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1. Introduction and basic concepts 

1.1. Introduction. This paper will be concerned with positive linear maps be- 

tween C*-algebras. Motivated by  the theory of states and other special maps, two 

different approaches will be taken. If 9~ and ~ are C*-algebras the set of all posi- 

tive linear maps of ~ into ~ which carry the identity operator in ~I into a fixed 

positive operator in ~ ,  is a convex set. The main problem dealt with in this paper 

will be the study of the extreme points of this convex set. The other approach taken 

is tha t  of decomposing the maps into the composition of nicely handled ones. A general 

results of this type is due to Stinespring [20]. Adding a strict positivity condition 

on the maps he characterized them by being of the form V*~V, where V is a bound- 

ed linear map of the underlying I-Iilbert space into another Hilbert space, and Q is 

a *-representation. Another result of general nature of importance to us is due to 

Kadison. He showed a Schwarz inequality for positive linear maps between C*-alge- 

bras [11]. Positive linear maps are also studied in [3], [13], [14], and [15]. 

This paper is divided into eight chapters. In  chapter 2 the maps are studied 

in their most general sett ing--partially ordered vector spaces. The first section con- 

rains the necessary formal definitions and the most general techniques. The last par t  

contains results closely related to what Bonsall calls perfect ideals of partially ordered 

vector spaces [2]. From chapter 3 on the spaces are C*-algebras. We first show how 

close extremal maps are to being multiplicative (Theorem 3.1), and then see that  C*- 

homomorphisms are extremal (Theorem 3.5), and when the maps generalizing vector 

states are extremal (Theorem 3.9). 

In  chapter 4 a geometrical condition stronger than extremality is imposed on 

the maps. I t  is shown that  for identi ty preserving maps of an abelian C*-algebra 

(i) This work has been part ial ly supported by  the  National  Science Foundat ion  under  Grant  
no. 19022. 
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into a matr ix  algebra, extremali ty  is equivalent to this geometrical condition (Theo- 

rem 4.10). I t  follows that ,  in this case, the extremal maps are the ones which are 

"approximate ly"  *-homomorphisms (section 4.3). 

In  chapter 5 we classify all maps from a C*-algebra g[ into ~ ( ~ ) - - t h e  bounded 

operators on the II i lbert  space ~ - - s u c h  tha t  the composition of vector states of ~ (~) 

and the maps are pure states of g[ (Theorem 5.6). As a consequence of this we find 

all maps of 9~ into a C*-algebra ~ such tha t  the composition of pure states of 

and the maps are pure states of g[ (Theorem 5.7). In  particular it follows tha t  every 

C*-homomorphism of g[ onto ~ is "locally" either a *-homomorphism or a *-anti-homo- 

morphism (Corollary 5.9). 

Chapter 6 is devoted to decomposition theory. Using Stinespring's result we show 

a general decomposition for positive linear maps (Theorem 6.2). As a consequence it 

is seen when order-homomorphisms are C*-homomorphisms (Theorem 6.4). Finally, a 

Radon-Nikodym theorem is proved (Theorem 6.5). Another aspect of decomposition 

theory is studied in chapter 7. Using Kadison's  Schwarz inequality it  is shown that ,  

"locally", every positive linear map is decomposable in a form similar to the decom- 

position in [20] (Theorem 7.4), and is globally "a lmost"  decomposable (Theorem 7.6). 

Finally, in chapter 8 we compute all the extremal  identi ty preserving positive 

endomorphisms of the 2 x 2 matrices. 

The author wishes to express his deep grati tude to Professor R. V. Kadison for 

his kind and helpful advice during the research in this paper, his careful reading of 

the manuscript,  and his valuable suggestions and simplifications of several proofs. 

1.2. Notation and basic concepts. A partially ordered vector space is a vector space 

over the reals, V, with a partial  ordering given by  a set of positive elements, V +, 

the so-called "positive cone" of V. When a - b  is in V + we write a 1> b. Moreover, 

if a and b are in V + then so are a + b  and ab for ~ a positive real; if - a  is also 

in V + then a=O. V is a partially ordered vector space with an order unit if there 

exists an element e in V such tha t  for every a in V there exists a positive real 

with - ~e ~< a ~< ~e. 

By a C*-algebra we shall mean a complex Banach algebra with a unit and with 

an operation A-->A* satisfying 

(o~A + B)*=~cA* + B*, (AB)*=B*A*, (A*)*=A and [[A*AII=IIA*[I [[AII, 

whenever A and B are in the algebra and e is a complex number.  A positive ele- 

ment  in a C*-algebra is one which is self-a~tjoint (A =A*) and whose spectrum con- 
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sists of non negative reals. Then the self-adjoint elements in a C*-algebra form a 

partially ordered vector space, with the unit as an order unit. A linear map of one 

C*-algebra (resp. partially ordered vector space) into another  is said to be positive 

if i t  carries positive elements into positive elements. A C*.homomorphism of a C*- 

algebra into another is a positive linear map preserving squares of self-adjoint ele- 

ments. A *-representation of a C*-algebra is a homomorphism r whose image lies in 

some ~(~) ,  satisfying r162 The Gelfand Neumark Theorem [4] asserts 

tha t  a C*-algebra has a faithful norm preserving *-representation as a C*-algebra of 

operators on a Hilbert  space. For a complete proof see [7]. 

I f  9~ is a C*-algebra acting on a t t i lbert  space ~,  9~- denotes the weak closure 

of 9~. I f  ~ contains the identi ty operator on ~,  ~ -  is a v o n  Neumann algebra. We 

refer the reader to [3] for questions concerning von Neumann algebras. We denote 

by  M~ the n • n complex matrices. I f  | is a family of operators acting on a Hil- 

bert  space ~ and ~ is a set of vectors in ~ then [6!~]  denotes the subspace of 

generated by  vectors of the form Tx with T in 6 and x in !~. Since we identify 

each subspaee with the orthogonal projection on it [ 6 ~ ]  also denotes the projection 

on this subspace: I f  6 is a C*-algebra then [6  ~]  is a projection in the commutant  

6 ' o f  6 .  

2. Maps of partially ordered vector spaces 

2.1. Definitions and basic results. Let A and B be partially ordered vector spaces. 

Let  a be an order unit  for A and b be a positive element in B. We denote by  

~)((A,a), (B, b)) the set of positive linear maps of A into B which carry a into b. 

I f  it is clear which order unit  we consider, we also write ~)(A,B, b)instead of 

~((A,  a), (B, b)), and if b is an order unit we m a y  also write ~)(A, B) when no confu- 

sion is possible. I t  is clear tha t  ~)((A, a), (B, b)) is a convex set. 

We say a map r in ~)((A, a), (B, b)) is strongly positive if r (x) contains a po- 

sitive element for each positive element x in the image of r Following [13], if b is 

an order unit for B, we say r is an order-homomorphism if r is strongly positive and 

t h e  null space of r is linearly generated by  positive elements. An injective order- 

homomorphism is an order-isomorphism. I f  A r is the null space of r and r is in 

~)(A,B,b), b an order unit for B, then it is immediate tha t  r is strongly positive 

if and only if the canonical linear isomorphism A/N-->B is an order-isomorphism. 

I f  R denotes the real numbers with 1 as order unit  then a state of A is a map  in 

~)(A, R). An extreme point of ~)(A, R) is called a pure state of A. A map which is 
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an extreme point of ~)((A, a), (B, b)) is said to be extreme. If  v and 4 are positive 

linear maps of A into B we write ~ ~< 4 if 4 - v  is a positive linear map. 

LEMMA 2.1. Let A and B be partially ordered vector spaces, a an order unit /or 

A, and b a positive element in B. Then a map 4 in ~)((A, a), (B, b)) is extreme i /and  

only i] whenever ~E~)((A,a),  (B,~b)) and T<~ 4 then ~=~4 .  

Proo/. Suppose v E ~(A ,  B, ~ b), ~ <~ 4 and 4 is extreme. If  ~ = 0 then ~ = 0 since 

a is an order unit. Similarly 2 = 1 implies v = 4- If  2 =~ 0, 1, then 

4 = ~(~-1 ~) + (1 - ~) ((1 - ~)-1  ( 4 -  ~)) 

is the convex sum of two maps in ~)(A,B,b) .  Since 4 is extreme 2 - i v  = 4 .  The 

converse is trivial. 

LEM~A 2.2. Let A, B, and C be partially ordered vector spaces with order units 

a, b, and c respectively. Let d be a positive element in C, and let 4 be a map in 

~(A,  B). 

(i) I /  4 is a sur~ective order-isomorphism and Q is a map in ~)(B, C, d) then 

o 4 is extreme in ~)(A, C, d) i/ and only i/ @ is extreme. 

(ii) / /  @ is a sur]ective order-isomorphism in ~(B,  C, c) then @ o 4 is extreme in 

~)iA, C, c) i/ and only i/  4 is extreme in ~)(A, B). 

The proof is an immediate consequence of Lemma 2.1. 

L]~M~A 2.3. Let A, B, and C be partially ordered vector spaces. Let a be an order 

unit /or A, b an order unit /or B, and c a positive element in C. Let 4 be a surjec- 

tire order-homomorphism in ~)(A, B). Let ~ be a map in ~(B, C, c). Then @ o 4 is ex- 

treme in ~(A,  C, c) i/ and only i/ @ is extreme. 

Proo/. Suppose Q is extreme, and let v be a map in ~)(A, C, 2c)such  that  

�9 ~<~o 4. Let N be the null space of 4. Then the null space of ~ contains N 

since N is generated by positive elements. 4 - ~  o i, where ~0 is the canonical order- 

isomorphism A/N- ->B  and i is the map A - > A / N .  Thus v = w o i  with w a linear 

map A/N--->C such that  w(a+N)=2c .  If  x + N  is positive i n A / N t h e n  4(x)>~O. 

Hence there exists a positive element y in A such that  y + N = x + N. Thus 0 ~ ~(y) = 

w(x+N)<@o4(y)=@o4(x)=@o~o(x+N) ,  so 0<w~<@o~o. Since @ is extreme, so 

is @o~o by Lemma 2.2. Hence w=2@o~0. Thus v = w o i = 2 @ o ~ o o i = 2 @ o 4 ,  and 

@ o 4 is extreme. The converse is a straightforward application of Lemma 2.1. 
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LEMMA 2.4. Let A and B be partially ordered vector spaces with order units a 

and b respectively. ]Let ~ be a map in ~)(A, B). Suppose there exists a separating /am. 

ily ~ o/ pure states o/ B such that / o r  is a pure state o/ A /or each / in ~. Then 

r is extreme. 

The proof is trivial. 

D E F I ~ I T I O ~  2.5. I /  A and B are partially ordered vector spaces with order units 

then a map r in ~)(A,B) is o/ class O i/ / o ~  is a pure state o/ A /or each pure 

state / o/ B. 

I t  is clear from Lemma 2.4 that  if the pure states of B separate points of B 

then a map of class 0 is extreme. We omit the trivial proof of the following lemma. 

LEMMA 2.6. I /  A and B are partially ordered vector spaces with order units a and 

b respectively and ~ is a pure state o/ A then the map x-->r is o/ class 0 in 

~(A,B) ,  and is denoted by 4. We say r is a pure state in ~(A,  B). 

2.2. Per/ect ideals. We recall from [9] that  an order ideal of a partially ordered 

vector space is a linear subspace I with the property that  x is in I whenever 

- y  ~< x ~< y for some y in I .  By [2] a per/ect ideal of a partially ordered vector space 

is an order ideal I such that  if x is in I and e > 0  is given, there exists w~ in I 

such that  
- (ea+w~)<~x<~ea§ 

where a is the order unit. Bonsall [2] has shown that  a state of a partially ordered 

:r space is pure if and only if its null space is a maximal perfect ideal. We 

shall establish analogous results for surjeetive maps of class 0. 

PROPOSITION 2.7. Let A and B be partially ordered vector spaces with order 

units a and b respectively. Let ~ be a strongly positive surjective map in ~)(A, B) whose 

null space is a per/ect ideal. Then r is o/ class O. 

Proo/. If  M is a perfect ideal of B then r  is a perfect ideal of A. In  

fact, let x be in r and e > 0 .  There exists y in M such that  r  Let 

~=e/3.  Then there exists w(=wo) in M such that  

- ( ( ~ b + w ) ~ y < ~ b + w .  

Let z( = z~) in q~-l(M) be such that  r = w. Then - r a + z) ~< r < ~(5 a + z). Since 

~b is strongly positive there exist /(=[~) and 9(=g0) in N - - t h e  null space of C--such 

1 7 -  6 3 2 9 3 3  Acta mathematica. 110. I m p r i m 6  le 6 d6cembre  1963. 
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tha t  x ~< ~ a + z + f, and - x ~ ~ a + z + g. N is perfect. Hence there exist h( = h~) and 

k(=k~) in N such that  + / < ~ a + h  and +_-g~Oa+k. Thus _ f ,  ++_g<~2Oa+h+k. 

Therefore + _ x ~ 3 ~ a + z + h + k = ~ a + v ~ ,  where v ~ = z + h + k  is i n 4 - 1 ( M ) D N .  Now let 

/ be a pure state of B. Then its null space M is a maximal perfect ideal. By the 

above the null space of the state f o 4 is 4-1(M), a maximal perfect ideal of A - -  

maximal because f o 4 is a state. Hence 4 is of class 0. 

Remark 2.8. The assumption that  4 be strongly positive is essential. In Example 

8.13 we shall find an example of a bijective map in ~ ( A , B )  which is not of class 0. 

LEMMA 2.9. Let A and B be partially ordered vector spaces with order units a and 

b respectively. Let 4 be a strongly positive sur]ective map in ~)(A, B). Let I be an 

order ideal of A containing the null space N o/ 4. Then 4(1) is an order ideal of B. 

Moreover, i / I  is per]ect (resp. maximal) then 4(1) is per/ect (resp. maximal). 

Proo/. Let  4(x) be an element in 4(1). Then x is in I .  Suppose -4(x)-~< 

4 (Y) < 4 (x). Then 4 (x) >/0. Hence there exists w >~ 0 in A such that  4 (w) = 4 (x), so 

w is in I.  Since 4(x-y)>~O there exists z~>0 in A such that  4 ( z ) = 4 ( x - y ) =  

4 ( w -  y). Similarly there exists z' >10 in A such that  4 (z') = 4 (x + y) = 4 (w + y), Hence 

there exist n and n' in N c I such that  w = z + y + n ~> 0 and z' = w + y + n' >t O. Thus 

w>~y+n, and y>~- (w+n ' ) .  Hence - ( w + n ' ) < ~ y < . w - n ,  where w + n ' a n d w - n a r e  

in 1. Thus y e l ,  and 4(y) e 4 ( I ) .  Since 4 is surjective and b is not in 4(I) ,  4 (1 ) i s  

an order ideal. 

I t  is straightforward to show that  4 ( I )  is perfect if I is. If  I is maximal let 

J be a ma.xlmal order ideal of B containing 4(I) .  J is the null space of a state / of B. 

Thus 4 -1 (J )D4-1 (4 ( I ) )DI  is the null space of the state / o  4. Thus 4-1(J )=I ,  

J = 4 (I), and 4 (I) is maximal. 

PROPOSITIO~ 2.10. Let A and B be partially ordered vector spaces with order 

units a and b respectively. Suppose 4 in ~)(A, B) is sur]ective. Then the two condi- 

tions below are related as /ollows: (i) implies (ii); i/ 4 is strongly positive then (ii) 

implies (i). 

(i) There exists a separating /amily ~ o/ pure states o / B  such that / o 4 is a pure 

state of A /or each f in ~. 

(ii) The null space of 4 is the intersection of maximal perfect ideals. 

