +
Imw Im w S Imw

H(y), (3.12)

which implies the inequality (3.11). Let

A= sup lim M
{ Imwo+oo Imw

Then the three line theorem applied to the analytic function »(+wy) of w which is
< M(Im {) for real w gives

v({+twy) < MIm )+ AImw (Im w>0).
If we choose { real and take w= 4 with £>0, this gives
M(ty) < M(0)+ At,

hence H(y)< A. Since we have already seen that 4 < H(y), this proves that 4 = H(y).
For an arbitrary ¢>0 we can therefore find some (, and a sequence w; with
Im w,— + oo such that

lim

k—>o0

7= (G T wiey)
23R THRIT _
Tm w, H(y)—e.
But in view of (3.12) we can apply Lemma 3.6 to the sequence of plurisubharmonic
functions »(f+wyy)/Im wy, of £, which gives that

= v+ wey)

> — .
B T, H(y)— ¢ for almost every

If we use this result for a sequence of positive numbers ¢ converging to 0, the theo-

rem follows.

4. The theorem on supports

If f; j=1,2,3) are distributions with compact support such that f,=f, % f,, then
fa=F fz. From Theorem 2.1 it follows therefore that to prove the theorem on supports we
have to examine how to estimate two analytic functions when an estimate for their
product is known. We shall generalize this question slightly by studying estimates
for two plurisubharmonic functions v, and », when an estimate for v, + v, =v; is known.
This extension of the results will be important in section 5.

Let Q be a connected and simply connected open set in the complex plane,

different from the whole plane. If [€Q we let z—w(z, ) be a conformal mapping
20 — 632933 Acta mathematica. 110. Imprimé le 11 décembre 1963.
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of Q onto the unit circle which maps [ onto the origin. If u is a non-negative

harmonice function in Q, we then have
u(z) <u(l) (L +|wlz, O)|) A —|w(z,0)]) " if 2, €Q. (4.1)

In fact, if z(w) is the inverse of w(z,{) for a fixed [, then (4.1) is just Harnack’s

inequality applied to u(z(w)) which is harmonic in the unit circle.

Levuma 4.1. Let v, be subharmonic functions and h, be harmonic functions in
Q(G=1,2,3). If
v3=vl+,02; vj<h] (7.= l: 27 3): (42)

we have for arbitrary z,€Q (j=1,2,3),
2 2
; (v (2) — by (7)) (1 + |w (25, 2)|) (1~ |00 (25 27} ) 7F <oy (25) — .? by (z,). (4.3)

Proof. We may assume that Q is a circle and at first we also assume that the

functions v; and &; are continuous in Q. Let %; (j=1,2) be the harmonic function
in O for which u;=h;—v; on the boundary of . Then (4.2) and the maximum prin-

ciple give that the inequalities
;20 (=1,2); hy—uy,+hy—uy,<hg (4.4)

are valid in Q. For j=1,2 we now apply (4.1) to u; with z=2z; and { =z, Adding
the inequalities obtained and noting that u, +u,>h, +h,— ks, we obtain {4.3) since
v;—h;< —u,;

In the general case where »; and k; are not continuous in Q we introduce the
averages v5(z) and hj(z) (¢>0) which are defined for every z with distance >¢ from
CQ. If Q, is the circle consisting of points at distance >2¢ from (Q, then v} (2)
and A5(z) are continuous in the closure of €25, unless v;= — co and then the lemma
is trivial. Since (4.2) implies that v (z) =25 (2) +v5 (2) and that o] (z) <kj(z) = k; (2), we
can apply (4.3) with v;, b, and Q replaced by v}, h; and .. Since v;(z)<vj(z) we
obtain (4.3) when ¢—0.

