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Introduction 

Schreier proved in [8] tha t  a finitely generated normal subgroup U # { 1 }  of a 

free group F is of finite index. This result was extended by  Karrass and Solitar in 

[3], to the case when U is not necessarily normal, but contains a non-trivial normal 

subgroup of F. In  Topology, the free groups occur as fundamental  groups of surfaces 

with boundary, and we here extend the result still further (Theorem 6.1) to the case 

when F is the (non-abelian) fundamental  group of any connected surface, with or 

without boundary, except for a Klein bottle. We use topological methods, and also 

the elements of Morse theory, although the latter could be ehminated. A sketch of 

this theory is included, however, par t ly  for its intuitive appeal, and part ly  because 

the Morse theory picks out "stable" generators of the fundamental group, and there- 

fore is helpful as a tool. Indeed, the author was able to  use it quickly to prove 

Schreier's Theorem, and Theorem 3.3 below (that an open surface has free fundamen- 

tal group), before knowing tha t  proofs already existed in the literature. Our exposi- 

tion is always from the point of view tha t  it is the surface, ra ther  than  the group, 

which is the ult imate object o f  study; and we have perhaps laboured points tha t  

might irk the pure group-theorist. 

2. Riemann surfaces 

A l~iemarm surface (S, r ([1], ch. I I )  is a 2-dimensional manifold S, for each 

point x of which there is a "co-ordinate chart"  (U, u)E r (where U is an open neigh- 

bourhood of x in S, and u is a homeomorphism of U onto an open subset of a plane), 

such tha t  if U, V are overlapping charts, the homeomorphism 
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v o u - l :  u (U N V)-->v(UN V) (i) 

is conformal, with conformal inverse. The pair  (S, (I)) is often denoted by  S. I t  then  

makes sense to speak of harmonic  functions on S; a real funct ion /: S-->R 1 is "C  ~r 

resp. "ha rmonic"  if and only if, for each char t  (U,u)EdP, / o u  -1 is an ordinary in- 

finitely differentiable resp. harmonic funct ion on u (U). We therefore call x E S a non- 

degenerate critical point  of / if and only if u(x) is a non-degenerate critical point  of 

g = / o u  -1 on u(U);  i.e. the derivatives g~,g~ are both  zero, and g~xg~-g2x~=4=O at  

u(x). These definitions are independent  of u, since the Jacob ian  of v o u  -1 in (i) is 

non-zero, while a harmonic funct ion is C ~. 

Also x is a maximum,  minimum, or saddle-point of / if the same is t rue for 

u (x )  and / o u  -1. The sets ( /=c}  are the "levels" of /, and the value c is "cri t ical" 

or "o rd ina ry"  according as {] = c} contains a critical point  or not.  The "half  space" 

S c is defined by  
s c = {x [ / (x) <. e}, 

and its boundary  O S c is the level { / =  c}. By  an implicit funct ion theorem, if c is 

ordinary,  then ~S  c is a 1-dimensional manifold. 

A Riemann surface has always a Riemannian  metric, by  means of which we can 

define the orthogonal  trajectories of (in particular) a C ~ func t ion / ,  (Morse [4] p. 150). 

These are curves ~, or thogonal  to the ordinary levels o f / a n d  parametrised such tha t  

/ (~(t))=t  for each t in the domain of v. There is a unique t ra jec tory  v through each 

ordinary  point  x of /; and T depends continuously on x. On the other  hand, if x is, 

for example, an  isolated saddle-point of /, then  in a suitable chart,  / is of the form 

~t2 _/~2 at  x; so there are exact ly  two trajectories 

l(x), r(x) (ii) 

corresponding to the portions fl ~< 0, fl ~> 0 of the fl-axis, th rough x and lying in I n t  

(Sr(X~-x), and two others through x and lying in I n t  (S (-I)(z~ - x ) .  The basic lemmas 

of Morse Theory tha t  we need here can then be s ta ted as follows (Morse-Van- 

Schaak [6]). 

LEMMA A. Let [a, b] be a closed interval o/ ordinary values o/ / on S. Then 

S ~ is a de/ormation retract o/ S b. I /  also [a, b] - [c, b], where c < a and [c, b] contains 

no critical value o/ /, then(i) S a ~ S  b. 

(1) ~ d e n o t e s  h o m e o m o r p h i s m ,  
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Remark.  The proviso about  c is automatically satisfied if S ~ is compact, by the 

continuity of grad /. The existence of c is required in the proof of Lemma 2.2 in 

[4] VI. 

COROLLARY A. IT/ 71 . . . . .  7m are a set o/ singular 1-cycles on S ~, linearly in- 

dependent over the integers, then they are linearly independent on S b. (For S: is a re- 

t ract  of S~.) 

LEMMA B. Let c be an isolated critical value o/ [, and suppose that the critical 

points el / on S ~ /orm a countable, isolated set o/ saddle points x~, i E ~. 

Then /or a su//iciently small e >0,  S c-~ is a de/ormation retract el a set X ,  where 

S~+~=X0 U a~. 

and(l) (a) each a,~=l 2, x~e In t  as, a~fTX=~I•  

(b) all the a, are mutually disioint; 

(c) the trajectory l(x,), [see (ii) above] travels into X /rom x~ through one o/ the 

two segments o/ a~ N X ,  and r(xi) does so through the other. 