Proo/. Since the null space of a pure state of A is a maximal perfect ideal it  

is trivial tha t  (i) implies (ii). Suppose 4 is strongly positive and that  (ii) is satis- 



P O S I T I V E  L I N E A R  MAPS O F  O P E R A T O R  A L G E B R A S  239 

fled. Let  N be the null space of 4. N= NM~M, M maximal perfect ideals of A. 

Then NM~4(M)={O} .  Indeed, M=4-1(4(M))  for each M in ~.  Thus 

4 - 1 ( N ~ 4 ( M ) )  = N ~ 4 - ~ ( 4 ( M ) )  = f ' l ~ M = N .  

Hence, if x is in ~ M ~ r  then r  so if yE4-1(x) then x=4(y)=O. By 

Lamina 2.9 4(M) is a maximal perfect ideal of B for each M in ~.  Let  ~ be the 

family of pure states /M of B with null spaces 4 (M) respectively for each M in ~.  

Then ~ is separating, and /~ o 4, having M as null space, is a pure state of A for 

each /M in ~. 

We apply the last results to prove a general theorem about perfect ideals. We 

say a partially ordered vector space A with an order unit is semi simple ff the states 

of A separate points, i.e. if and only if the intersection of the maximal order ideals 

of A is {0}. 

•EMMA 2.11. Let A be a partially ordered vector space with an order unit. Then 

A is semi simple if and only if the pure states o/ A separate points. Moreover, if I is 

an order ideal of A then I is the intersection of the maximal order ideals containing I 

q and only i/ A / I  is semi simple. 

Proof. The sufficiency of the first statement is obvious. Suppose A is semi simple. 

If x is in A let 
flail = sup If (x)], 

f E ~  

where ~ is the state space of A, i.e. ~ = ~ ) ( A ,  R). Since A is semi simple 1[ ]] is 

a norm. If  A* is the space of all bounded linear functionals on A in the defined 

norm, the w*-topology on A* is the weakest topology on A* for which the elements 

in A act as continuous linear functionals on A*. By Alaoglu's Theorem [1] ~ is w*- 

compact. Since ~ is also convex it follows from the Krein-Milman Theorem [17] tha t  

is the closed convex hull of its extreme points Hence the pure states of A se- 

parate points. 

Let  I be an order ideal of A. If I =  N M, where the M's are maximal order 

ideals, then, as was shown in the proof of Proposition 2.10, N - M =  {0}, where x ->  

denotes the canonical map v : A - - > ~ = A / I .  This map is strongly positive, so by  

Lamina 2.9 each 11~ is a maximal order ideal of A, and A is semi simple. Conversely, 

suppose .4 is semi simple. The map v defines a 1 -  1 correspondence between maxi- 

mal order ideals of ,4 containing I and maximal order ideals of ~ .  Since ~ is semi 

simple, 
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I = v  I ( O ) = v - I ( N ( M : M  is maximal order ideal of -4}) 

= n ( v - I ( M ) : M  is maximal order ideal of ~} 

= n ( M : M  is maximal order ideal of A containing I}. 

The proof is complete. 

THEOREM 2.12. Let A be a partially ordered vector space with an order unit. 

Let I be a per]ect ideal o~ A. I /  I is the intersection o~ the maximal order ideals o/ A 

containing I, then I is the intersectiom o/ the maximal per]ect ideals containing it. 

Proo/. By Lemma 2.11 the pure states of A / I  separate points. By Proposition 

2.7 the canonical map A--->A/1 is of class 0. Thus by Proposition 2.10 I is the 

intersection of maximal perfect ideals. 

3. Extremal maps of  C*-algebras 

If ~I and ~ are C*-algebras we study the extreme points of the set ~ (9~, ~ ,  B) 

of all positive linear maps of 9~ into ~ ,  which carry the identity operator in ~ into 

the positive operator B in ~ .  I t  is immediate that  the results in chapter 2 are 

directly applicable. By the Gelfand-Neumark Theorem each C*-algebra has a faithful 

*-representation as a C*-algebra of operators acting on a Hilbert space. In view of 

Lemma 2.2, then, it is thus no restriction to state and prove theorems about ex- 

tremal maps in ~)(9~, ~ ,  B) in the ease when 9~ and ~ are C*-algebras of operators 

on Hilbert spaces. 

In  general we cannot, a priori, tell whether there are "m an y "  extreme points 

in ~)(~, ~ ,  B). However, if ~ is a v o n  Neumann algebra then the extreme points 

generate ~)(9~, ~ ,  B). In fact, let t be the point---open topology on the space of 

linear transformations of 9~ into ~ ,  where ~ is taken in the weak topology. By [14] 

~(9~, ~ ,  B) is t-compact, and hence is the t-closed convex hull of its extreme points. 

3.1. Properties o] extremal maps. The multiplicative properties of extrema] maps 

are characterized in 

THEOREM 3.1. Let ~ and ~ be C*.abyebras, 9~ acting on the Hilbert space ~. 

Let A'  be an operator in the commutant ~" o] 9~, and let (9,I, A') be the C*-algebra gen- 

erated by 9~, A', and A'*. Suppose r is extreme in ~)(~, ~)  and that ~ has an ex- 

tension ~ to ~)((9~, A'), ~ )  with ~(A') in the center o/ ~ .  Then ~ ( A ' A ) = ~ ( A ' ) r  

]or all ,4 in 9~. 
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Proo[. Let ~ denote the center of ~ .  We may assume A' is self-adjoint, for if 

A ' = S + i T  with S and T self-adjoint, then S and T are in (91, A'), and ~(S) and ~(T) 

are in ~ since ~(A')  is. If the theorem is established for self-adjoint operators then 

(A' A) = r ((S + i T ) A )  = r  + i r  (TA) = ~ (S)4 (A) + i r ( T ) 4  (A) = r (A ' )4  (A). 

If A' is self-adjoint, then, multiplying A' by a scalar, we may assume IIA'II<�89 
Then IIr < I. By spectral theory � 8 9  and � 8 9  are positive invertible 

operators in 91' and ~ respectively, and there exists k > 0  such tha t  k I < � 8 9  

Define the map ~0 of 91 into !3 by  

~0(A) = ~ ( A  ( � 8 9 1 8 9  ~(A')) -1. 

Then clearly ~o fi ~)(9/, ~).  With B~>0 in 9/, then 

kyJ (B) ~ (�89 - r ~0 (B) = ~(B (I I - A')) ~< 4 (B). 

Thus kt,0,.< 4. Since 4 is extreme, ~0= 4. Thus 

(I I - ~ (A')) 4 (A ) = ~ (A (I I - A')) = �89 4 (A ) - ~ (AA'), 

and ~ ( A ' ) 4 ( A ) = ~ ( A ' A  ) for all A in 9/. The proof is complete. 

Employing techniques similar to those used to prove Theorem 3.1 we show the 

following improvement over Lemma 2.1. 

PROPOSITION 3.2. Let 91 and ~ be C*.algebras, and let 4 be a map in ~)(91, ~) .  

Let ~ be a positive linear map o/ 9.i into f~ such that ~ (1) is in the center o/ f~ and 

~ < 4 .  I /  4 is extreme then v = v ( 1 )  4. 

Pro@ Multiplying ~ by a scalar we may assume II v(I)l] < 1. Hence, by  spectral 

theory, ( I - ~ ( I ) )  is a positive invertible operator in the center of ~,  and there exists 

k > 0  such that  k ( 1 - ~ ( I ) ) - 1 < I .  Thus, if A is a positive operator in 9/ then 

0 ~< k(I  - v (I)) -1 (4 (A) - z (A)) ~< (4 (A) - z(A)) < 4 (A), 

and k ( I - v (1)) -1 (4 - 7:) e ~) (9/, !3, kI). 

Since 4 is extreme (I - ~ (1)) -1 (4 - ~) = 4, and ~ = ~ (1) 4. 

COROLLiRY 3.3. Let 9I and !3 be C*-algebras. Let B be a positive operator in 

the center o/ !3. 1/ 4 is extreme in ~(9/ , !3)  then the map A - - > B 4 ( A  ) is extreme in 

(91, ~, B). 
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Proo[. Denote the map by B r If ~ is a map in ~) (9~, ~ ,  2 B) and �9 ~< B ~, then 

~:~<[[B[[r so by Proposition 3.2 ~ = ~ ( I ) r  

R. V. Kadison pointed out the following result to us. 

PROPOSIT~OZ~ 3.4. Let ~ be an abelian yon Neumann algebra and 9~ a C*.alge- 

bra acting on a Hilbert space ~. Let r be extreme in ~)(9~, ~).  Then there exists an 

extreme extension ~ of r to ~)(~ (~), ~). 

Proo/. By [15, Lemma 3] each map in ~) (9~, ~)  has an extension to ~) (!~ (~), ~).  

Let ~ be the set of extensions of r Then ~ is a closed convex subset of ~)(~ (~), ~).  

Since ~ is a yon Neumann algebra, ~)(~ (~), ~)  is compact. Let ~ be an extreme 

point of ~. I t  is straightforward to show that  ~ is extreme in ~)(~ (~), ~).  

3.2. Special extremal maps. An important class of maps in ~)(!~, ~)  are the C*- 

homomorphisms--maps ~ such that  ~b (A s) = ~b (A) ~ whenever A is a self-adjoint operator. 

The argument of the following theorem is taken from [9, Lemma 3.2]. 

T ~ O R ~ . ~  3.5. Let 9~ and ~ be C*.algebra8 and ~ a C*.homomorphism in ~) (9~, ~ ). 

Then ~ is extreme. 

Proo/. We show that  if ~ is not extreme then r is not a G*-homomorphism. 

By [11, Theorem 1] ~(A 2) ~>z(A) ~ for A self-adjoint, whenever v E ~)(9~, ~).  Suppose 

r  �89 (~ +~)  with ~ and ~o in ~(~I, !~), and suppose ~ : v  2. Let A be a self-adjoint 

operator in 9~ such that  Q(A)g=~p(A). Then 

r ~ = �88 (Q (A) + ~(A)) 2 = �89 (~ (A) 2 + v/(A) 2) - �88 (Q (A) - ~(A)) 2 

< �89 (Q (A) 2 + ~(A)  u) ~< �89 (Q (A 2) + y~ (A~)) = r (A~). 

The proof is complete. 

Combining Theorem 3.1 and Theorem 3.5 we obtain the following result, an- 

nounced in [8]. 

COROLLARY 3.6. ,Let ~ and ~ be abelian C*-algebras. Then the extreme points 

in ~)(9~, ~)  are the *-homomorphisms in ~)(~, ~).  

Remark 3.7. If 9~ and ~ are C*-algebras and ~ is a positive linear map of 9~ 

into ~ then the set ~ (resp. ~) of A in • for which r  (resp. r  

is a left (resp. right) ideal in 9.1 the left (resp. right) kernel of ~. In fact, ~ (resp. ~) 
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is the intersection of the left (resp. right) kernels of the positive linear functionals 

/ o  ~b as [ runs through a separating family of states of ~ .  

If 9~ and ~ are C*-algebras acting on Hilbert spaces ~ and ~ respectively and 

B is a positive operator in !~ then the maps in ~)(i~, ~ ,  B) which are analogous to 

vector states are the ones of the form A-->V*AV, where V is a bounded linear map 

of ~ into ~. 

THeOrEM 3.8. Let 92[ be a ,C*-algebra acting on the Hilbert space ~. Let ~ be a 

Hilbert space and V a bounded linear map o/ ~ into ~. SuTpose there exist a pro~ec- 

tion E' in 92[' and an operator S in 9~- such that VV*= SE'. Then the map A--> V*A V 

is extreme in ~) (9~, ~ (~), V* V). 

Pro@ Let  V*-V denote the map A--> V*A V. Then V*" V is the composition 

of the homomorphism A---> AE' of 9~ onto 9~E' and the map AE'--->V*AE' V= V*A V. 

By Lemma 2.3 V*. V is extreme if and only if the map AE'-->V*AE'V is extreme 

in ~)(~E' ,~(~) ,V*V) .  We may thus assume E ' = I  and VV*=SEg~-. Suppose the 

theorem is proved in the case when 9~ is a yon Neumann algebra. We show it is 

then true with 9~ a C*-algebra. Let  yJe~)(9~,~(~),2V*V) satisfy ~ <  V*'V. If  cox 

is a vector state on ~ (~) then cox o y~ ~< eovx, so cox o yJ is weakly continuous [3, p. 50]. 

Note that  the map V*. V is weakly continuous. By [13. Remark 2.2.3.] yJ has a 

(unique) positive linear extension mapping ~0- of 9~- into !~(~), which is weakly 

continuous on the unit sphere in 9~-, and 0 ~<~-~  V*. V on 9~-. By  assumption the 

theorem holds for V*. V on 9~-. Hence ~-=2V*"  V on ~ - .  Thus ~=~0-19~=2V *. V 

on 9/, and the theorem is proved for 9~ a C*-algebra. 

We assume 9~ is a yon Neumann algebra acting on ~. If S is a positive operator 

in 92[ such that  0 is an isolated point of {0} U ~(S), where a (S) denotes the spectrum 

of S, then S .  S is extreme in ~)(9~, ~ (~) ,  S~). In fact, let ~ e �9 (9/, ~ (~ ) ,  2S ~) satisfy 

~<S.S. L e t ' P  be the range projection of S. Then PEg~. With 0 < A ~ < I  in 9~ 

0 < yJ(A)~<~(I)=2S~<2 II s211 P, 

so that  ~p(A)=PyJ(A)P. Thus y~=P~flP. Moreover, 

O<~ y~(I- P) < .S ( I -  P) S=O. 

Thus I - P  is in the left a n d  right kernels of ~ (Remark 3.7). Thus y~(A)=y~(PAP) 

for all A in 9~, and ~ restricts to a map yJp in ~)(Pg~P,P~(~)P,  2S~). If we show 

~p~=2S.S on PO~P, then for A in 9/, 

y~(A ) = vA(PAP ) = ~o~,(PAP) = 2 SAS, 
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and S .  S is extreme. We may thus assume P =  I and S invertible. With A/>0 in 

91, ~ ( A ) < S A S ,  so S- ly~(A)S- I<A,  and S- lv2( I )S-1=~I .  The identi ty map of 9/ 

into ~ ( ~ )  is extreme in ~) (9 / ,~ (~) , I )  by Theorem 3.5. Thus S- lv j (A)S- I .=~A for 

all A in 9/, and ~0= ~S .  S as asserted. 

Let  S be any positive operator in 9/. Let  ~0 be a map as above. For n a po- 

sitive integer let E~ be the spectral projection of S corresponding to the set 

{~ E a(S) :~ > l /n}- .  

As n-->oo (E~) converges to P the range projection of S--strongly.  Note that  0 is 

an isolated point of {0} 0 (~(E.S). Since 9/ is a v o n  Neumann algebra En E 9/ and 

E.S>~O. By the last paragraph E . S ' E n S  is extreme in ~ ) (9 / ,~ (~) ,E .$2) ,  and 

E . v / E n < E . S . E . S .  Thus E . v 2 E . = 2 E . S . E . S .  If 9/1 is the unit ball in 9 / the  map 

(A, B)-->AB is a strongly continuous map of 911 • 9/ into 9/ [3.p. 32]. Thus the map 

(B, A)-+ BAB is a strongly continuous map of 9/1 • 9/1 into 9/1. Since E.--> P strongly 

E.AE.--->PAP strongly. Hence, with A in 9/1, 

~0(A ) = P ~  (A) P = strong limit (E, ~ (A) E,)  

= strong limit (~ En SASEn) = ~ P S A S P  = ~ SAS. 

Thus ~p=~S.S, and S . S  is extreme in ~ ) (2 , !3 (~ ) ,S  2) when S>~0 in 2.  