LeMwma 4.2. Let v; (=1, 2,3) be subharmonic when Im z>0, let vg=v,+v, and

assume that
v(2)<C;+4;Imz2, Imz>0 (j=1,2,3), (4.5)

where C; and A; are constants. Then we have if Im 2,>0 (j=1,2)

%vi (2;) < 2 G

< A,. 4.6
' Imz; IImz,+'3 (4.6)
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Proof. We shall apply Lemma 4.1 with Q equal to the half plane Im z>0.
Then we have

If we let Im z;—> + oo while Re z; remains constant, we obtain
Im 2z, (1 —|w(zg, 2;)|) =2 Im 2;. 4.7

Applying (4.3) with %;(2)=C;+ 4;1lm z and letting Im z;—>+ oo after division by
Im 2; therefore gives

2
Zl (U;(zj)-—oj—A,- Im zi)/Im 21<A3_A1'_A2.
This proves (4.6). '
Note that (4.6) implies in particular that

S fm M4 4.8)

1 Imez—>+oo Imz
Taeorem 4.1. Let v; (=1,2,3) be plurisubharmonic functions in C™ such that
vg=v, T v, and
v(2) <C;+ 4;|Im 2| (z€C™) (4.9)
for some constants C; and A;. If H. is the supporting function of v; we then have

H,=H,+H,. 4.10)
1 2

Proof. Let M;(y) be the supremum of v;(z) when Im z=y. By definition we have

Hy@y)= tim W),

t—>+4-00

and since My< M, + M, it is clear that Hy;<H,+H, Now let /€C" and y€R" be
fixed and consider the subharmonic functions v, (¢ + wy) of w € C*. We choose ¢ so that

m 2é+wy)
Im w—>+o0 Imw

=H;(y) (j=1,2,3) (4.11)
which is possible by Theorem 3.3. Now we have if Im w >0,

v (C+wy) < M;(Im {+Im wy) < M;(0)+ H,(Im {) +Im wH, (y)

so we can apply Lemma 4.2. From (4.8) and (4.11) it then follows that



292 -L. HORMANDER

: H,(y)+ Hy (y) < Hy(y),
which completes the proof.

We can now prove the convolution theorem of Titchmarsh and Lions.
TuEoREM 4.2. Let f,, f, be distributions with compact support. Then

ch supp (f, % f,) = ch supp /, + ch supp f,. (4.12)

Proof. If f, and f, are measures, we obtain (4.12) by combining Theorem 4.1
and Theorem 3.2. To study the general case we note that it is trivial that the set
on the left-hand side of (4.12) is contained in that on the right-hand side. Let K
be a convex compact neighborhood of 0 and choose ¢ €C% with support in K. Then

(fix@)*(fax@)=([i*f) *xp*g
and the support of the right-hand side is contained in ch supp (f,%f,) +2 K. Hence
ch supp (f, % @) + ch supp (f; % @) < ch supp (f, % fo) +2 K.

Now choose a sequence of sets K; converging to {0} and corresponding functions ¢

converging to the Dirac measure at the origin. When j—>oo we then obtain

ch supp f,+ ch supp f, <ch supp (f, *f,),

which completes the proof.

5. The singular support of a convolution

Let f€& and consider for real £ the plurisubharmonic function of z defined by

log |f(£+2 log |£])|

1og |£] (5.1)

v (2; 8) =

If N is the order of f we have for some constants C and N (see Theorem 2.1)

If@O)] <o +]|g|)¥ et =i,

This gives the estimate

log C+ N log (1+|&+2log |§||)
log |¢&]

vr(2;0) < +4|Imz|.

Hence v,(z;&) is bounded from above for z in any compact set when &— oo, and

we have
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limg , oo 9 (2; £) < N+ A |Im 2. (5.2)

In virtue of Lemmas 3.2 and 3.3 we can therefore from every sequence &;— oo in
R" extract a subsequence & such that v,(2;§;) when k—> oo converges to a plurisub-
harmonic function bounded by N+ A|Imz|. With the limit there is associated (see
section 3) a supporting function €}, which may be — oco.

DeviNitiON 5.1. If f,,....[,€E we denote by H(fy,...,fx) the set of k-tuples
(g5 .., b)) Of elements in W such that there is a sequence &, — oo in R™ for which vy, (2 &)
for every j converges to a plurisubharmonic function with supporting function h;. The
set of corresponding k-tuples of convex compact sets is denoted by K(fy, ..., fu)-

Let us first note a few obvious facts concerning H(f,, ..., fx)-

Lemma 5.1. Let f,...,r €E. If (hy ..o, b)) EW(frs ... [;), where j<k, ome can
choose b1, ..., by s0 that (hy, ..., kx) EH(Fy, ..o fi).