Remark.  The proof is a direct consequence by  induction on i E ~ of Theorem 4 

of Morse-Van Schaak [6] p. 559 (where the result is proved for a set ~ with just 

one member). 

COROLLARY B. With the hypotheses o/ Lemma B, suppose that c is the only 

critical value o/ /, in the interval [a, b] o/ values, where a <  c <  b. Then the inclusion 

S a~  _ S b induces, among the singular homology groups: 

(1) an epimorphism Ho(Sa)-->Ho(S~); and 

(2) a monomorphism H 1 (S a) --> H 1 (Sb). 

(This follows by induction on i E 5, in view of the condition ai N X ~ I •  in B(a).)  

Combining (2) with Corollary A, we have the following useful "s tabi l i ty"  property: 

COROLLARY C. Let the interval [a, b] contain only a /inite number o/ critical 

levels o/ /, on each o/ which the critical points are countable, isolated saddle-points. 

Then any set 71 . . . . .  7m O/ singular 1-cycles, on S ~, linearly independent over the integers, 

remains linearly independent on S ~. 

Similarly, provided S a is connected and contains the base point co, we obtain an 

analogue for the fundamental  groups based  a t  co: 

(1) I denotes the unit interval with boundary I; I s is the unit square. 
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COROLLARY D. Under the hypotheses o/ Cor. C, let gl . . . . .  gm be a set L o/ loops 

on S ~ based at r I /  L /orms part o/ a /ree basis o/ 7t l(Sa), then it /orms part o/ a 

/ree basis o/ ~l(Sb). 

Expressed in this form, these results are useful when "l if t ing" a funct ion into a 

covering space: see 5.2 belowl 

3. Topology of  surfaces 

Although the topological results are well known, and can be obtained by  purely 

topological means, it is not  wi thout  interest to carry  out  a study,  using Morse theory,  

of the topological s tructure of the general Riemann surface S described in Sect. 2. The 

Morse theoretic t rea tment  seems intuit ively enlightening, especially since the existence 

of differentiable structure,  and of the Green's funct ion we use ( =  "potent ia l  due to a 

point  charge, with earthed boundary")  are intuit ively very  plausible. 

Let  then S be a Riemann  surface, and let T be a compact  region in S, whose 

boundary  a T consists of a finite set of disjoint smooth Jo rdan  curves. Fix a base- 

point  ~o E In t  T. Then T has a "Green 's  funct ion"  F with pole o); t ha t  is, F : T - {w} -+ R 1 

is continuous, I ' I ~ T  is zero, F is harmonic on In t  T - { w } ,  while in a co-ordinate 

char t  (U, u) round 

r o U -1 (2:) = log [z [ + V (z) (u (0) = w), (i) 

where V(z) is harmonic on U. (General Reference: Ahlfors-Sario [1].) 

Now, for any  x E T, in any  simply connected char t  (V, v), F o v -1 is harmonic 

on v (V) and hence is the real par t  of a complex analyt ic  funct ion /. The critical 

points ~ of F then correspond to the zeros of the derivative o f / ,  and therefore these 

are isolated. I f  ~ is degenerate, then by  modifying r near ~ by adding a linear func- 

tion, (see Morse) we obtain a function F '  with only non-degenerate critical points, 

and  these all saddle-points; and such tha t  the critical values of F '  are all distinct, 

say  c 1 < c 2 < ... < cn, with corresponding distinct critical points ~1 . . . . .  ~n. Tha t  ~ E In t  

T follows immediately  from applying the following (1) lemma, to  a co-ordinate char t  

in S at  each boundary  point  of 0 T. 

3.1. LEMMA. Let D be a disc in the plane, separated into components A,  B by a 

di//erentiable arc a b joining the points a, b E D. Let ~ be a harmonic /unction on A,  

constant along a b, with ~ < ~ (ab) on A.  Then denoting by v the normal /rom A to B 

~ / a v > 0 at all points o/ab. 

(1) Oral communication from W. K. Hayman. 
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Proo/. Map A conformally, by  a map  0 onto a semi-circular disc A, in the lower 

half plane, to carry ab into the real axis. Then v 2 = r  o 0  -1 is harmonic on In t  A, 

and so can be continued across the axis, by  the Reflection Principle. I f  ~ r  were 

zero at  q E I n t  (ab) then ~ y ~ / a y  would be zero at  u=O(q);  now ~ y ) / ~ x = O  at  u, so 

~p is the real pa r t  of a complex analyt ic  funct ion 

[ (z) = a + b (z - u) ~ + higher order terms. (ii) 

But  we can always assume tha t  ~fl is zero on the real axis, so yJ (v) is positive or 

negative in company  with the imaginary par t  of v, because ~b < r (ab) on A. This 

conflicts with the behaviour  of / in (i). Hence ~ r  is > 0  at  all points as re- 

quired. 

Continuing the discussion of 1TM in (i) above, we see tha t  if I cl is sufficiently large, 

and c <  c 1 (say c~< Co< c~) then the co-ordinate t ransformat ion 

x'=xeV(Z "~), y ' = y e  v(~'y), (V  in (i)) 

t ransforms the half-space T ~ with non-vanishing Jacobian,  onto log ]zl~< c; hence T c 

is homeomorphic to a 2-cell, I ~. By  Lemma A of Section 2: 

T C ~ I  ~ if C< C 1. (iii) 

Recall t h a t  the c r i t ica l  levels of F '  on In t  T - { c o }  were e l <  . . .  <Cn; let e =  �89 min 

((c~+l--c~), [c~[), so tha t  e > 0 .  Then by  Lemma B in Section 2, T ~'+~ is the union 

of a set Z together  with a "s t r ip"  al: 

T cl+e = Z U (~1 

where T c1-~ is a deformation re t ract  of Z, a1-~I2; ~ 1 E I n t  al, and al N Z is a pair  of 

disjoint arcs a~, a~'. 