In the general case V is a bounded linear map of ~ into ~ and VV*E 9/. Let 

~ E ~ ) ( 9 / , ~  (.~),,TLV* V) satisfy v2~ V*" V. Then V~oV*~ VV*" VV*, and 

v~pv* ~3(9/, ~(~), ;t(vv*)~). 

By the last paragraph Vv/V*=).VV*. VV*. Again, with P the range projection of 

V*,~o=P~oP, and the set V*(~) is dense in P. With x and y in ~ and AEg/ ,  

0 = (V (~p (A) - ~ V*A V) V* x, y) = ((v 2 (A) - ~ V*A V) V* x, V* y), 

so by continuity, ((~p(A)-; tV*AV)w,z)=O for all w, z in 2~ and all A in 9/. Thus 

y =  ;t V*. V, and V*. V is extreme. The proof is complete. 

Note tha t  if 9/ is a C*-algebra acting on the Hilbert space ~ and containing 

the identity operator on ~, and if x is a unit vector in ~, then wx is pure on 9/ i f  

and only if [x] = [9/x] [9/' x]. We generalize this as fonows. 

THEOREM 3.9. Let ~ and ~ be Hilbert spaces and V be an isometry o / ~  into ~. 

Let 9/ be a C*-algebra acting on ~ and containing the identity operator on ~. Sulrlaose 

V*9/' V c (V*9/ V)". Then the ]ollowing three conditions are equivalent. 
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(i) (resp. (ii)) The map A --~ V*A V is extreme in ~)(9/, ~ (~)) (resp. ~)(9/, (V*9~V)")) 

and V*9.~'Vc (V*9/ V)'. 

(iii) VV* = [ 9 / V ( ~ ) ]  [9/' V(~ ) ] .  

Proo/. Clearly (i) implies (ii). Assume (ii). The operator P =  VV* is a projec- 

tion in ~ (~) .  By assumption V*9/' V is contained in the center of the yon Neumann 

algebra (V*9~V)". Let  E=[9~V(~)].  Then EE9 / '  and P<~E. Assume for the mo- 

ment that  E = I .  Then vectors of the form y = A V x ,  with A in 9~ and x in ~, gen- 

erate a dense linear manifold in ~, and if A 'E  9/' then 

P A ' y  = P A ' A V x  ~ V V * A ' P A V x  ~ P A ' P y ,  

using Theorem 3.1. Thus P A ' =  P A ' P  = A ' P  for all self-adjoint A' in 9/'. Thus P E 9/". 

Thus P = [9/' P]. In the general case V*- V is the composition of the maps A --> A E - +  

V * A E V ( =  V*AV). By Lemma 2.3 the second map is extreme in ~)(9/E, (V*9/V)"). 

By the above and [3. Proposition 1.p. 18] 

P = [(9/E)'P] = [Eg/'EP] = E [9/'P] = [0/P] [9/'P]. 

Now suppose P=[O~P][9/'P]. Since [9/P]Eg/ '  and [ 2 '  P ]  e g /"  = 9 / -  , V*. V is ex- 

treme in .~(9~, ~ (~)) by Theorem 3.8. Let  A E 9~ and A'  E g~'. Then 

(V*A' V) (V*A V) = V*A'PA V = V*A' [9~'P] [9/P] A V = V* [2 'P ]  A ' A  [9/P] V 

= V*AA' V = V* [9/P] A A '  [9/'P] V = V*A V* VA'  V, 

so that  V*OI'Vc(V*OIV)' .  (i) holds, and the proof is complete. 

3.3. Classes o/ extremal maps. We distinguish the extreme points in ~)(9~, ~ ( ~ ) )  

into classes, one class for each ordinal number less than or equal to the dimension of ~. 

DEFINITION 3.10. Let ~ be a /amily o/ projections in ~ ( ~ ) ,  where ~ is a Hil- 

bert space. Then ~ is a separating /amily o/ dimension ~ i/ 

( i )  dim Q=~ /or each Q in 5.  

(ii) ]or each projection P in ~ ( ~ )  such that dim P > o: and each vector x in P 

there exists Q in ~ such that x E Q and Q <~ P. 

(iii) i/ a = d i m  ~ then /or each x E~  there exists Q E ~ such that x E Q. 

PRoPoSITION 3.11. Let 9~ be a C*-algebra and ~ a Hilbert space. Let ~ be a 

map in ~(9~,~(~)) .  Let ~ be a separating /amily o/ projections o/ dimension ~ in 

!~(~) such that the map Q r  is extreme in ~)(9/, Q ~ ( ~ ) Q )  /or each Q in ~. Then 

is extreme. I] ~ is extreme in ~)(9/ ,~(~))  then there exists a minimal ordinal num- 
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ber :r such that there exists a separating family of dimension a in ~ (~ )  such that the 

map Q CQ is extreme in ~)(9.I,Q~(~)Q) /or each Q in it. We say r is extreme of 

class ~. 

Proof. Let ~ be a map in ~)(~I,~(~),2I) such that T<~b. Then for each Q in 

~, Q~Q=2QCQ, since QCQ is extreme. If S is a self-adjoint operator in ~ then 

T = ( v - 2 r  is self-adjoint in ~(~)  and QTQ=O for each Q in ~. If x e ~ t h e n  

there exists Q in ~ such that x eQ. Thus (Tx, x)=(TQx, Qx)= (QTQx, x)~-O, and 

T=O. Thus ~=)tr  and ~ is extreme. If P is a projection in ~(~)  of dimension 

greater than a then, similarly, P e P  is extreme in ~)(9~, P ~ ( ~ ) P ) .  Suppose r is an 

extremal map in ~)(9~, ~(~)). The family consisting of the identity operator alone is a 

separating family of dimension equal to dim ~, and the map I r  r is extreme in 

~)(9/, ~(~)). By the above there exists a minimal ordinal number g and a separating 

family ~ of projections of dimension g in ~(~)  such that the map QCQ is extreme 

in ~)(9~, Qi~(~)Q) for all Q in ~. 

4. Geometrical conditions 

We impose a geometrical condition on the maps in ~)(~, ~) and show that this 

condition is closely related to, however, is not in general equivalent to, extremality 

(see Example 8.13). 

4.1. De/inition and basic properties. 

DEFINITION 4.1. Let ~ be a C*-algebra acting on a Hilbert space ~. I /  A is 

an operator in ~,  r (A) denotes the range projection o/ A and n (A) the null space of A. 

I f  ~ is a C*-algebra and CE~)(~ ,~ ,B) ,  B a positive operator in ~,  we denote by r(r 

the map of 9~ into ~ -  given by A-->r(r I f  ~ isanother map in ~)(~,~,B) we 

say r(v)<r(r  if r(~(A))<.r(r /or each positive operator A in ~I. r is said to 

have minimal range q whenever T is in ~)(9~,~,B) and r(~)~<r(r then ~=r 

It  is immediate that a map r of minimal range in ~)(2, ~,  B) is extreme. In 

fact, if ve~)(~/,!~,2B), ~4:0, and ~<~b, then ~ t - l v e ~ ( 2 , ~ , B )  and r(~t-lT)~<r(r 

so ~-1v=r and ~b is extreme. 

Remark 4.2. If ~ and ~ are as above, ~ the convex hull of the maps in 

~)(9/, !~) having minimal range, then ~b in ~)(~I, ~) has minimal range if and only if 

is in ~ and if T e ~  with r(~)~<r(r r(v)=r(r The necessity is obvious. 

Conversely, if {A~}~E~ are positive operators in ~ then 
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SO 

n (~ A~)=A n(A~), 

(5 A~)=I-A n(A~)=V (I-n(A~))=V r(A~). 

Let  4 = ~%~2~ 4~ be a convex sum of extreme maps in ~ satisfying the conditions 

above. Then for A positive in 9/, 

r r(r 

since 2~=~0. Therefore r(r r (4  ) for i=  1, ..., n, so by assumption r(4~)= r(4), and 

4, = 4" Thus ~b has minimal range. 

LEM~A 4.3. Let 9~ and ~ be C*-algebras, ~ acting on the Hilbert space ~. Then 

every pure state in ~)(9~, ~ )  has minimal range. 

Proo/. Let 4 be a pure state in ~)(9~,~). Let  ~ be its left kernel. By [12] 

the null space of r is ~ + ~ * .  If Te~)(9 / ,~)  and r(v)<r(r  then the left kernel of 

contains tha t  of r and hence the null space of ~ contains that  of r Thus ~ is 

a state and equals r 

PROPOSITIOn 4.4: Zet ~ be a C*-algebra and ~ a Hilbert space, l_,et 4 be a 

map in ~ ( ~ , ~ ( ~ ) ) .  Suppose P 4 P  has minimal range in ~(9I, P ~ ( ~ ) P )  /or each 

projection P in a separating /amily ~ o/ dimension ~. Then ~ has minimal range. In  

particular, i/ 4 is o/ class 1 then 4 has minimal range. 

Proo/. Let P be a projection in {~. If  A and B are positive operators in ~ (~) 

and r (A) ~< r (B) then n (A) >~ n (B), so n (PAP) >1 n (PBP), and r (PAP) ~ r (PBP). Thus, 

if ~ E ~ ) ( ~ , ~ ( ~ ) )  and r(~)<r(r  then r ( P v P ) < r ( P r  and P ~ P = P r  for each 

P in ~. Thus ~ = 4 .  Suppose 4 is of class 1. If x is a unit vector in ~ then 

[x]4[x]  (=[x]o)x o 4) has minimal range in ~) (~ , [x]~(~) [x] )  by Lemma 4.3. Thus 

has minimal range. 

THEOREM 4.5. Zet 9~ and ~ be C*-algebras, ~ acting on the Hilbert space ~. 

Zet r be a map in ~)(9~, ~),  and suppose there exists a subset ~ o/ ~ consisting o/ 

positive operators o/ norm less than or equal to 1 satis/ying the /ollowing conditions: 

(i) There exists k > 0 such that r (S)~>~ k r /or all S in 6 .  

(ii) I /  A is positive in 9~ and e > 0  is given, then there exist A s . . . . .  Am in ~ and 

positive real numbers a 1 . . . .  , an such that I[ 5~=! a, A , -  A I] < ~. 
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Then q TE~)(9~,~) and r(v)<~r(r then kv<<.~. In  particular, i~ ~ is extreme 

then ~ has minimal range. 

Proo/. If A is positive in 9/ we have to show k~(A)<.r Assume first tha t  

A E ~ .  Consider the yon Neumann algebras acting on ~ generated by ~(A) and I,  

and r  and I ,  respectively. Let  (~>0 be given and let ~.~-lasFs and ~SIbjGj 

be approximations to ~(A) and ~(A), respectively, with 

s = l  1=1 

as=~0 in a(~(A)), be40 in a(r and such that  

I I~ .asF, -v(A) l l~O and I I~bJGJ- r  
s = l  j - 1  

Since ~(A)~>~kr it follows by spectral theory that  b~>~k. In  fact, if b 4 0  is in 

a(r then b ~/> kb, so b/> k, since ~(A) goes into the identity function in C(a(~b(A))) 

by the canonical isomorphism. Moreover, II A II ~ 1, so 0 < as ~< 1. Thus 

r  kv(A)= ( ~ ( A ) -  ~ b~Gj) + (~ bjGj- k ~ a~Fs) + k(~ a~F~-~(A)) 
i t s s 

t s 

= - (1 + k) ~ + ]c (r (~b (A)) - r (3 (A))) 

>/ -  ( l+k)~.  

Since (~ is arbitrary, r Now let A be any positive operator in 9.1. 

Let  e > 0  be given. Then there exist A 1 . . . . .  A .  in ~ and c, >0,  i= 1 .. . . .  n, such that  

]1 ~=~ c~ A , -  A II < e, and kz(Af) < r by the preceding. Thus 

r - kv(A ) = r - ~ c, A,) + ~ c~(r (A,) - kv(A,)) - k~(A - ~ c, A~) 
i i i 

/> - e - k e =  - (1 +k)e .  

Since e is arbitrary, r and r The proof is complete. 

COROLLCRY 4.6. Let 2 be a v o n  Neumann algebra and ~ a C*-algebra acting 

on the Hilbert space ~. I /  ~ E ~)(~[, ~) and there exists k >0  such that ~(E)~>~ k~(E) 

/or each projection E in 2, then i/ T is in ~)(2,~) and r(~)<~r(~), then kv<~ .  In 

particular, i/ r is a C*-homomorphism then ~ has minimal range. 

Proo/. Let  ~ be the subset of 9.1 consisting of all projections in 2.  Then 

satisfies the conditions of Theorem 4.5. If ~ is a C*-homomorphism then r is extreme 

by Theorem 3.5, and r ~= ~(E), so r has minimal range. 
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Example 4.7�9 Let  Z be the integers and p the Lebesgue measure, # ( n ) =  1 for 

all n E Z. As in [15] let ~[a be the "discrete algebra", i.e. the maximal abelian yon 

Neumann algebra consisting of operators Tg, with g an essentially bounded ~u-mea- 

surable function on Z, where Tg(h)=gh for each h in L2(Z, f~). In the terminology 

of [15] let ~) be the unique diagonal process relative to ~ [15, Theorem 1]. If  9~ d 

acts on ~ then ~) has minimal range in ~)(~(~) ,9~) .  In fact, let T be a map in 

(!~ (~), ~ )  such that  r (v) <~ r (~)). Then in particular r (~[ ~Id) ~< r (~) [~d)- Since ~) [ 9~ d 

is the identity map v l~I~=~) [ 9J~ by Corollary 4.6. Since ~ is the unique positive 

extension of the identity map of 9~ to ~ (~ ) ,  z=~) ,  and ~) has minimal range. 

Using Proposition 3.4 we could similarly prove the weaker result that  ~) is extreme�9 

4.2. Maps /rom abelian C*-algebras. 

DEFINITION 4.8. Let X be a compact Hausdor// space. Let 4 be a positive linear 

map o/ C(X) into a C*-algebra. Let Y be a closed subset o/ X .  We say 4 lives on Y 

i/ 4 ( / )=  0 /or each /unction / in C(X) such that support /N Y = 4" 

LEMMA 4.9. Let 9~ be a C*-algebra and ~ = C ( X )  the center o/ ~. Let ~ be a 

matrix algebra. I /  4 is extreme in ~ ( ~ ,  ~ )  then 4 ] ~  lives on a /inite subset o/ X .  

Proo/. Let N be the null space of 4" By Theorem 3.1 N N ~  is an ideal i n ~ ,  

which generates a closed two-sided ideal ~ in 9~, and ~ =  N. Let  ~ be the canonical 

homomorphism 9~ --> ~ / ~ .  Then 4 = 4' o ~, where 4 ' l e  (~) is an injective positive linear 

map of the abelian C*-algebra ~(~) into ~ .  Say ~ ( ~ ) = C ( Y ) .  To prove the lemma 

it suffices to show that  Y consists of a finite number of points. ~ is a matrix al- 

gebra, hence a subset of some Mn. We show Card Y 4 n  2. In fact, let r~< Card Y 

and let x I . . . . .  x, be r distinct points in Y. Imbed C ' ~  Cx l e . . .  �9 Cxr into C(Y) as 

follows: for each x~ let /~ be a positive function in C(Y) such that  

/4 (xs) = ~s (1 < i, j < r). 

Map Cx 1 �9 ... �9 Cxr into C(Y) by 
r r 

Then T is linear and injective. Thus r  v is a linear imbedding of C r into C n'. But 

this is impossible unless r~< n 2. Thus Card Y<~n 2. The proof is complete. 

THEOREM 4.10. Let 9~ be an abelian C*-algebra and ~ a matrix algebra. Then 

every extremal ~ap  in ~)(9~, ~)  has minimal range. 
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Proof. Let  4 be extreme in ~)(9~, !~) and let N be the null space of 4. Then 

h r is an ideal in 9/ (by Theorem 3.1). Let  TE~)(9~,~) and r(~)<-..r(4 ). Then N is 

contained in the null space of ~. Let  ~ be the canonical homomorphism 9~--> 9~//Y. 