Proof. Let & be a sequence —>co such that vy (z;£,) converges when v — o to
a plurisubharmonic function with supporting function k; for every ¢<j. Passing if
necessary to a subsequence we may assume that the sequences v, (z; §,) also converge
when 1=4+1,..., k. If we define h; for these indices as the supporting functions of
the corresponding limits, the lemma follows.

The lemma just proved means that knowing H(f,, ..., fr) we obtain H(f,,..., [
when j<k by just eliminating the last k—4 components. We next prove that the
singular support of f€E’ is determined by H(f).

LeMma 52. Let f€E and let H be the supporting funclion of ch sing supp f.
Then we have for every £€R"

H(&)=sup {h(§), heH(f)}.

Proof. If ch sing supp f is empty, that is, if fECT we can for every integer
k find a constant C, so that

IFOI< G +]E])7% et 1m0,

where A is independent of k. Hence v,(z, &) - — o uniformly on every compact
subset of " when £->co (compare (5.2)) so that H(f) only consists of the function
— oo, The lemma is therefore true in this case. Now assume that ch sing supp f
is not empty. By using (2.5) we immediately obtain as in the proof of (5.2) that
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ﬁl-r—lé_,mv,(z; <N+ H(Imz). Hence h<H for every h€H(f). On the other hand, let
—coxH >h, heH(f). If H €U we then claim that (2.5) is valid with H replaced
by H’, N replaced by N+1 and a suitable constant C,. In fact, otherwise we can

for some fixed m find a sequence {,— oo such that [Im(,|<m log (|{,[+1) and
[F(E)|= 1 +]5 )V e Imis, (5.3)

By passing to a subsequence we may assume that v,(z; Re {,) converges to a plurisub-
harmonic limit ¥. Since V<N in R" and the supporting function of V is <H’ we
obtain (see (3.10)) that V(z) <N+ H’ (Im z) for all z. For large values of » we have
|Im £,|<(m+1) log |Re &,| and it follows from Lemma 3.1 that

v(zRe &)< N+1+H (Imz) when [z|<m+1

if » is large enough. But this implies if we take z=¢ Im {,/log |Re {,| that

17 (5] < |6 ¥4t e amen,

which contradicts (5.3). Hence (2.5) must in fact be valid with H replaced by H’
which proves that H<H'. The proof is complete.
When studying the conditions in order that — oo €H(f) we need the following

simple lemma.

LeMMa 53 Let f€E and let &, be a sequence — oo in R such that v (z; &) — — o0
on an open subset of R*. Then v,(z; &,) — — o uniformly on every compact subset of C".

Proof. Let x,€R® and r>0 be such that w(z;§,)—>— oo in the sphere with
radius r and center at z, in RB". If y€R" and |y|<r the subharmonic functions
v,(xg+wy; &) of w in the half circle |w|< 1, Im w>0, are uniformly bounded from
above for such w and —— co on a piece of the boundary. Hence the harmonic func-
tion in the half circle which has the same boundary values — — co when » — oo which
proves that v,(z,+wy; £) —> — oo if w is inside the half circle. Varying y we find that
v;(z; &) —> — oo for every z in an open set in C", so Lemma 3.1 shows that v,(z; )

—> — oo uniformly on every compact subset of C".

LemMma 54. Let fe€E'. If f is slowly decreasing in the sense that (1.4) is valid
for some A, then — oo ¢ H(f). Conversely, if — oo ¢ H(f) one can for every a>0 find
A so that

sup {|f(E+n)|; |n|<alog @+]|&]), n€R™} > (A +|&])* (E€R™). (5.4)
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This follows immediately from Lemma 5.3.
The sets of supporting functions introduced in Definition 5.1 give a much more
precise description than the singular support alone of the nature of the singularities

of the distributions involved. This makes it easy to prove the following analogue of
Theorem 4.2.