Thus, by  (iii), T c~+~ is a disc to which a strip has been joined (without twisting) 

by  its ends a~, a~', and so (taking to as base-point for the group), g l  (T~'+~) is cyclic, 

and generated by  an ~o-based loop of the form l r -1, where l, r are trajectories of the 

form 2 (ii). Applying Lemmas  A and B in tu rn  at  each critical point  ~t on the level 

c~, we see inductively tha t  7rt(T ~ is free on i generators. Further ,  T is built  up  

by  adding strips a 1 . . . . .  a~ (one for each ~) to the disc D = T  ~ in (iii); and com- 

paring Bett i  numbers  R0, R1, we note the following facts. 

When  ai+l is added to D , = D  U a t U ... U a,, then 

2 - - 6 3 2 9 3 2  Acta mathematica. 110. I m p r i m 6  le 14 oc tob re  1963. 
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Ro(O(Dt U a t+ i ) )=Ro(ODt)+  ~t, I 

J R 1 (Dr+l) = RI(Dt) + 1, 
(iv) 

where :r is either 1 or - 1 .  Let  n +, n -  denote the  number  of at with ~r positive 

and  ~t negative, respectively. Then by  induct ion on (iv), 

R0(0 T) = 1 + n + - n - ,  

R 1 (T) = n + + n -  = n, 

~1 (T, co) is / tee  on n generators. 

(v) 

(vi) 

(vii) 

Since R o (OT) >/1, then (v) shows tha t  n + ~>n-; say 

n + = n - + d ,  d = R o ( S T ) - l > ~ O .  

Note  that ,  by  (v) and  (vi), the topology o/ T determines the numbers n +, n - ,  and hence 

the critical points of any  approximat ion like F '  to  the Green function of T. 

I t  is not  hard  to show, b y  induction, t ha t  T is homeomorphie  to a " s t andard  

model"  M consisting of the  union of a disc D with n + holes hi, and n -  "br idges"  

bt joining the  edge of ht to aD, if i ~ n - .  From this model, it is easy to work out  

a homology basis and the  associated intersection numbers;  for, since a bridge bt crosses 

hi, then the intersection matr ix  has rank  n - .  To summarise, we have the 

3.2. THEOREM. A compact Riemann sur/ace with f l > 0  boundary curves and/irst  

Betti number R1, has a /tee /undamental group with R 1 generators, and is homeomorphic 

to a sphere with fl holes and �89 (R 1 + 1 - f l )  handles. 

Moreover, if the model M is such tha t  ~ M is a circle ~, then  n += n-  (by (v)) 

and we can obtain  the s tandard  closed surface V of genus n + = p  by  adding a disc 

to  OM along ~. By  taking a suitable set of generators at, b, of :~l(M, eo), ~ 

[a 1, bl] [a 2, bz] ... [at, br], so we see immediate ly  tha t  g l  (V) has generators  at, bi (1 ~< i ~<p) 

and  relation ~ = 1. 

Next,  let us indicate the corresponding analysis for a non-compact connected 

Riemann  surface S which is countable, i.e. S can be expressed as a union 

S =  U Sn, Sn - I n t  Sn+l, 
n=(} 

where each Sn is a compact  domain and sub-manifold of S with non-empty  boundary .  

Such an S is called an open sur]ace; its boundary  is empty .  Moreover, we can arrange 

tha t  a Sn consists of smooth Jo rdan  curves, such t h a t  
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each component ot J,-~n+l - -  I n t  Sn has at least one 

boundary curve in  ~ S ,  and one in  ~ S n + l .  (viii) 

Let  ~o be a fixed point  in I n t  S 0, and let F 0 be the  Green's  funct ion for S o, with 

pole w. I f  n > 0 ,  define F~ to  be tha t  harmonic  funct ion on S ~ -  I n t  S , - 1  which is 

n on a Sn and  n - 1  on ~Sn-1 (this uses (viii)). B y  L e m m a  3.1 the critical points  

of Fn lie in I n t  S,;  and they  are finite in number  because in a simply connected 

char t  (U, u), F~ o u -1 is locally the real pa r t  of a complex analyt ic  function. By  an 

a rgument  ment ioned above, we can modify  each F ,  so tha t  its critical points are all 

saddle-points with distinct critical values. 

Define a global function F : S - - >  R 1 by  sett ing 

F I ( S , -  I n t  S, -1)  = Fn, (S-1 empty); (ix) 

then F is clearly continuous, and is differentiable except  possibly on the levels 

( F =  integer}. Such a level, {r=n} is still "ord inary" ,  however, by  Lemma 3.1; 

for if x e { r  = n},  then a t ra jec tory  exists f rom x into (F  < n} and one into 

{F >n} ,  and these two join a t  x to make a continuous (if no t  differentiable) curve. 