Then 4 = 4 ' ~  and T=T  ' o ~  with 4 '  extreme in ~)(9~/h r , ~ )  by  Lemma 2.3, and 

r(~')<~r(4' ). 2 /N'~-C(X) ,  with X a finite set by Lemma 4.9. Thus there exist or- 

thogonal minimal projections E 1 . . . . .  Er which generate 2IN .  Since ~ is a matr ix al- 

gebra there exists k > 0 such that  4'  (E~) 2 >~/c 4'  (E~), (1 ~< i ~< r). By Theorem 4.5 ~' = 4', 

so %=4,  and 4 has minimal range. 

COROLLARY 4.11. Let ~ be an abelian C*-algebra and ~ a Hilber~ space. Let 

4 ~ ~)(9~, !~(~)). Suppose 4 is extreme of class n, with n an integer. Then 4 has mini- 

real range. 

This is immediate from Theorem 4.10 and Proposition 4.4. 

Remark 4.12. We outline a proof of Theorem 4.10 which does not  make use of 

Theorem 4.5. Let  4 be extreme in ~)(9~,~). By [2014= V* ~ V, where V is an iso- 

merry of ~ - t h e  (finite dimensional) Hflbert space on which !~ acts into a Hilbert 

space ~, and ~ is a *-representation of 2 on ~. By Lemma 4.9 we may assume 

~(~)~C(X)  with X a finite set. As in the proof of Theorem 4.10 we have to show 

that  the map A-->V*AV has minimal range in ~)(~(2) ,~)  The map B--> IzBV * is 

an isomorphism of ~ into ~(R) .  We may thus assume 4 is the map A--->PAP of 

2 ( = ~ ( 2 ) )  into !3c !3 (R) ,  where P = V V *  is a finite dimensional projection. Le t  

~E~) (2 ,~ )  be such that  r(~)<,.r(4 ). If A and B are positive operators in ~ ( R ) a n d  

r(A) <~ r(PBP) then there exists a positive operator C in ~(R)  such that  r(C)<, r(B) 

and P C P = A .  Thus, with E a minimal projection in !g then r(v(E))<~r(PEP), so 

there exists C >10 in 9i', CE= C and PCEP= 7:(E). Thus there exists a positive op- 

erator A' in ~ '  such that  ~(A)=PA 'AP ,  for all A in 9~. By Theorem 3.1 T(A)= 

( P A ' P ) P A P = P A P = 4 ( A ) ,  and 4 has minimal range. 

Remark 4.13. Let 9~ and ~ be G*-algebras, ~ acting on the Hilbert  space ~.  

Let  ~ and r be maps in ~(9~, ~).  If x is a unit vector in ~ denote by I~ (resp. Jx) 

the left kernel of the state w~o'~ (resp. o~zo4). Then rO:)<.r(4) if and only if 

Ix~J~  for each unit vector x in ~. In fact, with A>~0 in 2 then r(~(A))<~r(4(A)) 

if and only if n(T(A))>~n(r if and only if r  implies ~(A)x=O for a l i x  

if and only if eoxo4(A)=O implies wxo~(A)=O for all x if and only if I z ~ J x  for 

each unit vector x E ~ .  If f is a state of ~ denote by I r (resp. J1) the left kernel 

of the state / o ~  (resp. f o 4 )  of 2 .  I t  is a plausible conjecture tha t  if 2 is an 
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abelian C*-algebra then r is extreme if and only if, whenever ~ ) ( 9 ~ , ~ ) a n d  Ir~J ~ 
for all states ] then ~= r 

Example 4.14. In view of Theorem 3.1 and Lemma 4.9 it might be conjectured 

that  if ~ and ~ are C*-algebras, ~ the center of 9~, and ~b extreme in ~)(~, ~),  then 

r restricted to ~ is extreme in ~)(~, ~). This is false, as the following example 

shows. Let 9A=M s e M a  and ~=21/4. Let r be the map of 9A into ~ defined as 

follows: if A ~ M~ and /~ e M s let 

, o) 
, o  

~ 0  0 0 0 

0 0 0 O )  

r = 0 
0 (B) 

0 

Let S = r  and let r189162 -�89 The center ~ of 9A equals GI~r where /~ 

is the identity operator in M,(i =2, 3). Clearly r (resp. r  is extreme in ~)(9~, ~)  

(resp. ~) (~, ~)) ff and only ff r (resp. r  I ~) is extreme in ~)(gA, ~,  S) (resp. ~)(~, ~,S)). 

By Theorem 4.I0 r ~ is not extreme in ~)(~, !~). We show r has minima] range. 

Suppose ve~)(OA, ~ ,  S) and r(v) <.r(r If  E is a 1-dimensional projection in ~ then 

either E e M s or E E M3, and r (E) = F is a 1-dimensional projection in ~ ,  say E e M~. 

r(~(E))<~F, so ~(E)=2F. Let P=(aij)EM 2 be the projection with a11=1. Since 

(I) = r (I) = S, and 1 =Nll = r (P)11, T (P)n = 1. Thus, by linearity, 

T W ((y =w 

[ \ y 
where B~M s. Now E=[Ixl21-[x[2) 

Thus ~:(E)11=]x]2=2Fll=2[xl 2. Thus 2--1 unless x = 0 .  Let E be a projection as 

above with x~=0,1. Let G=I2-E. Then ~(E)=r and v(G)=r Moreover, 

v (P) = r (P). Thus 

( 1 3  - P) = v (E) + ~ (a) - ~ (P) = r (E) + r (O) - r (P) = ~b' (13 - P). 

Thus T(E)= r for each 1-dimensional projection E in M 2. Similarly ~(E)= r 

for each 1-dimensional projection E in M s. Thus v=  r and r has minimal range. 

4.3. Geometry. We show that  the extremal maps in ~)(~, ~), 9A an abelian U*- 

algebra and ~ a m a t r i x  algebra, are "approximately" homomorphisms. In view of 



2 5 2  E.  STORMER 

Lemma 4.9 we may assume ~ is an abe]tan matrix algebra and each extreme map 

in ~,(9/, ~ )  is injeetive. 

DEFINITION 4.15. Let (S~)~et be a /inite set o/ sel/-ad~oint operators acting on 

a Hilbert space. We say the set is linearly independent i/ ~E1k~ S~ = 0 with k~ real 

numbers implies ]c~ = O. The set is said to be a minimal set i/ there exist real constants 

k~ such that ~ r  and i/ J ~ I  and h~ are real numbers then ~ h ~ S ~ = I  

implies J = I. 

We omit the easy proof of the following lemma. 

L~MMA 4.16. Let {S~)~el be a/ ini te  set o/sel/.ad~oint operators. Then the/ollowing 

three conditions are equivalent. 

(i) (S~)~eI is a minimal set. 

(it) (S~)~el is linearly independent and there exist real numbers ]r such that 

~ ~ ]c~ S~ = I .  

(iii) There exist unique ]c~40 such that ~ k ~ S ~ = I .  

We denote (S~)~;  by (S~, k~)~l.  We say (S~, k ~ ) ~  is a positive minimal set 

if each k~ > 0. 

LEMMA 4.17. Let 9~ be an abelian matrix algebra and ~ a matrix algebra. Let 

E 1 . . . . .  En be the minimal pro~ections in 9.I. Let ~ be extreme and in]ective in ~) (9.I, ~).  Let 

r ~ k~sF~ j, 

where k~ >0,  and lvij are the spectral pro~ection.s /or ~ (E~), (i = 1 . . . . .  n). Then (Ftj, ]cij) 

is a positive minimal set. 

Proo/. Suppose ~ . j  h~j F~j= 0. Multiplying by a constant we may assume k~j- 

h~j>/0 for all pairs (i,?'). Let  B t = ~ j ( k o - h t j )  Fo. Then B~>~0. If we define T in 

~)(9~,~) by T(E~)=Bi, then r(T)~<r(~), so T = r  by Theorem 4.10. Thus h~j =0 ,  and 

(F~s, ko) is a minimal set by  Lemma 4.16. 

If x is a unit vector in the Hilbert space ~ and F is a projection in ~ ( ~ ) t h e n  

the angle (x, F) between x and the subspace F is the angle between 0 and re/2 radians 

given by cos (x, F ) =  ]]Fx]]. If F =  [y] with y a unit vector in ~ then 

cos 2 (x, [y]) = ([y] x, x) = ([x] y, y) = cos 2 (y, [x]), 

so the angle (x, y) between x and y is well defined. 
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Let  {[x~]}~Gz be a set of 1-dimensional projections in ~ (~) ,  ~ finite dimensional. 

Suppose {[x~], k~) is a positive minimal set. Then 

dim ~ = tr (I )= ~ k~ 
atEl 

while 1 = ~. k~ cos 2 (x, [x~]) 
r162 

if x is a unit vector in ~. In particular the angles <x~, x~> are "almost" ~ /2  for 

"almost" every pair (a, fl) in I •  This condition is also sufficient in order tha t  

{[x~], k~}, be a positive minimal set. Let  D be the determinant ](cos 2 <x,, yj>)I, where 

I =  {1, 2 . . . . .  n}, and D k ( k =  1 . . . . .  n) the determinant ](A,j) I, where A,j= cos 2 <x~, xj> if 

] # k ,  and A,~=I .  Then D and Dk have l 's  on the main diagonal, so if the angles 

<x,, xj> are sufficiently close to ~ /2  the entries off the diagonal will diminish, except 

the kth column in Dk, and D > 0  and Dk>0.  Thus, if {Ix,]},-1 . . . . . .  is a set of 1- 

dimensional projections such that  there exist ki for which ~=1 k, [x,] = I,  then kt = 

D , / D  if D # O .  If the angles <x,, xj> are so large that  D >0  and Dk > 0 (k = 1 . . . . .  n) 

then {Ix, I, k,} is a positive minimal set. We summarize the last results as follows. 

PROPOSITIOI~ 4.18. Let {[x~]}~=l ...... be a set o/ 1-dimensional projections such 

that there exist real numbers k~ (i = 1 . . . . .  n) /or which 

k, [x,] = I.  

I /  {[x~], k~} is a positive minimal  set then the angles <xi, xj)  are so large that 

l = ~ k ~ c o s  2<x.xj> ( j = l  . . . . .  n). 

Conversely, i/ the angles <x~,xj> are so large that D > 0  and D~>0 ( i=1 ,  . . . , n )  then 

{[xt], k~} is a positive minimal  set. 

5. Maps of classes 0 and 1 

5.1. Two theorems. We characterize all maps of class 1 in ~)(92, ~ (~) )  and of 

class 0 in ~(92, ~),  where ~1 and ~ are C*-algebras and ~ is a Hilbert space, in a 

way analogous to Scgal's characterization [18] of pure states in terms of vector states 

and irreducible representations (Theorems 5.6 and 5.7). Recall tha t  a map r in 

~)(9/ ,~(~))  is of class 1 if and only if oJxr is a pure state of 92 for each vector 

state wx of ~ (~), and ~b is of class 0 in ~) (92, ~ )  if and only if / o ~b is a pure state 

1 8 -  632933 Acta  rnathematica. 110. I m p r i m 6  le 6 d6cembre  1963. 
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of 9/ for each pure state / of ~ .  Following [3] we say tha t  a positive linear map 

o~ one C*-algebra into another  is /aith/ul if its null space contains no non zero po. 

sitive operators. We are indebted to R. Kadison for remarks which simplified the 

proof of Theorem 5.6 considerably. We need some lemmas. The first with its proof 

is almost a direct copy of [3, Proposition 3, p. 61]. 

LEMMA 5.1. Let ~ and ~ be yon Neumann algebras and ~ a positive linear map 

o/ 9A into ~.  If ~ is ultra weakly continuous then there exists a minimal pro~ection E 

in 9A--the support o/ b--such that r162  /or all A in 9~, and the map 

EAE--> ~ (EAE) is faithful. 

Proo/. Let  ~ denote the left kernel of ~. Then ~ is the intersection of the left 

kernels of the states f o r where / runs through the ul t ra  weakly continuous states 

of ~ (Remark 3.7). By [3, Theorem 1, p. 54] ~ is ul tra weakly closed. By  [3, Co- 

rollary 3, p. 45] there exists a unique projection F in 9A such tha t  ~ = {T E 9~ : T F  = T}. 

Since F is self-adjoint, F is also in the right kernel of r Let  E = I - F .  Then 

(A) = ~ (EAE). 

LEMMA 5.2. Let ~ and ~ be Hilbert spaces and ~ in ~)(~(~), ~(~))  be o/class 

1 and ultra weakly continuous. Let x be a unit vector in ~. Then o)~r = o~y, where y 

is a unit vector in ~, and r Ix] or r 

Proo/. Since o J ~  is an ultra weakly continuous pure state of ~ ( ~ )  it  follows 

from [3, Theorem 1, p. 54] tha t  eoxr is a vector state w~. To simplify notat ion let 

Y=r and X=[x]. Then 0 ~ < Y < I  and eo~(Y)=l .  Thus Y X = X < . Y .  

To prove Y equals X or I we first assume the dimension n of ~ is finite and 

use induction. I f  n= 1 the lemma is trivial. 

Suppose n=2 and tha t  Y4=X. We may  then assume ~(~)=M~ and 

0) 
Y ~  

P 

where p ~=0. Let  w be a unit vector in ~ orthogonal to y. Le t  F = [y] + [w]. Then 

F ~ ( ~ ) F  ~ M 2. Let  e11, e12 , e21, and e22 be the matr ix  units in F ~ ( ~ ) F  and assume 

[y] = e11, [w] = e22. I f  o)~ is a vector state of M s then eo,~b is a vector state of ~ ( ~ ) ,  

and for some scalar k > 0  k wu r is a vector state or 0 on F!~(~)F.  Thus 

O)u r (ell) 0)u r (e22) = I O.)u r (e12) ]2. (1) 

Now 0 ~< ~ (ell + e~) ~ I .  Hence 
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4,(e22)= (~ ~) and 4,(e,s)= (~ ~). 

If u =  (u 1, us) is a vector in C 2 the following equations 

hold: ~,~ 4, (~ )  = lull s + p  I~1 ~, 
~u r (~ss)= q I~1 s, 
o,.  4,(~1~) = t lusl s + , ~ s  + ~,% 

Thus, using (1), 

Itlu~lS+,~,~s+~,,~,~lS= Itl~lu~l'+ (IriS+ I ~lh lu, lSl ~1 s 
+ 2 ~ ((ri + ~t) l us I s ~ us) + 2 ~ (r~ ( ~  us) ~) 

=qlusP(lu~P+pluslh. 

Now, if [1,/s,/a are complex valued functions of the two complex variables u 1 and 

u 2 such that  

11(1~,1, lu~l )=~(s  I~sl )a~s+ls (lu, I, lull) (,~,,s)s), 

then it is easily verified that  [1 = [2 = [3 = 0. Applying this to the above it follows that  

~i§ Itp=pq, and Irl~+l~p=q. 

Thus q=O, and 4, ([w]) = 4, (%2) = 0. Since this holds for every unit vector w ortho- 

gonal to y, and since 4, is ultra weakly continuous, Y =  I, as asserted. 

Suppose" n >/3, and assume the lemma is proved whenever dim ~ ~< n - 1 .  Let  

E be a projection in ~ (~) containing x and dim E = / c <  n. Then E 4, E is of class 1 

and ultra weakly continuous in 

(~ (~), E ~  (~) E) ~- ~ (~ (~), Mk), 

and my= wx4, = cox oE4,E .  By induction assumption E Y E  equals X or E. If E Y E =  X 

then 
O = E ( Y - X ) E =  ( ( Y - X ) � 8 9  * ( Y -  X)�89 E, 

so ( Y - X ) E = O ,  and Y E = X = E Y ,  taking adjoints. Similarly, if E Y E = E  then 

E (I - Y) E = 0, and E Y  = Y E  = E. Thus Y commutes with every projection containing x. 