TurorEM 5.1. Let f1,f;, ..., fx, fx €E’. Then
Hifixfis oo ok fi ) ={(ri+ R, ., B+ R ); (R, By, ooy i, B ) EH(f1, 115 < evs Fros i)}

Proof. Let &, be a sequence — oo in R" such that A (2; &) converges for j=1,...,k.
Here we have written f;=f;%f;’. Denote the limits by ¥V,. By passing to a subse-

quence we may assume that LA (= &) and v (z; &) also converge, and the limits are
denoted by V; and V;. Then we have
Vj = V} + V;’

so that Theorem 4.2 shows that the supporting function of V; is for every § the sum
of that of V; and that of V;". This proves that the left set in the theorem is in-
cluded in the set to the right, and the opposite inclusion is equally trivial.

CorOLLARY 5.1. Let f,,...,fr€E and let K,, ..., K; be convex compact sels with
supporting functions H,, ..., Hy, such that

heu, (hl,...,hk)Eu(fl,...,fk), h+hj<Hj (j:2,...,k):h+h1<H1. (55)
Then we have
f€E, sing supp fxf;<K; (=2,...,k) = sing supp f*[,<K,. (5.6)
Proof. This is a combination of Theorem 5.1 with Lemmas 5.1 and 5.2.

Example. When f, =4 only the function 0 belongs to H(f,) and (5.5) means simply
that if REH and (hy, ..., ) EH(fy, ... fu), h+I<H; (=2,...,k), then h<H,. In the
conclusion we have sing supp f<K,.

By further specialization of Corollary 5.1 we obtain with the same notations

CoroLLARY 5.2. If there is no (hy, ..., k) EH(fy, ..., fx) such that h,+ — oo but
hy=...=hy= — co, then

f€E’, sing supp fxf,<K; (j=2, ...,k) = sing supp f*f, <K, (5.7)
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if the sets K; are convex, compact and K, contains the sets

ch sing supp fl—FK,—ch sing supp f; (=2, ..., k).

Proof. If H; denotes the supporting function of K; and h€H(fy) (j=1,...,%),

then by Lemma 5.2
H (&) 2k (&) + Hy(E) +hy(— &) (j=2,..., k).

If h+hj<Hj (j=2,...,k) we obtain

H, (§)>hy (&) + M) + (&) + hy(— &) (1=2,.... k).

Now if h;4 — oo for some j we have A;(&)+hy(—&)=h;(0)=0, hence H,>h+h,. On
the other hand, if hj= — oo for §=2,....k, then A = —oo if (hy, ..., ) EH(f; ..., [x)
so that H;>h-+h, also in that case. The corollary now follows from Corollary 5.1.

Example. Take f,=8 and k=2. Then the hypothesis in the lemma means pre-
cisely that f, is slowly decreasing in the sense of Ehrenpreis (see Lemma 5.4), so we
have proved (1.3) in that case. This extends the results of [6].

Our next purpose is to construct examples which show that the results obtained
are the best possible. In the constructions we first consider distributions f with sing
supp f={0}. This has the advantage that, as shown by Lemma 5.2, #(f) can only
contain the two elements 0 and — oo. In the next theorem we construct f so that
vr(2; &) converges to — oo when £-—>co avoiding a very thin set. The construction
depends on an idea of Ehrenpreis [4].

THEOREM 5.2. Let & be a sequence —>oco in R* and let E be a subset of B" such
that d(&;, E)/log |&;| oo when j—>oo. Here d(&, E) denotes the distance from & to E.
Then one can find f€E' with sing supp f={0} so that

v (2; &) > — oo when E3 & —oo,

the convergence being uniform on compact subsets of C", whereas vs(z;&;) does not con-

verge fo — oo,

Proof. We shall construct a continuous function f with compact support such
that sing supp f={0} and

|&]7(£;) does not converge to 0 when j—>co, (5.8)
pr.m () =sup {|H(O)] || E€B, LeC, [(—&|<mlog|é]}< oo (5.9)

for all positive integers N and m. From (5.8) it follows that v,(0;&;) does not con-
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verge to — oo when j—>oo, and from (5.9) it follows that v.(z; &)+ N=0(1/log |&|)
when |z|<m and £—>oco in E. This will prove the theorem.