Differentiabili ty of trajectories is not  required in the proof of Lemma A. Thus, if 

the  critical levels of F are c I < c~ < .... corresponding to  critical points  ~1, $~ . . . . .  then 

arguing as for (iii) and  using Lemmas  A and  B, we see as for T above tha t  S is a 

union 
S =  D U al U a2 U ... U a~ U . . . ,  ~ E In t  a~, (*) 

(which m a y  terminate) of 2-cells D, a~, where a ,+ l  FI (D U a 1 U ... U a,) is a pair  of 

arcs. Thus 
3T 1 (D U a I U ... U a,+~) = g l  (D U 0" 1 U . . .  U an) "X" F 1 

(free product),  where F 1 has just  one generator,  and  this corresponds to a ,+l .  Hence 

~1(S) is free (cf. [1], p. 102). 

A Riemann  surface is always orientable. Bu t  if S is a non-orientable (connected) 

compact  or open surface which is differentiable [i.e., the maps  v o u  -1 in 2 (i), and 

their inverses, are required only to  be differentiable], then S has an orientable double 

covering p:  T - >  S. The differentiable s tructure on S induces one on T, so tha t  p 

becomes differentiable with nowhere-vanishing Jacobian.  We construct  a funct ion F 

as in (ix) on T, and  then define an  analogue F ' : S - - >  R 1 by  

F '  (X) = I ~ (Xl) + l 1 (X~) 

where p-1 (x) consists of x 1 and x 2. Then F '  is differentiable with a single pole, wi thout  
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maxima or minima, and possessing only saddle points for critical points. Hence the 

decomposit ion (*) is obtained as before, except t ha t  some of the cells a, m a y  be 

twisted. Therefore if S is compact,  we can derive generators and relations for nl  (S) 

in the same way  as for the orientable case discussed above; together  with an ana- 

logue of Theorem 3.2. Also since every open surface has a differentiable structure,  

then by  using 3 (vi) and its non-orientable analogue we have (cf. [1] p. 102): 

3.3. THEOREM. I /  S is a sur/ace, then ~1 (S) is /ree provided either S is open, 

or S is compact with ~ S * o. 

3.4. COROLLARY (of proof). I /  S is an open sur/ace, with finite Betti number 

R1, then S contains a compact mani/old S .  with boundary, such that the injection 

J : ~1 (Z , )  ~ ~1 (8) 

is an isomorphism. In  [act S .  can be taken to be a hall.space S a o / F .  

(For, the number  of strips a~ in (*) is exact ly k, the Bett i  number  R1; so we can 

take a to be any  number  >ck.) 

I t  would be interesting to know if the decomposit ion (*) could be derived by  

topological means, wi thout  the difficult job of having to t r iangulate S. For  example, 

can S be given differentiable s t ructure  without  a previous tr iangulation? And can a 

function like F be found wi thout  the complicated theories of harmonic functions or 

of polar functions (Morse [5])? 

Fur ther  deductions from 3.3 are as follows. 

3.5. THEOREM. I /  S is an open surface with cyclic /undamental group, then S is 

either an unbounded annulus, or an unbounded Moebius strip. 

Proo/. Since gl  (S) is cyclic, the set S a of 3.4 contains exact ly  one critical point  

of F. Therefore, by  (*), S ~ is the union of a disc and  a strip and hence is either a 

bounded  annulus A or Moebius band  B. Choose b > a .  By  Lemma A of Sect. 2, 

S ~  S b, so In t  S b is an  unbounded  annulus or Moebius band  according as S b is A 

or B. As described prior to 2 (ii), each x E S - S  b lies on a unique t ra jec tory  v which 

meets ~ S a, ~ S ~ in unique points r = ~ (a), s = v (b) respectively, and F (r) = a, F (s) = b. 

Let  r : (a, ~)---  (a, b) be a homeomorphism, and define a homeomorphism y) : S ~- I n t  S o 

by  setting Y) I Sa = identity,  and otherwise ~o (x) = t, where t is on ~ and F (t) = 0 (F (x)). 

Because v depends continuously on x, then y) and ~0 -1 are continuous, as required. 

By  the remarks above, S is therefore an  unbounded  annulus or Moebius strip, which 

completes the proof. 
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3.6. COROLLARY. In  3.4 the components o/ S - S  a are all unbounded annuli. 

Proo/. We know by  Lemma A, Sect. 2, t ha t  if b > a ,  there is a homeomorphism 
b b 0a : S ~ S a, which in part icular  assigns to each point  x E ~S ~ the point  0b, (x) E ~ S a 

where the unique t ra jec tory  through x meets {F =a} .  Since such a t ra jec tory  passes 
j th rough  each y E S - S ~, then y lies on a Jo rdan  curve J~t, where t = F (y), and Oa (~t)  

is a component  J~ of ~S~; since S a is compact,  then 1 ~ ~ <  N, say. Hence S -  S ~ is 

the union of sets 
B~= O J~ (l<cz<~v). 

a<t<ar 

By uniqueness of trajectories, the curve J~t through y is unique; hence the compo- 

nents of S - S  ~ are the sets B~, l < a ~ < N .  Each  of these is a line bundle over a 

circle since the t ra jec tory  through y depends continuously on y; hence by  3.5, each 

B~ is an  unbounded  annulus if B~ is orientable, and possibly an unbounded  Moebius 

strip otherwise. Now S - S  ~ is open in S, so each component  B~ is orientable if S 

is; thus  B ,  can be non-orientable only if S is. 