Since n >/3 this is possible only if Y equals X or I.  

If ~ is not finite dimensional it follows from the above that  Y commutes with 

every finite dimensional projection containing x. Hence Y equals X or I.  The proof 

is complete. 
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LEMMA 5.3. Let r in ~)(M~, M~) be o/ class 1 and ]aith/ul. Then r is either a 

*-isomorphism or a *-anti-isomorphism. 

Proo/. I f  n =  1 the lemma is trivial. Assume n~>2. Then ~ is no t  a state. I f  

x and z are or thogonal  uni t  vectors  in C ~ then ~o~r = to~ and wzr = O~w, where y and 

w are or thogonal  uni t  vectors  in C ~. I n  fact, by  L e m m a  5.2 r  [x] and r  = 

[z], and 

o < o ~  ( [w] )  = o ~ r  ( [w] )  = o ~  ( [z])  = 0.  

Thus [ w ] y = 0 ,  and y and w are orthogonal .  Let  e~j(i,?'= 1 . . . . .  n) denote the matr ix  

units in Mn. Then e~ (i = 1 . . . . .  n) are or thogonal  1-dimensional projections. By  the above 

there exist n or thogonal  I -dimensional  projections F~ (i = 1 . . . . .  n) such t h a t  r (Fi) = e~. 

Replacing r by  ~ (U*. U), where U is a un i ta ry  operator  in Mn, if necessary, we m a y  

assume F~=e~. Let  k:~].  Let  E=ekk+e z. Then r  If  A E M n  and O<~EAE<~E 

then 0 ~< r  ~ r = E, so 

r  = Er  E = r E = Er 

Since operators E A E  with A ~> 0 generate E M n E ~  M 2 linearly the equat ion above holds 

for all operators E A E  in EMn E. Thus Er  is faithful and belongs to D(EMn E, EMn E). 

I f  x is a uni t  vector  in E then wx ~ = ~% with y a uni t  vector  in E. Indeed,  o ~ ( E ) =  

COx r  = o~x(E) = 1, so y E E.  Thus ECE is of class 1 and faithful in D(EMn E, EMn E). 

Moreover, ekj E = Eekj = Eekj E, so ekj E EM,~ E. At  this point  we have to refer the reader 

to a result  in chapter  8. I t  follows from Lemma 8.9 (i) t h a t  Er  is either an isomorphism 

or an anti- isomorphism such tha t  r = Er = ei~ or ei~ with 0 ~< 0 < 27e. This 

holds for all k, j. I t  follows t h a t  ~ is injective. Since each 1-dimensional projection in Mn 

is in r  as eoxr = coy with r  [x], ~ is surjective and s t rongly  positive. Thus  

is an order-isomorphism of Mn onto itself. Thus r is a C*-isomorphism [11, Corollary 5], 

hence is a *-isomorphism or a *-anti-isomorphism [10, Corollary 11]. The proof is com- 

plete. 

I f  ~ is a Hilbert  space defined by  the operations {a, x} -~  ax, {x, y}--> x + y, and 

{x, y} --> (x, y), where a is a complex number  and x and y are vectors in ~, we denote 

by  c the conjugate  map  ~ __>~c, where ,~c is defined by  the operat ions {a, x}--> 5x, 

{x, y} --> x + y, and  {x, y} --> (y, x). 

LEMMA 5.4. Let ~ and ~ be Hilbert spaces, and let ~ in ~ ) ( ~ ( ~ ) , ~ ( ~ ) )  be o/ 

class 1 and ultra weakly continuous. Then ~ is either a vector state o/ ~ (~), or there 
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exists a linear isometry V o/ ~ into ~ such that r  V*AV, or r V* c*A* cV 
/or all A in ~ (~). 

Proo/. Let P be the support of r (Lemma 5.1). Let  p denote the map A--> PAP 
of ~ (~) onto P ~  (~)P.  If we can show that  ~ restricted to P ~  ( ~ ) P  is of the form 

described above then r 1 6 2  is of the form described. We may thus 

assume ~b is faithful and not a state. Let  E be a finite dimensional projection in 

(~). Then 

E = ~ [x~] 
i = l  

with x~ mutually orthogonal unit vectors in ~. w x ~ = w y .  By Lemma 5.2 r 

[x~], and as shown in the proof of Lemma 5.3 the y~ are mutually orthogonal. Let  

F-~ ~ [y~]. 
i = l  

The map ECE is of class 1 in ~) (~(~) ,  E~(~)E). Let G be its support (Lemma 

5.1). Then in particular, Er162162 Now G(I-F)G>~O and 

Er Since Er is faithful on G~(~)G, G(I-F)G=O, and 

G=FG. Thus F>~G. Since O<~r and Er162162162 Thus 

r  Since r is faithful F=G. Thus E CE is faithful and of class 1 in 

~) (F ~ (~) F, E ~ (~) E) (~= ~) (Mn, Mn)). 

By Lemma 5.3 E CE is either an isomorphism or an anti-isomorphism on F~(~)F. 
If A is an operator in ~ ( ~ )  such that  O<~A<~I then r162 and 

Er162 By Lemma 5.1, for all A in !~(~), r162 
Er 

Let (Ez)lej be a monotonically increasing net of finite dimensional projections in 

~ ( ~ )  converging ultra weakly to I.  Let  Fz be the (finite dimensional) projection in 

~ ( ~ )  such that  r Then (Fz)1~j is a monotonically increasing net. In fact, 

if Ek>~Ez then, by the preceding, 

r (F~ (I - Fk) F~) = E~ r (I - Fk) El = E~ Ekr  (I - Fk) Ek Ez = 0, 

so that  Fz(I-F~)FI=O. Thus FkFl=.Fl, and Fk>~Fl. Let !~(~) 1 denote the unit  

ball in ~ (~). Then the map ~ (~)1 • ~ (.~) --> ~ (~) by (S, T) --> ST is ultra strongly 

continuous [3, p. 35] and similarly for ~. Now Et--->I ultra weakly, hence ul tra  

strongly [3, p. 37]. Hence in particular, E1SEz---> S ultra strongly for each operator 
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S in ~(~) .  Thus F t -+  I ultra weakly. In fact, if there exists an operator T >0  

such that  I -  F~ ~> T for all l 6 J then 

0 = r (Fz TFz) = E, r (T) E~ -+ r (T), 

and r  Since r is faithful T=O, and F~--> I ultra weakly. If A and B are 

operators in ~ (~) it follows that  Fz AFt ---> A and Fl BFz--> B ultra strongly, so 

F1AFI BFl -+ A B  ultra strongly, hence ultra weakly. If dim Fk ~> 2, Ekr Ek I F~ ~ (~) F~ 

is an isomorphism or an anti-isomorphism, say an isomorphism. Then E~ r E~ I F~ ~ (~) F~ 

is an isomorphism for all l 6 J ,  and 

r (AB) = lim r (FzBFI)) 
El---> I 

= l i m  E~ r (F~ AFt) Ez r (FzBF~) Ez 
EI"-~ I 

= l i m  Ezr162 
E~--* I 

= r (A) r (B). 

Thus r is a homomorphism or an anti-homomorphism. Since ~ is faithful ~ is in- 

jective. Also ~ (~ (~ ) )  is ultra strongly dense in ~(~) .  By [3, Corollary 2, p. 57] 

(~ (~)) = ~ (~). If r is an isomorphism it follows from [3, Proposition 3, p. 253] 

that  ~b is spatial, say r  U*AU with Y an isometry of ~ onto ~. If r is an 

anti-isomorphism then by [3, p. 10]r  U*c*A*cU. The proof is complete. 

Remark 5.5. If ~ is an irreducible C*-algebra acting on a Hflbert space ~ then 

each vector state of ~ ( ~ )  is pure on ~ .  Hence, if ~ is a C*-algebra and ~b is in 

~D(9/, ~)  then eox~ is a pure state of 9/ for each vector state o)x of ~ if and only if 

r is of class 1 in c.D(9/,~(~)). We say ~b is o/class 1 in ~D(9/,~). I t  is thus no restric- 

tion to consider maps of class 1 in ~.D(9/,~(~)) rather than maps of class 1 into 

irreducibly represented C*-algebras. 

THEOREM 5.6. Let 91 be a C*.algebra and ~ a Hilbert space. Then a map ~ in 

~)(9/,~(~)) is o/ class 1 i/ and only i/ either r is a pure state o/ 9/ or r  V*eV, 

where V is a linear isometry o/ ~ into a Hilbert space ~, and @ is an irreducible *-homo- 

morphism or *-anti-homomorphism of 9/ into ~ (~) .  

Proo/. I t  is clear that  if r is of one of the forms described then ~b is of class 1. 

Assume r is of class 1. Let oJ~ and my be vector states of ~(~) .  Then e o ~  and 

~o~r are pure states of 9/. We show they are unitarily equivalent. In fact, let z 
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be a unit vector in ~ orthogonal to x and y (if dim ~ = 2 argue similarly). Define 

unit vectors w~ (i = 1 . . . . .  5) as follows: 

Then 

w~=x, w~=2- �89 wa=z, w~=2- �89  w~=y. 

IIWi--Wi+il12=2--2�89 (i=1,...,4). 

If  we can show ww, 4 is unitarily equivalent to eOwt+l o 4  ( i=  1 . . . . .  4) then w~4 is 

unitarily equivalent to m,4.  We may thus assume Hx-Yll < 1. Then, with A in 9~ 

and IIA I] ~< 1, 

I( x- (A) I < I(A ( x -  y), x) l+ I (Ay, - Y) l 2 llA ]] ]l Y II < 2. 

Hence H eo~ 4 -- w~ 4 II < 2, so by [7, Corollary 9] opx 4 and o9~ 4 are unitarily equivalent. 

Let  ~ be the irreducible *-representation of 9~ of the Hilbert space ~ induced by 

cox4, [18]. Then eoy4=Opw~O for each vector state coy of ~ (~) .  Thus 4 = V  o~o with 

of class 1 in ~3(~0(9/),~(~)), and o~(VOp(A)))=wy(4(A))=Ww(~o(A))  for each A 

in 9~. Thus ~oy~ = o)w. By [13, Remark 2.2.3] ~ has an extension ~ to ~3(v2(9~)-, 

~ (~) )  ( =  ~ (~  (~), ~ (~))), which is ultra weakly continuous, e% o ~ is an ultra weakly 

continuous state on ~(~) ,  equal to cow when restricted to ~0(9~). By continuity 

~oy~ = opw, and ~ is of class 1 in ~3(~(~), ~ (~)). An application of Lemma 5.4 comple- 

tes the proof. 

TH]~O~EM 5.7. Let 9~ and ~ be C'algebras and 4 in ~3(9~,~). Then 4 is o/ 

class 0 i/ and only i/ /or each irreducible *-representation ~p o/ ~ ,  y~ o 4 is either a 

pure state o/ 9~ or ~p o 4 --= V*~V with V and ~ as in Theorem 5.6. 

Proo]. Each irreducible *-representation of ~ is cyclic and hence unitarily equi- 

valent to the *-representation induced by a state. Thus, by  Remark 5.5 and Theo- 

rem 5.6 it suffices to show 4 is of class 0 if and only if y) o 4  is of class 1 in 

~)(9~,~0(~)) for each irreducible *-representation v 2 due to a state. I f / i s  a pure state 

of ~ then / =  eoz 4f, where 4~ is an irreducible *-representation of ~ on a Hilbert 

space ~ .  Moreover, w~ 4~ is a pure state of ~ for each unit vector w in ~ .  Thus, 

4 is of class 0 in ~)(9~,~) if and only if o)w4~o4 is a pure state of ~ for each 

pure state / of ~ and each unit vector w in ~f if and only if 4~ ~ 4  is of class 1 in 

~) (9/, !~(~) )  for each pure state /. The proof is complete. 

5.2. Applications. 

COROLLARY 5.8. I /  ~ iS a C*-algebra and 4 is of class 1 in ~(9~ ,~(~) )  then 

either 4(9.I) is the scalars in ~ ( ~ )  or 4(9,I) is strongly dense in ~ (~). 
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Proo/. By Theorem 5.6 it  suffices to show tha t  if ~ is an irreducible C*-algebra 

acting on a t I i lber t  space ~ and V is a linear isometry of ~ into ~ then V * ~ V  is 

strongly dense in ~ ( ~ ) .  Let  e > 0 be given, and let x I . . . . .  xn be n unit vectors in ~. 

Let  B be in ~ ( ~ ) .  We have to show there exists A in V * ~ V  such tha t  ]I(A-B)x~]] <~e. 

The operator VBV*~!~(~) .  Therefore there exists C in ~ such tha t  

[[(c- VBV*)V ,II < e ,  i =  1 . . . . .  n. 

I f  A =  V*CV then, since B =  V*VBV*V,  

II(A-B)x, ll = I I (v*cv-  V*VBV*V)x, ll = IIv* ( e -  VBV*) vx, ll 

II(c- VBV*) Vx:l[ <e. 

COROLLARY 5.9. Let 9,1 and ~ be C*-algebras and r be a sur]ective C*-homo- 

morphism in ~ ( ~ ,  ~) .  Then v 2 o ~ is either a *.homomorphism or a *.anti-homomor- 

phism /or each irreducible *-representation y~ o/ ~ .  

Proo/. By Lemma 2.3 r is of class 0 in ~(9~,~) .  Let  IP be an irreducible 

*-representation of ~ on a Hilbert  space ~. By Theorem 5.7 ~0 o r is either a pure 

state of 9~ or is of the form V*~V, where ~ is an irreducible *-homomorphism or 

*-anti-homomorphism of 0~ on a C*-algebra acting on a Hilbert  space ~, and V is an 

isometry of ~ into ~. Now ~ o r  is a C*-homomorphism. If  ~ o r  is a state, it is 

thus a homomorphism. We may  therefore assume yJ o r = V*~V. Let  P be the pro- 

jection VV* in ~ ( ~ ) .  Then the map A - + P A P  is a C*-homomorphism of Q(9~), since 

the map B--> VBV* is an isomorphism of ~ ( ~ )  into ~ ( ~ ) .  With A self-adjoint in 0(~{), 

(AP - PAP)* (AP - PAP)  = (PA~P - P A P A P )  - ( P A P A P -  P A P P A P )  

= P A 2 P -  (PAP) 2 = O. 

Thus A P = P A P = P A  for each self-adjoint operator A in Q(9~). Thus PE~(~) ' ,  Thus 

P = I ,  and the map A-->V*AV is an isomorphism of ~(~1). Thus ~ o r  is either a 

homomorphism or an anti-homomorphism of ~I. 

COI~OLLARY 5.10. I /  9~ and ~ are C*-algebras and r is o/ class 0 in ~)(9~,~) 

then r maps the center o/ 9.I into the center o/ ~ ,  and r 1 6 2 1 6 2  /or all A in 

9~ and C in the center o/ 9~. 

Proo/. Let  ~0 be an irreducible *-representation of ~ .  Let  ~ be the center of 9~. 

Then y J o r  is either a pure state of ~ or of the form V*~V with V and ~ as in 
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Theorem 5.6. Since ~ is irreducible e(~) is the scalars in Q(9~). Thus ~o o ~ ( ~ ) i s  the 

scalars in ~(~) .  Thus ~ o r restricted to ~ is a state, hence a homomorphism. Since 

the irreducible *-representations of ~ separate points ~1 ~ is a homomorphism. I f /  

is a pure state of ~ then / ]~ (~ )  is a homomorphism. By [14, Corollary] ~(~) is 

contained in the center of ~ .  By [14, Lemma] (or from Theorem 3.1 and Lemma 

2.4) c~(AC)=dp(A)r for each A in 9~ and C in ~. The proof is complete. 