Suppose now that there is no continuous function f with sing supp f={0} and
compact support such that (5.8) and (5.9) are valid. Put w,={x; |x| < g}, where ¢ >0,
and consider the space F of all continuous functions f/ with support contained in @,
such that f€C0” (({0}) and the semi-norms py, . (f) defined by (5.9) are finite. In F
we introduce the topology defined by the semi-norms py, . (f) together with sup |f|
and supg |D*f| where K varies over all compact sets not containing 0 and « varies
over all multi-indices. Then it is clear that F is a Fréchet space. If (5.8) and (5.9)
cannot be fulfilled, then the sequence (|&,|f(£,), |&,|f (&), ...) belongs to I* for every
f€F. We thus have a closed everywhere defined mapping of F into I®, and the
closed graph theorem shows that it must be continuous. For a suitable constant C,

integers N', N and m and a compact set K not containing 0 we therefore have
sup 6| /(&)< C fsup |f|+ 3 sup | D/ +pnn(D} (€. (5.10)

In particular, this estimate holds when f€C§ (ws5), 0<d<1, and we can choose § so
that ws N K=0. Then we obtain

sup |&[17(&)|<C {sup |f|+pr.n ()} (FECT (ws)). (5.10)'

Now choose o€ C§’ (ws) such that >0 and fwdx=l, and set

o= (oY)

where k; is the largest integer <log |&;|, which is positive for large j. Then f;€ C§° (ws)
for it is the convolution of %; functions with support in wsy; and we have | i &)|=1
so that the left hand side of (5.10)' with f=f, tends to infinity as fast as |£| when

j—>co. We have

sup If,-l<flf,|ds<ﬂ¢(§;f’)|d£=0k;-‘=o<|5,l) (j—>o0).

If we can prove that py m(f;) is bounded when j—>oc, we will have a contradiction
with (5.10)" and the theorem will be proved.

Let £€E and [€C" satisfy the condition |{—&|<m log |£| as in the definition
of Py,m, and put z=({—&)/k. Then we have

|E1<IE— &1+ &l +1&] < By 2| +m log [&] + €571,
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For a sufficiently large constant C we have m log |£|<}|&|+C, so we obtain with

another constant C >1
|| < C e (1+k]z]) < Cle(+]z|))s. (6.11)

Since |Im z|=|Im ¢|/k;<m (log |&|)/k;, we conclude that
e om (o (1+ |2]))™. (5.12)

Next we .claim that |z| has a lower bound which —oco with j. To prove this we

consider two different cases:

1. If [£—&|<2|| we have kjz| = |2~ &|> |6~ &~ [¢— &|>d(&, B)—m log |£]>
d(&;, E)—m log (3|&]). Since d(&;, E)/k;—>cc when j—oco, we find that 2]

has a lower bound which —oo with §.
2. I |&-§&|>2|&] we have |&|<|&—&|+]|&]<3|&é—&)], so we obtain
kylz| > §|&|—m log [£]> 1 |£]> 1 |/

if j is sufficiently large. Hence |z| again has a lower bound which —co with j.

With the same assumptions on &, (, £, and z as above we have by (5.11),
IHOIIEF<C|p@er 1+ 2] (5.13)

Since z satisfies (5.12) we have |p(z)e” (1+]z])¥| <1 if |z| is sufficiently large, which
proves that pu . (f}) =0 when j— oo. The proof is complete.

To use this theorem we need a lemma.

LeMMa 5.5. Let f€E, let &—>o0c in R™ and assume that v,(z; £;) converges to a
plurisubharmonic function V with supporting function h. Then there exists a set E such

that d(&;, B)/log |&|—>co and the supporting function of ﬁ;nngs,,_,m vy(2,m) is equal to h.
Proof. We assume in the proof that h+ — co; the case h= — oo is handled in
the same way. Let N be the order of f. Since V(z) <N+ h(Im z) we can for every
integer & find j, so that
v (2 &)< N+1+h(Imz2) if |2|<2k and §>4,.

If we introduce the inverse of the function k — j, this means that we can find B; — o

when j— oo so that
v(z &)< N+1+h(Imz) if |2|<2R,.