But,  if B~ were non-orientable, so would B = (J ~..<t<~+l J~,, which is then a Moebius 

strip. But  then the addit ion of B to S ~ would introduce an  element of period 2 in 

H 1 (S), since B N S a = J~. This is impossible, (1) since H 1 (S) is free abelian. This com- 

pletes the proof. 

4. The centre of ~1 (S )  

Let  S be a surface with base-point co. We now consider covering surfaces of S, 

and use freely the general results of Hi l ton-Wyl ie  ([2], ch. 6). I n  particular, we recall 

t ha t  if G is any  subgroup of g l  (S), then there is a connected covering space Sa with 

projection p:Sa--> S, and natura l  base-point  cog Ep  -1 (o)), such tha t  the induced ho- 

momorphism p ,  :g l  (Sa, cog)--> :T~ I (S ,  o)) has kernel zero, and image G. Moreover, p is 

a local homeomorphism, so Sa is also a sur/ace, open if S is open; and if S is open 

or compact,  then ~1 (Se) is countable. For  future reference we record 

4.1. I /  S is compact, then G is o/ /inite index in :7~ l (S) i f  and only i/ Sa is 

compact. 

Consequently we have from 3.3: 

4.2. I /  S is compact and G is el in/inite index in re 1 (S), then G is /ree. 

We now derive some consequences of 4.2. I t  will be convenient  to call a surface 

S "abel ian"  or not,  according as xe 1 (S) is abelian or not.  The analysis in 3.2 and 

3.5 shows tha t  

(1) This impossibility was kindly pointed out by the referee. 
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4.3. I /  S is abelian then 

(a) i/ S is compact and ~ S = ~, then S is a sphere, torus, or real pro~ective plane; 

(b) i/ S is compact and 8 S~: o then S is a Moebius strip or an annulus;  

(c) i/ S is open then S is an unbounded Moebius strip or annulus.  

Our ma in  i n t e r e s t  will therefore  be in non-abe] jan  surfaces. F o r  b rev i ty ,  if H 

is a subgroup of a group G, then  [ G : H ]  will  denote  the  index of H in G. Since we 

in t end  to  p rove  Theorem 6.1 below, which is false when S is a t oms ,  we also ex- 

clude here and  now the  case when S is a Kle in  bo t t l e  K,  for K too  is a counter-  

example  as we now show. :~1 (K) has  two genera tors  a, b, wi th  one re la t ion  a ba  -1= 

b -1, so the  cyclic subgroup fl genera ted  b y  b is normal  since x b x  1=b~1 for all  

x E ze 1 (K). Hence  ~7~ l (K) / f l  is free cyclic, genera ted  b y  a, so [~1 (K) : fl] = oo, and  

therefore  fl is a f in i te ly  genera ted  no rma l  subgroup of :~1 (K) of inf ini te  index.  I t  can 

be shown t h a t  the  centre  of g l  (K) is free cyclic, genera ted  b y  a s, in con t ras t  to  4.4 

below; a full  t r e a t m e n t  of the  no rma l  subgroups  of :~1 (K) will  a p p e a r  elsewhere.  

W e  now consider  non-abe]Jan surfaces S : # K .  

4.4. THEOREM. I f  S4=K is a non-abelian surface, then the centre o/ 7~1(S ) i8 

trivial. 

Proof. I f  S is open, or  if S is c ompa c t  wi th  b o u n d a r y  :~o, t hen  P = ~ z  1 (S) is 

free; and  since S is non-abel ian ,  t hen  P is freely genera ted  b y  a set  {g~} of a t  leas t  

two generators .  Given x E P ,  x has  a un ique  reduced  form g~' ~r �9 .. g r ,  and  so if i ~ : r ,  

t hen  yix~=xgt. Thus,  the  centre  of P is {1}. 

There  remains  the  case when S is compac t  and  D S = o .  The  centre  C of P is 

therefore  not of finite index in P; otherwise b y  4.1, Sc is compact ,  abe]jan,  a n d  

Sc = o whence b y  4.3 (a), Sc is a sphere,  t o m s ,  or  real  p ro jec t ive  plane.  B u t  then  

b y  compar ing  Eu le r  character is t ics ,  S i tself  would  be one of these  th ree  surfaces,  

con t r a ry  to the  fact  t h a t  S is non-abe]Jan. Hence,  [ P : C ]  = c~, so b y  4.2, C is free; 

b u t  C is abe]jan,  so C is e i ther  t r iv ia l  or  cyclic infinite.  I f  C :~(1} ,  the  abe] janised 

group (P /C)  A has  r ank  ~> 2, for P has  a t  leas t  th ree  generators .  One of these  gen- 

e ra tors  a t  least ,  has  no mul t ip le  :~ 1 in C, so (1) r ank  (P / {C ,  g})A ~> 1, where {C, g} = N 

denotes  the  no rma l  subgroup  of P gene ra t ed  b y  C a n d  g. Therefore  N is of inf ini te  

index  in  P ,  whence b y  4.2~ N is free; and  N is no t  cyclic, b y  choice of g. Thus  

(1) When S is a real projective plane with one handle, g is not completely arbitrary. Here P 
has 3 generators a, b, c, and the single relation 2 c = 0; so at most one of a, b, c has a non-zero mul- 
tiple lying in the cyclic group C A. Hence we can choose g so that either a or b is free in (P/{C, g})A, 
thus ensuring a rank/> 1. 
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the centre CN of N is trivial, by  the word-theoretic argument  a t  the s tar t  of the 

proof. But  C _  UN, so C=(1} ,  as required. 