We recall tha t  a C*-algebra ~ is a GCR algebra if it has a composition series 

{I~} (an increasing family {I~} of two-sided ideals indexed by the set of ordinals less 

than or equal to some ordinal ~ such that  I 0 =0  and I v = ~ ,  and if a is a limit 

ordinal then [.J~<, 18 is dense in I~) such that  I~+1/I~ is CCR. A CCR algebra is a 

C*-algebra each of whose irreducible *-representations consists of completely conti- 

nuous operators. Kaplansky has proved [16, Theorem 7.4] tha t  the homomorphic 

image of a GCR algebra is GCR. We show a similar result for class 0 maps. 

COROLLARY 5.11. Let 9~ be a GCR algebra and let ~ be a separable C*-algebra. 

Suppose there exists a map r o/ class 0 in ~(9~, ~ )  such that whenever ~p is an ir- 

reducible *-representation o/ ~ on a Hilbert space o/ dimension greater than 1 then 

y) o r is not a state. Then ~ is GCR. 

Pros/. Let  yJ be an irreducible *-representation of ~ on the Hilbert space ~. 

By [6, Theorem 1], to show ~ is GCR it suffices to show ~ o ( ! ~ ) ~ ( ~ ) i t h e  comple- 

tely continuous operators in ~ (~) .  By [5, Theorem 2] it suffices to show that  F (~)  

contains some non zero operator of finite rank. If dim ~ = 1 this is trivial. Other- 

wise yJ o r = V*~V, where V is a linear isometry of ~ into a Hilbert space ~, and Q 

is an irreducible *-homomorphism or *-anti-homomorphism of 9~ into ~ (~). By [6, Theo- 

rem 1] ~(O/)D~(~). Thus 

~(~) =~ or v*q(~I)v~ v*~(~)v, 

which contains operators of finite rank. Thus F ( ~ ) ~ ( ~ ) ,  and ~ is GCR. 

6. Decomposition of positive maps 

6.1. General results. Let 9~ and !~ be C*-algebras and r a positive linear map 

of ~I into ~ .  Let  1~ denote the identi ty transformation of M~ onto itself. Following 

[20] we say r is completely positive if r | In is a positive linear map of the algebraic 

tensor product 9/| M~ into ~ | M~ for each integer n ~> 1. If ~ acts on a t i i lbert  

space ~ then r is completely positive if and only if r  V*~V, where V is a bounded 
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linear map of ~ into a Hilbert space ~ and ~ is a *-representation of 9~ on ~ [20, 

Theorem 1]. 

LEMMA 6.1. Let 9~ be a C*.algebra and ~ an abelian C*-algebra. Then every bound- 

ed positive linear map o/ 9~ into ~ is completely positive. 

Proo/. Every  pure state of ~ |  is of the form / |  where / is a state 

of ~ and g a state of M~. Indeed, let h be a pure state of ~ |  The center of 

| M~ is ~ | C,, where C~ denotes the algebra of operators of the form 2I with 2 

a complex number and I the identi ty in M~. By Theorem 3.1, if A is in ~ and B 

in M~ then 
h(A | B ) = h ( ( A  |  (I | B ) ) = h ( A  | I) h(I  | B). 

Denote the state A--> h(A | I) of !~ by / and the state B--> h(I  | B) of M~ by g. 

Then, if ~n= 1 A~| is any element in ~ | M.  then 

h (~ A~ | Bt) = ~ h (A, | Bt) = ~, h (At | I) h (I | B~) = ~ / (A,) g (B~) 
t~ t t i 

= y_j| |174 At | 
t 

Thus h = / | g as asserted. 

Let  q~ be a positive linear map of 9~ into ~ .  We have to show that  for each 

integer n>~ 1, 4 |  1~ is a positive linear map of 9 / |  into ~ |  Let  h be a pure 

state of ~ | M~. By the preceding paragraph h = / |  g, where / and g are states of 

and M~ respectively. Thus 

h o (4 | 1.) = (/| g) o (4 | 1.) = (/o 4) | g, 

which is the tensor product of two positive linear functionals, and is hence positive 

[21]. I t  follows that  4 |  In is positive, and r is completely positive. The proof is 

complete. 

THEOREM 6.2. Let ~ and ~ be C*-algebras and r a bounded positive linear map 

o/ 9~ into ~ .  Then r  where i -1 is an order-isomorphism o/ ~ into an 

abelian C*-algebra ~ acting on a Hilbert space ~, V a bounded linear map o/ ~ into a 

Hilbert space ~, and ~ a *-representation o/ 9.I on ~. Moreover, i/ 4(1)= I we may 

assume ~ c ~ and V is a proiection. 

Proo/. Let  X be the pure state space of ~ (the w*-elosure of the set of pure 

states of ~).  Let  /~ be the (canonical) order-isomorphism of ~ into C(X) ([9]). Let  
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be a faithful representation of C(X) as operators on a Hilbert space ~. Let  

~=~(C(X) ) .  Let  i = ~  o# .  Then ] o r  is a positive linear map of 9~ into ~, so is 

completely positive by Lemma 6.1. By [20, Theorem 1], j o r  V*~V, where V and 

e are as described. Let  i = i  -1 on ](~) .  Then r  o (V*QV). If r  then ?'(r (I)) = I ,  

and V may be chosen to be an isometry of ~ into ~. The map Z of ~ into ~ ( ~ )  

defined by A---> VAV* is an isomorphism, and P =  VV* is a projection in ~ (~) .  Let  

i =  (Z o?') -1. Then r  o (P~P). The proof is complete. 

6.2. Order-homomorphisms. Let  9~ be a C*-algebra and 9~. the set of self-adjoint 

operators in ~. We say a linear self-adjoint subset 3 of ~ is an order ideal if 3 N 9~. 

is an order ideal in 9~.. If ~ is a C*-algebra then a map r in ~)(9~, ~ )  is an order. 

homomorphism if r is an order-homomorphism of 9~. into ~ , .  

LEMMA 6.3. Let 

3 is linearly generated 

only i/ there exists a 

whose null space is 3. 

3 be a uni/ormly closed order ideal in the C*-algebra 9~ such that 

by positive operators. Then 3 is a two-sided ideal in 9~ i/ and 

C*-algebra ~ and a bounded positive linear map o/ 9~ into !~ 

Proo/. If 3 is a two-sided ideal then 3 is the null space of the canonical ho- 

momorphism 9~--> 9.I/3. By [19] ~ =  9~/3 is a C*-algebra. Conversely, suppose there 

exists a C*-algebra ~ and a bounded positive linear map r of ~ into ~ whose null 

space is 3. By Theorem 6.2 r where i -1 is an order-isomorphism of 

into a C*-algebra ~ acting on a Hilbert space ~, ~ a *-representation of 9~ on a 

Hilbert space ~, and V a bounded linear map of ~ into ~. 3 is the null space of 

the map V*~V. The null space of the map ~(A)-->V*Q(A)V is ~(3), which is an 

order ideal in ~(~) by Lemma 2.9, and is linearly generated by positive operators 

since 3 is. To show that  3 is an ideal it suffices to show Q(3) is an ideal in ~(~). 

We may thus assume r is of the form A-->V*AV and 3 is the null space of r If 

A~>0 in 3 then V*AV=O, so A V = O = V * A ,  taking adjoints. Since 3 is linearly 

generated by positive operators 0 = A V = V*A for each A in 3, and 3 is a two-sided 

ideal. The proof is complete. 

THEOREM 6.4. Let 9~ and ~ be C*-algebras and ~ an order-homomorphism in 

~) (9~, ~). Then the null space o / r  is a two-sided ideal in 9~ and r (9~) is uni/ormly closed. 

r is a C*-homomorphism i /and only i / /or each sel/-ad~oint operator A in 9~, r162 

_7/ r is sur~ective and y) is an irreducible *-representation o/ ~ then yJ or  is either a 

homomorphism or an anti.homomorphism o/ 9~. 
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Pro@ By Lemma 6.3 the null space of r is a two-sided ideal in ~1. Factoring 

it out we may assume 4 is an order-isomorphism. If  A is a self-adjoint operator in 

9~ then, by spectral theory, 

H A I[ = m a x  {Ix[, lY[), 

where x = i n f  {aER: aI~  A}, y = s u p  (bEB: bI <~A}. 

Since 4 is an order-isomorphism in ~)(9~,~), aI>~A if and only if aI>~4(A ) and 

bI<~A if and only if bI<4(A ). Thus H4(A)[I=J]A[[, and 4 is an isometry on self- 

adjoint operators. If (Aj) is a Cauchy sequence of operators in a C*-algebra and 

Aj=Bt+iC j with Bj and Cj self-adjoint operators, then (Bj) and (C~)are Cauchy 

sequences. Indeed, Bj = �89 (A, + A*) and Cj = (2 i) -1 ( A j -  A~). Thus 

II Bj - Bdl = �89 H ( A j -  A~) + ( & -  A~)*II ~< II A,- A~ II, 

and similarly, II C , -  C~II ~< II ~ , -  A~II. Let (r (Aj)) be a Cauchy sequence in 4(~1). 
Then 4 (A,) = r (Bs) + i 4 (Cj), with Bj and Cj self-adjoint in g[. Thus (4 (Bj)) and (4 (CJ)) 

are Cauchy sequences. Since 4 is an isometry on self-adjoint operators (Bj)and (Cj) 

are Cauchy sequences in 9~, say B s--> B and Cj--> C. Let  A = B + iC. Then A E g[, and 

4(A)=4(B) +i4(C ) =t im (~ (Bj)+i4(Cj)  ) =t im 4 (Aj). 

Thus 4(Aj)-->4(A) in 4(~),  and 4(91) is uniformly closed. If ~ is a C*-isomorphism 

then, clearly, r ) for each self-adjoint operator A in 9/. Conversely, 

suppose this condition is satisfied. We proceed as in the proof of [11, Theorem 2]. 

Let A be self-adjoint in ~. Let  B be the self-adjoint operator in ~ such that  r (B)= 

r by [11, Theorem 1], so B<~A 2. However, for 4 -~ we can assert, 

4-~(4(A)2)=B>>-(4-1(r 2, (note that  4 -z is defined on the C*-algebra gener- 

ated by ~b(A) and I). Thus B = A  ~, and 4(A~)=4(A) ~, so 4 is a C*-isomorphism. If 

q~ is surjective and ~0 is an irreducible *-representation of ~ then ~0 o 4 is a homo- 

morphism or an anti-homomorphism by the above and Corollary 5.9. 

Not all order-isomorphisms of one C*-algebra into another are C*-isomorphisms. 

In fact, if ~ is a C*-algebra and X its pure state space, then the canonical order- 

isomorphism /~ of 9I into C(X) is a C*-isomorphism if and only if F is abelian. How- 

ever, F is extreme in ~) (92{, C(X)). Indeed, let Y be the set of pure states of ~. Then 

Y is dense in X. Let  TE~(~I,C(X),~I), "c<~#. For each poin~ y in Y the map 

A --> # (A) (y) is a pure state of ~[, and if A/> 0 then v (A) (y) ~/~ (A) (y). Thus ~ (A) (y) = 

l#(A)(y) for each A in 91 and y in Y. By continuity v(A)=IF(A) for each A in 

~, hence v = t # ,  and ~u is extreme. Note that  F is of class 0 if and only if Y = X .  
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Not all order ideals generated by positive operators in a C*-algebra 9~ are two- 

sided ideals. For example, if P is a projection in 9~ then P ~ P  is an order ideal in 

generated by positive operators. 

6.3. A Radon-Nilcodym theorem. 

T~EOREM 6.5. Let 9~ and ~ be C*-algebras and CE~) (~ ,~ ) .  Then there exists 

a decomposition r = i o (PEP) o/ r where i -1 is an order-isomorphism o/ ~ ,  ~ a *-rep- 

resentation o/ 9~ on a Hilbert space ~, P a projection in ~ (~), such that [~ (9)P] = I 

and such that i/ ~f is a positive linear map o/ ~ into ~ and y~ <~ r then there exists an 

operator S' in ~(~)', O<~S<~I, such that 

/or all A in 9X. 
~p(A) = i (PS 'Q(A)P)  

Proo/. Applying the universal representation to the C*-algebra ~ in Theorem 

6.2. we may assume each pure state of ~ is a vector state, r  and 

[ ~ ( ~ ) P ] = I ,  (note tha t  [Q(~)P]EQ(~{)'). Since y~<r ~=io~v 'o~o with 

~': e(?I)-+ i-~ (~ )~  ~, 

and 0~<y/~<P.P.  Let  X be the set of unit vectors in ~ such that  o~x is a pure 

state of ~. If x E X  then [x] ~< [P~(~)x] ~< [~x] = [x] since ~ox is pure (see e.g. Theo- 

rem 3.9). With eoz and ~oy distinct pure states of ~, [Q(~l)x] [Q(9.1)y] =0.  In fact, 

with A and B in Q(9~), 

(Ax, By) = (x, A* By) = (Px, A ' B y )  = (x, PA* By) = O, 

since PA*ByE[y]  and x is orthogonal to y. From [3, Lemma 1, p. 50] it follows 

that  there exists S~ in ~(9/)', O<~Sx<~I such that  wxy/=Cox(S'x. ). Let 

s t  = [e (?/) x] ~ [e (?~) x]. 

Then ~Oxy/=wx(S~ �9 ). Let (el)z~j be an orthonormal basis for P with eIEX for each 

lEJ .  Let  S'=~IGjSe~. Then S'EQ(9~)' and O<~S'<~I. Moreover, if AE~(~)  then 

eoe~ (S'A) = we~ ( ~j Se~ A) = e% (S~ A) = e% y/ (A). 

Thus, if x = ~ z  ~ze~ is a vector in P then 
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o)x (S'A) = (S'A Z 2, e .  ~ 2~ e~) 
leJ leJ 

= ~. 12 ̀ 12 (S'Ae,, e,) 
l E J  

= Y I;t,l~(oJ~,(s'A) 

=(v/ (A) Z2zel,  ~ 2lel) 
IcY leJ 

= o~x (~o' (A)) .  

Thus PS'AP=~p'(A) for all A in ~(2), and ~o(A)=i(PS'~(A)P) for each A in 2.  

The proof is complete. 

We cannot expect a much stronger type of Radon-Nikodym Theorem for posi- 

tive linear maps of C*-algebras. For example, let ~)a be the diagonal 3 • 3 matrices 

and 4 be an injective but  not extreme map in ~)(~)a, M2), (it is easy to find such 

a 4). Then there exists ~E~)(~)a, Ms, �89 such that  0~<T~<4 and ~ u � 8 9  If  there 

exists S' E~)a(=~)s such that  v = 4 ( S ' .  ) then S ' =  �89 I ,  since 4 is injective, so the 

"natural"  form for the Radon-Nikodym Theorem cannot hold. 

COROLLARY 6.6. Let 2 and f~ be C*-algebras and 4 = i  o (P~P) be as in Theo- 

rem 6.5. Let 
Z = (S' E Q (2) ' :  PS 'AP E i -1 (~) for all A E ~(2)}. 

Then 4 is extreme i/ and only i/ the map P.  P is in]ective on Z. 