We may of course choose R; so that R, log |&,|=o0(|&|) when j— co.
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Now let E be the set of all £ such that
|&—&| =R, og |&;| for every j. (5.14)

Then d(&;, E)/log |&|> R;—>cc when j—>oo. If [£—&|<R;log |&| we note that since

@] <|&[¥+ e ™8 if [¢—&|<2 R, log |&],

it follows that O] <[g] ™= i |¢—&|< R, log |&].

Since |&—¢&;| <R, log |&]=0(]&]), the quotient |&]/|&| approaches 1 if j tends to in-
finity. Hence o
lim (2 8)<N+14+h(Im 2),

CE3é> 0

which proves the lemma.

THEOREM 53. Let f,,....,r€E and let (hy, ..., k) EN(fy, .... [x). Then one can
find f€E’ with sing supp f={0} so that the supporting function of ch sing supp f*f;
s equal to hy for j=1,...,k, and moreover (0, hy, ..., b} EH{, t1s ooy fi)-

Proof. Let &, — oo be such that wv;(z; &) for §=1, ...,k converges to a plurisub-
harmonic function with supporting function h;, For every j we choose a set E; ac-
cording to Lemma 5.5 and set E= Ut E;. Then we choose f according to Theorem
5.2. For a suitable subsequence of the sequence £, we then have that v(z;£,) eon-
verges to a plurisubharmonic function with the supporting function 0, which proves
that (0,hy, ..., k) EH(f,f1, ..., fx). On the other hand, let 7, be an arbitrary sequence
—oco in R™ DPassing if necessary to a subsequence we may assume either that 1, €E
for every v or that 7, €[ E for every ». In the former case we have v(z;7,) = — oo,
in the latter case the supporting function of lim vy, (2;7,) if the limit exists is < A,
Hence it follows from Theorem 5.1 that (H,, ..., H) EH(f*fy, ..., % fr) implies that
H;<h; for every j. Since we have just seen that equality takes place when the se-
quence 7, is a suitable subsequence of the sequence &,, the theorem follows from

Lemma 5.2 and Lemma 5.3.

COROLLARY 5.3. Suppose K; are convex compact sets such that (5.6) holds. Then
(5.5) must be fulfilled.

Proof. From Theorem 5.3 we know that for every x and (&, e B EH(ys oo fi)
one can choose f with sing supp f={z} so that ch sing supp ff; has the supporting
function {(x, &>+ h;(§) for j=1,...,k If (5.6) holds it follows that
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(x, 6>+ hy(E) < Hy(E) (§=2,...,k) = (x,&>+h(§)<H,(§).

IfheH and h+ k< H,; (j=2,..., k) we therefore obtain (z, &> +h, (&) < H, (&) if (=, &> <
h(£), and since k(&) is the least upper bound of smaller linear functions we obtain
finally that h+h < H;, which proves (5.5).

THEOREM 5.4. Let f,,..., f, be elements in E' with disjoint singular supports and
let f=f,+...+f. For every h€H(f) one can choose (hy, ..., h) EW(fy, ..., [x) such that

sup h;<h (5.15)
j

and for arbitrary (hy, ..., k) EH(fy, ..., fx) one can choose hEMH(f) so that

h<sup k. (5.16)
]

Proof. Let h€H(f) and choose f,€E’ with sing supp f,={0} so that ch sing
supp f,%f has the supporting function 2 (Theorem 5.3). We have

k
foxf=3 fo* 1y (5.17)

and since f,%f; have disjoint singular supports we obtain

k
ch sing supp (f, % f)=ch Llj sing supp (f, *f;). (5.18)

Choose k; so that (0, hy, ..., k) EH(fy, f1, ---» fx), which implies that (0, k;) €H(f,, ;) for
j=1,....,k. Then Theorem 5.1 shows that the supporting function of ch sing supp
fo*f; is larger than or equal to k;, so that (5.18) gives h;<h for every j.

On the other hand, given (k,,...,h)€H(fy,....fc) we can choose f,€E  with
sing supp f,={0} so that &, is the supporting function of ch sing supp f, % f;forj=1,..., %
(Theorem 5.3). Then (5.17) gives that the supporting function of ch sing supp f,*f
is < sup; b;, and if we choose h so that (0, k) €EH(f,, f), we obtain (5.16).