Remark. I t  would be interesting to have a geometric, as opposed to a word- 

theoretic, proof tha t  a free non-cyclic group has a trivial centre. 

4.5. COROLLARY. I /  S 4 K  is non-abelian, no non.trivial cyclic subgroup o/ 

P = x~ 1 (S) is normal. 

Proo/. If  possible let g =~ 1 generate a cyclic normal subgroup G of P.  Then for 

each xEP,  xgx - lEG,  so x g x - l = g  n(~)" say, for some non-zero integer n(x). I t  

follows tha t  
n(xy) = n ( x ) . n ( y ) ,  n(1) -~ 1, (i) 

whence l = n ( x x - 1 ) ,  so n ( x ) = •  Let  H = ( x  I x e P  and n ( x ) = l } ;  then b y ( i ) , H i s  

normal in P and is either all of P or of index 2. In  the first case, every element 

of P commutes with g, so G lies in the centre of P,  which is impossible by  4.4. 

In  the second, g commutes with every element in H, and n(g)= 1, so G lies in the 

centre of H =~1 (SH)" Therefore S~ is a surface whose fundamental  group has non- 

trivial centre, so either SH is a Klein bottle (which is impossible since the Euler 

characteristic of S is not zero), or H is abelian and therefore either infinite cyclic 

{say Z) or Z +  Z or Z~. I f  H = Z, then S~ is either a (possibly unbounded)annulus  

or Moebius strip, using 4.3, covering S twice. Hence S is the same so P is abelian 

contrary to the inequality H :~ P. I f  H = Z-t- Z, then SH is a torus, covering S twice. 

Hence S is a toms,  or Klein bottle, contrary to hypothesis. I f  H = Z~, then P has 

just four elements, which is impossible since P is the fundamental  group of a con- 

nected surface. Hence H cannot be of index 2 in P, so H = P  which we have seen 

to be impossible. Hence G=(1}. This completes the proof. 

As we saw prior to 4.4, Cor. 4.5 is false when S = K .  

The following is essentially a corollary of 3.3. I[ S is a sur/ace, not the real 

pro~ective plane, then ~1 (S) contains no element o/ /inite order. 

Proo/. I f  G were a non-trivial finite cyclic subgroup of gl  (S) then Zl (S) could 

not be free so (by 3.3) S is compact, with ~ S = o .  Since G is not free then Sa is 

compact, by  3.3. But  then ~1 (Sa)~ G, and the only surface with fundamental group 

of this kind is the real projective plane, p2. But  then comparing Euler characteristics, 

X(P2)=g.X(S) where g=[~I(S);G]. Now X(P2)= I ,  so g = X ( S ) = I ,  and S ~ P  2,con- 

t ra ry  to hypothesis. This completes  the proof. 
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5. Covering spaces 

Next, we need to gather some results from the general theory of covering spaces. 

Let  r  a ) -+  (B, b) be a regular covering map of based spaces, so tha t  

G = ~z 1 (B, b)/r zr 1 (A, a) 

acts (anti-isomorphieally) as a group of covering transformations of A, without fixed 

points. Thus, following 4.5, there exist compact non-abelian surfaces S, such tha t  

xQ (S) possesses finitely generated normal subgroups N o] finite i~utex (hence N # { 1 ) ) .  

For any non-abelian surface S' possesses a t  least one finite group G of automorphisms 

without fixed-point (see e.g. Nielsen [7] p. 95), and S'  is a g-leaved regular covering 

space of the orbit space S'/G, where g = order of G. Hence S' /G is a compact sur- 

face S whose fundamental  group P contains a normal subgroup N isomorphic to 

7gl(S' ) such tha t  P / N  is anti-isomorphic to G. Hence N is normal in P, finitely 

generated, and incidentally not free (cf. 4.2). 

Returning to the general r :A- ->B above, we recall that  if w ~ B, then r (w)= 

(w~), where, given w~,w#, there exists g E G such tha t  g(w~)=w~. Moreover (by 

definition), w has a "C-canonical" neighbourhood W such tha t  ~b-l(W) consists of a 

set of neighbourhoods U~ in A, one for each w~, with the property that  r = r U~ is 

a homeomorphism onto W. 

5.1. LEMMA. With g(w~)=w~ as above, we have g (U~)=U~, provided W is path- 

connected. 

Proo/. Let u~E U~ and let 2: I,]---> W,(w,r be a pa th  from w to r 

Then r  ~ 1  o~t=2~ are paths in U~, U~ from w~ to u~ and w~ to u~= 

~b~l(~u~) respectively. But  then 2~ and g o~t~ are paths covering 2, and issuing 

from wp; therefore they are equal. Thus g(u~)=u~, so g(U~)~-U~. Similarly g-1 

(U~) ___ U~, so g(U~)= U~ as claimed. 