Pro@ Let v be a map in ~ ) ( 2 , ~ , 2 I )  such that  ~ < 4 .  Then there exists S' 

in Z such that  T(A)=i(PS'Q(A)P)  for each A in 2.  If  P . P  is injective on Z then 

S'=,~I, since ,~IEZ and P S ' P = 2 P = P , ~ I P .  Thus v = 2 4 ,  and 4 is extreme. Con- 

versely, suppose 4 is extreme and S' E Z, PS 'P = O. By Lemma 2.3 the map i o (P.  P)  

is extreme in ~)(~(2) ,~) .  By Theorem 3.1 PS'~(A)P=O for all A in 2.  Now 

[~(2)P]=I.  Thus vectors of the form Q(A)x, x E P  and A E 2 ,  generate a dense 

linear manifold in ~, and O = P S ' = S ' * P = ~ ( A ) S ' * P = S ' * ~ ( A ) P  for all A in 2.  

Thus S' =0. The proof is complete. 

7. Local decomposition of  positive maps 

The decomposition theory developed in chapter VI is in some respects unsatis- 

factory. For example, in the notation of Theorem 6.2 the map V*QV need not be 

extreme in ~) (2, ~) if 4 is extreme in ~) (2, ~).  The question studied in this chapter 

is the following: if 2 is a C*-algebra, ~ a Hflbert space, and 4 a positive linear 
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map of 9A into ~ (~) ,  can r be written in the form V*~V, where V is a bounded 

linear map of ~ into a Hilbert space ~, and Q is a C*-homomorphism of 91 into 

~ ( ~ ) ?  We shall see tha t  "locally" r is of this form (Theorem 7.4), and globally 

is "almost"  of this form (Theorem 7.6). 

DEFINITION 7.1. Let ~ be a positive linear map o/ a C*-algebra 9A into ~(~) ,  

being a Hilbert space. We say ~ is decomposable i/ there exists a Hilbert space ~, 

a bounded linear map V o/ ~ into ~, and a C*-homomorphism Q o/ 91 into ~ (~) such 

that ~= V*QV. r is locally decomposable i/ /or each non zero vector x in ~ there 

exists a Hilbert space ~ ,  a linear m a p  V~ o/ ~x into ~, such that II V~H <~M /or all 

x, and a C*-homomorphism ~ o/ ~ into ~(~x)  such that 

V, Qx(A)V*x=r  

/or all A in 91. ~ is locally completely positive i/ /or each x :~0 in ~ there exists a 

decomposition 
*X v~e~(.)v~ =r 

as above, with the property that each ~ is a *-homomorphism. 

LEMMA 7.2. Let 9A be a C*.algebra, ~ a Hilbert 8pace, and ~ a positive linear 

map o/ 9~ into ~ ( ~ )  with r  I /  x is a non zero vector in ~ then there is a 

*.representation ~fl o/ 9~ as a C*-algebra on a Hilbert space ~, a vector y in ~ cyclic 

under ~v(OA), and a bounded linear mapping V o/ the set 

(w(A) y : A sel/-adjoint in 9i}- 

into ~, such that V w ( A ) V * x = r  /or each sel/-adjoint A in 91. 

Proo/. Let 1=o9xr Say [[x]]=l. Then / is a state of 91. Let  ~b I be the *-rep- 

resentation induced by / of 91 on ~r, and let z (=  xl) be a cyclic vector for r 

in ~r such that  co~r l%r A self-adjoint in 91, define V r 1 6 2  Now the set 

(r A is self-adjoint in 91}- is a real linear subspace of ~I whose complexifica- 

tion is dense in ~f. If ~I(A)z=O then 

0 = (el (A s ) z, z) = / (A s) = (r (A s ) x, x) >~ (r (A)8 x, x) 1> 0, 

by use of [11, Theorem 1]. Thus r  If follows that  V is well defined and 

linear. Note that  V Cr (I) z = Vz = r (I) x and that  

(V 'x ,  ~ ( A ) z ) =  (x, VCs(A ) z)= (x, r  = (z, ~ ( A ) z )  
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for each self-adjoint A in 01. Thus V*x=z,  and V 4 I ( A ) V * x = 4 ( A ) x  for each self- 

adjoint A in 01. Moreover, 

II r (A) x II = (4 x, (4 x,  x)  = / ( A  2) = II II 

so that  [[V]]~<I. Let  V=4f ,  ~ = ~ I ,  and y = z .  The proof is complete. 

LEMMA 7.3. Let 4 be a positive linear map o/ the C*-algebra 01 into ~(~) ,  

being a Hilbert space, such that 4(1)<~ I. Then 4 satis/ies the inequality 

4(A*A + AA*) >~ 4 (A*) 4(A) + r  
/or all A in 01. 

Proo/. The operators A +A* and i ( A - A * )  are self-adjoint. By [11, Theorem 1] 

4 ((A + A*) 2) + 4 ((i (A - A*)) 2) ~> 4 (A + A*) 2 + 4 (i (A - A*)) 2. 

A straightforward computation now yields the desired result. 

THEOREM 7.4. Every bounded positive linear map o/ a C*-algebra 01 into the 

bounded operators on a Hilbert space ~ is locally decomposable. 4 is locally completely 

positive i/ and only i/ there exists a scalar ~ > 0 such that the Cauchy-Schwarz inequality 

(a4) (A'A) >~ (~4) (A*) (~4) (A) 

is satis/ied /or all A in 01. 

Proo/. Multiplying 4 by a scalar we may assume 4(1)~< I.  Let  x be a non zero 

vector in ~ and / and 4I as in Lemma 7.2. Define 4~ in terms of the right kernel 

as a *-anti-homomorphism (i.e. [A, B] = / (AB*), ~I = (A : [A, A] = 0}, 4~ (C) (A § ~f) = 

AC§ of 01 on the Hilbert space ~;, and let ~pf=4rr Let ~I be the Hilbert 

space ~r $ ~r with the inner product 

t 1 t ( z e z  , y ~ y ' ) = � 8 9  ( z ,y )+~  (z ,y ' ) ,  

where y, z E ~I and y' z', E ~ .  YJI is a C*-homomorphism of 01 into ~(~f) .  With x I 

and Yr the "wave functions" of / for 4r and 4~, respectively, let zI=xi~ Yr. Define 

a map V' of the linear submanifold ~fli(01)zr of ~f into ~ by V'y~i(A)zI=4(A)x, for 

each A in 01. Note that  if y~I(A)zr=O then 4f(A)xf=O=4'f(A)yr.  Thus 

4r (A*) 4I (A) xr = 4I (A'A) xl = 0 = 4'r (A*) 4"~ (A) Yr = 4"r (AA*) Yr, 

so that  / (AA*)=/(A*A)=O.  Thus by Lemma 7.3 
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0 = ((r (A'A) + ~ (AA*)) x, x) 

>~ ((~ (A*) ~ (A) + ~ (A) ~ (A*))x, x) >~ 0, 

and r  Thus V' is well defined and linear. Moreover, 

II v' II = sup (ll r (~)x I1: II ~ ( A ) z ,  II = ]) 
=sup {l[r [[~(A)~,. r 1} 
=sup  {[[r (r  

By Lemma 7.3, if (~ (A*A + AA*) x, x) = 2 then ((~ (A*) r (A) + ~ (A) ~ (A*)) x, x) ~< 2, so 

that  [[~(A)x[[2~<2. Thus [Iv'[[ ~<2 �89 Extend V' by continuity to all of the subspace 

E = [~r(~)zr], and call the extension V' Define the linear map V of Rr into ~ by V 

restricted to E equals V' and V restricted to I - E  equals 0. Then [[V[[~<2t" As in 

Lemma 7.2 it is straightforward to show tha t  V~pI(A)V*x=~(A)x. Letting Vx = V and 

Qx =~vr we see that  r is locally decomposable. 

Suppose there exists a > 0  such that  a ~  satisfies the Cauchy-Schwarz inequality 

(a~)(A*A)>~(a~) (A*) (a~) (A) for all A in ~. By Lemma 7.2 there exists a *-rep- 

resentation ~ of 9~ as a O*-algebra on a Hilbert space ~, and a vector y in R, cyclic 

under ~0(~), and a linear mapping V of the set {~(A)y:  A is self-adjoint in 9~}- into 

such that  [[V[[~<I and V~p('A)V*x=r for each self-adjoint A in 9/ (we still 

assume ~(I)~<I). As in Lemma 7.2 /=o>x~, y = x r  and ~v=~r. If ~r(B) x f = 0  then 

r x r = 0, so that  

0 = / (B'B) = (~ (B'B) x, x) ~ ~ (~ (B*) r (B) x, x) >~ O, 

so ~ ( B ) x =  0. Thus V has a linear extension to the linear manifold r  r. Since 

][~(B)x]]~<~-i]]dpf(B)xl]] ~, ][V][~<a-�89 Since xf is I cyclic V has a continuous linear 

extension to ~r, and V~p(A)V*x=d~(A)x for all A in 9/. Letting Vx = V and O,=~o 

we conclude that  qb is locally completely positive. 

Conversely, let r be a locally completely positive map of 9 / in to  ~ (~ ) .  Then for 

each vector x # 0  in ~ there exists a Hilbert space Rx, a linear map Vx of Rx into 

with [[Vx[[~<M for all x=~0, and a *-representation 0~ of ~ on R~ such that  

V~:o~(A)V*x=r for all A in ~. Let  o~=M -~. Then for x in ~ and A in 9~, 

(he(A'A) x, x) = ~(Vxo~ (A*A)V* x, x) = a ~ M s ]l 0~ (A)V* xl[ ~ 

= ~ II r (A)~ I[ ~= (~ r (A*)~ r (A)~, ~), 

and ~ satisfies the Cauchy-Schwarz inequality a~(A*A)>~a~(A*)~(A) .  The proof 

is complete. 

1 9 -  632933 Acta  mathematiea.  110. I m p r i m ~  le 11 dSeembre 1963. 
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COROLLARY 7.5. Let r be a bounded positive linear map o/one C*-algebra 9~ into 

the bounded operators on a Hilbert space. Suppose 4, is a trace, i.e. 4,(A*A)=4,(AA*) /or 

all A in ~. Then 4, is locally positive. 

Proo]. By Lemma 7.3 4, satisfies the inequality 2 4, (A'A)/> 4, (A*) 4, (A) + r (A)4, (A*) 

for all A in 9/, so that  �89189189 By Theorem 7.4 4, is locally 

completely positive. 

THV.OR~.M 7.6. Let 9~ be a C*-algebra and 4, a bounded positive linear map o] 9.I 

into the bounded operators on a Hilbert space ~. Then there exists a Hilbert space ~, 

a continuous linear map V o] ~ into ~, a C*.homomorphism ~ o] 9~ into ~ (~), and 

a linear (not necessarily continuous) map W o/ ~ into ~ such that 

4,= wov. 

Proo]. Let  (ez)tE1 be an orthonormal basis for ~. By Theorem 7.4, for each 

l E J there exists a t tf lbert  space ~z = ~et, a bounded linear map V~ =Vez of ~l into 

~, and a C*-homomorphism Qz=~ z such that  Vt ~z(A)V~el=4,(A)et for each A in 2.  

Let  ~ =  $les~z .  If  x e ~  then x = ~ z ~ l  atel. Define the map V of ~ into ~ by 

Vx = ~. at V* el = ~ az zz, z, = V* ez. 
l e g  IEJ  

Then V is linear. V is continuous since 

I1 v x  I1' = I ' I1 ,11' = la, I ' (4, (I)e,, e,)~< 114, (z)I1,  la, I ' =  114,1111xll '. 

Define the map W of ~ into ~ by W(~zG~x~)=~zE~Vtx,, where xzE~t. Then W is 

linear. Let  Q= �9 zes~l. Then Q is a C*-homomorphism of 9~ into ~ ( ~ ) ,  and 4,= W~V. 

The proof is complete. 

A * When 4 , ( A ) x = V ~ x (  )V~x as in Theorem 7.4 we say Vz~xV* is a local de. 

composition of 4, at x. 

Remark 7.7. Let 4, be a bounded positive linear map of a C*-algebra 9~ into a 

C*-algebra ~ acting on a Hilbert space ~. Let  x be a non zero vector in ~. Suppose 

the local decomposition VxQxV* of 4, at  x is such that  Vz~x(A)V* commutes with ~ '  

at x for each A in 9/ (i.e. if B ' E ~ '  then Vxoz (A)V*B 'x=B 'VxQ~(A)V*x ) .  Then 

4 , ( A ) y = V x ~ x ( A ) V * y  for all y in [~ 'x] .  In fact, by continuity we may assume 

y = B ' x  with B' in ~ ' .  Then 

V ~ ( A )  V* y =  VxQ~(A)V* B ' x =  B ' V ~ x ( A ) V *  x =  B' 4 , (A)x=4, (A)y .  
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In particular, if x is a separating vector for ~ then [~ '  x] = I ,  and ~b is decompo- 

sable, and r is completely positive if and only if r is locally completely positive. 

The following proposition is another result to this effect. 

PROPOSITIOn 7.8. Let 9~ be a C*-algebra and ~ a Hilbert space. Let ~ be a 

positive linear map o/ 9~ into ~(~)  with ~(I) invertible. Suppose r is decomposable, 

r = V*~V, where V is a bounded linear map o/ ~ onto a Hilbert space ~, and ~ is a 

C*-homomorphism o/ ~ onto an algebra o/ operators acting on ~. I /  r is locally com- 

pletely positive then ~ is completely positive. 

Proo/. First assume ~ is a C*-homomorphism of 9~ onto a C*-algebra ~ acting 

on ~. Then ~b is a *-homomorphism. In  fact, if not then by  Corollary 5.9 there 

exists an irreducible *-representation ~ of ~ such that  y)o ~ is an irreducible anti- 

homomorphism and ~(~)  acts on a Hilbert space ~ of dimension greater than 1. 

Since ~b is locally completely positive there exists by Theorem 7.4 a >0  such that  

r162162 for all A in ~. Composing with ~p it follows that  for every 

operator B in the irreducible C*-algebra ~v (~) there exists cr > 0 such that  BB*>~ ccB*B. 

Using [12, Theorem 1] it is easy to show dim ~ v =  1, contrary to assumption. Thus 

is a homomorphism. In the general case replace V by ~ (I)V. Then V is still sur- 

jective. We may thus assume ~ (I) is the identity operator in !~ (~), and V* V = ~b (I). 

By the preceding it suffices to show ~ is locally completely positive. By assumption 

there exists a > 0  such that  r162 Since ib(1) is invertible there 

exists F > 0 such tha t  ]l V* Vx ]l = II ~b (i) x ]]/> y ][ x II for all x E ~. Thus, since V is sur- 

jective, there exists ~ > 0 such that  H V* z ]l ~> ~ H z ]l for all z E ~. If Q is not locally com- 

pletely positive then for any fl > 0 there exist x in ~ and A in 9/ such that  

(~ (i*A)x,  x)<~fl H ~(A) x]] 2. 

Choose fl so small tha t  fl/(~2< a. Then if x = Vy, 

]lr (A) Y]I ~< (~ (A*A)y,y)= (~ (A*A)x,x)<flHQ(A)Vy]] ~ 

11V*e(A)Vy II nl (A)y I1 < II (A)y II 

a contradiction. Thus ~ is a *-homomorphism. The proof is complete. 

8. Maps o f  2 x 2 matrices  

We classify the extreme points in ~)(M2, M2). In  order to make the classifica- 

tion as neat as possible we make the following 

1 9 "  - 632933 
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DEFINITION 8.l. Let 9.I and ~) be C*-algebras. Let r and T be maps in ~)(9.I,!~). 

Then ~ and ~ are unitarily equivalent i/ there exist unitary operators U in ~ and V 

in ~ such that 4 =  V*~(U*. U)V. 

I t  is clear from Lemma 2.2 that  r is extreme if and only if ~ is extreme. 

THEOREM 8.2. Let ~ be a map in ~(M2, M2). Then ~ is extreme i/ and only 

i/ ~ is unitarily equivalent to a map o/ the /orm 

a ab § tic ~d)'  
(a 2)__>(~c+~b , a + e b + ~ c +  

where in the m e  when ~ . 0 ,  and Io~] or IS] equals 1 when 

7=0 .  