CoROLLARY 54. If under the assumptions of Theorem 5.4 at least one of the
functions f; is slowly decreasing, then f is slowly decreasing. If W(f;) only contains the
supporting function of ch sing supp f; for §=1,2,....k, then H(f) only contains the
supporting function of ch sing supp f.

Example. I f is a distribution with supp f={0} then f is a polynomial and it
is trivial that f is slowly decreasing so that H(f) only contains the function 0. By
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Corollary 5.4 we therefore conclude -that if supp f consists of a finite number of
points then f is slowly decreasing and (f) consists of the supporting function of supp
f only, hence Theorem 5.1 gives that (1.2) is valid. This was also proved in [5].

6. Existence theorems for convolution equations

Combination of the results obtained in section 5 with those of Hérmander [5]

immediately gives existence theorems for the convolution equation
Sxu=f (6.1)
when S€E'. Let Q, and Q, be two open sets in R" such that
Q,— supp 8S<Q,, (6.2)
which implies that Sxu€D’(Q,) for every u €D’ (Q,).

THEOREM 6.1. Let Q,,Q, be convex. Then (6.1) has a solution u€D’(Q,) for
every fED'(Q,) if and only if 8 is slowly decreasing and every x€R" such that
{a} —k<Q, for some LEK(S) is in fact in Q,.

Proof. Choose a fixed k€ X (S) and set K= {x;{x} —k<K,}, where K, is a con-
vex compact subset of Q, so large that Q, N K+@ (cf. (6.2)). Then K is convex. In
view of Theorem 5.3 we can for every x€K N, choose ¢ € £’ with sing supp ¢ = {z}
so that sing supp ¢ %8 ={z} — k= K,, and after multiplying ¢ by a function in C3 (Q,)
one may assume that ¢ €E'(Q,;). If the equation (6.1) has a solution u €D’ (Q,) for
every f€D'(Q,) it now follows from Theorems 4.1 and 4.2 in Hoérmander [5] that
K nQ, is relatively compact in Q,, and since K is convex this shows that K is a
compact subset of ,. In particular this implies that @¢J(S), so that 8 is slowly
decreasing according to Lemma 5.4. Thus the necessity of the conditions in the theo-
rem is proved. To prove their sufficiency, let K, be a compact subset of Q, and
let p€E'(Q,), sing supp p*xS <K, If the distance from K, to §Q, is 4, then the

compact set
’ M ={z; {z} - k< K,} (6.3)

also has distance at least § to §Q, since M+ {z; |z|<e}<Q, if e<é. Furthermore,
M is contained in ch sing supp S+ K, since s+k < ch sing supp S. Hence the closed
convex hull of all sets (6.3) with k€ J{(f) is a compact subset K, of Q, with distance
>0 to (€, and we have
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Kz, ES<H,(E) if (x,E>+h(E)<H,(&) for some hEH(S),

where H, and H, are the supporting functions of K, and of K,. Since functions in ¥

are upper bounds of families of linear functions, this means that
k€W, heH(S), by+h<H, implies b, <H,.

From Corollary 5.1 with f,=4 and f,=§ it follows therefore that ch sing supp
S %@ K, implies ch sing supp ¢ <K,, when €&, which is one of the requirements
in the definition of a strongly S-convex pair given in Hérmander [5]. Since £ < ch supp S
we also have
{x} —ch supp S< K, > z€K,

5o the theorem of supports (Theorem 4.2) gives that supp ¢ <K, if p€E’ and supp
p*S <K, Hence the pair (Q,, Q,) is strongly S-convex and the theorem follows
from Theorem 4.5 in Hoérmander [5].

COROLLARY 6.1. Let 0+S€E’, and assume that H(S) consists of the supporting
function of ch supp 8 alone. If Q, is convex and Q, is the largest open set such thai
(6.2) holds, then the equation (6.1) has a solution uw € D'(Q,) for every fED’ (Q,).

An example where Corollary 6.1 can be applied is that where the support of §
consists of a finite number of points (see the example at the end of section 5).

This case was also discussed in [5].
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