5.2. At this point, we remark tha t  we could prove at  least the original form of 

the Schreier Theorem mentioned in the Introduction (N = U, 7r 1 (S) free in Theorem 

6.1 below) directly using the above theory and tha t  of Sect. 2. This was done in 

the first draft  of this paper, and we sketch the method briefly, since it has some 

intrinsic interest. Let  E be an open plane disc with n > 0 holes, let p :  EN--> E be 

the covering associated with N ~ z r l ( E ) = F ,  the free group on n generators; and 

suppose [F:_N] = oo. Since E is a Riemann surface, the local homeomorphism p in- 

duces a Riemann structure in EN. Hence the function FN= F '  o p, induced by  the 
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function F '  of 3 (ix), has isolated critical points, all saddle points lying above those 

of F' ;  and the critical levels of FN are those of F'.  Also FN has a discrete infinity 

of poles lying above tha t  of F'.  I f  any loop in E, of the form I r -1 in 2 (ii), were 

to lift as a loop ~ in EN, then 2 would consist of pieces of trajectory of FN, and so 

would, together with its iterates under F/N,  form an infinite set of linearly inde- 

pendent cycles in En, by Cor C, Sect. 2 , - o n  the assumption [F :N] = oo. Hence it. 

would follow tha t  H 1 (EN) is infinitely generated, contradicting the fact tha t  gl  (En) 

N and N is finitely generated. Hence 2 is not a loop, so EN is simply connected 

and N =  {1}. This method does not unfortunately work so well when E is replaced 

by  a compact surface, and we alter our tactics as follows. 

We consider the following situation. Let  X be a locally connected, locally compact, 

pathwise connected space based at  e0; let 

Xn _+ Xu ~ X (i) 

be covering spaces corresponding to the subgroups N ~ U ~_ G = g l ( X , x  ). Suppose 

tha t  N is normal in G, so tha t  the groups of covering transformations: 

U / N  = 1.t ~_ (~ = G/N 

act on X~ without fixed-points. 

5.3. THEOREM. I /  (~/1I iS countably in/Mite, and A~_XN, B~_ X  u are compact, 

then /or all but a /Mite number o/ g E ~ ,  

a(flA) nB=o.  

Proo]. There is a natural  ( 1 -  1) correspondence 

G / u  ~ (G/N) / ( U / N ) ,  

so we have coset decompositions 

G / U = g l U U g ~ U U  ... Ug~UU .... t 

~ /1I = g~ 1I u g21I o u g~ 1I u ...; I 
(ii) 

where gn is the image of gn under the natural  homomorphism G--> {~, and (therefore) 

the set K = {gn} is infinite. 

Since fl in (i) is a covering map, each x E X has a neighbourhood W such tha t  

/~-I(W) is a disjoint union of neighbourhoods Pi in Xu, one Pi for each x~Efl-l(x), 
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and the xt being in ( l - l )  correspondence with G]U, hence with K. Moreover, 

fl~ =fl lP~ is a homeomorphism of P~ on W. Also by  considering ~+=fl o ~ in (i), and 

choosing W smaller if necessary, we can suppose, by  5.1, tha t  W is y-canonical, so 

tha t  

~2 - I  (W)  = {6 Q}, 

for one fixed Q _c XN, as g runs through (~. We can express ? - I ( W )  in two ways, 

first as 

7 - 1 ( W )  = Ua.~K{(g,u) 'Q} (ueU) ,  (iii) 

(where for clarity, the action of {~ on XN is denoted by  a dot), and second as 

~2-1 (W)  = 0~ -1 (~-1  W )  = ~J gnEK 0~ - I  (P . ) ,  (iv) 

where we recall tha t  each P ,  corresponds bi-uniquely to g,. We reconcile (iii) and 

(iv) by  observing tha t  x-1 (p , )  is a disjoint union of some of the sets 6" Q (since they 

are connected) and then showing more precisely tha t  

We first prove 

o~ -x (P,)  is the disjoint union o / the  sets 6, u .  Q, 

as 11 runs through 1I. 

(v) 

a ((ft, u ) -  Q) = ~ ((gn u ' ) .  Q) /or all u, u' E 1t. (a) 

For ( 6 ~ u ) ' Q = t t ' ( g , . Q )  since (~ acts anti-isomorphically on XN; and since u is a 

covering transformation relative to a, then 

a ((g~ u).  Q) = ~ (u- g," Q) = a (g,- Q) 

from which (a) follows at  once. As a kind of converse, we now prove 

I /  ~ (~- Q) n ~ (6"  Q) 4= o, (b) 

then ~ -- 6' rood U. 

By the observation above, a (g" Q) lies in some Pk, and therefore since the P ' s  are 

mutual ly disjoint, then a (g. Q), a (g'- Q) each lie in Pk. By the hypothesis in (b), there 

exist 6, q" E Q such that~ (6" q) = a (6"  q')" Hence there exists u E U]N-~ 1I such tha t  

It. (6"q); and then by  5.1, ~ ' - Q = u . ( 6 " Q ) .  Therefore 6 ' - - -gu since (~ acts anti- 

isomorphicaUy on X~, without fixed points. This proves (b), and then (v) is  a direct 

consequence of (a) and (b) together. 



T H E  F U N D A M E N T A L  G R O U P  O F  A S U R F A C E  1 5  

We now apply (v) to prove the Theorem. We are given that  B ~_ Xv  is com- 

pact. Hence 
given g E (~ there exists an integer j = ?" (g, W) such that (vi) 

a (~m" (g" Q)) N B = o 
provided m > j. 