The proof is divided into some lemmas. We first recall some facts about M, .  

If  x = ( x  I . . . . .  xn) is a unit vector in C n then [x]=(x~j) .  If  (a~j) is a matrix in Mn 

then 
0~z ((a,/)) = 5 a,t ~,x,. 

t.1 

We denote by e~s the matrix units in M~. 

LEMM.A_ 8.3. Let / be a state on M~. Then / is pure i/ and only i[ 

]/(e,s)12=/(e,)/(esj), 1 <~i, i < n .  

Proo/. If  [ is a linear functional on M,  and [x] = (x~ ~j) is a 1-dimensional pro- 

jection, let E be the matrix (/(e~s)) in M~. Then 

o~ (E) = Z /(e,j) ~j x,  = / (Ix]) .  
| . t  

Thus / is positive if and only if E~>0. If  / is a state then 0~<E~<I. I f / i s a p u r e  

state then / = w x  for some unit vector x, and /(e~j)=x~j, so that  ]/(etj)]2=/(e~f)/(ez). 

Conversely, suppose this equation is satisfied. Then E is a projection. Inded, 

(E2),, = 5 / (e,k) l(e~,) = 5 / (e~,) l(e~) = l(e,)  l(I)  = E, .  
k k 

Since O<~E<~I, E-E~>~O and has zeros on the diagonal. Thus E = E  2. With x a 

unit vector in the range of E, 

1 = ~=(E) = / f ix ] ) .  
Thus / =  cox, and / is pure. 

In  particular we have proved 
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COROLLARY 8.4. Let [ be a linear /unctional on M 2. Then I is positive i I and 

only i I 
/ (e11)/> 0, ] (%2) t> 0, and [1 (e12) is < / (e11)/(%S)- 

LEMMA 8.5. Let r be an extreme map in ~)(MvMs). Then there exists a vector 

state o~x o/ M S such that o~xr is a pure state ol M y  

Proo 1. Suppose not. Then for all unit vectors x in C 2 

~x r (e11) ~x r (ess) > I ~ r (els)I e, 

by Lemma 8.3 and Corollary 8.4. Since the unit sphere in C S is compact there exists 

> 0 such that  
-< ~ r (e11) ~ r (ess) - I ~ r (els)I e 

for all unit vectors x in C S. Since ]wxr )iS< 1 

(1 + ~r ~oz r (eis) I S < eoz r (ell) o,x r (ees). 

Define two maps ~+ and ~v-of M S into M S as follows: ~• is linear, 

~+ (eit)= r (eft) (i = 1, 2), ~0 ~: (e12) = (1 + •) r (e,e), ~0 • (es1) = (1 + 0) • (e21), 

where ~ > 0  is such that  ( l + ~ ) S < l + ~ .  By Corollary 8.4 yJ• e , Me) and 

r = { ~++  { ~-.  Since r is extreme we have arrived at  a contradiction. The asser- 

tion follows. 

LEMMA 8.6. 11 r is extreme in ~)(M2, M2) r is unitarily equivalent to a map o1 

the lorm 

Ta + eb + ~c 

Proo 1. Write r in the form 

( r  r  
~(A) = \~21(A) ~22(A) ] 

Up to unitary equivalence we may by Lemma 8.5 assume Sn is the pure state 

(atj) -+ all. Then r (e22) = 0. Thus r (e2s) = 0 = r (e11)- The lemma follows.. 

We fix a map $ in ,~(M2, Ms) of the form described in Lemma 8.6. 

LEMMA 8.7. I ~ l + l ~ l . < ~ .  

Proo 1. Since $ is positive 
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(I a [2 +]fl ]2)] b ]2 + 2 ~ (o~fb z) < ra  8 + a2 ~eb  + (~ad, (2) 

whenever a~>0, d>~0, [b]2~<ad. Replace b b y - b  in (2) and add the two inequalities 

obtained. Then 
(] a ]2 + I fl 18) ]b ]8 + 2 ~ ( a f  b 2 ) ~< ~'a 2 + ~ ad. 

Choose 0 such that ~(afb2eS'~ Then 

(]a[ + ]fl[)2 ]b[2 <<. ra2 + Oad. 

This holds for Ib[8=ad and all a~>0. Hence (]a]+]fl])8-~<J. 

LEMMA 8.8. 1/ [a]+[fll=(~ �89 then there exists a real number r such that e 8= - a / ~ r  8. 

Proo/. If a f t=0 ,  say /~=0, then l a l = 5  �89 and (2) takes the form (~]b[2-~<yaS+ 

2 a ~ e b + S a d .  In particular, if b is such that  ~ e b = - [ e [  a ~  and ]b[2=ad, then 

21e]l/ad~<ya. Since this holds for all d, e=0 .  Assume afld:0. If [bl2=ad and 

~(afbS)=[all f l l[bl  8 then (2) takes the form ~a+2~eb>~O. This holds for every d~>0. 

Thus ~eb~>0. Apply this to - b  then 0 ~ < ~ ( e ( - b ) ) = - ~ b ,  so ~ e b = 0 .  Now 

~(afb ~) = lal I~1 Ibi s and b = Ib[e, ~ implies eS'Oaf = la[ Ifll, and e '~ = (la[ I/~1) �89 (aft)- �89 

Thus ~(e( lal l~l /af) �89 or ~(af)-�89 is purely imaginary. The lemma follows. 

L ~  8.9. ~uppose I~l= rV~. Then r is a vector state, say due to the unit 

vector (x, w). r is extreme i/ and only i/ one o/ three cases occurs. 

(i) i/ x=O then l al or I~l equals 1. 

(ii) i/ w =O then a=f l=O.  

(iii) i/ xw:~O then ~ = - � 8 9  (w~/~x) ,  f l=�89176 I. 

Proo/. Case (i), x = 0. Say ~b = �89 ((4 + 4') + ( 4 -  ~')) with r +__ r in ~3 (Ms, M2). 

Then a = �89 ((a + a') + ( a -  a')) and similarly for ft. Then a necessary and sufficient 

condition for r162 to be in ~(M2, Ms) is that  [~q-a ' l+[f l •  , as follows from 

inequality (2). If g f l ~ 0  choose k such that  

0 < k < l ,  ( l + k )  lar and 0~<( l~k!a !~[ /~ l~<l .  
- I~l/  

Let :r  f l '= - ~ l a l l ~ l - ~ .  Then 

I~+ a'l + I~_+~'1 = (1 ___k)I~1 + (1-T- k l a [ ~  I~11 I~1 = I~1 + Ifll < 1. 

Thus if l a l + l ~ l < l  or ~ f l * 0  then r is not extreme. Thus, if r is extreme then 
lal or I~1 equals 1. C o n v e r s e l y ,  if I~1 or I~1 equals 1 then r is e v e n  extreme of class 0. 
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Case (ii), w=0 .  Then r is a pure state, and clearly 0 :=f l=0.  

Case (iii), xw#O.  Let F be the projection (w 
]xl2 w w . 

x Ix] 3 

Then r so r =0 .  Hence 0:=-fl(w~/ff~x). Since r and r are pure 

states it follows that  r is extreme if and only if Ifl] is maximal, i.e. by Lemma 8.7, 

if and only if I0:l + Ifll = Iw], i.e. if and only if Ifll (1 (w~2/ff~x)l + 1) = ]w], or fl = �89 e '~ ]w]. 

The proof is complete. 

LEMMA 8.10. 1~13<2~(6--10:13--1~12). II 10:1+1~1=6+ then Irl,<2~�89 where r is the 

number /ound in Lemma 8.8. 

Proo/. If y = 0  then clearly e =0.  Assume y # 0 .  In inequality (2)replace b by 

ib and obtain 
([0:]2 + 1fl]2)]b]2_ 2 ~  (0:~b 2) <...~a2+2a~eib+6ad. 

Let b be such that  ~ e b ( l + i ) = - 2 � 8 9  and suppose Ib [2=ad=l .  Adding the 

above inequality and inequality (2) we obtain for a >/0, 

[0:]2+ ]fl]2 <--. ~a3-- 2�89 a[e] +6. 

The function /(x)=rx3-2�89 has its minimum for x=2-+~- ' l~ l .  Thus I0:13+ 
1~13<-1~13(2~)-1+6, and the first assertion of the lemma follows. If I0:1+1~1=6�89 

then 1~13<2~210:11t~1 , By Lemma 8.8 1~[3=10:11/~[t 3. Thus r3<4~ .  

LEMMA 8.11. 17/ 1~13=2r(6-10:13-1~13) and ~ # 0  then I0:1+1~1=6+. 

Proo/. There exists 0 between 0 and 2:~ such that, ~=e'~ 
Let b=e i<" o). Let a d = l .  Then inequality (2) becomes 

I0:13+ I/~ 13 + 2 !,)~ (0:/~e -2'~ -<< y a  2 - 2 a  (2 y ( 6 -  I0:12-1~12)) + +6. 
The function 

l(~) = ~,~2- 2 (2 7 ( 6 -  I0:1 S -  I/~13)) + �9 + 6 

has its minimum for ~ =  (2~,-' (6 - I0 :13-  1~12))+. Then / ( x ) =  2 (I0:13+ I/~13)- 6, and by 
the inequahty above and Lemma 8.7 

6 .< I0:13 + I~13- 2 ~ (0:t~e -2'0) .< (I0:1 + 1~1)2- < 6. 
The proof is complete. 
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LI~MMA 8.12. I~ r is e~reme and r * O  then 1~l~=2~(5-1~18-1/318). 

Pro@ Suppose first 1~1+1/31<5�89 Then, if I~I=VU~ t h e n r  is not extreme by 

Lemma 8.9. If  I~1 < ~ then by Lemma 8.11 I~1~< 2~(5-I~1 s -  1/318), so there is room 

for perturbations on each one of ~,/3, and e. Thus ~ is not extreme in that  case. 

If  1~1+1/31=5+, but 1~18<2~(5-1~1~-1/31 s) then I~1< ~V~, because if I~I=VU~ 
and 1~1+1/31=5�89 then b y  Lemma 8.10 5~<2~(5-1~1~-1/318), and 0<(1~1+1/31) s -  
2[~12-2]/31 s= -(1~1-1/31)~<0, so that  2~(5,l~l~-J/31~)=2r(5-�89 s. By 

Lemma 8.8 e 2= - a / ~ r  2, where by Lemma 8.10 Ir l~<2~.  H I r l < 2 ~  then there is 

room for perturbations on s, and r is not extreme. If r = 2 ~  t then ~1~11/31=1~12< 
2 ~(5 - 1~[2- [/3[s), contrary to the assumption that  ]~[ + 1/31 = 5�89 Thus I~1 s = 2 ~ (5-  

[~ls-  1/31s). 

Proo/ o/ Theorem 8.2. I t  remains to show that  if H~=2z(5-1~Is-I/3D and 

# 0 then ~ is extreme. Suppose r = �89 ( ~  + r with r = ~ + ~b', r = ~b - ~b', and ~ ,  

+ fl'b ~,'a + e'b + Uc 

We have to show s  Notice that  7 ' = - 5 ' .  We may assume 

~' >70. By Lemma 8.10 and the parallellogram law 

21~ls+21r I~-e'l  s 
~< 2(v, + r')(5 § 5 ' - I ~ +  ~'1 ~ -  I/3 +/3'1 s) 

+2  ( ~ - ~ ' ) ( 5 - 5 ' - I ~ - ~ ' 1  s -  I/3- y l  ~) 

=4r (5  -I~1 ~-  I~'1 =-  1/31 s -  1/3'1 s) 
+27'  (25'+ (1~-  ~'1 s -  I~+ ~'1 s) + (I/3-/3'13- I/3 +/3'1~)). 

Now I ~ - ~ ' l S - I ~ + ~ ' l = = - 4 ~ ' .  Thus by Lemma 8.11 

I~'ls < -2~(1~'l  s+ [Yl s) - 2 ~ ' s +  4r  ' (1~11~'1+ 1/311/3'1). (3) 

If  ~ ' = 0  then a ' = / 3 ' = e ' = 0 ,  and ~ is extreme. If ~ ' = / 3 ' = 0  then 7 ' =  ~ '=0,  and 

again ~ is extreme. We shall show a' = /3 '=  0. Apply inequality (2) to ~b~ and ~b~, 

add the two inequafities obtained, and use the parallellogram law. Then 

(l~lS+l~'lS+l/3]s+ ]/3']S) [b]2 + 2 ~ ((otfl + s fl') bS) < ra2 + 2 a ~  (eb) + Sad. 

Therefore 

(la,[s+ [/3,12)[blS+2~(a, fi, b2)~< (},a2 + 2 a ~ e b + S a d ) -  ((l~lS+ 1/31S).lblS+ 2~(~b~)).  (4) 

~b 2 E ~) (Ms, Ms), and 
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By our assumption on e there exists b # 0  such that  the right side of inequality (4) 

is zero. Thus 

Thus I~'1=1/~'1. Then ~'/~'=l~'[Se ~~ ~/~=etQl~l]fll. Let  b=e '~ and ad =]b lS=l .  

Then ~ ( ~ ' ~ ' b S ) = l ~ ' l  s cos (0+2~) ,  ~ ( ~ b S ) = l ~ l l ~ l  cos (~+2~) .  By Lemma 8.8 and 

Lemma 8.11 es= _a/~r  S and e=ie~2V~,lo:l I~1. Thus ~ e b =  -2Vrl~J Ifll sin (�89 

Thus inequality (4) reads 

21~'lS(l+ cos (0+2~)) 

<~aS-4a(~l~l I~1 sin (�89 (1 - cos (~+2~)) .  

Now 1 -  c o s 2 u = 2 s i n  ~u. Thus 

0 < 2 l ~ ' l S ( l +  cos (0+2~) )  

< ~aS-4al/~,[~l [fl] sin ( ~  + ~ ) + 4 l ~  ] Ifll sins (�89 +~)" (5) 

For each ~ such that  sin ( ~ + ~ ) / > 0  let 

av= 2 V~, -1 [o:[ Ifll sin (�89 

Then the right side of inequality (5) is equal to zero. Letting ~ vary it follows that  

g ' =  0 = fl'. Thus ~b is extreme. The proof is complete. 

Example 8.13. Let r be the map in ~)(Ms, Ms) determined by 

with 0 < 8 < 1 .  By Theorem 8.2 ~ is extreme. 

(~�89 8d) 
7 a +  

is also bijective and not of class 0. 

Hence the assumption that  ~b be strongly postitive is necessary in Proposition 2.7 

and Proposition 2.10. Moreover, r does not have minimal range. In fact, if o~xr is 

a vector state o~y then cox is the state (ai~) --> a11. Indeed, let x = (x 1, xs) and y = (Yl, Ys). 

Then the following equations hold: 

lyllS= IxlIS+~lxsI s , 

lysIS=~lxsI S, 

Yl Ys = ~�89 xl xs" 

Thus ~lxliSIxsiS=iyliSlysiS=~ixsIS(Ix, l~+~lxs[~), and (~lxs[4=O, so tha t  xs=0.  Thus 

to~ is the state we asserted. Let i be the identity mapping of M S onto itself. Then 
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r( i )<~r(~) .  B y  R e m a r k  4.13 i t  suffices to  show the  lef t  kerne l  of wx conta ins  t h a t  

of e%r  for each vec to r  s t a t e  eoz of M 2. B u t  o~ ~b is e i ther  fa i thfu l  or  is t he  s t a t e  

(a~j)--> a l l  , since a non vec to r  s t a t e  on M~ is fa i thful .  Thus  r ( i ) <  r (4). Since i=~r  

does no t  have  min ima l  range.  
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