(Otherwise for some fixed g E q~ and for each integer i, there exists m = m  ( i )>i ,  

g~ fi K and x~ E g. Q such that  y~ = ~ (g~. x~) E B; but  the different products g gm are 

incongruent rood 1I, so by (b) above the sets a(gm(~)'g "Q) lie in mutually disjoint 

sets Pk(o where P~(r)#Pk(s) if r # s .  Hence the points y~ form an infinite set without 

limit point, contrary to the fact that  {y~} lies in the compact set B.) 

Finally, consider the given compact A _  XN. I t  can be covered by a finite family 

of open sets of the form ~rs" Qr = (g~(~.,)u~)- Q~, where g=(~.,) E K, the Q~ corresponding 

to different open sets Wr in X. Then by  (a), 

and so by (vi) we consider 
~ , = m a x  (i(~r Wr)). 

r ,  8 

By definition of the ]'s, if m >?',, then 

~ (~a.A) N B _ [ a ( ~ .  U (g~'Q~)] NB 
T . 8  

- [ U a (g~" ~ "  Qr)] n B 
T, 8 

r , 8  

= ~ by (vi). 

Thus {ga, m >?',} will do for the infinity of g E qfi required in 5.2. 

This completes the proof of Theorem 5.2. 

6, C, eneralisation of  Sehreier's theorem 

In this section we generalise the theorem of Sehreier, mentioned in the introduc- 

tion, and include also the generalisation of Karrass and Solitar [3]. 

6.1. THEOREM. Let S # K  be a non-abelian sur/ace with base.point oJ. Let 

N ~_ U ~_ P=~r~ (S, o)) be non-trivial groups, such that U is finitely generated and N is 

normal in P. Then U is o/ /inite index in P. 

Proo/. We can suppose that  ~ S = g ,  since ~ t l ( S - a S  ) ~ ~1(S). If we deny 6.1, 

then [P : U] = oo. Let  
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sN 

be the associated covering spaces of N and U relative to the base-point ~o E S; thus 

coy E ~-1 (co), con E ~-1 (cou) are the base-points of Su, SN. Certainly, since [P : U] = ~ ,  

then Su, SN are both open surfaces, using 4.1 and the above assumption tha t  ~ S = ~. 

Therefore, by  3.4, there is a compact half-space B~_Su such tha t  the injection 

j : ~e 1 (B) --> ~1 (Su) is an isomorphism. All the fundamental  groups involved are countable, 

by  a remark preceding 4.1, so in the notation of 5.2 (ii), (~/11 is countably infinite, since 

it has cardinal [P:  U]. Now N 4 ( 1 } ,  by  hypothesis, so N has at  least two independ- 

ent generators, by  4.5, and these can be represented by  wu-based loops 2, # in Sv. 

Since ?" above is an isomorphism, we can assume 2, p to be in B. They lift into coN- 

based loops 2', p'  in a compact subset A of ~-1 (B)_  SN. Hence we can apply 5.2, to 

find a covering transformation g E (~ such tha t  ~(gA)N B = o .  Therefore, setting 

co'=~(g(coN)), the m'-based loops ~(g2'),  ~(gp')  lie in the same component K of 

S u - B .  But  by  choice of B as a half-space, we can invoke 3.6, to assert tha t  ~i (K) 

is cyclic infinite; thus there exist integers p, q such tha t  (~ (g 2 ' ) ) ' -  ~ (~ (g p'))q rel ~ '  

in K. By the lifting homotopy theorem, (g 2')P ~_ (g p') q rel g(wN) in SN, so 2'P___/~ 'q 

rel con in SN since g is a homeomorphism. Hence 2P_~p ~ rel co in B since ] above 

is an isomorphism. But  then 2 ,p  cannot represent independent generators of N, and 

we have a contradiction. 

This completes the proof. 

Example. The commutator  subgroup of P is of infinite index, hence free, since 

H 1 (S) is infinite if S is non-abelian. 

We conclude by recording the following theorem, whose proof is identical with 

tha t  of Theorem 2 of Karrass and So]itar [3]. 

6.2. THEOREM. Let U be a /initely generated subgroup o/ P = ~ I ( S ) ,  S non- 

abelian, S =# K. Then [P:  U] < oo i] and only i/ U contains the (normal) subgroup Nd 

o/ all d-th powers o/ elements o/ P, /or some d. (Then d = [ P : U ]  !) 

Added in :proofs. While the paper  was in the press, the author 's  at tention was drawn 

to the paper  by  L. Greenberg, "Discrete Groups of Motions", Canadian J. Math., 12 

(1960), 415426.  There, Theorem 4 includes our Theorem 6.1, but  it  is proved by  quite 

different methods. However, a conversation with A. M. Macbeath showed how to extend 

our 6.1 to the case when P is what  Greenberg calls a "non-quasi-abelian" group of mo- 

tions of the hyperbolic plane, as follows. The result of Fox quoted on p. 415 of Green- 

berg's paper  shows tha t  P contains a subgroup Q of finite index, and such tha t  no trans- 
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formation in Q has fixed points; hence Q is the fundamental group of a surface, which 

is non-abelian since P is non-quasi-abelian. Hence 6.1 can be applied directly to U N Q, 

N N Q, the latter being non-trivial since P contains no finite normal subgroup ~= 1. Thus 

U 0 Q has finite index in Q, whence [Q: U] is finite. More generally, the argument applies 

to any group P without finite non-trivial normal subgroups and possessing a subgroup 

like Q. I t  is hoped to extend these ideas in a later paper. 
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